1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/Triple.h" 19 #include "llvm/Analysis/BlockFrequencyInfo.h" 20 #include "llvm/Analysis/ConstantFolding.h" 21 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 22 #include "llvm/Analysis/ProfileSummaryInfo.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/IRBuilder.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/KnownBits.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Transforms/Utils/BuildLibCalls.h" 39 #include "llvm/Transforms/Utils/SizeOpts.h" 40 41 using namespace llvm; 42 using namespace PatternMatch; 43 44 static cl::opt<bool> 45 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 46 cl::init(false), 47 cl::desc("Enable unsafe double to float " 48 "shrinking for math lib calls")); 49 50 //===----------------------------------------------------------------------===// 51 // Helper Functions 52 //===----------------------------------------------------------------------===// 53 54 static bool ignoreCallingConv(LibFunc Func) { 55 return Func == LibFunc_abs || Func == LibFunc_labs || 56 Func == LibFunc_llabs || Func == LibFunc_strlen; 57 } 58 59 /// Return true if it is only used in equality comparisons with With. 60 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 61 for (User *U : V->users()) { 62 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 63 if (IC->isEquality() && IC->getOperand(1) == With) 64 continue; 65 // Unknown instruction. 66 return false; 67 } 68 return true; 69 } 70 71 static bool callHasFloatingPointArgument(const CallInst *CI) { 72 return any_of(CI->operands(), [](const Use &OI) { 73 return OI->getType()->isFloatingPointTy(); 74 }); 75 } 76 77 static bool callHasFP128Argument(const CallInst *CI) { 78 return any_of(CI->operands(), [](const Use &OI) { 79 return OI->getType()->isFP128Ty(); 80 }); 81 } 82 83 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 84 if (Base < 2 || Base > 36) 85 // handle special zero base 86 if (Base != 0) 87 return nullptr; 88 89 char *End; 90 std::string nptr = Str.str(); 91 errno = 0; 92 long long int Result = strtoll(nptr.c_str(), &End, Base); 93 if (errno) 94 return nullptr; 95 96 // if we assume all possible target locales are ASCII supersets, 97 // then if strtoll successfully parses a number on the host, 98 // it will also successfully parse the same way on the target 99 if (*End != '\0') 100 return nullptr; 101 102 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 103 return nullptr; 104 105 return ConstantInt::get(CI->getType(), Result); 106 } 107 108 static bool isOnlyUsedInComparisonWithZero(Value *V) { 109 for (User *U : V->users()) { 110 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 111 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 112 if (C->isNullValue()) 113 continue; 114 // Unknown instruction. 115 return false; 116 } 117 return true; 118 } 119 120 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 121 const DataLayout &DL) { 122 if (!isOnlyUsedInComparisonWithZero(CI)) 123 return false; 124 125 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 126 return false; 127 128 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 129 return false; 130 131 return true; 132 } 133 134 static void annotateDereferenceableBytes(CallInst *CI, 135 ArrayRef<unsigned> ArgNos, 136 uint64_t DereferenceableBytes) { 137 const Function *F = CI->getCaller(); 138 if (!F) 139 return; 140 for (unsigned ArgNo : ArgNos) { 141 uint64_t DerefBytes = DereferenceableBytes; 142 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 143 if (!llvm::NullPointerIsDefined(F, AS) || 144 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 145 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 146 DereferenceableBytes); 147 148 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 149 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 150 if (!llvm::NullPointerIsDefined(F, AS) || 151 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 152 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 153 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 154 CI->getContext(), DerefBytes)); 155 } 156 } 157 } 158 159 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 160 ArrayRef<unsigned> ArgNos) { 161 Function *F = CI->getCaller(); 162 if (!F) 163 return; 164 165 for (unsigned ArgNo : ArgNos) { 166 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 167 CI->addParamAttr(ArgNo, Attribute::NoUndef); 168 169 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 170 continue; 171 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 172 if (llvm::NullPointerIsDefined(F, AS)) 173 continue; 174 175 CI->addParamAttr(ArgNo, Attribute::NonNull); 176 annotateDereferenceableBytes(CI, ArgNo, 1); 177 } 178 } 179 180 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 181 Value *Size, const DataLayout &DL) { 182 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 183 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 184 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 185 } else if (isKnownNonZero(Size, DL)) { 186 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 187 const APInt *X, *Y; 188 uint64_t DerefMin = 1; 189 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 190 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 191 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 192 } 193 } 194 } 195 196 //===----------------------------------------------------------------------===// 197 // String and Memory Library Call Optimizations 198 //===----------------------------------------------------------------------===// 199 200 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 201 // Extract some information from the instruction 202 Value *Dst = CI->getArgOperand(0); 203 Value *Src = CI->getArgOperand(1); 204 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 205 206 // See if we can get the length of the input string. 207 uint64_t Len = GetStringLength(Src); 208 if (Len) 209 annotateDereferenceableBytes(CI, 1, Len); 210 else 211 return nullptr; 212 --Len; // Unbias length. 213 214 // Handle the simple, do-nothing case: strcat(x, "") -> x 215 if (Len == 0) 216 return Dst; 217 218 return emitStrLenMemCpy(Src, Dst, Len, B); 219 } 220 221 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 222 IRBuilderBase &B) { 223 // We need to find the end of the destination string. That's where the 224 // memory is to be moved to. We just generate a call to strlen. 225 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 226 if (!DstLen) 227 return nullptr; 228 229 // Now that we have the destination's length, we must index into the 230 // destination's pointer to get the actual memcpy destination (end of 231 // the string .. we're concatenating). 232 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 233 234 // We have enough information to now generate the memcpy call to do the 235 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 236 B.CreateMemCpy( 237 CpyDst, Align(1), Src, Align(1), 238 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 239 return Dst; 240 } 241 242 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 243 // Extract some information from the instruction. 244 Value *Dst = CI->getArgOperand(0); 245 Value *Src = CI->getArgOperand(1); 246 Value *Size = CI->getArgOperand(2); 247 uint64_t Len; 248 annotateNonNullNoUndefBasedOnAccess(CI, 0); 249 if (isKnownNonZero(Size, DL)) 250 annotateNonNullNoUndefBasedOnAccess(CI, 1); 251 252 // We don't do anything if length is not constant. 253 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 254 if (LengthArg) { 255 Len = LengthArg->getZExtValue(); 256 // strncat(x, c, 0) -> x 257 if (!Len) 258 return Dst; 259 } else { 260 return nullptr; 261 } 262 263 // See if we can get the length of the input string. 264 uint64_t SrcLen = GetStringLength(Src); 265 if (SrcLen) { 266 annotateDereferenceableBytes(CI, 1, SrcLen); 267 --SrcLen; // Unbias length. 268 } else { 269 return nullptr; 270 } 271 272 // strncat(x, "", c) -> x 273 if (SrcLen == 0) 274 return Dst; 275 276 // We don't optimize this case. 277 if (Len < SrcLen) 278 return nullptr; 279 280 // strncat(x, s, c) -> strcat(x, s) 281 // s is constant so the strcat can be optimized further. 282 return emitStrLenMemCpy(Src, Dst, SrcLen, B); 283 } 284 285 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 286 Function *Callee = CI->getCalledFunction(); 287 FunctionType *FT = Callee->getFunctionType(); 288 Value *SrcStr = CI->getArgOperand(0); 289 annotateNonNullNoUndefBasedOnAccess(CI, 0); 290 291 // If the second operand is non-constant, see if we can compute the length 292 // of the input string and turn this into memchr. 293 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 294 if (!CharC) { 295 uint64_t Len = GetStringLength(SrcStr); 296 if (Len) 297 annotateDereferenceableBytes(CI, 0, Len); 298 else 299 return nullptr; 300 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 301 return nullptr; 302 303 return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 304 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), 305 B, DL, TLI); 306 } 307 308 // Otherwise, the character is a constant, see if the first argument is 309 // a string literal. If so, we can constant fold. 310 StringRef Str; 311 if (!getConstantStringInfo(SrcStr, Str)) { 312 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 313 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 314 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 315 return nullptr; 316 } 317 318 // Compute the offset, make sure to handle the case when we're searching for 319 // zero (a weird way to spell strlen). 320 size_t I = (0xFF & CharC->getSExtValue()) == 0 321 ? Str.size() 322 : Str.find(CharC->getSExtValue()); 323 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 324 return Constant::getNullValue(CI->getType()); 325 326 // strchr(s+n,c) -> gep(s+n+i,c) 327 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 328 } 329 330 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 331 Value *SrcStr = CI->getArgOperand(0); 332 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 333 annotateNonNullNoUndefBasedOnAccess(CI, 0); 334 335 // Cannot fold anything if we're not looking for a constant. 336 if (!CharC) 337 return nullptr; 338 339 StringRef Str; 340 if (!getConstantStringInfo(SrcStr, Str)) { 341 // strrchr(s, 0) -> strchr(s, 0) 342 if (CharC->isZero()) 343 return emitStrChr(SrcStr, '\0', B, TLI); 344 return nullptr; 345 } 346 347 // Compute the offset. 348 size_t I = (0xFF & CharC->getSExtValue()) == 0 349 ? Str.size() 350 : Str.rfind(CharC->getSExtValue()); 351 if (I == StringRef::npos) // Didn't find the char. Return null. 352 return Constant::getNullValue(CI->getType()); 353 354 // strrchr(s+n,c) -> gep(s+n+i,c) 355 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 356 } 357 358 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 359 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 360 if (Str1P == Str2P) // strcmp(x,x) -> 0 361 return ConstantInt::get(CI->getType(), 0); 362 363 StringRef Str1, Str2; 364 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 365 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 366 367 // strcmp(x, y) -> cnst (if both x and y are constant strings) 368 if (HasStr1 && HasStr2) 369 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 370 371 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 372 return B.CreateNeg(B.CreateZExt( 373 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 374 375 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 376 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 377 CI->getType()); 378 379 // strcmp(P, "x") -> memcmp(P, "x", 2) 380 uint64_t Len1 = GetStringLength(Str1P); 381 if (Len1) 382 annotateDereferenceableBytes(CI, 0, Len1); 383 uint64_t Len2 = GetStringLength(Str2P); 384 if (Len2) 385 annotateDereferenceableBytes(CI, 1, Len2); 386 387 if (Len1 && Len2) { 388 return emitMemCmp(Str1P, Str2P, 389 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 390 std::min(Len1, Len2)), 391 B, DL, TLI); 392 } 393 394 // strcmp to memcmp 395 if (!HasStr1 && HasStr2) { 396 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 397 return emitMemCmp( 398 Str1P, Str2P, 399 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 400 TLI); 401 } else if (HasStr1 && !HasStr2) { 402 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 403 return emitMemCmp( 404 Str1P, Str2P, 405 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 406 TLI); 407 } 408 409 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 410 return nullptr; 411 } 412 413 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 414 Value *Str1P = CI->getArgOperand(0); 415 Value *Str2P = CI->getArgOperand(1); 416 Value *Size = CI->getArgOperand(2); 417 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 418 return ConstantInt::get(CI->getType(), 0); 419 420 if (isKnownNonZero(Size, DL)) 421 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 422 // Get the length argument if it is constant. 423 uint64_t Length; 424 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 425 Length = LengthArg->getZExtValue(); 426 else 427 return nullptr; 428 429 if (Length == 0) // strncmp(x,y,0) -> 0 430 return ConstantInt::get(CI->getType(), 0); 431 432 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 433 return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI); 434 435 StringRef Str1, Str2; 436 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 437 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 438 439 // strncmp(x, y) -> cnst (if both x and y are constant strings) 440 if (HasStr1 && HasStr2) { 441 StringRef SubStr1 = Str1.substr(0, Length); 442 StringRef SubStr2 = Str2.substr(0, Length); 443 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 444 } 445 446 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 447 return B.CreateNeg(B.CreateZExt( 448 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 449 450 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 451 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 452 CI->getType()); 453 454 uint64_t Len1 = GetStringLength(Str1P); 455 if (Len1) 456 annotateDereferenceableBytes(CI, 0, Len1); 457 uint64_t Len2 = GetStringLength(Str2P); 458 if (Len2) 459 annotateDereferenceableBytes(CI, 1, Len2); 460 461 // strncmp to memcmp 462 if (!HasStr1 && HasStr2) { 463 Len2 = std::min(Len2, Length); 464 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 465 return emitMemCmp( 466 Str1P, Str2P, 467 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, 468 TLI); 469 } else if (HasStr1 && !HasStr2) { 470 Len1 = std::min(Len1, Length); 471 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 472 return emitMemCmp( 473 Str1P, Str2P, 474 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, 475 TLI); 476 } 477 478 return nullptr; 479 } 480 481 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 482 Value *Src = CI->getArgOperand(0); 483 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 484 uint64_t SrcLen = GetStringLength(Src); 485 if (SrcLen && Size) { 486 annotateDereferenceableBytes(CI, 0, SrcLen); 487 if (SrcLen <= Size->getZExtValue() + 1) 488 return emitStrDup(Src, B, TLI); 489 } 490 491 return nullptr; 492 } 493 494 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 495 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 496 if (Dst == Src) // strcpy(x,x) -> x 497 return Src; 498 499 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 500 // See if we can get the length of the input string. 501 uint64_t Len = GetStringLength(Src); 502 if (Len) 503 annotateDereferenceableBytes(CI, 1, Len); 504 else 505 return nullptr; 506 507 // We have enough information to now generate the memcpy call to do the 508 // copy for us. Make a memcpy to copy the nul byte with align = 1. 509 CallInst *NewCI = 510 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 511 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 512 NewCI->setAttributes(CI->getAttributes()); 513 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 514 return Dst; 515 } 516 517 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 518 Function *Callee = CI->getCalledFunction(); 519 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 520 521 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 522 if (CI->use_empty()) 523 return emitStrCpy(Dst, Src, B, TLI); 524 525 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 526 Value *StrLen = emitStrLen(Src, B, DL, TLI); 527 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 528 } 529 530 // See if we can get the length of the input string. 531 uint64_t Len = GetStringLength(Src); 532 if (Len) 533 annotateDereferenceableBytes(CI, 1, Len); 534 else 535 return nullptr; 536 537 Type *PT = Callee->getFunctionType()->getParamType(0); 538 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 539 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 540 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 541 542 // We have enough information to now generate the memcpy call to do the 543 // copy for us. Make a memcpy to copy the nul byte with align = 1. 544 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 545 NewCI->setAttributes(CI->getAttributes()); 546 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 547 return DstEnd; 548 } 549 550 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 551 Function *Callee = CI->getCalledFunction(); 552 Value *Dst = CI->getArgOperand(0); 553 Value *Src = CI->getArgOperand(1); 554 Value *Size = CI->getArgOperand(2); 555 annotateNonNullNoUndefBasedOnAccess(CI, 0); 556 if (isKnownNonZero(Size, DL)) 557 annotateNonNullNoUndefBasedOnAccess(CI, 1); 558 559 uint64_t Len; 560 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 561 Len = LengthArg->getZExtValue(); 562 else 563 return nullptr; 564 565 // strncpy(x, y, 0) -> x 566 if (Len == 0) 567 return Dst; 568 569 // See if we can get the length of the input string. 570 uint64_t SrcLen = GetStringLength(Src); 571 if (SrcLen) { 572 annotateDereferenceableBytes(CI, 1, SrcLen); 573 --SrcLen; // Unbias length. 574 } else { 575 return nullptr; 576 } 577 578 if (SrcLen == 0) { 579 // strncpy(x, "", y) -> memset(x, '\0', y) 580 Align MemSetAlign = 581 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 582 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 583 AttrBuilder ArgAttrs(CI->getAttributes().getParamAttrs(0)); 584 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 585 CI->getContext(), 0, ArgAttrs)); 586 return Dst; 587 } 588 589 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 590 if (Len > SrcLen + 1) { 591 if (Len <= 128) { 592 StringRef Str; 593 if (!getConstantStringInfo(Src, Str)) 594 return nullptr; 595 std::string SrcStr = Str.str(); 596 SrcStr.resize(Len, '\0'); 597 Src = B.CreateGlobalString(SrcStr, "str"); 598 } else { 599 return nullptr; 600 } 601 } 602 603 Type *PT = Callee->getFunctionType()->getParamType(0); 604 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 605 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 606 ConstantInt::get(DL.getIntPtrType(PT), Len)); 607 NewCI->setAttributes(CI->getAttributes()); 608 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 609 return Dst; 610 } 611 612 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 613 unsigned CharSize) { 614 Value *Src = CI->getArgOperand(0); 615 616 // Constant folding: strlen("xyz") -> 3 617 if (uint64_t Len = GetStringLength(Src, CharSize)) 618 return ConstantInt::get(CI->getType(), Len - 1); 619 620 // If s is a constant pointer pointing to a string literal, we can fold 621 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 622 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 623 // We only try to simplify strlen when the pointer s points to an array 624 // of i8. Otherwise, we would need to scale the offset x before doing the 625 // subtraction. This will make the optimization more complex, and it's not 626 // very useful because calling strlen for a pointer of other types is 627 // very uncommon. 628 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 629 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 630 return nullptr; 631 632 ConstantDataArraySlice Slice; 633 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 634 uint64_t NullTermIdx; 635 if (Slice.Array == nullptr) { 636 NullTermIdx = 0; 637 } else { 638 NullTermIdx = ~((uint64_t)0); 639 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 640 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 641 NullTermIdx = I; 642 break; 643 } 644 } 645 // If the string does not have '\0', leave it to strlen to compute 646 // its length. 647 if (NullTermIdx == ~((uint64_t)0)) 648 return nullptr; 649 } 650 651 Value *Offset = GEP->getOperand(2); 652 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 653 Known.Zero.flipAllBits(); 654 uint64_t ArrSize = 655 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 656 657 // KnownZero's bits are flipped, so zeros in KnownZero now represent 658 // bits known to be zeros in Offset, and ones in KnowZero represent 659 // bits unknown in Offset. Therefore, Offset is known to be in range 660 // [0, NullTermIdx] when the flipped KnownZero is non-negative and 661 // unsigned-less-than NullTermIdx. 662 // 663 // If Offset is not provably in the range [0, NullTermIdx], we can still 664 // optimize if we can prove that the program has undefined behavior when 665 // Offset is outside that range. That is the case when GEP->getOperand(0) 666 // is a pointer to an object whose memory extent is NullTermIdx+1. 667 if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || 668 (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && 669 NullTermIdx == ArrSize - 1)) { 670 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 671 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 672 Offset); 673 } 674 } 675 } 676 677 // strlen(x?"foo":"bars") --> x ? 3 : 4 678 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 679 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 680 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 681 if (LenTrue && LenFalse) { 682 ORE.emit([&]() { 683 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 684 << "folded strlen(select) to select of constants"; 685 }); 686 return B.CreateSelect(SI->getCondition(), 687 ConstantInt::get(CI->getType(), LenTrue - 1), 688 ConstantInt::get(CI->getType(), LenFalse - 1)); 689 } 690 } 691 692 // strlen(x) != 0 --> *x != 0 693 // strlen(x) == 0 --> *x == 0 694 if (isOnlyUsedInZeroEqualityComparison(CI)) 695 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 696 CI->getType()); 697 698 return nullptr; 699 } 700 701 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 702 if (Value *V = optimizeStringLength(CI, B, 8)) 703 return V; 704 annotateNonNullNoUndefBasedOnAccess(CI, 0); 705 return nullptr; 706 } 707 708 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 709 Module &M = *CI->getModule(); 710 unsigned WCharSize = TLI->getWCharSize(M) * 8; 711 // We cannot perform this optimization without wchar_size metadata. 712 if (WCharSize == 0) 713 return nullptr; 714 715 return optimizeStringLength(CI, B, WCharSize); 716 } 717 718 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 719 StringRef S1, S2; 720 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 721 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 722 723 // strpbrk(s, "") -> nullptr 724 // strpbrk("", s) -> nullptr 725 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 726 return Constant::getNullValue(CI->getType()); 727 728 // Constant folding. 729 if (HasS1 && HasS2) { 730 size_t I = S1.find_first_of(S2); 731 if (I == StringRef::npos) // No match. 732 return Constant::getNullValue(CI->getType()); 733 734 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 735 "strpbrk"); 736 } 737 738 // strpbrk(s, "a") -> strchr(s, 'a') 739 if (HasS2 && S2.size() == 1) 740 return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); 741 742 return nullptr; 743 } 744 745 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 746 Value *EndPtr = CI->getArgOperand(1); 747 if (isa<ConstantPointerNull>(EndPtr)) { 748 // With a null EndPtr, this function won't capture the main argument. 749 // It would be readonly too, except that it still may write to errno. 750 CI->addParamAttr(0, Attribute::NoCapture); 751 } 752 753 return nullptr; 754 } 755 756 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 757 StringRef S1, S2; 758 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 759 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 760 761 // strspn(s, "") -> 0 762 // strspn("", s) -> 0 763 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 764 return Constant::getNullValue(CI->getType()); 765 766 // Constant folding. 767 if (HasS1 && HasS2) { 768 size_t Pos = S1.find_first_not_of(S2); 769 if (Pos == StringRef::npos) 770 Pos = S1.size(); 771 return ConstantInt::get(CI->getType(), Pos); 772 } 773 774 return nullptr; 775 } 776 777 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 778 StringRef S1, S2; 779 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 780 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 781 782 // strcspn("", s) -> 0 783 if (HasS1 && S1.empty()) 784 return Constant::getNullValue(CI->getType()); 785 786 // Constant folding. 787 if (HasS1 && HasS2) { 788 size_t Pos = S1.find_first_of(S2); 789 if (Pos == StringRef::npos) 790 Pos = S1.size(); 791 return ConstantInt::get(CI->getType(), Pos); 792 } 793 794 // strcspn(s, "") -> strlen(s) 795 if (HasS2 && S2.empty()) 796 return emitStrLen(CI->getArgOperand(0), B, DL, TLI); 797 798 return nullptr; 799 } 800 801 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 802 // fold strstr(x, x) -> x. 803 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 804 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 805 806 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 807 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 808 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 809 if (!StrLen) 810 return nullptr; 811 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 812 StrLen, B, DL, TLI); 813 if (!StrNCmp) 814 return nullptr; 815 for (User *U : llvm::make_early_inc_range(CI->users())) { 816 ICmpInst *Old = cast<ICmpInst>(U); 817 Value *Cmp = 818 B.CreateICmp(Old->getPredicate(), StrNCmp, 819 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 820 replaceAllUsesWith(Old, Cmp); 821 } 822 return CI; 823 } 824 825 // See if either input string is a constant string. 826 StringRef SearchStr, ToFindStr; 827 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 828 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 829 830 // fold strstr(x, "") -> x. 831 if (HasStr2 && ToFindStr.empty()) 832 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 833 834 // If both strings are known, constant fold it. 835 if (HasStr1 && HasStr2) { 836 size_t Offset = SearchStr.find(ToFindStr); 837 838 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 839 return Constant::getNullValue(CI->getType()); 840 841 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 842 Value *Result = castToCStr(CI->getArgOperand(0), B); 843 Result = 844 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 845 return B.CreateBitCast(Result, CI->getType()); 846 } 847 848 // fold strstr(x, "y") -> strchr(x, 'y'). 849 if (HasStr2 && ToFindStr.size() == 1) { 850 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 851 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 852 } 853 854 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 855 return nullptr; 856 } 857 858 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 859 if (isKnownNonZero(CI->getOperand(2), DL)) 860 annotateNonNullNoUndefBasedOnAccess(CI, 0); 861 return nullptr; 862 } 863 864 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 865 Value *SrcStr = CI->getArgOperand(0); 866 Value *Size = CI->getArgOperand(2); 867 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 868 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 869 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 870 871 // memchr(x, y, 0) -> null 872 if (LenC) { 873 if (LenC->isZero()) 874 return Constant::getNullValue(CI->getType()); 875 } else { 876 // From now on we need at least constant length and string. 877 return nullptr; 878 } 879 880 StringRef Str; 881 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 882 return nullptr; 883 884 // Truncate the string to LenC. If Str is smaller than LenC we will still only 885 // scan the string, as reading past the end of it is undefined and we can just 886 // return null if we don't find the char. 887 Str = Str.substr(0, LenC->getZExtValue()); 888 889 // If the char is variable but the input str and length are not we can turn 890 // this memchr call into a simple bit field test. Of course this only works 891 // when the return value is only checked against null. 892 // 893 // It would be really nice to reuse switch lowering here but we can't change 894 // the CFG at this point. 895 // 896 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 897 // != 0 898 // after bounds check. 899 if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { 900 unsigned char Max = 901 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 902 reinterpret_cast<const unsigned char *>(Str.end())); 903 904 // Make sure the bit field we're about to create fits in a register on the 905 // target. 906 // FIXME: On a 64 bit architecture this prevents us from using the 907 // interesting range of alpha ascii chars. We could do better by emitting 908 // two bitfields or shifting the range by 64 if no lower chars are used. 909 if (!DL.fitsInLegalInteger(Max + 1)) 910 return nullptr; 911 912 // For the bit field use a power-of-2 type with at least 8 bits to avoid 913 // creating unnecessary illegal types. 914 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 915 916 // Now build the bit field. 917 APInt Bitfield(Width, 0); 918 for (char C : Str) 919 Bitfield.setBit((unsigned char)C); 920 Value *BitfieldC = B.getInt(Bitfield); 921 922 // Adjust width of "C" to the bitfield width, then mask off the high bits. 923 Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); 924 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 925 926 // First check that the bit field access is within bounds. 927 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 928 "memchr.bounds"); 929 930 // Create code that checks if the given bit is set in the field. 931 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 932 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 933 934 // Finally merge both checks and cast to pointer type. The inttoptr 935 // implicitly zexts the i1 to intptr type. 936 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 937 CI->getType()); 938 } 939 940 // Check if all arguments are constants. If so, we can constant fold. 941 if (!CharC) 942 return nullptr; 943 944 // Compute the offset. 945 size_t I = Str.find(CharC->getSExtValue() & 0xFF); 946 if (I == StringRef::npos) // Didn't find the char. memchr returns null. 947 return Constant::getNullValue(CI->getType()); 948 949 // memchr(s+n,c,l) -> gep(s+n+i,c) 950 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); 951 } 952 953 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 954 uint64_t Len, IRBuilderBase &B, 955 const DataLayout &DL) { 956 if (Len == 0) // memcmp(s1,s2,0) -> 0 957 return Constant::getNullValue(CI->getType()); 958 959 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 960 if (Len == 1) { 961 Value *LHSV = 962 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 963 CI->getType(), "lhsv"); 964 Value *RHSV = 965 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 966 CI->getType(), "rhsv"); 967 return B.CreateSub(LHSV, RHSV, "chardiff"); 968 } 969 970 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 971 // TODO: The case where both inputs are constants does not need to be limited 972 // to legal integers or equality comparison. See block below this. 973 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 974 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 975 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 976 977 // First, see if we can fold either argument to a constant. 978 Value *LHSV = nullptr; 979 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 980 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 981 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 982 } 983 Value *RHSV = nullptr; 984 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 985 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 986 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 987 } 988 989 // Don't generate unaligned loads. If either source is constant data, 990 // alignment doesn't matter for that source because there is no load. 991 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 992 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 993 if (!LHSV) { 994 Type *LHSPtrTy = 995 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 996 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 997 } 998 if (!RHSV) { 999 Type *RHSPtrTy = 1000 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1001 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1002 } 1003 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1004 } 1005 } 1006 1007 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1008 // TODO: This is limited to i8 arrays. 1009 StringRef LHSStr, RHSStr; 1010 if (getConstantStringInfo(LHS, LHSStr) && 1011 getConstantStringInfo(RHS, RHSStr)) { 1012 // Make sure we're not reading out-of-bounds memory. 1013 if (Len > LHSStr.size() || Len > RHSStr.size()) 1014 return nullptr; 1015 // Fold the memcmp and normalize the result. This way we get consistent 1016 // results across multiple platforms. 1017 uint64_t Ret = 0; 1018 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1019 if (Cmp < 0) 1020 Ret = -1; 1021 else if (Cmp > 0) 1022 Ret = 1; 1023 return ConstantInt::get(CI->getType(), Ret); 1024 } 1025 1026 return nullptr; 1027 } 1028 1029 // Most simplifications for memcmp also apply to bcmp. 1030 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1031 IRBuilderBase &B) { 1032 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1033 Value *Size = CI->getArgOperand(2); 1034 1035 if (LHS == RHS) // memcmp(s,s,x) -> 0 1036 return Constant::getNullValue(CI->getType()); 1037 1038 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1039 // Handle constant lengths. 1040 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1041 if (!LenC) 1042 return nullptr; 1043 1044 // memcmp(d,s,0) -> 0 1045 if (LenC->getZExtValue() == 0) 1046 return Constant::getNullValue(CI->getType()); 1047 1048 if (Value *Res = 1049 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1050 return Res; 1051 return nullptr; 1052 } 1053 1054 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1055 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1056 return V; 1057 1058 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1059 // bcmp can be more efficient than memcmp because it only has to know that 1060 // there is a difference, not how different one is to the other. 1061 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1062 Value *LHS = CI->getArgOperand(0); 1063 Value *RHS = CI->getArgOperand(1); 1064 Value *Size = CI->getArgOperand(2); 1065 return emitBCmp(LHS, RHS, Size, B, DL, TLI); 1066 } 1067 1068 return nullptr; 1069 } 1070 1071 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1072 return optimizeMemCmpBCmpCommon(CI, B); 1073 } 1074 1075 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1076 Value *Size = CI->getArgOperand(2); 1077 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1078 if (isa<IntrinsicInst>(CI)) 1079 return nullptr; 1080 1081 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1082 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1083 CI->getArgOperand(1), Align(1), Size); 1084 NewCI->setAttributes(CI->getAttributes()); 1085 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1086 return CI->getArgOperand(0); 1087 } 1088 1089 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1090 Value *Dst = CI->getArgOperand(0); 1091 Value *Src = CI->getArgOperand(1); 1092 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1093 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1094 StringRef SrcStr; 1095 if (CI->use_empty() && Dst == Src) 1096 return Dst; 1097 // memccpy(d, s, c, 0) -> nullptr 1098 if (N) { 1099 if (N->isNullValue()) 1100 return Constant::getNullValue(CI->getType()); 1101 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1102 /*TrimAtNul=*/false) || 1103 !StopChar) 1104 return nullptr; 1105 } else { 1106 return nullptr; 1107 } 1108 1109 // Wrap arg 'c' of type int to char 1110 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1111 if (Pos == StringRef::npos) { 1112 if (N->getZExtValue() <= SrcStr.size()) { 1113 B.CreateMemCpy(Dst, Align(1), Src, Align(1), CI->getArgOperand(3)); 1114 return Constant::getNullValue(CI->getType()); 1115 } 1116 return nullptr; 1117 } 1118 1119 Value *NewN = 1120 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1121 // memccpy -> llvm.memcpy 1122 B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN); 1123 return Pos + 1 <= N->getZExtValue() 1124 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1125 : Constant::getNullValue(CI->getType()); 1126 } 1127 1128 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1129 Value *Dst = CI->getArgOperand(0); 1130 Value *N = CI->getArgOperand(2); 1131 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1132 CallInst *NewCI = 1133 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1134 // Propagate attributes, but memcpy has no return value, so make sure that 1135 // any return attributes are compliant. 1136 // TODO: Attach return value attributes to the 1st operand to preserve them? 1137 NewCI->setAttributes(CI->getAttributes()); 1138 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1139 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1140 } 1141 1142 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1143 Value *Size = CI->getArgOperand(2); 1144 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1145 if (isa<IntrinsicInst>(CI)) 1146 return nullptr; 1147 1148 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1149 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1150 CI->getArgOperand(1), Align(1), Size); 1151 NewCI->setAttributes(CI->getAttributes()); 1152 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1153 return CI->getArgOperand(0); 1154 } 1155 1156 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1157 Value *Size = CI->getArgOperand(2); 1158 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1159 if (isa<IntrinsicInst>(CI)) 1160 return nullptr; 1161 1162 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1163 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1164 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1165 NewCI->setAttributes(CI->getAttributes()); 1166 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1167 return CI->getArgOperand(0); 1168 } 1169 1170 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1171 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1172 return emitMalloc(CI->getArgOperand(1), B, DL, TLI); 1173 1174 return nullptr; 1175 } 1176 1177 //===----------------------------------------------------------------------===// 1178 // Math Library Optimizations 1179 //===----------------------------------------------------------------------===// 1180 1181 // Replace a libcall \p CI with a call to intrinsic \p IID 1182 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1183 Intrinsic::ID IID) { 1184 // Propagate fast-math flags from the existing call to the new call. 1185 IRBuilderBase::FastMathFlagGuard Guard(B); 1186 B.setFastMathFlags(CI->getFastMathFlags()); 1187 1188 Module *M = CI->getModule(); 1189 Value *V = CI->getArgOperand(0); 1190 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1191 CallInst *NewCall = B.CreateCall(F, V); 1192 NewCall->takeName(CI); 1193 return NewCall; 1194 } 1195 1196 /// Return a variant of Val with float type. 1197 /// Currently this works in two cases: If Val is an FPExtension of a float 1198 /// value to something bigger, simply return the operand. 1199 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1200 /// loss of precision do so. 1201 static Value *valueHasFloatPrecision(Value *Val) { 1202 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1203 Value *Op = Cast->getOperand(0); 1204 if (Op->getType()->isFloatTy()) 1205 return Op; 1206 } 1207 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1208 APFloat F = Const->getValueAPF(); 1209 bool losesInfo; 1210 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1211 &losesInfo); 1212 if (!losesInfo) 1213 return ConstantFP::get(Const->getContext(), F); 1214 } 1215 return nullptr; 1216 } 1217 1218 /// Shrink double -> float functions. 1219 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1220 bool isBinary, bool isPrecise = false) { 1221 Function *CalleeFn = CI->getCalledFunction(); 1222 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1223 return nullptr; 1224 1225 // If not all the uses of the function are converted to float, then bail out. 1226 // This matters if the precision of the result is more important than the 1227 // precision of the arguments. 1228 if (isPrecise) 1229 for (User *U : CI->users()) { 1230 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1231 if (!Cast || !Cast->getType()->isFloatTy()) 1232 return nullptr; 1233 } 1234 1235 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1236 Value *V[2]; 1237 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1238 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1239 if (!V[0] || (isBinary && !V[1])) 1240 return nullptr; 1241 1242 // If call isn't an intrinsic, check that it isn't within a function with the 1243 // same name as the float version of this call, otherwise the result is an 1244 // infinite loop. For example, from MinGW-w64: 1245 // 1246 // float expf(float val) { return (float) exp((double) val); } 1247 StringRef CalleeName = CalleeFn->getName(); 1248 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1249 if (!IsIntrinsic) { 1250 StringRef CallerName = CI->getFunction()->getName(); 1251 if (!CallerName.empty() && CallerName.back() == 'f' && 1252 CallerName.size() == (CalleeName.size() + 1) && 1253 CallerName.startswith(CalleeName)) 1254 return nullptr; 1255 } 1256 1257 // Propagate the math semantics from the current function to the new function. 1258 IRBuilderBase::FastMathFlagGuard Guard(B); 1259 B.setFastMathFlags(CI->getFastMathFlags()); 1260 1261 // g((double) float) -> (double) gf(float) 1262 Value *R; 1263 if (IsIntrinsic) { 1264 Module *M = CI->getModule(); 1265 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1266 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1267 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1268 } else { 1269 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1270 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1271 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1272 } 1273 return B.CreateFPExt(R, B.getDoubleTy()); 1274 } 1275 1276 /// Shrink double -> float for unary functions. 1277 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1278 bool isPrecise = false) { 1279 return optimizeDoubleFP(CI, B, false, isPrecise); 1280 } 1281 1282 /// Shrink double -> float for binary functions. 1283 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1284 bool isPrecise = false) { 1285 return optimizeDoubleFP(CI, B, true, isPrecise); 1286 } 1287 1288 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1289 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1290 if (!CI->isFast()) 1291 return nullptr; 1292 1293 // Propagate fast-math flags from the existing call to new instructions. 1294 IRBuilderBase::FastMathFlagGuard Guard(B); 1295 B.setFastMathFlags(CI->getFastMathFlags()); 1296 1297 Value *Real, *Imag; 1298 if (CI->arg_size() == 1) { 1299 Value *Op = CI->getArgOperand(0); 1300 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1301 Real = B.CreateExtractValue(Op, 0, "real"); 1302 Imag = B.CreateExtractValue(Op, 1, "imag"); 1303 } else { 1304 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1305 Real = CI->getArgOperand(0); 1306 Imag = CI->getArgOperand(1); 1307 } 1308 1309 Value *RealReal = B.CreateFMul(Real, Real); 1310 Value *ImagImag = B.CreateFMul(Imag, Imag); 1311 1312 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1313 CI->getType()); 1314 return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); 1315 } 1316 1317 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1318 IRBuilderBase &B) { 1319 if (!isa<FPMathOperator>(Call)) 1320 return nullptr; 1321 1322 IRBuilderBase::FastMathFlagGuard Guard(B); 1323 B.setFastMathFlags(Call->getFastMathFlags()); 1324 1325 // TODO: Can this be shared to also handle LLVM intrinsics? 1326 Value *X; 1327 switch (Func) { 1328 case LibFunc_sin: 1329 case LibFunc_sinf: 1330 case LibFunc_sinl: 1331 case LibFunc_tan: 1332 case LibFunc_tanf: 1333 case LibFunc_tanl: 1334 // sin(-X) --> -sin(X) 1335 // tan(-X) --> -tan(X) 1336 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1337 return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); 1338 break; 1339 case LibFunc_cos: 1340 case LibFunc_cosf: 1341 case LibFunc_cosl: 1342 // cos(-X) --> cos(X) 1343 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1344 return B.CreateCall(Call->getCalledFunction(), X, "cos"); 1345 break; 1346 default: 1347 break; 1348 } 1349 return nullptr; 1350 } 1351 1352 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1353 // Multiplications calculated using Addition Chains. 1354 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1355 1356 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1357 1358 if (InnerChain[Exp]) 1359 return InnerChain[Exp]; 1360 1361 static const unsigned AddChain[33][2] = { 1362 {0, 0}, // Unused. 1363 {0, 0}, // Unused (base case = pow1). 1364 {1, 1}, // Unused (pre-computed). 1365 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1366 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1367 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1368 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1369 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1370 }; 1371 1372 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1373 getPow(InnerChain, AddChain[Exp][1], B)); 1374 return InnerChain[Exp]; 1375 } 1376 1377 // Return a properly extended integer (DstWidth bits wide) if the operation is 1378 // an itofp. 1379 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1380 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1381 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1382 // Make sure that the exponent fits inside an "int" of size DstWidth, 1383 // thus avoiding any range issues that FP has not. 1384 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1385 if (BitWidth < DstWidth || 1386 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1387 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1388 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1389 } 1390 1391 return nullptr; 1392 } 1393 1394 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1395 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1396 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1397 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1398 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1399 AttributeList Attrs; // Attributes are only meaningful on the original call 1400 Module *Mod = Pow->getModule(); 1401 Type *Ty = Pow->getType(); 1402 bool Ignored; 1403 1404 // Evaluate special cases related to a nested function as the base. 1405 1406 // pow(exp(x), y) -> exp(x * y) 1407 // pow(exp2(x), y) -> exp2(x * y) 1408 // If exp{,2}() is used only once, it is better to fold two transcendental 1409 // math functions into one. If used again, exp{,2}() would still have to be 1410 // called with the original argument, then keep both original transcendental 1411 // functions. However, this transformation is only safe with fully relaxed 1412 // math semantics, since, besides rounding differences, it changes overflow 1413 // and underflow behavior quite dramatically. For example: 1414 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1415 // Whereas: 1416 // exp(1000 * 0.001) = exp(1) 1417 // TODO: Loosen the requirement for fully relaxed math semantics. 1418 // TODO: Handle exp10() when more targets have it available. 1419 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1420 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1421 LibFunc LibFn; 1422 1423 Function *CalleeFn = BaseFn->getCalledFunction(); 1424 if (CalleeFn && 1425 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1426 StringRef ExpName; 1427 Intrinsic::ID ID; 1428 Value *ExpFn; 1429 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1430 1431 switch (LibFn) { 1432 default: 1433 return nullptr; 1434 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1435 ExpName = TLI->getName(LibFunc_exp); 1436 ID = Intrinsic::exp; 1437 LibFnFloat = LibFunc_expf; 1438 LibFnDouble = LibFunc_exp; 1439 LibFnLongDouble = LibFunc_expl; 1440 break; 1441 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1442 ExpName = TLI->getName(LibFunc_exp2); 1443 ID = Intrinsic::exp2; 1444 LibFnFloat = LibFunc_exp2f; 1445 LibFnDouble = LibFunc_exp2; 1446 LibFnLongDouble = LibFunc_exp2l; 1447 break; 1448 } 1449 1450 // Create new exp{,2}() with the product as its argument. 1451 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1452 ExpFn = BaseFn->doesNotAccessMemory() 1453 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1454 FMul, ExpName) 1455 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1456 LibFnLongDouble, B, 1457 BaseFn->getAttributes()); 1458 1459 // Since the new exp{,2}() is different from the original one, dead code 1460 // elimination cannot be trusted to remove it, since it may have side 1461 // effects (e.g., errno). When the only consumer for the original 1462 // exp{,2}() is pow(), then it has to be explicitly erased. 1463 substituteInParent(BaseFn, ExpFn); 1464 return ExpFn; 1465 } 1466 } 1467 1468 // Evaluate special cases related to a constant base. 1469 1470 const APFloat *BaseF; 1471 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1472 return nullptr; 1473 1474 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1475 if (match(Base, m_SpecificFP(2.0)) && 1476 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1477 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1478 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1479 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI, 1480 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1481 B, Attrs); 1482 } 1483 1484 // pow(2.0 ** n, x) -> exp2(n * x) 1485 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1486 APFloat BaseR = APFloat(1.0); 1487 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1488 BaseR = BaseR / *BaseF; 1489 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1490 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1491 APSInt NI(64, false); 1492 if ((IsInteger || IsReciprocal) && 1493 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1494 APFloat::opOK && 1495 NI > 1 && NI.isPowerOf2()) { 1496 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1497 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1498 if (Pow->doesNotAccessMemory()) 1499 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1500 FMul, "exp2"); 1501 else 1502 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1503 LibFunc_exp2l, B, Attrs); 1504 } 1505 } 1506 1507 // pow(10.0, x) -> exp10(x) 1508 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1509 if (match(Base, m_SpecificFP(10.0)) && 1510 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1511 return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, 1512 LibFunc_exp10l, B, Attrs); 1513 1514 // pow(x, y) -> exp2(log2(x) * y) 1515 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1516 !BaseF->isNegative()) { 1517 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1518 // Luckily optimizePow has already handled the x == 1 case. 1519 assert(!match(Base, m_FPOne()) && 1520 "pow(1.0, y) should have been simplified earlier!"); 1521 1522 Value *Log = nullptr; 1523 if (Ty->isFloatTy()) 1524 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1525 else if (Ty->isDoubleTy()) 1526 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1527 1528 if (Log) { 1529 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1530 if (Pow->doesNotAccessMemory()) 1531 return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), 1532 FMul, "exp2"); 1533 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1534 return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, 1535 LibFunc_exp2l, B, Attrs); 1536 } 1537 } 1538 1539 return nullptr; 1540 } 1541 1542 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1543 Module *M, IRBuilderBase &B, 1544 const TargetLibraryInfo *TLI) { 1545 // If errno is never set, then use the intrinsic for sqrt(). 1546 if (NoErrno) { 1547 Function *SqrtFn = 1548 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1549 return B.CreateCall(SqrtFn, V, "sqrt"); 1550 } 1551 1552 // Otherwise, use the libcall for sqrt(). 1553 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1554 // TODO: We also should check that the target can in fact lower the sqrt() 1555 // libcall. We currently have no way to ask this question, so we ask if 1556 // the target has a sqrt() libcall, which is not exactly the same. 1557 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1558 LibFunc_sqrtl, B, Attrs); 1559 1560 return nullptr; 1561 } 1562 1563 /// Use square root in place of pow(x, +/-0.5). 1564 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1565 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1566 AttributeList Attrs; // Attributes are only meaningful on the original call 1567 Module *Mod = Pow->getModule(); 1568 Type *Ty = Pow->getType(); 1569 1570 const APFloat *ExpoF; 1571 if (!match(Expo, m_APFloat(ExpoF)) || 1572 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1573 return nullptr; 1574 1575 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1576 // so that requires fast-math-flags (afn or reassoc). 1577 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1578 return nullptr; 1579 1580 // If we have a pow() library call (accesses memory) and we can't guarantee 1581 // that the base is not an infinity, give up: 1582 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1583 // errno), but sqrt(-Inf) is required by various standards to set errno. 1584 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1585 !isKnownNeverInfinity(Base, TLI)) 1586 return nullptr; 1587 1588 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1589 if (!Sqrt) 1590 return nullptr; 1591 1592 // Handle signed zero base by expanding to fabs(sqrt(x)). 1593 if (!Pow->hasNoSignedZeros()) { 1594 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1595 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1596 } 1597 1598 // Handle non finite base by expanding to 1599 // (x == -infinity ? +infinity : sqrt(x)). 1600 if (!Pow->hasNoInfs()) { 1601 Value *PosInf = ConstantFP::getInfinity(Ty), 1602 *NegInf = ConstantFP::getInfinity(Ty, true); 1603 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1604 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1605 } 1606 1607 // If the exponent is negative, then get the reciprocal. 1608 if (ExpoF->isNegative()) 1609 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1610 1611 return Sqrt; 1612 } 1613 1614 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1615 IRBuilderBase &B) { 1616 Value *Args[] = {Base, Expo}; 1617 Type *Types[] = {Base->getType(), Expo->getType()}; 1618 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1619 return B.CreateCall(F, Args); 1620 } 1621 1622 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1623 Value *Base = Pow->getArgOperand(0); 1624 Value *Expo = Pow->getArgOperand(1); 1625 Function *Callee = Pow->getCalledFunction(); 1626 StringRef Name = Callee->getName(); 1627 Type *Ty = Pow->getType(); 1628 Module *M = Pow->getModule(); 1629 bool AllowApprox = Pow->hasApproxFunc(); 1630 bool Ignored; 1631 1632 // Propagate the math semantics from the call to any created instructions. 1633 IRBuilderBase::FastMathFlagGuard Guard(B); 1634 B.setFastMathFlags(Pow->getFastMathFlags()); 1635 // Evaluate special cases related to the base. 1636 1637 // pow(1.0, x) -> 1.0 1638 if (match(Base, m_FPOne())) 1639 return Base; 1640 1641 if (Value *Exp = replacePowWithExp(Pow, B)) 1642 return Exp; 1643 1644 // Evaluate special cases related to the exponent. 1645 1646 // pow(x, -1.0) -> 1.0 / x 1647 if (match(Expo, m_SpecificFP(-1.0))) 1648 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1649 1650 // pow(x, +/-0.0) -> 1.0 1651 if (match(Expo, m_AnyZeroFP())) 1652 return ConstantFP::get(Ty, 1.0); 1653 1654 // pow(x, 1.0) -> x 1655 if (match(Expo, m_FPOne())) 1656 return Base; 1657 1658 // pow(x, 2.0) -> x * x 1659 if (match(Expo, m_SpecificFP(2.0))) 1660 return B.CreateFMul(Base, Base, "square"); 1661 1662 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1663 return Sqrt; 1664 1665 // pow(x, n) -> x * x * x * ... 1666 const APFloat *ExpoF; 1667 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1668 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1669 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1670 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1671 // additional fmul. 1672 // TODO: This whole transformation should be backend specific (e.g. some 1673 // backends might prefer libcalls or the limit for the exponent might 1674 // be different) and it should also consider optimizing for size. 1675 APFloat LimF(ExpoF->getSemantics(), 33), 1676 ExpoA(abs(*ExpoF)); 1677 if (ExpoA < LimF) { 1678 // This transformation applies to integer or integer+0.5 exponents only. 1679 // For integer+0.5, we create a sqrt(Base) call. 1680 Value *Sqrt = nullptr; 1681 if (!ExpoA.isInteger()) { 1682 APFloat Expo2 = ExpoA; 1683 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1684 // is no floating point exception and the result is an integer, then 1685 // ExpoA == integer + 0.5 1686 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1687 return nullptr; 1688 1689 if (!Expo2.isInteger()) 1690 return nullptr; 1691 1692 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1693 Pow->doesNotAccessMemory(), M, B, TLI); 1694 if (!Sqrt) 1695 return nullptr; 1696 } 1697 1698 // We will memoize intermediate products of the Addition Chain. 1699 Value *InnerChain[33] = {nullptr}; 1700 InnerChain[1] = Base; 1701 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1702 1703 // We cannot readily convert a non-double type (like float) to a double. 1704 // So we first convert it to something which could be converted to double. 1705 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1706 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1707 1708 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1709 if (Sqrt) 1710 FMul = B.CreateFMul(FMul, Sqrt); 1711 1712 // If the exponent is negative, then get the reciprocal. 1713 if (ExpoF->isNegative()) 1714 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1715 1716 return FMul; 1717 } 1718 1719 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1720 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1721 if (ExpoF->isInteger() && 1722 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1723 APFloat::opOK) { 1724 return createPowWithIntegerExponent( 1725 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), M, B); 1726 } 1727 } 1728 1729 // powf(x, itofp(y)) -> powi(x, y) 1730 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1731 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1732 return createPowWithIntegerExponent(Base, ExpoI, M, B); 1733 } 1734 1735 // Shrink pow() to powf() if the arguments are single precision, 1736 // unless the result is expected to be double precision. 1737 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1738 hasFloatVersion(Name)) { 1739 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1740 return Shrunk; 1741 } 1742 1743 return nullptr; 1744 } 1745 1746 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1747 Function *Callee = CI->getCalledFunction(); 1748 AttributeList Attrs; // Attributes are only meaningful on the original call 1749 StringRef Name = Callee->getName(); 1750 Value *Ret = nullptr; 1751 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1752 hasFloatVersion(Name)) 1753 Ret = optimizeUnaryDoubleFP(CI, B, true); 1754 1755 Type *Ty = CI->getType(); 1756 Value *Op = CI->getArgOperand(0); 1757 1758 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1759 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1760 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1761 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1762 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1763 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1764 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1765 B, Attrs); 1766 } 1767 1768 return Ret; 1769 } 1770 1771 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1772 // If we can shrink the call to a float function rather than a double 1773 // function, do that first. 1774 Function *Callee = CI->getCalledFunction(); 1775 StringRef Name = Callee->getName(); 1776 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1777 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1778 return Ret; 1779 1780 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1781 // the intrinsics for improved optimization (for example, vectorization). 1782 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1783 // From the C standard draft WG14/N1256: 1784 // "Ideally, fmax would be sensitive to the sign of zero, for example 1785 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1786 // might be impractical." 1787 IRBuilderBase::FastMathFlagGuard Guard(B); 1788 FastMathFlags FMF = CI->getFastMathFlags(); 1789 FMF.setNoSignedZeros(); 1790 B.setFastMathFlags(FMF); 1791 1792 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1793 : Intrinsic::maxnum; 1794 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1795 return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) }); 1796 } 1797 1798 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1799 Function *LogFn = Log->getCalledFunction(); 1800 AttributeList Attrs; // Attributes are only meaningful on the original call 1801 StringRef LogNm = LogFn->getName(); 1802 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1803 Module *Mod = Log->getModule(); 1804 Type *Ty = Log->getType(); 1805 Value *Ret = nullptr; 1806 1807 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1808 Ret = optimizeUnaryDoubleFP(Log, B, true); 1809 1810 // The earlier call must also be 'fast' in order to do these transforms. 1811 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1812 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1813 return Ret; 1814 1815 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1816 1817 // This is only applicable to log(), log2(), log10(). 1818 if (TLI->getLibFunc(LogNm, LogLb)) 1819 switch (LogLb) { 1820 case LibFunc_logf: 1821 LogID = Intrinsic::log; 1822 ExpLb = LibFunc_expf; 1823 Exp2Lb = LibFunc_exp2f; 1824 Exp10Lb = LibFunc_exp10f; 1825 PowLb = LibFunc_powf; 1826 break; 1827 case LibFunc_log: 1828 LogID = Intrinsic::log; 1829 ExpLb = LibFunc_exp; 1830 Exp2Lb = LibFunc_exp2; 1831 Exp10Lb = LibFunc_exp10; 1832 PowLb = LibFunc_pow; 1833 break; 1834 case LibFunc_logl: 1835 LogID = Intrinsic::log; 1836 ExpLb = LibFunc_expl; 1837 Exp2Lb = LibFunc_exp2l; 1838 Exp10Lb = LibFunc_exp10l; 1839 PowLb = LibFunc_powl; 1840 break; 1841 case LibFunc_log2f: 1842 LogID = Intrinsic::log2; 1843 ExpLb = LibFunc_expf; 1844 Exp2Lb = LibFunc_exp2f; 1845 Exp10Lb = LibFunc_exp10f; 1846 PowLb = LibFunc_powf; 1847 break; 1848 case LibFunc_log2: 1849 LogID = Intrinsic::log2; 1850 ExpLb = LibFunc_exp; 1851 Exp2Lb = LibFunc_exp2; 1852 Exp10Lb = LibFunc_exp10; 1853 PowLb = LibFunc_pow; 1854 break; 1855 case LibFunc_log2l: 1856 LogID = Intrinsic::log2; 1857 ExpLb = LibFunc_expl; 1858 Exp2Lb = LibFunc_exp2l; 1859 Exp10Lb = LibFunc_exp10l; 1860 PowLb = LibFunc_powl; 1861 break; 1862 case LibFunc_log10f: 1863 LogID = Intrinsic::log10; 1864 ExpLb = LibFunc_expf; 1865 Exp2Lb = LibFunc_exp2f; 1866 Exp10Lb = LibFunc_exp10f; 1867 PowLb = LibFunc_powf; 1868 break; 1869 case LibFunc_log10: 1870 LogID = Intrinsic::log10; 1871 ExpLb = LibFunc_exp; 1872 Exp2Lb = LibFunc_exp2; 1873 Exp10Lb = LibFunc_exp10; 1874 PowLb = LibFunc_pow; 1875 break; 1876 case LibFunc_log10l: 1877 LogID = Intrinsic::log10; 1878 ExpLb = LibFunc_expl; 1879 Exp2Lb = LibFunc_exp2l; 1880 Exp10Lb = LibFunc_exp10l; 1881 PowLb = LibFunc_powl; 1882 break; 1883 default: 1884 return Ret; 1885 } 1886 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 1887 LogID == Intrinsic::log10) { 1888 if (Ty->getScalarType()->isFloatTy()) { 1889 ExpLb = LibFunc_expf; 1890 Exp2Lb = LibFunc_exp2f; 1891 Exp10Lb = LibFunc_exp10f; 1892 PowLb = LibFunc_powf; 1893 } else if (Ty->getScalarType()->isDoubleTy()) { 1894 ExpLb = LibFunc_exp; 1895 Exp2Lb = LibFunc_exp2; 1896 Exp10Lb = LibFunc_exp10; 1897 PowLb = LibFunc_pow; 1898 } else 1899 return Ret; 1900 } else 1901 return Ret; 1902 1903 IRBuilderBase::FastMathFlagGuard Guard(B); 1904 B.setFastMathFlags(FastMathFlags::getFast()); 1905 1906 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 1907 LibFunc ArgLb = NotLibFunc; 1908 TLI->getLibFunc(*Arg, ArgLb); 1909 1910 // log(pow(x,y)) -> y*log(x) 1911 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 1912 Value *LogX = 1913 Log->doesNotAccessMemory() 1914 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1915 Arg->getOperand(0), "log") 1916 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 1917 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 1918 // Since pow() may have side effects, e.g. errno, 1919 // dead code elimination may not be trusted to remove it. 1920 substituteInParent(Arg, MulY); 1921 return MulY; 1922 } 1923 1924 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 1925 // TODO: There is no exp10() intrinsic yet. 1926 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 1927 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 1928 Constant *Eul; 1929 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 1930 // FIXME: Add more precise value of e for long double. 1931 Eul = ConstantFP::get(Log->getType(), numbers::e); 1932 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 1933 Eul = ConstantFP::get(Log->getType(), 2.0); 1934 else 1935 Eul = ConstantFP::get(Log->getType(), 10.0); 1936 Value *LogE = Log->doesNotAccessMemory() 1937 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 1938 Eul, "log") 1939 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 1940 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 1941 // Since exp() may have side effects, e.g. errno, 1942 // dead code elimination may not be trusted to remove it. 1943 substituteInParent(Arg, MulY); 1944 return MulY; 1945 } 1946 1947 return Ret; 1948 } 1949 1950 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 1951 Function *Callee = CI->getCalledFunction(); 1952 Value *Ret = nullptr; 1953 // TODO: Once we have a way (other than checking for the existince of the 1954 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 1955 // condition below. 1956 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 1957 Callee->getIntrinsicID() == Intrinsic::sqrt)) 1958 Ret = optimizeUnaryDoubleFP(CI, B, true); 1959 1960 if (!CI->isFast()) 1961 return Ret; 1962 1963 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 1964 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 1965 return Ret; 1966 1967 // We're looking for a repeated factor in a multiplication tree, 1968 // so we can do this fold: sqrt(x * x) -> fabs(x); 1969 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 1970 Value *Op0 = I->getOperand(0); 1971 Value *Op1 = I->getOperand(1); 1972 Value *RepeatOp = nullptr; 1973 Value *OtherOp = nullptr; 1974 if (Op0 == Op1) { 1975 // Simple match: the operands of the multiply are identical. 1976 RepeatOp = Op0; 1977 } else { 1978 // Look for a more complicated pattern: one of the operands is itself 1979 // a multiply, so search for a common factor in that multiply. 1980 // Note: We don't bother looking any deeper than this first level or for 1981 // variations of this pattern because instcombine's visitFMUL and/or the 1982 // reassociation pass should give us this form. 1983 Value *OtherMul0, *OtherMul1; 1984 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 1985 // Pattern: sqrt((x * y) * z) 1986 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 1987 // Matched: sqrt((x * x) * z) 1988 RepeatOp = OtherMul0; 1989 OtherOp = Op1; 1990 } 1991 } 1992 } 1993 if (!RepeatOp) 1994 return Ret; 1995 1996 // Fast math flags for any created instructions should match the sqrt 1997 // and multiply. 1998 IRBuilderBase::FastMathFlagGuard Guard(B); 1999 B.setFastMathFlags(I->getFastMathFlags()); 2000 2001 // If we found a repeated factor, hoist it out of the square root and 2002 // replace it with the fabs of that factor. 2003 Module *M = Callee->getParent(); 2004 Type *ArgType = I->getType(); 2005 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2006 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2007 if (OtherOp) { 2008 // If we found a non-repeated factor, we still need to get its square 2009 // root. We then multiply that by the value that was simplified out 2010 // of the square root calculation. 2011 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2012 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2013 return B.CreateFMul(FabsCall, SqrtCall); 2014 } 2015 return FabsCall; 2016 } 2017 2018 // TODO: Generalize to handle any trig function and its inverse. 2019 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2020 Function *Callee = CI->getCalledFunction(); 2021 Value *Ret = nullptr; 2022 StringRef Name = Callee->getName(); 2023 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2024 Ret = optimizeUnaryDoubleFP(CI, B, true); 2025 2026 Value *Op1 = CI->getArgOperand(0); 2027 auto *OpC = dyn_cast<CallInst>(Op1); 2028 if (!OpC) 2029 return Ret; 2030 2031 // Both calls must be 'fast' in order to remove them. 2032 if (!CI->isFast() || !OpC->isFast()) 2033 return Ret; 2034 2035 // tan(atan(x)) -> x 2036 // tanf(atanf(x)) -> x 2037 // tanl(atanl(x)) -> x 2038 LibFunc Func; 2039 Function *F = OpC->getCalledFunction(); 2040 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2041 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2042 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2043 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2044 Ret = OpC->getArgOperand(0); 2045 return Ret; 2046 } 2047 2048 static bool isTrigLibCall(CallInst *CI) { 2049 // We can only hope to do anything useful if we can ignore things like errno 2050 // and floating-point exceptions. 2051 // We already checked the prototype. 2052 return CI->hasFnAttr(Attribute::NoUnwind) && 2053 CI->hasFnAttr(Attribute::ReadNone); 2054 } 2055 2056 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2057 bool UseFloat, Value *&Sin, Value *&Cos, 2058 Value *&SinCos) { 2059 Type *ArgTy = Arg->getType(); 2060 Type *ResTy; 2061 StringRef Name; 2062 2063 Triple T(OrigCallee->getParent()->getTargetTriple()); 2064 if (UseFloat) { 2065 Name = "__sincospif_stret"; 2066 2067 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2068 // x86_64 can't use {float, float} since that would be returned in both 2069 // xmm0 and xmm1, which isn't what a real struct would do. 2070 ResTy = T.getArch() == Triple::x86_64 2071 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2072 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2073 } else { 2074 Name = "__sincospi_stret"; 2075 ResTy = StructType::get(ArgTy, ArgTy); 2076 } 2077 2078 Module *M = OrigCallee->getParent(); 2079 FunctionCallee Callee = 2080 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2081 2082 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2083 // If the argument is an instruction, it must dominate all uses so put our 2084 // sincos call there. 2085 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2086 } else { 2087 // Otherwise (e.g. for a constant) the beginning of the function is as 2088 // good a place as any. 2089 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2090 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2091 } 2092 2093 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2094 2095 if (SinCos->getType()->isStructTy()) { 2096 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2097 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2098 } else { 2099 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2100 "sinpi"); 2101 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2102 "cospi"); 2103 } 2104 } 2105 2106 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2107 // Make sure the prototype is as expected, otherwise the rest of the 2108 // function is probably invalid and likely to abort. 2109 if (!isTrigLibCall(CI)) 2110 return nullptr; 2111 2112 Value *Arg = CI->getArgOperand(0); 2113 SmallVector<CallInst *, 1> SinCalls; 2114 SmallVector<CallInst *, 1> CosCalls; 2115 SmallVector<CallInst *, 1> SinCosCalls; 2116 2117 bool IsFloat = Arg->getType()->isFloatTy(); 2118 2119 // Look for all compatible sinpi, cospi and sincospi calls with the same 2120 // argument. If there are enough (in some sense) we can make the 2121 // substitution. 2122 Function *F = CI->getFunction(); 2123 for (User *U : Arg->users()) 2124 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2125 2126 // It's only worthwhile if both sinpi and cospi are actually used. 2127 if (SinCalls.empty() || CosCalls.empty()) 2128 return nullptr; 2129 2130 Value *Sin, *Cos, *SinCos; 2131 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2132 2133 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2134 Value *Res) { 2135 for (CallInst *C : Calls) 2136 replaceAllUsesWith(C, Res); 2137 }; 2138 2139 replaceTrigInsts(SinCalls, Sin); 2140 replaceTrigInsts(CosCalls, Cos); 2141 replaceTrigInsts(SinCosCalls, SinCos); 2142 2143 return nullptr; 2144 } 2145 2146 void LibCallSimplifier::classifyArgUse( 2147 Value *Val, Function *F, bool IsFloat, 2148 SmallVectorImpl<CallInst *> &SinCalls, 2149 SmallVectorImpl<CallInst *> &CosCalls, 2150 SmallVectorImpl<CallInst *> &SinCosCalls) { 2151 CallInst *CI = dyn_cast<CallInst>(Val); 2152 2153 if (!CI || CI->use_empty()) 2154 return; 2155 2156 // Don't consider calls in other functions. 2157 if (CI->getFunction() != F) 2158 return; 2159 2160 Function *Callee = CI->getCalledFunction(); 2161 LibFunc Func; 2162 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2163 !isTrigLibCall(CI)) 2164 return; 2165 2166 if (IsFloat) { 2167 if (Func == LibFunc_sinpif) 2168 SinCalls.push_back(CI); 2169 else if (Func == LibFunc_cospif) 2170 CosCalls.push_back(CI); 2171 else if (Func == LibFunc_sincospif_stret) 2172 SinCosCalls.push_back(CI); 2173 } else { 2174 if (Func == LibFunc_sinpi) 2175 SinCalls.push_back(CI); 2176 else if (Func == LibFunc_cospi) 2177 CosCalls.push_back(CI); 2178 else if (Func == LibFunc_sincospi_stret) 2179 SinCosCalls.push_back(CI); 2180 } 2181 } 2182 2183 //===----------------------------------------------------------------------===// 2184 // Integer Library Call Optimizations 2185 //===----------------------------------------------------------------------===// 2186 2187 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2188 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2189 Value *Op = CI->getArgOperand(0); 2190 Type *ArgType = Op->getType(); 2191 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2192 Intrinsic::cttz, ArgType); 2193 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2194 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2195 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2196 2197 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2198 return B.CreateSelect(Cond, V, B.getInt32(0)); 2199 } 2200 2201 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2202 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2203 Value *Op = CI->getArgOperand(0); 2204 Type *ArgType = Op->getType(); 2205 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2206 Intrinsic::ctlz, ArgType); 2207 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2208 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2209 V); 2210 return B.CreateIntCast(V, CI->getType(), false); 2211 } 2212 2213 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2214 // abs(x) -> x <s 0 ? -x : x 2215 // The negation has 'nsw' because abs of INT_MIN is undefined. 2216 Value *X = CI->getArgOperand(0); 2217 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2218 Value *NegX = B.CreateNSWNeg(X, "neg"); 2219 return B.CreateSelect(IsNeg, NegX, X); 2220 } 2221 2222 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2223 // isdigit(c) -> (c-'0') <u 10 2224 Value *Op = CI->getArgOperand(0); 2225 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2226 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2227 return B.CreateZExt(Op, CI->getType()); 2228 } 2229 2230 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2231 // isascii(c) -> c <u 128 2232 Value *Op = CI->getArgOperand(0); 2233 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2234 return B.CreateZExt(Op, CI->getType()); 2235 } 2236 2237 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2238 // toascii(c) -> c & 0x7f 2239 return B.CreateAnd(CI->getArgOperand(0), 2240 ConstantInt::get(CI->getType(), 0x7F)); 2241 } 2242 2243 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2244 StringRef Str; 2245 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2246 return nullptr; 2247 2248 return convertStrToNumber(CI, Str, 10); 2249 } 2250 2251 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2252 StringRef Str; 2253 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2254 return nullptr; 2255 2256 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2257 return nullptr; 2258 2259 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2260 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2261 } 2262 2263 return nullptr; 2264 } 2265 2266 //===----------------------------------------------------------------------===// 2267 // Formatting and IO Library Call Optimizations 2268 //===----------------------------------------------------------------------===// 2269 2270 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2271 2272 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2273 int StreamArg) { 2274 Function *Callee = CI->getCalledFunction(); 2275 // Error reporting calls should be cold, mark them as such. 2276 // This applies even to non-builtin calls: it is only a hint and applies to 2277 // functions that the frontend might not understand as builtins. 2278 2279 // This heuristic was suggested in: 2280 // Improving Static Branch Prediction in a Compiler 2281 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2282 // Proceedings of PACT'98, Oct. 1998, IEEE 2283 if (!CI->hasFnAttr(Attribute::Cold) && 2284 isReportingError(Callee, CI, StreamArg)) { 2285 CI->addFnAttr(Attribute::Cold); 2286 } 2287 2288 return nullptr; 2289 } 2290 2291 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2292 if (!Callee || !Callee->isDeclaration()) 2293 return false; 2294 2295 if (StreamArg < 0) 2296 return true; 2297 2298 // These functions might be considered cold, but only if their stream 2299 // argument is stderr. 2300 2301 if (StreamArg >= (int)CI->arg_size()) 2302 return false; 2303 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2304 if (!LI) 2305 return false; 2306 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2307 if (!GV || !GV->isDeclaration()) 2308 return false; 2309 return GV->getName() == "stderr"; 2310 } 2311 2312 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2313 // Check for a fixed format string. 2314 StringRef FormatStr; 2315 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2316 return nullptr; 2317 2318 // Empty format string -> noop. 2319 if (FormatStr.empty()) // Tolerate printf's declared void. 2320 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2321 2322 // Do not do any of the following transformations if the printf return value 2323 // is used, in general the printf return value is not compatible with either 2324 // putchar() or puts(). 2325 if (!CI->use_empty()) 2326 return nullptr; 2327 2328 // printf("x") -> putchar('x'), even for "%" and "%%". 2329 if (FormatStr.size() == 1 || FormatStr == "%%") 2330 return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); 2331 2332 // Try to remove call or emit putchar/puts. 2333 if (FormatStr == "%s" && CI->arg_size() > 1) { 2334 StringRef OperandStr; 2335 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2336 return nullptr; 2337 // printf("%s", "") --> NOP 2338 if (OperandStr.empty()) 2339 return (Value *)CI; 2340 // printf("%s", "a") --> putchar('a') 2341 if (OperandStr.size() == 1) 2342 return emitPutChar(B.getInt32(OperandStr[0]), B, TLI); 2343 // printf("%s", str"\n") --> puts(str) 2344 if (OperandStr.back() == '\n') { 2345 OperandStr = OperandStr.drop_back(); 2346 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2347 return emitPutS(GV, B, TLI); 2348 } 2349 return nullptr; 2350 } 2351 2352 // printf("foo\n") --> puts("foo") 2353 if (FormatStr.back() == '\n' && 2354 !FormatStr.contains('%')) { // No format characters. 2355 // Create a string literal with no \n on it. We expect the constant merge 2356 // pass to be run after this pass, to merge duplicate strings. 2357 FormatStr = FormatStr.drop_back(); 2358 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2359 return emitPutS(GV, B, TLI); 2360 } 2361 2362 // Optimize specific format strings. 2363 // printf("%c", chr) --> putchar(chr) 2364 if (FormatStr == "%c" && CI->arg_size() > 1 && 2365 CI->getArgOperand(1)->getType()->isIntegerTy()) 2366 return emitPutChar(CI->getArgOperand(1), B, TLI); 2367 2368 // printf("%s\n", str) --> puts(str) 2369 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2370 CI->getArgOperand(1)->getType()->isPointerTy()) 2371 return emitPutS(CI->getArgOperand(1), B, TLI); 2372 return nullptr; 2373 } 2374 2375 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2376 2377 Function *Callee = CI->getCalledFunction(); 2378 FunctionType *FT = Callee->getFunctionType(); 2379 if (Value *V = optimizePrintFString(CI, B)) { 2380 return V; 2381 } 2382 2383 // printf(format, ...) -> iprintf(format, ...) if no floating point 2384 // arguments. 2385 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2386 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2387 FunctionCallee IPrintFFn = 2388 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2389 CallInst *New = cast<CallInst>(CI->clone()); 2390 New->setCalledFunction(IPrintFFn); 2391 B.Insert(New); 2392 return New; 2393 } 2394 2395 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2396 // arguments. 2397 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2398 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2399 auto SmallPrintFFn = 2400 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2401 FT, Callee->getAttributes()); 2402 CallInst *New = cast<CallInst>(CI->clone()); 2403 New->setCalledFunction(SmallPrintFFn); 2404 B.Insert(New); 2405 return New; 2406 } 2407 2408 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2409 return nullptr; 2410 } 2411 2412 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2413 IRBuilderBase &B) { 2414 // Check for a fixed format string. 2415 StringRef FormatStr; 2416 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2417 return nullptr; 2418 2419 // If we just have a format string (nothing else crazy) transform it. 2420 Value *Dest = CI->getArgOperand(0); 2421 if (CI->arg_size() == 2) { 2422 // Make sure there's no % in the constant array. We could try to handle 2423 // %% -> % in the future if we cared. 2424 if (FormatStr.contains('%')) 2425 return nullptr; // we found a format specifier, bail out. 2426 2427 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2428 B.CreateMemCpy( 2429 Dest, Align(1), CI->getArgOperand(1), Align(1), 2430 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2431 FormatStr.size() + 1)); // Copy the null byte. 2432 return ConstantInt::get(CI->getType(), FormatStr.size()); 2433 } 2434 2435 // The remaining optimizations require the format string to be "%s" or "%c" 2436 // and have an extra operand. 2437 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2438 return nullptr; 2439 2440 // Decode the second character of the format string. 2441 if (FormatStr[1] == 'c') { 2442 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2443 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2444 return nullptr; 2445 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2446 Value *Ptr = castToCStr(Dest, B); 2447 B.CreateStore(V, Ptr); 2448 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2449 B.CreateStore(B.getInt8(0), Ptr); 2450 2451 return ConstantInt::get(CI->getType(), 1); 2452 } 2453 2454 if (FormatStr[1] == 's') { 2455 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2456 // strlen(str)+1) 2457 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2458 return nullptr; 2459 2460 if (CI->use_empty()) 2461 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2462 return emitStrCpy(Dest, CI->getArgOperand(2), B, TLI); 2463 2464 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2465 if (SrcLen) { 2466 B.CreateMemCpy( 2467 Dest, Align(1), CI->getArgOperand(2), Align(1), 2468 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2469 // Returns total number of characters written without null-character. 2470 return ConstantInt::get(CI->getType(), SrcLen - 1); 2471 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2472 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2473 // Handle mismatched pointer types (goes away with typeless pointers?). 2474 V = B.CreatePointerCast(V, Dest->getType()); 2475 Value *PtrDiff = B.CreatePtrDiff(V, Dest); 2476 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2477 } 2478 2479 bool OptForSize = CI->getFunction()->hasOptSize() || 2480 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2481 PGSOQueryType::IRPass); 2482 if (OptForSize) 2483 return nullptr; 2484 2485 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2486 if (!Len) 2487 return nullptr; 2488 Value *IncLen = 2489 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2490 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2491 2492 // The sprintf result is the unincremented number of bytes in the string. 2493 return B.CreateIntCast(Len, CI->getType(), false); 2494 } 2495 return nullptr; 2496 } 2497 2498 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2499 Function *Callee = CI->getCalledFunction(); 2500 FunctionType *FT = Callee->getFunctionType(); 2501 if (Value *V = optimizeSPrintFString(CI, B)) { 2502 return V; 2503 } 2504 2505 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2506 // point arguments. 2507 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2508 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2509 FunctionCallee SIPrintFFn = 2510 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2511 CallInst *New = cast<CallInst>(CI->clone()); 2512 New->setCalledFunction(SIPrintFFn); 2513 B.Insert(New); 2514 return New; 2515 } 2516 2517 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2518 // floating point arguments. 2519 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2520 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2521 auto SmallSPrintFFn = 2522 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2523 FT, Callee->getAttributes()); 2524 CallInst *New = cast<CallInst>(CI->clone()); 2525 New->setCalledFunction(SmallSPrintFFn); 2526 B.Insert(New); 2527 return New; 2528 } 2529 2530 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2531 return nullptr; 2532 } 2533 2534 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2535 IRBuilderBase &B) { 2536 // Check for size 2537 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2538 if (!Size) 2539 return nullptr; 2540 2541 uint64_t N = Size->getZExtValue(); 2542 // Check for a fixed format string. 2543 StringRef FormatStr; 2544 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2545 return nullptr; 2546 2547 // If we just have a format string (nothing else crazy) transform it. 2548 if (CI->arg_size() == 3) { 2549 // Make sure there's no % in the constant array. We could try to handle 2550 // %% -> % in the future if we cared. 2551 if (FormatStr.contains('%')) 2552 return nullptr; // we found a format specifier, bail out. 2553 2554 if (N == 0) 2555 return ConstantInt::get(CI->getType(), FormatStr.size()); 2556 else if (N < FormatStr.size() + 1) 2557 return nullptr; 2558 2559 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2560 // strlen(fmt)+1) 2561 B.CreateMemCpy( 2562 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2563 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2564 FormatStr.size() + 1)); // Copy the null byte. 2565 return ConstantInt::get(CI->getType(), FormatStr.size()); 2566 } 2567 2568 // The remaining optimizations require the format string to be "%s" or "%c" 2569 // and have an extra operand. 2570 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2571 2572 // Decode the second character of the format string. 2573 if (FormatStr[1] == 'c') { 2574 if (N == 0) 2575 return ConstantInt::get(CI->getType(), 1); 2576 else if (N == 1) 2577 return nullptr; 2578 2579 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2580 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2581 return nullptr; 2582 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2583 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2584 B.CreateStore(V, Ptr); 2585 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2586 B.CreateStore(B.getInt8(0), Ptr); 2587 2588 return ConstantInt::get(CI->getType(), 1); 2589 } 2590 2591 if (FormatStr[1] == 's') { 2592 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2593 StringRef Str; 2594 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2595 return nullptr; 2596 2597 if (N == 0) 2598 return ConstantInt::get(CI->getType(), Str.size()); 2599 else if (N < Str.size() + 1) 2600 return nullptr; 2601 2602 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(3), 2603 Align(1), ConstantInt::get(CI->getType(), Str.size() + 1)); 2604 2605 // The snprintf result is the unincremented number of bytes in the string. 2606 return ConstantInt::get(CI->getType(), Str.size()); 2607 } 2608 } 2609 return nullptr; 2610 } 2611 2612 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2613 if (Value *V = optimizeSnPrintFString(CI, B)) { 2614 return V; 2615 } 2616 2617 if (isKnownNonZero(CI->getOperand(1), DL)) 2618 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2619 return nullptr; 2620 } 2621 2622 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2623 IRBuilderBase &B) { 2624 optimizeErrorReporting(CI, B, 0); 2625 2626 // All the optimizations depend on the format string. 2627 StringRef FormatStr; 2628 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2629 return nullptr; 2630 2631 // Do not do any of the following transformations if the fprintf return 2632 // value is used, in general the fprintf return value is not compatible 2633 // with fwrite(), fputc() or fputs(). 2634 if (!CI->use_empty()) 2635 return nullptr; 2636 2637 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2638 if (CI->arg_size() == 2) { 2639 // Could handle %% -> % if we cared. 2640 if (FormatStr.contains('%')) 2641 return nullptr; // We found a format specifier. 2642 2643 return emitFWrite( 2644 CI->getArgOperand(1), 2645 ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), 2646 CI->getArgOperand(0), B, DL, TLI); 2647 } 2648 2649 // The remaining optimizations require the format string to be "%s" or "%c" 2650 // and have an extra operand. 2651 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2652 return nullptr; 2653 2654 // Decode the second character of the format string. 2655 if (FormatStr[1] == 'c') { 2656 // fprintf(F, "%c", chr) --> fputc(chr, F) 2657 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2658 return nullptr; 2659 return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2660 } 2661 2662 if (FormatStr[1] == 's') { 2663 // fprintf(F, "%s", str) --> fputs(str, F) 2664 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2665 return nullptr; 2666 return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); 2667 } 2668 return nullptr; 2669 } 2670 2671 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2672 Function *Callee = CI->getCalledFunction(); 2673 FunctionType *FT = Callee->getFunctionType(); 2674 if (Value *V = optimizeFPrintFString(CI, B)) { 2675 return V; 2676 } 2677 2678 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2679 // floating point arguments. 2680 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2681 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2682 FunctionCallee FIPrintFFn = 2683 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2684 CallInst *New = cast<CallInst>(CI->clone()); 2685 New->setCalledFunction(FIPrintFFn); 2686 B.Insert(New); 2687 return New; 2688 } 2689 2690 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2691 // 128-bit floating point arguments. 2692 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2693 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2694 auto SmallFPrintFFn = 2695 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2696 FT, Callee->getAttributes()); 2697 CallInst *New = cast<CallInst>(CI->clone()); 2698 New->setCalledFunction(SmallFPrintFFn); 2699 B.Insert(New); 2700 return New; 2701 } 2702 2703 return nullptr; 2704 } 2705 2706 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2707 optimizeErrorReporting(CI, B, 3); 2708 2709 // Get the element size and count. 2710 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2711 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2712 if (SizeC && CountC) { 2713 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2714 2715 // If this is writing zero records, remove the call (it's a noop). 2716 if (Bytes == 0) 2717 return ConstantInt::get(CI->getType(), 0); 2718 2719 // If this is writing one byte, turn it into fputc. 2720 // This optimisation is only valid, if the return value is unused. 2721 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2722 Value *Char = B.CreateLoad(B.getInt8Ty(), 2723 castToCStr(CI->getArgOperand(0), B), "char"); 2724 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2725 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2726 } 2727 } 2728 2729 return nullptr; 2730 } 2731 2732 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2733 optimizeErrorReporting(CI, B, 1); 2734 2735 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2736 // requires more arguments and thus extra MOVs are required. 2737 bool OptForSize = CI->getFunction()->hasOptSize() || 2738 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2739 PGSOQueryType::IRPass); 2740 if (OptForSize) 2741 return nullptr; 2742 2743 // We can't optimize if return value is used. 2744 if (!CI->use_empty()) 2745 return nullptr; 2746 2747 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2748 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2749 if (!Len) 2750 return nullptr; 2751 2752 // Known to have no uses (see above). 2753 return emitFWrite( 2754 CI->getArgOperand(0), 2755 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2756 CI->getArgOperand(1), B, DL, TLI); 2757 } 2758 2759 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2760 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2761 if (!CI->use_empty()) 2762 return nullptr; 2763 2764 // Check for a constant string. 2765 // puts("") -> putchar('\n') 2766 StringRef Str; 2767 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2768 return emitPutChar(B.getInt32('\n'), B, TLI); 2769 2770 return nullptr; 2771 } 2772 2773 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2774 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2775 return B.CreateMemMove(CI->getArgOperand(1), Align(1), CI->getArgOperand(0), 2776 Align(1), CI->getArgOperand(2)); 2777 } 2778 2779 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2780 LibFunc Func; 2781 SmallString<20> FloatFuncName = FuncName; 2782 FloatFuncName += 'f'; 2783 if (TLI->getLibFunc(FloatFuncName, Func)) 2784 return TLI->has(Func); 2785 return false; 2786 } 2787 2788 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2789 IRBuilderBase &Builder) { 2790 LibFunc Func; 2791 Function *Callee = CI->getCalledFunction(); 2792 // Check for string/memory library functions. 2793 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2794 // Make sure we never change the calling convention. 2795 assert( 2796 (ignoreCallingConv(Func) || 2797 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2798 "Optimizing string/memory libcall would change the calling convention"); 2799 switch (Func) { 2800 case LibFunc_strcat: 2801 return optimizeStrCat(CI, Builder); 2802 case LibFunc_strncat: 2803 return optimizeStrNCat(CI, Builder); 2804 case LibFunc_strchr: 2805 return optimizeStrChr(CI, Builder); 2806 case LibFunc_strrchr: 2807 return optimizeStrRChr(CI, Builder); 2808 case LibFunc_strcmp: 2809 return optimizeStrCmp(CI, Builder); 2810 case LibFunc_strncmp: 2811 return optimizeStrNCmp(CI, Builder); 2812 case LibFunc_strcpy: 2813 return optimizeStrCpy(CI, Builder); 2814 case LibFunc_stpcpy: 2815 return optimizeStpCpy(CI, Builder); 2816 case LibFunc_strncpy: 2817 return optimizeStrNCpy(CI, Builder); 2818 case LibFunc_strlen: 2819 return optimizeStrLen(CI, Builder); 2820 case LibFunc_strpbrk: 2821 return optimizeStrPBrk(CI, Builder); 2822 case LibFunc_strndup: 2823 return optimizeStrNDup(CI, Builder); 2824 case LibFunc_strtol: 2825 case LibFunc_strtod: 2826 case LibFunc_strtof: 2827 case LibFunc_strtoul: 2828 case LibFunc_strtoll: 2829 case LibFunc_strtold: 2830 case LibFunc_strtoull: 2831 return optimizeStrTo(CI, Builder); 2832 case LibFunc_strspn: 2833 return optimizeStrSpn(CI, Builder); 2834 case LibFunc_strcspn: 2835 return optimizeStrCSpn(CI, Builder); 2836 case LibFunc_strstr: 2837 return optimizeStrStr(CI, Builder); 2838 case LibFunc_memchr: 2839 return optimizeMemChr(CI, Builder); 2840 case LibFunc_memrchr: 2841 return optimizeMemRChr(CI, Builder); 2842 case LibFunc_bcmp: 2843 return optimizeBCmp(CI, Builder); 2844 case LibFunc_memcmp: 2845 return optimizeMemCmp(CI, Builder); 2846 case LibFunc_memcpy: 2847 return optimizeMemCpy(CI, Builder); 2848 case LibFunc_memccpy: 2849 return optimizeMemCCpy(CI, Builder); 2850 case LibFunc_mempcpy: 2851 return optimizeMemPCpy(CI, Builder); 2852 case LibFunc_memmove: 2853 return optimizeMemMove(CI, Builder); 2854 case LibFunc_memset: 2855 return optimizeMemSet(CI, Builder); 2856 case LibFunc_realloc: 2857 return optimizeRealloc(CI, Builder); 2858 case LibFunc_wcslen: 2859 return optimizeWcslen(CI, Builder); 2860 case LibFunc_bcopy: 2861 return optimizeBCopy(CI, Builder); 2862 default: 2863 break; 2864 } 2865 } 2866 return nullptr; 2867 } 2868 2869 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 2870 LibFunc Func, 2871 IRBuilderBase &Builder) { 2872 // Don't optimize calls that require strict floating point semantics. 2873 if (CI->isStrictFP()) 2874 return nullptr; 2875 2876 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 2877 return V; 2878 2879 switch (Func) { 2880 case LibFunc_sinpif: 2881 case LibFunc_sinpi: 2882 case LibFunc_cospif: 2883 case LibFunc_cospi: 2884 return optimizeSinCosPi(CI, Builder); 2885 case LibFunc_powf: 2886 case LibFunc_pow: 2887 case LibFunc_powl: 2888 return optimizePow(CI, Builder); 2889 case LibFunc_exp2l: 2890 case LibFunc_exp2: 2891 case LibFunc_exp2f: 2892 return optimizeExp2(CI, Builder); 2893 case LibFunc_fabsf: 2894 case LibFunc_fabs: 2895 case LibFunc_fabsl: 2896 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 2897 case LibFunc_sqrtf: 2898 case LibFunc_sqrt: 2899 case LibFunc_sqrtl: 2900 return optimizeSqrt(CI, Builder); 2901 case LibFunc_logf: 2902 case LibFunc_log: 2903 case LibFunc_logl: 2904 case LibFunc_log10f: 2905 case LibFunc_log10: 2906 case LibFunc_log10l: 2907 case LibFunc_log1pf: 2908 case LibFunc_log1p: 2909 case LibFunc_log1pl: 2910 case LibFunc_log2f: 2911 case LibFunc_log2: 2912 case LibFunc_log2l: 2913 case LibFunc_logbf: 2914 case LibFunc_logb: 2915 case LibFunc_logbl: 2916 return optimizeLog(CI, Builder); 2917 case LibFunc_tan: 2918 case LibFunc_tanf: 2919 case LibFunc_tanl: 2920 return optimizeTan(CI, Builder); 2921 case LibFunc_ceil: 2922 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 2923 case LibFunc_floor: 2924 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 2925 case LibFunc_round: 2926 return replaceUnaryCall(CI, Builder, Intrinsic::round); 2927 case LibFunc_roundeven: 2928 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 2929 case LibFunc_nearbyint: 2930 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 2931 case LibFunc_rint: 2932 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 2933 case LibFunc_trunc: 2934 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 2935 case LibFunc_acos: 2936 case LibFunc_acosh: 2937 case LibFunc_asin: 2938 case LibFunc_asinh: 2939 case LibFunc_atan: 2940 case LibFunc_atanh: 2941 case LibFunc_cbrt: 2942 case LibFunc_cosh: 2943 case LibFunc_exp: 2944 case LibFunc_exp10: 2945 case LibFunc_expm1: 2946 case LibFunc_cos: 2947 case LibFunc_sin: 2948 case LibFunc_sinh: 2949 case LibFunc_tanh: 2950 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 2951 return optimizeUnaryDoubleFP(CI, Builder, true); 2952 return nullptr; 2953 case LibFunc_copysign: 2954 if (hasFloatVersion(CI->getCalledFunction()->getName())) 2955 return optimizeBinaryDoubleFP(CI, Builder); 2956 return nullptr; 2957 case LibFunc_fminf: 2958 case LibFunc_fmin: 2959 case LibFunc_fminl: 2960 case LibFunc_fmaxf: 2961 case LibFunc_fmax: 2962 case LibFunc_fmaxl: 2963 return optimizeFMinFMax(CI, Builder); 2964 case LibFunc_cabs: 2965 case LibFunc_cabsf: 2966 case LibFunc_cabsl: 2967 return optimizeCAbs(CI, Builder); 2968 default: 2969 return nullptr; 2970 } 2971 } 2972 2973 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 2974 // TODO: Split out the code below that operates on FP calls so that 2975 // we can all non-FP calls with the StrictFP attribute to be 2976 // optimized. 2977 if (CI->isNoBuiltin()) 2978 return nullptr; 2979 2980 LibFunc Func; 2981 Function *Callee = CI->getCalledFunction(); 2982 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 2983 2984 SmallVector<OperandBundleDef, 2> OpBundles; 2985 CI->getOperandBundlesAsDefs(OpBundles); 2986 2987 IRBuilderBase::OperandBundlesGuard Guard(Builder); 2988 Builder.setDefaultOperandBundles(OpBundles); 2989 2990 // Command-line parameter overrides instruction attribute. 2991 // This can't be moved to optimizeFloatingPointLibCall() because it may be 2992 // used by the intrinsic optimizations. 2993 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 2994 UnsafeFPShrink = EnableUnsafeFPShrink; 2995 else if (isa<FPMathOperator>(CI) && CI->isFast()) 2996 UnsafeFPShrink = true; 2997 2998 // First, check for intrinsics. 2999 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3000 if (!IsCallingConvC) 3001 return nullptr; 3002 // The FP intrinsics have corresponding constrained versions so we don't 3003 // need to check for the StrictFP attribute here. 3004 switch (II->getIntrinsicID()) { 3005 case Intrinsic::pow: 3006 return optimizePow(CI, Builder); 3007 case Intrinsic::exp2: 3008 return optimizeExp2(CI, Builder); 3009 case Intrinsic::log: 3010 case Intrinsic::log2: 3011 case Intrinsic::log10: 3012 return optimizeLog(CI, Builder); 3013 case Intrinsic::sqrt: 3014 return optimizeSqrt(CI, Builder); 3015 case Intrinsic::memset: 3016 return optimizeMemSet(CI, Builder); 3017 case Intrinsic::memcpy: 3018 return optimizeMemCpy(CI, Builder); 3019 case Intrinsic::memmove: 3020 return optimizeMemMove(CI, Builder); 3021 default: 3022 return nullptr; 3023 } 3024 } 3025 3026 // Also try to simplify calls to fortified library functions. 3027 if (Value *SimplifiedFortifiedCI = 3028 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3029 // Try to further simplify the result. 3030 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3031 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3032 // Ensure that SimplifiedCI's uses are complete, since some calls have 3033 // their uses analyzed. 3034 replaceAllUsesWith(CI, SimplifiedCI); 3035 3036 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3037 // we might replace later on. 3038 IRBuilderBase::InsertPointGuard Guard(Builder); 3039 Builder.SetInsertPoint(SimplifiedCI); 3040 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3041 // If we were able to further simplify, remove the now redundant call. 3042 substituteInParent(SimplifiedCI, V); 3043 return V; 3044 } 3045 } 3046 return SimplifiedFortifiedCI; 3047 } 3048 3049 // Then check for known library functions. 3050 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3051 // We never change the calling convention. 3052 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3053 return nullptr; 3054 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3055 return V; 3056 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3057 return V; 3058 switch (Func) { 3059 case LibFunc_ffs: 3060 case LibFunc_ffsl: 3061 case LibFunc_ffsll: 3062 return optimizeFFS(CI, Builder); 3063 case LibFunc_fls: 3064 case LibFunc_flsl: 3065 case LibFunc_flsll: 3066 return optimizeFls(CI, Builder); 3067 case LibFunc_abs: 3068 case LibFunc_labs: 3069 case LibFunc_llabs: 3070 return optimizeAbs(CI, Builder); 3071 case LibFunc_isdigit: 3072 return optimizeIsDigit(CI, Builder); 3073 case LibFunc_isascii: 3074 return optimizeIsAscii(CI, Builder); 3075 case LibFunc_toascii: 3076 return optimizeToAscii(CI, Builder); 3077 case LibFunc_atoi: 3078 case LibFunc_atol: 3079 case LibFunc_atoll: 3080 return optimizeAtoi(CI, Builder); 3081 case LibFunc_strtol: 3082 case LibFunc_strtoll: 3083 return optimizeStrtol(CI, Builder); 3084 case LibFunc_printf: 3085 return optimizePrintF(CI, Builder); 3086 case LibFunc_sprintf: 3087 return optimizeSPrintF(CI, Builder); 3088 case LibFunc_snprintf: 3089 return optimizeSnPrintF(CI, Builder); 3090 case LibFunc_fprintf: 3091 return optimizeFPrintF(CI, Builder); 3092 case LibFunc_fwrite: 3093 return optimizeFWrite(CI, Builder); 3094 case LibFunc_fputs: 3095 return optimizeFPuts(CI, Builder); 3096 case LibFunc_puts: 3097 return optimizePuts(CI, Builder); 3098 case LibFunc_perror: 3099 return optimizeErrorReporting(CI, Builder); 3100 case LibFunc_vfprintf: 3101 case LibFunc_fiprintf: 3102 return optimizeErrorReporting(CI, Builder, 0); 3103 default: 3104 return nullptr; 3105 } 3106 } 3107 return nullptr; 3108 } 3109 3110 LibCallSimplifier::LibCallSimplifier( 3111 const DataLayout &DL, const TargetLibraryInfo *TLI, 3112 OptimizationRemarkEmitter &ORE, 3113 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3114 function_ref<void(Instruction *, Value *)> Replacer, 3115 function_ref<void(Instruction *)> Eraser) 3116 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3117 UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} 3118 3119 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3120 // Indirect through the replacer used in this instance. 3121 Replacer(I, With); 3122 } 3123 3124 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3125 Eraser(I); 3126 } 3127 3128 // TODO: 3129 // Additional cases that we need to add to this file: 3130 // 3131 // cbrt: 3132 // * cbrt(expN(X)) -> expN(x/3) 3133 // * cbrt(sqrt(x)) -> pow(x,1/6) 3134 // * cbrt(cbrt(x)) -> pow(x,1/9) 3135 // 3136 // exp, expf, expl: 3137 // * exp(log(x)) -> x 3138 // 3139 // log, logf, logl: 3140 // * log(exp(x)) -> x 3141 // * log(exp(y)) -> y*log(e) 3142 // * log(exp10(y)) -> y*log(10) 3143 // * log(sqrt(x)) -> 0.5*log(x) 3144 // 3145 // pow, powf, powl: 3146 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3147 // * pow(pow(x,y),z)-> pow(x,y*z) 3148 // 3149 // signbit: 3150 // * signbit(cnst) -> cnst' 3151 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3152 // 3153 // sqrt, sqrtf, sqrtl: 3154 // * sqrt(expN(x)) -> expN(x*0.5) 3155 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3156 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3157 // 3158 3159 //===----------------------------------------------------------------------===// 3160 // Fortified Library Call Optimizations 3161 //===----------------------------------------------------------------------===// 3162 3163 bool 3164 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3165 unsigned ObjSizeOp, 3166 Optional<unsigned> SizeOp, 3167 Optional<unsigned> StrOp, 3168 Optional<unsigned> FlagOp) { 3169 // If this function takes a flag argument, the implementation may use it to 3170 // perform extra checks. Don't fold into the non-checking variant. 3171 if (FlagOp) { 3172 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3173 if (!Flag || !Flag->isZero()) 3174 return false; 3175 } 3176 3177 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3178 return true; 3179 3180 if (ConstantInt *ObjSizeCI = 3181 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3182 if (ObjSizeCI->isMinusOne()) 3183 return true; 3184 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3185 if (OnlyLowerUnknownSize) 3186 return false; 3187 if (StrOp) { 3188 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3189 // If the length is 0 we don't know how long it is and so we can't 3190 // remove the check. 3191 if (Len) 3192 annotateDereferenceableBytes(CI, *StrOp, Len); 3193 else 3194 return false; 3195 return ObjSizeCI->getZExtValue() >= Len; 3196 } 3197 3198 if (SizeOp) { 3199 if (ConstantInt *SizeCI = 3200 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3201 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3202 } 3203 } 3204 return false; 3205 } 3206 3207 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3208 IRBuilderBase &B) { 3209 if (isFortifiedCallFoldable(CI, 3, 2)) { 3210 CallInst *NewCI = 3211 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3212 Align(1), CI->getArgOperand(2)); 3213 NewCI->setAttributes(CI->getAttributes()); 3214 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3215 return CI->getArgOperand(0); 3216 } 3217 return nullptr; 3218 } 3219 3220 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3221 IRBuilderBase &B) { 3222 if (isFortifiedCallFoldable(CI, 3, 2)) { 3223 CallInst *NewCI = 3224 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3225 Align(1), CI->getArgOperand(2)); 3226 NewCI->setAttributes(CI->getAttributes()); 3227 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3228 return CI->getArgOperand(0); 3229 } 3230 return nullptr; 3231 } 3232 3233 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3234 IRBuilderBase &B) { 3235 if (isFortifiedCallFoldable(CI, 3, 2)) { 3236 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3237 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3238 CI->getArgOperand(2), Align(1)); 3239 NewCI->setAttributes(CI->getAttributes()); 3240 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3241 return CI->getArgOperand(0); 3242 } 3243 return nullptr; 3244 } 3245 3246 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3247 IRBuilderBase &B) { 3248 const DataLayout &DL = CI->getModule()->getDataLayout(); 3249 if (isFortifiedCallFoldable(CI, 3, 2)) 3250 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3251 CI->getArgOperand(2), B, DL, TLI)) { 3252 CallInst *NewCI = cast<CallInst>(Call); 3253 NewCI->setAttributes(CI->getAttributes()); 3254 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3255 return NewCI; 3256 } 3257 return nullptr; 3258 } 3259 3260 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3261 IRBuilderBase &B, 3262 LibFunc Func) { 3263 const DataLayout &DL = CI->getModule()->getDataLayout(); 3264 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3265 *ObjSize = CI->getArgOperand(2); 3266 3267 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3268 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3269 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3270 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3271 } 3272 3273 // If a) we don't have any length information, or b) we know this will 3274 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3275 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3276 // TODO: It might be nice to get a maximum length out of the possible 3277 // string lengths for varying. 3278 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3279 if (Func == LibFunc_strcpy_chk) 3280 return emitStrCpy(Dst, Src, B, TLI); 3281 else 3282 return emitStpCpy(Dst, Src, B, TLI); 3283 } 3284 3285 if (OnlyLowerUnknownSize) 3286 return nullptr; 3287 3288 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3289 uint64_t Len = GetStringLength(Src); 3290 if (Len) 3291 annotateDereferenceableBytes(CI, 1, Len); 3292 else 3293 return nullptr; 3294 3295 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3296 // sizeof(int*) for every target. So the assumption used here to derive the 3297 // SizeTBits based on the size of an integer pointer in address space zero 3298 // isn't always valid. 3299 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3300 Value *LenV = ConstantInt::get(SizeTTy, Len); 3301 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3302 // If the function was an __stpcpy_chk, and we were able to fold it into 3303 // a __memcpy_chk, we still need to return the correct end pointer. 3304 if (Ret && Func == LibFunc_stpcpy_chk) 3305 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3306 return Ret; 3307 } 3308 3309 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3310 IRBuilderBase &B) { 3311 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3312 return emitStrLen(CI->getArgOperand(0), B, CI->getModule()->getDataLayout(), 3313 TLI); 3314 return nullptr; 3315 } 3316 3317 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3318 IRBuilderBase &B, 3319 LibFunc Func) { 3320 if (isFortifiedCallFoldable(CI, 3, 2)) { 3321 if (Func == LibFunc_strncpy_chk) 3322 return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3323 CI->getArgOperand(2), B, TLI); 3324 else 3325 return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3326 CI->getArgOperand(2), B, TLI); 3327 } 3328 3329 return nullptr; 3330 } 3331 3332 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3333 IRBuilderBase &B) { 3334 if (isFortifiedCallFoldable(CI, 4, 3)) 3335 return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3336 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI); 3337 3338 return nullptr; 3339 } 3340 3341 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3342 IRBuilderBase &B) { 3343 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3344 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3345 return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3346 CI->getArgOperand(4), VariadicArgs, B, TLI); 3347 } 3348 3349 return nullptr; 3350 } 3351 3352 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3353 IRBuilderBase &B) { 3354 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3355 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3356 return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs, 3357 B, TLI); 3358 } 3359 3360 return nullptr; 3361 } 3362 3363 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3364 IRBuilderBase &B) { 3365 if (isFortifiedCallFoldable(CI, 2)) 3366 return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI); 3367 3368 return nullptr; 3369 } 3370 3371 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3372 IRBuilderBase &B) { 3373 if (isFortifiedCallFoldable(CI, 3)) 3374 return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3375 CI->getArgOperand(2), B, TLI); 3376 3377 return nullptr; 3378 } 3379 3380 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3381 IRBuilderBase &B) { 3382 if (isFortifiedCallFoldable(CI, 3)) 3383 return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3384 CI->getArgOperand(2), B, TLI); 3385 3386 return nullptr; 3387 } 3388 3389 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3390 IRBuilderBase &B) { 3391 if (isFortifiedCallFoldable(CI, 3)) 3392 return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3393 CI->getArgOperand(2), B, TLI); 3394 3395 return nullptr; 3396 } 3397 3398 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3399 IRBuilderBase &B) { 3400 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3401 return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3402 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI); 3403 3404 return nullptr; 3405 } 3406 3407 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3408 IRBuilderBase &B) { 3409 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3410 return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3411 CI->getArgOperand(4), B, TLI); 3412 3413 return nullptr; 3414 } 3415 3416 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3417 IRBuilderBase &Builder) { 3418 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3419 // Some clang users checked for _chk libcall availability using: 3420 // __has_builtin(__builtin___memcpy_chk) 3421 // When compiling with -fno-builtin, this is always true. 3422 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3423 // end up with fortified libcalls, which isn't acceptable in a freestanding 3424 // environment which only provides their non-fortified counterparts. 3425 // 3426 // Until we change clang and/or teach external users to check for availability 3427 // differently, disregard the "nobuiltin" attribute and TLI::has. 3428 // 3429 // PR23093. 3430 3431 LibFunc Func; 3432 Function *Callee = CI->getCalledFunction(); 3433 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3434 3435 SmallVector<OperandBundleDef, 2> OpBundles; 3436 CI->getOperandBundlesAsDefs(OpBundles); 3437 3438 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3439 Builder.setDefaultOperandBundles(OpBundles); 3440 3441 // First, check that this is a known library functions and that the prototype 3442 // is correct. 3443 if (!TLI->getLibFunc(*Callee, Func)) 3444 return nullptr; 3445 3446 // We never change the calling convention. 3447 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3448 return nullptr; 3449 3450 switch (Func) { 3451 case LibFunc_memcpy_chk: 3452 return optimizeMemCpyChk(CI, Builder); 3453 case LibFunc_mempcpy_chk: 3454 return optimizeMemPCpyChk(CI, Builder); 3455 case LibFunc_memmove_chk: 3456 return optimizeMemMoveChk(CI, Builder); 3457 case LibFunc_memset_chk: 3458 return optimizeMemSetChk(CI, Builder); 3459 case LibFunc_stpcpy_chk: 3460 case LibFunc_strcpy_chk: 3461 return optimizeStrpCpyChk(CI, Builder, Func); 3462 case LibFunc_strlen_chk: 3463 return optimizeStrLenChk(CI, Builder); 3464 case LibFunc_stpncpy_chk: 3465 case LibFunc_strncpy_chk: 3466 return optimizeStrpNCpyChk(CI, Builder, Func); 3467 case LibFunc_memccpy_chk: 3468 return optimizeMemCCpyChk(CI, Builder); 3469 case LibFunc_snprintf_chk: 3470 return optimizeSNPrintfChk(CI, Builder); 3471 case LibFunc_sprintf_chk: 3472 return optimizeSPrintfChk(CI, Builder); 3473 case LibFunc_strcat_chk: 3474 return optimizeStrCatChk(CI, Builder); 3475 case LibFunc_strlcat_chk: 3476 return optimizeStrLCat(CI, Builder); 3477 case LibFunc_strncat_chk: 3478 return optimizeStrNCatChk(CI, Builder); 3479 case LibFunc_strlcpy_chk: 3480 return optimizeStrLCpyChk(CI, Builder); 3481 case LibFunc_vsnprintf_chk: 3482 return optimizeVSNPrintfChk(CI, Builder); 3483 case LibFunc_vsprintf_chk: 3484 return optimizeVSPrintfChk(CI, Builder); 3485 default: 3486 break; 3487 } 3488 return nullptr; 3489 } 3490 3491 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3492 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3493 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3494