xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
25ffd83dbSDimitry Andric //
35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
65ffd83dbSDimitry Andric //
75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
85ffd83dbSDimitry Andric //
95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander,
105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution
115ffd83dbSDimitry Andric // expression.
125ffd83dbSDimitry Andric //
135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
145ffd83dbSDimitry Andric 
155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h"
17bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h"
185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h"
195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h"
215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h"
235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h"
245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h"
255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h"
265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h"
275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h"
285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h"
29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h"
305ffd83dbSDimitry Andric 
31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X)
33fe6060f1SDimitry Andric #else
34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X)
35fe6060f1SDimitry Andric #endif
36fe6060f1SDimitry Andric 
375ffd83dbSDimitry Andric using namespace llvm;
385ffd83dbSDimitry Andric 
395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget(
405ffd83dbSDimitry Andric     "scev-cheap-expansion-budget", cl::Hidden, cl::init(4),
415ffd83dbSDimitry Andric     cl::desc("When performing SCEV expansion only if it is cheap to do, this "
425ffd83dbSDimitry Andric              "controls the budget that is considered cheap (default = 4)"));
435ffd83dbSDimitry Andric 
445ffd83dbSDimitry Andric using namespace PatternMatch;
455ffd83dbSDimitry Andric 
46*0fca6ea1SDimitry Andric PoisonFlags::PoisonFlags(const Instruction *I) {
47*0fca6ea1SDimitry Andric   NUW = false;
48*0fca6ea1SDimitry Andric   NSW = false;
49*0fca6ea1SDimitry Andric   Exact = false;
50*0fca6ea1SDimitry Andric   Disjoint = false;
51*0fca6ea1SDimitry Andric   NNeg = false;
52*0fca6ea1SDimitry Andric   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) {
53*0fca6ea1SDimitry Andric     NUW = OBO->hasNoUnsignedWrap();
54*0fca6ea1SDimitry Andric     NSW = OBO->hasNoSignedWrap();
55*0fca6ea1SDimitry Andric   }
56*0fca6ea1SDimitry Andric   if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
57*0fca6ea1SDimitry Andric     Exact = PEO->isExact();
58*0fca6ea1SDimitry Andric   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
59*0fca6ea1SDimitry Andric     Disjoint = PDI->isDisjoint();
60*0fca6ea1SDimitry Andric   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
61*0fca6ea1SDimitry Andric     NNeg = PNI->hasNonNeg();
62*0fca6ea1SDimitry Andric   if (auto *TI = dyn_cast<TruncInst>(I)) {
63*0fca6ea1SDimitry Andric     NUW = TI->hasNoUnsignedWrap();
64*0fca6ea1SDimitry Andric     NSW = TI->hasNoSignedWrap();
65*0fca6ea1SDimitry Andric   }
66*0fca6ea1SDimitry Andric }
67*0fca6ea1SDimitry Andric 
68*0fca6ea1SDimitry Andric void PoisonFlags::apply(Instruction *I) {
69*0fca6ea1SDimitry Andric   if (isa<OverflowingBinaryOperator>(I)) {
70*0fca6ea1SDimitry Andric     I->setHasNoUnsignedWrap(NUW);
71*0fca6ea1SDimitry Andric     I->setHasNoSignedWrap(NSW);
72*0fca6ea1SDimitry Andric   }
73*0fca6ea1SDimitry Andric   if (isa<PossiblyExactOperator>(I))
74*0fca6ea1SDimitry Andric     I->setIsExact(Exact);
75*0fca6ea1SDimitry Andric   if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I))
76*0fca6ea1SDimitry Andric     PDI->setIsDisjoint(Disjoint);
77*0fca6ea1SDimitry Andric   if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I))
78*0fca6ea1SDimitry Andric     PNI->setNonNeg(NNeg);
79*0fca6ea1SDimitry Andric   if (isa<TruncInst>(I)) {
80*0fca6ea1SDimitry Andric     I->setHasNoUnsignedWrap(NUW);
81*0fca6ea1SDimitry Andric     I->setHasNoSignedWrap(NSW);
82*0fca6ea1SDimitry Andric   }
83*0fca6ea1SDimitry Andric }
84*0fca6ea1SDimitry Andric 
855ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
86e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or
875ffd83dbSDimitry Andric /// creating a new one.
885ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
895ffd83dbSDimitry Andric                                        Instruction::CastOps Op,
905ffd83dbSDimitry Andric                                        BasicBlock::iterator IP) {
915ffd83dbSDimitry Andric   // This function must be called with the builder having a valid insertion
925ffd83dbSDimitry Andric   // point. It doesn't need to be the actual IP where the uses of the returned
935ffd83dbSDimitry Andric   // cast will be added, but it must dominate such IP.
945ffd83dbSDimitry Andric   // We use this precondition to produce a cast that will dominate all its
955ffd83dbSDimitry Andric   // uses. In particular, this is crucial for the case where the builder's
965ffd83dbSDimitry Andric   // insertion point *is* the point where we were asked to put the cast.
975ffd83dbSDimitry Andric   // Since we don't know the builder's insertion point is actually
985ffd83dbSDimitry Andric   // where the uses will be added (only that it dominates it), we are
995ffd83dbSDimitry Andric   // not allowed to move it.
1005ffd83dbSDimitry Andric   BasicBlock::iterator BIP = Builder.GetInsertPoint();
1015ffd83dbSDimitry Andric 
102fe6060f1SDimitry Andric   Value *Ret = nullptr;
1035ffd83dbSDimitry Andric 
1045ffd83dbSDimitry Andric   // Check to see if there is already a cast!
105e8d8bef9SDimitry Andric   for (User *U : V->users()) {
106e8d8bef9SDimitry Andric     if (U->getType() != Ty)
107e8d8bef9SDimitry Andric       continue;
108e8d8bef9SDimitry Andric     CastInst *CI = dyn_cast<CastInst>(U);
109e8d8bef9SDimitry Andric     if (!CI || CI->getOpcode() != Op)
110e8d8bef9SDimitry Andric       continue;
111e8d8bef9SDimitry Andric 
112e8d8bef9SDimitry Andric     // Found a suitable cast that is at IP or comes before IP. Use it. Note that
113e8d8bef9SDimitry Andric     // the cast must also properly dominate the Builder's insertion point.
114e8d8bef9SDimitry Andric     if (IP->getParent() == CI->getParent() && &*BIP != CI &&
115e8d8bef9SDimitry Andric         (&*IP == CI || CI->comesBefore(&*IP))) {
1165ffd83dbSDimitry Andric       Ret = CI;
1175ffd83dbSDimitry Andric       break;
1185ffd83dbSDimitry Andric     }
119e8d8bef9SDimitry Andric   }
1205ffd83dbSDimitry Andric 
1215ffd83dbSDimitry Andric   // Create a new cast.
122e8d8bef9SDimitry Andric   if (!Ret) {
123fe6060f1SDimitry Andric     SCEVInsertPointGuard Guard(Builder, this);
124fe6060f1SDimitry Andric     Builder.SetInsertPoint(&*IP);
125fe6060f1SDimitry Andric     Ret = Builder.CreateCast(Op, V, Ty, V->getName());
126e8d8bef9SDimitry Andric   }
1275ffd83dbSDimitry Andric 
1285ffd83dbSDimitry Andric   // We assert at the end of the function since IP might point to an
1295ffd83dbSDimitry Andric   // instruction with different dominance properties than a cast
1305ffd83dbSDimitry Andric   // (an invoke for example) and not dominate BIP (but the cast does).
131fe6060f1SDimitry Andric   assert(!isa<Instruction>(Ret) ||
132fe6060f1SDimitry Andric          SE.DT.dominates(cast<Instruction>(Ret), &*BIP));
1335ffd83dbSDimitry Andric 
1345ffd83dbSDimitry Andric   return Ret;
1355ffd83dbSDimitry Andric }
1365ffd83dbSDimitry Andric 
137e8d8bef9SDimitry Andric BasicBlock::iterator
138fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I,
139fe6060f1SDimitry Andric                                    Instruction *MustDominate) const {
1405ffd83dbSDimitry Andric   BasicBlock::iterator IP = ++I->getIterator();
1415ffd83dbSDimitry Andric   if (auto *II = dyn_cast<InvokeInst>(I))
1425ffd83dbSDimitry Andric     IP = II->getNormalDest()->begin();
1435ffd83dbSDimitry Andric 
1445ffd83dbSDimitry Andric   while (isa<PHINode>(IP))
1455ffd83dbSDimitry Andric     ++IP;
1465ffd83dbSDimitry Andric 
1475ffd83dbSDimitry Andric   if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
1485ffd83dbSDimitry Andric     ++IP;
1495ffd83dbSDimitry Andric   } else if (isa<CatchSwitchInst>(IP)) {
150e8d8bef9SDimitry Andric     IP = MustDominate->getParent()->getFirstInsertionPt();
1515ffd83dbSDimitry Andric   } else {
1525ffd83dbSDimitry Andric     assert(!IP->isEHPad() && "unexpected eh pad!");
1535ffd83dbSDimitry Andric   }
1545ffd83dbSDimitry Andric 
155e8d8bef9SDimitry Andric   // Adjust insert point to be after instructions inserted by the expander, so
156e8d8bef9SDimitry Andric   // we can re-use already inserted instructions. Avoid skipping past the
157e8d8bef9SDimitry Andric   // original \p MustDominate, in case it is an inserted instruction.
158e8d8bef9SDimitry Andric   while (isInsertedInstruction(&*IP) && &*IP != MustDominate)
159e8d8bef9SDimitry Andric     ++IP;
160e8d8bef9SDimitry Andric 
1615ffd83dbSDimitry Andric   return IP;
1625ffd83dbSDimitry Andric }
1635ffd83dbSDimitry Andric 
164fe6060f1SDimitry Andric BasicBlock::iterator
165fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const {
166fe6060f1SDimitry Andric   // Cast the argument at the beginning of the entry block, after
167fe6060f1SDimitry Andric   // any bitcasts of other arguments.
168fe6060f1SDimitry Andric   if (Argument *A = dyn_cast<Argument>(V)) {
169fe6060f1SDimitry Andric     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
170fe6060f1SDimitry Andric     while ((isa<BitCastInst>(IP) &&
171fe6060f1SDimitry Andric             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
172fe6060f1SDimitry Andric             cast<BitCastInst>(IP)->getOperand(0) != A) ||
173fe6060f1SDimitry Andric            isa<DbgInfoIntrinsic>(IP))
174fe6060f1SDimitry Andric       ++IP;
175fe6060f1SDimitry Andric     return IP;
176fe6060f1SDimitry Andric   }
177fe6060f1SDimitry Andric 
178fe6060f1SDimitry Andric   // Cast the instruction immediately after the instruction.
179fe6060f1SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
180fe6060f1SDimitry Andric     return findInsertPointAfter(I, &*Builder.GetInsertPoint());
181fe6060f1SDimitry Andric 
182fe6060f1SDimitry Andric   // Otherwise, this must be some kind of a constant,
183fe6060f1SDimitry Andric   // so let's plop this cast into the function's entry block.
184fe6060f1SDimitry Andric   assert(isa<Constant>(V) &&
185fe6060f1SDimitry Andric          "Expected the cast argument to be a global/constant");
186fe6060f1SDimitry Andric   return Builder.GetInsertBlock()
187fe6060f1SDimitry Andric       ->getParent()
188fe6060f1SDimitry Andric       ->getEntryBlock()
189fe6060f1SDimitry Andric       .getFirstInsertionPt();
190fe6060f1SDimitry Andric }
191fe6060f1SDimitry Andric 
1925ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
1935ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share
1945ffd83dbSDimitry Andric /// the casts.
1955ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
1965ffd83dbSDimitry Andric   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
1975ffd83dbSDimitry Andric   assert((Op == Instruction::BitCast ||
1985ffd83dbSDimitry Andric           Op == Instruction::PtrToInt ||
1995ffd83dbSDimitry Andric           Op == Instruction::IntToPtr) &&
2005ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot perform non-noop casts!");
2015ffd83dbSDimitry Andric   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
2025ffd83dbSDimitry Andric          "InsertNoopCastOfTo cannot change sizes!");
2035ffd83dbSDimitry Andric 
204e8d8bef9SDimitry Andric   // inttoptr only works for integral pointers. For non-integral pointers, we
20506c3fb27SDimitry Andric   // can create a GEP on null with the integral value as index. Note that
206e8d8bef9SDimitry Andric   // it is safe to use GEP of null instead of inttoptr here, because only
207e8d8bef9SDimitry Andric   // expressions already based on a GEP of null should be converted to pointers
208e8d8bef9SDimitry Andric   // during expansion.
209e8d8bef9SDimitry Andric   if (Op == Instruction::IntToPtr) {
210e8d8bef9SDimitry Andric     auto *PtrTy = cast<PointerType>(Ty);
2117a6dacacSDimitry Andric     if (DL.isNonIntegralPointerType(PtrTy))
2127a6dacacSDimitry Andric       return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep");
213e8d8bef9SDimitry Andric   }
2145ffd83dbSDimitry Andric   // Short-circuit unnecessary bitcasts.
2155ffd83dbSDimitry Andric   if (Op == Instruction::BitCast) {
2165ffd83dbSDimitry Andric     if (V->getType() == Ty)
2175ffd83dbSDimitry Andric       return V;
2185ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V)) {
2195ffd83dbSDimitry Andric       if (CI->getOperand(0)->getType() == Ty)
2205ffd83dbSDimitry Andric         return CI->getOperand(0);
2215ffd83dbSDimitry Andric     }
2225ffd83dbSDimitry Andric   }
2235ffd83dbSDimitry Andric   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
2245ffd83dbSDimitry Andric   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
2255ffd83dbSDimitry Andric       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
2265ffd83dbSDimitry Andric     if (CastInst *CI = dyn_cast<CastInst>(V))
2275ffd83dbSDimitry Andric       if ((CI->getOpcode() == Instruction::PtrToInt ||
2285ffd83dbSDimitry Andric            CI->getOpcode() == Instruction::IntToPtr) &&
2295ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getType()) ==
2305ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
2315ffd83dbSDimitry Andric         return CI->getOperand(0);
2325ffd83dbSDimitry Andric     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2335ffd83dbSDimitry Andric       if ((CE->getOpcode() == Instruction::PtrToInt ||
2345ffd83dbSDimitry Andric            CE->getOpcode() == Instruction::IntToPtr) &&
2355ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getType()) ==
2365ffd83dbSDimitry Andric           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
2375ffd83dbSDimitry Andric         return CE->getOperand(0);
2385ffd83dbSDimitry Andric   }
2395ffd83dbSDimitry Andric 
2405ffd83dbSDimitry Andric   // Fold a cast of a constant.
2415ffd83dbSDimitry Andric   if (Constant *C = dyn_cast<Constant>(V))
2425ffd83dbSDimitry Andric     return ConstantExpr::getCast(Op, C, Ty);
2435ffd83dbSDimitry Andric 
244fe6060f1SDimitry Andric   // Try to reuse existing cast, or insert one.
245fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V));
2465ffd83dbSDimitry Andric }
2475ffd83dbSDimitry Andric 
2485ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount
2495ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting
2505ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe.
2515ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
2525ffd83dbSDimitry Andric                                  Value *LHS, Value *RHS,
2535ffd83dbSDimitry Andric                                  SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
2545ffd83dbSDimitry Andric   // Fold a binop with constant operands.
2555ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(LHS))
2565ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(RHS))
257753f127fSDimitry Andric       if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL))
258753f127fSDimitry Andric         return Res;
2595ffd83dbSDimitry Andric 
2605ffd83dbSDimitry Andric   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
2615ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
2625ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
2635ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
2645ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
2655ffd83dbSDimitry Andric   if (IP != BlockBegin) {
2665ffd83dbSDimitry Andric     --IP;
2675ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
2685ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
2695ffd83dbSDimitry Andric       // generated code.
2705ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
2715ffd83dbSDimitry Andric         ScanLimit++;
2725ffd83dbSDimitry Andric 
2735ffd83dbSDimitry Andric       auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
2745ffd83dbSDimitry Andric         // Ensure that no-wrap flags match.
2755ffd83dbSDimitry Andric         if (isa<OverflowingBinaryOperator>(I)) {
2765ffd83dbSDimitry Andric           if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
2775ffd83dbSDimitry Andric             return true;
2785ffd83dbSDimitry Andric           if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
2795ffd83dbSDimitry Andric             return true;
2805ffd83dbSDimitry Andric         }
2815ffd83dbSDimitry Andric         // Conservatively, do not use any instruction which has any of exact
2825ffd83dbSDimitry Andric         // flags installed.
2835ffd83dbSDimitry Andric         if (isa<PossiblyExactOperator>(I) && I->isExact())
2845ffd83dbSDimitry Andric           return true;
2855ffd83dbSDimitry Andric         return false;
2865ffd83dbSDimitry Andric       };
2875ffd83dbSDimitry Andric       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
2885ffd83dbSDimitry Andric           IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
2895ffd83dbSDimitry Andric         return &*IP;
2905ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
2915ffd83dbSDimitry Andric     }
2925ffd83dbSDimitry Andric   }
2935ffd83dbSDimitry Andric 
2945ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
2955ffd83dbSDimitry Andric   DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
2965ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
2975ffd83dbSDimitry Andric 
2985ffd83dbSDimitry Andric   if (IsSafeToHoist) {
2995ffd83dbSDimitry Andric     // Move the insertion point out of as many loops as we can.
3005ffd83dbSDimitry Andric     while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
3015ffd83dbSDimitry Andric       if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
3025ffd83dbSDimitry Andric       BasicBlock *Preheader = L->getLoopPreheader();
3035ffd83dbSDimitry Andric       if (!Preheader) break;
3045ffd83dbSDimitry Andric 
3055ffd83dbSDimitry Andric       // Ok, move up a level.
3065ffd83dbSDimitry Andric       Builder.SetInsertPoint(Preheader->getTerminator());
3075ffd83dbSDimitry Andric     }
3085ffd83dbSDimitry Andric   }
3095ffd83dbSDimitry Andric 
3105ffd83dbSDimitry Andric   // If we haven't found this binop, insert it.
31181ad6265SDimitry Andric   // TODO: Use the Builder, which will make CreateBinOp below fold with
31281ad6265SDimitry Andric   // InstSimplifyFolder.
31381ad6265SDimitry Andric   Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS));
3145ffd83dbSDimitry Andric   BO->setDebugLoc(Loc);
3155ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNUW)
3165ffd83dbSDimitry Andric     BO->setHasNoUnsignedWrap();
3175ffd83dbSDimitry Andric   if (Flags & SCEV::FlagNSW)
3185ffd83dbSDimitry Andric     BO->setHasNoSignedWrap();
3195ffd83dbSDimitry Andric 
3205ffd83dbSDimitry Andric   return BO;
3215ffd83dbSDimitry Andric }
3225ffd83dbSDimitry Andric 
3235ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into
3245ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
3255ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules
3265ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in
3275ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing
3285ffd83dbSDimitry Andric /// for details.
3295ffd83dbSDimitry Andric ///
3305ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on
3315ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
3325ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted
3335ffd83dbSDimitry Andric /// into getelementptr.
3345ffd83dbSDimitry Andric ///
3355ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more
3365ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others
3375ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the
3385ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop.
3395ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple
3405ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very
3415ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes
3425ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means
3435ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the
3445ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The
3455ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and
3465ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting
3475ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what
3485ffd83dbSDimitry Andric /// can be folded using target addressing modes.
3495ffd83dbSDimitry Andric ///
3505f757f3fSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) {
3515ffd83dbSDimitry Andric   assert(!isa<Instruction>(V) ||
3525ffd83dbSDimitry Andric          SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
3535ffd83dbSDimitry Andric 
3545f757f3fSDimitry Andric   Value *Idx = expand(Offset);
3555ffd83dbSDimitry Andric 
3565ffd83dbSDimitry Andric   // Fold a GEP with constant operands.
3575ffd83dbSDimitry Andric   if (Constant *CLHS = dyn_cast<Constant>(V))
3585ffd83dbSDimitry Andric     if (Constant *CRHS = dyn_cast<Constant>(Idx))
3597a6dacacSDimitry Andric       return Builder.CreatePtrAdd(CLHS, CRHS);
3605ffd83dbSDimitry Andric 
3615ffd83dbSDimitry Andric   // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
3625ffd83dbSDimitry Andric   unsigned ScanLimit = 6;
3635ffd83dbSDimitry Andric   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
3645ffd83dbSDimitry Andric   // Scanning starts from the last instruction before the insertion point.
3655ffd83dbSDimitry Andric   BasicBlock::iterator IP = Builder.GetInsertPoint();
3665ffd83dbSDimitry Andric   if (IP != BlockBegin) {
3675ffd83dbSDimitry Andric     --IP;
3685ffd83dbSDimitry Andric     for (; ScanLimit; --IP, --ScanLimit) {
3695ffd83dbSDimitry Andric       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
3705ffd83dbSDimitry Andric       // generated code.
3715ffd83dbSDimitry Andric       if (isa<DbgInfoIntrinsic>(IP))
3725ffd83dbSDimitry Andric         ScanLimit++;
3735ffd83dbSDimitry Andric       if (IP->getOpcode() == Instruction::GetElementPtr &&
37481ad6265SDimitry Andric           IP->getOperand(0) == V && IP->getOperand(1) == Idx &&
37581ad6265SDimitry Andric           cast<GEPOperator>(&*IP)->getSourceElementType() ==
3765f757f3fSDimitry Andric               Builder.getInt8Ty())
3775ffd83dbSDimitry Andric         return &*IP;
3785ffd83dbSDimitry Andric       if (IP == BlockBegin) break;
3795ffd83dbSDimitry Andric     }
3805ffd83dbSDimitry Andric   }
3815ffd83dbSDimitry Andric 
3825ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
3835ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
3845ffd83dbSDimitry Andric 
3855ffd83dbSDimitry Andric   // Move the insertion point out of as many loops as we can.
3865ffd83dbSDimitry Andric   while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
3875ffd83dbSDimitry Andric     if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
3885ffd83dbSDimitry Andric     BasicBlock *Preheader = L->getLoopPreheader();
3895ffd83dbSDimitry Andric     if (!Preheader) break;
3905ffd83dbSDimitry Andric 
3915ffd83dbSDimitry Andric     // Ok, move up a level.
3925ffd83dbSDimitry Andric     Builder.SetInsertPoint(Preheader->getTerminator());
3935ffd83dbSDimitry Andric   }
3945ffd83dbSDimitry Andric 
3955ffd83dbSDimitry Andric   // Emit a GEP.
3967a6dacacSDimitry Andric   return Builder.CreatePtrAdd(V, Idx, "scevgep");
3975ffd83dbSDimitry Andric }
3985ffd83dbSDimitry Andric 
3995ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
4005ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are
4015ffd83dbSDimitry Andric /// neighboring, pick the later.
4025ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
4035ffd83dbSDimitry Andric                                         DominatorTree &DT) {
4045ffd83dbSDimitry Andric   if (!A) return B;
4055ffd83dbSDimitry Andric   if (!B) return A;
4065ffd83dbSDimitry Andric   if (A->contains(B)) return B;
4075ffd83dbSDimitry Andric   if (B->contains(A)) return A;
4085ffd83dbSDimitry Andric   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
4095ffd83dbSDimitry Andric   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
4105ffd83dbSDimitry Andric   return A; // Arbitrarily break the tie.
4115ffd83dbSDimitry Andric }
4125ffd83dbSDimitry Andric 
4135ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given
4145ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop.
4155ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
4165ffd83dbSDimitry Andric   // Test whether we've already computed the most relevant loop for this SCEV.
4175ffd83dbSDimitry Andric   auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
4185ffd83dbSDimitry Andric   if (!Pair.second)
4195ffd83dbSDimitry Andric     return Pair.first->second;
4205ffd83dbSDimitry Andric 
421bdd1243dSDimitry Andric   switch (S->getSCEVType()) {
422bdd1243dSDimitry Andric   case scConstant:
42306c3fb27SDimitry Andric   case scVScale:
424bdd1243dSDimitry Andric     return nullptr; // A constant has no relevant loops.
425bdd1243dSDimitry Andric   case scTruncate:
426bdd1243dSDimitry Andric   case scZeroExtend:
427bdd1243dSDimitry Andric   case scSignExtend:
428bdd1243dSDimitry Andric   case scPtrToInt:
429bdd1243dSDimitry Andric   case scAddExpr:
430bdd1243dSDimitry Andric   case scMulExpr:
431bdd1243dSDimitry Andric   case scUDivExpr:
432bdd1243dSDimitry Andric   case scAddRecExpr:
433bdd1243dSDimitry Andric   case scUMaxExpr:
434bdd1243dSDimitry Andric   case scSMaxExpr:
435bdd1243dSDimitry Andric   case scUMinExpr:
436bdd1243dSDimitry Andric   case scSMinExpr:
437bdd1243dSDimitry Andric   case scSequentialUMinExpr: {
438bdd1243dSDimitry Andric     const Loop *L = nullptr;
439bdd1243dSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
440bdd1243dSDimitry Andric       L = AR->getLoop();
441bdd1243dSDimitry Andric     for (const SCEV *Op : S->operands())
442bdd1243dSDimitry Andric       L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
443bdd1243dSDimitry Andric     return RelevantLoops[S] = L;
444bdd1243dSDimitry Andric   }
445bdd1243dSDimitry Andric   case scUnknown: {
446bdd1243dSDimitry Andric     const SCEVUnknown *U = cast<SCEVUnknown>(S);
4475ffd83dbSDimitry Andric     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
4485ffd83dbSDimitry Andric       return Pair.first->second = SE.LI.getLoopFor(I->getParent());
4495ffd83dbSDimitry Andric     // A non-instruction has no relevant loops.
4505ffd83dbSDimitry Andric     return nullptr;
4515ffd83dbSDimitry Andric   }
452bdd1243dSDimitry Andric   case scCouldNotCompute:
453bdd1243dSDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4545ffd83dbSDimitry Andric   }
4555ffd83dbSDimitry Andric   llvm_unreachable("Unexpected SCEV type!");
4565ffd83dbSDimitry Andric }
4575ffd83dbSDimitry Andric 
4585ffd83dbSDimitry Andric namespace {
4595ffd83dbSDimitry Andric 
4605ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop.
4615ffd83dbSDimitry Andric class LoopCompare {
4625ffd83dbSDimitry Andric   DominatorTree &DT;
4635ffd83dbSDimitry Andric public:
4645ffd83dbSDimitry Andric   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
4655ffd83dbSDimitry Andric 
4665ffd83dbSDimitry Andric   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
4675ffd83dbSDimitry Andric                   std::pair<const Loop *, const SCEV *> RHS) const {
4685ffd83dbSDimitry Andric     // Keep pointer operands sorted at the end.
4695ffd83dbSDimitry Andric     if (LHS.second->getType()->isPointerTy() !=
4705ffd83dbSDimitry Andric         RHS.second->getType()->isPointerTy())
4715ffd83dbSDimitry Andric       return LHS.second->getType()->isPointerTy();
4725ffd83dbSDimitry Andric 
4735ffd83dbSDimitry Andric     // Compare loops with PickMostRelevantLoop.
4745ffd83dbSDimitry Andric     if (LHS.first != RHS.first)
4755ffd83dbSDimitry Andric       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
4765ffd83dbSDimitry Andric 
4775ffd83dbSDimitry Andric     // If one operand is a non-constant negative and the other is not,
4785ffd83dbSDimitry Andric     // put the non-constant negative on the right so that a sub can
4795ffd83dbSDimitry Andric     // be used instead of a negate and add.
4805ffd83dbSDimitry Andric     if (LHS.second->isNonConstantNegative()) {
4815ffd83dbSDimitry Andric       if (!RHS.second->isNonConstantNegative())
4825ffd83dbSDimitry Andric         return false;
4835ffd83dbSDimitry Andric     } else if (RHS.second->isNonConstantNegative())
4845ffd83dbSDimitry Andric       return true;
4855ffd83dbSDimitry Andric 
4865ffd83dbSDimitry Andric     // Otherwise they are equivalent according to this comparison.
4875ffd83dbSDimitry Andric     return false;
4885ffd83dbSDimitry Andric   }
4895ffd83dbSDimitry Andric };
4905ffd83dbSDimitry Andric 
4915ffd83dbSDimitry Andric }
4925ffd83dbSDimitry Andric 
4935ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
494*0fca6ea1SDimitry Andric   // Recognize the canonical representation of an unsimplifed urem.
495*0fca6ea1SDimitry Andric   const SCEV *URemLHS = nullptr;
496*0fca6ea1SDimitry Andric   const SCEV *URemRHS = nullptr;
497*0fca6ea1SDimitry Andric   if (SE.matchURem(S, URemLHS, URemRHS)) {
498*0fca6ea1SDimitry Andric     Value *LHS = expand(URemLHS);
499*0fca6ea1SDimitry Andric     Value *RHS = expand(URemRHS);
500*0fca6ea1SDimitry Andric     return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap,
501*0fca6ea1SDimitry Andric                       /*IsSafeToHoist*/ false);
502*0fca6ea1SDimitry Andric   }
503*0fca6ea1SDimitry Andric 
5045ffd83dbSDimitry Andric   // Collect all the add operands in a loop, along with their associated loops.
5055ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal, and
5065ffd83dbSDimitry Andric   // so that pointer operands are inserted first, which the code below relies on
5075ffd83dbSDimitry Andric   // to form more involved GEPs.
5085ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
509349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
510349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
5115ffd83dbSDimitry Andric 
5125ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants and
5135ffd83dbSDimitry Andric   // pointer operands precede non-pointer operands.
5145ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
5155ffd83dbSDimitry Andric 
5165ffd83dbSDimitry Andric   // Emit instructions to add all the operands. Hoist as much as possible
5175ffd83dbSDimitry Andric   // out of loops, and form meaningful getelementptrs where possible.
5185ffd83dbSDimitry Andric   Value *Sum = nullptr;
5195ffd83dbSDimitry Andric   for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
5205ffd83dbSDimitry Andric     const Loop *CurLoop = I->first;
5215ffd83dbSDimitry Andric     const SCEV *Op = I->second;
5225ffd83dbSDimitry Andric     if (!Sum) {
5235ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
5245ffd83dbSDimitry Andric       Sum = expand(Op);
5255ffd83dbSDimitry Andric       ++I;
526349cc55cSDimitry Andric       continue;
527349cc55cSDimitry Andric     }
528349cc55cSDimitry Andric 
529349cc55cSDimitry Andric     assert(!Op->getType()->isPointerTy() && "Only first op can be pointer");
53006c3fb27SDimitry Andric     if (isa<PointerType>(Sum->getType())) {
5315ffd83dbSDimitry Andric       // The running sum expression is a pointer. Try to form a getelementptr
5325ffd83dbSDimitry Andric       // at this level with that as the base.
5335ffd83dbSDimitry Andric       SmallVector<const SCEV *, 4> NewOps;
5345ffd83dbSDimitry Andric       for (; I != E && I->first == CurLoop; ++I) {
5355ffd83dbSDimitry Andric         // If the operand is SCEVUnknown and not instructions, peek through
5365ffd83dbSDimitry Andric         // it, to enable more of it to be folded into the GEP.
5375ffd83dbSDimitry Andric         const SCEV *X = I->second;
5385ffd83dbSDimitry Andric         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
5395ffd83dbSDimitry Andric           if (!isa<Instruction>(U->getValue()))
5405ffd83dbSDimitry Andric             X = SE.getSCEV(U->getValue());
5415ffd83dbSDimitry Andric         NewOps.push_back(X);
5425ffd83dbSDimitry Andric       }
5435f757f3fSDimitry Andric       Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum);
5445ffd83dbSDimitry Andric     } else if (Op->isNonConstantNegative()) {
5455ffd83dbSDimitry Andric       // Instead of doing a negate and add, just do a subtract.
5465f757f3fSDimitry Andric       Value *W = expand(SE.getNegativeSCEV(Op));
5475ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
5485ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
5495ffd83dbSDimitry Andric       ++I;
5505ffd83dbSDimitry Andric     } else {
5515ffd83dbSDimitry Andric       // A simple add.
5525f757f3fSDimitry Andric       Value *W = expand(Op);
5535ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
5545f757f3fSDimitry Andric       if (isa<Constant>(Sum))
5555f757f3fSDimitry Andric         std::swap(Sum, W);
5565ffd83dbSDimitry Andric       Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
5575ffd83dbSDimitry Andric                         /*IsSafeToHoist*/ true);
5585ffd83dbSDimitry Andric       ++I;
5595ffd83dbSDimitry Andric     }
5605ffd83dbSDimitry Andric   }
5615ffd83dbSDimitry Andric 
5625ffd83dbSDimitry Andric   return Sum;
5635ffd83dbSDimitry Andric }
5645ffd83dbSDimitry Andric 
5655ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
5665f757f3fSDimitry Andric   Type *Ty = S->getType();
5675ffd83dbSDimitry Andric 
5685ffd83dbSDimitry Andric   // Collect all the mul operands in a loop, along with their associated loops.
5695ffd83dbSDimitry Andric   // Iterate in reverse so that constants are emitted last, all else equal.
5705ffd83dbSDimitry Andric   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
571349cc55cSDimitry Andric   for (const SCEV *Op : reverse(S->operands()))
572349cc55cSDimitry Andric     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op));
5735ffd83dbSDimitry Andric 
5745ffd83dbSDimitry Andric   // Sort by loop. Use a stable sort so that constants follow non-constants.
5755ffd83dbSDimitry Andric   llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
5765ffd83dbSDimitry Andric 
5775ffd83dbSDimitry Andric   // Emit instructions to mul all the operands. Hoist as much as possible
5785ffd83dbSDimitry Andric   // out of loops.
5795ffd83dbSDimitry Andric   Value *Prod = nullptr;
5805ffd83dbSDimitry Andric   auto I = OpsAndLoops.begin();
5815ffd83dbSDimitry Andric 
5825ffd83dbSDimitry Andric   // Expand the calculation of X pow N in the following manner:
5835ffd83dbSDimitry Andric   // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
5845ffd83dbSDimitry Andric   // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
5855f757f3fSDimitry Andric   const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() {
5865ffd83dbSDimitry Andric     auto E = I;
5875ffd83dbSDimitry Andric     // Calculate how many times the same operand from the same loop is included
5885ffd83dbSDimitry Andric     // into this power.
5895ffd83dbSDimitry Andric     uint64_t Exponent = 0;
5905ffd83dbSDimitry Andric     const uint64_t MaxExponent = UINT64_MAX >> 1;
5915ffd83dbSDimitry Andric     // No one sane will ever try to calculate such huge exponents, but if we
5925ffd83dbSDimitry Andric     // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
5935ffd83dbSDimitry Andric     // below when the power of 2 exceeds our Exponent, and we want it to be
5945ffd83dbSDimitry Andric     // 1u << 31 at most to not deal with unsigned overflow.
5955ffd83dbSDimitry Andric     while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
5965ffd83dbSDimitry Andric       ++Exponent;
5975ffd83dbSDimitry Andric       ++E;
5985ffd83dbSDimitry Andric     }
5995ffd83dbSDimitry Andric     assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
6005ffd83dbSDimitry Andric 
6015ffd83dbSDimitry Andric     // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
6025ffd83dbSDimitry Andric     // that are needed into the result.
6035f757f3fSDimitry Andric     Value *P = expand(I->second);
6045ffd83dbSDimitry Andric     Value *Result = nullptr;
6055ffd83dbSDimitry Andric     if (Exponent & 1)
6065ffd83dbSDimitry Andric       Result = P;
6075ffd83dbSDimitry Andric     for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
6085ffd83dbSDimitry Andric       P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
6095ffd83dbSDimitry Andric                       /*IsSafeToHoist*/ true);
6105ffd83dbSDimitry Andric       if (Exponent & BinExp)
6115ffd83dbSDimitry Andric         Result = Result ? InsertBinop(Instruction::Mul, Result, P,
6125ffd83dbSDimitry Andric                                       SCEV::FlagAnyWrap,
6135ffd83dbSDimitry Andric                                       /*IsSafeToHoist*/ true)
6145ffd83dbSDimitry Andric                         : P;
6155ffd83dbSDimitry Andric     }
6165ffd83dbSDimitry Andric 
6175ffd83dbSDimitry Andric     I = E;
6185ffd83dbSDimitry Andric     assert(Result && "Nothing was expanded?");
6195ffd83dbSDimitry Andric     return Result;
6205ffd83dbSDimitry Andric   };
6215ffd83dbSDimitry Andric 
6225ffd83dbSDimitry Andric   while (I != OpsAndLoops.end()) {
6235ffd83dbSDimitry Andric     if (!Prod) {
6245ffd83dbSDimitry Andric       // This is the first operand. Just expand it.
6255ffd83dbSDimitry Andric       Prod = ExpandOpBinPowN();
6265ffd83dbSDimitry Andric     } else if (I->second->isAllOnesValue()) {
6275ffd83dbSDimitry Andric       // Instead of doing a multiply by negative one, just do a negate.
6285ffd83dbSDimitry Andric       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
6295ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
6305ffd83dbSDimitry Andric       ++I;
6315ffd83dbSDimitry Andric     } else {
6325ffd83dbSDimitry Andric       // A simple mul.
6335ffd83dbSDimitry Andric       Value *W = ExpandOpBinPowN();
6345ffd83dbSDimitry Andric       // Canonicalize a constant to the RHS.
6355ffd83dbSDimitry Andric       if (isa<Constant>(Prod)) std::swap(Prod, W);
6365ffd83dbSDimitry Andric       const APInt *RHS;
6375ffd83dbSDimitry Andric       if (match(W, m_Power2(RHS))) {
6385ffd83dbSDimitry Andric         // Canonicalize Prod*(1<<C) to Prod<<C.
6395ffd83dbSDimitry Andric         assert(!Ty->isVectorTy() && "vector types are not SCEVable");
6405ffd83dbSDimitry Andric         auto NWFlags = S->getNoWrapFlags();
6415ffd83dbSDimitry Andric         // clear nsw flag if shl will produce poison value.
6425ffd83dbSDimitry Andric         if (RHS->logBase2() == RHS->getBitWidth() - 1)
6435ffd83dbSDimitry Andric           NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
6445ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Shl, Prod,
6455ffd83dbSDimitry Andric                            ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
6465ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
6475ffd83dbSDimitry Andric       } else {
6485ffd83dbSDimitry Andric         Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
6495ffd83dbSDimitry Andric                            /*IsSafeToHoist*/ true);
6505ffd83dbSDimitry Andric       }
6515ffd83dbSDimitry Andric     }
6525ffd83dbSDimitry Andric   }
6535ffd83dbSDimitry Andric 
6545ffd83dbSDimitry Andric   return Prod;
6555ffd83dbSDimitry Andric }
6565ffd83dbSDimitry Andric 
6575ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
6585f757f3fSDimitry Andric   Value *LHS = expand(S->getLHS());
6595ffd83dbSDimitry Andric   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
6605ffd83dbSDimitry Andric     const APInt &RHS = SC->getAPInt();
6615ffd83dbSDimitry Andric     if (RHS.isPowerOf2())
6625ffd83dbSDimitry Andric       return InsertBinop(Instruction::LShr, LHS,
6635f757f3fSDimitry Andric                          ConstantInt::get(SC->getType(), RHS.logBase2()),
6645ffd83dbSDimitry Andric                          SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
6655ffd83dbSDimitry Andric   }
6665ffd83dbSDimitry Andric 
6675f757f3fSDimitry Andric   Value *RHS = expand(S->getRHS());
6685ffd83dbSDimitry Andric   return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
6695ffd83dbSDimitry Andric                      /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
6705ffd83dbSDimitry Andric }
6715ffd83dbSDimitry Andric 
6725ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to
6735ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions.
6745ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
6755ffd83dbSDimitry Andric                                          const Loop *L) {
6765ffd83dbSDimitry Andric   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
6775ffd83dbSDimitry Andric       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
6785ffd83dbSDimitry Andric     return false;
6795ffd83dbSDimitry Andric   // If any of the operands don't dominate the insert position, bail.
6805ffd83dbSDimitry Andric   // Addrec operands are always loop-invariant, so this can only happen
6815ffd83dbSDimitry Andric   // if there are instructions which haven't been hoisted.
6825ffd83dbSDimitry Andric   if (L == IVIncInsertLoop) {
683fe6060f1SDimitry Andric     for (Use &Op : llvm::drop_begin(IncV->operands()))
684fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(Op))
6855ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, IVIncInsertPos))
6865ffd83dbSDimitry Andric           return false;
6875ffd83dbSDimitry Andric   }
6885ffd83dbSDimitry Andric   // Advance to the next instruction.
6895ffd83dbSDimitry Andric   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
6905ffd83dbSDimitry Andric   if (!IncV)
6915ffd83dbSDimitry Andric     return false;
6925ffd83dbSDimitry Andric 
6935ffd83dbSDimitry Andric   if (IncV->mayHaveSideEffects())
6945ffd83dbSDimitry Andric     return false;
6955ffd83dbSDimitry Andric 
6965ffd83dbSDimitry Andric   if (IncV == PN)
6975ffd83dbSDimitry Andric     return true;
6985ffd83dbSDimitry Andric 
6995ffd83dbSDimitry Andric   return isNormalAddRecExprPHI(PN, IncV, L);
7005ffd83dbSDimitry Andric }
7015ffd83dbSDimitry Andric 
7025ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction
7035ffd83dbSDimitry Andric /// variable operand.
7045ffd83dbSDimitry Andric ///
7055ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV
7065ffd83dbSDimitry Andric /// operands dominate InsertPos.
7075ffd83dbSDimitry Andric ///
7085ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the
7095ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and
7105ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
7115ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
7125ffd83dbSDimitry Andric                                            Instruction *InsertPos,
7135ffd83dbSDimitry Andric                                            bool allowScale) {
7145ffd83dbSDimitry Andric   if (IncV == InsertPos)
7155ffd83dbSDimitry Andric     return nullptr;
7165ffd83dbSDimitry Andric 
7175ffd83dbSDimitry Andric   switch (IncV->getOpcode()) {
7185ffd83dbSDimitry Andric   default:
7195ffd83dbSDimitry Andric     return nullptr;
7205ffd83dbSDimitry Andric   // Check for a simple Add/Sub or GEP of a loop invariant step.
7215ffd83dbSDimitry Andric   case Instruction::Add:
7225ffd83dbSDimitry Andric   case Instruction::Sub: {
7235ffd83dbSDimitry Andric     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
7245ffd83dbSDimitry Andric     if (!OInst || SE.DT.dominates(OInst, InsertPos))
7255ffd83dbSDimitry Andric       return dyn_cast<Instruction>(IncV->getOperand(0));
7265ffd83dbSDimitry Andric     return nullptr;
7275ffd83dbSDimitry Andric   }
7285ffd83dbSDimitry Andric   case Instruction::BitCast:
7295ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
7305ffd83dbSDimitry Andric   case Instruction::GetElementPtr:
731fe6060f1SDimitry Andric     for (Use &U : llvm::drop_begin(IncV->operands())) {
732fe6060f1SDimitry Andric       if (isa<Constant>(U))
7335ffd83dbSDimitry Andric         continue;
734fe6060f1SDimitry Andric       if (Instruction *OInst = dyn_cast<Instruction>(U)) {
7355ffd83dbSDimitry Andric         if (!SE.DT.dominates(OInst, InsertPos))
7365ffd83dbSDimitry Andric           return nullptr;
7375ffd83dbSDimitry Andric       }
7385ffd83dbSDimitry Andric       if (allowScale) {
7395ffd83dbSDimitry Andric         // allow any kind of GEP as long as it can be hoisted.
7405ffd83dbSDimitry Andric         continue;
7415ffd83dbSDimitry Andric       }
74206c3fb27SDimitry Andric       // GEPs produced by SCEVExpander use i8 element type.
74306c3fb27SDimitry Andric       if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8))
7445ffd83dbSDimitry Andric         return nullptr;
7455ffd83dbSDimitry Andric       break;
7465ffd83dbSDimitry Andric     }
7475ffd83dbSDimitry Andric     return dyn_cast<Instruction>(IncV->getOperand(0));
7485ffd83dbSDimitry Andric   }
7495ffd83dbSDimitry Andric }
7505ffd83dbSDimitry Andric 
7515ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the
7525ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to
7535ffd83dbSDimitry Andric /// the instruction after 'I'.  This is intended to be used when the instruction
7545ffd83dbSDimitry Andric /// 'I' is being moved.  If this fixup is not done and 'I' is moved to a
7555ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched
7565ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block
7575ffd83dbSDimitry Andric /// other than its parent.
7585ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) {
7595ffd83dbSDimitry Andric   BasicBlock::iterator It(*I);
7605ffd83dbSDimitry Andric   BasicBlock::iterator NewInsertPt = std::next(It);
7615ffd83dbSDimitry Andric   if (Builder.GetInsertPoint() == It)
7625ffd83dbSDimitry Andric     Builder.SetInsertPoint(&*NewInsertPt);
7635ffd83dbSDimitry Andric   for (auto *InsertPtGuard : InsertPointGuards)
7645ffd83dbSDimitry Andric     if (InsertPtGuard->GetInsertPoint() == It)
7655ffd83dbSDimitry Andric       InsertPtGuard->SetInsertPoint(NewInsertPt);
7665ffd83dbSDimitry Andric }
7675ffd83dbSDimitry Andric 
7685ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
7695ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands,
7705ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos.
771bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos,
772bdd1243dSDimitry Andric                               bool RecomputePoisonFlags) {
773bdd1243dSDimitry Andric   auto FixupPoisonFlags = [this](Instruction *I) {
774bdd1243dSDimitry Andric     // Drop flags that are potentially inferred from old context and infer flags
775bdd1243dSDimitry Andric     // in new context.
776*0fca6ea1SDimitry Andric     rememberFlags(I);
777bdd1243dSDimitry Andric     I->dropPoisonGeneratingFlags();
778bdd1243dSDimitry Andric     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
779bdd1243dSDimitry Andric       if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
780bdd1243dSDimitry Andric         auto *BO = cast<BinaryOperator>(I);
781bdd1243dSDimitry Andric         BO->setHasNoUnsignedWrap(
782bdd1243dSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
783bdd1243dSDimitry Andric         BO->setHasNoSignedWrap(
784bdd1243dSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
785bdd1243dSDimitry Andric       }
786bdd1243dSDimitry Andric   };
787bdd1243dSDimitry Andric 
788bdd1243dSDimitry Andric   if (SE.DT.dominates(IncV, InsertPos)) {
789bdd1243dSDimitry Andric     if (RecomputePoisonFlags)
790bdd1243dSDimitry Andric       FixupPoisonFlags(IncV);
7915ffd83dbSDimitry Andric     return true;
792bdd1243dSDimitry Andric   }
7935ffd83dbSDimitry Andric 
7945ffd83dbSDimitry Andric   // InsertPos must itself dominate IncV so that IncV's new position satisfies
7955ffd83dbSDimitry Andric   // its existing users.
7965ffd83dbSDimitry Andric   if (isa<PHINode>(InsertPos) ||
7975ffd83dbSDimitry Andric       !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
7985ffd83dbSDimitry Andric     return false;
7995ffd83dbSDimitry Andric 
8005ffd83dbSDimitry Andric   if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
8015ffd83dbSDimitry Andric     return false;
8025ffd83dbSDimitry Andric 
8035ffd83dbSDimitry Andric   // Check that the chain of IV operands leading back to Phi can be hoisted.
8045ffd83dbSDimitry Andric   SmallVector<Instruction*, 4> IVIncs;
8055ffd83dbSDimitry Andric   for(;;) {
8065ffd83dbSDimitry Andric     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
8075ffd83dbSDimitry Andric     if (!Oper)
8085ffd83dbSDimitry Andric       return false;
8095ffd83dbSDimitry Andric     // IncV is safe to hoist.
8105ffd83dbSDimitry Andric     IVIncs.push_back(IncV);
8115ffd83dbSDimitry Andric     IncV = Oper;
8125ffd83dbSDimitry Andric     if (SE.DT.dominates(IncV, InsertPos))
8135ffd83dbSDimitry Andric       break;
8145ffd83dbSDimitry Andric   }
8150eae32dcSDimitry Andric   for (Instruction *I : llvm::reverse(IVIncs)) {
8160eae32dcSDimitry Andric     fixupInsertPoints(I);
8170eae32dcSDimitry Andric     I->moveBefore(InsertPos);
818bdd1243dSDimitry Andric     if (RecomputePoisonFlags)
819bdd1243dSDimitry Andric       FixupPoisonFlags(I);
8205ffd83dbSDimitry Andric   }
8215ffd83dbSDimitry Andric   return true;
8225ffd83dbSDimitry Andric }
8235ffd83dbSDimitry Andric 
824*0fca6ea1SDimitry Andric bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi,
825*0fca6ea1SDimitry Andric                                                   PHINode *WidePhi,
826*0fca6ea1SDimitry Andric                                                   Instruction *OrigInc,
827*0fca6ea1SDimitry Andric                                                   Instruction *WideInc) {
828*0fca6ea1SDimitry Andric   return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) &&
829*0fca6ea1SDimitry Andric          match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) &&
830*0fca6ea1SDimitry Andric          OrigInc->getOpcode() == WideInc->getOpcode();
831*0fca6ea1SDimitry Andric }
832*0fca6ea1SDimitry Andric 
8335ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by
8345ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long
8355ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This
8365ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and
8375ffd83dbSDimitry Andric /// expandAddtoGEP.
8385ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
8395ffd83dbSDimitry Andric                                            const Loop *L) {
8405ffd83dbSDimitry Andric   for(Instruction *IVOper = IncV;
8415ffd83dbSDimitry Andric       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
8425ffd83dbSDimitry Andric                                 /*allowScale=*/false));) {
8435ffd83dbSDimitry Andric     if (IVOper == PN)
8445ffd83dbSDimitry Andric       return true;
8455ffd83dbSDimitry Andric   }
8465ffd83dbSDimitry Andric   return false;
8475ffd83dbSDimitry Andric }
8485ffd83dbSDimitry Andric 
8495ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
8505ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
8515ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations.
8525ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
8535ffd83dbSDimitry Andric                                  bool useSubtract) {
8545ffd83dbSDimitry Andric   Value *IncV;
8555ffd83dbSDimitry Andric   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
8565f757f3fSDimitry Andric   if (PN->getType()->isPointerTy()) {
857*0fca6ea1SDimitry Andric     // TODO: Change name to IVName.iv.next.
858*0fca6ea1SDimitry Andric     IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep");
8595ffd83dbSDimitry Andric   } else {
8605ffd83dbSDimitry Andric     IncV = useSubtract ?
8615ffd83dbSDimitry Andric       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
8625ffd83dbSDimitry Andric       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
8635ffd83dbSDimitry Andric   }
8645ffd83dbSDimitry Andric   return IncV;
8655ffd83dbSDimitry Andric }
8665ffd83dbSDimitry Andric 
8675ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of
8685ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step.
8695ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE,
8705ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Phi,
8715ffd83dbSDimitry Andric                                     const SCEVAddRecExpr *Requested,
8725ffd83dbSDimitry Andric                                     bool &InvertStep) {
873fe6060f1SDimitry Andric   // We can't transform to match a pointer PHI.
8745f757f3fSDimitry Andric   Type *PhiTy = Phi->getType();
8755f757f3fSDimitry Andric   Type *RequestedTy = Requested->getType();
8765f757f3fSDimitry Andric   if (PhiTy->isPointerTy() || RequestedTy->isPointerTy())
877fe6060f1SDimitry Andric     return false;
878fe6060f1SDimitry Andric 
8795ffd83dbSDimitry Andric   if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
8805ffd83dbSDimitry Andric     return false;
8815ffd83dbSDimitry Andric 
8825ffd83dbSDimitry Andric   // Try truncate it if necessary.
8835ffd83dbSDimitry Andric   Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
8845ffd83dbSDimitry Andric   if (!Phi)
8855ffd83dbSDimitry Andric     return false;
8865ffd83dbSDimitry Andric 
8875ffd83dbSDimitry Andric   // Check whether truncation will help.
8885ffd83dbSDimitry Andric   if (Phi == Requested) {
8895ffd83dbSDimitry Andric     InvertStep = false;
8905ffd83dbSDimitry Andric     return true;
8915ffd83dbSDimitry Andric   }
8925ffd83dbSDimitry Andric 
8935ffd83dbSDimitry Andric   // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
894fe6060f1SDimitry Andric   if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) {
8955ffd83dbSDimitry Andric     InvertStep = true;
8965ffd83dbSDimitry Andric     return true;
8975ffd83dbSDimitry Andric   }
8985ffd83dbSDimitry Andric 
8995ffd83dbSDimitry Andric   return false;
9005ffd83dbSDimitry Andric }
9015ffd83dbSDimitry Andric 
9025ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
9035ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
9045ffd83dbSDimitry Andric     return false;
9055ffd83dbSDimitry Andric 
9065ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
9075ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
9085ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
9095ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
9105ffd83dbSDimitry Andric                                             SE.getSignExtendExpr(AR, WideTy));
9115ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
9125ffd83dbSDimitry Andric     SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
9135ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
9145ffd83dbSDimitry Andric }
9155ffd83dbSDimitry Andric 
9165ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
9175ffd83dbSDimitry Andric   if (!isa<IntegerType>(AR->getType()))
9185ffd83dbSDimitry Andric     return false;
9195ffd83dbSDimitry Andric 
9205ffd83dbSDimitry Andric   unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
9215ffd83dbSDimitry Andric   Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
9225ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
9235ffd83dbSDimitry Andric   const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
9245ffd83dbSDimitry Andric                                             SE.getZeroExtendExpr(AR, WideTy));
9255ffd83dbSDimitry Andric   const SCEV *ExtendAfterOp =
9265ffd83dbSDimitry Andric     SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
9275ffd83dbSDimitry Andric   return ExtendAfterOp == OpAfterExtend;
9285ffd83dbSDimitry Andric }
9295ffd83dbSDimitry Andric 
9305ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
9315ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating
9325ffd83dbSDimitry Andric /// values, and return the PHI.
9335ffd83dbSDimitry Andric PHINode *
9345ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
9355f757f3fSDimitry Andric                                         const Loop *L, Type *&TruncTy,
9365ffd83dbSDimitry Andric                                         bool &InvertStep) {
9375f757f3fSDimitry Andric   assert((!IVIncInsertLoop || IVIncInsertPos) &&
9385f757f3fSDimitry Andric          "Uninitialized insert position");
9395ffd83dbSDimitry Andric 
9405ffd83dbSDimitry Andric   // Reuse a previously-inserted PHI, if present.
9415ffd83dbSDimitry Andric   BasicBlock *LatchBlock = L->getLoopLatch();
9425ffd83dbSDimitry Andric   if (LatchBlock) {
9435ffd83dbSDimitry Andric     PHINode *AddRecPhiMatch = nullptr;
9445ffd83dbSDimitry Andric     Instruction *IncV = nullptr;
9455ffd83dbSDimitry Andric     TruncTy = nullptr;
9465ffd83dbSDimitry Andric     InvertStep = false;
9475ffd83dbSDimitry Andric 
9485ffd83dbSDimitry Andric     // Only try partially matching scevs that need truncation and/or
9495ffd83dbSDimitry Andric     // step-inversion if we know this loop is outside the current loop.
9505ffd83dbSDimitry Andric     bool TryNonMatchingSCEV =
9515ffd83dbSDimitry Andric         IVIncInsertLoop &&
9525ffd83dbSDimitry Andric         SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
9535ffd83dbSDimitry Andric 
9545ffd83dbSDimitry Andric     for (PHINode &PN : L->getHeader()->phis()) {
9555ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN.getType()))
9565ffd83dbSDimitry Andric         continue;
9575ffd83dbSDimitry Andric 
958e8d8bef9SDimitry Andric       // We should not look for a incomplete PHI. Getting SCEV for a incomplete
959e8d8bef9SDimitry Andric       // PHI has no meaning at all.
960e8d8bef9SDimitry Andric       if (!PN.isComplete()) {
961fe6060f1SDimitry Andric         SCEV_DEBUG_WITH_TYPE(
962e8d8bef9SDimitry Andric             DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n");
963e8d8bef9SDimitry Andric         continue;
964e8d8bef9SDimitry Andric       }
965e8d8bef9SDimitry Andric 
9665ffd83dbSDimitry Andric       const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
9675ffd83dbSDimitry Andric       if (!PhiSCEV)
9685ffd83dbSDimitry Andric         continue;
9695ffd83dbSDimitry Andric 
9705ffd83dbSDimitry Andric       bool IsMatchingSCEV = PhiSCEV == Normalized;
9715ffd83dbSDimitry Andric       // We only handle truncation and inversion of phi recurrences for the
9725ffd83dbSDimitry Andric       // expanded expression if the expanded expression's loop dominates the
9735ffd83dbSDimitry Andric       // loop we insert to. Check now, so we can bail out early.
9745ffd83dbSDimitry Andric       if (!IsMatchingSCEV && !TryNonMatchingSCEV)
9755ffd83dbSDimitry Andric           continue;
9765ffd83dbSDimitry Andric 
9775ffd83dbSDimitry Andric       // TODO: this possibly can be reworked to avoid this cast at all.
9785ffd83dbSDimitry Andric       Instruction *TempIncV =
9795ffd83dbSDimitry Andric           dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
9805ffd83dbSDimitry Andric       if (!TempIncV)
9815ffd83dbSDimitry Andric         continue;
9825ffd83dbSDimitry Andric 
9835ffd83dbSDimitry Andric       // Check whether we can reuse this PHI node.
9845ffd83dbSDimitry Andric       if (LSRMode) {
9855ffd83dbSDimitry Andric         if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
9865ffd83dbSDimitry Andric           continue;
9875ffd83dbSDimitry Andric       } else {
9885ffd83dbSDimitry Andric         if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
9895ffd83dbSDimitry Andric           continue;
9905ffd83dbSDimitry Andric       }
9915ffd83dbSDimitry Andric 
9925ffd83dbSDimitry Andric       // Stop if we have found an exact match SCEV.
9935ffd83dbSDimitry Andric       if (IsMatchingSCEV) {
9945ffd83dbSDimitry Andric         IncV = TempIncV;
9955ffd83dbSDimitry Andric         TruncTy = nullptr;
9965ffd83dbSDimitry Andric         InvertStep = false;
9975ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
9985ffd83dbSDimitry Andric         break;
9995ffd83dbSDimitry Andric       }
10005ffd83dbSDimitry Andric 
10015ffd83dbSDimitry Andric       // Try whether the phi can be translated into the requested form
10025ffd83dbSDimitry Andric       // (truncated and/or offset by a constant).
10035ffd83dbSDimitry Andric       if ((!TruncTy || InvertStep) &&
10045ffd83dbSDimitry Andric           canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
10055ffd83dbSDimitry Andric         // Record the phi node. But don't stop we might find an exact match
10065ffd83dbSDimitry Andric         // later.
10075ffd83dbSDimitry Andric         AddRecPhiMatch = &PN;
10085ffd83dbSDimitry Andric         IncV = TempIncV;
10095f757f3fSDimitry Andric         TruncTy = Normalized->getType();
10105ffd83dbSDimitry Andric       }
10115ffd83dbSDimitry Andric     }
10125ffd83dbSDimitry Andric 
10135ffd83dbSDimitry Andric     if (AddRecPhiMatch) {
10145ffd83dbSDimitry Andric       // Ok, the add recurrence looks usable.
10155ffd83dbSDimitry Andric       // Remember this PHI, even in post-inc mode.
10165ffd83dbSDimitry Andric       InsertedValues.insert(AddRecPhiMatch);
10175ffd83dbSDimitry Andric       // Remember the increment.
10185ffd83dbSDimitry Andric       rememberInstruction(IncV);
1019e8d8bef9SDimitry Andric       // Those values were not actually inserted but re-used.
1020e8d8bef9SDimitry Andric       ReusedValues.insert(AddRecPhiMatch);
1021e8d8bef9SDimitry Andric       ReusedValues.insert(IncV);
10225ffd83dbSDimitry Andric       return AddRecPhiMatch;
10235ffd83dbSDimitry Andric     }
10245ffd83dbSDimitry Andric   }
10255ffd83dbSDimitry Andric 
10265ffd83dbSDimitry Andric   // Save the original insertion point so we can restore it when we're done.
10275ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
10285ffd83dbSDimitry Andric 
10295ffd83dbSDimitry Andric   // Another AddRec may need to be recursively expanded below. For example, if
10305ffd83dbSDimitry Andric   // this AddRec is quadratic, the StepV may itself be an AddRec in this
10315ffd83dbSDimitry Andric   // loop. Remove this loop from the PostIncLoops set before expanding such
10325ffd83dbSDimitry Andric   // AddRecs. Otherwise, we cannot find a valid position for the step
10335ffd83dbSDimitry Andric   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
10345ffd83dbSDimitry Andric   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
10355ffd83dbSDimitry Andric   // so it's not worth implementing SmallPtrSet::swap.
10365ffd83dbSDimitry Andric   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
10375ffd83dbSDimitry Andric   PostIncLoops.clear();
10385ffd83dbSDimitry Andric 
10395ffd83dbSDimitry Andric   // Expand code for the start value into the loop preheader.
10405ffd83dbSDimitry Andric   assert(L->getLoopPreheader() &&
10415ffd83dbSDimitry Andric          "Can't expand add recurrences without a loop preheader!");
1042e8d8bef9SDimitry Andric   Value *StartV =
10435f757f3fSDimitry Andric       expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator());
10445ffd83dbSDimitry Andric 
10455ffd83dbSDimitry Andric   // StartV must have been be inserted into L's preheader to dominate the new
10465ffd83dbSDimitry Andric   // phi.
10475ffd83dbSDimitry Andric   assert(!isa<Instruction>(StartV) ||
10485ffd83dbSDimitry Andric          SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
10495ffd83dbSDimitry Andric                                  L->getHeader()));
10505ffd83dbSDimitry Andric 
10515ffd83dbSDimitry Andric   // Expand code for the step value. Do this before creating the PHI so that PHI
10525ffd83dbSDimitry Andric   // reuse code doesn't see an incomplete PHI.
10535ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
10545f757f3fSDimitry Andric   Type *ExpandTy = Normalized->getType();
10555ffd83dbSDimitry Andric   // If the stride is negative, insert a sub instead of an add for the increment
10565ffd83dbSDimitry Andric   // (unless it's a constant, because subtracts of constants are canonicalized
10575ffd83dbSDimitry Andric   // to adds).
10585ffd83dbSDimitry Andric   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
10595ffd83dbSDimitry Andric   if (useSubtract)
10605ffd83dbSDimitry Andric     Step = SE.getNegativeSCEV(Step);
10615ffd83dbSDimitry Andric   // Expand the step somewhere that dominates the loop header.
10625f757f3fSDimitry Andric   Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
10635ffd83dbSDimitry Andric 
10645ffd83dbSDimitry Andric   // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
10655ffd83dbSDimitry Andric   // we actually do emit an addition.  It does not apply if we emit a
10665ffd83dbSDimitry Andric   // subtraction.
10675ffd83dbSDimitry Andric   bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
10685ffd83dbSDimitry Andric   bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
10695ffd83dbSDimitry Andric 
10705ffd83dbSDimitry Andric   // Create the PHI.
10715ffd83dbSDimitry Andric   BasicBlock *Header = L->getHeader();
10725ffd83dbSDimitry Andric   Builder.SetInsertPoint(Header, Header->begin());
1073*0fca6ea1SDimitry Andric   PHINode *PN =
1074*0fca6ea1SDimitry Andric       Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv");
10755ffd83dbSDimitry Andric 
10765ffd83dbSDimitry Andric   // Create the step instructions and populate the PHI.
1077*0fca6ea1SDimitry Andric   for (BasicBlock *Pred : predecessors(Header)) {
10785ffd83dbSDimitry Andric     // Add a start value.
10795ffd83dbSDimitry Andric     if (!L->contains(Pred)) {
10805ffd83dbSDimitry Andric       PN->addIncoming(StartV, Pred);
10815ffd83dbSDimitry Andric       continue;
10825ffd83dbSDimitry Andric     }
10835ffd83dbSDimitry Andric 
10845ffd83dbSDimitry Andric     // Create a step value and add it to the PHI.
10855ffd83dbSDimitry Andric     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
10865ffd83dbSDimitry Andric     // instructions at IVIncInsertPos.
10875ffd83dbSDimitry Andric     Instruction *InsertPos = L == IVIncInsertLoop ?
10885ffd83dbSDimitry Andric       IVIncInsertPos : Pred->getTerminator();
10895ffd83dbSDimitry Andric     Builder.SetInsertPoint(InsertPos);
10905f757f3fSDimitry Andric     Value *IncV = expandIVInc(PN, StepV, L, useSubtract);
10915ffd83dbSDimitry Andric 
10925ffd83dbSDimitry Andric     if (isa<OverflowingBinaryOperator>(IncV)) {
10935ffd83dbSDimitry Andric       if (IncrementIsNUW)
10945ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
10955ffd83dbSDimitry Andric       if (IncrementIsNSW)
10965ffd83dbSDimitry Andric         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
10975ffd83dbSDimitry Andric     }
10985ffd83dbSDimitry Andric     PN->addIncoming(IncV, Pred);
10995ffd83dbSDimitry Andric   }
11005ffd83dbSDimitry Andric 
11015ffd83dbSDimitry Andric   // After expanding subexpressions, restore the PostIncLoops set so the caller
11025ffd83dbSDimitry Andric   // can ensure that IVIncrement dominates the current uses.
11035ffd83dbSDimitry Andric   PostIncLoops = SavedPostIncLoops;
11045ffd83dbSDimitry Andric 
1105fe6060f1SDimitry Andric   // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most
1106fe6060f1SDimitry Andric   // effective when we are able to use an IV inserted here, so record it.
11075ffd83dbSDimitry Andric   InsertedValues.insert(PN);
1108fe6060f1SDimitry Andric   InsertedIVs.push_back(PN);
11095ffd83dbSDimitry Andric   return PN;
11105ffd83dbSDimitry Andric }
11115ffd83dbSDimitry Andric 
11125ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
11135ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
11145ffd83dbSDimitry Andric 
11155ffd83dbSDimitry Andric   // Determine a normalized form of this expression, which is the expression
11165ffd83dbSDimitry Andric   // before any post-inc adjustment is made.
11175ffd83dbSDimitry Andric   const SCEVAddRecExpr *Normalized = S;
11185ffd83dbSDimitry Andric   if (PostIncLoops.count(L)) {
11195ffd83dbSDimitry Andric     PostIncLoopSet Loops;
11205ffd83dbSDimitry Andric     Loops.insert(L);
112106c3fb27SDimitry Andric     Normalized = cast<SCEVAddRecExpr>(
112206c3fb27SDimitry Andric         normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false));
11235ffd83dbSDimitry Andric   }
11245ffd83dbSDimitry Andric 
11255f757f3fSDimitry Andric   [[maybe_unused]] const SCEV *Start = Normalized->getStart();
11265ffd83dbSDimitry Andric   const SCEV *Step = Normalized->getStepRecurrence(SE);
11275f757f3fSDimitry Andric   assert(SE.properlyDominates(Start, L->getHeader()) &&
11285f757f3fSDimitry Andric          "Start does not properly dominate loop header");
11295f757f3fSDimitry Andric   assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header");
11305ffd83dbSDimitry Andric 
11315ffd83dbSDimitry Andric   // In some cases, we decide to reuse an existing phi node but need to truncate
11325ffd83dbSDimitry Andric   // it and/or invert the step.
11335ffd83dbSDimitry Andric   Type *TruncTy = nullptr;
11345ffd83dbSDimitry Andric   bool InvertStep = false;
11355f757f3fSDimitry Andric   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep);
11365ffd83dbSDimitry Andric 
11375ffd83dbSDimitry Andric   // Accommodate post-inc mode, if necessary.
11385ffd83dbSDimitry Andric   Value *Result;
11395ffd83dbSDimitry Andric   if (!PostIncLoops.count(L))
11405ffd83dbSDimitry Andric     Result = PN;
11415ffd83dbSDimitry Andric   else {
11425ffd83dbSDimitry Andric     // In PostInc mode, use the post-incremented value.
11435ffd83dbSDimitry Andric     BasicBlock *LatchBlock = L->getLoopLatch();
11445ffd83dbSDimitry Andric     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
11455ffd83dbSDimitry Andric     Result = PN->getIncomingValueForBlock(LatchBlock);
11465ffd83dbSDimitry Andric 
1147e8d8bef9SDimitry Andric     // We might be introducing a new use of the post-inc IV that is not poison
1148e8d8bef9SDimitry Andric     // safe, in which case we should drop poison generating flags. Only keep
1149e8d8bef9SDimitry Andric     // those flags for which SCEV has proven that they always hold.
1150e8d8bef9SDimitry Andric     if (isa<OverflowingBinaryOperator>(Result)) {
1151e8d8bef9SDimitry Andric       auto *I = cast<Instruction>(Result);
1152e8d8bef9SDimitry Andric       if (!S->hasNoUnsignedWrap())
1153e8d8bef9SDimitry Andric         I->setHasNoUnsignedWrap(false);
1154e8d8bef9SDimitry Andric       if (!S->hasNoSignedWrap())
1155e8d8bef9SDimitry Andric         I->setHasNoSignedWrap(false);
1156e8d8bef9SDimitry Andric     }
1157e8d8bef9SDimitry Andric 
11585ffd83dbSDimitry Andric     // For an expansion to use the postinc form, the client must call
11595ffd83dbSDimitry Andric     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
11605ffd83dbSDimitry Andric     // or dominated by IVIncInsertPos.
11615ffd83dbSDimitry Andric     if (isa<Instruction>(Result) &&
11625ffd83dbSDimitry Andric         !SE.DT.dominates(cast<Instruction>(Result),
11635ffd83dbSDimitry Andric                          &*Builder.GetInsertPoint())) {
11645ffd83dbSDimitry Andric       // The induction variable's postinc expansion does not dominate this use.
11655ffd83dbSDimitry Andric       // IVUsers tries to prevent this case, so it is rare. However, it can
11665ffd83dbSDimitry Andric       // happen when an IVUser outside the loop is not dominated by the latch
11675ffd83dbSDimitry Andric       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
11685ffd83dbSDimitry Andric       // all cases. Consider a phi outside whose operand is replaced during
11695ffd83dbSDimitry Andric       // expansion with the value of the postinc user. Without fundamentally
11705ffd83dbSDimitry Andric       // changing the way postinc users are tracked, the only remedy is
11715ffd83dbSDimitry Andric       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
11725ffd83dbSDimitry Andric       // but hopefully expandCodeFor handles that.
11735ffd83dbSDimitry Andric       bool useSubtract =
11745f757f3fSDimitry Andric           !S->getType()->isPointerTy() && Step->isNonConstantNegative();
11755ffd83dbSDimitry Andric       if (useSubtract)
11765ffd83dbSDimitry Andric         Step = SE.getNegativeSCEV(Step);
11775ffd83dbSDimitry Andric       Value *StepV;
11785ffd83dbSDimitry Andric       {
11795ffd83dbSDimitry Andric         // Expand the step somewhere that dominates the loop header.
11805ffd83dbSDimitry Andric         SCEVInsertPointGuard Guard(Builder, this);
11815f757f3fSDimitry Andric         StepV = expand(Step, L->getHeader()->getFirstInsertionPt());
11825ffd83dbSDimitry Andric       }
11835f757f3fSDimitry Andric       Result = expandIVInc(PN, StepV, L, useSubtract);
11845ffd83dbSDimitry Andric     }
11855ffd83dbSDimitry Andric   }
11865ffd83dbSDimitry Andric 
11875ffd83dbSDimitry Andric   // We have decided to reuse an induction variable of a dominating loop. Apply
11885ffd83dbSDimitry Andric   // truncation and/or inversion of the step.
11895ffd83dbSDimitry Andric   if (TruncTy) {
11905ffd83dbSDimitry Andric     // Truncate the result.
1191e8d8bef9SDimitry Andric     if (TruncTy != Result->getType())
11925ffd83dbSDimitry Andric       Result = Builder.CreateTrunc(Result, TruncTy);
1193e8d8bef9SDimitry Andric 
11945ffd83dbSDimitry Andric     // Invert the result.
1195e8d8bef9SDimitry Andric     if (InvertStep)
11965f757f3fSDimitry Andric       Result = Builder.CreateSub(expand(Normalized->getStart()), Result);
11975ffd83dbSDimitry Andric   }
11985ffd83dbSDimitry Andric 
11995ffd83dbSDimitry Andric   return Result;
12005ffd83dbSDimitry Andric }
12015ffd83dbSDimitry Andric 
12025ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
12035ffd83dbSDimitry Andric   // In canonical mode we compute the addrec as an expression of a canonical IV
12045ffd83dbSDimitry Andric   // using evaluateAtIteration and expand the resulting SCEV expression. This
1205bdd1243dSDimitry Andric   // way we avoid introducing new IVs to carry on the computation of the addrec
12065ffd83dbSDimitry Andric   // throughout the loop.
12075ffd83dbSDimitry Andric   //
12085ffd83dbSDimitry Andric   // For nested addrecs evaluateAtIteration might need a canonical IV of a
12095ffd83dbSDimitry Andric   // type wider than the addrec itself. Emitting a canonical IV of the
12105ffd83dbSDimitry Andric   // proper type might produce non-legal types, for example expanding an i64
12115ffd83dbSDimitry Andric   // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
12125ffd83dbSDimitry Andric   // back to non-canonical mode for nested addrecs.
12135ffd83dbSDimitry Andric   if (!CanonicalMode || (S->getNumOperands() > 2))
12145ffd83dbSDimitry Andric     return expandAddRecExprLiterally(S);
12155ffd83dbSDimitry Andric 
12165ffd83dbSDimitry Andric   Type *Ty = SE.getEffectiveSCEVType(S->getType());
12175ffd83dbSDimitry Andric   const Loop *L = S->getLoop();
12185ffd83dbSDimitry Andric 
12195ffd83dbSDimitry Andric   // First check for an existing canonical IV in a suitable type.
12205ffd83dbSDimitry Andric   PHINode *CanonicalIV = nullptr;
12215ffd83dbSDimitry Andric   if (PHINode *PN = L->getCanonicalInductionVariable())
12225ffd83dbSDimitry Andric     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
12235ffd83dbSDimitry Andric       CanonicalIV = PN;
12245ffd83dbSDimitry Andric 
12255ffd83dbSDimitry Andric   // Rewrite an AddRec in terms of the canonical induction variable, if
12265ffd83dbSDimitry Andric   // its type is more narrow.
12275ffd83dbSDimitry Andric   if (CanonicalIV &&
1228fe6060f1SDimitry Andric       SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) &&
1229fe6060f1SDimitry Andric       !S->getType()->isPointerTy()) {
12305ffd83dbSDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
12315ffd83dbSDimitry Andric     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1232bdd1243dSDimitry Andric       NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType());
12335ffd83dbSDimitry Andric     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
12345ffd83dbSDimitry Andric                                        S->getNoWrapFlags(SCEV::FlagNW)));
12355ffd83dbSDimitry Andric     BasicBlock::iterator NewInsertPt =
1236e8d8bef9SDimitry Andric         findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint());
12375f757f3fSDimitry Andric     V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt);
12385ffd83dbSDimitry Andric     return V;
12395ffd83dbSDimitry Andric   }
12405ffd83dbSDimitry Andric 
12415ffd83dbSDimitry Andric   // {X,+,F} --> X + {0,+,F}
12425ffd83dbSDimitry Andric   if (!S->getStart()->isZero()) {
124306c3fb27SDimitry Andric     if (isa<PointerType>(S->getType())) {
1244349cc55cSDimitry Andric       Value *StartV = expand(SE.getPointerBase(S));
12455f757f3fSDimitry Andric       return expandAddToGEP(SE.removePointerBase(S), StartV);
1246349cc55cSDimitry Andric     }
1247349cc55cSDimitry Andric 
1248e8d8bef9SDimitry Andric     SmallVector<const SCEV *, 4> NewOps(S->operands());
12495ffd83dbSDimitry Andric     NewOps[0] = SE.getConstant(Ty, 0);
12505ffd83dbSDimitry Andric     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
12515ffd83dbSDimitry Andric                                         S->getNoWrapFlags(SCEV::FlagNW));
12525ffd83dbSDimitry Andric 
12535ffd83dbSDimitry Andric     // Just do a normal add. Pre-expand the operands to suppress folding.
12545ffd83dbSDimitry Andric     //
12555ffd83dbSDimitry Andric     // The LHS and RHS values are factored out of the expand call to make the
12565ffd83dbSDimitry Andric     // output independent of the argument evaluation order.
12575ffd83dbSDimitry Andric     const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
12585ffd83dbSDimitry Andric     const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
12595ffd83dbSDimitry Andric     return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
12605ffd83dbSDimitry Andric   }
12615ffd83dbSDimitry Andric 
12625ffd83dbSDimitry Andric   // If we don't yet have a canonical IV, create one.
12635ffd83dbSDimitry Andric   if (!CanonicalIV) {
12645ffd83dbSDimitry Andric     // Create and insert the PHI node for the induction variable in the
12655ffd83dbSDimitry Andric     // specified loop.
12665ffd83dbSDimitry Andric     BasicBlock *Header = L->getHeader();
12675ffd83dbSDimitry Andric     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
12685f757f3fSDimitry Andric     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar");
12695f757f3fSDimitry Andric     CanonicalIV->insertBefore(Header->begin());
12705ffd83dbSDimitry Andric     rememberInstruction(CanonicalIV);
12715ffd83dbSDimitry Andric 
12725ffd83dbSDimitry Andric     SmallSet<BasicBlock *, 4> PredSeen;
12735ffd83dbSDimitry Andric     Constant *One = ConstantInt::get(Ty, 1);
12745ffd83dbSDimitry Andric     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
12755ffd83dbSDimitry Andric       BasicBlock *HP = *HPI;
12765ffd83dbSDimitry Andric       if (!PredSeen.insert(HP).second) {
12775ffd83dbSDimitry Andric         // There must be an incoming value for each predecessor, even the
12785ffd83dbSDimitry Andric         // duplicates!
12795ffd83dbSDimitry Andric         CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
12805ffd83dbSDimitry Andric         continue;
12815ffd83dbSDimitry Andric       }
12825ffd83dbSDimitry Andric 
12835ffd83dbSDimitry Andric       if (L->contains(HP)) {
12845ffd83dbSDimitry Andric         // Insert a unit add instruction right before the terminator
12855ffd83dbSDimitry Andric         // corresponding to the back-edge.
12865ffd83dbSDimitry Andric         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
12875ffd83dbSDimitry Andric                                                      "indvar.next",
1288*0fca6ea1SDimitry Andric                                                      HP->getTerminator()->getIterator());
12895ffd83dbSDimitry Andric         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
12905ffd83dbSDimitry Andric         rememberInstruction(Add);
12915ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Add, HP);
12925ffd83dbSDimitry Andric       } else {
12935ffd83dbSDimitry Andric         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
12945ffd83dbSDimitry Andric       }
12955ffd83dbSDimitry Andric     }
12965ffd83dbSDimitry Andric   }
12975ffd83dbSDimitry Andric 
12985ffd83dbSDimitry Andric   // {0,+,1} --> Insert a canonical induction variable into the loop!
12995ffd83dbSDimitry Andric   if (S->isAffine() && S->getOperand(1)->isOne()) {
13005ffd83dbSDimitry Andric     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
13015ffd83dbSDimitry Andric            "IVs with types different from the canonical IV should "
13025ffd83dbSDimitry Andric            "already have been handled!");
13035ffd83dbSDimitry Andric     return CanonicalIV;
13045ffd83dbSDimitry Andric   }
13055ffd83dbSDimitry Andric 
13065ffd83dbSDimitry Andric   // {0,+,F} --> {0,+,1} * F
13075ffd83dbSDimitry Andric 
13085ffd83dbSDimitry Andric   // If this is a simple linear addrec, emit it now as a special case.
13095ffd83dbSDimitry Andric   if (S->isAffine())    // {0,+,F} --> i*F
13105ffd83dbSDimitry Andric     return
13115ffd83dbSDimitry Andric       expand(SE.getTruncateOrNoop(
13125ffd83dbSDimitry Andric         SE.getMulExpr(SE.getUnknown(CanonicalIV),
13135ffd83dbSDimitry Andric                       SE.getNoopOrAnyExtend(S->getOperand(1),
13145ffd83dbSDimitry Andric                                             CanonicalIV->getType())),
13155ffd83dbSDimitry Andric         Ty));
13165ffd83dbSDimitry Andric 
13175ffd83dbSDimitry Andric   // If this is a chain of recurrences, turn it into a closed form, using the
13185ffd83dbSDimitry Andric   // folders, then expandCodeFor the closed form.  This allows the folders to
13195ffd83dbSDimitry Andric   // simplify the expression without having to build a bunch of special code
13205ffd83dbSDimitry Andric   // into this folder.
13215ffd83dbSDimitry Andric   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
13225ffd83dbSDimitry Andric 
13235ffd83dbSDimitry Andric   // Promote S up to the canonical IV type, if the cast is foldable.
13245ffd83dbSDimitry Andric   const SCEV *NewS = S;
13255ffd83dbSDimitry Andric   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
13265ffd83dbSDimitry Andric   if (isa<SCEVAddRecExpr>(Ext))
13275ffd83dbSDimitry Andric     NewS = Ext;
13285ffd83dbSDimitry Andric 
13295ffd83dbSDimitry Andric   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
13305ffd83dbSDimitry Andric 
13315ffd83dbSDimitry Andric   // Truncate the result down to the original type, if needed.
13325ffd83dbSDimitry Andric   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
13335ffd83dbSDimitry Andric   return expand(T);
13345ffd83dbSDimitry Andric }
13355ffd83dbSDimitry Andric 
1336e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) {
13375f757f3fSDimitry Andric   Value *V = expand(S->getOperand());
1338fe6060f1SDimitry Andric   return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt,
1339fe6060f1SDimitry Andric                            GetOptimalInsertionPointForCastOf(V));
1340e8d8bef9SDimitry Andric }
1341e8d8bef9SDimitry Andric 
13425ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
13435f757f3fSDimitry Andric   Value *V = expand(S->getOperand());
13445f757f3fSDimitry Andric   return Builder.CreateTrunc(V, S->getType());
13455ffd83dbSDimitry Andric }
13465ffd83dbSDimitry Andric 
13475ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
13485f757f3fSDimitry Andric   Value *V = expand(S->getOperand());
13495f757f3fSDimitry Andric   return Builder.CreateZExt(V, S->getType(), "",
13505f757f3fSDimitry Andric                             SE.isKnownNonNegative(S->getOperand()));
13515ffd83dbSDimitry Andric }
13525ffd83dbSDimitry Andric 
13535ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
13545f757f3fSDimitry Andric   Value *V = expand(S->getOperand());
13555f757f3fSDimitry Andric   return Builder.CreateSExt(V, S->getType());
13565ffd83dbSDimitry Andric }
13575ffd83dbSDimitry Andric 
135881ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S,
135981ad6265SDimitry Andric                                       Intrinsic::ID IntrinID, Twine Name,
136081ad6265SDimitry Andric                                       bool IsSequential) {
13615ffd83dbSDimitry Andric   Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
13625ffd83dbSDimitry Andric   Type *Ty = LHS->getType();
136381ad6265SDimitry Andric   if (IsSequential)
136481ad6265SDimitry Andric     LHS = Builder.CreateFreeze(LHS);
13655ffd83dbSDimitry Andric   for (int i = S->getNumOperands() - 2; i >= 0; --i) {
13665f757f3fSDimitry Andric     Value *RHS = expand(S->getOperand(i));
136781ad6265SDimitry Andric     if (IsSequential && i != 0)
136881ad6265SDimitry Andric       RHS = Builder.CreateFreeze(RHS);
1369fe6060f1SDimitry Andric     Value *Sel;
1370fe6060f1SDimitry Andric     if (Ty->isIntegerTy())
137181ad6265SDimitry Andric       Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS},
137281ad6265SDimitry Andric                                     /*FMFSource=*/nullptr, Name);
1373fe6060f1SDimitry Andric     else {
137481ad6265SDimitry Andric       Value *ICmp =
137581ad6265SDimitry Andric           Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS);
137681ad6265SDimitry Andric       Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name);
1377fe6060f1SDimitry Andric     }
13785ffd83dbSDimitry Andric     LHS = Sel;
13795ffd83dbSDimitry Andric   }
13805ffd83dbSDimitry Andric   return LHS;
13815ffd83dbSDimitry Andric }
13825ffd83dbSDimitry Andric 
138304eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
138481ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::smax, "smax");
138504eeddc0SDimitry Andric }
138604eeddc0SDimitry Andric 
138704eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
138881ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umax, "umax");
138904eeddc0SDimitry Andric }
139004eeddc0SDimitry Andric 
139104eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
139281ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::smin, "smin");
139304eeddc0SDimitry Andric }
139404eeddc0SDimitry Andric 
139504eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
139681ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umin, "umin");
139704eeddc0SDimitry Andric }
139804eeddc0SDimitry Andric 
139904eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) {
140081ad6265SDimitry Andric   return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true);
140104eeddc0SDimitry Andric }
140204eeddc0SDimitry Andric 
140306c3fb27SDimitry Andric Value *SCEVExpander::visitVScale(const SCEVVScale *S) {
140406c3fb27SDimitry Andric   return Builder.CreateVScale(ConstantInt::get(S->getType(), 1));
140506c3fb27SDimitry Andric }
140606c3fb27SDimitry Andric 
14075f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
14085f757f3fSDimitry Andric                                    BasicBlock::iterator IP) {
14095ffd83dbSDimitry Andric   setInsertPoint(IP);
14105f757f3fSDimitry Andric   Value *V = expandCodeFor(SH, Ty);
1411e8d8bef9SDimitry Andric   return V;
14125ffd83dbSDimitry Andric }
14135ffd83dbSDimitry Andric 
14145f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
14155ffd83dbSDimitry Andric   // Expand the code for this SCEV.
14165ffd83dbSDimitry Andric   Value *V = expand(SH);
1417e8d8bef9SDimitry Andric 
14185ffd83dbSDimitry Andric   if (Ty) {
14195ffd83dbSDimitry Andric     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
14205ffd83dbSDimitry Andric            "non-trivial casts should be done with the SCEVs directly!");
14215ffd83dbSDimitry Andric     V = InsertNoopCastOfTo(V, Ty);
14225ffd83dbSDimitry Andric   }
14235ffd83dbSDimitry Andric   return V;
14245ffd83dbSDimitry Andric }
14255ffd83dbSDimitry Andric 
14265f757f3fSDimitry Andric Value *SCEVExpander::FindValueInExprValueMap(
14275f757f3fSDimitry Andric     const SCEV *S, const Instruction *InsertPt,
14285f757f3fSDimitry Andric     SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) {
14295ffd83dbSDimitry Andric   // If the expansion is not in CanonicalMode, and the SCEV contains any
14305ffd83dbSDimitry Andric   // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
143181ad6265SDimitry Andric   if (!CanonicalMode && SE.containsAddRecurrence(S))
143281ad6265SDimitry Andric     return nullptr;
143381ad6265SDimitry Andric 
143481ad6265SDimitry Andric   // If S is a constant, it may be worse to reuse an existing Value.
143581ad6265SDimitry Andric   if (isa<SCEVConstant>(S))
143681ad6265SDimitry Andric     return nullptr;
143781ad6265SDimitry Andric 
143881ad6265SDimitry Andric   for (Value *V : SE.getSCEVValues(S)) {
143981ad6265SDimitry Andric     Instruction *EntInst = dyn_cast<Instruction>(V);
1440349cc55cSDimitry Andric     if (!EntInst)
1441349cc55cSDimitry Andric       continue;
1442349cc55cSDimitry Andric 
14435f757f3fSDimitry Andric     // Choose a Value from the set which dominates the InsertPt.
14445f757f3fSDimitry Andric     // InsertPt should be inside the Value's parent loop so as not to break
14455f757f3fSDimitry Andric     // the LCSSA form.
1446349cc55cSDimitry Andric     assert(EntInst->getFunction() == InsertPt->getFunction());
14475f757f3fSDimitry Andric     if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) ||
14485f757f3fSDimitry Andric         !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
14494824e7fdSDimitry Andric           SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
14505f757f3fSDimitry Andric       continue;
14515f757f3fSDimitry Andric 
14525f757f3fSDimitry Andric     // Make sure reusing the instruction is poison-safe.
145356727255SDimitry Andric     if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts))
145481ad6265SDimitry Andric       return V;
14555f757f3fSDimitry Andric     DropPoisonGeneratingInsts.clear();
14565ffd83dbSDimitry Andric   }
145781ad6265SDimitry Andric   return nullptr;
14585ffd83dbSDimitry Andric }
14595ffd83dbSDimitry Andric 
14605ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
14615ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
14625ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
14635ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
14645ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it
14655ffd83dbSDimitry Andric // fails, expand the SCEV literally.
14665ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) {
14675ffd83dbSDimitry Andric   // Compute an insertion point for this SCEV object. Hoist the instructions
14685ffd83dbSDimitry Andric   // as far out in the loop nest as possible.
14695f757f3fSDimitry Andric   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
14705ffd83dbSDimitry Andric 
14715ffd83dbSDimitry Andric   // We can move insertion point only if there is no div or rem operations
14725ffd83dbSDimitry Andric   // otherwise we are risky to move it over the check for zero denominator.
14735ffd83dbSDimitry Andric   auto SafeToHoist = [](const SCEV *S) {
14745ffd83dbSDimitry Andric     return !SCEVExprContains(S, [](const SCEV *S) {
14755ffd83dbSDimitry Andric               if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
14765ffd83dbSDimitry Andric                 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
14775ffd83dbSDimitry Andric                   // Division by non-zero constants can be hoisted.
14785ffd83dbSDimitry Andric                   return SC->getValue()->isZero();
14795ffd83dbSDimitry Andric                 // All other divisions should not be moved as they may be
14805ffd83dbSDimitry Andric                 // divisions by zero and should be kept within the
14815ffd83dbSDimitry Andric                 // conditions of the surrounding loops that guard their
14825ffd83dbSDimitry Andric                 // execution (see PR35406).
14835ffd83dbSDimitry Andric                 return true;
14845ffd83dbSDimitry Andric               }
14855ffd83dbSDimitry Andric               return false;
14865ffd83dbSDimitry Andric             });
14875ffd83dbSDimitry Andric   };
14885ffd83dbSDimitry Andric   if (SafeToHoist(S)) {
14895ffd83dbSDimitry Andric     for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
14905ffd83dbSDimitry Andric          L = L->getParentLoop()) {
14915ffd83dbSDimitry Andric       if (SE.isLoopInvariant(S, L)) {
14925ffd83dbSDimitry Andric         if (!L) break;
14935f757f3fSDimitry Andric         if (BasicBlock *Preheader = L->getLoopPreheader()) {
14945f757f3fSDimitry Andric           InsertPt = Preheader->getTerminator()->getIterator();
14955f757f3fSDimitry Andric         } else {
14965ffd83dbSDimitry Andric           // LSR sets the insertion point for AddRec start/step values to the
14975ffd83dbSDimitry Andric           // block start to simplify value reuse, even though it's an invalid
14985ffd83dbSDimitry Andric           // position. SCEVExpander must correct for this in all cases.
14995f757f3fSDimitry Andric           InsertPt = L->getHeader()->getFirstInsertionPt();
15005f757f3fSDimitry Andric         }
15015ffd83dbSDimitry Andric       } else {
15025ffd83dbSDimitry Andric         // If the SCEV is computable at this level, insert it into the header
15035ffd83dbSDimitry Andric         // after the PHIs (and after any other instructions that we've inserted
15045ffd83dbSDimitry Andric         // there) so that it is guaranteed to dominate any user inside the loop.
15055ffd83dbSDimitry Andric         if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
15065f757f3fSDimitry Andric           InsertPt = L->getHeader()->getFirstInsertionPt();
1507e8d8bef9SDimitry Andric 
15085f757f3fSDimitry Andric         while (InsertPt != Builder.GetInsertPoint() &&
15095f757f3fSDimitry Andric                (isInsertedInstruction(&*InsertPt) ||
15105f757f3fSDimitry Andric                 isa<DbgInfoIntrinsic>(&*InsertPt))) {
15115f757f3fSDimitry Andric           InsertPt = std::next(InsertPt);
1512e8d8bef9SDimitry Andric         }
15135ffd83dbSDimitry Andric         break;
15145ffd83dbSDimitry Andric       }
15155ffd83dbSDimitry Andric     }
15165ffd83dbSDimitry Andric   }
15175ffd83dbSDimitry Andric 
15185ffd83dbSDimitry Andric   // Check to see if we already expanded this here.
15195f757f3fSDimitry Andric   auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt));
15205ffd83dbSDimitry Andric   if (I != InsertedExpressions.end())
15215ffd83dbSDimitry Andric     return I->second;
15225ffd83dbSDimitry Andric 
15235ffd83dbSDimitry Andric   SCEVInsertPointGuard Guard(Builder, this);
15245f757f3fSDimitry Andric   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
15255ffd83dbSDimitry Andric 
15265ffd83dbSDimitry Andric   // Expand the expression into instructions.
15275f757f3fSDimitry Andric   SmallVector<Instruction *> DropPoisonGeneratingInsts;
15285f757f3fSDimitry Andric   Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts);
1529bdd1243dSDimitry Andric   if (!V) {
15305ffd83dbSDimitry Andric     V = visit(S);
1531bdd1243dSDimitry Andric     V = fixupLCSSAFormFor(V);
1532bdd1243dSDimitry Andric   } else {
15335f757f3fSDimitry Andric     for (Instruction *I : DropPoisonGeneratingInsts) {
1534*0fca6ea1SDimitry Andric       rememberFlags(I);
1535*0fca6ea1SDimitry Andric       I->dropPoisonGeneratingAnnotations();
15365f757f3fSDimitry Andric       // See if we can re-infer from first principles any of the flags we just
15375f757f3fSDimitry Andric       // dropped.
15385f757f3fSDimitry Andric       if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I))
15395f757f3fSDimitry Andric         if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) {
15405f757f3fSDimitry Andric           auto *BO = cast<BinaryOperator>(I);
15415f757f3fSDimitry Andric           BO->setHasNoUnsignedWrap(
15425f757f3fSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW);
15435f757f3fSDimitry Andric           BO->setHasNoSignedWrap(
15445f757f3fSDimitry Andric             ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW);
15455f757f3fSDimitry Andric         }
15465f757f3fSDimitry Andric       if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) {
15475f757f3fSDimitry Andric         auto *Src = NNI->getOperand(0);
15485f757f3fSDimitry Andric         if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
15495f757f3fSDimitry Andric                                     Constant::getNullValue(Src->getType()), I,
15505f757f3fSDimitry Andric                                     DL).value_or(false))
15515f757f3fSDimitry Andric           NNI->setNonNeg(true);
15525f757f3fSDimitry Andric       }
15535f757f3fSDimitry Andric     }
15544824e7fdSDimitry Andric   }
15555ffd83dbSDimitry Andric   // Remember the expanded value for this SCEV at this location.
15565ffd83dbSDimitry Andric   //
15575ffd83dbSDimitry Andric   // This is independent of PostIncLoops. The mapped value simply materializes
15585ffd83dbSDimitry Andric   // the expression at this insertion point. If the mapped value happened to be
15595ffd83dbSDimitry Andric   // a postinc expansion, it could be reused by a non-postinc user, but only if
15605ffd83dbSDimitry Andric   // its insertion point was already at the head of the loop.
15615f757f3fSDimitry Andric   InsertedExpressions[std::make_pair(S, &*InsertPt)] = V;
15625ffd83dbSDimitry Andric   return V;
15635ffd83dbSDimitry Andric }
15645ffd83dbSDimitry Andric 
15655ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) {
1566e8d8bef9SDimitry Andric   auto DoInsert = [this](Value *V) {
15675ffd83dbSDimitry Andric     if (!PostIncLoops.empty())
1568e8d8bef9SDimitry Andric       InsertedPostIncValues.insert(V);
15695ffd83dbSDimitry Andric     else
1570e8d8bef9SDimitry Andric       InsertedValues.insert(V);
1571e8d8bef9SDimitry Andric   };
1572e8d8bef9SDimitry Andric   DoInsert(I);
15735ffd83dbSDimitry Andric }
15745ffd83dbSDimitry Andric 
1575*0fca6ea1SDimitry Andric void SCEVExpander::rememberFlags(Instruction *I) {
1576*0fca6ea1SDimitry Andric   // If we already have flags for the instruction, keep the existing ones.
1577*0fca6ea1SDimitry Andric   OrigFlags.try_emplace(I, PoisonFlags(I));
1578*0fca6ea1SDimitry Andric }
1579*0fca6ea1SDimitry Andric 
1580*0fca6ea1SDimitry Andric void SCEVExpander::replaceCongruentIVInc(
1581*0fca6ea1SDimitry Andric     PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT,
1582*0fca6ea1SDimitry Andric     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1583*0fca6ea1SDimitry Andric   BasicBlock *LatchBlock = L->getLoopLatch();
1584*0fca6ea1SDimitry Andric   if (!LatchBlock)
1585*0fca6ea1SDimitry Andric     return;
1586*0fca6ea1SDimitry Andric 
1587*0fca6ea1SDimitry Andric   Instruction *OrigInc =
1588*0fca6ea1SDimitry Andric       dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1589*0fca6ea1SDimitry Andric   Instruction *IsomorphicInc =
1590*0fca6ea1SDimitry Andric       dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1591*0fca6ea1SDimitry Andric   if (!OrigInc || !IsomorphicInc)
1592*0fca6ea1SDimitry Andric     return;
1593*0fca6ea1SDimitry Andric 
1594*0fca6ea1SDimitry Andric   // If this phi has the same width but is more canonical, replace the
1595*0fca6ea1SDimitry Andric   // original with it. As part of the "more canonical" determination,
1596*0fca6ea1SDimitry Andric   // respect a prior decision to use an IV chain.
1597*0fca6ea1SDimitry Andric   if (OrigPhi->getType() == Phi->getType() &&
1598*0fca6ea1SDimitry Andric       !(ChainedPhis.count(Phi) ||
1599*0fca6ea1SDimitry Andric         isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) &&
1600*0fca6ea1SDimitry Andric       (ChainedPhis.count(Phi) ||
1601*0fca6ea1SDimitry Andric        isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
1602*0fca6ea1SDimitry Andric     std::swap(OrigPhi, Phi);
1603*0fca6ea1SDimitry Andric     std::swap(OrigInc, IsomorphicInc);
1604*0fca6ea1SDimitry Andric   }
1605*0fca6ea1SDimitry Andric 
1606*0fca6ea1SDimitry Andric   // Replacing the congruent phi is sufficient because acyclic
1607*0fca6ea1SDimitry Andric   // redundancy elimination, CSE/GVN, should handle the
1608*0fca6ea1SDimitry Andric   // rest. However, once SCEV proves that a phi is congruent,
1609*0fca6ea1SDimitry Andric   // it's often the head of an IV user cycle that is isomorphic
1610*0fca6ea1SDimitry Andric   // with the original phi. It's worth eagerly cleaning up the
1611*0fca6ea1SDimitry Andric   // common case of a single IV increment so that DeleteDeadPHIs
1612*0fca6ea1SDimitry Andric   // can remove cycles that had postinc uses.
1613*0fca6ea1SDimitry Andric   // Because we may potentially introduce a new use of OrigIV that didn't
1614*0fca6ea1SDimitry Andric   // exist before at this point, its poison flags need readjustment.
1615*0fca6ea1SDimitry Andric   const SCEV *TruncExpr =
1616*0fca6ea1SDimitry Andric       SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
1617*0fca6ea1SDimitry Andric   if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) ||
1618*0fca6ea1SDimitry Andric       !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc))
1619*0fca6ea1SDimitry Andric     return;
1620*0fca6ea1SDimitry Andric 
1621*0fca6ea1SDimitry Andric   bool BothHaveNUW = false;
1622*0fca6ea1SDimitry Andric   bool BothHaveNSW = false;
1623*0fca6ea1SDimitry Andric   auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc);
1624*0fca6ea1SDimitry Andric   auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc);
1625*0fca6ea1SDimitry Andric   if (OBOIncV && OBOIsomorphic) {
1626*0fca6ea1SDimitry Andric     BothHaveNUW =
1627*0fca6ea1SDimitry Andric         OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap();
1628*0fca6ea1SDimitry Andric     BothHaveNSW =
1629*0fca6ea1SDimitry Andric         OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap();
1630*0fca6ea1SDimitry Andric   }
1631*0fca6ea1SDimitry Andric 
1632*0fca6ea1SDimitry Andric   if (!hoistIVInc(OrigInc, IsomorphicInc,
1633*0fca6ea1SDimitry Andric                   /*RecomputePoisonFlags*/ true))
1634*0fca6ea1SDimitry Andric     return;
1635*0fca6ea1SDimitry Andric 
1636*0fca6ea1SDimitry Andric   // We are replacing with a wider increment. If both OrigInc and IsomorphicInc
1637*0fca6ea1SDimitry Andric   // are NUW/NSW, then we can preserve them on the wider increment; the narrower
1638*0fca6ea1SDimitry Andric   // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't
1639*0fca6ea1SDimitry Andric   // make IsomorphicInc's uses more poisonous.
1640*0fca6ea1SDimitry Andric   assert(OrigInc->getType()->getScalarSizeInBits() >=
1641*0fca6ea1SDimitry Andric              IsomorphicInc->getType()->getScalarSizeInBits() &&
1642*0fca6ea1SDimitry Andric          "Should only replace an increment with a wider one.");
1643*0fca6ea1SDimitry Andric   if (BothHaveNUW || BothHaveNSW) {
1644*0fca6ea1SDimitry Andric     OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW);
1645*0fca6ea1SDimitry Andric     OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW);
1646*0fca6ea1SDimitry Andric   }
1647*0fca6ea1SDimitry Andric 
1648*0fca6ea1SDimitry Andric   SCEV_DEBUG_WITH_TYPE(DebugType,
1649*0fca6ea1SDimitry Andric                        dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1650*0fca6ea1SDimitry Andric                               << *IsomorphicInc << '\n');
1651*0fca6ea1SDimitry Andric   Value *NewInc = OrigInc;
1652*0fca6ea1SDimitry Andric   if (OrigInc->getType() != IsomorphicInc->getType()) {
1653*0fca6ea1SDimitry Andric     BasicBlock::iterator IP;
1654*0fca6ea1SDimitry Andric     if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
1655*0fca6ea1SDimitry Andric       IP = PN->getParent()->getFirstInsertionPt();
1656*0fca6ea1SDimitry Andric     else
1657*0fca6ea1SDimitry Andric       IP = OrigInc->getNextNonDebugInstruction()->getIterator();
1658*0fca6ea1SDimitry Andric 
1659*0fca6ea1SDimitry Andric     IRBuilder<> Builder(IP->getParent(), IP);
1660*0fca6ea1SDimitry Andric     Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
1661*0fca6ea1SDimitry Andric     NewInc =
1662*0fca6ea1SDimitry Andric         Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
1663*0fca6ea1SDimitry Andric   }
1664*0fca6ea1SDimitry Andric   IsomorphicInc->replaceAllUsesWith(NewInc);
1665*0fca6ea1SDimitry Andric   DeadInsts.emplace_back(IsomorphicInc);
1666*0fca6ea1SDimitry Andric }
1667*0fca6ea1SDimitry Andric 
16685ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and
16695ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of
16705ffd83dbSDimitry Andric /// phis eliminated.
16715ffd83dbSDimitry Andric ///
16725ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in
16735ffd83dbSDimitry Andric /// the same context that SCEVExpander is used.
16745ffd83dbSDimitry Andric unsigned
16755ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
16765ffd83dbSDimitry Andric                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts,
16775ffd83dbSDimitry Andric                                   const TargetTransformInfo *TTI) {
16785ffd83dbSDimitry Andric   // Find integer phis in order of increasing width.
16795ffd83dbSDimitry Andric   SmallVector<PHINode*, 8> Phis;
16805ffd83dbSDimitry Andric   for (PHINode &PN : L->getHeader()->phis())
16815ffd83dbSDimitry Andric     Phis.push_back(&PN);
16825ffd83dbSDimitry Andric 
16835ffd83dbSDimitry Andric   if (TTI)
1684349cc55cSDimitry Andric     // Use stable_sort to preserve order of equivalent PHIs, so the order
1685349cc55cSDimitry Andric     // of the sorted Phis is the same from run to run on the same loop.
1686349cc55cSDimitry Andric     llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) {
16875ffd83dbSDimitry Andric       // Put pointers at the back and make sure pointer < pointer = false.
16885ffd83dbSDimitry Andric       if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
16895ffd83dbSDimitry Andric         return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1690bdd1243dSDimitry Andric       return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() <
1691bdd1243dSDimitry Andric              LHS->getType()->getPrimitiveSizeInBits().getFixedValue();
16925ffd83dbSDimitry Andric     });
16935ffd83dbSDimitry Andric 
16945ffd83dbSDimitry Andric   unsigned NumElim = 0;
16955ffd83dbSDimitry Andric   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
16965ffd83dbSDimitry Andric   // Process phis from wide to narrow. Map wide phis to their truncation
16975ffd83dbSDimitry Andric   // so narrow phis can reuse them.
16985ffd83dbSDimitry Andric   for (PHINode *Phi : Phis) {
16995ffd83dbSDimitry Andric     auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
170081ad6265SDimitry Andric       if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
17015ffd83dbSDimitry Andric         return V;
17025ffd83dbSDimitry Andric       if (!SE.isSCEVable(PN->getType()))
17035ffd83dbSDimitry Andric         return nullptr;
17045ffd83dbSDimitry Andric       auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
17055ffd83dbSDimitry Andric       if (!Const)
17065ffd83dbSDimitry Andric         return nullptr;
17075ffd83dbSDimitry Andric       return Const->getValue();
17085ffd83dbSDimitry Andric     };
17095ffd83dbSDimitry Andric 
17105ffd83dbSDimitry Andric     // Fold constant phis. They may be congruent to other constant phis and
17115ffd83dbSDimitry Andric     // would confuse the logic below that expects proper IVs.
17125ffd83dbSDimitry Andric     if (Value *V = SimplifyPHINode(Phi)) {
17135ffd83dbSDimitry Andric       if (V->getType() != Phi->getType())
17145ffd83dbSDimitry Andric         continue;
1715bdd1243dSDimitry Andric       SE.forgetValue(Phi);
17165ffd83dbSDimitry Andric       Phi->replaceAllUsesWith(V);
17175ffd83dbSDimitry Andric       DeadInsts.emplace_back(Phi);
17185ffd83dbSDimitry Andric       ++NumElim;
1719fe6060f1SDimitry Andric       SCEV_DEBUG_WITH_TYPE(DebugType,
1720fe6060f1SDimitry Andric                            dbgs() << "INDVARS: Eliminated constant iv: " << *Phi
1721fe6060f1SDimitry Andric                                   << '\n');
17225ffd83dbSDimitry Andric       continue;
17235ffd83dbSDimitry Andric     }
17245ffd83dbSDimitry Andric 
17255ffd83dbSDimitry Andric     if (!SE.isSCEVable(Phi->getType()))
17265ffd83dbSDimitry Andric       continue;
17275ffd83dbSDimitry Andric 
17285ffd83dbSDimitry Andric     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
17295ffd83dbSDimitry Andric     if (!OrigPhiRef) {
17305ffd83dbSDimitry Andric       OrigPhiRef = Phi;
17315ffd83dbSDimitry Andric       if (Phi->getType()->isIntegerTy() && TTI &&
17325ffd83dbSDimitry Andric           TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
173306c3fb27SDimitry Andric         // Make sure we only rewrite using simple induction variables;
173406c3fb27SDimitry Andric         // otherwise, we can make the trip count of a loop unanalyzable
173506c3fb27SDimitry Andric         // to SCEV.
173606c3fb27SDimitry Andric         const SCEV *PhiExpr = SE.getSCEV(Phi);
173706c3fb27SDimitry Andric         if (isa<SCEVAddRecExpr>(PhiExpr)) {
17385ffd83dbSDimitry Andric           // This phi can be freely truncated to the narrowest phi type. Map the
17395ffd83dbSDimitry Andric           // truncated expression to it so it will be reused for narrow types.
17405ffd83dbSDimitry Andric           const SCEV *TruncExpr =
174106c3fb27SDimitry Andric               SE.getTruncateExpr(PhiExpr, Phis.back()->getType());
17425ffd83dbSDimitry Andric           ExprToIVMap[TruncExpr] = Phi;
17435ffd83dbSDimitry Andric         }
174406c3fb27SDimitry Andric       }
17455ffd83dbSDimitry Andric       continue;
17465ffd83dbSDimitry Andric     }
17475ffd83dbSDimitry Andric 
17485ffd83dbSDimitry Andric     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
17495ffd83dbSDimitry Andric     // sense.
17505ffd83dbSDimitry Andric     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
17515ffd83dbSDimitry Andric       continue;
17525ffd83dbSDimitry Andric 
1753*0fca6ea1SDimitry Andric     replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts);
1754fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(DebugType,
1755fe6060f1SDimitry Andric                          dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi
1756fe6060f1SDimitry Andric                                 << '\n');
1757fe6060f1SDimitry Andric     SCEV_DEBUG_WITH_TYPE(
1758fe6060f1SDimitry Andric         DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n');
17595ffd83dbSDimitry Andric     ++NumElim;
17605ffd83dbSDimitry Andric     Value *NewIV = OrigPhiRef;
17615ffd83dbSDimitry Andric     if (OrigPhiRef->getType() != Phi->getType()) {
17625f757f3fSDimitry Andric       IRBuilder<> Builder(L->getHeader(),
17635f757f3fSDimitry Andric                           L->getHeader()->getFirstInsertionPt());
17645ffd83dbSDimitry Andric       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
17655ffd83dbSDimitry Andric       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
17665ffd83dbSDimitry Andric     }
17675ffd83dbSDimitry Andric     Phi->replaceAllUsesWith(NewIV);
17685ffd83dbSDimitry Andric     DeadInsts.emplace_back(Phi);
17695ffd83dbSDimitry Andric   }
17705ffd83dbSDimitry Andric   return NumElim;
17715ffd83dbSDimitry Andric }
17725ffd83dbSDimitry Andric 
17735f757f3fSDimitry Andric bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S,
177481ad6265SDimitry Andric                                                const Instruction *At,
17755ffd83dbSDimitry Andric                                                Loop *L) {
17765ffd83dbSDimitry Andric   using namespace llvm::PatternMatch;
17775ffd83dbSDimitry Andric 
17785ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 4> ExitingBlocks;
17795ffd83dbSDimitry Andric   L->getExitingBlocks(ExitingBlocks);
17805ffd83dbSDimitry Andric 
17815ffd83dbSDimitry Andric   // Look for suitable value in simple conditions at the loop exits.
17825ffd83dbSDimitry Andric   for (BasicBlock *BB : ExitingBlocks) {
17835ffd83dbSDimitry Andric     ICmpInst::Predicate Pred;
17845ffd83dbSDimitry Andric     Instruction *LHS, *RHS;
17855ffd83dbSDimitry Andric 
17865ffd83dbSDimitry Andric     if (!match(BB->getTerminator(),
17875ffd83dbSDimitry Andric                m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
17885ffd83dbSDimitry Andric                     m_BasicBlock(), m_BasicBlock())))
17895ffd83dbSDimitry Andric       continue;
17905ffd83dbSDimitry Andric 
17915ffd83dbSDimitry Andric     if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
17925f757f3fSDimitry Andric       return true;
17935ffd83dbSDimitry Andric 
17945ffd83dbSDimitry Andric     if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
17955f757f3fSDimitry Andric       return true;
17965ffd83dbSDimitry Andric   }
17975ffd83dbSDimitry Andric 
17985ffd83dbSDimitry Andric   // Use expand's logic which is used for reusing a previous Value in
17994824e7fdSDimitry Andric   // ExprValueMap.  Note that we don't currently model the cost of
18004824e7fdSDimitry Andric   // needing to drop poison generating flags on the instruction if we
18014824e7fdSDimitry Andric   // want to reuse it.  We effectively assume that has zero cost.
18025f757f3fSDimitry Andric   SmallVector<Instruction *> DropPoisonGeneratingInsts;
18035f757f3fSDimitry Andric   return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr;
18045ffd83dbSDimitry Andric }
18055ffd83dbSDimitry Andric 
1806fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands(
1807e8d8bef9SDimitry Andric   const SCEVOperand &WorkItem, const TargetTransformInfo &TTI,
1808e8d8bef9SDimitry Andric   TargetTransformInfo::TargetCostKind CostKind,
1809e8d8bef9SDimitry Andric   SmallVectorImpl<SCEVOperand> &Worklist) {
1810e8d8bef9SDimitry Andric 
1811e8d8bef9SDimitry Andric   const T *S = cast<T>(WorkItem.S);
1812fe6060f1SDimitry Andric   InstructionCost Cost = 0;
1813e8d8bef9SDimitry Andric   // Object to help map SCEV operands to expanded IR instructions.
1814e8d8bef9SDimitry Andric   struct OperationIndices {
1815e8d8bef9SDimitry Andric     OperationIndices(unsigned Opc, size_t min, size_t max) :
1816e8d8bef9SDimitry Andric       Opcode(Opc), MinIdx(min), MaxIdx(max) { }
1817e8d8bef9SDimitry Andric     unsigned Opcode;
1818e8d8bef9SDimitry Andric     size_t MinIdx;
1819e8d8bef9SDimitry Andric     size_t MaxIdx;
1820e8d8bef9SDimitry Andric   };
1821e8d8bef9SDimitry Andric 
1822e8d8bef9SDimitry Andric   // Collect the operations of all the instructions that will be needed to
1823e8d8bef9SDimitry Andric   // expand the SCEVExpr. This is so that when we come to cost the operands,
1824e8d8bef9SDimitry Andric   // we know what the generated user(s) will be.
1825e8d8bef9SDimitry Andric   SmallVector<OperationIndices, 2> Operations;
1826e8d8bef9SDimitry Andric 
1827fe6060f1SDimitry Andric   auto CastCost = [&](unsigned Opcode) -> InstructionCost {
1828e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, 0, 0);
1829e8d8bef9SDimitry Andric     return TTI.getCastInstrCost(Opcode, S->getType(),
1830e8d8bef9SDimitry Andric                                 S->getOperand(0)->getType(),
1831e8d8bef9SDimitry Andric                                 TTI::CastContextHint::None, CostKind);
1832e8d8bef9SDimitry Andric   };
1833e8d8bef9SDimitry Andric 
1834e8d8bef9SDimitry Andric   auto ArithCost = [&](unsigned Opcode, unsigned NumRequired,
1835fe6060f1SDimitry Andric                        unsigned MinIdx = 0,
1836fe6060f1SDimitry Andric                        unsigned MaxIdx = 1) -> InstructionCost {
1837e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1838e8d8bef9SDimitry Andric     return NumRequired *
1839e8d8bef9SDimitry Andric       TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind);
1840e8d8bef9SDimitry Andric   };
1841e8d8bef9SDimitry Andric 
1842fe6060f1SDimitry Andric   auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx,
1843fe6060f1SDimitry Andric                         unsigned MaxIdx) -> InstructionCost {
1844e8d8bef9SDimitry Andric     Operations.emplace_back(Opcode, MinIdx, MaxIdx);
1845bdd1243dSDimitry Andric     Type *OpType = S->getType();
1846e8d8bef9SDimitry Andric     return NumRequired * TTI.getCmpSelInstrCost(
1847e8d8bef9SDimitry Andric                              Opcode, OpType, CmpInst::makeCmpResultType(OpType),
1848e8d8bef9SDimitry Andric                              CmpInst::BAD_ICMP_PREDICATE, CostKind);
1849e8d8bef9SDimitry Andric   };
1850e8d8bef9SDimitry Andric 
1851e8d8bef9SDimitry Andric   switch (S->getSCEVType()) {
1852e8d8bef9SDimitry Andric   case scCouldNotCompute:
1853e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1854e8d8bef9SDimitry Andric   case scUnknown:
1855e8d8bef9SDimitry Andric   case scConstant:
185606c3fb27SDimitry Andric   case scVScale:
1857e8d8bef9SDimitry Andric     return 0;
1858e8d8bef9SDimitry Andric   case scPtrToInt:
1859e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::PtrToInt);
1860e8d8bef9SDimitry Andric     break;
1861e8d8bef9SDimitry Andric   case scTruncate:
1862e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::Trunc);
1863e8d8bef9SDimitry Andric     break;
1864e8d8bef9SDimitry Andric   case scZeroExtend:
1865e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::ZExt);
1866e8d8bef9SDimitry Andric     break;
1867e8d8bef9SDimitry Andric   case scSignExtend:
1868e8d8bef9SDimitry Andric     Cost = CastCost(Instruction::SExt);
1869e8d8bef9SDimitry Andric     break;
1870e8d8bef9SDimitry Andric   case scUDivExpr: {
1871e8d8bef9SDimitry Andric     unsigned Opcode = Instruction::UDiv;
1872e8d8bef9SDimitry Andric     if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1)))
1873e8d8bef9SDimitry Andric       if (SC->getAPInt().isPowerOf2())
1874e8d8bef9SDimitry Andric         Opcode = Instruction::LShr;
1875e8d8bef9SDimitry Andric     Cost = ArithCost(Opcode, 1);
1876e8d8bef9SDimitry Andric     break;
1877e8d8bef9SDimitry Andric   }
1878e8d8bef9SDimitry Andric   case scAddExpr:
1879e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1);
1880e8d8bef9SDimitry Andric     break;
1881e8d8bef9SDimitry Andric   case scMulExpr:
1882e8d8bef9SDimitry Andric     // TODO: this is a very pessimistic cost modelling for Mul,
1883e8d8bef9SDimitry Andric     // because of Bin Pow algorithm actually used by the expander,
1884e8d8bef9SDimitry Andric     // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN().
1885e8d8bef9SDimitry Andric     Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1);
1886e8d8bef9SDimitry Andric     break;
1887e8d8bef9SDimitry Andric   case scSMaxExpr:
1888e8d8bef9SDimitry Andric   case scUMaxExpr:
1889e8d8bef9SDimitry Andric   case scSMinExpr:
189004eeddc0SDimitry Andric   case scUMinExpr:
189104eeddc0SDimitry Andric   case scSequentialUMinExpr: {
1892fe6060f1SDimitry Andric     // FIXME: should this ask the cost for Intrinsic's?
189304eeddc0SDimitry Andric     // The reduction tree.
1894e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1);
1895e8d8bef9SDimitry Andric     Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2);
189604eeddc0SDimitry Andric     switch (S->getSCEVType()) {
189704eeddc0SDimitry Andric     case scSequentialUMinExpr: {
189804eeddc0SDimitry Andric       // The safety net against poison.
189904eeddc0SDimitry Andric       // FIXME: this is broken.
190004eeddc0SDimitry Andric       Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0);
190104eeddc0SDimitry Andric       Cost += ArithCost(Instruction::Or,
190204eeddc0SDimitry Andric                         S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0);
190304eeddc0SDimitry Andric       Cost += CmpSelCost(Instruction::Select, 1, 0, 1);
190404eeddc0SDimitry Andric       break;
190504eeddc0SDimitry Andric     }
190604eeddc0SDimitry Andric     default:
190704eeddc0SDimitry Andric       assert(!isa<SCEVSequentialMinMaxExpr>(S) &&
190804eeddc0SDimitry Andric              "Unhandled SCEV expression type?");
190904eeddc0SDimitry Andric       break;
191004eeddc0SDimitry Andric     }
1911e8d8bef9SDimitry Andric     break;
1912e8d8bef9SDimitry Andric   }
1913e8d8bef9SDimitry Andric   case scAddRecExpr: {
1914e8d8bef9SDimitry Andric     // In this polynominal, we may have some zero operands, and we shouldn't
1915bdd1243dSDimitry Andric     // really charge for those. So how many non-zero coefficients are there?
1916e8d8bef9SDimitry Andric     int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) {
1917e8d8bef9SDimitry Andric                                     return !Op->isZero();
1918e8d8bef9SDimitry Andric                                   });
1919e8d8bef9SDimitry Andric 
1920e8d8bef9SDimitry Andric     assert(NumTerms >= 1 && "Polynominal should have at least one term.");
1921e8d8bef9SDimitry Andric     assert(!(*std::prev(S->operands().end()))->isZero() &&
1922e8d8bef9SDimitry Andric            "Last operand should not be zero");
1923e8d8bef9SDimitry Andric 
1924bdd1243dSDimitry Andric     // Ignoring constant term (operand 0), how many of the coefficients are u> 1?
1925e8d8bef9SDimitry Andric     int NumNonZeroDegreeNonOneTerms =
1926e8d8bef9SDimitry Andric       llvm::count_if(S->operands(), [](const SCEV *Op) {
1927e8d8bef9SDimitry Andric                       auto *SConst = dyn_cast<SCEVConstant>(Op);
1928e8d8bef9SDimitry Andric                       return !SConst || SConst->getAPInt().ugt(1);
1929e8d8bef9SDimitry Andric                     });
1930e8d8bef9SDimitry Andric 
1931e8d8bef9SDimitry Andric     // Much like with normal add expr, the polynominal will require
1932e8d8bef9SDimitry Andric     // one less addition than the number of it's terms.
1933fe6060f1SDimitry Andric     InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1,
1934e8d8bef9SDimitry Andric                                         /*MinIdx*/ 1, /*MaxIdx*/ 1);
1935e8d8bef9SDimitry Andric     // Here, *each* one of those will require a multiplication.
1936fe6060f1SDimitry Andric     InstructionCost MulCost =
1937fe6060f1SDimitry Andric         ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms);
1938e8d8bef9SDimitry Andric     Cost = AddCost + MulCost;
1939e8d8bef9SDimitry Andric 
1940e8d8bef9SDimitry Andric     // What is the degree of this polynominal?
1941e8d8bef9SDimitry Andric     int PolyDegree = S->getNumOperands() - 1;
1942e8d8bef9SDimitry Andric     assert(PolyDegree >= 1 && "Should be at least affine.");
1943e8d8bef9SDimitry Andric 
1944e8d8bef9SDimitry Andric     // The final term will be:
1945e8d8bef9SDimitry Andric     //   Op_{PolyDegree} * x ^ {PolyDegree}
1946e8d8bef9SDimitry Andric     // Where  x ^ {PolyDegree}  will again require PolyDegree-1 mul operations.
1947e8d8bef9SDimitry Andric     // Note that  x ^ {PolyDegree} = x * x ^ {PolyDegree-1}  so charging for
1948e8d8bef9SDimitry Andric     // x ^ {PolyDegree}  will give us  x ^ {2} .. x ^ {PolyDegree-1}  for free.
1949e8d8bef9SDimitry Andric     // FIXME: this is conservatively correct, but might be overly pessimistic.
1950e8d8bef9SDimitry Andric     Cost += MulCost * (PolyDegree - 1);
1951e8d8bef9SDimitry Andric     break;
1952e8d8bef9SDimitry Andric   }
1953e8d8bef9SDimitry Andric   }
1954e8d8bef9SDimitry Andric 
1955e8d8bef9SDimitry Andric   for (auto &CostOp : Operations) {
1956e8d8bef9SDimitry Andric     for (auto SCEVOp : enumerate(S->operands())) {
1957e8d8bef9SDimitry Andric       // Clamp the index to account for multiple IR operations being chained.
1958e8d8bef9SDimitry Andric       size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx);
1959e8d8bef9SDimitry Andric       size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx);
1960e8d8bef9SDimitry Andric       Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value());
1961e8d8bef9SDimitry Andric     }
1962e8d8bef9SDimitry Andric   }
1963e8d8bef9SDimitry Andric   return Cost;
1964e8d8bef9SDimitry Andric }
1965e8d8bef9SDimitry Andric 
19665ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper(
1967e8d8bef9SDimitry Andric     const SCEVOperand &WorkItem, Loop *L, const Instruction &At,
1968fe6060f1SDimitry Andric     InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI,
1969e8d8bef9SDimitry Andric     SmallPtrSetImpl<const SCEV *> &Processed,
1970e8d8bef9SDimitry Andric     SmallVectorImpl<SCEVOperand> &Worklist) {
1971fe6060f1SDimitry Andric   if (Cost > Budget)
19725ffd83dbSDimitry Andric     return true; // Already run out of budget, give up.
19735ffd83dbSDimitry Andric 
1974e8d8bef9SDimitry Andric   const SCEV *S = WorkItem.S;
19755ffd83dbSDimitry Andric   // Was the cost of expansion of this expression already accounted for?
1976e8d8bef9SDimitry Andric   if (!isa<SCEVConstant>(S) && !Processed.insert(S).second)
19775ffd83dbSDimitry Andric     return false; // We have already accounted for this expression.
19785ffd83dbSDimitry Andric 
19795ffd83dbSDimitry Andric   // If we can find an existing value for this scev available at the point "At"
19805ffd83dbSDimitry Andric   // then consider the expression cheap.
19815f757f3fSDimitry Andric   if (hasRelatedExistingExpansion(S, &At, L))
19825ffd83dbSDimitry Andric     return false; // Consider the expression to be free.
19835ffd83dbSDimitry Andric 
19845ffd83dbSDimitry Andric   TargetTransformInfo::TargetCostKind CostKind =
1985e8d8bef9SDimitry Andric       L->getHeader()->getParent()->hasMinSize()
1986e8d8bef9SDimitry Andric           ? TargetTransformInfo::TCK_CodeSize
1987e8d8bef9SDimitry Andric           : TargetTransformInfo::TCK_RecipThroughput;
19885ffd83dbSDimitry Andric 
19895ffd83dbSDimitry Andric   switch (S->getSCEVType()) {
1990e8d8bef9SDimitry Andric   case scCouldNotCompute:
1991e8d8bef9SDimitry Andric     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
1992e8d8bef9SDimitry Andric   case scUnknown:
199306c3fb27SDimitry Andric   case scVScale:
1994e8d8bef9SDimitry Andric     // Assume to be zero-cost.
1995e8d8bef9SDimitry Andric     return false;
1996e8d8bef9SDimitry Andric   case scConstant: {
1997e8d8bef9SDimitry Andric     // Only evalulate the costs of constants when optimizing for size.
1998e8d8bef9SDimitry Andric     if (CostKind != TargetTransformInfo::TCK_CodeSize)
199904eeddc0SDimitry Andric       return false;
2000e8d8bef9SDimitry Andric     const APInt &Imm = cast<SCEVConstant>(S)->getAPInt();
2001e8d8bef9SDimitry Andric     Type *Ty = S->getType();
2002fe6060f1SDimitry Andric     Cost += TTI.getIntImmCostInst(
2003e8d8bef9SDimitry Andric         WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind);
2004fe6060f1SDimitry Andric     return Cost > Budget;
2005e8d8bef9SDimitry Andric   }
20065ffd83dbSDimitry Andric   case scTruncate:
2007e8d8bef9SDimitry Andric   case scPtrToInt:
20085ffd83dbSDimitry Andric   case scZeroExtend:
2009e8d8bef9SDimitry Andric   case scSignExtend: {
2010fe6060f1SDimitry Andric     Cost +=
2011e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist);
20125ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
20135ffd83dbSDimitry Andric   }
2014e8d8bef9SDimitry Andric   case scUDivExpr: {
20155ffd83dbSDimitry Andric     // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
20165ffd83dbSDimitry Andric     // HowManyLessThans produced to compute a precise expression, rather than a
20175ffd83dbSDimitry Andric     // UDiv from the user's code. If we can't find a UDiv in the code with some
20185ffd83dbSDimitry Andric     // simple searching, we need to account for it's cost.
20195ffd83dbSDimitry Andric 
20205ffd83dbSDimitry Andric     // At the beginning of this function we already tried to find existing
20215ffd83dbSDimitry Andric     // value for plain 'S'. Now try to lookup 'S + 1' since it is common
20225ffd83dbSDimitry Andric     // pattern involving division. This is just a simple search heuristic.
20235f757f3fSDimitry Andric     if (hasRelatedExistingExpansion(
20245ffd83dbSDimitry Andric             SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L))
20255ffd83dbSDimitry Andric       return false; // Consider it to be free.
20265ffd83dbSDimitry Andric 
2027fe6060f1SDimitry Andric     Cost +=
2028e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist);
20295ffd83dbSDimitry Andric     return false; // Will answer upon next entry into this function.
20305ffd83dbSDimitry Andric   }
20315ffd83dbSDimitry Andric   case scAddExpr:
20325ffd83dbSDimitry Andric   case scMulExpr:
20335ffd83dbSDimitry Andric   case scUMaxExpr:
2034e8d8bef9SDimitry Andric   case scSMaxExpr:
20355ffd83dbSDimitry Andric   case scUMinExpr:
203604eeddc0SDimitry Andric   case scSMinExpr:
203704eeddc0SDimitry Andric   case scSequentialUMinExpr: {
2038e8d8bef9SDimitry Andric     assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 &&
20395ffd83dbSDimitry Andric            "Nary expr should have more than 1 operand.");
20405ffd83dbSDimitry Andric     // The simple nary expr will require one less op (or pair of ops)
20415ffd83dbSDimitry Andric     // than the number of it's terms.
2042fe6060f1SDimitry Andric     Cost +=
2043e8d8bef9SDimitry Andric         costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist);
2044fe6060f1SDimitry Andric     return Cost > Budget;
20455ffd83dbSDimitry Andric   }
2046e8d8bef9SDimitry Andric   case scAddRecExpr: {
2047e8d8bef9SDimitry Andric     assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 &&
2048e8d8bef9SDimitry Andric            "Polynomial should be at least linear");
2049fe6060f1SDimitry Andric     Cost += costAndCollectOperands<SCEVAddRecExpr>(
2050e8d8bef9SDimitry Andric         WorkItem, TTI, CostKind, Worklist);
2051fe6060f1SDimitry Andric     return Cost > Budget;
2052e8d8bef9SDimitry Andric   }
2053e8d8bef9SDimitry Andric   }
2054e8d8bef9SDimitry Andric   llvm_unreachable("Unknown SCEV kind!");
20555ffd83dbSDimitry Andric }
20565ffd83dbSDimitry Andric 
20575ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
20585ffd83dbSDimitry Andric                                             Instruction *IP) {
20595ffd83dbSDimitry Andric   assert(IP);
20605ffd83dbSDimitry Andric   switch (Pred->getKind()) {
20615ffd83dbSDimitry Andric   case SCEVPredicate::P_Union:
20625ffd83dbSDimitry Andric     return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
206381ad6265SDimitry Andric   case SCEVPredicate::P_Compare:
206481ad6265SDimitry Andric     return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP);
20655ffd83dbSDimitry Andric   case SCEVPredicate::P_Wrap: {
20665ffd83dbSDimitry Andric     auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
20675ffd83dbSDimitry Andric     return expandWrapPredicate(AddRecPred, IP);
20685ffd83dbSDimitry Andric   }
20695ffd83dbSDimitry Andric   }
20705ffd83dbSDimitry Andric   llvm_unreachable("Unknown SCEV predicate type");
20715ffd83dbSDimitry Andric }
20725ffd83dbSDimitry Andric 
207381ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred,
20745ffd83dbSDimitry Andric                                             Instruction *IP) {
20755f757f3fSDimitry Andric   Value *Expr0 = expand(Pred->getLHS(), IP);
20765f757f3fSDimitry Andric   Value *Expr1 = expand(Pred->getRHS(), IP);
20775ffd83dbSDimitry Andric 
20785ffd83dbSDimitry Andric   Builder.SetInsertPoint(IP);
207981ad6265SDimitry Andric   auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate());
208081ad6265SDimitry Andric   auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check");
20815ffd83dbSDimitry Andric   return I;
20825ffd83dbSDimitry Andric }
20835ffd83dbSDimitry Andric 
20845ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
20855ffd83dbSDimitry Andric                                            Instruction *Loc, bool Signed) {
20865ffd83dbSDimitry Andric   assert(AR->isAffine() && "Cannot generate RT check for "
20875ffd83dbSDimitry Andric                            "non-affine expression");
20885ffd83dbSDimitry Andric 
208981ad6265SDimitry Andric   // FIXME: It is highly suspicious that we're ignoring the predicates here.
209081ad6265SDimitry Andric   SmallVector<const SCEVPredicate *, 4> Pred;
20915ffd83dbSDimitry Andric   const SCEV *ExitCount =
2092*0fca6ea1SDimitry Andric       SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred);
20935ffd83dbSDimitry Andric 
2094e8d8bef9SDimitry Andric   assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count");
20955ffd83dbSDimitry Andric 
20965ffd83dbSDimitry Andric   const SCEV *Step = AR->getStepRecurrence(SE);
20975ffd83dbSDimitry Andric   const SCEV *Start = AR->getStart();
20985ffd83dbSDimitry Andric 
20995ffd83dbSDimitry Andric   Type *ARTy = AR->getType();
21005ffd83dbSDimitry Andric   unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
21015ffd83dbSDimitry Andric   unsigned DstBits = SE.getTypeSizeInBits(ARTy);
21025ffd83dbSDimitry Andric 
21035ffd83dbSDimitry Andric   // The expression {Start,+,Step} has nusw/nssw if
21045ffd83dbSDimitry Andric   //   Step < 0, Start - |Step| * Backedge <= Start
21055ffd83dbSDimitry Andric   //   Step >= 0, Start + |Step| * Backedge > Start
21065ffd83dbSDimitry Andric   // and |Step| * Backedge doesn't unsigned overflow.
21075ffd83dbSDimitry Andric 
21085ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
21095f757f3fSDimitry Andric   Value *TripCountVal = expand(ExitCount, Loc);
21105ffd83dbSDimitry Andric 
21115ffd83dbSDimitry Andric   IntegerType *Ty =
21125ffd83dbSDimitry Andric       IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
21135ffd83dbSDimitry Andric 
21145f757f3fSDimitry Andric   Value *StepValue = expand(Step, Loc);
21155f757f3fSDimitry Andric   Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc);
21165f757f3fSDimitry Andric   Value *StartValue = expand(Start, Loc);
21175ffd83dbSDimitry Andric 
21185ffd83dbSDimitry Andric   ConstantInt *Zero =
2119349cc55cSDimitry Andric       ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits));
21205ffd83dbSDimitry Andric 
21215ffd83dbSDimitry Andric   Builder.SetInsertPoint(Loc);
21225ffd83dbSDimitry Andric   // Compute |Step|
21235ffd83dbSDimitry Andric   Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
21245ffd83dbSDimitry Andric   Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
21255ffd83dbSDimitry Andric 
212604eeddc0SDimitry Andric   // Compute |Step| * Backedge
212704eeddc0SDimitry Andric   // Compute:
212804eeddc0SDimitry Andric   //   1. Start + |Step| * Backedge < Start
212904eeddc0SDimitry Andric   //   2. Start - |Step| * Backedge > Start
213004eeddc0SDimitry Andric   //
213104eeddc0SDimitry Andric   // And select either 1. or 2. depending on whether step is positive or
213204eeddc0SDimitry Andric   // negative. If Step is known to be positive or negative, only create
213304eeddc0SDimitry Andric   // either 1. or 2.
213404eeddc0SDimitry Andric   auto ComputeEndCheck = [&]() -> Value * {
213504eeddc0SDimitry Andric     // Checking <u 0 is always false.
213604eeddc0SDimitry Andric     if (!Signed && Start->isZero() && SE.isKnownPositive(Step))
213704eeddc0SDimitry Andric       return ConstantInt::getFalse(Loc->getContext());
213804eeddc0SDimitry Andric 
21395ffd83dbSDimitry Andric     // Get the backedge taken count and truncate or extended to the AR type.
21405ffd83dbSDimitry Andric     Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
21415ffd83dbSDimitry Andric 
2142349cc55cSDimitry Andric     Value *MulV, *OfMul;
2143349cc55cSDimitry Andric     if (Step->isOne()) {
2144349cc55cSDimitry Andric       // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't
2145349cc55cSDimitry Andric       // needed, there is never an overflow, so to avoid artificially inflating
2146349cc55cSDimitry Andric       // the cost of the check, directly emit the optimized IR.
2147349cc55cSDimitry Andric       MulV = TruncTripCount;
2148349cc55cSDimitry Andric       OfMul = ConstantInt::getFalse(MulV->getContext());
2149349cc55cSDimitry Andric     } else {
2150349cc55cSDimitry Andric       auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2151349cc55cSDimitry Andric                                              Intrinsic::umul_with_overflow, Ty);
215204eeddc0SDimitry Andric       CallInst *Mul =
215304eeddc0SDimitry Andric           Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2154349cc55cSDimitry Andric       MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2155349cc55cSDimitry Andric       OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2156349cc55cSDimitry Andric     }
21575ffd83dbSDimitry Andric 
21585ffd83dbSDimitry Andric     Value *Add = nullptr, *Sub = nullptr;
215904eeddc0SDimitry Andric     bool NeedPosCheck = !SE.isKnownNegative(Step);
216004eeddc0SDimitry Andric     bool NeedNegCheck = !SE.isKnownPositive(Step);
216104eeddc0SDimitry Andric 
21625f757f3fSDimitry Andric     if (isa<PointerType>(ARTy)) {
2163349cc55cSDimitry Andric       Value *NegMulV = Builder.CreateNeg(MulV);
216404eeddc0SDimitry Andric       if (NeedPosCheck)
21657a6dacacSDimitry Andric         Add = Builder.CreatePtrAdd(StartValue, MulV);
216604eeddc0SDimitry Andric       if (NeedNegCheck)
21677a6dacacSDimitry Andric         Sub = Builder.CreatePtrAdd(StartValue, NegMulV);
21685ffd83dbSDimitry Andric     } else {
216904eeddc0SDimitry Andric       if (NeedPosCheck)
21705ffd83dbSDimitry Andric         Add = Builder.CreateAdd(StartValue, MulV);
217104eeddc0SDimitry Andric       if (NeedNegCheck)
21725ffd83dbSDimitry Andric         Sub = Builder.CreateSub(StartValue, MulV);
21735ffd83dbSDimitry Andric     }
21745ffd83dbSDimitry Andric 
217504eeddc0SDimitry Andric     Value *EndCompareLT = nullptr;
217604eeddc0SDimitry Andric     Value *EndCompareGT = nullptr;
217704eeddc0SDimitry Andric     Value *EndCheck = nullptr;
217804eeddc0SDimitry Andric     if (NeedPosCheck)
217904eeddc0SDimitry Andric       EndCheck = EndCompareLT = Builder.CreateICmp(
21805ffd83dbSDimitry Andric           Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
218104eeddc0SDimitry Andric     if (NeedNegCheck)
218204eeddc0SDimitry Andric       EndCheck = EndCompareGT = Builder.CreateICmp(
218304eeddc0SDimitry Andric           Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
218404eeddc0SDimitry Andric     if (NeedPosCheck && NeedNegCheck) {
21855ffd83dbSDimitry Andric       // Select the answer based on the sign of Step.
218604eeddc0SDimitry Andric       EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
218704eeddc0SDimitry Andric     }
218804eeddc0SDimitry Andric     return Builder.CreateOr(EndCheck, OfMul);
218904eeddc0SDimitry Andric   };
219004eeddc0SDimitry Andric   Value *EndCheck = ComputeEndCheck();
21915ffd83dbSDimitry Andric 
21925ffd83dbSDimitry Andric   // If the backedge taken count type is larger than the AR type,
21935ffd83dbSDimitry Andric   // check that we don't drop any bits by truncating it. If we are
21945ffd83dbSDimitry Andric   // dropping bits, then we have overflow (unless the step is zero).
21955f757f3fSDimitry Andric   if (SrcBits > DstBits) {
21965ffd83dbSDimitry Andric     auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
21975ffd83dbSDimitry Andric     auto *BackedgeCheck =
21985ffd83dbSDimitry Andric         Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
21995ffd83dbSDimitry Andric                            ConstantInt::get(Loc->getContext(), MaxVal));
22005ffd83dbSDimitry Andric     BackedgeCheck = Builder.CreateAnd(
22015ffd83dbSDimitry Andric         BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
22025ffd83dbSDimitry Andric 
22035ffd83dbSDimitry Andric     EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
22045ffd83dbSDimitry Andric   }
22055ffd83dbSDimitry Andric 
220604eeddc0SDimitry Andric   return EndCheck;
22075ffd83dbSDimitry Andric }
22085ffd83dbSDimitry Andric 
22095ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
22105ffd83dbSDimitry Andric                                          Instruction *IP) {
22115ffd83dbSDimitry Andric   const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
22125ffd83dbSDimitry Andric   Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
22135ffd83dbSDimitry Andric 
22145ffd83dbSDimitry Andric   // Add a check for NUSW
22155ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
22165ffd83dbSDimitry Andric     NUSWCheck = generateOverflowCheck(A, IP, false);
22175ffd83dbSDimitry Andric 
22185ffd83dbSDimitry Andric   // Add a check for NSSW
22195ffd83dbSDimitry Andric   if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
22205ffd83dbSDimitry Andric     NSSWCheck = generateOverflowCheck(A, IP, true);
22215ffd83dbSDimitry Andric 
22225ffd83dbSDimitry Andric   if (NUSWCheck && NSSWCheck)
22235ffd83dbSDimitry Andric     return Builder.CreateOr(NUSWCheck, NSSWCheck);
22245ffd83dbSDimitry Andric 
22255ffd83dbSDimitry Andric   if (NUSWCheck)
22265ffd83dbSDimitry Andric     return NUSWCheck;
22275ffd83dbSDimitry Andric 
22285ffd83dbSDimitry Andric   if (NSSWCheck)
22295ffd83dbSDimitry Andric     return NSSWCheck;
22305ffd83dbSDimitry Andric 
22315ffd83dbSDimitry Andric   return ConstantInt::getFalse(IP->getContext());
22325ffd83dbSDimitry Andric }
22335ffd83dbSDimitry Andric 
22345ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
22355ffd83dbSDimitry Andric                                           Instruction *IP) {
22365ffd83dbSDimitry Andric   // Loop over all checks in this set.
223704eeddc0SDimitry Andric   SmallVector<Value *> Checks;
2238bdd1243dSDimitry Andric   for (const auto *Pred : Union->getPredicates()) {
223904eeddc0SDimitry Andric     Checks.push_back(expandCodeForPredicate(Pred, IP));
22405ffd83dbSDimitry Andric     Builder.SetInsertPoint(IP);
22415ffd83dbSDimitry Andric   }
22425ffd83dbSDimitry Andric 
224304eeddc0SDimitry Andric   if (Checks.empty())
224404eeddc0SDimitry Andric     return ConstantInt::getFalse(IP->getContext());
224504eeddc0SDimitry Andric   return Builder.CreateOr(Checks);
22465ffd83dbSDimitry Andric }
22475ffd83dbSDimitry Andric 
2248bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) {
2249bdd1243dSDimitry Andric   auto *DefI = dyn_cast<Instruction>(V);
2250bdd1243dSDimitry Andric   if (!PreserveLCSSA || !DefI)
2251bdd1243dSDimitry Andric     return V;
2252e8d8bef9SDimitry Andric 
2253*0fca6ea1SDimitry Andric   BasicBlock::iterator InsertPt = Builder.GetInsertPoint();
2254bdd1243dSDimitry Andric   Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent());
2255bdd1243dSDimitry Andric   Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent());
2256e8d8bef9SDimitry Andric   if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop))
2257bdd1243dSDimitry Andric     return V;
2258e8d8bef9SDimitry Andric 
2259bdd1243dSDimitry Andric   // Create a temporary instruction to at the current insertion point, so we
2260bdd1243dSDimitry Andric   // can hand it off to the helper to create LCSSA PHIs if required for the
2261bdd1243dSDimitry Andric   // new use.
2262bdd1243dSDimitry Andric   // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor)
2263bdd1243dSDimitry Andric   // would accept a insertion point and return an LCSSA phi for that
2264bdd1243dSDimitry Andric   // insertion point, so there is no need to insert & remove the temporary
2265bdd1243dSDimitry Andric   // instruction.
2266bdd1243dSDimitry Andric   Type *ToTy;
2267bdd1243dSDimitry Andric   if (DefI->getType()->isIntegerTy())
22685f757f3fSDimitry Andric     ToTy = PointerType::get(DefI->getContext(), 0);
2269bdd1243dSDimitry Andric   else
2270bdd1243dSDimitry Andric     ToTy = Type::getInt32Ty(DefI->getContext());
2271bdd1243dSDimitry Andric   Instruction *User =
2272bdd1243dSDimitry Andric       CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt);
2273bdd1243dSDimitry Andric   auto RemoveUserOnExit =
2274bdd1243dSDimitry Andric       make_scope_exit([User]() { User->eraseFromParent(); });
2275bdd1243dSDimitry Andric 
2276bdd1243dSDimitry Andric   SmallVector<Instruction *, 1> ToUpdate;
2277bdd1243dSDimitry Andric   ToUpdate.push_back(DefI);
2278e8d8bef9SDimitry Andric   SmallVector<PHINode *, 16> PHIsToRemove;
227906c3fb27SDimitry Andric   SmallVector<PHINode *, 16> InsertedPHIs;
228006c3fb27SDimitry Andric   formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove,
228106c3fb27SDimitry Andric                            &InsertedPHIs);
228206c3fb27SDimitry Andric   for (PHINode *PN : InsertedPHIs)
228306c3fb27SDimitry Andric     rememberInstruction(PN);
2284e8d8bef9SDimitry Andric   for (PHINode *PN : PHIsToRemove) {
2285e8d8bef9SDimitry Andric     if (!PN->use_empty())
2286e8d8bef9SDimitry Andric       continue;
2287e8d8bef9SDimitry Andric     InsertedValues.erase(PN);
2288e8d8bef9SDimitry Andric     InsertedPostIncValues.erase(PN);
2289e8d8bef9SDimitry Andric     PN->eraseFromParent();
2290e8d8bef9SDimitry Andric   }
2291e8d8bef9SDimitry Andric 
2292bdd1243dSDimitry Andric   return User->getOperand(0);
2293e8d8bef9SDimitry Andric }
2294e8d8bef9SDimitry Andric 
22955ffd83dbSDimitry Andric namespace {
22965ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand.  Any expression
22975ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
22985ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide
22995ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is
23005ffd83dbSDimitry Andric // nonzero before expansion.
23015ffd83dbSDimitry Andric //
23025ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is
23035ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV
23045ffd83dbSDimitry Andric // derived.
23055ffd83dbSDimitry Andric //
2306fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here.
23075ffd83dbSDimitry Andric //
23085ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop
23095ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by
23105ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally
23115ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing
23125ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a
23135ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed.
23145ffd83dbSDimitry Andric struct SCEVFindUnsafe {
23155ffd83dbSDimitry Andric   ScalarEvolution &SE;
2316349cc55cSDimitry Andric   bool CanonicalMode;
231781ad6265SDimitry Andric   bool IsUnsafe = false;
23185ffd83dbSDimitry Andric 
2319349cc55cSDimitry Andric   SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode)
232081ad6265SDimitry Andric       : SE(SE), CanonicalMode(CanonicalMode) {}
23215ffd83dbSDimitry Andric 
23225ffd83dbSDimitry Andric   bool follow(const SCEV *S) {
23235ffd83dbSDimitry Andric     if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2324fcaf7f86SDimitry Andric       if (!SE.isKnownNonZero(D->getRHS())) {
23255ffd83dbSDimitry Andric         IsUnsafe = true;
23265ffd83dbSDimitry Andric         return false;
23275ffd83dbSDimitry Andric       }
23285ffd83dbSDimitry Andric     }
23295ffd83dbSDimitry Andric     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2330349cc55cSDimitry Andric       // For non-affine addrecs or in non-canonical mode we need a preheader
2331349cc55cSDimitry Andric       // to insert into.
2332349cc55cSDimitry Andric       if (!AR->getLoop()->getLoopPreheader() &&
2333349cc55cSDimitry Andric           (!CanonicalMode || !AR->isAffine())) {
2334349cc55cSDimitry Andric         IsUnsafe = true;
2335349cc55cSDimitry Andric         return false;
2336349cc55cSDimitry Andric       }
23375ffd83dbSDimitry Andric     }
23385ffd83dbSDimitry Andric     return true;
23395ffd83dbSDimitry Andric   }
23405ffd83dbSDimitry Andric   bool isDone() const { return IsUnsafe; }
23415ffd83dbSDimitry Andric };
2342fcaf7f86SDimitry Andric } // namespace
23435ffd83dbSDimitry Andric 
2344fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const {
2345349cc55cSDimitry Andric   SCEVFindUnsafe Search(SE, CanonicalMode);
23465ffd83dbSDimitry Andric   visitAll(S, Search);
23475ffd83dbSDimitry Andric   return !Search.IsUnsafe;
23485ffd83dbSDimitry Andric }
23495ffd83dbSDimitry Andric 
2350fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S,
2351fcaf7f86SDimitry Andric                                     const Instruction *InsertionPoint) const {
2352fcaf7f86SDimitry Andric   if (!isSafeToExpand(S))
23535ffd83dbSDimitry Andric     return false;
23545ffd83dbSDimitry Andric   // We have to prove that the expanded site of S dominates InsertionPoint.
23555ffd83dbSDimitry Andric   // This is easy when not in the same block, but hard when S is an instruction
23565ffd83dbSDimitry Andric   // to be expanded somewhere inside the same block as our insertion point.
23575ffd83dbSDimitry Andric   // What we really need here is something analogous to an OrderedBasicBlock,
23585ffd83dbSDimitry Andric   // but for the moment, we paper over the problem by handling two common and
23595ffd83dbSDimitry Andric   // cheap to check cases.
23605ffd83dbSDimitry Andric   if (SE.properlyDominates(S, InsertionPoint->getParent()))
23615ffd83dbSDimitry Andric     return true;
23625ffd83dbSDimitry Andric   if (SE.dominates(S, InsertionPoint->getParent())) {
23635ffd83dbSDimitry Andric     if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
23645ffd83dbSDimitry Andric       return true;
23655ffd83dbSDimitry Andric     if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2366fe6060f1SDimitry Andric       if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue()))
23675ffd83dbSDimitry Andric         return true;
23685ffd83dbSDimitry Andric   }
23695ffd83dbSDimitry Andric   return false;
23705ffd83dbSDimitry Andric }
2371e8d8bef9SDimitry Andric 
2372fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() {
2373e8d8bef9SDimitry Andric   // Result is used, nothing to remove.
2374e8d8bef9SDimitry Andric   if (ResultUsed)
2375e8d8bef9SDimitry Andric     return;
2376e8d8bef9SDimitry Andric 
2377*0fca6ea1SDimitry Andric   // Restore original poison flags.
2378*0fca6ea1SDimitry Andric   for (auto [I, Flags] : Expander.OrigFlags)
2379*0fca6ea1SDimitry Andric     Flags.apply(I);
2380*0fca6ea1SDimitry Andric 
2381e8d8bef9SDimitry Andric   auto InsertedInstructions = Expander.getAllInsertedInstructions();
2382e8d8bef9SDimitry Andric #ifndef NDEBUG
2383e8d8bef9SDimitry Andric   SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(),
2384e8d8bef9SDimitry Andric                                             InsertedInstructions.end());
2385e8d8bef9SDimitry Andric   (void)InsertedSet;
2386e8d8bef9SDimitry Andric #endif
2387e8d8bef9SDimitry Andric   // Remove sets with value handles.
2388e8d8bef9SDimitry Andric   Expander.clear();
2389e8d8bef9SDimitry Andric 
2390e8d8bef9SDimitry Andric   // Remove all inserted instructions.
239104eeddc0SDimitry Andric   for (Instruction *I : reverse(InsertedInstructions)) {
2392e8d8bef9SDimitry Andric #ifndef NDEBUG
2393e8d8bef9SDimitry Andric     assert(all_of(I->users(),
2394e8d8bef9SDimitry Andric                   [&InsertedSet](Value *U) {
2395e8d8bef9SDimitry Andric                     return InsertedSet.contains(cast<Instruction>(U));
2396e8d8bef9SDimitry Andric                   }) &&
2397e8d8bef9SDimitry Andric            "removed instruction should only be used by instructions inserted "
2398e8d8bef9SDimitry Andric            "during expansion");
2399e8d8bef9SDimitry Andric #endif
2400e8d8bef9SDimitry Andric     assert(!I->getType()->isVoidTy() &&
2401e8d8bef9SDimitry Andric            "inserted instruction should have non-void types");
2402bdd1243dSDimitry Andric     I->replaceAllUsesWith(PoisonValue::get(I->getType()));
2403e8d8bef9SDimitry Andric     I->eraseFromParent();
2404e8d8bef9SDimitry Andric   }
2405e8d8bef9SDimitry Andric }
2406