1 //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This is the LLVM vectorization plan. It represents a candidate for 11 /// vectorization, allowing to plan and optimize how to vectorize a given loop 12 /// before generating LLVM-IR. 13 /// The vectorizer uses vectorization plans to estimate the costs of potential 14 /// candidates and if profitable to execute the desired plan, generating vector 15 /// LLVM-IR code. 16 /// 17 //===----------------------------------------------------------------------===// 18 19 #include "VPlan.h" 20 #include "VPlanDominatorTree.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Analysis/LoopInfo.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CFG.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/IR/Value.h" 33 #include "llvm/Support/Casting.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/GenericDomTreeConstruction.h" 37 #include "llvm/Support/GraphWriter.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include <cassert> 41 #include <iterator> 42 #include <string> 43 #include <vector> 44 45 using namespace llvm; 46 extern cl::opt<bool> EnableVPlanNativePath; 47 48 #define DEBUG_TYPE "vplan" 49 50 raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { 51 if (const VPInstruction *Instr = dyn_cast<VPInstruction>(&V)) 52 Instr->print(OS); 53 else 54 V.printAsOperand(OS); 55 return OS; 56 } 57 58 /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. 59 const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { 60 const VPBlockBase *Block = this; 61 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 62 Block = Region->getEntry(); 63 return cast<VPBasicBlock>(Block); 64 } 65 66 VPBasicBlock *VPBlockBase::getEntryBasicBlock() { 67 VPBlockBase *Block = this; 68 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 69 Block = Region->getEntry(); 70 return cast<VPBasicBlock>(Block); 71 } 72 73 /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. 74 const VPBasicBlock *VPBlockBase::getExitBasicBlock() const { 75 const VPBlockBase *Block = this; 76 while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 77 Block = Region->getExit(); 78 return cast<VPBasicBlock>(Block); 79 } 80 81 VPBasicBlock *VPBlockBase::getExitBasicBlock() { 82 VPBlockBase *Block = this; 83 while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 84 Block = Region->getExit(); 85 return cast<VPBasicBlock>(Block); 86 } 87 88 VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { 89 if (!Successors.empty() || !Parent) 90 return this; 91 assert(Parent->getExit() == this && 92 "Block w/o successors not the exit of its parent."); 93 return Parent->getEnclosingBlockWithSuccessors(); 94 } 95 96 VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { 97 if (!Predecessors.empty() || !Parent) 98 return this; 99 assert(Parent->getEntry() == this && 100 "Block w/o predecessors not the entry of its parent."); 101 return Parent->getEnclosingBlockWithPredecessors(); 102 } 103 104 void VPBlockBase::deleteCFG(VPBlockBase *Entry) { 105 SmallVector<VPBlockBase *, 8> Blocks; 106 for (VPBlockBase *Block : depth_first(Entry)) 107 Blocks.push_back(Block); 108 109 for (VPBlockBase *Block : Blocks) 110 delete Block; 111 } 112 113 BasicBlock * 114 VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { 115 // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. 116 // Pred stands for Predessor. Prev stands for Previous - last visited/created. 117 BasicBlock *PrevBB = CFG.PrevBB; 118 BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), 119 PrevBB->getParent(), CFG.LastBB); 120 LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); 121 122 // Hook up the new basic block to its predecessors. 123 for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { 124 VPBasicBlock *PredVPBB = PredVPBlock->getExitBasicBlock(); 125 auto &PredVPSuccessors = PredVPBB->getSuccessors(); 126 BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; 127 128 // In outer loop vectorization scenario, the predecessor BBlock may not yet 129 // be visited(backedge). Mark the VPBasicBlock for fixup at the end of 130 // vectorization. We do not encounter this case in inner loop vectorization 131 // as we start out by building a loop skeleton with the vector loop header 132 // and latch blocks. As a result, we never enter this function for the 133 // header block in the non VPlan-native path. 134 if (!PredBB) { 135 assert(EnableVPlanNativePath && 136 "Unexpected null predecessor in non VPlan-native path"); 137 CFG.VPBBsToFix.push_back(PredVPBB); 138 continue; 139 } 140 141 assert(PredBB && "Predecessor basic-block not found building successor."); 142 auto *PredBBTerminator = PredBB->getTerminator(); 143 LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); 144 if (isa<UnreachableInst>(PredBBTerminator)) { 145 assert(PredVPSuccessors.size() == 1 && 146 "Predecessor ending w/o branch must have single successor."); 147 PredBBTerminator->eraseFromParent(); 148 BranchInst::Create(NewBB, PredBB); 149 } else { 150 assert(PredVPSuccessors.size() == 2 && 151 "Predecessor ending with branch must have two successors."); 152 unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; 153 assert(!PredBBTerminator->getSuccessor(idx) && 154 "Trying to reset an existing successor block."); 155 PredBBTerminator->setSuccessor(idx, NewBB); 156 } 157 } 158 return NewBB; 159 } 160 161 void VPBasicBlock::execute(VPTransformState *State) { 162 bool Replica = State->Instance && 163 !(State->Instance->Part == 0 && State->Instance->Lane == 0); 164 VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; 165 VPBlockBase *SingleHPred = nullptr; 166 BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. 167 168 // 1. Create an IR basic block, or reuse the last one if possible. 169 // The last IR basic block is reused, as an optimization, in three cases: 170 // A. the first VPBB reuses the loop header BB - when PrevVPBB is null; 171 // B. when the current VPBB has a single (hierarchical) predecessor which 172 // is PrevVPBB and the latter has a single (hierarchical) successor; and 173 // C. when the current VPBB is an entry of a region replica - where PrevVPBB 174 // is the exit of this region from a previous instance, or the predecessor 175 // of this region. 176 if (PrevVPBB && /* A */ 177 !((SingleHPred = getSingleHierarchicalPredecessor()) && 178 SingleHPred->getExitBasicBlock() == PrevVPBB && 179 PrevVPBB->getSingleHierarchicalSuccessor()) && /* B */ 180 !(Replica && getPredecessors().empty())) { /* C */ 181 NewBB = createEmptyBasicBlock(State->CFG); 182 State->Builder.SetInsertPoint(NewBB); 183 // Temporarily terminate with unreachable until CFG is rewired. 184 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 185 State->Builder.SetInsertPoint(Terminator); 186 // Register NewBB in its loop. In innermost loops its the same for all BB's. 187 Loop *L = State->LI->getLoopFor(State->CFG.LastBB); 188 L->addBasicBlockToLoop(NewBB, *State->LI); 189 State->CFG.PrevBB = NewBB; 190 } 191 192 // 2. Fill the IR basic block with IR instructions. 193 LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() 194 << " in BB:" << NewBB->getName() << '\n'); 195 196 State->CFG.VPBB2IRBB[this] = NewBB; 197 State->CFG.PrevVPBB = this; 198 199 for (VPRecipeBase &Recipe : Recipes) 200 Recipe.execute(*State); 201 202 VPValue *CBV; 203 if (EnableVPlanNativePath && (CBV = getCondBit())) { 204 Value *IRCBV = CBV->getUnderlyingValue(); 205 assert(IRCBV && "Unexpected null underlying value for condition bit"); 206 207 // Condition bit value in a VPBasicBlock is used as the branch selector. In 208 // the VPlan-native path case, since all branches are uniform we generate a 209 // branch instruction using the condition value from vector lane 0 and dummy 210 // successors. The successors are fixed later when the successor blocks are 211 // visited. 212 Value *NewCond = State->Callback.getOrCreateVectorValues(IRCBV, 0); 213 NewCond = State->Builder.CreateExtractElement(NewCond, 214 State->Builder.getInt32(0)); 215 216 // Replace the temporary unreachable terminator with the new conditional 217 // branch. 218 auto *CurrentTerminator = NewBB->getTerminator(); 219 assert(isa<UnreachableInst>(CurrentTerminator) && 220 "Expected to replace unreachable terminator with conditional " 221 "branch."); 222 auto *CondBr = BranchInst::Create(NewBB, nullptr, NewCond); 223 CondBr->setSuccessor(0, nullptr); 224 ReplaceInstWithInst(CurrentTerminator, CondBr); 225 } 226 227 LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); 228 } 229 230 void VPRegionBlock::execute(VPTransformState *State) { 231 ReversePostOrderTraversal<VPBlockBase *> RPOT(Entry); 232 233 if (!isReplicator()) { 234 // Visit the VPBlocks connected to "this", starting from it. 235 for (VPBlockBase *Block : RPOT) { 236 if (EnableVPlanNativePath) { 237 // The inner loop vectorization path does not represent loop preheader 238 // and exit blocks as part of the VPlan. In the VPlan-native path, skip 239 // vectorizing loop preheader block. In future, we may replace this 240 // check with the check for loop preheader. 241 if (Block->getNumPredecessors() == 0) 242 continue; 243 244 // Skip vectorizing loop exit block. In future, we may replace this 245 // check with the check for loop exit. 246 if (Block->getNumSuccessors() == 0) 247 continue; 248 } 249 250 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 251 Block->execute(State); 252 } 253 return; 254 } 255 256 assert(!State->Instance && "Replicating a Region with non-null instance."); 257 258 // Enter replicating mode. 259 State->Instance = {0, 0}; 260 261 for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { 262 State->Instance->Part = Part; 263 for (unsigned Lane = 0, VF = State->VF; Lane < VF; ++Lane) { 264 State->Instance->Lane = Lane; 265 // Visit the VPBlocks connected to \p this, starting from it. 266 for (VPBlockBase *Block : RPOT) { 267 LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); 268 Block->execute(State); 269 } 270 } 271 } 272 273 // Exit replicating mode. 274 State->Instance.reset(); 275 } 276 277 void VPRecipeBase::insertBefore(VPRecipeBase *InsertPos) { 278 Parent = InsertPos->getParent(); 279 Parent->getRecipeList().insert(InsertPos->getIterator(), this); 280 } 281 282 iplist<VPRecipeBase>::iterator VPRecipeBase::eraseFromParent() { 283 return getParent()->getRecipeList().erase(getIterator()); 284 } 285 286 void VPRecipeBase::moveAfter(VPRecipeBase *InsertPos) { 287 InsertPos->getParent()->getRecipeList().splice( 288 std::next(InsertPos->getIterator()), getParent()->getRecipeList(), 289 getIterator()); 290 } 291 292 void VPInstruction::generateInstruction(VPTransformState &State, 293 unsigned Part) { 294 IRBuilder<> &Builder = State.Builder; 295 296 if (Instruction::isBinaryOp(getOpcode())) { 297 Value *A = State.get(getOperand(0), Part); 298 Value *B = State.get(getOperand(1), Part); 299 Value *V = Builder.CreateBinOp((Instruction::BinaryOps)getOpcode(), A, B); 300 State.set(this, V, Part); 301 return; 302 } 303 304 switch (getOpcode()) { 305 case VPInstruction::Not: { 306 Value *A = State.get(getOperand(0), Part); 307 Value *V = Builder.CreateNot(A); 308 State.set(this, V, Part); 309 break; 310 } 311 case VPInstruction::ICmpULE: { 312 Value *IV = State.get(getOperand(0), Part); 313 Value *TC = State.get(getOperand(1), Part); 314 Value *V = Builder.CreateICmpULE(IV, TC); 315 State.set(this, V, Part); 316 break; 317 } 318 case Instruction::Select: { 319 Value *Cond = State.get(getOperand(0), Part); 320 Value *Op1 = State.get(getOperand(1), Part); 321 Value *Op2 = State.get(getOperand(2), Part); 322 Value *V = Builder.CreateSelect(Cond, Op1, Op2); 323 State.set(this, V, Part); 324 break; 325 } 326 default: 327 llvm_unreachable("Unsupported opcode for instruction"); 328 } 329 } 330 331 void VPInstruction::execute(VPTransformState &State) { 332 assert(!State.Instance && "VPInstruction executing an Instance"); 333 for (unsigned Part = 0; Part < State.UF; ++Part) 334 generateInstruction(State, Part); 335 } 336 337 void VPInstruction::print(raw_ostream &O, const Twine &Indent) const { 338 O << " +\n" << Indent << "\"EMIT "; 339 print(O); 340 O << "\\l\""; 341 } 342 343 void VPInstruction::print(raw_ostream &O) const { 344 printAsOperand(O); 345 O << " = "; 346 347 switch (getOpcode()) { 348 case VPInstruction::Not: 349 O << "not"; 350 break; 351 case VPInstruction::ICmpULE: 352 O << "icmp ule"; 353 break; 354 case VPInstruction::SLPLoad: 355 O << "combined load"; 356 break; 357 case VPInstruction::SLPStore: 358 O << "combined store"; 359 break; 360 default: 361 O << Instruction::getOpcodeName(getOpcode()); 362 } 363 364 for (const VPValue *Operand : operands()) { 365 O << " "; 366 Operand->printAsOperand(O); 367 } 368 } 369 370 /// Generate the code inside the body of the vectorized loop. Assumes a single 371 /// LoopVectorBody basic-block was created for this. Introduce additional 372 /// basic-blocks as needed, and fill them all. 373 void VPlan::execute(VPTransformState *State) { 374 // -1. Check if the backedge taken count is needed, and if so build it. 375 if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { 376 Value *TC = State->TripCount; 377 IRBuilder<> Builder(State->CFG.PrevBB->getTerminator()); 378 auto *TCMO = Builder.CreateSub(TC, ConstantInt::get(TC->getType(), 1), 379 "trip.count.minus.1"); 380 Value2VPValue[TCMO] = BackedgeTakenCount; 381 } 382 383 // 0. Set the reverse mapping from VPValues to Values for code generation. 384 for (auto &Entry : Value2VPValue) 385 State->VPValue2Value[Entry.second] = Entry.first; 386 387 BasicBlock *VectorPreHeaderBB = State->CFG.PrevBB; 388 BasicBlock *VectorHeaderBB = VectorPreHeaderBB->getSingleSuccessor(); 389 assert(VectorHeaderBB && "Loop preheader does not have a single successor."); 390 391 // 1. Make room to generate basic-blocks inside loop body if needed. 392 BasicBlock *VectorLatchBB = VectorHeaderBB->splitBasicBlock( 393 VectorHeaderBB->getFirstInsertionPt(), "vector.body.latch"); 394 Loop *L = State->LI->getLoopFor(VectorHeaderBB); 395 L->addBasicBlockToLoop(VectorLatchBB, *State->LI); 396 // Remove the edge between Header and Latch to allow other connections. 397 // Temporarily terminate with unreachable until CFG is rewired. 398 // Note: this asserts the generated code's assumption that 399 // getFirstInsertionPt() can be dereferenced into an Instruction. 400 VectorHeaderBB->getTerminator()->eraseFromParent(); 401 State->Builder.SetInsertPoint(VectorHeaderBB); 402 UnreachableInst *Terminator = State->Builder.CreateUnreachable(); 403 State->Builder.SetInsertPoint(Terminator); 404 405 // 2. Generate code in loop body. 406 State->CFG.PrevVPBB = nullptr; 407 State->CFG.PrevBB = VectorHeaderBB; 408 State->CFG.LastBB = VectorLatchBB; 409 410 for (VPBlockBase *Block : depth_first(Entry)) 411 Block->execute(State); 412 413 // Setup branch terminator successors for VPBBs in VPBBsToFix based on 414 // VPBB's successors. 415 for (auto VPBB : State->CFG.VPBBsToFix) { 416 assert(EnableVPlanNativePath && 417 "Unexpected VPBBsToFix in non VPlan-native path"); 418 BasicBlock *BB = State->CFG.VPBB2IRBB[VPBB]; 419 assert(BB && "Unexpected null basic block for VPBB"); 420 421 unsigned Idx = 0; 422 auto *BBTerminator = BB->getTerminator(); 423 424 for (VPBlockBase *SuccVPBlock : VPBB->getHierarchicalSuccessors()) { 425 VPBasicBlock *SuccVPBB = SuccVPBlock->getEntryBasicBlock(); 426 BBTerminator->setSuccessor(Idx, State->CFG.VPBB2IRBB[SuccVPBB]); 427 ++Idx; 428 } 429 } 430 431 // 3. Merge the temporary latch created with the last basic-block filled. 432 BasicBlock *LastBB = State->CFG.PrevBB; 433 // Connect LastBB to VectorLatchBB to facilitate their merge. 434 assert((EnableVPlanNativePath || 435 isa<UnreachableInst>(LastBB->getTerminator())) && 436 "Expected InnerLoop VPlan CFG to terminate with unreachable"); 437 assert((!EnableVPlanNativePath || isa<BranchInst>(LastBB->getTerminator())) && 438 "Expected VPlan CFG to terminate with branch in NativePath"); 439 LastBB->getTerminator()->eraseFromParent(); 440 BranchInst::Create(VectorLatchBB, LastBB); 441 442 // Merge LastBB with Latch. 443 bool Merged = MergeBlockIntoPredecessor(VectorLatchBB, nullptr, State->LI); 444 (void)Merged; 445 assert(Merged && "Could not merge last basic block with latch."); 446 VectorLatchBB = LastBB; 447 448 // We do not attempt to preserve DT for outer loop vectorization currently. 449 if (!EnableVPlanNativePath) 450 updateDominatorTree(State->DT, VectorPreHeaderBB, VectorLatchBB); 451 } 452 453 void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopPreHeaderBB, 454 BasicBlock *LoopLatchBB) { 455 BasicBlock *LoopHeaderBB = LoopPreHeaderBB->getSingleSuccessor(); 456 assert(LoopHeaderBB && "Loop preheader does not have a single successor."); 457 DT->addNewBlock(LoopHeaderBB, LoopPreHeaderBB); 458 // The vector body may be more than a single basic-block by this point. 459 // Update the dominator tree information inside the vector body by propagating 460 // it from header to latch, expecting only triangular control-flow, if any. 461 BasicBlock *PostDomSucc = nullptr; 462 for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { 463 // Get the list of successors of this block. 464 std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); 465 assert(Succs.size() <= 2 && 466 "Basic block in vector loop has more than 2 successors."); 467 PostDomSucc = Succs[0]; 468 if (Succs.size() == 1) { 469 assert(PostDomSucc->getSinglePredecessor() && 470 "PostDom successor has more than one predecessor."); 471 DT->addNewBlock(PostDomSucc, BB); 472 continue; 473 } 474 BasicBlock *InterimSucc = Succs[1]; 475 if (PostDomSucc->getSingleSuccessor() == InterimSucc) { 476 PostDomSucc = Succs[1]; 477 InterimSucc = Succs[0]; 478 } 479 assert(InterimSucc->getSingleSuccessor() == PostDomSucc && 480 "One successor of a basic block does not lead to the other."); 481 assert(InterimSucc->getSinglePredecessor() && 482 "Interim successor has more than one predecessor."); 483 assert(PostDomSucc->hasNPredecessors(2) && 484 "PostDom successor has more than two predecessors."); 485 DT->addNewBlock(InterimSucc, BB); 486 DT->addNewBlock(PostDomSucc, BB); 487 } 488 } 489 490 const Twine VPlanPrinter::getUID(const VPBlockBase *Block) { 491 return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + 492 Twine(getOrCreateBID(Block)); 493 } 494 495 const Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { 496 const std::string &Name = Block->getName(); 497 if (!Name.empty()) 498 return Name; 499 return "VPB" + Twine(getOrCreateBID(Block)); 500 } 501 502 void VPlanPrinter::dump() { 503 Depth = 1; 504 bumpIndent(0); 505 OS << "digraph VPlan {\n"; 506 OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; 507 if (!Plan.getName().empty()) 508 OS << "\\n" << DOT::EscapeString(Plan.getName()); 509 if (!Plan.Value2VPValue.empty() || Plan.BackedgeTakenCount) { 510 OS << ", where:"; 511 if (Plan.BackedgeTakenCount) 512 OS << "\\n" 513 << *Plan.getOrCreateBackedgeTakenCount() << " := BackedgeTakenCount"; 514 for (auto Entry : Plan.Value2VPValue) { 515 OS << "\\n" << *Entry.second; 516 OS << DOT::EscapeString(" := "); 517 Entry.first->printAsOperand(OS, false); 518 } 519 } 520 OS << "\"]\n"; 521 OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; 522 OS << "edge [fontname=Courier, fontsize=30]\n"; 523 OS << "compound=true\n"; 524 525 for (VPBlockBase *Block : depth_first(Plan.getEntry())) 526 dumpBlock(Block); 527 528 OS << "}\n"; 529 } 530 531 void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { 532 if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) 533 dumpBasicBlock(BasicBlock); 534 else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 535 dumpRegion(Region); 536 else 537 llvm_unreachable("Unsupported kind of VPBlock."); 538 } 539 540 void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, 541 bool Hidden, const Twine &Label) { 542 // Due to "dot" we print an edge between two regions as an edge between the 543 // exit basic block and the entry basic of the respective regions. 544 const VPBlockBase *Tail = From->getExitBasicBlock(); 545 const VPBlockBase *Head = To->getEntryBasicBlock(); 546 OS << Indent << getUID(Tail) << " -> " << getUID(Head); 547 OS << " [ label=\"" << Label << '\"'; 548 if (Tail != From) 549 OS << " ltail=" << getUID(From); 550 if (Head != To) 551 OS << " lhead=" << getUID(To); 552 if (Hidden) 553 OS << "; splines=none"; 554 OS << "]\n"; 555 } 556 557 void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { 558 auto &Successors = Block->getSuccessors(); 559 if (Successors.size() == 1) 560 drawEdge(Block, Successors.front(), false, ""); 561 else if (Successors.size() == 2) { 562 drawEdge(Block, Successors.front(), false, "T"); 563 drawEdge(Block, Successors.back(), false, "F"); 564 } else { 565 unsigned SuccessorNumber = 0; 566 for (auto *Successor : Successors) 567 drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); 568 } 569 } 570 571 void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { 572 OS << Indent << getUID(BasicBlock) << " [label =\n"; 573 bumpIndent(1); 574 OS << Indent << "\"" << DOT::EscapeString(BasicBlock->getName()) << ":\\n\""; 575 bumpIndent(1); 576 577 // Dump the block predicate. 578 const VPValue *Pred = BasicBlock->getPredicate(); 579 if (Pred) { 580 OS << " +\n" << Indent << " \"BlockPredicate: "; 581 if (const VPInstruction *PredI = dyn_cast<VPInstruction>(Pred)) { 582 PredI->printAsOperand(OS); 583 OS << " (" << DOT::EscapeString(PredI->getParent()->getName()) 584 << ")\\l\""; 585 } else 586 Pred->printAsOperand(OS); 587 } 588 589 for (const VPRecipeBase &Recipe : *BasicBlock) 590 Recipe.print(OS, Indent); 591 592 // Dump the condition bit. 593 const VPValue *CBV = BasicBlock->getCondBit(); 594 if (CBV) { 595 OS << " +\n" << Indent << " \"CondBit: "; 596 if (const VPInstruction *CBI = dyn_cast<VPInstruction>(CBV)) { 597 CBI->printAsOperand(OS); 598 OS << " (" << DOT::EscapeString(CBI->getParent()->getName()) << ")\\l\""; 599 } else { 600 CBV->printAsOperand(OS); 601 OS << "\""; 602 } 603 } 604 605 bumpIndent(-2); 606 OS << "\n" << Indent << "]\n"; 607 dumpEdges(BasicBlock); 608 } 609 610 void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { 611 OS << Indent << "subgraph " << getUID(Region) << " {\n"; 612 bumpIndent(1); 613 OS << Indent << "fontname=Courier\n" 614 << Indent << "label=\"" 615 << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") 616 << DOT::EscapeString(Region->getName()) << "\"\n"; 617 // Dump the blocks of the region. 618 assert(Region->getEntry() && "Region contains no inner blocks."); 619 for (const VPBlockBase *Block : depth_first(Region->getEntry())) 620 dumpBlock(Block); 621 bumpIndent(-1); 622 OS << Indent << "}\n"; 623 dumpEdges(Region); 624 } 625 626 void VPlanPrinter::printAsIngredient(raw_ostream &O, Value *V) { 627 std::string IngredientString; 628 raw_string_ostream RSO(IngredientString); 629 if (auto *Inst = dyn_cast<Instruction>(V)) { 630 if (!Inst->getType()->isVoidTy()) { 631 Inst->printAsOperand(RSO, false); 632 RSO << " = "; 633 } 634 RSO << Inst->getOpcodeName() << " "; 635 unsigned E = Inst->getNumOperands(); 636 if (E > 0) { 637 Inst->getOperand(0)->printAsOperand(RSO, false); 638 for (unsigned I = 1; I < E; ++I) 639 Inst->getOperand(I)->printAsOperand(RSO << ", ", false); 640 } 641 } else // !Inst 642 V->printAsOperand(RSO, false); 643 RSO.flush(); 644 O << DOT::EscapeString(IngredientString); 645 } 646 647 void VPWidenRecipe::print(raw_ostream &O, const Twine &Indent) const { 648 O << " +\n" << Indent << "\"WIDEN\\l\""; 649 for (auto &Instr : make_range(Begin, End)) 650 O << " +\n" << Indent << "\" " << VPlanIngredient(&Instr) << "\\l\""; 651 } 652 653 void VPWidenIntOrFpInductionRecipe::print(raw_ostream &O, 654 const Twine &Indent) const { 655 O << " +\n" << Indent << "\"WIDEN-INDUCTION"; 656 if (Trunc) { 657 O << "\\l\""; 658 O << " +\n" << Indent << "\" " << VPlanIngredient(IV) << "\\l\""; 659 O << " +\n" << Indent << "\" " << VPlanIngredient(Trunc) << "\\l\""; 660 } else 661 O << " " << VPlanIngredient(IV) << "\\l\""; 662 } 663 664 void VPWidenPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 665 O << " +\n" << Indent << "\"WIDEN-PHI " << VPlanIngredient(Phi) << "\\l\""; 666 } 667 668 void VPBlendRecipe::print(raw_ostream &O, const Twine &Indent) const { 669 O << " +\n" << Indent << "\"BLEND "; 670 Phi->printAsOperand(O, false); 671 O << " ="; 672 if (!User) { 673 // Not a User of any mask: not really blending, this is a 674 // single-predecessor phi. 675 O << " "; 676 Phi->getIncomingValue(0)->printAsOperand(O, false); 677 } else { 678 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) { 679 O << " "; 680 Phi->getIncomingValue(I)->printAsOperand(O, false); 681 O << "/"; 682 User->getOperand(I)->printAsOperand(O); 683 } 684 } 685 O << "\\l\""; 686 } 687 688 void VPReplicateRecipe::print(raw_ostream &O, const Twine &Indent) const { 689 O << " +\n" 690 << Indent << "\"" << (IsUniform ? "CLONE " : "REPLICATE ") 691 << VPlanIngredient(Ingredient); 692 if (AlsoPack) 693 O << " (S->V)"; 694 O << "\\l\""; 695 } 696 697 void VPPredInstPHIRecipe::print(raw_ostream &O, const Twine &Indent) const { 698 O << " +\n" 699 << Indent << "\"PHI-PREDICATED-INSTRUCTION " << VPlanIngredient(PredInst) 700 << "\\l\""; 701 } 702 703 void VPWidenMemoryInstructionRecipe::print(raw_ostream &O, 704 const Twine &Indent) const { 705 O << " +\n" << Indent << "\"WIDEN " << VPlanIngredient(&Instr); 706 if (User) { 707 O << ", "; 708 User->getOperand(0)->printAsOperand(O); 709 } 710 O << "\\l\""; 711 } 712 713 template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); 714 715 void VPValue::replaceAllUsesWith(VPValue *New) { 716 for (VPUser *User : users()) 717 for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) 718 if (User->getOperand(I) == this) 719 User->setOperand(I, New); 720 } 721 722 void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, 723 Old2NewTy &Old2New, 724 InterleavedAccessInfo &IAI) { 725 ReversePostOrderTraversal<VPBlockBase *> RPOT(Region->getEntry()); 726 for (VPBlockBase *Base : RPOT) { 727 visitBlock(Base, Old2New, IAI); 728 } 729 } 730 731 void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, 732 InterleavedAccessInfo &IAI) { 733 if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { 734 for (VPRecipeBase &VPI : *VPBB) { 735 assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); 736 auto *VPInst = cast<VPInstruction>(&VPI); 737 auto *Inst = cast<Instruction>(VPInst->getUnderlyingValue()); 738 auto *IG = IAI.getInterleaveGroup(Inst); 739 if (!IG) 740 continue; 741 742 auto NewIGIter = Old2New.find(IG); 743 if (NewIGIter == Old2New.end()) 744 Old2New[IG] = new InterleaveGroup<VPInstruction>( 745 IG->getFactor(), IG->isReverse(), Align(IG->getAlignment())); 746 747 if (Inst == IG->getInsertPos()) 748 Old2New[IG]->setInsertPos(VPInst); 749 750 InterleaveGroupMap[VPInst] = Old2New[IG]; 751 InterleaveGroupMap[VPInst]->insertMember( 752 VPInst, IG->getIndex(Inst), 753 Align(IG->isReverse() ? (-1) * int(IG->getFactor()) 754 : IG->getFactor())); 755 } 756 } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) 757 visitRegion(Region, Old2New, IAI); 758 else 759 llvm_unreachable("Unsupported kind of VPBlock."); 760 } 761 762 VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, 763 InterleavedAccessInfo &IAI) { 764 Old2NewTy Old2New; 765 visitRegion(cast<VPRegionBlock>(Plan.getEntry()), Old2New, IAI); 766 } 767