xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/SimplifyLibCalls.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/Triple.h"
19 #include "llvm/Analysis/BlockFrequencyInfo.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/KnownBits.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Transforms/Utils/BuildLibCalls.h"
40 #include "llvm/Transforms/Utils/SizeOpts.h"
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 static cl::opt<bool>
46     EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                          cl::init(false),
48                          cl::desc("Enable unsafe double to float "
49                                   "shrinking for math lib calls"));
50 
51 //===----------------------------------------------------------------------===//
52 // Helper Functions
53 //===----------------------------------------------------------------------===//
54 
55 static bool ignoreCallingConv(LibFunc Func) {
56   return Func == LibFunc_abs || Func == LibFunc_labs ||
57          Func == LibFunc_llabs || Func == LibFunc_strlen;
58 }
59 
60 static bool isCallingConvCCompatible(CallInst *CI) {
61   switch(CI->getCallingConv()) {
62   default:
63     return false;
64   case llvm::CallingConv::C:
65     return true;
66   case llvm::CallingConv::ARM_APCS:
67   case llvm::CallingConv::ARM_AAPCS:
68   case llvm::CallingConv::ARM_AAPCS_VFP: {
69 
70     // The iOS ABI diverges from the standard in some cases, so for now don't
71     // try to simplify those calls.
72     if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73       return false;
74 
75     auto *FuncTy = CI->getFunctionType();
76 
77     if (!FuncTy->getReturnType()->isPointerTy() &&
78         !FuncTy->getReturnType()->isIntegerTy() &&
79         !FuncTy->getReturnType()->isVoidTy())
80       return false;
81 
82     for (auto Param : FuncTy->params()) {
83       if (!Param->isPointerTy() && !Param->isIntegerTy())
84         return false;
85     }
86     return true;
87   }
88   }
89   return false;
90 }
91 
92 /// Return true if it is only used in equality comparisons with With.
93 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94   for (User *U : V->users()) {
95     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96       if (IC->isEquality() && IC->getOperand(1) == With)
97         continue;
98     // Unknown instruction.
99     return false;
100   }
101   return true;
102 }
103 
104 static bool callHasFloatingPointArgument(const CallInst *CI) {
105   return any_of(CI->operands(), [](const Use &OI) {
106     return OI->getType()->isFloatingPointTy();
107   });
108 }
109 
110 static bool callHasFP128Argument(const CallInst *CI) {
111   return any_of(CI->operands(), [](const Use &OI) {
112     return OI->getType()->isFP128Ty();
113   });
114 }
115 
116 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117   if (Base < 2 || Base > 36)
118     // handle special zero base
119     if (Base != 0)
120       return nullptr;
121 
122   char *End;
123   std::string nptr = Str.str();
124   errno = 0;
125   long long int Result = strtoll(nptr.c_str(), &End, Base);
126   if (errno)
127     return nullptr;
128 
129   // if we assume all possible target locales are ASCII supersets,
130   // then if strtoll successfully parses a number on the host,
131   // it will also successfully parse the same way on the target
132   if (*End != '\0')
133     return nullptr;
134 
135   if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136     return nullptr;
137 
138   return ConstantInt::get(CI->getType(), Result);
139 }
140 
141 static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142                                 const TargetLibraryInfo *TLI) {
143   CallInst *FOpen = dyn_cast<CallInst>(File);
144   if (!FOpen)
145     return false;
146 
147   Function *InnerCallee = FOpen->getCalledFunction();
148   if (!InnerCallee)
149     return false;
150 
151   LibFunc Func;
152   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153       Func != LibFunc_fopen)
154     return false;
155 
156   inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157   if (PointerMayBeCaptured(File, true, true))
158     return false;
159 
160   return true;
161 }
162 
163 static bool isOnlyUsedInComparisonWithZero(Value *V) {
164   for (User *U : V->users()) {
165     if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166       if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167         if (C->isNullValue())
168           continue;
169     // Unknown instruction.
170     return false;
171   }
172   return true;
173 }
174 
175 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                  const DataLayout &DL) {
177   if (!isOnlyUsedInComparisonWithZero(CI))
178     return false;
179 
180   if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181                                           DL))
182     return false;
183 
184   if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185     return false;
186 
187   return true;
188 }
189 
190 static void annotateDereferenceableBytes(CallInst *CI,
191                                          ArrayRef<unsigned> ArgNos,
192                                          uint64_t DereferenceableBytes) {
193   const Function *F = CI->getCaller();
194   if (!F)
195     return;
196   for (unsigned ArgNo : ArgNos) {
197     uint64_t DerefBytes = DereferenceableBytes;
198     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199     if (!llvm::NullPointerIsDefined(F, AS) ||
200         CI->paramHasAttr(ArgNo, Attribute::NonNull))
201       DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202                                 ArgNo + AttributeList::FirstArgIndex),
203                             DereferenceableBytes);
204 
205     if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206         DerefBytes) {
207       CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208       if (!llvm::NullPointerIsDefined(F, AS) ||
209           CI->paramHasAttr(ArgNo, Attribute::NonNull))
210         CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211       CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212                                   CI->getContext(), DerefBytes));
213     }
214   }
215 }
216 
217 static void annotateNonNullBasedOnAccess(CallInst *CI,
218                                          ArrayRef<unsigned> ArgNos) {
219   Function *F = CI->getCaller();
220   if (!F)
221     return;
222 
223   for (unsigned ArgNo : ArgNos) {
224     if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225       continue;
226     unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227     if (llvm::NullPointerIsDefined(F, AS))
228       continue;
229 
230     CI->addParamAttr(ArgNo, Attribute::NonNull);
231     annotateDereferenceableBytes(CI, ArgNo, 1);
232   }
233 }
234 
235 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236                                Value *Size, const DataLayout &DL) {
237   if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238     annotateNonNullBasedOnAccess(CI, ArgNos);
239     annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240   } else if (isKnownNonZero(Size, DL)) {
241     annotateNonNullBasedOnAccess(CI, ArgNos);
242     const APInt *X, *Y;
243     uint64_t DerefMin = 1;
244     if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245       DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246       annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 // String and Memory Library Call Optimizations
253 //===----------------------------------------------------------------------===//
254 
255 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256   // Extract some information from the instruction
257   Value *Dst = CI->getArgOperand(0);
258   Value *Src = CI->getArgOperand(1);
259   annotateNonNullBasedOnAccess(CI, {0, 1});
260 
261   // See if we can get the length of the input string.
262   uint64_t Len = GetStringLength(Src);
263   if (Len)
264     annotateDereferenceableBytes(CI, 1, Len);
265   else
266     return nullptr;
267   --Len; // Unbias length.
268 
269   // Handle the simple, do-nothing case: strcat(x, "") -> x
270   if (Len == 0)
271     return Dst;
272 
273   return emitStrLenMemCpy(Src, Dst, Len, B);
274 }
275 
276 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277                                            IRBuilder<> &B) {
278   // We need to find the end of the destination string.  That's where the
279   // memory is to be moved to. We just generate a call to strlen.
280   Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281   if (!DstLen)
282     return nullptr;
283 
284   // Now that we have the destination's length, we must index into the
285   // destination's pointer to get the actual memcpy destination (end of
286   // the string .. we're concatenating).
287   Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288 
289   // We have enough information to now generate the memcpy call to do the
290   // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
291   B.CreateMemCpy(CpyDst, 1, Src, 1,
292                  ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
293   return Dst;
294 }
295 
296 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
297   // Extract some information from the instruction.
298   Value *Dst = CI->getArgOperand(0);
299   Value *Src = CI->getArgOperand(1);
300   Value *Size = CI->getArgOperand(2);
301   uint64_t Len;
302   annotateNonNullBasedOnAccess(CI, 0);
303   if (isKnownNonZero(Size, DL))
304     annotateNonNullBasedOnAccess(CI, 1);
305 
306   // We don't do anything if length is not constant.
307   ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
308   if (LengthArg) {
309     Len = LengthArg->getZExtValue();
310     // strncat(x, c, 0) -> x
311     if (!Len)
312       return Dst;
313   } else {
314     return nullptr;
315   }
316 
317   // See if we can get the length of the input string.
318   uint64_t SrcLen = GetStringLength(Src);
319   if (SrcLen) {
320     annotateDereferenceableBytes(CI, 1, SrcLen);
321     --SrcLen; // Unbias length.
322   } else {
323     return nullptr;
324   }
325 
326   // strncat(x, "", c) -> x
327   if (SrcLen == 0)
328     return Dst;
329 
330   // We don't optimize this case.
331   if (Len < SrcLen)
332     return nullptr;
333 
334   // strncat(x, s, c) -> strcat(x, s)
335   // s is constant so the strcat can be optimized further.
336   return emitStrLenMemCpy(Src, Dst, SrcLen, B);
337 }
338 
339 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
340   Function *Callee = CI->getCalledFunction();
341   FunctionType *FT = Callee->getFunctionType();
342   Value *SrcStr = CI->getArgOperand(0);
343   annotateNonNullBasedOnAccess(CI, 0);
344 
345   // If the second operand is non-constant, see if we can compute the length
346   // of the input string and turn this into memchr.
347   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
348   if (!CharC) {
349     uint64_t Len = GetStringLength(SrcStr);
350     if (Len)
351       annotateDereferenceableBytes(CI, 0, Len);
352     else
353       return nullptr;
354     if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
355       return nullptr;
356 
357     return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
358                       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
359                       B, DL, TLI);
360   }
361 
362   // Otherwise, the character is a constant, see if the first argument is
363   // a string literal.  If so, we can constant fold.
364   StringRef Str;
365   if (!getConstantStringInfo(SrcStr, Str)) {
366     if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
367       return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
368                          "strchr");
369     return nullptr;
370   }
371 
372   // Compute the offset, make sure to handle the case when we're searching for
373   // zero (a weird way to spell strlen).
374   size_t I = (0xFF & CharC->getSExtValue()) == 0
375                  ? Str.size()
376                  : Str.find(CharC->getSExtValue());
377   if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
378     return Constant::getNullValue(CI->getType());
379 
380   // strchr(s+n,c)  -> gep(s+n+i,c)
381   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
382 }
383 
384 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
385   Value *SrcStr = CI->getArgOperand(0);
386   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
387   annotateNonNullBasedOnAccess(CI, 0);
388 
389   // Cannot fold anything if we're not looking for a constant.
390   if (!CharC)
391     return nullptr;
392 
393   StringRef Str;
394   if (!getConstantStringInfo(SrcStr, Str)) {
395     // strrchr(s, 0) -> strchr(s, 0)
396     if (CharC->isZero())
397       return emitStrChr(SrcStr, '\0', B, TLI);
398     return nullptr;
399   }
400 
401   // Compute the offset.
402   size_t I = (0xFF & CharC->getSExtValue()) == 0
403                  ? Str.size()
404                  : Str.rfind(CharC->getSExtValue());
405   if (I == StringRef::npos) // Didn't find the char. Return null.
406     return Constant::getNullValue(CI->getType());
407 
408   // strrchr(s+n,c) -> gep(s+n+i,c)
409   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
410 }
411 
412 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
413   Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
414   if (Str1P == Str2P) // strcmp(x,x)  -> 0
415     return ConstantInt::get(CI->getType(), 0);
416 
417   StringRef Str1, Str2;
418   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
419   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
420 
421   // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
422   if (HasStr1 && HasStr2)
423     return ConstantInt::get(CI->getType(), Str1.compare(Str2));
424 
425   if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
426     return B.CreateNeg(B.CreateZExt(
427         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
428 
429   if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
430     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
431                         CI->getType());
432 
433   // strcmp(P, "x") -> memcmp(P, "x", 2)
434   uint64_t Len1 = GetStringLength(Str1P);
435   if (Len1)
436     annotateDereferenceableBytes(CI, 0, Len1);
437   uint64_t Len2 = GetStringLength(Str2P);
438   if (Len2)
439     annotateDereferenceableBytes(CI, 1, Len2);
440 
441   if (Len1 && Len2) {
442     return emitMemCmp(Str1P, Str2P,
443                       ConstantInt::get(DL.getIntPtrType(CI->getContext()),
444                                        std::min(Len1, Len2)),
445                       B, DL, TLI);
446   }
447 
448   // strcmp to memcmp
449   if (!HasStr1 && HasStr2) {
450     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
451       return emitMemCmp(
452           Str1P, Str2P,
453           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
454           TLI);
455   } else if (HasStr1 && !HasStr2) {
456     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
457       return emitMemCmp(
458           Str1P, Str2P,
459           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
460           TLI);
461   }
462 
463   annotateNonNullBasedOnAccess(CI, {0, 1});
464   return nullptr;
465 }
466 
467 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
468   Value *Str1P = CI->getArgOperand(0);
469   Value *Str2P = CI->getArgOperand(1);
470   Value *Size = CI->getArgOperand(2);
471   if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
472     return ConstantInt::get(CI->getType(), 0);
473 
474   if (isKnownNonZero(Size, DL))
475     annotateNonNullBasedOnAccess(CI, {0, 1});
476   // Get the length argument if it is constant.
477   uint64_t Length;
478   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
479     Length = LengthArg->getZExtValue();
480   else
481     return nullptr;
482 
483   if (Length == 0) // strncmp(x,y,0)   -> 0
484     return ConstantInt::get(CI->getType(), 0);
485 
486   if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
487     return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
488 
489   StringRef Str1, Str2;
490   bool HasStr1 = getConstantStringInfo(Str1P, Str1);
491   bool HasStr2 = getConstantStringInfo(Str2P, Str2);
492 
493   // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
494   if (HasStr1 && HasStr2) {
495     StringRef SubStr1 = Str1.substr(0, Length);
496     StringRef SubStr2 = Str2.substr(0, Length);
497     return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
498   }
499 
500   if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
501     return B.CreateNeg(B.CreateZExt(
502         B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
503 
504   if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
505     return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
506                         CI->getType());
507 
508   uint64_t Len1 = GetStringLength(Str1P);
509   if (Len1)
510     annotateDereferenceableBytes(CI, 0, Len1);
511   uint64_t Len2 = GetStringLength(Str2P);
512   if (Len2)
513     annotateDereferenceableBytes(CI, 1, Len2);
514 
515   // strncmp to memcmp
516   if (!HasStr1 && HasStr2) {
517     Len2 = std::min(Len2, Length);
518     if (canTransformToMemCmp(CI, Str1P, Len2, DL))
519       return emitMemCmp(
520           Str1P, Str2P,
521           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
522           TLI);
523   } else if (HasStr1 && !HasStr2) {
524     Len1 = std::min(Len1, Length);
525     if (canTransformToMemCmp(CI, Str2P, Len1, DL))
526       return emitMemCmp(
527           Str1P, Str2P,
528           ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
529           TLI);
530   }
531 
532   return nullptr;
533 }
534 
535 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
536   Value *Src = CI->getArgOperand(0);
537   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
538   uint64_t SrcLen = GetStringLength(Src);
539   if (SrcLen && Size) {
540     annotateDereferenceableBytes(CI, 0, SrcLen);
541     if (SrcLen <= Size->getZExtValue() + 1)
542       return emitStrDup(Src, B, TLI);
543   }
544 
545   return nullptr;
546 }
547 
548 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
549   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
550   if (Dst == Src) // strcpy(x,x)  -> x
551     return Src;
552 
553   annotateNonNullBasedOnAccess(CI, {0, 1});
554   // See if we can get the length of the input string.
555   uint64_t Len = GetStringLength(Src);
556   if (Len)
557     annotateDereferenceableBytes(CI, 1, Len);
558   else
559     return nullptr;
560 
561   // We have enough information to now generate the memcpy call to do the
562   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
563   CallInst *NewCI =
564       B.CreateMemCpy(Dst, 1, Src, 1,
565                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
566   NewCI->setAttributes(CI->getAttributes());
567   return Dst;
568 }
569 
570 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
571   Function *Callee = CI->getCalledFunction();
572   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
573   if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
574     Value *StrLen = emitStrLen(Src, B, DL, TLI);
575     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
576   }
577 
578   // See if we can get the length of the input string.
579   uint64_t Len = GetStringLength(Src);
580   if (Len)
581     annotateDereferenceableBytes(CI, 1, Len);
582   else
583     return nullptr;
584 
585   Type *PT = Callee->getFunctionType()->getParamType(0);
586   Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
587   Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
588                               ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
589 
590   // We have enough information to now generate the memcpy call to do the
591   // copy for us.  Make a memcpy to copy the nul byte with align = 1.
592   CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, LenV);
593   NewCI->setAttributes(CI->getAttributes());
594   return DstEnd;
595 }
596 
597 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
598   Function *Callee = CI->getCalledFunction();
599   Value *Dst = CI->getArgOperand(0);
600   Value *Src = CI->getArgOperand(1);
601   Value *Size = CI->getArgOperand(2);
602   annotateNonNullBasedOnAccess(CI, 0);
603   if (isKnownNonZero(Size, DL))
604     annotateNonNullBasedOnAccess(CI, 1);
605 
606   uint64_t Len;
607   if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
608     Len = LengthArg->getZExtValue();
609   else
610     return nullptr;
611 
612   // strncpy(x, y, 0) -> x
613   if (Len == 0)
614     return Dst;
615 
616   // See if we can get the length of the input string.
617   uint64_t SrcLen = GetStringLength(Src);
618   if (SrcLen) {
619     annotateDereferenceableBytes(CI, 1, SrcLen);
620     --SrcLen; // Unbias length.
621   } else {
622     return nullptr;
623   }
624 
625   if (SrcLen == 0) {
626     // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
627     CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, 1);
628     AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
629     NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
630         CI->getContext(), 0, ArgAttrs));
631     return Dst;
632   }
633 
634   // Let strncpy handle the zero padding
635   if (Len > SrcLen + 1)
636     return nullptr;
637 
638   Type *PT = Callee->getFunctionType()->getParamType(0);
639   // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
640   CallInst *NewCI = B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));
641   NewCI->setAttributes(CI->getAttributes());
642   return Dst;
643 }
644 
645 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
646                                                unsigned CharSize) {
647   Value *Src = CI->getArgOperand(0);
648 
649   // Constant folding: strlen("xyz") -> 3
650   if (uint64_t Len = GetStringLength(Src, CharSize))
651     return ConstantInt::get(CI->getType(), Len - 1);
652 
653   // If s is a constant pointer pointing to a string literal, we can fold
654   // strlen(s + x) to strlen(s) - x, when x is known to be in the range
655   // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
656   // We only try to simplify strlen when the pointer s points to an array
657   // of i8. Otherwise, we would need to scale the offset x before doing the
658   // subtraction. This will make the optimization more complex, and it's not
659   // very useful because calling strlen for a pointer of other types is
660   // very uncommon.
661   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
662     if (!isGEPBasedOnPointerToString(GEP, CharSize))
663       return nullptr;
664 
665     ConstantDataArraySlice Slice;
666     if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
667       uint64_t NullTermIdx;
668       if (Slice.Array == nullptr) {
669         NullTermIdx = 0;
670       } else {
671         NullTermIdx = ~((uint64_t)0);
672         for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
673           if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
674             NullTermIdx = I;
675             break;
676           }
677         }
678         // If the string does not have '\0', leave it to strlen to compute
679         // its length.
680         if (NullTermIdx == ~((uint64_t)0))
681           return nullptr;
682       }
683 
684       Value *Offset = GEP->getOperand(2);
685       KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
686       Known.Zero.flipAllBits();
687       uint64_t ArrSize =
688              cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
689 
690       // KnownZero's bits are flipped, so zeros in KnownZero now represent
691       // bits known to be zeros in Offset, and ones in KnowZero represent
692       // bits unknown in Offset. Therefore, Offset is known to be in range
693       // [0, NullTermIdx] when the flipped KnownZero is non-negative and
694       // unsigned-less-than NullTermIdx.
695       //
696       // If Offset is not provably in the range [0, NullTermIdx], we can still
697       // optimize if we can prove that the program has undefined behavior when
698       // Offset is outside that range. That is the case when GEP->getOperand(0)
699       // is a pointer to an object whose memory extent is NullTermIdx+1.
700       if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
701           (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
702            NullTermIdx == ArrSize - 1)) {
703         Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
704         return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
705                            Offset);
706       }
707     }
708 
709     return nullptr;
710   }
711 
712   // strlen(x?"foo":"bars") --> x ? 3 : 4
713   if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
714     uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
715     uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
716     if (LenTrue && LenFalse) {
717       ORE.emit([&]() {
718         return OptimizationRemark("instcombine", "simplify-libcalls", CI)
719                << "folded strlen(select) to select of constants";
720       });
721       return B.CreateSelect(SI->getCondition(),
722                             ConstantInt::get(CI->getType(), LenTrue - 1),
723                             ConstantInt::get(CI->getType(), LenFalse - 1));
724     }
725   }
726 
727   // strlen(x) != 0 --> *x != 0
728   // strlen(x) == 0 --> *x == 0
729   if (isOnlyUsedInZeroEqualityComparison(CI))
730     return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
731                         CI->getType());
732 
733   return nullptr;
734 }
735 
736 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
737   if (Value *V = optimizeStringLength(CI, B, 8))
738     return V;
739   annotateNonNullBasedOnAccess(CI, 0);
740   return nullptr;
741 }
742 
743 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
744   Module &M = *CI->getModule();
745   unsigned WCharSize = TLI->getWCharSize(M) * 8;
746   // We cannot perform this optimization without wchar_size metadata.
747   if (WCharSize == 0)
748     return nullptr;
749 
750   return optimizeStringLength(CI, B, WCharSize);
751 }
752 
753 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
754   StringRef S1, S2;
755   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
756   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
757 
758   // strpbrk(s, "") -> nullptr
759   // strpbrk("", s) -> nullptr
760   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
761     return Constant::getNullValue(CI->getType());
762 
763   // Constant folding.
764   if (HasS1 && HasS2) {
765     size_t I = S1.find_first_of(S2);
766     if (I == StringRef::npos) // No match.
767       return Constant::getNullValue(CI->getType());
768 
769     return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
770                        "strpbrk");
771   }
772 
773   // strpbrk(s, "a") -> strchr(s, 'a')
774   if (HasS2 && S2.size() == 1)
775     return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
776 
777   return nullptr;
778 }
779 
780 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
781   Value *EndPtr = CI->getArgOperand(1);
782   if (isa<ConstantPointerNull>(EndPtr)) {
783     // With a null EndPtr, this function won't capture the main argument.
784     // It would be readonly too, except that it still may write to errno.
785     CI->addParamAttr(0, Attribute::NoCapture);
786   }
787 
788   return nullptr;
789 }
790 
791 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
792   StringRef S1, S2;
793   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
794   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
795 
796   // strspn(s, "") -> 0
797   // strspn("", s) -> 0
798   if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
799     return Constant::getNullValue(CI->getType());
800 
801   // Constant folding.
802   if (HasS1 && HasS2) {
803     size_t Pos = S1.find_first_not_of(S2);
804     if (Pos == StringRef::npos)
805       Pos = S1.size();
806     return ConstantInt::get(CI->getType(), Pos);
807   }
808 
809   return nullptr;
810 }
811 
812 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
813   StringRef S1, S2;
814   bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
815   bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
816 
817   // strcspn("", s) -> 0
818   if (HasS1 && S1.empty())
819     return Constant::getNullValue(CI->getType());
820 
821   // Constant folding.
822   if (HasS1 && HasS2) {
823     size_t Pos = S1.find_first_of(S2);
824     if (Pos == StringRef::npos)
825       Pos = S1.size();
826     return ConstantInt::get(CI->getType(), Pos);
827   }
828 
829   // strcspn(s, "") -> strlen(s)
830   if (HasS2 && S2.empty())
831     return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
832 
833   return nullptr;
834 }
835 
836 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
837   // fold strstr(x, x) -> x.
838   if (CI->getArgOperand(0) == CI->getArgOperand(1))
839     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
840 
841   // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
842   if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
843     Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
844     if (!StrLen)
845       return nullptr;
846     Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
847                                  StrLen, B, DL, TLI);
848     if (!StrNCmp)
849       return nullptr;
850     for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
851       ICmpInst *Old = cast<ICmpInst>(*UI++);
852       Value *Cmp =
853           B.CreateICmp(Old->getPredicate(), StrNCmp,
854                        ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
855       replaceAllUsesWith(Old, Cmp);
856     }
857     return CI;
858   }
859 
860   // See if either input string is a constant string.
861   StringRef SearchStr, ToFindStr;
862   bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
863   bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
864 
865   // fold strstr(x, "") -> x.
866   if (HasStr2 && ToFindStr.empty())
867     return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
868 
869   // If both strings are known, constant fold it.
870   if (HasStr1 && HasStr2) {
871     size_t Offset = SearchStr.find(ToFindStr);
872 
873     if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
874       return Constant::getNullValue(CI->getType());
875 
876     // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
877     Value *Result = castToCStr(CI->getArgOperand(0), B);
878     Result =
879         B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
880     return B.CreateBitCast(Result, CI->getType());
881   }
882 
883   // fold strstr(x, "y") -> strchr(x, 'y').
884   if (HasStr2 && ToFindStr.size() == 1) {
885     Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
886     return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
887   }
888 
889   annotateNonNullBasedOnAccess(CI, {0, 1});
890   return nullptr;
891 }
892 
893 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
894   if (isKnownNonZero(CI->getOperand(2), DL))
895     annotateNonNullBasedOnAccess(CI, 0);
896   return nullptr;
897 }
898 
899 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
900   Value *SrcStr = CI->getArgOperand(0);
901   Value *Size = CI->getArgOperand(2);
902   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
903   ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
904   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
905 
906   // memchr(x, y, 0) -> null
907   if (LenC) {
908     if (LenC->isZero())
909       return Constant::getNullValue(CI->getType());
910   } else {
911     // From now on we need at least constant length and string.
912     return nullptr;
913   }
914 
915   StringRef Str;
916   if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
917     return nullptr;
918 
919   // Truncate the string to LenC. If Str is smaller than LenC we will still only
920   // scan the string, as reading past the end of it is undefined and we can just
921   // return null if we don't find the char.
922   Str = Str.substr(0, LenC->getZExtValue());
923 
924   // If the char is variable but the input str and length are not we can turn
925   // this memchr call into a simple bit field test. Of course this only works
926   // when the return value is only checked against null.
927   //
928   // It would be really nice to reuse switch lowering here but we can't change
929   // the CFG at this point.
930   //
931   // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
932   // != 0
933   //   after bounds check.
934   if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
935     unsigned char Max =
936         *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
937                           reinterpret_cast<const unsigned char *>(Str.end()));
938 
939     // Make sure the bit field we're about to create fits in a register on the
940     // target.
941     // FIXME: On a 64 bit architecture this prevents us from using the
942     // interesting range of alpha ascii chars. We could do better by emitting
943     // two bitfields or shifting the range by 64 if no lower chars are used.
944     if (!DL.fitsInLegalInteger(Max + 1))
945       return nullptr;
946 
947     // For the bit field use a power-of-2 type with at least 8 bits to avoid
948     // creating unnecessary illegal types.
949     unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
950 
951     // Now build the bit field.
952     APInt Bitfield(Width, 0);
953     for (char C : Str)
954       Bitfield.setBit((unsigned char)C);
955     Value *BitfieldC = B.getInt(Bitfield);
956 
957     // Adjust width of "C" to the bitfield width, then mask off the high bits.
958     Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
959     C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
960 
961     // First check that the bit field access is within bounds.
962     Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
963                                  "memchr.bounds");
964 
965     // Create code that checks if the given bit is set in the field.
966     Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
967     Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
968 
969     // Finally merge both checks and cast to pointer type. The inttoptr
970     // implicitly zexts the i1 to intptr type.
971     return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
972   }
973 
974   // Check if all arguments are constants.  If so, we can constant fold.
975   if (!CharC)
976     return nullptr;
977 
978   // Compute the offset.
979   size_t I = Str.find(CharC->getSExtValue() & 0xFF);
980   if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
981     return Constant::getNullValue(CI->getType());
982 
983   // memchr(s+n,c,l) -> gep(s+n+i,c)
984   return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
985 }
986 
987 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
988                                          uint64_t Len, IRBuilder<> &B,
989                                          const DataLayout &DL) {
990   if (Len == 0) // memcmp(s1,s2,0) -> 0
991     return Constant::getNullValue(CI->getType());
992 
993   // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
994   if (Len == 1) {
995     Value *LHSV =
996         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
997                      CI->getType(), "lhsv");
998     Value *RHSV =
999         B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1000                      CI->getType(), "rhsv");
1001     return B.CreateSub(LHSV, RHSV, "chardiff");
1002   }
1003 
1004   // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1005   // TODO: The case where both inputs are constants does not need to be limited
1006   // to legal integers or equality comparison. See block below this.
1007   if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1008     IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1009     unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1010 
1011     // First, see if we can fold either argument to a constant.
1012     Value *LHSV = nullptr;
1013     if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1014       LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1015       LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1016     }
1017     Value *RHSV = nullptr;
1018     if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1019       RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1020       RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1021     }
1022 
1023     // Don't generate unaligned loads. If either source is constant data,
1024     // alignment doesn't matter for that source because there is no load.
1025     if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1026         (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1027       if (!LHSV) {
1028         Type *LHSPtrTy =
1029             IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1030         LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1031       }
1032       if (!RHSV) {
1033         Type *RHSPtrTy =
1034             IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1035         RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1036       }
1037       return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1038     }
1039   }
1040 
1041   // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1042   // TODO: This is limited to i8 arrays.
1043   StringRef LHSStr, RHSStr;
1044   if (getConstantStringInfo(LHS, LHSStr) &&
1045       getConstantStringInfo(RHS, RHSStr)) {
1046     // Make sure we're not reading out-of-bounds memory.
1047     if (Len > LHSStr.size() || Len > RHSStr.size())
1048       return nullptr;
1049     // Fold the memcmp and normalize the result.  This way we get consistent
1050     // results across multiple platforms.
1051     uint64_t Ret = 0;
1052     int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1053     if (Cmp < 0)
1054       Ret = -1;
1055     else if (Cmp > 0)
1056       Ret = 1;
1057     return ConstantInt::get(CI->getType(), Ret);
1058   }
1059 
1060   return nullptr;
1061 }
1062 
1063 // Most simplifications for memcmp also apply to bcmp.
1064 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1065                                                    IRBuilder<> &B) {
1066   Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1067   Value *Size = CI->getArgOperand(2);
1068 
1069   if (LHS == RHS) // memcmp(s,s,x) -> 0
1070     return Constant::getNullValue(CI->getType());
1071 
1072   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1073   // Handle constant lengths.
1074   ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1075   if (!LenC)
1076     return nullptr;
1077 
1078   // memcmp(d,s,0) -> 0
1079   if (LenC->getZExtValue() == 0)
1080     return Constant::getNullValue(CI->getType());
1081 
1082   if (Value *Res =
1083           optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1084     return Res;
1085   return nullptr;
1086 }
1087 
1088 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1089   if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1090     return V;
1091 
1092   // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1093   // bcmp can be more efficient than memcmp because it only has to know that
1094   // there is a difference, not how different one is to the other.
1095   if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1096     Value *LHS = CI->getArgOperand(0);
1097     Value *RHS = CI->getArgOperand(1);
1098     Value *Size = CI->getArgOperand(2);
1099     return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1100   }
1101 
1102   return nullptr;
1103 }
1104 
1105 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1106   return optimizeMemCmpBCmpCommon(CI, B);
1107 }
1108 
1109 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1110   Value *Size = CI->getArgOperand(2);
1111   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1112   if (isa<IntrinsicInst>(CI))
1113     return nullptr;
1114 
1115   // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1116   CallInst *NewCI =
1117       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1118   NewCI->setAttributes(CI->getAttributes());
1119   return CI->getArgOperand(0);
1120 }
1121 
1122 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1123   Value *Dst = CI->getArgOperand(0);
1124   Value *N = CI->getArgOperand(2);
1125   // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1126   CallInst *NewCI = B.CreateMemCpy(Dst, 1, CI->getArgOperand(1), 1, N);
1127   NewCI->setAttributes(CI->getAttributes());
1128   return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1129 }
1130 
1131 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1132   Value *Size = CI->getArgOperand(2);
1133   annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1134   if (isa<IntrinsicInst>(CI))
1135     return nullptr;
1136 
1137   // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1138   CallInst *NewCI =
1139       B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, Size);
1140   NewCI->setAttributes(CI->getAttributes());
1141   return CI->getArgOperand(0);
1142 }
1143 
1144 /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1145 Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1146   // This has to be a memset of zeros (bzero).
1147   auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1148   if (!FillValue || FillValue->getZExtValue() != 0)
1149     return nullptr;
1150 
1151   // TODO: We should handle the case where the malloc has more than one use.
1152   // This is necessary to optimize common patterns such as when the result of
1153   // the malloc is checked against null or when a memset intrinsic is used in
1154   // place of a memset library call.
1155   auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1156   if (!Malloc || !Malloc->hasOneUse())
1157     return nullptr;
1158 
1159   // Is the inner call really malloc()?
1160   Function *InnerCallee = Malloc->getCalledFunction();
1161   if (!InnerCallee)
1162     return nullptr;
1163 
1164   LibFunc Func;
1165   if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1166       Func != LibFunc_malloc)
1167     return nullptr;
1168 
1169   // The memset must cover the same number of bytes that are malloc'd.
1170   if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1171     return nullptr;
1172 
1173   // Replace the malloc with a calloc. We need the data layout to know what the
1174   // actual size of a 'size_t' parameter is.
1175   B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1176   const DataLayout &DL = Malloc->getModule()->getDataLayout();
1177   IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1178   if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1179                                  Malloc->getArgOperand(0),
1180                                  Malloc->getAttributes(), B, *TLI)) {
1181     substituteInParent(Malloc, Calloc);
1182     return Calloc;
1183   }
1184 
1185   return nullptr;
1186 }
1187 
1188 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1189   Value *Size = CI->getArgOperand(2);
1190   annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1191   if (isa<IntrinsicInst>(CI))
1192     return nullptr;
1193 
1194   if (auto *Calloc = foldMallocMemset(CI, B))
1195     return Calloc;
1196 
1197   // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1198   Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1199   CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, 1);
1200   NewCI->setAttributes(CI->getAttributes());
1201   return CI->getArgOperand(0);
1202 }
1203 
1204 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1205   if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1206     return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1207 
1208   return nullptr;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 // Math Library Optimizations
1213 //===----------------------------------------------------------------------===//
1214 
1215 // Replace a libcall \p CI with a call to intrinsic \p IID
1216 static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1217   // Propagate fast-math flags from the existing call to the new call.
1218   IRBuilder<>::FastMathFlagGuard Guard(B);
1219   B.setFastMathFlags(CI->getFastMathFlags());
1220 
1221   Module *M = CI->getModule();
1222   Value *V = CI->getArgOperand(0);
1223   Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1224   CallInst *NewCall = B.CreateCall(F, V);
1225   NewCall->takeName(CI);
1226   return NewCall;
1227 }
1228 
1229 /// Return a variant of Val with float type.
1230 /// Currently this works in two cases: If Val is an FPExtension of a float
1231 /// value to something bigger, simply return the operand.
1232 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1233 /// loss of precision do so.
1234 static Value *valueHasFloatPrecision(Value *Val) {
1235   if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1236     Value *Op = Cast->getOperand(0);
1237     if (Op->getType()->isFloatTy())
1238       return Op;
1239   }
1240   if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1241     APFloat F = Const->getValueAPF();
1242     bool losesInfo;
1243     (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1244                     &losesInfo);
1245     if (!losesInfo)
1246       return ConstantFP::get(Const->getContext(), F);
1247   }
1248   return nullptr;
1249 }
1250 
1251 /// Shrink double -> float functions.
1252 static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1253                                bool isBinary, bool isPrecise = false) {
1254   Function *CalleeFn = CI->getCalledFunction();
1255   if (!CI->getType()->isDoubleTy() || !CalleeFn)
1256     return nullptr;
1257 
1258   // If not all the uses of the function are converted to float, then bail out.
1259   // This matters if the precision of the result is more important than the
1260   // precision of the arguments.
1261   if (isPrecise)
1262     for (User *U : CI->users()) {
1263       FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1264       if (!Cast || !Cast->getType()->isFloatTy())
1265         return nullptr;
1266     }
1267 
1268   // If this is something like 'g((double) float)', convert to 'gf(float)'.
1269   Value *V[2];
1270   V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1271   V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1272   if (!V[0] || (isBinary && !V[1]))
1273     return nullptr;
1274 
1275   // If call isn't an intrinsic, check that it isn't within a function with the
1276   // same name as the float version of this call, otherwise the result is an
1277   // infinite loop.  For example, from MinGW-w64:
1278   //
1279   // float expf(float val) { return (float) exp((double) val); }
1280   StringRef CalleeName = CalleeFn->getName();
1281   bool IsIntrinsic = CalleeFn->isIntrinsic();
1282   if (!IsIntrinsic) {
1283     StringRef CallerName = CI->getFunction()->getName();
1284     if (!CallerName.empty() && CallerName.back() == 'f' &&
1285         CallerName.size() == (CalleeName.size() + 1) &&
1286         CallerName.startswith(CalleeName))
1287       return nullptr;
1288   }
1289 
1290   // Propagate the math semantics from the current function to the new function.
1291   IRBuilder<>::FastMathFlagGuard Guard(B);
1292   B.setFastMathFlags(CI->getFastMathFlags());
1293 
1294   // g((double) float) -> (double) gf(float)
1295   Value *R;
1296   if (IsIntrinsic) {
1297     Module *M = CI->getModule();
1298     Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1299     Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1300     R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1301   } else {
1302     AttributeList CalleeAttrs = CalleeFn->getAttributes();
1303     R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1304                  : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1305   }
1306   return B.CreateFPExt(R, B.getDoubleTy());
1307 }
1308 
1309 /// Shrink double -> float for unary functions.
1310 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1311                                     bool isPrecise = false) {
1312   return optimizeDoubleFP(CI, B, false, isPrecise);
1313 }
1314 
1315 /// Shrink double -> float for binary functions.
1316 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1317                                      bool isPrecise = false) {
1318   return optimizeDoubleFP(CI, B, true, isPrecise);
1319 }
1320 
1321 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1322 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1323   if (!CI->isFast())
1324     return nullptr;
1325 
1326   // Propagate fast-math flags from the existing call to new instructions.
1327   IRBuilder<>::FastMathFlagGuard Guard(B);
1328   B.setFastMathFlags(CI->getFastMathFlags());
1329 
1330   Value *Real, *Imag;
1331   if (CI->getNumArgOperands() == 1) {
1332     Value *Op = CI->getArgOperand(0);
1333     assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1334     Real = B.CreateExtractValue(Op, 0, "real");
1335     Imag = B.CreateExtractValue(Op, 1, "imag");
1336   } else {
1337     assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1338     Real = CI->getArgOperand(0);
1339     Imag = CI->getArgOperand(1);
1340   }
1341 
1342   Value *RealReal = B.CreateFMul(Real, Real);
1343   Value *ImagImag = B.CreateFMul(Imag, Imag);
1344 
1345   Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1346                                               CI->getType());
1347   return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1348 }
1349 
1350 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1351                                       IRBuilder<> &B) {
1352   if (!isa<FPMathOperator>(Call))
1353     return nullptr;
1354 
1355   IRBuilder<>::FastMathFlagGuard Guard(B);
1356   B.setFastMathFlags(Call->getFastMathFlags());
1357 
1358   // TODO: Can this be shared to also handle LLVM intrinsics?
1359   Value *X;
1360   switch (Func) {
1361   case LibFunc_sin:
1362   case LibFunc_sinf:
1363   case LibFunc_sinl:
1364   case LibFunc_tan:
1365   case LibFunc_tanf:
1366   case LibFunc_tanl:
1367     // sin(-X) --> -sin(X)
1368     // tan(-X) --> -tan(X)
1369     if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1370       return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1371     break;
1372   case LibFunc_cos:
1373   case LibFunc_cosf:
1374   case LibFunc_cosl:
1375     // cos(-X) --> cos(X)
1376     if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1377       return B.CreateCall(Call->getCalledFunction(), X, "cos");
1378     break;
1379   default:
1380     break;
1381   }
1382   return nullptr;
1383 }
1384 
1385 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1386   // Multiplications calculated using Addition Chains.
1387   // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1388 
1389   assert(Exp != 0 && "Incorrect exponent 0 not handled");
1390 
1391   if (InnerChain[Exp])
1392     return InnerChain[Exp];
1393 
1394   static const unsigned AddChain[33][2] = {
1395       {0, 0}, // Unused.
1396       {0, 0}, // Unused (base case = pow1).
1397       {1, 1}, // Unused (pre-computed).
1398       {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1399       {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1400       {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1401       {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1402       {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1403   };
1404 
1405   InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1406                                  getPow(InnerChain, AddChain[Exp][1], B));
1407   return InnerChain[Exp];
1408 }
1409 
1410 // Return a properly extended 32-bit integer if the operation is an itofp.
1411 static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1412   if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1413     Value *Op = cast<Instruction>(I2F)->getOperand(0);
1414     // Make sure that the exponent fits inside an int32_t,
1415     // thus avoiding any range issues that FP has not.
1416     unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1417     if (BitWidth < 32 ||
1418         (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1419       return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1420                                   : B.CreateZExt(Op, B.getInt32Ty());
1421   }
1422 
1423   return nullptr;
1424 }
1425 
1426 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1427 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1428 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1429 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1430   Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1431   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1432   Module *Mod = Pow->getModule();
1433   Type *Ty = Pow->getType();
1434   bool Ignored;
1435 
1436   // Evaluate special cases related to a nested function as the base.
1437 
1438   // pow(exp(x), y) -> exp(x * y)
1439   // pow(exp2(x), y) -> exp2(x * y)
1440   // If exp{,2}() is used only once, it is better to fold two transcendental
1441   // math functions into one.  If used again, exp{,2}() would still have to be
1442   // called with the original argument, then keep both original transcendental
1443   // functions.  However, this transformation is only safe with fully relaxed
1444   // math semantics, since, besides rounding differences, it changes overflow
1445   // and underflow behavior quite dramatically.  For example:
1446   //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1447   // Whereas:
1448   //   exp(1000 * 0.001) = exp(1)
1449   // TODO: Loosen the requirement for fully relaxed math semantics.
1450   // TODO: Handle exp10() when more targets have it available.
1451   CallInst *BaseFn = dyn_cast<CallInst>(Base);
1452   if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1453     LibFunc LibFn;
1454 
1455     Function *CalleeFn = BaseFn->getCalledFunction();
1456     if (CalleeFn &&
1457         TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1458       StringRef ExpName;
1459       Intrinsic::ID ID;
1460       Value *ExpFn;
1461       LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1462 
1463       switch (LibFn) {
1464       default:
1465         return nullptr;
1466       case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1467         ExpName = TLI->getName(LibFunc_exp);
1468         ID = Intrinsic::exp;
1469         LibFnFloat = LibFunc_expf;
1470         LibFnDouble = LibFunc_exp;
1471         LibFnLongDouble = LibFunc_expl;
1472         break;
1473       case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1474         ExpName = TLI->getName(LibFunc_exp2);
1475         ID = Intrinsic::exp2;
1476         LibFnFloat = LibFunc_exp2f;
1477         LibFnDouble = LibFunc_exp2;
1478         LibFnLongDouble = LibFunc_exp2l;
1479         break;
1480       }
1481 
1482       // Create new exp{,2}() with the product as its argument.
1483       Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1484       ExpFn = BaseFn->doesNotAccessMemory()
1485               ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1486                              FMul, ExpName)
1487               : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1488                                      LibFnLongDouble, B,
1489                                      BaseFn->getAttributes());
1490 
1491       // Since the new exp{,2}() is different from the original one, dead code
1492       // elimination cannot be trusted to remove it, since it may have side
1493       // effects (e.g., errno).  When the only consumer for the original
1494       // exp{,2}() is pow(), then it has to be explicitly erased.
1495       substituteInParent(BaseFn, ExpFn);
1496       return ExpFn;
1497     }
1498   }
1499 
1500   // Evaluate special cases related to a constant base.
1501 
1502   const APFloat *BaseF;
1503   if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1504     return nullptr;
1505 
1506   // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1507   if (match(Base, m_SpecificFP(2.0)) &&
1508       (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1509       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1510     if (Value *ExpoI = getIntToFPVal(Expo, B))
1511       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1512                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1513                                    B, Attrs);
1514   }
1515 
1516   // pow(2.0 ** n, x) -> exp2(n * x)
1517   if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1518     APFloat BaseR = APFloat(1.0);
1519     BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1520     BaseR = BaseR / *BaseF;
1521     bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1522     const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1523     APSInt NI(64, false);
1524     if ((IsInteger || IsReciprocal) &&
1525         NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1526             APFloat::opOK &&
1527         NI > 1 && NI.isPowerOf2()) {
1528       double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1529       Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1530       if (Pow->doesNotAccessMemory())
1531         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1532                             FMul, "exp2");
1533       else
1534         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1535                                     LibFunc_exp2l, B, Attrs);
1536     }
1537   }
1538 
1539   // pow(10.0, x) -> exp10(x)
1540   // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1541   if (match(Base, m_SpecificFP(10.0)) &&
1542       hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1543     return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1544                                 LibFunc_exp10l, B, Attrs);
1545 
1546   // pow(n, x) -> exp2(log2(n) * x)
1547   if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1548       Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1549     Value *Log = nullptr;
1550     if (Ty->isFloatTy())
1551       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1552     else if (Ty->isDoubleTy())
1553       Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1554 
1555     if (Log) {
1556       Value *FMul = B.CreateFMul(Log, Expo, "mul");
1557       if (Pow->doesNotAccessMemory())
1558         return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1559                             FMul, "exp2");
1560       else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1561         return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1562                                     LibFunc_exp2l, B, Attrs);
1563     }
1564   }
1565 
1566   return nullptr;
1567 }
1568 
1569 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1570                           Module *M, IRBuilder<> &B,
1571                           const TargetLibraryInfo *TLI) {
1572   // If errno is never set, then use the intrinsic for sqrt().
1573   if (NoErrno) {
1574     Function *SqrtFn =
1575         Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1576     return B.CreateCall(SqrtFn, V, "sqrt");
1577   }
1578 
1579   // Otherwise, use the libcall for sqrt().
1580   if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1581     // TODO: We also should check that the target can in fact lower the sqrt()
1582     // libcall. We currently have no way to ask this question, so we ask if
1583     // the target has a sqrt() libcall, which is not exactly the same.
1584     return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1585                                 LibFunc_sqrtl, B, Attrs);
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Use square root in place of pow(x, +/-0.5).
1591 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1592   Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1593   AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1594   Module *Mod = Pow->getModule();
1595   Type *Ty = Pow->getType();
1596 
1597   const APFloat *ExpoF;
1598   if (!match(Expo, m_APFloat(ExpoF)) ||
1599       (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1600     return nullptr;
1601 
1602   Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1603   if (!Sqrt)
1604     return nullptr;
1605 
1606   // Handle signed zero base by expanding to fabs(sqrt(x)).
1607   if (!Pow->hasNoSignedZeros()) {
1608     Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1609     Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1610   }
1611 
1612   // Handle non finite base by expanding to
1613   // (x == -infinity ? +infinity : sqrt(x)).
1614   if (!Pow->hasNoInfs()) {
1615     Value *PosInf = ConstantFP::getInfinity(Ty),
1616           *NegInf = ConstantFP::getInfinity(Ty, true);
1617     Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1618     Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1619   }
1620 
1621   // If the exponent is negative, then get the reciprocal.
1622   if (ExpoF->isNegative())
1623     Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1624 
1625   return Sqrt;
1626 }
1627 
1628 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1629                                            IRBuilder<> &B) {
1630   Value *Args[] = {Base, Expo};
1631   Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1632   return B.CreateCall(F, Args);
1633 }
1634 
1635 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1636   Value *Base = Pow->getArgOperand(0);
1637   Value *Expo = Pow->getArgOperand(1);
1638   Function *Callee = Pow->getCalledFunction();
1639   StringRef Name = Callee->getName();
1640   Type *Ty = Pow->getType();
1641   Module *M = Pow->getModule();
1642   Value *Shrunk = nullptr;
1643   bool AllowApprox = Pow->hasApproxFunc();
1644   bool Ignored;
1645 
1646   // Bail out if simplifying libcalls to pow() is disabled.
1647   if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1648     return nullptr;
1649 
1650   // Propagate the math semantics from the call to any created instructions.
1651   IRBuilder<>::FastMathFlagGuard Guard(B);
1652   B.setFastMathFlags(Pow->getFastMathFlags());
1653 
1654   // Shrink pow() to powf() if the arguments are single precision,
1655   // unless the result is expected to be double precision.
1656   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1657       hasFloatVersion(Name))
1658     Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1659 
1660   // Evaluate special cases related to the base.
1661 
1662   // pow(1.0, x) -> 1.0
1663   if (match(Base, m_FPOne()))
1664     return Base;
1665 
1666   if (Value *Exp = replacePowWithExp(Pow, B))
1667     return Exp;
1668 
1669   // Evaluate special cases related to the exponent.
1670 
1671   // pow(x, -1.0) -> 1.0 / x
1672   if (match(Expo, m_SpecificFP(-1.0)))
1673     return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1674 
1675   // pow(x, +/-0.0) -> 1.0
1676   if (match(Expo, m_AnyZeroFP()))
1677     return ConstantFP::get(Ty, 1.0);
1678 
1679   // pow(x, 1.0) -> x
1680   if (match(Expo, m_FPOne()))
1681     return Base;
1682 
1683   // pow(x, 2.0) -> x * x
1684   if (match(Expo, m_SpecificFP(2.0)))
1685     return B.CreateFMul(Base, Base, "square");
1686 
1687   if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1688     return Sqrt;
1689 
1690   // pow(x, n) -> x * x * x * ...
1691   const APFloat *ExpoF;
1692   if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1693     // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1694     // If the exponent is an integer+0.5 we generate a call to sqrt and an
1695     // additional fmul.
1696     // TODO: This whole transformation should be backend specific (e.g. some
1697     //       backends might prefer libcalls or the limit for the exponent might
1698     //       be different) and it should also consider optimizing for size.
1699     APFloat LimF(ExpoF->getSemantics(), 33.0),
1700             ExpoA(abs(*ExpoF));
1701     if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1702       // This transformation applies to integer or integer+0.5 exponents only.
1703       // For integer+0.5, we create a sqrt(Base) call.
1704       Value *Sqrt = nullptr;
1705       if (!ExpoA.isInteger()) {
1706         APFloat Expo2 = ExpoA;
1707         // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1708         // is no floating point exception and the result is an integer, then
1709         // ExpoA == integer + 0.5
1710         if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1711           return nullptr;
1712 
1713         if (!Expo2.isInteger())
1714           return nullptr;
1715 
1716         Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1717                            Pow->doesNotAccessMemory(), M, B, TLI);
1718       }
1719 
1720       // We will memoize intermediate products of the Addition Chain.
1721       Value *InnerChain[33] = {nullptr};
1722       InnerChain[1] = Base;
1723       InnerChain[2] = B.CreateFMul(Base, Base, "square");
1724 
1725       // We cannot readily convert a non-double type (like float) to a double.
1726       // So we first convert it to something which could be converted to double.
1727       ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1728       Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1729 
1730       // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1731       if (Sqrt)
1732         FMul = B.CreateFMul(FMul, Sqrt);
1733 
1734       // If the exponent is negative, then get the reciprocal.
1735       if (ExpoF->isNegative())
1736         FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1737 
1738       return FMul;
1739     }
1740 
1741     APSInt IntExpo(32, /*isUnsigned=*/false);
1742     // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1743     if (ExpoF->isInteger() &&
1744         ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1745             APFloat::opOK) {
1746       return createPowWithIntegerExponent(
1747           Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1748     }
1749   }
1750 
1751   // powf(x, itofp(y)) -> powi(x, y)
1752   if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1753     if (Value *ExpoI = getIntToFPVal(Expo, B))
1754       return createPowWithIntegerExponent(Base, ExpoI, M, B);
1755   }
1756 
1757   return Shrunk;
1758 }
1759 
1760 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1761   Function *Callee = CI->getCalledFunction();
1762   StringRef Name = Callee->getName();
1763   Value *Ret = nullptr;
1764   if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1765       hasFloatVersion(Name))
1766     Ret = optimizeUnaryDoubleFP(CI, B, true);
1767 
1768   Type *Ty = CI->getType();
1769   Value *Op = CI->getArgOperand(0);
1770 
1771   // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1772   // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1773   if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1774       hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1775     if (Value *Exp = getIntToFPVal(Op, B))
1776       return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1777                                    LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1778                                    B, CI->getCalledFunction()->getAttributes());
1779   }
1780 
1781   return Ret;
1782 }
1783 
1784 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1785   // If we can shrink the call to a float function rather than a double
1786   // function, do that first.
1787   Function *Callee = CI->getCalledFunction();
1788   StringRef Name = Callee->getName();
1789   if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1790     if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1791       return Ret;
1792 
1793   // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1794   // the intrinsics for improved optimization (for example, vectorization).
1795   // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1796   // From the C standard draft WG14/N1256:
1797   // "Ideally, fmax would be sensitive to the sign of zero, for example
1798   // fmax(-0.0, +0.0) would return +0; however, implementation in software
1799   // might be impractical."
1800   IRBuilder<>::FastMathFlagGuard Guard(B);
1801   FastMathFlags FMF = CI->getFastMathFlags();
1802   FMF.setNoSignedZeros();
1803   B.setFastMathFlags(FMF);
1804 
1805   Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1806                                                            : Intrinsic::maxnum;
1807   Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1808   return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1809 }
1810 
1811 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1812   Function *LogFn = Log->getCalledFunction();
1813   AttributeList Attrs = LogFn->getAttributes();
1814   StringRef LogNm = LogFn->getName();
1815   Intrinsic::ID LogID = LogFn->getIntrinsicID();
1816   Module *Mod = Log->getModule();
1817   Type *Ty = Log->getType();
1818   Value *Ret = nullptr;
1819 
1820   if (UnsafeFPShrink && hasFloatVersion(LogNm))
1821     Ret = optimizeUnaryDoubleFP(Log, B, true);
1822 
1823   // The earlier call must also be 'fast' in order to do these transforms.
1824   CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1825   if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1826     return Ret;
1827 
1828   LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1829 
1830   // This is only applicable to log(), log2(), log10().
1831   if (TLI->getLibFunc(LogNm, LogLb))
1832     switch (LogLb) {
1833     case LibFunc_logf:
1834       LogID = Intrinsic::log;
1835       ExpLb = LibFunc_expf;
1836       Exp2Lb = LibFunc_exp2f;
1837       Exp10Lb = LibFunc_exp10f;
1838       PowLb = LibFunc_powf;
1839       break;
1840     case LibFunc_log:
1841       LogID = Intrinsic::log;
1842       ExpLb = LibFunc_exp;
1843       Exp2Lb = LibFunc_exp2;
1844       Exp10Lb = LibFunc_exp10;
1845       PowLb = LibFunc_pow;
1846       break;
1847     case LibFunc_logl:
1848       LogID = Intrinsic::log;
1849       ExpLb = LibFunc_expl;
1850       Exp2Lb = LibFunc_exp2l;
1851       Exp10Lb = LibFunc_exp10l;
1852       PowLb = LibFunc_powl;
1853       break;
1854     case LibFunc_log2f:
1855       LogID = Intrinsic::log2;
1856       ExpLb = LibFunc_expf;
1857       Exp2Lb = LibFunc_exp2f;
1858       Exp10Lb = LibFunc_exp10f;
1859       PowLb = LibFunc_powf;
1860       break;
1861     case LibFunc_log2:
1862       LogID = Intrinsic::log2;
1863       ExpLb = LibFunc_exp;
1864       Exp2Lb = LibFunc_exp2;
1865       Exp10Lb = LibFunc_exp10;
1866       PowLb = LibFunc_pow;
1867       break;
1868     case LibFunc_log2l:
1869       LogID = Intrinsic::log2;
1870       ExpLb = LibFunc_expl;
1871       Exp2Lb = LibFunc_exp2l;
1872       Exp10Lb = LibFunc_exp10l;
1873       PowLb = LibFunc_powl;
1874       break;
1875     case LibFunc_log10f:
1876       LogID = Intrinsic::log10;
1877       ExpLb = LibFunc_expf;
1878       Exp2Lb = LibFunc_exp2f;
1879       Exp10Lb = LibFunc_exp10f;
1880       PowLb = LibFunc_powf;
1881       break;
1882     case LibFunc_log10:
1883       LogID = Intrinsic::log10;
1884       ExpLb = LibFunc_exp;
1885       Exp2Lb = LibFunc_exp2;
1886       Exp10Lb = LibFunc_exp10;
1887       PowLb = LibFunc_pow;
1888       break;
1889     case LibFunc_log10l:
1890       LogID = Intrinsic::log10;
1891       ExpLb = LibFunc_expl;
1892       Exp2Lb = LibFunc_exp2l;
1893       Exp10Lb = LibFunc_exp10l;
1894       PowLb = LibFunc_powl;
1895       break;
1896     default:
1897       return Ret;
1898     }
1899   else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1900            LogID == Intrinsic::log10) {
1901     if (Ty->getScalarType()->isFloatTy()) {
1902       ExpLb = LibFunc_expf;
1903       Exp2Lb = LibFunc_exp2f;
1904       Exp10Lb = LibFunc_exp10f;
1905       PowLb = LibFunc_powf;
1906     } else if (Ty->getScalarType()->isDoubleTy()) {
1907       ExpLb = LibFunc_exp;
1908       Exp2Lb = LibFunc_exp2;
1909       Exp10Lb = LibFunc_exp10;
1910       PowLb = LibFunc_pow;
1911     } else
1912       return Ret;
1913   } else
1914     return Ret;
1915 
1916   IRBuilder<>::FastMathFlagGuard Guard(B);
1917   B.setFastMathFlags(FastMathFlags::getFast());
1918 
1919   Intrinsic::ID ArgID = Arg->getIntrinsicID();
1920   LibFunc ArgLb = NotLibFunc;
1921   TLI->getLibFunc(Arg, ArgLb);
1922 
1923   // log(pow(x,y)) -> y*log(x)
1924   if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1925     Value *LogX =
1926         Log->doesNotAccessMemory()
1927             ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1928                            Arg->getOperand(0), "log")
1929             : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1930     Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1931     // Since pow() may have side effects, e.g. errno,
1932     // dead code elimination may not be trusted to remove it.
1933     substituteInParent(Arg, MulY);
1934     return MulY;
1935   }
1936 
1937   // log(exp{,2,10}(y)) -> y*log({e,2,10})
1938   // TODO: There is no exp10() intrinsic yet.
1939   if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1940            ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1941     Constant *Eul;
1942     if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1943       // FIXME: Add more precise value of e for long double.
1944       Eul = ConstantFP::get(Log->getType(), numbers::e);
1945     else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1946       Eul = ConstantFP::get(Log->getType(), 2.0);
1947     else
1948       Eul = ConstantFP::get(Log->getType(), 10.0);
1949     Value *LogE = Log->doesNotAccessMemory()
1950                       ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1951                                      Eul, "log")
1952                       : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
1953     Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
1954     // Since exp() may have side effects, e.g. errno,
1955     // dead code elimination may not be trusted to remove it.
1956     substituteInParent(Arg, MulY);
1957     return MulY;
1958   }
1959 
1960   return Ret;
1961 }
1962 
1963 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
1964   Function *Callee = CI->getCalledFunction();
1965   Value *Ret = nullptr;
1966   // TODO: Once we have a way (other than checking for the existince of the
1967   // libcall) to tell whether our target can lower @llvm.sqrt, relax the
1968   // condition below.
1969   if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
1970                                   Callee->getIntrinsicID() == Intrinsic::sqrt))
1971     Ret = optimizeUnaryDoubleFP(CI, B, true);
1972 
1973   if (!CI->isFast())
1974     return Ret;
1975 
1976   Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
1977   if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
1978     return Ret;
1979 
1980   // We're looking for a repeated factor in a multiplication tree,
1981   // so we can do this fold: sqrt(x * x) -> fabs(x);
1982   // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
1983   Value *Op0 = I->getOperand(0);
1984   Value *Op1 = I->getOperand(1);
1985   Value *RepeatOp = nullptr;
1986   Value *OtherOp = nullptr;
1987   if (Op0 == Op1) {
1988     // Simple match: the operands of the multiply are identical.
1989     RepeatOp = Op0;
1990   } else {
1991     // Look for a more complicated pattern: one of the operands is itself
1992     // a multiply, so search for a common factor in that multiply.
1993     // Note: We don't bother looking any deeper than this first level or for
1994     // variations of this pattern because instcombine's visitFMUL and/or the
1995     // reassociation pass should give us this form.
1996     Value *OtherMul0, *OtherMul1;
1997     if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
1998       // Pattern: sqrt((x * y) * z)
1999       if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2000         // Matched: sqrt((x * x) * z)
2001         RepeatOp = OtherMul0;
2002         OtherOp = Op1;
2003       }
2004     }
2005   }
2006   if (!RepeatOp)
2007     return Ret;
2008 
2009   // Fast math flags for any created instructions should match the sqrt
2010   // and multiply.
2011   IRBuilder<>::FastMathFlagGuard Guard(B);
2012   B.setFastMathFlags(I->getFastMathFlags());
2013 
2014   // If we found a repeated factor, hoist it out of the square root and
2015   // replace it with the fabs of that factor.
2016   Module *M = Callee->getParent();
2017   Type *ArgType = I->getType();
2018   Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2019   Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2020   if (OtherOp) {
2021     // If we found a non-repeated factor, we still need to get its square
2022     // root. We then multiply that by the value that was simplified out
2023     // of the square root calculation.
2024     Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2025     Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2026     return B.CreateFMul(FabsCall, SqrtCall);
2027   }
2028   return FabsCall;
2029 }
2030 
2031 // TODO: Generalize to handle any trig function and its inverse.
2032 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2033   Function *Callee = CI->getCalledFunction();
2034   Value *Ret = nullptr;
2035   StringRef Name = Callee->getName();
2036   if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2037     Ret = optimizeUnaryDoubleFP(CI, B, true);
2038 
2039   Value *Op1 = CI->getArgOperand(0);
2040   auto *OpC = dyn_cast<CallInst>(Op1);
2041   if (!OpC)
2042     return Ret;
2043 
2044   // Both calls must be 'fast' in order to remove them.
2045   if (!CI->isFast() || !OpC->isFast())
2046     return Ret;
2047 
2048   // tan(atan(x)) -> x
2049   // tanf(atanf(x)) -> x
2050   // tanl(atanl(x)) -> x
2051   LibFunc Func;
2052   Function *F = OpC->getCalledFunction();
2053   if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2054       ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2055        (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2056        (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2057     Ret = OpC->getArgOperand(0);
2058   return Ret;
2059 }
2060 
2061 static bool isTrigLibCall(CallInst *CI) {
2062   // We can only hope to do anything useful if we can ignore things like errno
2063   // and floating-point exceptions.
2064   // We already checked the prototype.
2065   return CI->hasFnAttr(Attribute::NoUnwind) &&
2066          CI->hasFnAttr(Attribute::ReadNone);
2067 }
2068 
2069 static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2070                              bool UseFloat, Value *&Sin, Value *&Cos,
2071                              Value *&SinCos) {
2072   Type *ArgTy = Arg->getType();
2073   Type *ResTy;
2074   StringRef Name;
2075 
2076   Triple T(OrigCallee->getParent()->getTargetTriple());
2077   if (UseFloat) {
2078     Name = "__sincospif_stret";
2079 
2080     assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2081     // x86_64 can't use {float, float} since that would be returned in both
2082     // xmm0 and xmm1, which isn't what a real struct would do.
2083     ResTy = T.getArch() == Triple::x86_64
2084                 ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2085                 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2086   } else {
2087     Name = "__sincospi_stret";
2088     ResTy = StructType::get(ArgTy, ArgTy);
2089   }
2090 
2091   Module *M = OrigCallee->getParent();
2092   FunctionCallee Callee =
2093       M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2094 
2095   if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2096     // If the argument is an instruction, it must dominate all uses so put our
2097     // sincos call there.
2098     B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2099   } else {
2100     // Otherwise (e.g. for a constant) the beginning of the function is as
2101     // good a place as any.
2102     BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2103     B.SetInsertPoint(&EntryBB, EntryBB.begin());
2104   }
2105 
2106   SinCos = B.CreateCall(Callee, Arg, "sincospi");
2107 
2108   if (SinCos->getType()->isStructTy()) {
2109     Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2110     Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2111   } else {
2112     Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2113                                  "sinpi");
2114     Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2115                                  "cospi");
2116   }
2117 }
2118 
2119 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2120   // Make sure the prototype is as expected, otherwise the rest of the
2121   // function is probably invalid and likely to abort.
2122   if (!isTrigLibCall(CI))
2123     return nullptr;
2124 
2125   Value *Arg = CI->getArgOperand(0);
2126   SmallVector<CallInst *, 1> SinCalls;
2127   SmallVector<CallInst *, 1> CosCalls;
2128   SmallVector<CallInst *, 1> SinCosCalls;
2129 
2130   bool IsFloat = Arg->getType()->isFloatTy();
2131 
2132   // Look for all compatible sinpi, cospi and sincospi calls with the same
2133   // argument. If there are enough (in some sense) we can make the
2134   // substitution.
2135   Function *F = CI->getFunction();
2136   for (User *U : Arg->users())
2137     classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2138 
2139   // It's only worthwhile if both sinpi and cospi are actually used.
2140   if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2141     return nullptr;
2142 
2143   Value *Sin, *Cos, *SinCos;
2144   insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2145 
2146   auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2147                                  Value *Res) {
2148     for (CallInst *C : Calls)
2149       replaceAllUsesWith(C, Res);
2150   };
2151 
2152   replaceTrigInsts(SinCalls, Sin);
2153   replaceTrigInsts(CosCalls, Cos);
2154   replaceTrigInsts(SinCosCalls, SinCos);
2155 
2156   return nullptr;
2157 }
2158 
2159 void LibCallSimplifier::classifyArgUse(
2160     Value *Val, Function *F, bool IsFloat,
2161     SmallVectorImpl<CallInst *> &SinCalls,
2162     SmallVectorImpl<CallInst *> &CosCalls,
2163     SmallVectorImpl<CallInst *> &SinCosCalls) {
2164   CallInst *CI = dyn_cast<CallInst>(Val);
2165 
2166   if (!CI)
2167     return;
2168 
2169   // Don't consider calls in other functions.
2170   if (CI->getFunction() != F)
2171     return;
2172 
2173   Function *Callee = CI->getCalledFunction();
2174   LibFunc Func;
2175   if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2176       !isTrigLibCall(CI))
2177     return;
2178 
2179   if (IsFloat) {
2180     if (Func == LibFunc_sinpif)
2181       SinCalls.push_back(CI);
2182     else if (Func == LibFunc_cospif)
2183       CosCalls.push_back(CI);
2184     else if (Func == LibFunc_sincospif_stret)
2185       SinCosCalls.push_back(CI);
2186   } else {
2187     if (Func == LibFunc_sinpi)
2188       SinCalls.push_back(CI);
2189     else if (Func == LibFunc_cospi)
2190       CosCalls.push_back(CI);
2191     else if (Func == LibFunc_sincospi_stret)
2192       SinCosCalls.push_back(CI);
2193   }
2194 }
2195 
2196 //===----------------------------------------------------------------------===//
2197 // Integer Library Call Optimizations
2198 //===----------------------------------------------------------------------===//
2199 
2200 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2201   // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2202   Value *Op = CI->getArgOperand(0);
2203   Type *ArgType = Op->getType();
2204   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2205                                           Intrinsic::cttz, ArgType);
2206   Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2207   V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2208   V = B.CreateIntCast(V, B.getInt32Ty(), false);
2209 
2210   Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2211   return B.CreateSelect(Cond, V, B.getInt32(0));
2212 }
2213 
2214 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2215   // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2216   Value *Op = CI->getArgOperand(0);
2217   Type *ArgType = Op->getType();
2218   Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2219                                           Intrinsic::ctlz, ArgType);
2220   Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2221   V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2222                   V);
2223   return B.CreateIntCast(V, CI->getType(), false);
2224 }
2225 
2226 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2227   // abs(x) -> x <s 0 ? -x : x
2228   // The negation has 'nsw' because abs of INT_MIN is undefined.
2229   Value *X = CI->getArgOperand(0);
2230   Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2231   Value *NegX = B.CreateNSWNeg(X, "neg");
2232   return B.CreateSelect(IsNeg, NegX, X);
2233 }
2234 
2235 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2236   // isdigit(c) -> (c-'0') <u 10
2237   Value *Op = CI->getArgOperand(0);
2238   Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2239   Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2240   return B.CreateZExt(Op, CI->getType());
2241 }
2242 
2243 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2244   // isascii(c) -> c <u 128
2245   Value *Op = CI->getArgOperand(0);
2246   Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2247   return B.CreateZExt(Op, CI->getType());
2248 }
2249 
2250 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2251   // toascii(c) -> c & 0x7f
2252   return B.CreateAnd(CI->getArgOperand(0),
2253                      ConstantInt::get(CI->getType(), 0x7F));
2254 }
2255 
2256 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2257   StringRef Str;
2258   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2259     return nullptr;
2260 
2261   return convertStrToNumber(CI, Str, 10);
2262 }
2263 
2264 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2265   StringRef Str;
2266   if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2267     return nullptr;
2268 
2269   if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2270     return nullptr;
2271 
2272   if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2273     return convertStrToNumber(CI, Str, CInt->getSExtValue());
2274   }
2275 
2276   return nullptr;
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 // Formatting and IO Library Call Optimizations
2281 //===----------------------------------------------------------------------===//
2282 
2283 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2284 
2285 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2286                                                  int StreamArg) {
2287   Function *Callee = CI->getCalledFunction();
2288   // Error reporting calls should be cold, mark them as such.
2289   // This applies even to non-builtin calls: it is only a hint and applies to
2290   // functions that the frontend might not understand as builtins.
2291 
2292   // This heuristic was suggested in:
2293   // Improving Static Branch Prediction in a Compiler
2294   // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2295   // Proceedings of PACT'98, Oct. 1998, IEEE
2296   if (!CI->hasFnAttr(Attribute::Cold) &&
2297       isReportingError(Callee, CI, StreamArg)) {
2298     CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2299   }
2300 
2301   return nullptr;
2302 }
2303 
2304 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2305   if (!Callee || !Callee->isDeclaration())
2306     return false;
2307 
2308   if (StreamArg < 0)
2309     return true;
2310 
2311   // These functions might be considered cold, but only if their stream
2312   // argument is stderr.
2313 
2314   if (StreamArg >= (int)CI->getNumArgOperands())
2315     return false;
2316   LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2317   if (!LI)
2318     return false;
2319   GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2320   if (!GV || !GV->isDeclaration())
2321     return false;
2322   return GV->getName() == "stderr";
2323 }
2324 
2325 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2326   // Check for a fixed format string.
2327   StringRef FormatStr;
2328   if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2329     return nullptr;
2330 
2331   // Empty format string -> noop.
2332   if (FormatStr.empty()) // Tolerate printf's declared void.
2333     return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2334 
2335   // Do not do any of the following transformations if the printf return value
2336   // is used, in general the printf return value is not compatible with either
2337   // putchar() or puts().
2338   if (!CI->use_empty())
2339     return nullptr;
2340 
2341   // printf("x") -> putchar('x'), even for "%" and "%%".
2342   if (FormatStr.size() == 1 || FormatStr == "%%")
2343     return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2344 
2345   // printf("%s", "a") --> putchar('a')
2346   if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2347     StringRef ChrStr;
2348     if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2349       return nullptr;
2350     if (ChrStr.size() != 1)
2351       return nullptr;
2352     return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2353   }
2354 
2355   // printf("foo\n") --> puts("foo")
2356   if (FormatStr[FormatStr.size() - 1] == '\n' &&
2357       FormatStr.find('%') == StringRef::npos) { // No format characters.
2358     // Create a string literal with no \n on it.  We expect the constant merge
2359     // pass to be run after this pass, to merge duplicate strings.
2360     FormatStr = FormatStr.drop_back();
2361     Value *GV = B.CreateGlobalString(FormatStr, "str");
2362     return emitPutS(GV, B, TLI);
2363   }
2364 
2365   // Optimize specific format strings.
2366   // printf("%c", chr) --> putchar(chr)
2367   if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2368       CI->getArgOperand(1)->getType()->isIntegerTy())
2369     return emitPutChar(CI->getArgOperand(1), B, TLI);
2370 
2371   // printf("%s\n", str) --> puts(str)
2372   if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2373       CI->getArgOperand(1)->getType()->isPointerTy())
2374     return emitPutS(CI->getArgOperand(1), B, TLI);
2375   return nullptr;
2376 }
2377 
2378 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2379 
2380   Function *Callee = CI->getCalledFunction();
2381   FunctionType *FT = Callee->getFunctionType();
2382   if (Value *V = optimizePrintFString(CI, B)) {
2383     return V;
2384   }
2385 
2386   // printf(format, ...) -> iprintf(format, ...) if no floating point
2387   // arguments.
2388   if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2389     Module *M = B.GetInsertBlock()->getParent()->getParent();
2390     FunctionCallee IPrintFFn =
2391         M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2392     CallInst *New = cast<CallInst>(CI->clone());
2393     New->setCalledFunction(IPrintFFn);
2394     B.Insert(New);
2395     return New;
2396   }
2397 
2398   // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2399   // arguments.
2400   if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2401     Module *M = B.GetInsertBlock()->getParent()->getParent();
2402     auto SmallPrintFFn =
2403         M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2404                                FT, Callee->getAttributes());
2405     CallInst *New = cast<CallInst>(CI->clone());
2406     New->setCalledFunction(SmallPrintFFn);
2407     B.Insert(New);
2408     return New;
2409   }
2410 
2411   annotateNonNullBasedOnAccess(CI, 0);
2412   return nullptr;
2413 }
2414 
2415 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2416   // Check for a fixed format string.
2417   StringRef FormatStr;
2418   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2419     return nullptr;
2420 
2421   // If we just have a format string (nothing else crazy) transform it.
2422   if (CI->getNumArgOperands() == 2) {
2423     // Make sure there's no % in the constant array.  We could try to handle
2424     // %% -> % in the future if we cared.
2425     if (FormatStr.find('%') != StringRef::npos)
2426       return nullptr; // we found a format specifier, bail out.
2427 
2428     // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2429     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
2430                    ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2431                                     FormatStr.size() + 1)); // Copy the null byte.
2432     return ConstantInt::get(CI->getType(), FormatStr.size());
2433   }
2434 
2435   // The remaining optimizations require the format string to be "%s" or "%c"
2436   // and have an extra operand.
2437   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2438       CI->getNumArgOperands() < 3)
2439     return nullptr;
2440 
2441   // Decode the second character of the format string.
2442   if (FormatStr[1] == 'c') {
2443     // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2444     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2445       return nullptr;
2446     Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2447     Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2448     B.CreateStore(V, Ptr);
2449     Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2450     B.CreateStore(B.getInt8(0), Ptr);
2451 
2452     return ConstantInt::get(CI->getType(), 1);
2453   }
2454 
2455   if (FormatStr[1] == 's') {
2456     // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2457     // strlen(str)+1)
2458     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2459       return nullptr;
2460 
2461     Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2462     if (!Len)
2463       return nullptr;
2464     Value *IncLen =
2465         B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2466     B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);
2467 
2468     // The sprintf result is the unincremented number of bytes in the string.
2469     return B.CreateIntCast(Len, CI->getType(), false);
2470   }
2471   return nullptr;
2472 }
2473 
2474 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2475   Function *Callee = CI->getCalledFunction();
2476   FunctionType *FT = Callee->getFunctionType();
2477   if (Value *V = optimizeSPrintFString(CI, B)) {
2478     return V;
2479   }
2480 
2481   // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2482   // point arguments.
2483   if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2484     Module *M = B.GetInsertBlock()->getParent()->getParent();
2485     FunctionCallee SIPrintFFn =
2486         M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2487     CallInst *New = cast<CallInst>(CI->clone());
2488     New->setCalledFunction(SIPrintFFn);
2489     B.Insert(New);
2490     return New;
2491   }
2492 
2493   // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2494   // floating point arguments.
2495   if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2496     Module *M = B.GetInsertBlock()->getParent()->getParent();
2497     auto SmallSPrintFFn =
2498         M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2499                                FT, Callee->getAttributes());
2500     CallInst *New = cast<CallInst>(CI->clone());
2501     New->setCalledFunction(SmallSPrintFFn);
2502     B.Insert(New);
2503     return New;
2504   }
2505 
2506   annotateNonNullBasedOnAccess(CI, {0, 1});
2507   return nullptr;
2508 }
2509 
2510 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2511   // Check for size
2512   ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2513   if (!Size)
2514     return nullptr;
2515 
2516   uint64_t N = Size->getZExtValue();
2517   // Check for a fixed format string.
2518   StringRef FormatStr;
2519   if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2520     return nullptr;
2521 
2522   // If we just have a format string (nothing else crazy) transform it.
2523   if (CI->getNumArgOperands() == 3) {
2524     // Make sure there's no % in the constant array.  We could try to handle
2525     // %% -> % in the future if we cared.
2526     if (FormatStr.find('%') != StringRef::npos)
2527       return nullptr; // we found a format specifier, bail out.
2528 
2529     if (N == 0)
2530       return ConstantInt::get(CI->getType(), FormatStr.size());
2531     else if (N < FormatStr.size() + 1)
2532       return nullptr;
2533 
2534     // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2535     // strlen(fmt)+1)
2536     B.CreateMemCpy(
2537         CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
2538         ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2539                          FormatStr.size() + 1)); // Copy the null byte.
2540     return ConstantInt::get(CI->getType(), FormatStr.size());
2541   }
2542 
2543   // The remaining optimizations require the format string to be "%s" or "%c"
2544   // and have an extra operand.
2545   if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2546       CI->getNumArgOperands() == 4) {
2547 
2548     // Decode the second character of the format string.
2549     if (FormatStr[1] == 'c') {
2550       if (N == 0)
2551         return ConstantInt::get(CI->getType(), 1);
2552       else if (N == 1)
2553         return nullptr;
2554 
2555       // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2556       if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2557         return nullptr;
2558       Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2559       Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2560       B.CreateStore(V, Ptr);
2561       Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2562       B.CreateStore(B.getInt8(0), Ptr);
2563 
2564       return ConstantInt::get(CI->getType(), 1);
2565     }
2566 
2567     if (FormatStr[1] == 's') {
2568       // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2569       StringRef Str;
2570       if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2571         return nullptr;
2572 
2573       if (N == 0)
2574         return ConstantInt::get(CI->getType(), Str.size());
2575       else if (N < Str.size() + 1)
2576         return nullptr;
2577 
2578       B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
2579                      ConstantInt::get(CI->getType(), Str.size() + 1));
2580 
2581       // The snprintf result is the unincremented number of bytes in the string.
2582       return ConstantInt::get(CI->getType(), Str.size());
2583     }
2584   }
2585   return nullptr;
2586 }
2587 
2588 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2589   if (Value *V = optimizeSnPrintFString(CI, B)) {
2590     return V;
2591   }
2592 
2593   if (isKnownNonZero(CI->getOperand(1), DL))
2594     annotateNonNullBasedOnAccess(CI, 0);
2595   return nullptr;
2596 }
2597 
2598 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2599   optimizeErrorReporting(CI, B, 0);
2600 
2601   // All the optimizations depend on the format string.
2602   StringRef FormatStr;
2603   if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2604     return nullptr;
2605 
2606   // Do not do any of the following transformations if the fprintf return
2607   // value is used, in general the fprintf return value is not compatible
2608   // with fwrite(), fputc() or fputs().
2609   if (!CI->use_empty())
2610     return nullptr;
2611 
2612   // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2613   if (CI->getNumArgOperands() == 2) {
2614     // Could handle %% -> % if we cared.
2615     if (FormatStr.find('%') != StringRef::npos)
2616       return nullptr; // We found a format specifier.
2617 
2618     return emitFWrite(
2619         CI->getArgOperand(1),
2620         ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2621         CI->getArgOperand(0), B, DL, TLI);
2622   }
2623 
2624   // The remaining optimizations require the format string to be "%s" or "%c"
2625   // and have an extra operand.
2626   if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2627       CI->getNumArgOperands() < 3)
2628     return nullptr;
2629 
2630   // Decode the second character of the format string.
2631   if (FormatStr[1] == 'c') {
2632     // fprintf(F, "%c", chr) --> fputc(chr, F)
2633     if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2634       return nullptr;
2635     return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2636   }
2637 
2638   if (FormatStr[1] == 's') {
2639     // fprintf(F, "%s", str) --> fputs(str, F)
2640     if (!CI->getArgOperand(2)->getType()->isPointerTy())
2641       return nullptr;
2642     return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2643   }
2644   return nullptr;
2645 }
2646 
2647 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2648   Function *Callee = CI->getCalledFunction();
2649   FunctionType *FT = Callee->getFunctionType();
2650   if (Value *V = optimizeFPrintFString(CI, B)) {
2651     return V;
2652   }
2653 
2654   // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2655   // floating point arguments.
2656   if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2657     Module *M = B.GetInsertBlock()->getParent()->getParent();
2658     FunctionCallee FIPrintFFn =
2659         M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2660     CallInst *New = cast<CallInst>(CI->clone());
2661     New->setCalledFunction(FIPrintFFn);
2662     B.Insert(New);
2663     return New;
2664   }
2665 
2666   // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2667   // 128-bit floating point arguments.
2668   if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2669     Module *M = B.GetInsertBlock()->getParent()->getParent();
2670     auto SmallFPrintFFn =
2671         M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2672                                FT, Callee->getAttributes());
2673     CallInst *New = cast<CallInst>(CI->clone());
2674     New->setCalledFunction(SmallFPrintFFn);
2675     B.Insert(New);
2676     return New;
2677   }
2678 
2679   return nullptr;
2680 }
2681 
2682 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2683   optimizeErrorReporting(CI, B, 3);
2684 
2685   // Get the element size and count.
2686   ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2687   ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2688   if (SizeC && CountC) {
2689     uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2690 
2691     // If this is writing zero records, remove the call (it's a noop).
2692     if (Bytes == 0)
2693       return ConstantInt::get(CI->getType(), 0);
2694 
2695     // If this is writing one byte, turn it into fputc.
2696     // This optimisation is only valid, if the return value is unused.
2697     if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2698       Value *Char = B.CreateLoad(B.getInt8Ty(),
2699                                  castToCStr(CI->getArgOperand(0), B), "char");
2700       Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2701       return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2702     }
2703   }
2704 
2705   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2706     return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2707                               CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2708                               TLI);
2709 
2710   return nullptr;
2711 }
2712 
2713 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2714   optimizeErrorReporting(CI, B, 1);
2715 
2716   // Don't rewrite fputs to fwrite when optimising for size because fwrite
2717   // requires more arguments and thus extra MOVs are required.
2718   bool OptForSize = CI->getFunction()->hasOptSize() ||
2719                     llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
2720   if (OptForSize)
2721     return nullptr;
2722 
2723   // Check if has any use
2724   if (!CI->use_empty()) {
2725     if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2726       return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2727                                TLI);
2728     else
2729       // We can't optimize if return value is used.
2730       return nullptr;
2731   }
2732 
2733   // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2734   uint64_t Len = GetStringLength(CI->getArgOperand(0));
2735   if (!Len)
2736     return nullptr;
2737 
2738   // Known to have no uses (see above).
2739   return emitFWrite(
2740       CI->getArgOperand(0),
2741       ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2742       CI->getArgOperand(1), B, DL, TLI);
2743 }
2744 
2745 Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2746   optimizeErrorReporting(CI, B, 1);
2747 
2748   if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2749     return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2750                              TLI);
2751 
2752   return nullptr;
2753 }
2754 
2755 Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2756   if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2757     return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2758 
2759   return nullptr;
2760 }
2761 
2762 Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2763   if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2764     return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2765                              CI->getArgOperand(2), B, TLI);
2766 
2767   return nullptr;
2768 }
2769 
2770 Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2771   if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2772     return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2773                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2774                              TLI);
2775 
2776   return nullptr;
2777 }
2778 
2779 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2780   annotateNonNullBasedOnAccess(CI, 0);
2781   if (!CI->use_empty())
2782     return nullptr;
2783 
2784   // Check for a constant string.
2785   // puts("") -> putchar('\n')
2786   StringRef Str;
2787   if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2788     return emitPutChar(B.getInt32('\n'), B, TLI);
2789 
2790   return nullptr;
2791 }
2792 
2793 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2794   // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2795   return B.CreateMemMove(CI->getArgOperand(1), 1, CI->getArgOperand(0), 1,
2796                          CI->getArgOperand(2));
2797 }
2798 
2799 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2800   LibFunc Func;
2801   SmallString<20> FloatFuncName = FuncName;
2802   FloatFuncName += 'f';
2803   if (TLI->getLibFunc(FloatFuncName, Func))
2804     return TLI->has(Func);
2805   return false;
2806 }
2807 
2808 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2809                                                       IRBuilder<> &Builder) {
2810   LibFunc Func;
2811   Function *Callee = CI->getCalledFunction();
2812   // Check for string/memory library functions.
2813   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2814     // Make sure we never change the calling convention.
2815     assert((ignoreCallingConv(Func) ||
2816             isCallingConvCCompatible(CI)) &&
2817       "Optimizing string/memory libcall would change the calling convention");
2818     switch (Func) {
2819     case LibFunc_strcat:
2820       return optimizeStrCat(CI, Builder);
2821     case LibFunc_strncat:
2822       return optimizeStrNCat(CI, Builder);
2823     case LibFunc_strchr:
2824       return optimizeStrChr(CI, Builder);
2825     case LibFunc_strrchr:
2826       return optimizeStrRChr(CI, Builder);
2827     case LibFunc_strcmp:
2828       return optimizeStrCmp(CI, Builder);
2829     case LibFunc_strncmp:
2830       return optimizeStrNCmp(CI, Builder);
2831     case LibFunc_strcpy:
2832       return optimizeStrCpy(CI, Builder);
2833     case LibFunc_stpcpy:
2834       return optimizeStpCpy(CI, Builder);
2835     case LibFunc_strncpy:
2836       return optimizeStrNCpy(CI, Builder);
2837     case LibFunc_strlen:
2838       return optimizeStrLen(CI, Builder);
2839     case LibFunc_strpbrk:
2840       return optimizeStrPBrk(CI, Builder);
2841     case LibFunc_strndup:
2842       return optimizeStrNDup(CI, Builder);
2843     case LibFunc_strtol:
2844     case LibFunc_strtod:
2845     case LibFunc_strtof:
2846     case LibFunc_strtoul:
2847     case LibFunc_strtoll:
2848     case LibFunc_strtold:
2849     case LibFunc_strtoull:
2850       return optimizeStrTo(CI, Builder);
2851     case LibFunc_strspn:
2852       return optimizeStrSpn(CI, Builder);
2853     case LibFunc_strcspn:
2854       return optimizeStrCSpn(CI, Builder);
2855     case LibFunc_strstr:
2856       return optimizeStrStr(CI, Builder);
2857     case LibFunc_memchr:
2858       return optimizeMemChr(CI, Builder);
2859     case LibFunc_memrchr:
2860       return optimizeMemRChr(CI, Builder);
2861     case LibFunc_bcmp:
2862       return optimizeBCmp(CI, Builder);
2863     case LibFunc_memcmp:
2864       return optimizeMemCmp(CI, Builder);
2865     case LibFunc_memcpy:
2866       return optimizeMemCpy(CI, Builder);
2867     case LibFunc_mempcpy:
2868       return optimizeMemPCpy(CI, Builder);
2869     case LibFunc_memmove:
2870       return optimizeMemMove(CI, Builder);
2871     case LibFunc_memset:
2872       return optimizeMemSet(CI, Builder);
2873     case LibFunc_realloc:
2874       return optimizeRealloc(CI, Builder);
2875     case LibFunc_wcslen:
2876       return optimizeWcslen(CI, Builder);
2877     case LibFunc_bcopy:
2878       return optimizeBCopy(CI, Builder);
2879     default:
2880       break;
2881     }
2882   }
2883   return nullptr;
2884 }
2885 
2886 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2887                                                        LibFunc Func,
2888                                                        IRBuilder<> &Builder) {
2889   // Don't optimize calls that require strict floating point semantics.
2890   if (CI->isStrictFP())
2891     return nullptr;
2892 
2893   if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2894     return V;
2895 
2896   switch (Func) {
2897   case LibFunc_sinpif:
2898   case LibFunc_sinpi:
2899   case LibFunc_cospif:
2900   case LibFunc_cospi:
2901     return optimizeSinCosPi(CI, Builder);
2902   case LibFunc_powf:
2903   case LibFunc_pow:
2904   case LibFunc_powl:
2905     return optimizePow(CI, Builder);
2906   case LibFunc_exp2l:
2907   case LibFunc_exp2:
2908   case LibFunc_exp2f:
2909     return optimizeExp2(CI, Builder);
2910   case LibFunc_fabsf:
2911   case LibFunc_fabs:
2912   case LibFunc_fabsl:
2913     return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2914   case LibFunc_sqrtf:
2915   case LibFunc_sqrt:
2916   case LibFunc_sqrtl:
2917     return optimizeSqrt(CI, Builder);
2918   case LibFunc_logf:
2919   case LibFunc_log:
2920   case LibFunc_logl:
2921   case LibFunc_log10f:
2922   case LibFunc_log10:
2923   case LibFunc_log10l:
2924   case LibFunc_log1pf:
2925   case LibFunc_log1p:
2926   case LibFunc_log1pl:
2927   case LibFunc_log2f:
2928   case LibFunc_log2:
2929   case LibFunc_log2l:
2930   case LibFunc_logbf:
2931   case LibFunc_logb:
2932   case LibFunc_logbl:
2933     return optimizeLog(CI, Builder);
2934   case LibFunc_tan:
2935   case LibFunc_tanf:
2936   case LibFunc_tanl:
2937     return optimizeTan(CI, Builder);
2938   case LibFunc_ceil:
2939     return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2940   case LibFunc_floor:
2941     return replaceUnaryCall(CI, Builder, Intrinsic::floor);
2942   case LibFunc_round:
2943     return replaceUnaryCall(CI, Builder, Intrinsic::round);
2944   case LibFunc_nearbyint:
2945     return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
2946   case LibFunc_rint:
2947     return replaceUnaryCall(CI, Builder, Intrinsic::rint);
2948   case LibFunc_trunc:
2949     return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
2950   case LibFunc_acos:
2951   case LibFunc_acosh:
2952   case LibFunc_asin:
2953   case LibFunc_asinh:
2954   case LibFunc_atan:
2955   case LibFunc_atanh:
2956   case LibFunc_cbrt:
2957   case LibFunc_cosh:
2958   case LibFunc_exp:
2959   case LibFunc_exp10:
2960   case LibFunc_expm1:
2961   case LibFunc_cos:
2962   case LibFunc_sin:
2963   case LibFunc_sinh:
2964   case LibFunc_tanh:
2965     if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
2966       return optimizeUnaryDoubleFP(CI, Builder, true);
2967     return nullptr;
2968   case LibFunc_copysign:
2969     if (hasFloatVersion(CI->getCalledFunction()->getName()))
2970       return optimizeBinaryDoubleFP(CI, Builder);
2971     return nullptr;
2972   case LibFunc_fminf:
2973   case LibFunc_fmin:
2974   case LibFunc_fminl:
2975   case LibFunc_fmaxf:
2976   case LibFunc_fmax:
2977   case LibFunc_fmaxl:
2978     return optimizeFMinFMax(CI, Builder);
2979   case LibFunc_cabs:
2980   case LibFunc_cabsf:
2981   case LibFunc_cabsl:
2982     return optimizeCAbs(CI, Builder);
2983   default:
2984     return nullptr;
2985   }
2986 }
2987 
2988 Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
2989   // TODO: Split out the code below that operates on FP calls so that
2990   //       we can all non-FP calls with the StrictFP attribute to be
2991   //       optimized.
2992   if (CI->isNoBuiltin())
2993     return nullptr;
2994 
2995   LibFunc Func;
2996   Function *Callee = CI->getCalledFunction();
2997 
2998   SmallVector<OperandBundleDef, 2> OpBundles;
2999   CI->getOperandBundlesAsDefs(OpBundles);
3000   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3001   bool isCallingConvC = isCallingConvCCompatible(CI);
3002 
3003   // Command-line parameter overrides instruction attribute.
3004   // This can't be moved to optimizeFloatingPointLibCall() because it may be
3005   // used by the intrinsic optimizations.
3006   if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3007     UnsafeFPShrink = EnableUnsafeFPShrink;
3008   else if (isa<FPMathOperator>(CI) && CI->isFast())
3009     UnsafeFPShrink = true;
3010 
3011   // First, check for intrinsics.
3012   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3013     if (!isCallingConvC)
3014       return nullptr;
3015     // The FP intrinsics have corresponding constrained versions so we don't
3016     // need to check for the StrictFP attribute here.
3017     switch (II->getIntrinsicID()) {
3018     case Intrinsic::pow:
3019       return optimizePow(CI, Builder);
3020     case Intrinsic::exp2:
3021       return optimizeExp2(CI, Builder);
3022     case Intrinsic::log:
3023     case Intrinsic::log2:
3024     case Intrinsic::log10:
3025       return optimizeLog(CI, Builder);
3026     case Intrinsic::sqrt:
3027       return optimizeSqrt(CI, Builder);
3028     // TODO: Use foldMallocMemset() with memset intrinsic.
3029     case Intrinsic::memset:
3030       return optimizeMemSet(CI, Builder);
3031     case Intrinsic::memcpy:
3032       return optimizeMemCpy(CI, Builder);
3033     case Intrinsic::memmove:
3034       return optimizeMemMove(CI, Builder);
3035     default:
3036       return nullptr;
3037     }
3038   }
3039 
3040   // Also try to simplify calls to fortified library functions.
3041   if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3042     // Try to further simplify the result.
3043     CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3044     if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3045       // Use an IR Builder from SimplifiedCI if available instead of CI
3046       // to guarantee we reach all uses we might replace later on.
3047       IRBuilder<> TmpBuilder(SimplifiedCI);
3048       if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3049         // If we were able to further simplify, remove the now redundant call.
3050         substituteInParent(SimplifiedCI, V);
3051         return V;
3052       }
3053     }
3054     return SimplifiedFortifiedCI;
3055   }
3056 
3057   // Then check for known library functions.
3058   if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3059     // We never change the calling convention.
3060     if (!ignoreCallingConv(Func) && !isCallingConvC)
3061       return nullptr;
3062     if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3063       return V;
3064     if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3065       return V;
3066     switch (Func) {
3067     case LibFunc_ffs:
3068     case LibFunc_ffsl:
3069     case LibFunc_ffsll:
3070       return optimizeFFS(CI, Builder);
3071     case LibFunc_fls:
3072     case LibFunc_flsl:
3073     case LibFunc_flsll:
3074       return optimizeFls(CI, Builder);
3075     case LibFunc_abs:
3076     case LibFunc_labs:
3077     case LibFunc_llabs:
3078       return optimizeAbs(CI, Builder);
3079     case LibFunc_isdigit:
3080       return optimizeIsDigit(CI, Builder);
3081     case LibFunc_isascii:
3082       return optimizeIsAscii(CI, Builder);
3083     case LibFunc_toascii:
3084       return optimizeToAscii(CI, Builder);
3085     case LibFunc_atoi:
3086     case LibFunc_atol:
3087     case LibFunc_atoll:
3088       return optimizeAtoi(CI, Builder);
3089     case LibFunc_strtol:
3090     case LibFunc_strtoll:
3091       return optimizeStrtol(CI, Builder);
3092     case LibFunc_printf:
3093       return optimizePrintF(CI, Builder);
3094     case LibFunc_sprintf:
3095       return optimizeSPrintF(CI, Builder);
3096     case LibFunc_snprintf:
3097       return optimizeSnPrintF(CI, Builder);
3098     case LibFunc_fprintf:
3099       return optimizeFPrintF(CI, Builder);
3100     case LibFunc_fwrite:
3101       return optimizeFWrite(CI, Builder);
3102     case LibFunc_fread:
3103       return optimizeFRead(CI, Builder);
3104     case LibFunc_fputs:
3105       return optimizeFPuts(CI, Builder);
3106     case LibFunc_fgets:
3107       return optimizeFGets(CI, Builder);
3108     case LibFunc_fputc:
3109       return optimizeFPutc(CI, Builder);
3110     case LibFunc_fgetc:
3111       return optimizeFGetc(CI, Builder);
3112     case LibFunc_puts:
3113       return optimizePuts(CI, Builder);
3114     case LibFunc_perror:
3115       return optimizeErrorReporting(CI, Builder);
3116     case LibFunc_vfprintf:
3117     case LibFunc_fiprintf:
3118       return optimizeErrorReporting(CI, Builder, 0);
3119     default:
3120       return nullptr;
3121     }
3122   }
3123   return nullptr;
3124 }
3125 
3126 LibCallSimplifier::LibCallSimplifier(
3127     const DataLayout &DL, const TargetLibraryInfo *TLI,
3128     OptimizationRemarkEmitter &ORE,
3129     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3130     function_ref<void(Instruction *, Value *)> Replacer,
3131     function_ref<void(Instruction *)> Eraser)
3132     : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3133       UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3134 
3135 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3136   // Indirect through the replacer used in this instance.
3137   Replacer(I, With);
3138 }
3139 
3140 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3141   Eraser(I);
3142 }
3143 
3144 // TODO:
3145 //   Additional cases that we need to add to this file:
3146 //
3147 // cbrt:
3148 //   * cbrt(expN(X))  -> expN(x/3)
3149 //   * cbrt(sqrt(x))  -> pow(x,1/6)
3150 //   * cbrt(cbrt(x))  -> pow(x,1/9)
3151 //
3152 // exp, expf, expl:
3153 //   * exp(log(x))  -> x
3154 //
3155 // log, logf, logl:
3156 //   * log(exp(x))   -> x
3157 //   * log(exp(y))   -> y*log(e)
3158 //   * log(exp10(y)) -> y*log(10)
3159 //   * log(sqrt(x))  -> 0.5*log(x)
3160 //
3161 // pow, powf, powl:
3162 //   * pow(sqrt(x),y) -> pow(x,y*0.5)
3163 //   * pow(pow(x,y),z)-> pow(x,y*z)
3164 //
3165 // signbit:
3166 //   * signbit(cnst) -> cnst'
3167 //   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3168 //
3169 // sqrt, sqrtf, sqrtl:
3170 //   * sqrt(expN(x))  -> expN(x*0.5)
3171 //   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3172 //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3173 //
3174 
3175 //===----------------------------------------------------------------------===//
3176 // Fortified Library Call Optimizations
3177 //===----------------------------------------------------------------------===//
3178 
3179 bool
3180 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3181                                                     unsigned ObjSizeOp,
3182                                                     Optional<unsigned> SizeOp,
3183                                                     Optional<unsigned> StrOp,
3184                                                     Optional<unsigned> FlagOp) {
3185   // If this function takes a flag argument, the implementation may use it to
3186   // perform extra checks. Don't fold into the non-checking variant.
3187   if (FlagOp) {
3188     ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3189     if (!Flag || !Flag->isZero())
3190       return false;
3191   }
3192 
3193   if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3194     return true;
3195 
3196   if (ConstantInt *ObjSizeCI =
3197           dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3198     if (ObjSizeCI->isMinusOne())
3199       return true;
3200     // If the object size wasn't -1 (unknown), bail out if we were asked to.
3201     if (OnlyLowerUnknownSize)
3202       return false;
3203     if (StrOp) {
3204       uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3205       // If the length is 0 we don't know how long it is and so we can't
3206       // remove the check.
3207       if (Len)
3208         annotateDereferenceableBytes(CI, *StrOp, Len);
3209       else
3210         return false;
3211       return ObjSizeCI->getZExtValue() >= Len;
3212     }
3213 
3214     if (SizeOp) {
3215       if (ConstantInt *SizeCI =
3216               dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3217         return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3218     }
3219   }
3220   return false;
3221 }
3222 
3223 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3224                                                      IRBuilder<> &B) {
3225   if (isFortifiedCallFoldable(CI, 3, 2)) {
3226     CallInst *NewCI = B.CreateMemCpy(
3227         CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3228     NewCI->setAttributes(CI->getAttributes());
3229     return CI->getArgOperand(0);
3230   }
3231   return nullptr;
3232 }
3233 
3234 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3235                                                       IRBuilder<> &B) {
3236   if (isFortifiedCallFoldable(CI, 3, 2)) {
3237     CallInst *NewCI = B.CreateMemMove(
3238         CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, CI->getArgOperand(2));
3239     NewCI->setAttributes(CI->getAttributes());
3240     return CI->getArgOperand(0);
3241   }
3242   return nullptr;
3243 }
3244 
3245 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3246                                                      IRBuilder<> &B) {
3247   // TODO: Try foldMallocMemset() here.
3248 
3249   if (isFortifiedCallFoldable(CI, 3, 2)) {
3250     Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3251     CallInst *NewCI =
3252         B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
3253     NewCI->setAttributes(CI->getAttributes());
3254     return CI->getArgOperand(0);
3255   }
3256   return nullptr;
3257 }
3258 
3259 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3260                                                       IRBuilder<> &B,
3261                                                       LibFunc Func) {
3262   const DataLayout &DL = CI->getModule()->getDataLayout();
3263   Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3264         *ObjSize = CI->getArgOperand(2);
3265 
3266   // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3267   if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3268     Value *StrLen = emitStrLen(Src, B, DL, TLI);
3269     return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3270   }
3271 
3272   // If a) we don't have any length information, or b) we know this will
3273   // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3274   // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3275   // TODO: It might be nice to get a maximum length out of the possible
3276   // string lengths for varying.
3277   if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3278     if (Func == LibFunc_strcpy_chk)
3279       return emitStrCpy(Dst, Src, B, TLI);
3280     else
3281       return emitStpCpy(Dst, Src, B, TLI);
3282   }
3283 
3284   if (OnlyLowerUnknownSize)
3285     return nullptr;
3286 
3287   // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3288   uint64_t Len = GetStringLength(Src);
3289   if (Len)
3290     annotateDereferenceableBytes(CI, 1, Len);
3291   else
3292     return nullptr;
3293 
3294   Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3295   Value *LenV = ConstantInt::get(SizeTTy, Len);
3296   Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3297   // If the function was an __stpcpy_chk, and we were able to fold it into
3298   // a __memcpy_chk, we still need to return the correct end pointer.
3299   if (Ret && Func == LibFunc_stpcpy_chk)
3300     return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3301   return Ret;
3302 }
3303 
3304 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3305                                                        IRBuilder<> &B,
3306                                                        LibFunc Func) {
3307   if (isFortifiedCallFoldable(CI, 3, 2)) {
3308     if (Func == LibFunc_strncpy_chk)
3309       return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3310                                CI->getArgOperand(2), B, TLI);
3311     else
3312       return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3313                          CI->getArgOperand(2), B, TLI);
3314   }
3315 
3316   return nullptr;
3317 }
3318 
3319 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3320                                                       IRBuilder<> &B) {
3321   if (isFortifiedCallFoldable(CI, 4, 3))
3322     return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3323                        CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3324 
3325   return nullptr;
3326 }
3327 
3328 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3329                                                        IRBuilder<> &B) {
3330   if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3331     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3332     return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3333                         CI->getArgOperand(4), VariadicArgs, B, TLI);
3334   }
3335 
3336   return nullptr;
3337 }
3338 
3339 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3340                                                       IRBuilder<> &B) {
3341   if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3342     SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3343     return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3344                        B, TLI);
3345   }
3346 
3347   return nullptr;
3348 }
3349 
3350 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3351                                                      IRBuilder<> &B) {
3352   if (isFortifiedCallFoldable(CI, 2))
3353     return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3354 
3355   return nullptr;
3356 }
3357 
3358 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3359                                                    IRBuilder<> &B) {
3360   if (isFortifiedCallFoldable(CI, 3))
3361     return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3362                        CI->getArgOperand(2), B, TLI);
3363 
3364   return nullptr;
3365 }
3366 
3367 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3368                                                       IRBuilder<> &B) {
3369   if (isFortifiedCallFoldable(CI, 3))
3370     return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3371                        CI->getArgOperand(2), B, TLI);
3372 
3373   return nullptr;
3374 }
3375 
3376 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3377                                                       IRBuilder<> &B) {
3378   if (isFortifiedCallFoldable(CI, 3))
3379     return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3380                        CI->getArgOperand(2), B, TLI);
3381 
3382   return nullptr;
3383 }
3384 
3385 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3386                                                         IRBuilder<> &B) {
3387   if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3388     return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3389                          CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3390 
3391   return nullptr;
3392 }
3393 
3394 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3395                                                        IRBuilder<> &B) {
3396   if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3397     return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3398                         CI->getArgOperand(4), B, TLI);
3399 
3400   return nullptr;
3401 }
3402 
3403 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3404   // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3405   // Some clang users checked for _chk libcall availability using:
3406   //   __has_builtin(__builtin___memcpy_chk)
3407   // When compiling with -fno-builtin, this is always true.
3408   // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3409   // end up with fortified libcalls, which isn't acceptable in a freestanding
3410   // environment which only provides their non-fortified counterparts.
3411   //
3412   // Until we change clang and/or teach external users to check for availability
3413   // differently, disregard the "nobuiltin" attribute and TLI::has.
3414   //
3415   // PR23093.
3416 
3417   LibFunc Func;
3418   Function *Callee = CI->getCalledFunction();
3419 
3420   SmallVector<OperandBundleDef, 2> OpBundles;
3421   CI->getOperandBundlesAsDefs(OpBundles);
3422   IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3423   bool isCallingConvC = isCallingConvCCompatible(CI);
3424 
3425   // First, check that this is a known library functions and that the prototype
3426   // is correct.
3427   if (!TLI->getLibFunc(*Callee, Func))
3428     return nullptr;
3429 
3430   // We never change the calling convention.
3431   if (!ignoreCallingConv(Func) && !isCallingConvC)
3432     return nullptr;
3433 
3434   switch (Func) {
3435   case LibFunc_memcpy_chk:
3436     return optimizeMemCpyChk(CI, Builder);
3437   case LibFunc_memmove_chk:
3438     return optimizeMemMoveChk(CI, Builder);
3439   case LibFunc_memset_chk:
3440     return optimizeMemSetChk(CI, Builder);
3441   case LibFunc_stpcpy_chk:
3442   case LibFunc_strcpy_chk:
3443     return optimizeStrpCpyChk(CI, Builder, Func);
3444   case LibFunc_stpncpy_chk:
3445   case LibFunc_strncpy_chk:
3446     return optimizeStrpNCpyChk(CI, Builder, Func);
3447   case LibFunc_memccpy_chk:
3448     return optimizeMemCCpyChk(CI, Builder);
3449   case LibFunc_snprintf_chk:
3450     return optimizeSNPrintfChk(CI, Builder);
3451   case LibFunc_sprintf_chk:
3452     return optimizeSPrintfChk(CI, Builder);
3453   case LibFunc_strcat_chk:
3454     return optimizeStrCatChk(CI, Builder);
3455   case LibFunc_strlcat_chk:
3456     return optimizeStrLCat(CI, Builder);
3457   case LibFunc_strncat_chk:
3458     return optimizeStrNCatChk(CI, Builder);
3459   case LibFunc_strlcpy_chk:
3460     return optimizeStrLCpyChk(CI, Builder);
3461   case LibFunc_vsnprintf_chk:
3462     return optimizeVSNPrintfChk(CI, Builder);
3463   case LibFunc_vsprintf_chk:
3464     return optimizeVSPrintfChk(CI, Builder);
3465   default:
3466     break;
3467   }
3468   return nullptr;
3469 }
3470 
3471 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3472     const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3473     : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3474