1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MapValue function, which is shared by various parts of 10 // the lib/Transforms/Utils library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/ValueMapper.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DebugInfoMetadata.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include <cassert> 43 #include <limits> 44 #include <memory> 45 #include <utility> 46 47 using namespace llvm; 48 49 #define DEBUG_TYPE "value-mapper" 50 51 // Out of line method to get vtable etc for class. 52 void ValueMapTypeRemapper::anchor() {} 53 void ValueMaterializer::anchor() {} 54 55 namespace { 56 57 /// A basic block used in a BlockAddress whose function body is not yet 58 /// materialized. 59 struct DelayedBasicBlock { 60 BasicBlock *OldBB; 61 std::unique_ptr<BasicBlock> TempBB; 62 63 DelayedBasicBlock(const BlockAddress &Old) 64 : OldBB(Old.getBasicBlock()), 65 TempBB(BasicBlock::Create(Old.getContext())) {} 66 }; 67 68 struct WorklistEntry { 69 enum EntryKind { 70 MapGlobalInit, 71 MapAppendingVar, 72 MapAliasOrIFunc, 73 RemapFunction 74 }; 75 struct GVInitTy { 76 GlobalVariable *GV; 77 Constant *Init; 78 }; 79 struct AppendingGVTy { 80 GlobalVariable *GV; 81 Constant *InitPrefix; 82 }; 83 struct AliasOrIFuncTy { 84 GlobalValue *GV; 85 Constant *Target; 86 }; 87 88 unsigned Kind : 2; 89 unsigned MCID : 29; 90 unsigned AppendingGVIsOldCtorDtor : 1; 91 unsigned AppendingGVNumNewMembers; 92 union { 93 GVInitTy GVInit; 94 AppendingGVTy AppendingGV; 95 AliasOrIFuncTy AliasOrIFunc; 96 Function *RemapF; 97 } Data; 98 }; 99 100 struct MappingContext { 101 ValueToValueMapTy *VM; 102 ValueMaterializer *Materializer = nullptr; 103 104 /// Construct a MappingContext with a value map and materializer. 105 explicit MappingContext(ValueToValueMapTy &VM, 106 ValueMaterializer *Materializer = nullptr) 107 : VM(&VM), Materializer(Materializer) {} 108 }; 109 110 class Mapper { 111 friend class MDNodeMapper; 112 113 #ifndef NDEBUG 114 DenseSet<GlobalValue *> AlreadyScheduled; 115 #endif 116 117 RemapFlags Flags; 118 ValueMapTypeRemapper *TypeMapper; 119 unsigned CurrentMCID = 0; 120 SmallVector<MappingContext, 2> MCs; 121 SmallVector<WorklistEntry, 4> Worklist; 122 SmallVector<DelayedBasicBlock, 1> DelayedBBs; 123 SmallVector<Constant *, 16> AppendingInits; 124 125 public: 126 Mapper(ValueToValueMapTy &VM, RemapFlags Flags, 127 ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) 128 : Flags(Flags), TypeMapper(TypeMapper), 129 MCs(1, MappingContext(VM, Materializer)) {} 130 131 /// ValueMapper should explicitly call \a flush() before destruction. 132 ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } 133 134 bool hasWorkToDo() const { return !Worklist.empty(); } 135 136 unsigned 137 registerAlternateMappingContext(ValueToValueMapTy &VM, 138 ValueMaterializer *Materializer = nullptr) { 139 MCs.push_back(MappingContext(VM, Materializer)); 140 return MCs.size() - 1; 141 } 142 143 void addFlags(RemapFlags Flags); 144 145 void remapGlobalObjectMetadata(GlobalObject &GO); 146 147 Value *mapValue(const Value *V); 148 void remapInstruction(Instruction *I); 149 void remapFunction(Function &F); 150 151 Constant *mapConstant(const Constant *C) { 152 return cast_or_null<Constant>(mapValue(C)); 153 } 154 155 /// Map metadata. 156 /// 157 /// Find the mapping for MD. Guarantees that the return will be resolved 158 /// (not an MDNode, or MDNode::isResolved() returns true). 159 Metadata *mapMetadata(const Metadata *MD); 160 161 void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 162 unsigned MCID); 163 void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 164 bool IsOldCtorDtor, 165 ArrayRef<Constant *> NewMembers, 166 unsigned MCID); 167 void scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 168 unsigned MCID); 169 void scheduleRemapFunction(Function &F, unsigned MCID); 170 171 void flush(); 172 173 private: 174 void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 175 bool IsOldCtorDtor, 176 ArrayRef<Constant *> NewMembers); 177 178 ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } 179 ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } 180 181 Value *mapBlockAddress(const BlockAddress &BA); 182 183 /// Map metadata that doesn't require visiting operands. 184 Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); 185 186 Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); 187 Metadata *mapToSelf(const Metadata *MD); 188 }; 189 190 class MDNodeMapper { 191 Mapper &M; 192 193 /// Data about a node in \a UniquedGraph. 194 struct Data { 195 bool HasChanged = false; 196 unsigned ID = std::numeric_limits<unsigned>::max(); 197 TempMDNode Placeholder; 198 }; 199 200 /// A graph of uniqued nodes. 201 struct UniquedGraph { 202 SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. 203 SmallVector<MDNode *, 16> POT; // Post-order traversal. 204 205 /// Propagate changed operands through the post-order traversal. 206 /// 207 /// Iteratively update \a Data::HasChanged for each node based on \a 208 /// Data::HasChanged of its operands, until fixed point. 209 void propagateChanges(); 210 211 /// Get a forward reference to a node to use as an operand. 212 Metadata &getFwdReference(MDNode &Op); 213 }; 214 215 /// Worklist of distinct nodes whose operands need to be remapped. 216 SmallVector<MDNode *, 16> DistinctWorklist; 217 218 // Storage for a UniquedGraph. 219 SmallDenseMap<const Metadata *, Data, 32> InfoStorage; 220 SmallVector<MDNode *, 16> POTStorage; 221 222 public: 223 MDNodeMapper(Mapper &M) : M(M) {} 224 225 /// Map a metadata node (and its transitive operands). 226 /// 227 /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative 228 /// algorithm handles distinct nodes and uniqued node subgraphs using 229 /// different strategies. 230 /// 231 /// Distinct nodes are immediately mapped and added to \a DistinctWorklist 232 /// using \a mapDistinctNode(). Their mapping can always be computed 233 /// immediately without visiting operands, even if their operands change. 234 /// 235 /// The mapping for uniqued nodes depends on whether their operands change. 236 /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of 237 /// a node to calculate uniqued node mappings in bulk. Distinct leafs are 238 /// added to \a DistinctWorklist with \a mapDistinctNode(). 239 /// 240 /// After mapping \c N itself, this function remaps the operands of the 241 /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c 242 /// N has been mapped. 243 Metadata *map(const MDNode &N); 244 245 private: 246 /// Map a top-level uniqued node and the uniqued subgraph underneath it. 247 /// 248 /// This builds up a post-order traversal of the (unmapped) uniqued subgraph 249 /// underneath \c FirstN and calculates the nodes' mapping. Each node uses 250 /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its 251 /// operands uses the identity mapping. 252 /// 253 /// The algorithm works as follows: 254 /// 255 /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and 256 /// save the post-order traversal in the given \a UniquedGraph, tracking 257 /// nodes' operands change. 258 /// 259 /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands 260 /// through the \a UniquedGraph until fixed point, following the rule 261 /// that if a node changes, any node that references must also change. 262 /// 263 /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes 264 /// (referencing new operands) where necessary. 265 Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); 266 267 /// Try to map the operand of an \a MDNode. 268 /// 269 /// If \c Op is already mapped, return the mapping. If it's not an \a 270 /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, 271 /// return the result of \a mapDistinctNode(). 272 /// 273 /// \return None if \c Op is an unmapped uniqued \a MDNode. 274 /// \post getMappedOp(Op) only returns None if this returns None. 275 Optional<Metadata *> tryToMapOperand(const Metadata *Op); 276 277 /// Map a distinct node. 278 /// 279 /// Return the mapping for the distinct node \c N, saving the result in \a 280 /// DistinctWorklist for later remapping. 281 /// 282 /// \pre \c N is not yet mapped. 283 /// \pre \c N.isDistinct(). 284 MDNode *mapDistinctNode(const MDNode &N); 285 286 /// Get a previously mapped node. 287 Optional<Metadata *> getMappedOp(const Metadata *Op) const; 288 289 /// Create a post-order traversal of an unmapped uniqued node subgraph. 290 /// 291 /// This traverses the metadata graph deeply enough to map \c FirstN. It 292 /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any 293 /// metadata that has already been mapped will not be part of the POT. 294 /// 295 /// Each node that has a changed operand from outside the graph (e.g., a 296 /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) 297 /// is marked with \a Data::HasChanged. 298 /// 299 /// \return \c true if any nodes in \c G have \a Data::HasChanged. 300 /// \post \c G.POT is a post-order traversal ending with \c FirstN. 301 /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs 302 /// to change because of operands outside the graph. 303 bool createPOT(UniquedGraph &G, const MDNode &FirstN); 304 305 /// Visit the operands of a uniqued node in the POT. 306 /// 307 /// Visit the operands in the range from \c I to \c E, returning the first 308 /// uniqued node we find that isn't yet in \c G. \c I is always advanced to 309 /// where to continue the loop through the operands. 310 /// 311 /// This sets \c HasChanged if any of the visited operands change. 312 MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 313 MDNode::op_iterator E, bool &HasChanged); 314 315 /// Map all the nodes in the given uniqued graph. 316 /// 317 /// This visits all the nodes in \c G in post-order, using the identity 318 /// mapping or creating a new node depending on \a Data::HasChanged. 319 /// 320 /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of 321 /// their operands outside of \c G. 322 /// \pre \a Data::HasChanged is true for a node in \c G iff any of its 323 /// operands have changed. 324 /// \post \a getMappedOp() returns the mapped node for every node in \c G. 325 void mapNodesInPOT(UniquedGraph &G); 326 327 /// Remap a node's operands using the given functor. 328 /// 329 /// Iterate through the operands of \c N and update them in place using \c 330 /// mapOperand. 331 /// 332 /// \pre N.isDistinct() or N.isTemporary(). 333 template <class OperandMapper> 334 void remapOperands(MDNode &N, OperandMapper mapOperand); 335 }; 336 337 } // end anonymous namespace 338 339 Value *Mapper::mapValue(const Value *V) { 340 ValueToValueMapTy::iterator I = getVM().find(V); 341 342 // If the value already exists in the map, use it. 343 if (I != getVM().end()) { 344 assert(I->second && "Unexpected null mapping"); 345 return I->second; 346 } 347 348 // If we have a materializer and it can materialize a value, use that. 349 if (auto *Materializer = getMaterializer()) { 350 if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { 351 getVM()[V] = NewV; 352 return NewV; 353 } 354 } 355 356 // Global values do not need to be seeded into the VM if they 357 // are using the identity mapping. 358 if (isa<GlobalValue>(V)) { 359 if (Flags & RF_NullMapMissingGlobalValues) 360 return nullptr; 361 return getVM()[V] = const_cast<Value *>(V); 362 } 363 364 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 365 // Inline asm may need *type* remapping. 366 FunctionType *NewTy = IA->getFunctionType(); 367 if (TypeMapper) { 368 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 369 370 if (NewTy != IA->getFunctionType()) 371 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 372 IA->hasSideEffects(), IA->isAlignStack(), 373 IA->getDialect(), IA->canThrow()); 374 } 375 376 return getVM()[V] = const_cast<Value *>(V); 377 } 378 379 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 380 const Metadata *MD = MDV->getMetadata(); 381 382 if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { 383 // Look through to grab the local value. 384 if (Value *LV = mapValue(LAM->getValue())) { 385 if (V == LAM->getValue()) 386 return const_cast<Value *>(V); 387 return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); 388 } 389 390 // FIXME: always return nullptr once Verifier::verifyDominatesUse() 391 // ensures metadata operands only reference defined SSA values. 392 return (Flags & RF_IgnoreMissingLocals) 393 ? nullptr 394 : MetadataAsValue::get(V->getContext(), 395 MDTuple::get(V->getContext(), None)); 396 } 397 if (auto *AL = dyn_cast<DIArgList>(MD)) { 398 SmallVector<ValueAsMetadata *, 4> MappedArgs; 399 for (auto *VAM : AL->getArgs()) { 400 // Map both Local and Constant VAMs here; they will both ultimately 401 // be mapped via mapValue (apart from constants when we have no 402 // module level changes, which have an identity mapping). 403 if ((Flags & RF_NoModuleLevelChanges) && isa<ConstantAsMetadata>(VAM)) { 404 MappedArgs.push_back(VAM); 405 } else if (Value *LV = mapValue(VAM->getValue())) { 406 MappedArgs.push_back( 407 LV == VAM->getValue() ? VAM : ValueAsMetadata::get(LV)); 408 } else { 409 // If we cannot map the value, set the argument as undef. 410 MappedArgs.push_back(ValueAsMetadata::get( 411 UndefValue::get(VAM->getValue()->getType()))); 412 } 413 } 414 return MetadataAsValue::get(V->getContext(), 415 DIArgList::get(V->getContext(), MappedArgs)); 416 } 417 418 // If this is a module-level metadata and we know that nothing at the module 419 // level is changing, then use an identity mapping. 420 if (Flags & RF_NoModuleLevelChanges) 421 return getVM()[V] = const_cast<Value *>(V); 422 423 // Map the metadata and turn it into a value. 424 auto *MappedMD = mapMetadata(MD); 425 if (MD == MappedMD) 426 return getVM()[V] = const_cast<Value *>(V); 427 return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); 428 } 429 430 // Okay, this either must be a constant (which may or may not be mappable) or 431 // is something that is not in the mapping table. 432 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 433 if (!C) 434 return nullptr; 435 436 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) 437 return mapBlockAddress(*BA); 438 439 if (const auto *E = dyn_cast<DSOLocalEquivalent>(C)) { 440 auto *Val = mapValue(E->getGlobalValue()); 441 GlobalValue *GV = dyn_cast<GlobalValue>(Val); 442 if (GV) 443 return getVM()[E] = DSOLocalEquivalent::get(GV); 444 445 auto *Func = cast<Function>(Val->stripPointerCastsAndAliases()); 446 Type *NewTy = E->getType(); 447 if (TypeMapper) 448 NewTy = TypeMapper->remapType(NewTy); 449 return getVM()[E] = llvm::ConstantExpr::getBitCast( 450 DSOLocalEquivalent::get(Func), NewTy); 451 } 452 453 auto mapValueOrNull = [this](Value *V) { 454 auto Mapped = mapValue(V); 455 assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && 456 "Unexpected null mapping for constant operand without " 457 "NullMapMissingGlobalValues flag"); 458 return Mapped; 459 }; 460 461 // Otherwise, we have some other constant to remap. Start by checking to see 462 // if all operands have an identity remapping. 463 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 464 Value *Mapped = nullptr; 465 for (; OpNo != NumOperands; ++OpNo) { 466 Value *Op = C->getOperand(OpNo); 467 Mapped = mapValueOrNull(Op); 468 if (!Mapped) 469 return nullptr; 470 if (Mapped != Op) 471 break; 472 } 473 474 // See if the type mapper wants to remap the type as well. 475 Type *NewTy = C->getType(); 476 if (TypeMapper) 477 NewTy = TypeMapper->remapType(NewTy); 478 479 // If the result type and all operands match up, then just insert an identity 480 // mapping. 481 if (OpNo == NumOperands && NewTy == C->getType()) 482 return getVM()[V] = C; 483 484 // Okay, we need to create a new constant. We've already processed some or 485 // all of the operands, set them all up now. 486 SmallVector<Constant*, 8> Ops; 487 Ops.reserve(NumOperands); 488 for (unsigned j = 0; j != OpNo; ++j) 489 Ops.push_back(cast<Constant>(C->getOperand(j))); 490 491 // If one of the operands mismatch, push it and the other mapped operands. 492 if (OpNo != NumOperands) { 493 Ops.push_back(cast<Constant>(Mapped)); 494 495 // Map the rest of the operands that aren't processed yet. 496 for (++OpNo; OpNo != NumOperands; ++OpNo) { 497 Mapped = mapValueOrNull(C->getOperand(OpNo)); 498 if (!Mapped) 499 return nullptr; 500 Ops.push_back(cast<Constant>(Mapped)); 501 } 502 } 503 Type *NewSrcTy = nullptr; 504 if (TypeMapper) 505 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 506 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 507 508 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 509 return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 510 if (isa<ConstantArray>(C)) 511 return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 512 if (isa<ConstantStruct>(C)) 513 return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 514 if (isa<ConstantVector>(C)) 515 return getVM()[V] = ConstantVector::get(Ops); 516 // If this is a no-operand constant, it must be because the type was remapped. 517 if (isa<UndefValue>(C)) 518 return getVM()[V] = UndefValue::get(NewTy); 519 if (isa<ConstantAggregateZero>(C)) 520 return getVM()[V] = ConstantAggregateZero::get(NewTy); 521 assert(isa<ConstantPointerNull>(C)); 522 return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 523 } 524 525 Value *Mapper::mapBlockAddress(const BlockAddress &BA) { 526 Function *F = cast<Function>(mapValue(BA.getFunction())); 527 528 // F may not have materialized its initializer. In that case, create a 529 // dummy basic block for now, and replace it once we've materialized all 530 // the initializers. 531 BasicBlock *BB; 532 if (F->empty()) { 533 DelayedBBs.push_back(DelayedBasicBlock(BA)); 534 BB = DelayedBBs.back().TempBB.get(); 535 } else { 536 BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); 537 } 538 539 return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); 540 } 541 542 Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { 543 getVM().MD()[Key].reset(Val); 544 return Val; 545 } 546 547 Metadata *Mapper::mapToSelf(const Metadata *MD) { 548 return mapToMetadata(MD, const_cast<Metadata *>(MD)); 549 } 550 551 Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { 552 if (!Op) 553 return nullptr; 554 555 if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { 556 #ifndef NDEBUG 557 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 558 assert((!*MappedOp || M.getVM().count(CMD->getValue()) || 559 M.getVM().getMappedMD(Op)) && 560 "Expected Value to be memoized"); 561 else 562 assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && 563 "Expected result to be memoized"); 564 #endif 565 return *MappedOp; 566 } 567 568 const MDNode &N = *cast<MDNode>(Op); 569 if (N.isDistinct()) 570 return mapDistinctNode(N); 571 return None; 572 } 573 574 MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { 575 assert(N.isDistinct() && "Expected a distinct node"); 576 assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); 577 Metadata *NewM = nullptr; 578 579 if (M.Flags & RF_ReuseAndMutateDistinctMDs) { 580 NewM = M.mapToSelf(&N); 581 } else { 582 NewM = MDNode::replaceWithDistinct(N.clone()); 583 LLVM_DEBUG(dbgs() << "\nMap " << N << "\n" 584 << "To " << *NewM << "\n\n"); 585 M.mapToMetadata(&N, NewM); 586 } 587 DistinctWorklist.push_back(cast<MDNode>(NewM)); 588 589 return DistinctWorklist.back(); 590 } 591 592 static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, 593 Value *MappedV) { 594 if (CMD.getValue() == MappedV) 595 return const_cast<ConstantAsMetadata *>(&CMD); 596 return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; 597 } 598 599 Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { 600 if (!Op) 601 return nullptr; 602 603 if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) 604 return *MappedOp; 605 606 if (isa<MDString>(Op)) 607 return const_cast<Metadata *>(Op); 608 609 if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) 610 return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); 611 612 return None; 613 } 614 615 Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { 616 auto Where = Info.find(&Op); 617 assert(Where != Info.end() && "Expected a valid reference"); 618 619 auto &OpD = Where->second; 620 if (!OpD.HasChanged) 621 return Op; 622 623 // Lazily construct a temporary node. 624 if (!OpD.Placeholder) 625 OpD.Placeholder = Op.clone(); 626 627 return *OpD.Placeholder; 628 } 629 630 template <class OperandMapper> 631 void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { 632 assert(!N.isUniqued() && "Expected distinct or temporary nodes"); 633 for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { 634 Metadata *Old = N.getOperand(I); 635 Metadata *New = mapOperand(Old); 636 if (Old != New) 637 LLVM_DEBUG(dbgs() << "Replacing Op " << Old << " with " << New << " in " 638 << N << "\n"); 639 640 if (Old != New) 641 N.replaceOperandWith(I, New); 642 } 643 } 644 645 namespace { 646 647 /// An entry in the worklist for the post-order traversal. 648 struct POTWorklistEntry { 649 MDNode *N; ///< Current node. 650 MDNode::op_iterator Op; ///< Current operand of \c N. 651 652 /// Keep a flag of whether operands have changed in the worklist to avoid 653 /// hitting the map in \a UniquedGraph. 654 bool HasChanged = false; 655 656 POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} 657 }; 658 659 } // end anonymous namespace 660 661 bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { 662 assert(G.Info.empty() && "Expected a fresh traversal"); 663 assert(FirstN.isUniqued() && "Expected uniqued node in POT"); 664 665 // Construct a post-order traversal of the uniqued subgraph under FirstN. 666 bool AnyChanges = false; 667 SmallVector<POTWorklistEntry, 16> Worklist; 668 Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); 669 (void)G.Info[&FirstN]; 670 while (!Worklist.empty()) { 671 // Start or continue the traversal through the this node's operands. 672 auto &WE = Worklist.back(); 673 if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { 674 // Push a new node to traverse first. 675 Worklist.push_back(POTWorklistEntry(*N)); 676 continue; 677 } 678 679 // Push the node onto the POT. 680 assert(WE.N->isUniqued() && "Expected only uniqued nodes"); 681 assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); 682 auto &D = G.Info[WE.N]; 683 AnyChanges |= D.HasChanged = WE.HasChanged; 684 D.ID = G.POT.size(); 685 G.POT.push_back(WE.N); 686 687 // Pop the node off the worklist. 688 Worklist.pop_back(); 689 } 690 return AnyChanges; 691 } 692 693 MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, 694 MDNode::op_iterator E, bool &HasChanged) { 695 while (I != E) { 696 Metadata *Op = *I++; // Increment even on early return. 697 if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { 698 // Check if the operand changes. 699 HasChanged |= Op != *MappedOp; 700 continue; 701 } 702 703 // A uniqued metadata node. 704 MDNode &OpN = *cast<MDNode>(Op); 705 assert(OpN.isUniqued() && 706 "Only uniqued operands cannot be mapped immediately"); 707 if (G.Info.insert(std::make_pair(&OpN, Data())).second) 708 return &OpN; // This is a new one. Return it. 709 } 710 return nullptr; 711 } 712 713 void MDNodeMapper::UniquedGraph::propagateChanges() { 714 bool AnyChanges; 715 do { 716 AnyChanges = false; 717 for (MDNode *N : POT) { 718 auto &D = Info[N]; 719 if (D.HasChanged) 720 continue; 721 722 if (llvm::none_of(N->operands(), [&](const Metadata *Op) { 723 auto Where = Info.find(Op); 724 return Where != Info.end() && Where->second.HasChanged; 725 })) 726 continue; 727 728 AnyChanges = D.HasChanged = true; 729 } 730 } while (AnyChanges); 731 } 732 733 void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { 734 // Construct uniqued nodes, building forward references as necessary. 735 SmallVector<MDNode *, 16> CyclicNodes; 736 for (auto *N : G.POT) { 737 auto &D = G.Info[N]; 738 if (!D.HasChanged) { 739 // The node hasn't changed. 740 M.mapToSelf(N); 741 continue; 742 } 743 744 // Remember whether this node had a placeholder. 745 bool HadPlaceholder(D.Placeholder); 746 747 // Clone the uniqued node and remap the operands. 748 TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); 749 remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { 750 if (Optional<Metadata *> MappedOp = getMappedOp(Old)) 751 return *MappedOp; 752 (void)D; 753 assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); 754 return &G.getFwdReference(*cast<MDNode>(Old)); 755 }); 756 757 auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); 758 if (N && NewN && N != NewN) { 759 LLVM_DEBUG(dbgs() << "\nMap " << *N << "\n" 760 << "To " << *NewN << "\n\n"); 761 } 762 763 M.mapToMetadata(N, NewN); 764 765 // Nodes that were referenced out of order in the POT are involved in a 766 // uniquing cycle. 767 if (HadPlaceholder) 768 CyclicNodes.push_back(NewN); 769 } 770 771 // Resolve cycles. 772 for (auto *N : CyclicNodes) 773 if (!N->isResolved()) 774 N->resolveCycles(); 775 } 776 777 Metadata *MDNodeMapper::map(const MDNode &N) { 778 assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); 779 assert(!(M.Flags & RF_NoModuleLevelChanges) && 780 "MDNodeMapper::map assumes module-level changes"); 781 782 // Require resolved nodes whenever metadata might be remapped. 783 assert(N.isResolved() && "Unexpected unresolved node"); 784 785 Metadata *MappedN = 786 N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); 787 while (!DistinctWorklist.empty()) 788 remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { 789 if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) 790 return *MappedOp; 791 return mapTopLevelUniquedNode(*cast<MDNode>(Old)); 792 }); 793 return MappedN; 794 } 795 796 Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { 797 assert(FirstN.isUniqued() && "Expected uniqued node"); 798 799 // Create a post-order traversal of uniqued nodes under FirstN. 800 UniquedGraph G; 801 if (!createPOT(G, FirstN)) { 802 // Return early if no nodes have changed. 803 for (const MDNode *N : G.POT) 804 M.mapToSelf(N); 805 return &const_cast<MDNode &>(FirstN); 806 } 807 808 // Update graph with all nodes that have changed. 809 G.propagateChanges(); 810 811 // Map all the nodes in the graph. 812 mapNodesInPOT(G); 813 814 // Return the original node, remapped. 815 return *getMappedOp(&FirstN); 816 } 817 818 Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { 819 // If the value already exists in the map, use it. 820 if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) 821 return *NewMD; 822 823 if (isa<MDString>(MD)) 824 return const_cast<Metadata *>(MD); 825 826 // This is a module-level metadata. If nothing at the module level is 827 // changing, use an identity mapping. 828 if ((Flags & RF_NoModuleLevelChanges)) 829 return const_cast<Metadata *>(MD); 830 831 if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { 832 // Don't memoize ConstantAsMetadata. Instead of lasting until the 833 // LLVMContext is destroyed, they can be deleted when the GlobalValue they 834 // reference is destructed. These aren't super common, so the extra 835 // indirection isn't that expensive. 836 return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); 837 } 838 839 assert(isa<MDNode>(MD) && "Expected a metadata node"); 840 841 return None; 842 } 843 844 Metadata *Mapper::mapMetadata(const Metadata *MD) { 845 assert(MD && "Expected valid metadata"); 846 assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); 847 848 if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) 849 return *NewMD; 850 851 return MDNodeMapper(*this).map(*cast<MDNode>(MD)); 852 } 853 854 void Mapper::flush() { 855 // Flush out the worklist of global values. 856 while (!Worklist.empty()) { 857 WorklistEntry E = Worklist.pop_back_val(); 858 CurrentMCID = E.MCID; 859 switch (E.Kind) { 860 case WorklistEntry::MapGlobalInit: 861 E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); 862 remapGlobalObjectMetadata(*E.Data.GVInit.GV); 863 break; 864 case WorklistEntry::MapAppendingVar: { 865 unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; 866 // mapAppendingVariable call can change AppendingInits if initalizer for 867 // the variable depends on another appending global, because of that inits 868 // need to be extracted and updated before the call. 869 SmallVector<Constant *, 8> NewInits( 870 drop_begin(AppendingInits, PrefixSize)); 871 AppendingInits.resize(PrefixSize); 872 mapAppendingVariable(*E.Data.AppendingGV.GV, 873 E.Data.AppendingGV.InitPrefix, 874 E.AppendingGVIsOldCtorDtor, makeArrayRef(NewInits)); 875 break; 876 } 877 case WorklistEntry::MapAliasOrIFunc: { 878 GlobalValue *GV = E.Data.AliasOrIFunc.GV; 879 Constant *Target = mapConstant(E.Data.AliasOrIFunc.Target); 880 if (auto *GA = dyn_cast<GlobalAlias>(GV)) 881 GA->setAliasee(Target); 882 else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) 883 GI->setResolver(Target); 884 else 885 llvm_unreachable("Not alias or ifunc"); 886 break; 887 } 888 case WorklistEntry::RemapFunction: 889 remapFunction(*E.Data.RemapF); 890 break; 891 } 892 } 893 CurrentMCID = 0; 894 895 // Finish logic for block addresses now that all global values have been 896 // handled. 897 while (!DelayedBBs.empty()) { 898 DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); 899 BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); 900 DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); 901 } 902 } 903 904 void Mapper::remapInstruction(Instruction *I) { 905 // Remap operands. 906 for (Use &Op : I->operands()) { 907 Value *V = mapValue(Op); 908 // If we aren't ignoring missing entries, assert that something happened. 909 if (V) 910 Op = V; 911 else 912 assert((Flags & RF_IgnoreMissingLocals) && 913 "Referenced value not in value map!"); 914 } 915 916 // Remap phi nodes' incoming blocks. 917 if (PHINode *PN = dyn_cast<PHINode>(I)) { 918 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 919 Value *V = mapValue(PN->getIncomingBlock(i)); 920 // If we aren't ignoring missing entries, assert that something happened. 921 if (V) 922 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 923 else 924 assert((Flags & RF_IgnoreMissingLocals) && 925 "Referenced block not in value map!"); 926 } 927 } 928 929 // Remap attached metadata. 930 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 931 I->getAllMetadata(MDs); 932 for (const auto &MI : MDs) { 933 MDNode *Old = MI.second; 934 MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); 935 if (New != Old) 936 I->setMetadata(MI.first, New); 937 } 938 939 if (!TypeMapper) 940 return; 941 942 // If the instruction's type is being remapped, do so now. 943 if (auto *CB = dyn_cast<CallBase>(I)) { 944 SmallVector<Type *, 3> Tys; 945 FunctionType *FTy = CB->getFunctionType(); 946 Tys.reserve(FTy->getNumParams()); 947 for (Type *Ty : FTy->params()) 948 Tys.push_back(TypeMapper->remapType(Ty)); 949 CB->mutateFunctionType(FunctionType::get( 950 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 951 952 LLVMContext &C = CB->getContext(); 953 AttributeList Attrs = CB->getAttributes(); 954 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { 955 for (int AttrIdx = Attribute::FirstTypeAttr; 956 AttrIdx <= Attribute::LastTypeAttr; AttrIdx++) { 957 Attribute::AttrKind TypedAttr = (Attribute::AttrKind)AttrIdx; 958 if (Type *Ty = 959 Attrs.getAttributeAtIndex(i, TypedAttr).getValueAsType()) { 960 Attrs = Attrs.replaceAttributeTypeAtIndex(C, i, TypedAttr, 961 TypeMapper->remapType(Ty)); 962 break; 963 } 964 } 965 } 966 CB->setAttributes(Attrs); 967 return; 968 } 969 if (auto *AI = dyn_cast<AllocaInst>(I)) 970 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 971 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 972 GEP->setSourceElementType( 973 TypeMapper->remapType(GEP->getSourceElementType())); 974 GEP->setResultElementType( 975 TypeMapper->remapType(GEP->getResultElementType())); 976 } 977 I->mutateType(TypeMapper->remapType(I->getType())); 978 } 979 980 void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { 981 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; 982 GO.getAllMetadata(MDs); 983 GO.clearMetadata(); 984 for (const auto &I : MDs) 985 GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); 986 } 987 988 void Mapper::remapFunction(Function &F) { 989 // Remap the operands. 990 for (Use &Op : F.operands()) 991 if (Op) 992 Op = mapValue(Op); 993 994 // Remap the metadata attachments. 995 remapGlobalObjectMetadata(F); 996 997 // Remap the argument types. 998 if (TypeMapper) 999 for (Argument &A : F.args()) 1000 A.mutateType(TypeMapper->remapType(A.getType())); 1001 1002 // Remap the instructions. 1003 for (BasicBlock &BB : F) 1004 for (Instruction &I : BB) 1005 remapInstruction(&I); 1006 } 1007 1008 void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, 1009 bool IsOldCtorDtor, 1010 ArrayRef<Constant *> NewMembers) { 1011 SmallVector<Constant *, 16> Elements; 1012 if (InitPrefix) { 1013 unsigned NumElements = 1014 cast<ArrayType>(InitPrefix->getType())->getNumElements(); 1015 for (unsigned I = 0; I != NumElements; ++I) 1016 Elements.push_back(InitPrefix->getAggregateElement(I)); 1017 } 1018 1019 PointerType *VoidPtrTy; 1020 Type *EltTy; 1021 if (IsOldCtorDtor) { 1022 // FIXME: This upgrade is done during linking to support the C API. See 1023 // also IRLinker::linkAppendingVarProto() in IRMover.cpp. 1024 VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); 1025 auto &ST = *cast<StructType>(NewMembers.front()->getType()); 1026 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; 1027 EltTy = StructType::get(GV.getContext(), Tys, false); 1028 } 1029 1030 for (auto *V : NewMembers) { 1031 Constant *NewV; 1032 if (IsOldCtorDtor) { 1033 auto *S = cast<ConstantStruct>(V); 1034 auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); 1035 auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); 1036 Constant *Null = Constant::getNullValue(VoidPtrTy); 1037 NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); 1038 } else { 1039 NewV = cast_or_null<Constant>(mapValue(V)); 1040 } 1041 Elements.push_back(NewV); 1042 } 1043 1044 GV.setInitializer( 1045 ConstantArray::get(cast<ArrayType>(GV.getValueType()), Elements)); 1046 } 1047 1048 void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, 1049 unsigned MCID) { 1050 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1051 assert(MCID < MCs.size() && "Invalid mapping context"); 1052 1053 WorklistEntry WE; 1054 WE.Kind = WorklistEntry::MapGlobalInit; 1055 WE.MCID = MCID; 1056 WE.Data.GVInit.GV = &GV; 1057 WE.Data.GVInit.Init = &Init; 1058 Worklist.push_back(WE); 1059 } 1060 1061 void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1062 Constant *InitPrefix, 1063 bool IsOldCtorDtor, 1064 ArrayRef<Constant *> NewMembers, 1065 unsigned MCID) { 1066 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1067 assert(MCID < MCs.size() && "Invalid mapping context"); 1068 1069 WorklistEntry WE; 1070 WE.Kind = WorklistEntry::MapAppendingVar; 1071 WE.MCID = MCID; 1072 WE.Data.AppendingGV.GV = &GV; 1073 WE.Data.AppendingGV.InitPrefix = InitPrefix; 1074 WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; 1075 WE.AppendingGVNumNewMembers = NewMembers.size(); 1076 Worklist.push_back(WE); 1077 AppendingInits.append(NewMembers.begin(), NewMembers.end()); 1078 } 1079 1080 void Mapper::scheduleMapAliasOrIFunc(GlobalValue &GV, Constant &Target, 1081 unsigned MCID) { 1082 assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); 1083 assert((isa<GlobalAlias>(GV) || isa<GlobalIFunc>(GV)) && 1084 "Should be alias or ifunc"); 1085 assert(MCID < MCs.size() && "Invalid mapping context"); 1086 1087 WorklistEntry WE; 1088 WE.Kind = WorklistEntry::MapAliasOrIFunc; 1089 WE.MCID = MCID; 1090 WE.Data.AliasOrIFunc.GV = &GV; 1091 WE.Data.AliasOrIFunc.Target = &Target; 1092 Worklist.push_back(WE); 1093 } 1094 1095 void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1096 assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); 1097 assert(MCID < MCs.size() && "Invalid mapping context"); 1098 1099 WorklistEntry WE; 1100 WE.Kind = WorklistEntry::RemapFunction; 1101 WE.MCID = MCID; 1102 WE.Data.RemapF = &F; 1103 Worklist.push_back(WE); 1104 } 1105 1106 void Mapper::addFlags(RemapFlags Flags) { 1107 assert(!hasWorkToDo() && "Expected to have flushed the worklist"); 1108 this->Flags = this->Flags | Flags; 1109 } 1110 1111 static Mapper *getAsMapper(void *pImpl) { 1112 return reinterpret_cast<Mapper *>(pImpl); 1113 } 1114 1115 namespace { 1116 1117 class FlushingMapper { 1118 Mapper &M; 1119 1120 public: 1121 explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { 1122 assert(!M.hasWorkToDo() && "Expected to be flushed"); 1123 } 1124 1125 ~FlushingMapper() { M.flush(); } 1126 1127 Mapper *operator->() const { return &M; } 1128 }; 1129 1130 } // end anonymous namespace 1131 1132 ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, 1133 ValueMapTypeRemapper *TypeMapper, 1134 ValueMaterializer *Materializer) 1135 : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} 1136 1137 ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } 1138 1139 unsigned 1140 ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, 1141 ValueMaterializer *Materializer) { 1142 return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); 1143 } 1144 1145 void ValueMapper::addFlags(RemapFlags Flags) { 1146 FlushingMapper(pImpl)->addFlags(Flags); 1147 } 1148 1149 Value *ValueMapper::mapValue(const Value &V) { 1150 return FlushingMapper(pImpl)->mapValue(&V); 1151 } 1152 1153 Constant *ValueMapper::mapConstant(const Constant &C) { 1154 return cast_or_null<Constant>(mapValue(C)); 1155 } 1156 1157 Metadata *ValueMapper::mapMetadata(const Metadata &MD) { 1158 return FlushingMapper(pImpl)->mapMetadata(&MD); 1159 } 1160 1161 MDNode *ValueMapper::mapMDNode(const MDNode &N) { 1162 return cast_or_null<MDNode>(mapMetadata(N)); 1163 } 1164 1165 void ValueMapper::remapInstruction(Instruction &I) { 1166 FlushingMapper(pImpl)->remapInstruction(&I); 1167 } 1168 1169 void ValueMapper::remapFunction(Function &F) { 1170 FlushingMapper(pImpl)->remapFunction(F); 1171 } 1172 1173 void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, 1174 Constant &Init, 1175 unsigned MCID) { 1176 getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); 1177 } 1178 1179 void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, 1180 Constant *InitPrefix, 1181 bool IsOldCtorDtor, 1182 ArrayRef<Constant *> NewMembers, 1183 unsigned MCID) { 1184 getAsMapper(pImpl)->scheduleMapAppendingVariable( 1185 GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); 1186 } 1187 1188 void ValueMapper::scheduleMapGlobalAlias(GlobalAlias &GA, Constant &Aliasee, 1189 unsigned MCID) { 1190 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GA, Aliasee, MCID); 1191 } 1192 1193 void ValueMapper::scheduleMapGlobalIFunc(GlobalIFunc &GI, Constant &Resolver, 1194 unsigned MCID) { 1195 getAsMapper(pImpl)->scheduleMapAliasOrIFunc(GI, Resolver, MCID); 1196 } 1197 1198 void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { 1199 getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); 1200 } 1201