15ffd83dbSDimitry Andric //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===// 25ffd83dbSDimitry Andric // 35ffd83dbSDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 45ffd83dbSDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 55ffd83dbSDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 65ffd83dbSDimitry Andric // 75ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 85ffd83dbSDimitry Andric // 95ffd83dbSDimitry Andric // This file contains the implementation of the scalar evolution expander, 105ffd83dbSDimitry Andric // which is used to generate the code corresponding to a given scalar evolution 115ffd83dbSDimitry Andric // expression. 125ffd83dbSDimitry Andric // 135ffd83dbSDimitry Andric //===----------------------------------------------------------------------===// 145ffd83dbSDimitry Andric 155ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 165ffd83dbSDimitry Andric #include "llvm/ADT/STLExtras.h" 17bdd1243dSDimitry Andric #include "llvm/ADT/ScopeExit.h" 185ffd83dbSDimitry Andric #include "llvm/ADT/SmallSet.h" 195ffd83dbSDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 205ffd83dbSDimitry Andric #include "llvm/Analysis/LoopInfo.h" 215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 224824e7fdSDimitry Andric #include "llvm/Analysis/ValueTracking.h" 235ffd83dbSDimitry Andric #include "llvm/IR/DataLayout.h" 245ffd83dbSDimitry Andric #include "llvm/IR/Dominators.h" 255ffd83dbSDimitry Andric #include "llvm/IR/IntrinsicInst.h" 265ffd83dbSDimitry Andric #include "llvm/IR/PatternMatch.h" 275ffd83dbSDimitry Andric #include "llvm/Support/CommandLine.h" 285ffd83dbSDimitry Andric #include "llvm/Support/raw_ostream.h" 29e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/LoopUtils.h" 305ffd83dbSDimitry Andric 31fe6060f1SDimitry Andric #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS 32fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) DEBUG_WITH_TYPE(TYPE, X) 33fe6060f1SDimitry Andric #else 34fe6060f1SDimitry Andric #define SCEV_DEBUG_WITH_TYPE(TYPE, X) 35fe6060f1SDimitry Andric #endif 36fe6060f1SDimitry Andric 375ffd83dbSDimitry Andric using namespace llvm; 385ffd83dbSDimitry Andric 395ffd83dbSDimitry Andric cl::opt<unsigned> llvm::SCEVCheapExpansionBudget( 405ffd83dbSDimitry Andric "scev-cheap-expansion-budget", cl::Hidden, cl::init(4), 415ffd83dbSDimitry Andric cl::desc("When performing SCEV expansion only if it is cheap to do, this " 425ffd83dbSDimitry Andric "controls the budget that is considered cheap (default = 4)")); 435ffd83dbSDimitry Andric 445ffd83dbSDimitry Andric using namespace PatternMatch; 455ffd83dbSDimitry Andric 46*0fca6ea1SDimitry Andric PoisonFlags::PoisonFlags(const Instruction *I) { 47*0fca6ea1SDimitry Andric NUW = false; 48*0fca6ea1SDimitry Andric NSW = false; 49*0fca6ea1SDimitry Andric Exact = false; 50*0fca6ea1SDimitry Andric Disjoint = false; 51*0fca6ea1SDimitry Andric NNeg = false; 52*0fca6ea1SDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) { 53*0fca6ea1SDimitry Andric NUW = OBO->hasNoUnsignedWrap(); 54*0fca6ea1SDimitry Andric NSW = OBO->hasNoSignedWrap(); 55*0fca6ea1SDimitry Andric } 56*0fca6ea1SDimitry Andric if (auto *PEO = dyn_cast<PossiblyExactOperator>(I)) 57*0fca6ea1SDimitry Andric Exact = PEO->isExact(); 58*0fca6ea1SDimitry Andric if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 59*0fca6ea1SDimitry Andric Disjoint = PDI->isDisjoint(); 60*0fca6ea1SDimitry Andric if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 61*0fca6ea1SDimitry Andric NNeg = PNI->hasNonNeg(); 62*0fca6ea1SDimitry Andric if (auto *TI = dyn_cast<TruncInst>(I)) { 63*0fca6ea1SDimitry Andric NUW = TI->hasNoUnsignedWrap(); 64*0fca6ea1SDimitry Andric NSW = TI->hasNoSignedWrap(); 65*0fca6ea1SDimitry Andric } 66*0fca6ea1SDimitry Andric } 67*0fca6ea1SDimitry Andric 68*0fca6ea1SDimitry Andric void PoisonFlags::apply(Instruction *I) { 69*0fca6ea1SDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 70*0fca6ea1SDimitry Andric I->setHasNoUnsignedWrap(NUW); 71*0fca6ea1SDimitry Andric I->setHasNoSignedWrap(NSW); 72*0fca6ea1SDimitry Andric } 73*0fca6ea1SDimitry Andric if (isa<PossiblyExactOperator>(I)) 74*0fca6ea1SDimitry Andric I->setIsExact(Exact); 75*0fca6ea1SDimitry Andric if (auto *PDI = dyn_cast<PossiblyDisjointInst>(I)) 76*0fca6ea1SDimitry Andric PDI->setIsDisjoint(Disjoint); 77*0fca6ea1SDimitry Andric if (auto *PNI = dyn_cast<PossiblyNonNegInst>(I)) 78*0fca6ea1SDimitry Andric PNI->setNonNeg(NNeg); 79*0fca6ea1SDimitry Andric if (isa<TruncInst>(I)) { 80*0fca6ea1SDimitry Andric I->setHasNoUnsignedWrap(NUW); 81*0fca6ea1SDimitry Andric I->setHasNoSignedWrap(NSW); 82*0fca6ea1SDimitry Andric } 83*0fca6ea1SDimitry Andric } 84*0fca6ea1SDimitry Andric 855ffd83dbSDimitry Andric /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 86e8d8bef9SDimitry Andric /// reusing an existing cast if a suitable one (= dominating IP) exists, or 875ffd83dbSDimitry Andric /// creating a new one. 885ffd83dbSDimitry Andric Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 895ffd83dbSDimitry Andric Instruction::CastOps Op, 905ffd83dbSDimitry Andric BasicBlock::iterator IP) { 915ffd83dbSDimitry Andric // This function must be called with the builder having a valid insertion 925ffd83dbSDimitry Andric // point. It doesn't need to be the actual IP where the uses of the returned 935ffd83dbSDimitry Andric // cast will be added, but it must dominate such IP. 945ffd83dbSDimitry Andric // We use this precondition to produce a cast that will dominate all its 955ffd83dbSDimitry Andric // uses. In particular, this is crucial for the case where the builder's 965ffd83dbSDimitry Andric // insertion point *is* the point where we were asked to put the cast. 975ffd83dbSDimitry Andric // Since we don't know the builder's insertion point is actually 985ffd83dbSDimitry Andric // where the uses will be added (only that it dominates it), we are 995ffd83dbSDimitry Andric // not allowed to move it. 1005ffd83dbSDimitry Andric BasicBlock::iterator BIP = Builder.GetInsertPoint(); 1015ffd83dbSDimitry Andric 102fe6060f1SDimitry Andric Value *Ret = nullptr; 1035ffd83dbSDimitry Andric 1045ffd83dbSDimitry Andric // Check to see if there is already a cast! 105e8d8bef9SDimitry Andric for (User *U : V->users()) { 106e8d8bef9SDimitry Andric if (U->getType() != Ty) 107e8d8bef9SDimitry Andric continue; 108e8d8bef9SDimitry Andric CastInst *CI = dyn_cast<CastInst>(U); 109e8d8bef9SDimitry Andric if (!CI || CI->getOpcode() != Op) 110e8d8bef9SDimitry Andric continue; 111e8d8bef9SDimitry Andric 112e8d8bef9SDimitry Andric // Found a suitable cast that is at IP or comes before IP. Use it. Note that 113e8d8bef9SDimitry Andric // the cast must also properly dominate the Builder's insertion point. 114e8d8bef9SDimitry Andric if (IP->getParent() == CI->getParent() && &*BIP != CI && 115e8d8bef9SDimitry Andric (&*IP == CI || CI->comesBefore(&*IP))) { 1165ffd83dbSDimitry Andric Ret = CI; 1175ffd83dbSDimitry Andric break; 1185ffd83dbSDimitry Andric } 119e8d8bef9SDimitry Andric } 1205ffd83dbSDimitry Andric 1215ffd83dbSDimitry Andric // Create a new cast. 122e8d8bef9SDimitry Andric if (!Ret) { 123fe6060f1SDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 124fe6060f1SDimitry Andric Builder.SetInsertPoint(&*IP); 125fe6060f1SDimitry Andric Ret = Builder.CreateCast(Op, V, Ty, V->getName()); 126e8d8bef9SDimitry Andric } 1275ffd83dbSDimitry Andric 1285ffd83dbSDimitry Andric // We assert at the end of the function since IP might point to an 1295ffd83dbSDimitry Andric // instruction with different dominance properties than a cast 1305ffd83dbSDimitry Andric // (an invoke for example) and not dominate BIP (but the cast does). 131fe6060f1SDimitry Andric assert(!isa<Instruction>(Ret) || 132fe6060f1SDimitry Andric SE.DT.dominates(cast<Instruction>(Ret), &*BIP)); 1335ffd83dbSDimitry Andric 1345ffd83dbSDimitry Andric return Ret; 1355ffd83dbSDimitry Andric } 1365ffd83dbSDimitry Andric 137e8d8bef9SDimitry Andric BasicBlock::iterator 138fe6060f1SDimitry Andric SCEVExpander::findInsertPointAfter(Instruction *I, 139fe6060f1SDimitry Andric Instruction *MustDominate) const { 1405ffd83dbSDimitry Andric BasicBlock::iterator IP = ++I->getIterator(); 1415ffd83dbSDimitry Andric if (auto *II = dyn_cast<InvokeInst>(I)) 1425ffd83dbSDimitry Andric IP = II->getNormalDest()->begin(); 1435ffd83dbSDimitry Andric 1445ffd83dbSDimitry Andric while (isa<PHINode>(IP)) 1455ffd83dbSDimitry Andric ++IP; 1465ffd83dbSDimitry Andric 1475ffd83dbSDimitry Andric if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) { 1485ffd83dbSDimitry Andric ++IP; 1495ffd83dbSDimitry Andric } else if (isa<CatchSwitchInst>(IP)) { 150e8d8bef9SDimitry Andric IP = MustDominate->getParent()->getFirstInsertionPt(); 1515ffd83dbSDimitry Andric } else { 1525ffd83dbSDimitry Andric assert(!IP->isEHPad() && "unexpected eh pad!"); 1535ffd83dbSDimitry Andric } 1545ffd83dbSDimitry Andric 155e8d8bef9SDimitry Andric // Adjust insert point to be after instructions inserted by the expander, so 156e8d8bef9SDimitry Andric // we can re-use already inserted instructions. Avoid skipping past the 157e8d8bef9SDimitry Andric // original \p MustDominate, in case it is an inserted instruction. 158e8d8bef9SDimitry Andric while (isInsertedInstruction(&*IP) && &*IP != MustDominate) 159e8d8bef9SDimitry Andric ++IP; 160e8d8bef9SDimitry Andric 1615ffd83dbSDimitry Andric return IP; 1625ffd83dbSDimitry Andric } 1635ffd83dbSDimitry Andric 164fe6060f1SDimitry Andric BasicBlock::iterator 165fe6060f1SDimitry Andric SCEVExpander::GetOptimalInsertionPointForCastOf(Value *V) const { 166fe6060f1SDimitry Andric // Cast the argument at the beginning of the entry block, after 167fe6060f1SDimitry Andric // any bitcasts of other arguments. 168fe6060f1SDimitry Andric if (Argument *A = dyn_cast<Argument>(V)) { 169fe6060f1SDimitry Andric BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 170fe6060f1SDimitry Andric while ((isa<BitCastInst>(IP) && 171fe6060f1SDimitry Andric isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 172fe6060f1SDimitry Andric cast<BitCastInst>(IP)->getOperand(0) != A) || 173fe6060f1SDimitry Andric isa<DbgInfoIntrinsic>(IP)) 174fe6060f1SDimitry Andric ++IP; 175fe6060f1SDimitry Andric return IP; 176fe6060f1SDimitry Andric } 177fe6060f1SDimitry Andric 178fe6060f1SDimitry Andric // Cast the instruction immediately after the instruction. 179fe6060f1SDimitry Andric if (Instruction *I = dyn_cast<Instruction>(V)) 180fe6060f1SDimitry Andric return findInsertPointAfter(I, &*Builder.GetInsertPoint()); 181fe6060f1SDimitry Andric 182fe6060f1SDimitry Andric // Otherwise, this must be some kind of a constant, 183fe6060f1SDimitry Andric // so let's plop this cast into the function's entry block. 184fe6060f1SDimitry Andric assert(isa<Constant>(V) && 185fe6060f1SDimitry Andric "Expected the cast argument to be a global/constant"); 186fe6060f1SDimitry Andric return Builder.GetInsertBlock() 187fe6060f1SDimitry Andric ->getParent() 188fe6060f1SDimitry Andric ->getEntryBlock() 189fe6060f1SDimitry Andric .getFirstInsertionPt(); 190fe6060f1SDimitry Andric } 191fe6060f1SDimitry Andric 1925ffd83dbSDimitry Andric /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 1935ffd83dbSDimitry Andric /// which must be possible with a noop cast, doing what we can to share 1945ffd83dbSDimitry Andric /// the casts. 1955ffd83dbSDimitry Andric Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 1965ffd83dbSDimitry Andric Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 1975ffd83dbSDimitry Andric assert((Op == Instruction::BitCast || 1985ffd83dbSDimitry Andric Op == Instruction::PtrToInt || 1995ffd83dbSDimitry Andric Op == Instruction::IntToPtr) && 2005ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot perform non-noop casts!"); 2015ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 2025ffd83dbSDimitry Andric "InsertNoopCastOfTo cannot change sizes!"); 2035ffd83dbSDimitry Andric 204e8d8bef9SDimitry Andric // inttoptr only works for integral pointers. For non-integral pointers, we 20506c3fb27SDimitry Andric // can create a GEP on null with the integral value as index. Note that 206e8d8bef9SDimitry Andric // it is safe to use GEP of null instead of inttoptr here, because only 207e8d8bef9SDimitry Andric // expressions already based on a GEP of null should be converted to pointers 208e8d8bef9SDimitry Andric // during expansion. 209e8d8bef9SDimitry Andric if (Op == Instruction::IntToPtr) { 210e8d8bef9SDimitry Andric auto *PtrTy = cast<PointerType>(Ty); 2117a6dacacSDimitry Andric if (DL.isNonIntegralPointerType(PtrTy)) 2127a6dacacSDimitry Andric return Builder.CreatePtrAdd(Constant::getNullValue(PtrTy), V, "scevgep"); 213e8d8bef9SDimitry Andric } 2145ffd83dbSDimitry Andric // Short-circuit unnecessary bitcasts. 2155ffd83dbSDimitry Andric if (Op == Instruction::BitCast) { 2165ffd83dbSDimitry Andric if (V->getType() == Ty) 2175ffd83dbSDimitry Andric return V; 2185ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) { 2195ffd83dbSDimitry Andric if (CI->getOperand(0)->getType() == Ty) 2205ffd83dbSDimitry Andric return CI->getOperand(0); 2215ffd83dbSDimitry Andric } 2225ffd83dbSDimitry Andric } 2235ffd83dbSDimitry Andric // Short-circuit unnecessary inttoptr<->ptrtoint casts. 2245ffd83dbSDimitry Andric if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 2255ffd83dbSDimitry Andric SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 2265ffd83dbSDimitry Andric if (CastInst *CI = dyn_cast<CastInst>(V)) 2275ffd83dbSDimitry Andric if ((CI->getOpcode() == Instruction::PtrToInt || 2285ffd83dbSDimitry Andric CI->getOpcode() == Instruction::IntToPtr) && 2295ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getType()) == 2305ffd83dbSDimitry Andric SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 2315ffd83dbSDimitry Andric return CI->getOperand(0); 2325ffd83dbSDimitry Andric if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 2335ffd83dbSDimitry Andric if ((CE->getOpcode() == Instruction::PtrToInt || 2345ffd83dbSDimitry Andric CE->getOpcode() == Instruction::IntToPtr) && 2355ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getType()) == 2365ffd83dbSDimitry Andric SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 2375ffd83dbSDimitry Andric return CE->getOperand(0); 2385ffd83dbSDimitry Andric } 2395ffd83dbSDimitry Andric 2405ffd83dbSDimitry Andric // Fold a cast of a constant. 2415ffd83dbSDimitry Andric if (Constant *C = dyn_cast<Constant>(V)) 2425ffd83dbSDimitry Andric return ConstantExpr::getCast(Op, C, Ty); 2435ffd83dbSDimitry Andric 244fe6060f1SDimitry Andric // Try to reuse existing cast, or insert one. 245fe6060f1SDimitry Andric return ReuseOrCreateCast(V, Ty, Op, GetOptimalInsertionPointForCastOf(V)); 2465ffd83dbSDimitry Andric } 2475ffd83dbSDimitry Andric 2485ffd83dbSDimitry Andric /// InsertBinop - Insert the specified binary operator, doing a small amount 2495ffd83dbSDimitry Andric /// of work to avoid inserting an obviously redundant operation, and hoisting 2505ffd83dbSDimitry Andric /// to an outer loop when the opportunity is there and it is safe. 2515ffd83dbSDimitry Andric Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 2525ffd83dbSDimitry Andric Value *LHS, Value *RHS, 2535ffd83dbSDimitry Andric SCEV::NoWrapFlags Flags, bool IsSafeToHoist) { 2545ffd83dbSDimitry Andric // Fold a binop with constant operands. 2555ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2565ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(RHS)) 257753f127fSDimitry Andric if (Constant *Res = ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, DL)) 258753f127fSDimitry Andric return Res; 2595ffd83dbSDimitry Andric 2605ffd83dbSDimitry Andric // Do a quick scan to see if we have this binop nearby. If so, reuse it. 2615ffd83dbSDimitry Andric unsigned ScanLimit = 6; 2625ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 2635ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 2645ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 2655ffd83dbSDimitry Andric if (IP != BlockBegin) { 2665ffd83dbSDimitry Andric --IP; 2675ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 2685ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 2695ffd83dbSDimitry Andric // generated code. 2705ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 2715ffd83dbSDimitry Andric ScanLimit++; 2725ffd83dbSDimitry Andric 2735ffd83dbSDimitry Andric auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) { 2745ffd83dbSDimitry Andric // Ensure that no-wrap flags match. 2755ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(I)) { 2765ffd83dbSDimitry Andric if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW)) 2775ffd83dbSDimitry Andric return true; 2785ffd83dbSDimitry Andric if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW)) 2795ffd83dbSDimitry Andric return true; 2805ffd83dbSDimitry Andric } 2815ffd83dbSDimitry Andric // Conservatively, do not use any instruction which has any of exact 2825ffd83dbSDimitry Andric // flags installed. 2835ffd83dbSDimitry Andric if (isa<PossiblyExactOperator>(I) && I->isExact()) 2845ffd83dbSDimitry Andric return true; 2855ffd83dbSDimitry Andric return false; 2865ffd83dbSDimitry Andric }; 2875ffd83dbSDimitry Andric if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 2885ffd83dbSDimitry Andric IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP)) 2895ffd83dbSDimitry Andric return &*IP; 2905ffd83dbSDimitry Andric if (IP == BlockBegin) break; 2915ffd83dbSDimitry Andric } 2925ffd83dbSDimitry Andric } 2935ffd83dbSDimitry Andric 2945ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 2955ffd83dbSDimitry Andric DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc(); 2965ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 2975ffd83dbSDimitry Andric 2985ffd83dbSDimitry Andric if (IsSafeToHoist) { 2995ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 3005ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 3015ffd83dbSDimitry Andric if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 3025ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 3035ffd83dbSDimitry Andric if (!Preheader) break; 3045ffd83dbSDimitry Andric 3055ffd83dbSDimitry Andric // Ok, move up a level. 3065ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 3075ffd83dbSDimitry Andric } 3085ffd83dbSDimitry Andric } 3095ffd83dbSDimitry Andric 3105ffd83dbSDimitry Andric // If we haven't found this binop, insert it. 31181ad6265SDimitry Andric // TODO: Use the Builder, which will make CreateBinOp below fold with 31281ad6265SDimitry Andric // InstSimplifyFolder. 31381ad6265SDimitry Andric Instruction *BO = Builder.Insert(BinaryOperator::Create(Opcode, LHS, RHS)); 3145ffd83dbSDimitry Andric BO->setDebugLoc(Loc); 3155ffd83dbSDimitry Andric if (Flags & SCEV::FlagNUW) 3165ffd83dbSDimitry Andric BO->setHasNoUnsignedWrap(); 3175ffd83dbSDimitry Andric if (Flags & SCEV::FlagNSW) 3185ffd83dbSDimitry Andric BO->setHasNoSignedWrap(); 3195ffd83dbSDimitry Andric 3205ffd83dbSDimitry Andric return BO; 3215ffd83dbSDimitry Andric } 3225ffd83dbSDimitry Andric 3235ffd83dbSDimitry Andric /// expandAddToGEP - Expand an addition expression with a pointer type into 3245ffd83dbSDimitry Andric /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 3255ffd83dbSDimitry Andric /// BasicAliasAnalysis and other passes analyze the result. See the rules 3265ffd83dbSDimitry Andric /// for getelementptr vs. inttoptr in 3275ffd83dbSDimitry Andric /// http://llvm.org/docs/LangRef.html#pointeraliasing 3285ffd83dbSDimitry Andric /// for details. 3295ffd83dbSDimitry Andric /// 3305ffd83dbSDimitry Andric /// Design note: The correctness of using getelementptr here depends on 3315ffd83dbSDimitry Andric /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 3325ffd83dbSDimitry Andric /// they may introduce pointer arithmetic which may not be safely converted 3335ffd83dbSDimitry Andric /// into getelementptr. 3345ffd83dbSDimitry Andric /// 3355ffd83dbSDimitry Andric /// Design note: It might seem desirable for this function to be more 3365ffd83dbSDimitry Andric /// loop-aware. If some of the indices are loop-invariant while others 3375ffd83dbSDimitry Andric /// aren't, it might seem desirable to emit multiple GEPs, keeping the 3385ffd83dbSDimitry Andric /// loop-invariant portions of the overall computation outside the loop. 3395ffd83dbSDimitry Andric /// However, there are a few reasons this is not done here. Hoisting simple 3405ffd83dbSDimitry Andric /// arithmetic is a low-level optimization that often isn't very 3415ffd83dbSDimitry Andric /// important until late in the optimization process. In fact, passes 3425ffd83dbSDimitry Andric /// like InstructionCombining will combine GEPs, even if it means 3435ffd83dbSDimitry Andric /// pushing loop-invariant computation down into loops, so even if the 3445ffd83dbSDimitry Andric /// GEPs were split here, the work would quickly be undone. The 3455ffd83dbSDimitry Andric /// LoopStrengthReduction pass, which is usually run quite late (and 3465ffd83dbSDimitry Andric /// after the last InstructionCombining pass), takes care of hoisting 3475ffd83dbSDimitry Andric /// loop-invariant portions of expressions, after considering what 3485ffd83dbSDimitry Andric /// can be folded using target addressing modes. 3495ffd83dbSDimitry Andric /// 3505f757f3fSDimitry Andric Value *SCEVExpander::expandAddToGEP(const SCEV *Offset, Value *V) { 3515ffd83dbSDimitry Andric assert(!isa<Instruction>(V) || 3525ffd83dbSDimitry Andric SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint())); 3535ffd83dbSDimitry Andric 3545f757f3fSDimitry Andric Value *Idx = expand(Offset); 3555ffd83dbSDimitry Andric 3565ffd83dbSDimitry Andric // Fold a GEP with constant operands. 3575ffd83dbSDimitry Andric if (Constant *CLHS = dyn_cast<Constant>(V)) 3585ffd83dbSDimitry Andric if (Constant *CRHS = dyn_cast<Constant>(Idx)) 3597a6dacacSDimitry Andric return Builder.CreatePtrAdd(CLHS, CRHS); 3605ffd83dbSDimitry Andric 3615ffd83dbSDimitry Andric // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 3625ffd83dbSDimitry Andric unsigned ScanLimit = 6; 3635ffd83dbSDimitry Andric BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 3645ffd83dbSDimitry Andric // Scanning starts from the last instruction before the insertion point. 3655ffd83dbSDimitry Andric BasicBlock::iterator IP = Builder.GetInsertPoint(); 3665ffd83dbSDimitry Andric if (IP != BlockBegin) { 3675ffd83dbSDimitry Andric --IP; 3685ffd83dbSDimitry Andric for (; ScanLimit; --IP, --ScanLimit) { 3695ffd83dbSDimitry Andric // Don't count dbg.value against the ScanLimit, to avoid perturbing the 3705ffd83dbSDimitry Andric // generated code. 3715ffd83dbSDimitry Andric if (isa<DbgInfoIntrinsic>(IP)) 3725ffd83dbSDimitry Andric ScanLimit++; 3735ffd83dbSDimitry Andric if (IP->getOpcode() == Instruction::GetElementPtr && 37481ad6265SDimitry Andric IP->getOperand(0) == V && IP->getOperand(1) == Idx && 37581ad6265SDimitry Andric cast<GEPOperator>(&*IP)->getSourceElementType() == 3765f757f3fSDimitry Andric Builder.getInt8Ty()) 3775ffd83dbSDimitry Andric return &*IP; 3785ffd83dbSDimitry Andric if (IP == BlockBegin) break; 3795ffd83dbSDimitry Andric } 3805ffd83dbSDimitry Andric } 3815ffd83dbSDimitry Andric 3825ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 3835ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 3845ffd83dbSDimitry Andric 3855ffd83dbSDimitry Andric // Move the insertion point out of as many loops as we can. 3865ffd83dbSDimitry Andric while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) { 3875ffd83dbSDimitry Andric if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 3885ffd83dbSDimitry Andric BasicBlock *Preheader = L->getLoopPreheader(); 3895ffd83dbSDimitry Andric if (!Preheader) break; 3905ffd83dbSDimitry Andric 3915ffd83dbSDimitry Andric // Ok, move up a level. 3925ffd83dbSDimitry Andric Builder.SetInsertPoint(Preheader->getTerminator()); 3935ffd83dbSDimitry Andric } 3945ffd83dbSDimitry Andric 3955ffd83dbSDimitry Andric // Emit a GEP. 3967a6dacacSDimitry Andric return Builder.CreatePtrAdd(V, Idx, "scevgep"); 3975ffd83dbSDimitry Andric } 3985ffd83dbSDimitry Andric 3995ffd83dbSDimitry Andric /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 4005ffd83dbSDimitry Andric /// SCEV expansion. If they are nested, this is the most nested. If they are 4015ffd83dbSDimitry Andric /// neighboring, pick the later. 4025ffd83dbSDimitry Andric static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 4035ffd83dbSDimitry Andric DominatorTree &DT) { 4045ffd83dbSDimitry Andric if (!A) return B; 4055ffd83dbSDimitry Andric if (!B) return A; 4065ffd83dbSDimitry Andric if (A->contains(B)) return B; 4075ffd83dbSDimitry Andric if (B->contains(A)) return A; 4085ffd83dbSDimitry Andric if (DT.dominates(A->getHeader(), B->getHeader())) return B; 4095ffd83dbSDimitry Andric if (DT.dominates(B->getHeader(), A->getHeader())) return A; 4105ffd83dbSDimitry Andric return A; // Arbitrarily break the tie. 4115ffd83dbSDimitry Andric } 4125ffd83dbSDimitry Andric 4135ffd83dbSDimitry Andric /// getRelevantLoop - Get the most relevant loop associated with the given 4145ffd83dbSDimitry Andric /// expression, according to PickMostRelevantLoop. 4155ffd83dbSDimitry Andric const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 4165ffd83dbSDimitry Andric // Test whether we've already computed the most relevant loop for this SCEV. 4175ffd83dbSDimitry Andric auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr)); 4185ffd83dbSDimitry Andric if (!Pair.second) 4195ffd83dbSDimitry Andric return Pair.first->second; 4205ffd83dbSDimitry Andric 421bdd1243dSDimitry Andric switch (S->getSCEVType()) { 422bdd1243dSDimitry Andric case scConstant: 42306c3fb27SDimitry Andric case scVScale: 424bdd1243dSDimitry Andric return nullptr; // A constant has no relevant loops. 425bdd1243dSDimitry Andric case scTruncate: 426bdd1243dSDimitry Andric case scZeroExtend: 427bdd1243dSDimitry Andric case scSignExtend: 428bdd1243dSDimitry Andric case scPtrToInt: 429bdd1243dSDimitry Andric case scAddExpr: 430bdd1243dSDimitry Andric case scMulExpr: 431bdd1243dSDimitry Andric case scUDivExpr: 432bdd1243dSDimitry Andric case scAddRecExpr: 433bdd1243dSDimitry Andric case scUMaxExpr: 434bdd1243dSDimitry Andric case scSMaxExpr: 435bdd1243dSDimitry Andric case scUMinExpr: 436bdd1243dSDimitry Andric case scSMinExpr: 437bdd1243dSDimitry Andric case scSequentialUMinExpr: { 438bdd1243dSDimitry Andric const Loop *L = nullptr; 439bdd1243dSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 440bdd1243dSDimitry Andric L = AR->getLoop(); 441bdd1243dSDimitry Andric for (const SCEV *Op : S->operands()) 442bdd1243dSDimitry Andric L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT); 443bdd1243dSDimitry Andric return RelevantLoops[S] = L; 444bdd1243dSDimitry Andric } 445bdd1243dSDimitry Andric case scUnknown: { 446bdd1243dSDimitry Andric const SCEVUnknown *U = cast<SCEVUnknown>(S); 4475ffd83dbSDimitry Andric if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 4485ffd83dbSDimitry Andric return Pair.first->second = SE.LI.getLoopFor(I->getParent()); 4495ffd83dbSDimitry Andric // A non-instruction has no relevant loops. 4505ffd83dbSDimitry Andric return nullptr; 4515ffd83dbSDimitry Andric } 452bdd1243dSDimitry Andric case scCouldNotCompute: 453bdd1243dSDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 4545ffd83dbSDimitry Andric } 4555ffd83dbSDimitry Andric llvm_unreachable("Unexpected SCEV type!"); 4565ffd83dbSDimitry Andric } 4575ffd83dbSDimitry Andric 4585ffd83dbSDimitry Andric namespace { 4595ffd83dbSDimitry Andric 4605ffd83dbSDimitry Andric /// LoopCompare - Compare loops by PickMostRelevantLoop. 4615ffd83dbSDimitry Andric class LoopCompare { 4625ffd83dbSDimitry Andric DominatorTree &DT; 4635ffd83dbSDimitry Andric public: 4645ffd83dbSDimitry Andric explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 4655ffd83dbSDimitry Andric 4665ffd83dbSDimitry Andric bool operator()(std::pair<const Loop *, const SCEV *> LHS, 4675ffd83dbSDimitry Andric std::pair<const Loop *, const SCEV *> RHS) const { 4685ffd83dbSDimitry Andric // Keep pointer operands sorted at the end. 4695ffd83dbSDimitry Andric if (LHS.second->getType()->isPointerTy() != 4705ffd83dbSDimitry Andric RHS.second->getType()->isPointerTy()) 4715ffd83dbSDimitry Andric return LHS.second->getType()->isPointerTy(); 4725ffd83dbSDimitry Andric 4735ffd83dbSDimitry Andric // Compare loops with PickMostRelevantLoop. 4745ffd83dbSDimitry Andric if (LHS.first != RHS.first) 4755ffd83dbSDimitry Andric return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 4765ffd83dbSDimitry Andric 4775ffd83dbSDimitry Andric // If one operand is a non-constant negative and the other is not, 4785ffd83dbSDimitry Andric // put the non-constant negative on the right so that a sub can 4795ffd83dbSDimitry Andric // be used instead of a negate and add. 4805ffd83dbSDimitry Andric if (LHS.second->isNonConstantNegative()) { 4815ffd83dbSDimitry Andric if (!RHS.second->isNonConstantNegative()) 4825ffd83dbSDimitry Andric return false; 4835ffd83dbSDimitry Andric } else if (RHS.second->isNonConstantNegative()) 4845ffd83dbSDimitry Andric return true; 4855ffd83dbSDimitry Andric 4865ffd83dbSDimitry Andric // Otherwise they are equivalent according to this comparison. 4875ffd83dbSDimitry Andric return false; 4885ffd83dbSDimitry Andric } 4895ffd83dbSDimitry Andric }; 4905ffd83dbSDimitry Andric 4915ffd83dbSDimitry Andric } 4925ffd83dbSDimitry Andric 4935ffd83dbSDimitry Andric Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 494*0fca6ea1SDimitry Andric // Recognize the canonical representation of an unsimplifed urem. 495*0fca6ea1SDimitry Andric const SCEV *URemLHS = nullptr; 496*0fca6ea1SDimitry Andric const SCEV *URemRHS = nullptr; 497*0fca6ea1SDimitry Andric if (SE.matchURem(S, URemLHS, URemRHS)) { 498*0fca6ea1SDimitry Andric Value *LHS = expand(URemLHS); 499*0fca6ea1SDimitry Andric Value *RHS = expand(URemRHS); 500*0fca6ea1SDimitry Andric return InsertBinop(Instruction::URem, LHS, RHS, SCEV::FlagAnyWrap, 501*0fca6ea1SDimitry Andric /*IsSafeToHoist*/ false); 502*0fca6ea1SDimitry Andric } 503*0fca6ea1SDimitry Andric 5045ffd83dbSDimitry Andric // Collect all the add operands in a loop, along with their associated loops. 5055ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal, and 5065ffd83dbSDimitry Andric // so that pointer operands are inserted first, which the code below relies on 5075ffd83dbSDimitry Andric // to form more involved GEPs. 5085ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 509349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 510349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 5115ffd83dbSDimitry Andric 5125ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants and 5135ffd83dbSDimitry Andric // pointer operands precede non-pointer operands. 5145ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 5155ffd83dbSDimitry Andric 5165ffd83dbSDimitry Andric // Emit instructions to add all the operands. Hoist as much as possible 5175ffd83dbSDimitry Andric // out of loops, and form meaningful getelementptrs where possible. 5185ffd83dbSDimitry Andric Value *Sum = nullptr; 5195ffd83dbSDimitry Andric for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) { 5205ffd83dbSDimitry Andric const Loop *CurLoop = I->first; 5215ffd83dbSDimitry Andric const SCEV *Op = I->second; 5225ffd83dbSDimitry Andric if (!Sum) { 5235ffd83dbSDimitry Andric // This is the first operand. Just expand it. 5245ffd83dbSDimitry Andric Sum = expand(Op); 5255ffd83dbSDimitry Andric ++I; 526349cc55cSDimitry Andric continue; 527349cc55cSDimitry Andric } 528349cc55cSDimitry Andric 529349cc55cSDimitry Andric assert(!Op->getType()->isPointerTy() && "Only first op can be pointer"); 53006c3fb27SDimitry Andric if (isa<PointerType>(Sum->getType())) { 5315ffd83dbSDimitry Andric // The running sum expression is a pointer. Try to form a getelementptr 5325ffd83dbSDimitry Andric // at this level with that as the base. 5335ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps; 5345ffd83dbSDimitry Andric for (; I != E && I->first == CurLoop; ++I) { 5355ffd83dbSDimitry Andric // If the operand is SCEVUnknown and not instructions, peek through 5365ffd83dbSDimitry Andric // it, to enable more of it to be folded into the GEP. 5375ffd83dbSDimitry Andric const SCEV *X = I->second; 5385ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 5395ffd83dbSDimitry Andric if (!isa<Instruction>(U->getValue())) 5405ffd83dbSDimitry Andric X = SE.getSCEV(U->getValue()); 5415ffd83dbSDimitry Andric NewOps.push_back(X); 5425ffd83dbSDimitry Andric } 5435f757f3fSDimitry Andric Sum = expandAddToGEP(SE.getAddExpr(NewOps), Sum); 5445ffd83dbSDimitry Andric } else if (Op->isNonConstantNegative()) { 5455ffd83dbSDimitry Andric // Instead of doing a negate and add, just do a subtract. 5465f757f3fSDimitry Andric Value *W = expand(SE.getNegativeSCEV(Op)); 5475ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap, 5485ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5495ffd83dbSDimitry Andric ++I; 5505ffd83dbSDimitry Andric } else { 5515ffd83dbSDimitry Andric // A simple add. 5525f757f3fSDimitry Andric Value *W = expand(Op); 5535ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 5545f757f3fSDimitry Andric if (isa<Constant>(Sum)) 5555f757f3fSDimitry Andric std::swap(Sum, W); 5565ffd83dbSDimitry Andric Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(), 5575ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 5585ffd83dbSDimitry Andric ++I; 5595ffd83dbSDimitry Andric } 5605ffd83dbSDimitry Andric } 5615ffd83dbSDimitry Andric 5625ffd83dbSDimitry Andric return Sum; 5635ffd83dbSDimitry Andric } 5645ffd83dbSDimitry Andric 5655ffd83dbSDimitry Andric Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 5665f757f3fSDimitry Andric Type *Ty = S->getType(); 5675ffd83dbSDimitry Andric 5685ffd83dbSDimitry Andric // Collect all the mul operands in a loop, along with their associated loops. 5695ffd83dbSDimitry Andric // Iterate in reverse so that constants are emitted last, all else equal. 5705ffd83dbSDimitry Andric SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 571349cc55cSDimitry Andric for (const SCEV *Op : reverse(S->operands())) 572349cc55cSDimitry Andric OpsAndLoops.push_back(std::make_pair(getRelevantLoop(Op), Op)); 5735ffd83dbSDimitry Andric 5745ffd83dbSDimitry Andric // Sort by loop. Use a stable sort so that constants follow non-constants. 5755ffd83dbSDimitry Andric llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT)); 5765ffd83dbSDimitry Andric 5775ffd83dbSDimitry Andric // Emit instructions to mul all the operands. Hoist as much as possible 5785ffd83dbSDimitry Andric // out of loops. 5795ffd83dbSDimitry Andric Value *Prod = nullptr; 5805ffd83dbSDimitry Andric auto I = OpsAndLoops.begin(); 5815ffd83dbSDimitry Andric 5825ffd83dbSDimitry Andric // Expand the calculation of X pow N in the following manner: 5835ffd83dbSDimitry Andric // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then: 5845ffd83dbSDimitry Andric // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK). 5855f757f3fSDimitry Andric const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops]() { 5865ffd83dbSDimitry Andric auto E = I; 5875ffd83dbSDimitry Andric // Calculate how many times the same operand from the same loop is included 5885ffd83dbSDimitry Andric // into this power. 5895ffd83dbSDimitry Andric uint64_t Exponent = 0; 5905ffd83dbSDimitry Andric const uint64_t MaxExponent = UINT64_MAX >> 1; 5915ffd83dbSDimitry Andric // No one sane will ever try to calculate such huge exponents, but if we 5925ffd83dbSDimitry Andric // need this, we stop on UINT64_MAX / 2 because we need to exit the loop 5935ffd83dbSDimitry Andric // below when the power of 2 exceeds our Exponent, and we want it to be 5945ffd83dbSDimitry Andric // 1u << 31 at most to not deal with unsigned overflow. 5955ffd83dbSDimitry Andric while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) { 5965ffd83dbSDimitry Andric ++Exponent; 5975ffd83dbSDimitry Andric ++E; 5985ffd83dbSDimitry Andric } 5995ffd83dbSDimitry Andric assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?"); 6005ffd83dbSDimitry Andric 6015ffd83dbSDimitry Andric // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them 6025ffd83dbSDimitry Andric // that are needed into the result. 6035f757f3fSDimitry Andric Value *P = expand(I->second); 6045ffd83dbSDimitry Andric Value *Result = nullptr; 6055ffd83dbSDimitry Andric if (Exponent & 1) 6065ffd83dbSDimitry Andric Result = P; 6075ffd83dbSDimitry Andric for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) { 6085ffd83dbSDimitry Andric P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap, 6095ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6105ffd83dbSDimitry Andric if (Exponent & BinExp) 6115ffd83dbSDimitry Andric Result = Result ? InsertBinop(Instruction::Mul, Result, P, 6125ffd83dbSDimitry Andric SCEV::FlagAnyWrap, 6135ffd83dbSDimitry Andric /*IsSafeToHoist*/ true) 6145ffd83dbSDimitry Andric : P; 6155ffd83dbSDimitry Andric } 6165ffd83dbSDimitry Andric 6175ffd83dbSDimitry Andric I = E; 6185ffd83dbSDimitry Andric assert(Result && "Nothing was expanded?"); 6195ffd83dbSDimitry Andric return Result; 6205ffd83dbSDimitry Andric }; 6215ffd83dbSDimitry Andric 6225ffd83dbSDimitry Andric while (I != OpsAndLoops.end()) { 6235ffd83dbSDimitry Andric if (!Prod) { 6245ffd83dbSDimitry Andric // This is the first operand. Just expand it. 6255ffd83dbSDimitry Andric Prod = ExpandOpBinPowN(); 6265ffd83dbSDimitry Andric } else if (I->second->isAllOnesValue()) { 6275ffd83dbSDimitry Andric // Instead of doing a multiply by negative one, just do a negate. 6285ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod, 6295ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 6305ffd83dbSDimitry Andric ++I; 6315ffd83dbSDimitry Andric } else { 6325ffd83dbSDimitry Andric // A simple mul. 6335ffd83dbSDimitry Andric Value *W = ExpandOpBinPowN(); 6345ffd83dbSDimitry Andric // Canonicalize a constant to the RHS. 6355ffd83dbSDimitry Andric if (isa<Constant>(Prod)) std::swap(Prod, W); 6365ffd83dbSDimitry Andric const APInt *RHS; 6375ffd83dbSDimitry Andric if (match(W, m_Power2(RHS))) { 6385ffd83dbSDimitry Andric // Canonicalize Prod*(1<<C) to Prod<<C. 6395ffd83dbSDimitry Andric assert(!Ty->isVectorTy() && "vector types are not SCEVable"); 6405ffd83dbSDimitry Andric auto NWFlags = S->getNoWrapFlags(); 6415ffd83dbSDimitry Andric // clear nsw flag if shl will produce poison value. 6425ffd83dbSDimitry Andric if (RHS->logBase2() == RHS->getBitWidth() - 1) 6435ffd83dbSDimitry Andric NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW); 6445ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Shl, Prod, 6455ffd83dbSDimitry Andric ConstantInt::get(Ty, RHS->logBase2()), NWFlags, 6465ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6475ffd83dbSDimitry Andric } else { 6485ffd83dbSDimitry Andric Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(), 6495ffd83dbSDimitry Andric /*IsSafeToHoist*/ true); 6505ffd83dbSDimitry Andric } 6515ffd83dbSDimitry Andric } 6525ffd83dbSDimitry Andric } 6535ffd83dbSDimitry Andric 6545ffd83dbSDimitry Andric return Prod; 6555ffd83dbSDimitry Andric } 6565ffd83dbSDimitry Andric 6575ffd83dbSDimitry Andric Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 6585f757f3fSDimitry Andric Value *LHS = expand(S->getLHS()); 6595ffd83dbSDimitry Andric if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 6605ffd83dbSDimitry Andric const APInt &RHS = SC->getAPInt(); 6615ffd83dbSDimitry Andric if (RHS.isPowerOf2()) 6625ffd83dbSDimitry Andric return InsertBinop(Instruction::LShr, LHS, 6635f757f3fSDimitry Andric ConstantInt::get(SC->getType(), RHS.logBase2()), 6645ffd83dbSDimitry Andric SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true); 6655ffd83dbSDimitry Andric } 6665ffd83dbSDimitry Andric 6675f757f3fSDimitry Andric Value *RHS = expand(S->getRHS()); 6685ffd83dbSDimitry Andric return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap, 6695ffd83dbSDimitry Andric /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS())); 6705ffd83dbSDimitry Andric } 6715ffd83dbSDimitry Andric 6725ffd83dbSDimitry Andric /// Determine if this is a well-behaved chain of instructions leading back to 6735ffd83dbSDimitry Andric /// the PHI. If so, it may be reused by expanded expressions. 6745ffd83dbSDimitry Andric bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 6755ffd83dbSDimitry Andric const Loop *L) { 6765ffd83dbSDimitry Andric if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 6775ffd83dbSDimitry Andric (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 6785ffd83dbSDimitry Andric return false; 6795ffd83dbSDimitry Andric // If any of the operands don't dominate the insert position, bail. 6805ffd83dbSDimitry Andric // Addrec operands are always loop-invariant, so this can only happen 6815ffd83dbSDimitry Andric // if there are instructions which haven't been hoisted. 6825ffd83dbSDimitry Andric if (L == IVIncInsertLoop) { 683fe6060f1SDimitry Andric for (Use &Op : llvm::drop_begin(IncV->operands())) 684fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(Op)) 6855ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, IVIncInsertPos)) 6865ffd83dbSDimitry Andric return false; 6875ffd83dbSDimitry Andric } 6885ffd83dbSDimitry Andric // Advance to the next instruction. 6895ffd83dbSDimitry Andric IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 6905ffd83dbSDimitry Andric if (!IncV) 6915ffd83dbSDimitry Andric return false; 6925ffd83dbSDimitry Andric 6935ffd83dbSDimitry Andric if (IncV->mayHaveSideEffects()) 6945ffd83dbSDimitry Andric return false; 6955ffd83dbSDimitry Andric 6965ffd83dbSDimitry Andric if (IncV == PN) 6975ffd83dbSDimitry Andric return true; 6985ffd83dbSDimitry Andric 6995ffd83dbSDimitry Andric return isNormalAddRecExprPHI(PN, IncV, L); 7005ffd83dbSDimitry Andric } 7015ffd83dbSDimitry Andric 7025ffd83dbSDimitry Andric /// getIVIncOperand returns an induction variable increment's induction 7035ffd83dbSDimitry Andric /// variable operand. 7045ffd83dbSDimitry Andric /// 7055ffd83dbSDimitry Andric /// If allowScale is set, any type of GEP is allowed as long as the nonIV 7065ffd83dbSDimitry Andric /// operands dominate InsertPos. 7075ffd83dbSDimitry Andric /// 7085ffd83dbSDimitry Andric /// If allowScale is not set, ensure that a GEP increment conforms to one of the 7095ffd83dbSDimitry Andric /// simple patterns generated by getAddRecExprPHILiterally and 7105ffd83dbSDimitry Andric /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 7115ffd83dbSDimitry Andric Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 7125ffd83dbSDimitry Andric Instruction *InsertPos, 7135ffd83dbSDimitry Andric bool allowScale) { 7145ffd83dbSDimitry Andric if (IncV == InsertPos) 7155ffd83dbSDimitry Andric return nullptr; 7165ffd83dbSDimitry Andric 7175ffd83dbSDimitry Andric switch (IncV->getOpcode()) { 7185ffd83dbSDimitry Andric default: 7195ffd83dbSDimitry Andric return nullptr; 7205ffd83dbSDimitry Andric // Check for a simple Add/Sub or GEP of a loop invariant step. 7215ffd83dbSDimitry Andric case Instruction::Add: 7225ffd83dbSDimitry Andric case Instruction::Sub: { 7235ffd83dbSDimitry Andric Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 7245ffd83dbSDimitry Andric if (!OInst || SE.DT.dominates(OInst, InsertPos)) 7255ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 7265ffd83dbSDimitry Andric return nullptr; 7275ffd83dbSDimitry Andric } 7285ffd83dbSDimitry Andric case Instruction::BitCast: 7295ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 7305ffd83dbSDimitry Andric case Instruction::GetElementPtr: 731fe6060f1SDimitry Andric for (Use &U : llvm::drop_begin(IncV->operands())) { 732fe6060f1SDimitry Andric if (isa<Constant>(U)) 7335ffd83dbSDimitry Andric continue; 734fe6060f1SDimitry Andric if (Instruction *OInst = dyn_cast<Instruction>(U)) { 7355ffd83dbSDimitry Andric if (!SE.DT.dominates(OInst, InsertPos)) 7365ffd83dbSDimitry Andric return nullptr; 7375ffd83dbSDimitry Andric } 7385ffd83dbSDimitry Andric if (allowScale) { 7395ffd83dbSDimitry Andric // allow any kind of GEP as long as it can be hoisted. 7405ffd83dbSDimitry Andric continue; 7415ffd83dbSDimitry Andric } 74206c3fb27SDimitry Andric // GEPs produced by SCEVExpander use i8 element type. 74306c3fb27SDimitry Andric if (!cast<GEPOperator>(IncV)->getSourceElementType()->isIntegerTy(8)) 7445ffd83dbSDimitry Andric return nullptr; 7455ffd83dbSDimitry Andric break; 7465ffd83dbSDimitry Andric } 7475ffd83dbSDimitry Andric return dyn_cast<Instruction>(IncV->getOperand(0)); 7485ffd83dbSDimitry Andric } 7495ffd83dbSDimitry Andric } 7505ffd83dbSDimitry Andric 7515ffd83dbSDimitry Andric /// If the insert point of the current builder or any of the builders on the 7525ffd83dbSDimitry Andric /// stack of saved builders has 'I' as its insert point, update it to point to 7535ffd83dbSDimitry Andric /// the instruction after 'I'. This is intended to be used when the instruction 7545ffd83dbSDimitry Andric /// 'I' is being moved. If this fixup is not done and 'I' is moved to a 7555ffd83dbSDimitry Andric /// different block, the inconsistent insert point (with a mismatched 7565ffd83dbSDimitry Andric /// Instruction and Block) can lead to an instruction being inserted in a block 7575ffd83dbSDimitry Andric /// other than its parent. 7585ffd83dbSDimitry Andric void SCEVExpander::fixupInsertPoints(Instruction *I) { 7595ffd83dbSDimitry Andric BasicBlock::iterator It(*I); 7605ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = std::next(It); 7615ffd83dbSDimitry Andric if (Builder.GetInsertPoint() == It) 7625ffd83dbSDimitry Andric Builder.SetInsertPoint(&*NewInsertPt); 7635ffd83dbSDimitry Andric for (auto *InsertPtGuard : InsertPointGuards) 7645ffd83dbSDimitry Andric if (InsertPtGuard->GetInsertPoint() == It) 7655ffd83dbSDimitry Andric InsertPtGuard->SetInsertPoint(NewInsertPt); 7665ffd83dbSDimitry Andric } 7675ffd83dbSDimitry Andric 7685ffd83dbSDimitry Andric /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 7695ffd83dbSDimitry Andric /// it available to other uses in this loop. Recursively hoist any operands, 7705ffd83dbSDimitry Andric /// until we reach a value that dominates InsertPos. 771bdd1243dSDimitry Andric bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos, 772bdd1243dSDimitry Andric bool RecomputePoisonFlags) { 773bdd1243dSDimitry Andric auto FixupPoisonFlags = [this](Instruction *I) { 774bdd1243dSDimitry Andric // Drop flags that are potentially inferred from old context and infer flags 775bdd1243dSDimitry Andric // in new context. 776*0fca6ea1SDimitry Andric rememberFlags(I); 777bdd1243dSDimitry Andric I->dropPoisonGeneratingFlags(); 778bdd1243dSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 779bdd1243dSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 780bdd1243dSDimitry Andric auto *BO = cast<BinaryOperator>(I); 781bdd1243dSDimitry Andric BO->setHasNoUnsignedWrap( 782bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 783bdd1243dSDimitry Andric BO->setHasNoSignedWrap( 784bdd1243dSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 785bdd1243dSDimitry Andric } 786bdd1243dSDimitry Andric }; 787bdd1243dSDimitry Andric 788bdd1243dSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) { 789bdd1243dSDimitry Andric if (RecomputePoisonFlags) 790bdd1243dSDimitry Andric FixupPoisonFlags(IncV); 7915ffd83dbSDimitry Andric return true; 792bdd1243dSDimitry Andric } 7935ffd83dbSDimitry Andric 7945ffd83dbSDimitry Andric // InsertPos must itself dominate IncV so that IncV's new position satisfies 7955ffd83dbSDimitry Andric // its existing users. 7965ffd83dbSDimitry Andric if (isa<PHINode>(InsertPos) || 7975ffd83dbSDimitry Andric !SE.DT.dominates(InsertPos->getParent(), IncV->getParent())) 7985ffd83dbSDimitry Andric return false; 7995ffd83dbSDimitry Andric 8005ffd83dbSDimitry Andric if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos)) 8015ffd83dbSDimitry Andric return false; 8025ffd83dbSDimitry Andric 8035ffd83dbSDimitry Andric // Check that the chain of IV operands leading back to Phi can be hoisted. 8045ffd83dbSDimitry Andric SmallVector<Instruction*, 4> IVIncs; 8055ffd83dbSDimitry Andric for(;;) { 8065ffd83dbSDimitry Andric Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 8075ffd83dbSDimitry Andric if (!Oper) 8085ffd83dbSDimitry Andric return false; 8095ffd83dbSDimitry Andric // IncV is safe to hoist. 8105ffd83dbSDimitry Andric IVIncs.push_back(IncV); 8115ffd83dbSDimitry Andric IncV = Oper; 8125ffd83dbSDimitry Andric if (SE.DT.dominates(IncV, InsertPos)) 8135ffd83dbSDimitry Andric break; 8145ffd83dbSDimitry Andric } 8150eae32dcSDimitry Andric for (Instruction *I : llvm::reverse(IVIncs)) { 8160eae32dcSDimitry Andric fixupInsertPoints(I); 8170eae32dcSDimitry Andric I->moveBefore(InsertPos); 818bdd1243dSDimitry Andric if (RecomputePoisonFlags) 819bdd1243dSDimitry Andric FixupPoisonFlags(I); 8205ffd83dbSDimitry Andric } 8215ffd83dbSDimitry Andric return true; 8225ffd83dbSDimitry Andric } 8235ffd83dbSDimitry Andric 824*0fca6ea1SDimitry Andric bool SCEVExpander::canReuseFlagsFromOriginalIVInc(PHINode *OrigPhi, 825*0fca6ea1SDimitry Andric PHINode *WidePhi, 826*0fca6ea1SDimitry Andric Instruction *OrigInc, 827*0fca6ea1SDimitry Andric Instruction *WideInc) { 828*0fca6ea1SDimitry Andric return match(OrigInc, m_c_BinOp(m_Specific(OrigPhi), m_Value())) && 829*0fca6ea1SDimitry Andric match(WideInc, m_c_BinOp(m_Specific(WidePhi), m_Value())) && 830*0fca6ea1SDimitry Andric OrigInc->getOpcode() == WideInc->getOpcode(); 831*0fca6ea1SDimitry Andric } 832*0fca6ea1SDimitry Andric 8335ffd83dbSDimitry Andric /// Determine if this cyclic phi is in a form that would have been generated by 8345ffd83dbSDimitry Andric /// LSR. We don't care if the phi was actually expanded in this pass, as long 8355ffd83dbSDimitry Andric /// as it is in a low-cost form, for example, no implied multiplication. This 8365ffd83dbSDimitry Andric /// should match any patterns generated by getAddRecExprPHILiterally and 8375ffd83dbSDimitry Andric /// expandAddtoGEP. 8385ffd83dbSDimitry Andric bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 8395ffd83dbSDimitry Andric const Loop *L) { 8405ffd83dbSDimitry Andric for(Instruction *IVOper = IncV; 8415ffd83dbSDimitry Andric (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 8425ffd83dbSDimitry Andric /*allowScale=*/false));) { 8435ffd83dbSDimitry Andric if (IVOper == PN) 8445ffd83dbSDimitry Andric return true; 8455ffd83dbSDimitry Andric } 8465ffd83dbSDimitry Andric return false; 8475ffd83dbSDimitry Andric } 8485ffd83dbSDimitry Andric 8495ffd83dbSDimitry Andric /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 8505ffd83dbSDimitry Andric /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 8515ffd83dbSDimitry Andric /// need to materialize IV increments elsewhere to handle difficult situations. 8525ffd83dbSDimitry Andric Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 8535ffd83dbSDimitry Andric bool useSubtract) { 8545ffd83dbSDimitry Andric Value *IncV; 8555ffd83dbSDimitry Andric // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 8565f757f3fSDimitry Andric if (PN->getType()->isPointerTy()) { 857*0fca6ea1SDimitry Andric // TODO: Change name to IVName.iv.next. 858*0fca6ea1SDimitry Andric IncV = Builder.CreatePtrAdd(PN, StepV, "scevgep"); 8595ffd83dbSDimitry Andric } else { 8605ffd83dbSDimitry Andric IncV = useSubtract ? 8615ffd83dbSDimitry Andric Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 8625ffd83dbSDimitry Andric Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 8635ffd83dbSDimitry Andric } 8645ffd83dbSDimitry Andric return IncV; 8655ffd83dbSDimitry Andric } 8665ffd83dbSDimitry Andric 8675ffd83dbSDimitry Andric /// Check whether we can cheaply express the requested SCEV in terms of 8685ffd83dbSDimitry Andric /// the available PHI SCEV by truncation and/or inversion of the step. 8695ffd83dbSDimitry Andric static bool canBeCheaplyTransformed(ScalarEvolution &SE, 8705ffd83dbSDimitry Andric const SCEVAddRecExpr *Phi, 8715ffd83dbSDimitry Andric const SCEVAddRecExpr *Requested, 8725ffd83dbSDimitry Andric bool &InvertStep) { 873fe6060f1SDimitry Andric // We can't transform to match a pointer PHI. 8745f757f3fSDimitry Andric Type *PhiTy = Phi->getType(); 8755f757f3fSDimitry Andric Type *RequestedTy = Requested->getType(); 8765f757f3fSDimitry Andric if (PhiTy->isPointerTy() || RequestedTy->isPointerTy()) 877fe6060f1SDimitry Andric return false; 878fe6060f1SDimitry Andric 8795ffd83dbSDimitry Andric if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth()) 8805ffd83dbSDimitry Andric return false; 8815ffd83dbSDimitry Andric 8825ffd83dbSDimitry Andric // Try truncate it if necessary. 8835ffd83dbSDimitry Andric Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy)); 8845ffd83dbSDimitry Andric if (!Phi) 8855ffd83dbSDimitry Andric return false; 8865ffd83dbSDimitry Andric 8875ffd83dbSDimitry Andric // Check whether truncation will help. 8885ffd83dbSDimitry Andric if (Phi == Requested) { 8895ffd83dbSDimitry Andric InvertStep = false; 8905ffd83dbSDimitry Andric return true; 8915ffd83dbSDimitry Andric } 8925ffd83dbSDimitry Andric 8935ffd83dbSDimitry Andric // Check whether inverting will help: {R,+,-1} == R - {0,+,1}. 894fe6060f1SDimitry Andric if (SE.getMinusSCEV(Requested->getStart(), Requested) == Phi) { 8955ffd83dbSDimitry Andric InvertStep = true; 8965ffd83dbSDimitry Andric return true; 8975ffd83dbSDimitry Andric } 8985ffd83dbSDimitry Andric 8995ffd83dbSDimitry Andric return false; 9005ffd83dbSDimitry Andric } 9015ffd83dbSDimitry Andric 9025ffd83dbSDimitry Andric static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 9035ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 9045ffd83dbSDimitry Andric return false; 9055ffd83dbSDimitry Andric 9065ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 9075ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 9085ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 9095ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy), 9105ffd83dbSDimitry Andric SE.getSignExtendExpr(AR, WideTy)); 9115ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 9125ffd83dbSDimitry Andric SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy); 9135ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 9145ffd83dbSDimitry Andric } 9155ffd83dbSDimitry Andric 9165ffd83dbSDimitry Andric static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) { 9175ffd83dbSDimitry Andric if (!isa<IntegerType>(AR->getType())) 9185ffd83dbSDimitry Andric return false; 9195ffd83dbSDimitry Andric 9205ffd83dbSDimitry Andric unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth(); 9215ffd83dbSDimitry Andric Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2); 9225ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 9235ffd83dbSDimitry Andric const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy), 9245ffd83dbSDimitry Andric SE.getZeroExtendExpr(AR, WideTy)); 9255ffd83dbSDimitry Andric const SCEV *ExtendAfterOp = 9265ffd83dbSDimitry Andric SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy); 9275ffd83dbSDimitry Andric return ExtendAfterOp == OpAfterExtend; 9285ffd83dbSDimitry Andric } 9295ffd83dbSDimitry Andric 9305ffd83dbSDimitry Andric /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 9315ffd83dbSDimitry Andric /// the base addrec, which is the addrec without any non-loop-dominating 9325ffd83dbSDimitry Andric /// values, and return the PHI. 9335ffd83dbSDimitry Andric PHINode * 9345ffd83dbSDimitry Andric SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 9355f757f3fSDimitry Andric const Loop *L, Type *&TruncTy, 9365ffd83dbSDimitry Andric bool &InvertStep) { 9375f757f3fSDimitry Andric assert((!IVIncInsertLoop || IVIncInsertPos) && 9385f757f3fSDimitry Andric "Uninitialized insert position"); 9395ffd83dbSDimitry Andric 9405ffd83dbSDimitry Andric // Reuse a previously-inserted PHI, if present. 9415ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 9425ffd83dbSDimitry Andric if (LatchBlock) { 9435ffd83dbSDimitry Andric PHINode *AddRecPhiMatch = nullptr; 9445ffd83dbSDimitry Andric Instruction *IncV = nullptr; 9455ffd83dbSDimitry Andric TruncTy = nullptr; 9465ffd83dbSDimitry Andric InvertStep = false; 9475ffd83dbSDimitry Andric 9485ffd83dbSDimitry Andric // Only try partially matching scevs that need truncation and/or 9495ffd83dbSDimitry Andric // step-inversion if we know this loop is outside the current loop. 9505ffd83dbSDimitry Andric bool TryNonMatchingSCEV = 9515ffd83dbSDimitry Andric IVIncInsertLoop && 9525ffd83dbSDimitry Andric SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader()); 9535ffd83dbSDimitry Andric 9545ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) { 9555ffd83dbSDimitry Andric if (!SE.isSCEVable(PN.getType())) 9565ffd83dbSDimitry Andric continue; 9575ffd83dbSDimitry Andric 958e8d8bef9SDimitry Andric // We should not look for a incomplete PHI. Getting SCEV for a incomplete 959e8d8bef9SDimitry Andric // PHI has no meaning at all. 960e8d8bef9SDimitry Andric if (!PN.isComplete()) { 961fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 962e8d8bef9SDimitry Andric DebugType, dbgs() << "One incomplete PHI is found: " << PN << "\n"); 963e8d8bef9SDimitry Andric continue; 964e8d8bef9SDimitry Andric } 965e8d8bef9SDimitry Andric 9665ffd83dbSDimitry Andric const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN)); 9675ffd83dbSDimitry Andric if (!PhiSCEV) 9685ffd83dbSDimitry Andric continue; 9695ffd83dbSDimitry Andric 9705ffd83dbSDimitry Andric bool IsMatchingSCEV = PhiSCEV == Normalized; 9715ffd83dbSDimitry Andric // We only handle truncation and inversion of phi recurrences for the 9725ffd83dbSDimitry Andric // expanded expression if the expanded expression's loop dominates the 9735ffd83dbSDimitry Andric // loop we insert to. Check now, so we can bail out early. 9745ffd83dbSDimitry Andric if (!IsMatchingSCEV && !TryNonMatchingSCEV) 9755ffd83dbSDimitry Andric continue; 9765ffd83dbSDimitry Andric 9775ffd83dbSDimitry Andric // TODO: this possibly can be reworked to avoid this cast at all. 9785ffd83dbSDimitry Andric Instruction *TempIncV = 9795ffd83dbSDimitry Andric dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock)); 9805ffd83dbSDimitry Andric if (!TempIncV) 9815ffd83dbSDimitry Andric continue; 9825ffd83dbSDimitry Andric 9835ffd83dbSDimitry Andric // Check whether we can reuse this PHI node. 9845ffd83dbSDimitry Andric if (LSRMode) { 9855ffd83dbSDimitry Andric if (!isExpandedAddRecExprPHI(&PN, TempIncV, L)) 9865ffd83dbSDimitry Andric continue; 9875ffd83dbSDimitry Andric } else { 9885ffd83dbSDimitry Andric if (!isNormalAddRecExprPHI(&PN, TempIncV, L)) 9895ffd83dbSDimitry Andric continue; 9905ffd83dbSDimitry Andric } 9915ffd83dbSDimitry Andric 9925ffd83dbSDimitry Andric // Stop if we have found an exact match SCEV. 9935ffd83dbSDimitry Andric if (IsMatchingSCEV) { 9945ffd83dbSDimitry Andric IncV = TempIncV; 9955ffd83dbSDimitry Andric TruncTy = nullptr; 9965ffd83dbSDimitry Andric InvertStep = false; 9975ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 9985ffd83dbSDimitry Andric break; 9995ffd83dbSDimitry Andric } 10005ffd83dbSDimitry Andric 10015ffd83dbSDimitry Andric // Try whether the phi can be translated into the requested form 10025ffd83dbSDimitry Andric // (truncated and/or offset by a constant). 10035ffd83dbSDimitry Andric if ((!TruncTy || InvertStep) && 10045ffd83dbSDimitry Andric canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) { 10055ffd83dbSDimitry Andric // Record the phi node. But don't stop we might find an exact match 10065ffd83dbSDimitry Andric // later. 10075ffd83dbSDimitry Andric AddRecPhiMatch = &PN; 10085ffd83dbSDimitry Andric IncV = TempIncV; 10095f757f3fSDimitry Andric TruncTy = Normalized->getType(); 10105ffd83dbSDimitry Andric } 10115ffd83dbSDimitry Andric } 10125ffd83dbSDimitry Andric 10135ffd83dbSDimitry Andric if (AddRecPhiMatch) { 10145ffd83dbSDimitry Andric // Ok, the add recurrence looks usable. 10155ffd83dbSDimitry Andric // Remember this PHI, even in post-inc mode. 10165ffd83dbSDimitry Andric InsertedValues.insert(AddRecPhiMatch); 10175ffd83dbSDimitry Andric // Remember the increment. 10185ffd83dbSDimitry Andric rememberInstruction(IncV); 1019e8d8bef9SDimitry Andric // Those values were not actually inserted but re-used. 1020e8d8bef9SDimitry Andric ReusedValues.insert(AddRecPhiMatch); 1021e8d8bef9SDimitry Andric ReusedValues.insert(IncV); 10225ffd83dbSDimitry Andric return AddRecPhiMatch; 10235ffd83dbSDimitry Andric } 10245ffd83dbSDimitry Andric } 10255ffd83dbSDimitry Andric 10265ffd83dbSDimitry Andric // Save the original insertion point so we can restore it when we're done. 10275ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 10285ffd83dbSDimitry Andric 10295ffd83dbSDimitry Andric // Another AddRec may need to be recursively expanded below. For example, if 10305ffd83dbSDimitry Andric // this AddRec is quadratic, the StepV may itself be an AddRec in this 10315ffd83dbSDimitry Andric // loop. Remove this loop from the PostIncLoops set before expanding such 10325ffd83dbSDimitry Andric // AddRecs. Otherwise, we cannot find a valid position for the step 10335ffd83dbSDimitry Andric // (i.e. StepV can never dominate its loop header). Ideally, we could do 10345ffd83dbSDimitry Andric // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 10355ffd83dbSDimitry Andric // so it's not worth implementing SmallPtrSet::swap. 10365ffd83dbSDimitry Andric PostIncLoopSet SavedPostIncLoops = PostIncLoops; 10375ffd83dbSDimitry Andric PostIncLoops.clear(); 10385ffd83dbSDimitry Andric 10395ffd83dbSDimitry Andric // Expand code for the start value into the loop preheader. 10405ffd83dbSDimitry Andric assert(L->getLoopPreheader() && 10415ffd83dbSDimitry Andric "Can't expand add recurrences without a loop preheader!"); 1042e8d8bef9SDimitry Andric Value *StartV = 10435f757f3fSDimitry Andric expand(Normalized->getStart(), L->getLoopPreheader()->getTerminator()); 10445ffd83dbSDimitry Andric 10455ffd83dbSDimitry Andric // StartV must have been be inserted into L's preheader to dominate the new 10465ffd83dbSDimitry Andric // phi. 10475ffd83dbSDimitry Andric assert(!isa<Instruction>(StartV) || 10485ffd83dbSDimitry Andric SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(), 10495ffd83dbSDimitry Andric L->getHeader())); 10505ffd83dbSDimitry Andric 10515ffd83dbSDimitry Andric // Expand code for the step value. Do this before creating the PHI so that PHI 10525ffd83dbSDimitry Andric // reuse code doesn't see an incomplete PHI. 10535ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 10545f757f3fSDimitry Andric Type *ExpandTy = Normalized->getType(); 10555ffd83dbSDimitry Andric // If the stride is negative, insert a sub instead of an add for the increment 10565ffd83dbSDimitry Andric // (unless it's a constant, because subtracts of constants are canonicalized 10575ffd83dbSDimitry Andric // to adds). 10585ffd83dbSDimitry Andric bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 10595ffd83dbSDimitry Andric if (useSubtract) 10605ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 10615ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 10625f757f3fSDimitry Andric Value *StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 10635ffd83dbSDimitry Andric 10645ffd83dbSDimitry Andric // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if 10655ffd83dbSDimitry Andric // we actually do emit an addition. It does not apply if we emit a 10665ffd83dbSDimitry Andric // subtraction. 10675ffd83dbSDimitry Andric bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized); 10685ffd83dbSDimitry Andric bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized); 10695ffd83dbSDimitry Andric 10705ffd83dbSDimitry Andric // Create the PHI. 10715ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 10725ffd83dbSDimitry Andric Builder.SetInsertPoint(Header, Header->begin()); 1073*0fca6ea1SDimitry Andric PHINode *PN = 1074*0fca6ea1SDimitry Andric Builder.CreatePHI(ExpandTy, pred_size(Header), Twine(IVName) + ".iv"); 10755ffd83dbSDimitry Andric 10765ffd83dbSDimitry Andric // Create the step instructions and populate the PHI. 1077*0fca6ea1SDimitry Andric for (BasicBlock *Pred : predecessors(Header)) { 10785ffd83dbSDimitry Andric // Add a start value. 10795ffd83dbSDimitry Andric if (!L->contains(Pred)) { 10805ffd83dbSDimitry Andric PN->addIncoming(StartV, Pred); 10815ffd83dbSDimitry Andric continue; 10825ffd83dbSDimitry Andric } 10835ffd83dbSDimitry Andric 10845ffd83dbSDimitry Andric // Create a step value and add it to the PHI. 10855ffd83dbSDimitry Andric // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 10865ffd83dbSDimitry Andric // instructions at IVIncInsertPos. 10875ffd83dbSDimitry Andric Instruction *InsertPos = L == IVIncInsertLoop ? 10885ffd83dbSDimitry Andric IVIncInsertPos : Pred->getTerminator(); 10895ffd83dbSDimitry Andric Builder.SetInsertPoint(InsertPos); 10905f757f3fSDimitry Andric Value *IncV = expandIVInc(PN, StepV, L, useSubtract); 10915ffd83dbSDimitry Andric 10925ffd83dbSDimitry Andric if (isa<OverflowingBinaryOperator>(IncV)) { 10935ffd83dbSDimitry Andric if (IncrementIsNUW) 10945ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 10955ffd83dbSDimitry Andric if (IncrementIsNSW) 10965ffd83dbSDimitry Andric cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 10975ffd83dbSDimitry Andric } 10985ffd83dbSDimitry Andric PN->addIncoming(IncV, Pred); 10995ffd83dbSDimitry Andric } 11005ffd83dbSDimitry Andric 11015ffd83dbSDimitry Andric // After expanding subexpressions, restore the PostIncLoops set so the caller 11025ffd83dbSDimitry Andric // can ensure that IVIncrement dominates the current uses. 11035ffd83dbSDimitry Andric PostIncLoops = SavedPostIncLoops; 11045ffd83dbSDimitry Andric 1105fe6060f1SDimitry Andric // Remember this PHI, even in post-inc mode. LSR SCEV-based salvaging is most 1106fe6060f1SDimitry Andric // effective when we are able to use an IV inserted here, so record it. 11075ffd83dbSDimitry Andric InsertedValues.insert(PN); 1108fe6060f1SDimitry Andric InsertedIVs.push_back(PN); 11095ffd83dbSDimitry Andric return PN; 11105ffd83dbSDimitry Andric } 11115ffd83dbSDimitry Andric 11125ffd83dbSDimitry Andric Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 11135ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 11145ffd83dbSDimitry Andric 11155ffd83dbSDimitry Andric // Determine a normalized form of this expression, which is the expression 11165ffd83dbSDimitry Andric // before any post-inc adjustment is made. 11175ffd83dbSDimitry Andric const SCEVAddRecExpr *Normalized = S; 11185ffd83dbSDimitry Andric if (PostIncLoops.count(L)) { 11195ffd83dbSDimitry Andric PostIncLoopSet Loops; 11205ffd83dbSDimitry Andric Loops.insert(L); 112106c3fb27SDimitry Andric Normalized = cast<SCEVAddRecExpr>( 112206c3fb27SDimitry Andric normalizeForPostIncUse(S, Loops, SE, /*CheckInvertible=*/false)); 11235ffd83dbSDimitry Andric } 11245ffd83dbSDimitry Andric 11255f757f3fSDimitry Andric [[maybe_unused]] const SCEV *Start = Normalized->getStart(); 11265ffd83dbSDimitry Andric const SCEV *Step = Normalized->getStepRecurrence(SE); 11275f757f3fSDimitry Andric assert(SE.properlyDominates(Start, L->getHeader()) && 11285f757f3fSDimitry Andric "Start does not properly dominate loop header"); 11295f757f3fSDimitry Andric assert(SE.dominates(Step, L->getHeader()) && "Step not dominate loop header"); 11305ffd83dbSDimitry Andric 11315ffd83dbSDimitry Andric // In some cases, we decide to reuse an existing phi node but need to truncate 11325ffd83dbSDimitry Andric // it and/or invert the step. 11335ffd83dbSDimitry Andric Type *TruncTy = nullptr; 11345ffd83dbSDimitry Andric bool InvertStep = false; 11355f757f3fSDimitry Andric PHINode *PN = getAddRecExprPHILiterally(Normalized, L, TruncTy, InvertStep); 11365ffd83dbSDimitry Andric 11375ffd83dbSDimitry Andric // Accommodate post-inc mode, if necessary. 11385ffd83dbSDimitry Andric Value *Result; 11395ffd83dbSDimitry Andric if (!PostIncLoops.count(L)) 11405ffd83dbSDimitry Andric Result = PN; 11415ffd83dbSDimitry Andric else { 11425ffd83dbSDimitry Andric // In PostInc mode, use the post-incremented value. 11435ffd83dbSDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 11445ffd83dbSDimitry Andric assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 11455ffd83dbSDimitry Andric Result = PN->getIncomingValueForBlock(LatchBlock); 11465ffd83dbSDimitry Andric 1147e8d8bef9SDimitry Andric // We might be introducing a new use of the post-inc IV that is not poison 1148e8d8bef9SDimitry Andric // safe, in which case we should drop poison generating flags. Only keep 1149e8d8bef9SDimitry Andric // those flags for which SCEV has proven that they always hold. 1150e8d8bef9SDimitry Andric if (isa<OverflowingBinaryOperator>(Result)) { 1151e8d8bef9SDimitry Andric auto *I = cast<Instruction>(Result); 1152e8d8bef9SDimitry Andric if (!S->hasNoUnsignedWrap()) 1153e8d8bef9SDimitry Andric I->setHasNoUnsignedWrap(false); 1154e8d8bef9SDimitry Andric if (!S->hasNoSignedWrap()) 1155e8d8bef9SDimitry Andric I->setHasNoSignedWrap(false); 1156e8d8bef9SDimitry Andric } 1157e8d8bef9SDimitry Andric 11585ffd83dbSDimitry Andric // For an expansion to use the postinc form, the client must call 11595ffd83dbSDimitry Andric // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 11605ffd83dbSDimitry Andric // or dominated by IVIncInsertPos. 11615ffd83dbSDimitry Andric if (isa<Instruction>(Result) && 11625ffd83dbSDimitry Andric !SE.DT.dominates(cast<Instruction>(Result), 11635ffd83dbSDimitry Andric &*Builder.GetInsertPoint())) { 11645ffd83dbSDimitry Andric // The induction variable's postinc expansion does not dominate this use. 11655ffd83dbSDimitry Andric // IVUsers tries to prevent this case, so it is rare. However, it can 11665ffd83dbSDimitry Andric // happen when an IVUser outside the loop is not dominated by the latch 11675ffd83dbSDimitry Andric // block. Adjusting IVIncInsertPos before expansion begins cannot handle 11685ffd83dbSDimitry Andric // all cases. Consider a phi outside whose operand is replaced during 11695ffd83dbSDimitry Andric // expansion with the value of the postinc user. Without fundamentally 11705ffd83dbSDimitry Andric // changing the way postinc users are tracked, the only remedy is 11715ffd83dbSDimitry Andric // inserting an extra IV increment. StepV might fold into PostLoopOffset, 11725ffd83dbSDimitry Andric // but hopefully expandCodeFor handles that. 11735ffd83dbSDimitry Andric bool useSubtract = 11745f757f3fSDimitry Andric !S->getType()->isPointerTy() && Step->isNonConstantNegative(); 11755ffd83dbSDimitry Andric if (useSubtract) 11765ffd83dbSDimitry Andric Step = SE.getNegativeSCEV(Step); 11775ffd83dbSDimitry Andric Value *StepV; 11785ffd83dbSDimitry Andric { 11795ffd83dbSDimitry Andric // Expand the step somewhere that dominates the loop header. 11805ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 11815f757f3fSDimitry Andric StepV = expand(Step, L->getHeader()->getFirstInsertionPt()); 11825ffd83dbSDimitry Andric } 11835f757f3fSDimitry Andric Result = expandIVInc(PN, StepV, L, useSubtract); 11845ffd83dbSDimitry Andric } 11855ffd83dbSDimitry Andric } 11865ffd83dbSDimitry Andric 11875ffd83dbSDimitry Andric // We have decided to reuse an induction variable of a dominating loop. Apply 11885ffd83dbSDimitry Andric // truncation and/or inversion of the step. 11895ffd83dbSDimitry Andric if (TruncTy) { 11905ffd83dbSDimitry Andric // Truncate the result. 1191e8d8bef9SDimitry Andric if (TruncTy != Result->getType()) 11925ffd83dbSDimitry Andric Result = Builder.CreateTrunc(Result, TruncTy); 1193e8d8bef9SDimitry Andric 11945ffd83dbSDimitry Andric // Invert the result. 1195e8d8bef9SDimitry Andric if (InvertStep) 11965f757f3fSDimitry Andric Result = Builder.CreateSub(expand(Normalized->getStart()), Result); 11975ffd83dbSDimitry Andric } 11985ffd83dbSDimitry Andric 11995ffd83dbSDimitry Andric return Result; 12005ffd83dbSDimitry Andric } 12015ffd83dbSDimitry Andric 12025ffd83dbSDimitry Andric Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 12035ffd83dbSDimitry Andric // In canonical mode we compute the addrec as an expression of a canonical IV 12045ffd83dbSDimitry Andric // using evaluateAtIteration and expand the resulting SCEV expression. This 1205bdd1243dSDimitry Andric // way we avoid introducing new IVs to carry on the computation of the addrec 12065ffd83dbSDimitry Andric // throughout the loop. 12075ffd83dbSDimitry Andric // 12085ffd83dbSDimitry Andric // For nested addrecs evaluateAtIteration might need a canonical IV of a 12095ffd83dbSDimitry Andric // type wider than the addrec itself. Emitting a canonical IV of the 12105ffd83dbSDimitry Andric // proper type might produce non-legal types, for example expanding an i64 12115ffd83dbSDimitry Andric // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall 12125ffd83dbSDimitry Andric // back to non-canonical mode for nested addrecs. 12135ffd83dbSDimitry Andric if (!CanonicalMode || (S->getNumOperands() > 2)) 12145ffd83dbSDimitry Andric return expandAddRecExprLiterally(S); 12155ffd83dbSDimitry Andric 12165ffd83dbSDimitry Andric Type *Ty = SE.getEffectiveSCEVType(S->getType()); 12175ffd83dbSDimitry Andric const Loop *L = S->getLoop(); 12185ffd83dbSDimitry Andric 12195ffd83dbSDimitry Andric // First check for an existing canonical IV in a suitable type. 12205ffd83dbSDimitry Andric PHINode *CanonicalIV = nullptr; 12215ffd83dbSDimitry Andric if (PHINode *PN = L->getCanonicalInductionVariable()) 12225ffd83dbSDimitry Andric if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 12235ffd83dbSDimitry Andric CanonicalIV = PN; 12245ffd83dbSDimitry Andric 12255ffd83dbSDimitry Andric // Rewrite an AddRec in terms of the canonical induction variable, if 12265ffd83dbSDimitry Andric // its type is more narrow. 12275ffd83dbSDimitry Andric if (CanonicalIV && 1228fe6060f1SDimitry Andric SE.getTypeSizeInBits(CanonicalIV->getType()) > SE.getTypeSizeInBits(Ty) && 1229fe6060f1SDimitry Andric !S->getType()->isPointerTy()) { 12305ffd83dbSDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 12315ffd83dbSDimitry Andric for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1232bdd1243dSDimitry Andric NewOps[i] = SE.getAnyExtendExpr(S->getOperand(i), CanonicalIV->getType()); 12335ffd83dbSDimitry Andric Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 12345ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW))); 12355ffd83dbSDimitry Andric BasicBlock::iterator NewInsertPt = 1236e8d8bef9SDimitry Andric findInsertPointAfter(cast<Instruction>(V), &*Builder.GetInsertPoint()); 12375f757f3fSDimitry Andric V = expand(SE.getTruncateExpr(SE.getUnknown(V), Ty), NewInsertPt); 12385ffd83dbSDimitry Andric return V; 12395ffd83dbSDimitry Andric } 12405ffd83dbSDimitry Andric 12415ffd83dbSDimitry Andric // {X,+,F} --> X + {0,+,F} 12425ffd83dbSDimitry Andric if (!S->getStart()->isZero()) { 124306c3fb27SDimitry Andric if (isa<PointerType>(S->getType())) { 1244349cc55cSDimitry Andric Value *StartV = expand(SE.getPointerBase(S)); 12455f757f3fSDimitry Andric return expandAddToGEP(SE.removePointerBase(S), StartV); 1246349cc55cSDimitry Andric } 1247349cc55cSDimitry Andric 1248e8d8bef9SDimitry Andric SmallVector<const SCEV *, 4> NewOps(S->operands()); 12495ffd83dbSDimitry Andric NewOps[0] = SE.getConstant(Ty, 0); 12505ffd83dbSDimitry Andric const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 12515ffd83dbSDimitry Andric S->getNoWrapFlags(SCEV::FlagNW)); 12525ffd83dbSDimitry Andric 12535ffd83dbSDimitry Andric // Just do a normal add. Pre-expand the operands to suppress folding. 12545ffd83dbSDimitry Andric // 12555ffd83dbSDimitry Andric // The LHS and RHS values are factored out of the expand call to make the 12565ffd83dbSDimitry Andric // output independent of the argument evaluation order. 12575ffd83dbSDimitry Andric const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart())); 12585ffd83dbSDimitry Andric const SCEV *AddExprRHS = SE.getUnknown(expand(Rest)); 12595ffd83dbSDimitry Andric return expand(SE.getAddExpr(AddExprLHS, AddExprRHS)); 12605ffd83dbSDimitry Andric } 12615ffd83dbSDimitry Andric 12625ffd83dbSDimitry Andric // If we don't yet have a canonical IV, create one. 12635ffd83dbSDimitry Andric if (!CanonicalIV) { 12645ffd83dbSDimitry Andric // Create and insert the PHI node for the induction variable in the 12655ffd83dbSDimitry Andric // specified loop. 12665ffd83dbSDimitry Andric BasicBlock *Header = L->getHeader(); 12675ffd83dbSDimitry Andric pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 12685f757f3fSDimitry Andric CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar"); 12695f757f3fSDimitry Andric CanonicalIV->insertBefore(Header->begin()); 12705ffd83dbSDimitry Andric rememberInstruction(CanonicalIV); 12715ffd83dbSDimitry Andric 12725ffd83dbSDimitry Andric SmallSet<BasicBlock *, 4> PredSeen; 12735ffd83dbSDimitry Andric Constant *One = ConstantInt::get(Ty, 1); 12745ffd83dbSDimitry Andric for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 12755ffd83dbSDimitry Andric BasicBlock *HP = *HPI; 12765ffd83dbSDimitry Andric if (!PredSeen.insert(HP).second) { 12775ffd83dbSDimitry Andric // There must be an incoming value for each predecessor, even the 12785ffd83dbSDimitry Andric // duplicates! 12795ffd83dbSDimitry Andric CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP); 12805ffd83dbSDimitry Andric continue; 12815ffd83dbSDimitry Andric } 12825ffd83dbSDimitry Andric 12835ffd83dbSDimitry Andric if (L->contains(HP)) { 12845ffd83dbSDimitry Andric // Insert a unit add instruction right before the terminator 12855ffd83dbSDimitry Andric // corresponding to the back-edge. 12865ffd83dbSDimitry Andric Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 12875ffd83dbSDimitry Andric "indvar.next", 1288*0fca6ea1SDimitry Andric HP->getTerminator()->getIterator()); 12895ffd83dbSDimitry Andric Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 12905ffd83dbSDimitry Andric rememberInstruction(Add); 12915ffd83dbSDimitry Andric CanonicalIV->addIncoming(Add, HP); 12925ffd83dbSDimitry Andric } else { 12935ffd83dbSDimitry Andric CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 12945ffd83dbSDimitry Andric } 12955ffd83dbSDimitry Andric } 12965ffd83dbSDimitry Andric } 12975ffd83dbSDimitry Andric 12985ffd83dbSDimitry Andric // {0,+,1} --> Insert a canonical induction variable into the loop! 12995ffd83dbSDimitry Andric if (S->isAffine() && S->getOperand(1)->isOne()) { 13005ffd83dbSDimitry Andric assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 13015ffd83dbSDimitry Andric "IVs with types different from the canonical IV should " 13025ffd83dbSDimitry Andric "already have been handled!"); 13035ffd83dbSDimitry Andric return CanonicalIV; 13045ffd83dbSDimitry Andric } 13055ffd83dbSDimitry Andric 13065ffd83dbSDimitry Andric // {0,+,F} --> {0,+,1} * F 13075ffd83dbSDimitry Andric 13085ffd83dbSDimitry Andric // If this is a simple linear addrec, emit it now as a special case. 13095ffd83dbSDimitry Andric if (S->isAffine()) // {0,+,F} --> i*F 13105ffd83dbSDimitry Andric return 13115ffd83dbSDimitry Andric expand(SE.getTruncateOrNoop( 13125ffd83dbSDimitry Andric SE.getMulExpr(SE.getUnknown(CanonicalIV), 13135ffd83dbSDimitry Andric SE.getNoopOrAnyExtend(S->getOperand(1), 13145ffd83dbSDimitry Andric CanonicalIV->getType())), 13155ffd83dbSDimitry Andric Ty)); 13165ffd83dbSDimitry Andric 13175ffd83dbSDimitry Andric // If this is a chain of recurrences, turn it into a closed form, using the 13185ffd83dbSDimitry Andric // folders, then expandCodeFor the closed form. This allows the folders to 13195ffd83dbSDimitry Andric // simplify the expression without having to build a bunch of special code 13205ffd83dbSDimitry Andric // into this folder. 13215ffd83dbSDimitry Andric const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 13225ffd83dbSDimitry Andric 13235ffd83dbSDimitry Andric // Promote S up to the canonical IV type, if the cast is foldable. 13245ffd83dbSDimitry Andric const SCEV *NewS = S; 13255ffd83dbSDimitry Andric const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 13265ffd83dbSDimitry Andric if (isa<SCEVAddRecExpr>(Ext)) 13275ffd83dbSDimitry Andric NewS = Ext; 13285ffd83dbSDimitry Andric 13295ffd83dbSDimitry Andric const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 13305ffd83dbSDimitry Andric 13315ffd83dbSDimitry Andric // Truncate the result down to the original type, if needed. 13325ffd83dbSDimitry Andric const SCEV *T = SE.getTruncateOrNoop(V, Ty); 13335ffd83dbSDimitry Andric return expand(T); 13345ffd83dbSDimitry Andric } 13355ffd83dbSDimitry Andric 1336e8d8bef9SDimitry Andric Value *SCEVExpander::visitPtrToIntExpr(const SCEVPtrToIntExpr *S) { 13375f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 1338fe6060f1SDimitry Andric return ReuseOrCreateCast(V, S->getType(), CastInst::PtrToInt, 1339fe6060f1SDimitry Andric GetOptimalInsertionPointForCastOf(V)); 1340e8d8bef9SDimitry Andric } 1341e8d8bef9SDimitry Andric 13425ffd83dbSDimitry Andric Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 13435f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 13445f757f3fSDimitry Andric return Builder.CreateTrunc(V, S->getType()); 13455ffd83dbSDimitry Andric } 13465ffd83dbSDimitry Andric 13475ffd83dbSDimitry Andric Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 13485f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 13495f757f3fSDimitry Andric return Builder.CreateZExt(V, S->getType(), "", 13505f757f3fSDimitry Andric SE.isKnownNonNegative(S->getOperand())); 13515ffd83dbSDimitry Andric } 13525ffd83dbSDimitry Andric 13535ffd83dbSDimitry Andric Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 13545f757f3fSDimitry Andric Value *V = expand(S->getOperand()); 13555f757f3fSDimitry Andric return Builder.CreateSExt(V, S->getType()); 13565ffd83dbSDimitry Andric } 13575ffd83dbSDimitry Andric 135881ad6265SDimitry Andric Value *SCEVExpander::expandMinMaxExpr(const SCEVNAryExpr *S, 135981ad6265SDimitry Andric Intrinsic::ID IntrinID, Twine Name, 136081ad6265SDimitry Andric bool IsSequential) { 13615ffd83dbSDimitry Andric Value *LHS = expand(S->getOperand(S->getNumOperands() - 1)); 13625ffd83dbSDimitry Andric Type *Ty = LHS->getType(); 136381ad6265SDimitry Andric if (IsSequential) 136481ad6265SDimitry Andric LHS = Builder.CreateFreeze(LHS); 13655ffd83dbSDimitry Andric for (int i = S->getNumOperands() - 2; i >= 0; --i) { 13665f757f3fSDimitry Andric Value *RHS = expand(S->getOperand(i)); 136781ad6265SDimitry Andric if (IsSequential && i != 0) 136881ad6265SDimitry Andric RHS = Builder.CreateFreeze(RHS); 1369fe6060f1SDimitry Andric Value *Sel; 1370fe6060f1SDimitry Andric if (Ty->isIntegerTy()) 137181ad6265SDimitry Andric Sel = Builder.CreateIntrinsic(IntrinID, {Ty}, {LHS, RHS}, 137281ad6265SDimitry Andric /*FMFSource=*/nullptr, Name); 1373fe6060f1SDimitry Andric else { 137481ad6265SDimitry Andric Value *ICmp = 137581ad6265SDimitry Andric Builder.CreateICmp(MinMaxIntrinsic::getPredicate(IntrinID), LHS, RHS); 137681ad6265SDimitry Andric Sel = Builder.CreateSelect(ICmp, LHS, RHS, Name); 1377fe6060f1SDimitry Andric } 13785ffd83dbSDimitry Andric LHS = Sel; 13795ffd83dbSDimitry Andric } 13805ffd83dbSDimitry Andric return LHS; 13815ffd83dbSDimitry Andric } 13825ffd83dbSDimitry Andric 138304eeddc0SDimitry Andric Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 138481ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smax, "smax"); 138504eeddc0SDimitry Andric } 138604eeddc0SDimitry Andric 138704eeddc0SDimitry Andric Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 138881ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umax, "umax"); 138904eeddc0SDimitry Andric } 139004eeddc0SDimitry Andric 139104eeddc0SDimitry Andric Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) { 139281ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::smin, "smin"); 139304eeddc0SDimitry Andric } 139404eeddc0SDimitry Andric 139504eeddc0SDimitry Andric Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) { 139681ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin"); 139704eeddc0SDimitry Andric } 139804eeddc0SDimitry Andric 139904eeddc0SDimitry Andric Value *SCEVExpander::visitSequentialUMinExpr(const SCEVSequentialUMinExpr *S) { 140081ad6265SDimitry Andric return expandMinMaxExpr(S, Intrinsic::umin, "umin", /*IsSequential*/true); 140104eeddc0SDimitry Andric } 140204eeddc0SDimitry Andric 140306c3fb27SDimitry Andric Value *SCEVExpander::visitVScale(const SCEVVScale *S) { 140406c3fb27SDimitry Andric return Builder.CreateVScale(ConstantInt::get(S->getType(), 1)); 140506c3fb27SDimitry Andric } 140606c3fb27SDimitry Andric 14075f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 14085f757f3fSDimitry Andric BasicBlock::iterator IP) { 14095ffd83dbSDimitry Andric setInsertPoint(IP); 14105f757f3fSDimitry Andric Value *V = expandCodeFor(SH, Ty); 1411e8d8bef9SDimitry Andric return V; 14125ffd83dbSDimitry Andric } 14135ffd83dbSDimitry Andric 14145f757f3fSDimitry Andric Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 14155ffd83dbSDimitry Andric // Expand the code for this SCEV. 14165ffd83dbSDimitry Andric Value *V = expand(SH); 1417e8d8bef9SDimitry Andric 14185ffd83dbSDimitry Andric if (Ty) { 14195ffd83dbSDimitry Andric assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 14205ffd83dbSDimitry Andric "non-trivial casts should be done with the SCEVs directly!"); 14215ffd83dbSDimitry Andric V = InsertNoopCastOfTo(V, Ty); 14225ffd83dbSDimitry Andric } 14235ffd83dbSDimitry Andric return V; 14245ffd83dbSDimitry Andric } 14255ffd83dbSDimitry Andric 14265f757f3fSDimitry Andric Value *SCEVExpander::FindValueInExprValueMap( 14275f757f3fSDimitry Andric const SCEV *S, const Instruction *InsertPt, 14285f757f3fSDimitry Andric SmallVectorImpl<Instruction *> &DropPoisonGeneratingInsts) { 14295ffd83dbSDimitry Andric // If the expansion is not in CanonicalMode, and the SCEV contains any 14305ffd83dbSDimitry Andric // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally. 143181ad6265SDimitry Andric if (!CanonicalMode && SE.containsAddRecurrence(S)) 143281ad6265SDimitry Andric return nullptr; 143381ad6265SDimitry Andric 143481ad6265SDimitry Andric // If S is a constant, it may be worse to reuse an existing Value. 143581ad6265SDimitry Andric if (isa<SCEVConstant>(S)) 143681ad6265SDimitry Andric return nullptr; 143781ad6265SDimitry Andric 143881ad6265SDimitry Andric for (Value *V : SE.getSCEVValues(S)) { 143981ad6265SDimitry Andric Instruction *EntInst = dyn_cast<Instruction>(V); 1440349cc55cSDimitry Andric if (!EntInst) 1441349cc55cSDimitry Andric continue; 1442349cc55cSDimitry Andric 14435f757f3fSDimitry Andric // Choose a Value from the set which dominates the InsertPt. 14445f757f3fSDimitry Andric // InsertPt should be inside the Value's parent loop so as not to break 14455f757f3fSDimitry Andric // the LCSSA form. 1446349cc55cSDimitry Andric assert(EntInst->getFunction() == InsertPt->getFunction()); 14475f757f3fSDimitry Andric if (S->getType() != V->getType() || !SE.DT.dominates(EntInst, InsertPt) || 14485f757f3fSDimitry Andric !(SE.LI.getLoopFor(EntInst->getParent()) == nullptr || 14494824e7fdSDimitry Andric SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt))) 14505f757f3fSDimitry Andric continue; 14515f757f3fSDimitry Andric 14525f757f3fSDimitry Andric // Make sure reusing the instruction is poison-safe. 145356727255SDimitry Andric if (SE.canReuseInstruction(S, EntInst, DropPoisonGeneratingInsts)) 145481ad6265SDimitry Andric return V; 14555f757f3fSDimitry Andric DropPoisonGeneratingInsts.clear(); 14565ffd83dbSDimitry Andric } 145781ad6265SDimitry Andric return nullptr; 14585ffd83dbSDimitry Andric } 14595ffd83dbSDimitry Andric 14605ffd83dbSDimitry Andric // The expansion of SCEV will either reuse a previous Value in ExprValueMap, 14615ffd83dbSDimitry Andric // or expand the SCEV literally. Specifically, if the expansion is in LSRMode, 14625ffd83dbSDimitry Andric // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded 14635ffd83dbSDimitry Andric // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise, 14645ffd83dbSDimitry Andric // the expansion will try to reuse Value from ExprValueMap, and only when it 14655ffd83dbSDimitry Andric // fails, expand the SCEV literally. 14665ffd83dbSDimitry Andric Value *SCEVExpander::expand(const SCEV *S) { 14675ffd83dbSDimitry Andric // Compute an insertion point for this SCEV object. Hoist the instructions 14685ffd83dbSDimitry Andric // as far out in the loop nest as possible. 14695f757f3fSDimitry Andric BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 14705ffd83dbSDimitry Andric 14715ffd83dbSDimitry Andric // We can move insertion point only if there is no div or rem operations 14725ffd83dbSDimitry Andric // otherwise we are risky to move it over the check for zero denominator. 14735ffd83dbSDimitry Andric auto SafeToHoist = [](const SCEV *S) { 14745ffd83dbSDimitry Andric return !SCEVExprContains(S, [](const SCEV *S) { 14755ffd83dbSDimitry Andric if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) { 14765ffd83dbSDimitry Andric if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS())) 14775ffd83dbSDimitry Andric // Division by non-zero constants can be hoisted. 14785ffd83dbSDimitry Andric return SC->getValue()->isZero(); 14795ffd83dbSDimitry Andric // All other divisions should not be moved as they may be 14805ffd83dbSDimitry Andric // divisions by zero and should be kept within the 14815ffd83dbSDimitry Andric // conditions of the surrounding loops that guard their 14825ffd83dbSDimitry Andric // execution (see PR35406). 14835ffd83dbSDimitry Andric return true; 14845ffd83dbSDimitry Andric } 14855ffd83dbSDimitry Andric return false; 14865ffd83dbSDimitry Andric }); 14875ffd83dbSDimitry Andric }; 14885ffd83dbSDimitry Andric if (SafeToHoist(S)) { 14895ffd83dbSDimitry Andric for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());; 14905ffd83dbSDimitry Andric L = L->getParentLoop()) { 14915ffd83dbSDimitry Andric if (SE.isLoopInvariant(S, L)) { 14925ffd83dbSDimitry Andric if (!L) break; 14935f757f3fSDimitry Andric if (BasicBlock *Preheader = L->getLoopPreheader()) { 14945f757f3fSDimitry Andric InsertPt = Preheader->getTerminator()->getIterator(); 14955f757f3fSDimitry Andric } else { 14965ffd83dbSDimitry Andric // LSR sets the insertion point for AddRec start/step values to the 14975ffd83dbSDimitry Andric // block start to simplify value reuse, even though it's an invalid 14985ffd83dbSDimitry Andric // position. SCEVExpander must correct for this in all cases. 14995f757f3fSDimitry Andric InsertPt = L->getHeader()->getFirstInsertionPt(); 15005f757f3fSDimitry Andric } 15015ffd83dbSDimitry Andric } else { 15025ffd83dbSDimitry Andric // If the SCEV is computable at this level, insert it into the header 15035ffd83dbSDimitry Andric // after the PHIs (and after any other instructions that we've inserted 15045ffd83dbSDimitry Andric // there) so that it is guaranteed to dominate any user inside the loop. 15055ffd83dbSDimitry Andric if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 15065f757f3fSDimitry Andric InsertPt = L->getHeader()->getFirstInsertionPt(); 1507e8d8bef9SDimitry Andric 15085f757f3fSDimitry Andric while (InsertPt != Builder.GetInsertPoint() && 15095f757f3fSDimitry Andric (isInsertedInstruction(&*InsertPt) || 15105f757f3fSDimitry Andric isa<DbgInfoIntrinsic>(&*InsertPt))) { 15115f757f3fSDimitry Andric InsertPt = std::next(InsertPt); 1512e8d8bef9SDimitry Andric } 15135ffd83dbSDimitry Andric break; 15145ffd83dbSDimitry Andric } 15155ffd83dbSDimitry Andric } 15165ffd83dbSDimitry Andric } 15175ffd83dbSDimitry Andric 15185ffd83dbSDimitry Andric // Check to see if we already expanded this here. 15195f757f3fSDimitry Andric auto I = InsertedExpressions.find(std::make_pair(S, &*InsertPt)); 15205ffd83dbSDimitry Andric if (I != InsertedExpressions.end()) 15215ffd83dbSDimitry Andric return I->second; 15225ffd83dbSDimitry Andric 15235ffd83dbSDimitry Andric SCEVInsertPointGuard Guard(Builder, this); 15245f757f3fSDimitry Andric Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 15255ffd83dbSDimitry Andric 15265ffd83dbSDimitry Andric // Expand the expression into instructions. 15275f757f3fSDimitry Andric SmallVector<Instruction *> DropPoisonGeneratingInsts; 15285f757f3fSDimitry Andric Value *V = FindValueInExprValueMap(S, &*InsertPt, DropPoisonGeneratingInsts); 1529bdd1243dSDimitry Andric if (!V) { 15305ffd83dbSDimitry Andric V = visit(S); 1531bdd1243dSDimitry Andric V = fixupLCSSAFormFor(V); 1532bdd1243dSDimitry Andric } else { 15335f757f3fSDimitry Andric for (Instruction *I : DropPoisonGeneratingInsts) { 1534*0fca6ea1SDimitry Andric rememberFlags(I); 1535*0fca6ea1SDimitry Andric I->dropPoisonGeneratingAnnotations(); 15365f757f3fSDimitry Andric // See if we can re-infer from first principles any of the flags we just 15375f757f3fSDimitry Andric // dropped. 15385f757f3fSDimitry Andric if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(I)) 15395f757f3fSDimitry Andric if (auto Flags = SE.getStrengthenedNoWrapFlagsFromBinOp(OBO)) { 15405f757f3fSDimitry Andric auto *BO = cast<BinaryOperator>(I); 15415f757f3fSDimitry Andric BO->setHasNoUnsignedWrap( 15425f757f3fSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNUW) == SCEV::FlagNUW); 15435f757f3fSDimitry Andric BO->setHasNoSignedWrap( 15445f757f3fSDimitry Andric ScalarEvolution::maskFlags(*Flags, SCEV::FlagNSW) == SCEV::FlagNSW); 15455f757f3fSDimitry Andric } 15465f757f3fSDimitry Andric if (auto *NNI = dyn_cast<PossiblyNonNegInst>(I)) { 15475f757f3fSDimitry Andric auto *Src = NNI->getOperand(0); 15485f757f3fSDimitry Andric if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src, 15495f757f3fSDimitry Andric Constant::getNullValue(Src->getType()), I, 15505f757f3fSDimitry Andric DL).value_or(false)) 15515f757f3fSDimitry Andric NNI->setNonNeg(true); 15525f757f3fSDimitry Andric } 15535f757f3fSDimitry Andric } 15544824e7fdSDimitry Andric } 15555ffd83dbSDimitry Andric // Remember the expanded value for this SCEV at this location. 15565ffd83dbSDimitry Andric // 15575ffd83dbSDimitry Andric // This is independent of PostIncLoops. The mapped value simply materializes 15585ffd83dbSDimitry Andric // the expression at this insertion point. If the mapped value happened to be 15595ffd83dbSDimitry Andric // a postinc expansion, it could be reused by a non-postinc user, but only if 15605ffd83dbSDimitry Andric // its insertion point was already at the head of the loop. 15615f757f3fSDimitry Andric InsertedExpressions[std::make_pair(S, &*InsertPt)] = V; 15625ffd83dbSDimitry Andric return V; 15635ffd83dbSDimitry Andric } 15645ffd83dbSDimitry Andric 15655ffd83dbSDimitry Andric void SCEVExpander::rememberInstruction(Value *I) { 1566e8d8bef9SDimitry Andric auto DoInsert = [this](Value *V) { 15675ffd83dbSDimitry Andric if (!PostIncLoops.empty()) 1568e8d8bef9SDimitry Andric InsertedPostIncValues.insert(V); 15695ffd83dbSDimitry Andric else 1570e8d8bef9SDimitry Andric InsertedValues.insert(V); 1571e8d8bef9SDimitry Andric }; 1572e8d8bef9SDimitry Andric DoInsert(I); 15735ffd83dbSDimitry Andric } 15745ffd83dbSDimitry Andric 1575*0fca6ea1SDimitry Andric void SCEVExpander::rememberFlags(Instruction *I) { 1576*0fca6ea1SDimitry Andric // If we already have flags for the instruction, keep the existing ones. 1577*0fca6ea1SDimitry Andric OrigFlags.try_emplace(I, PoisonFlags(I)); 1578*0fca6ea1SDimitry Andric } 1579*0fca6ea1SDimitry Andric 1580*0fca6ea1SDimitry Andric void SCEVExpander::replaceCongruentIVInc( 1581*0fca6ea1SDimitry Andric PHINode *&Phi, PHINode *&OrigPhi, Loop *L, const DominatorTree *DT, 1582*0fca6ea1SDimitry Andric SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1583*0fca6ea1SDimitry Andric BasicBlock *LatchBlock = L->getLoopLatch(); 1584*0fca6ea1SDimitry Andric if (!LatchBlock) 1585*0fca6ea1SDimitry Andric return; 1586*0fca6ea1SDimitry Andric 1587*0fca6ea1SDimitry Andric Instruction *OrigInc = 1588*0fca6ea1SDimitry Andric dyn_cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1589*0fca6ea1SDimitry Andric Instruction *IsomorphicInc = 1590*0fca6ea1SDimitry Andric dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1591*0fca6ea1SDimitry Andric if (!OrigInc || !IsomorphicInc) 1592*0fca6ea1SDimitry Andric return; 1593*0fca6ea1SDimitry Andric 1594*0fca6ea1SDimitry Andric // If this phi has the same width but is more canonical, replace the 1595*0fca6ea1SDimitry Andric // original with it. As part of the "more canonical" determination, 1596*0fca6ea1SDimitry Andric // respect a prior decision to use an IV chain. 1597*0fca6ea1SDimitry Andric if (OrigPhi->getType() == Phi->getType() && 1598*0fca6ea1SDimitry Andric !(ChainedPhis.count(Phi) || 1599*0fca6ea1SDimitry Andric isExpandedAddRecExprPHI(OrigPhi, OrigInc, L)) && 1600*0fca6ea1SDimitry Andric (ChainedPhis.count(Phi) || 1601*0fca6ea1SDimitry Andric isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1602*0fca6ea1SDimitry Andric std::swap(OrigPhi, Phi); 1603*0fca6ea1SDimitry Andric std::swap(OrigInc, IsomorphicInc); 1604*0fca6ea1SDimitry Andric } 1605*0fca6ea1SDimitry Andric 1606*0fca6ea1SDimitry Andric // Replacing the congruent phi is sufficient because acyclic 1607*0fca6ea1SDimitry Andric // redundancy elimination, CSE/GVN, should handle the 1608*0fca6ea1SDimitry Andric // rest. However, once SCEV proves that a phi is congruent, 1609*0fca6ea1SDimitry Andric // it's often the head of an IV user cycle that is isomorphic 1610*0fca6ea1SDimitry Andric // with the original phi. It's worth eagerly cleaning up the 1611*0fca6ea1SDimitry Andric // common case of a single IV increment so that DeleteDeadPHIs 1612*0fca6ea1SDimitry Andric // can remove cycles that had postinc uses. 1613*0fca6ea1SDimitry Andric // Because we may potentially introduce a new use of OrigIV that didn't 1614*0fca6ea1SDimitry Andric // exist before at this point, its poison flags need readjustment. 1615*0fca6ea1SDimitry Andric const SCEV *TruncExpr = 1616*0fca6ea1SDimitry Andric SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType()); 1617*0fca6ea1SDimitry Andric if (OrigInc == IsomorphicInc || TruncExpr != SE.getSCEV(IsomorphicInc) || 1618*0fca6ea1SDimitry Andric !SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc)) 1619*0fca6ea1SDimitry Andric return; 1620*0fca6ea1SDimitry Andric 1621*0fca6ea1SDimitry Andric bool BothHaveNUW = false; 1622*0fca6ea1SDimitry Andric bool BothHaveNSW = false; 1623*0fca6ea1SDimitry Andric auto *OBOIncV = dyn_cast<OverflowingBinaryOperator>(OrigInc); 1624*0fca6ea1SDimitry Andric auto *OBOIsomorphic = dyn_cast<OverflowingBinaryOperator>(IsomorphicInc); 1625*0fca6ea1SDimitry Andric if (OBOIncV && OBOIsomorphic) { 1626*0fca6ea1SDimitry Andric BothHaveNUW = 1627*0fca6ea1SDimitry Andric OBOIncV->hasNoUnsignedWrap() && OBOIsomorphic->hasNoUnsignedWrap(); 1628*0fca6ea1SDimitry Andric BothHaveNSW = 1629*0fca6ea1SDimitry Andric OBOIncV->hasNoSignedWrap() && OBOIsomorphic->hasNoSignedWrap(); 1630*0fca6ea1SDimitry Andric } 1631*0fca6ea1SDimitry Andric 1632*0fca6ea1SDimitry Andric if (!hoistIVInc(OrigInc, IsomorphicInc, 1633*0fca6ea1SDimitry Andric /*RecomputePoisonFlags*/ true)) 1634*0fca6ea1SDimitry Andric return; 1635*0fca6ea1SDimitry Andric 1636*0fca6ea1SDimitry Andric // We are replacing with a wider increment. If both OrigInc and IsomorphicInc 1637*0fca6ea1SDimitry Andric // are NUW/NSW, then we can preserve them on the wider increment; the narrower 1638*0fca6ea1SDimitry Andric // IsomorphicInc would wrap before the wider OrigInc, so the replacement won't 1639*0fca6ea1SDimitry Andric // make IsomorphicInc's uses more poisonous. 1640*0fca6ea1SDimitry Andric assert(OrigInc->getType()->getScalarSizeInBits() >= 1641*0fca6ea1SDimitry Andric IsomorphicInc->getType()->getScalarSizeInBits() && 1642*0fca6ea1SDimitry Andric "Should only replace an increment with a wider one."); 1643*0fca6ea1SDimitry Andric if (BothHaveNUW || BothHaveNSW) { 1644*0fca6ea1SDimitry Andric OrigInc->setHasNoUnsignedWrap(OBOIncV->hasNoUnsignedWrap() || BothHaveNUW); 1645*0fca6ea1SDimitry Andric OrigInc->setHasNoSignedWrap(OBOIncV->hasNoSignedWrap() || BothHaveNSW); 1646*0fca6ea1SDimitry Andric } 1647*0fca6ea1SDimitry Andric 1648*0fca6ea1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1649*0fca6ea1SDimitry Andric dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1650*0fca6ea1SDimitry Andric << *IsomorphicInc << '\n'); 1651*0fca6ea1SDimitry Andric Value *NewInc = OrigInc; 1652*0fca6ea1SDimitry Andric if (OrigInc->getType() != IsomorphicInc->getType()) { 1653*0fca6ea1SDimitry Andric BasicBlock::iterator IP; 1654*0fca6ea1SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(OrigInc)) 1655*0fca6ea1SDimitry Andric IP = PN->getParent()->getFirstInsertionPt(); 1656*0fca6ea1SDimitry Andric else 1657*0fca6ea1SDimitry Andric IP = OrigInc->getNextNonDebugInstruction()->getIterator(); 1658*0fca6ea1SDimitry Andric 1659*0fca6ea1SDimitry Andric IRBuilder<> Builder(IP->getParent(), IP); 1660*0fca6ea1SDimitry Andric Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1661*0fca6ea1SDimitry Andric NewInc = 1662*0fca6ea1SDimitry Andric Builder.CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1663*0fca6ea1SDimitry Andric } 1664*0fca6ea1SDimitry Andric IsomorphicInc->replaceAllUsesWith(NewInc); 1665*0fca6ea1SDimitry Andric DeadInsts.emplace_back(IsomorphicInc); 1666*0fca6ea1SDimitry Andric } 1667*0fca6ea1SDimitry Andric 16685ffd83dbSDimitry Andric /// replaceCongruentIVs - Check for congruent phis in this loop header and 16695ffd83dbSDimitry Andric /// replace them with their most canonical representative. Return the number of 16705ffd83dbSDimitry Andric /// phis eliminated. 16715ffd83dbSDimitry Andric /// 16725ffd83dbSDimitry Andric /// This does not depend on any SCEVExpander state but should be used in 16735ffd83dbSDimitry Andric /// the same context that SCEVExpander is used. 16745ffd83dbSDimitry Andric unsigned 16755ffd83dbSDimitry Andric SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 16765ffd83dbSDimitry Andric SmallVectorImpl<WeakTrackingVH> &DeadInsts, 16775ffd83dbSDimitry Andric const TargetTransformInfo *TTI) { 16785ffd83dbSDimitry Andric // Find integer phis in order of increasing width. 16795ffd83dbSDimitry Andric SmallVector<PHINode*, 8> Phis; 16805ffd83dbSDimitry Andric for (PHINode &PN : L->getHeader()->phis()) 16815ffd83dbSDimitry Andric Phis.push_back(&PN); 16825ffd83dbSDimitry Andric 16835ffd83dbSDimitry Andric if (TTI) 1684349cc55cSDimitry Andric // Use stable_sort to preserve order of equivalent PHIs, so the order 1685349cc55cSDimitry Andric // of the sorted Phis is the same from run to run on the same loop. 1686349cc55cSDimitry Andric llvm::stable_sort(Phis, [](Value *LHS, Value *RHS) { 16875ffd83dbSDimitry Andric // Put pointers at the back and make sure pointer < pointer = false. 16885ffd83dbSDimitry Andric if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy()) 16895ffd83dbSDimitry Andric return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy(); 1690bdd1243dSDimitry Andric return RHS->getType()->getPrimitiveSizeInBits().getFixedValue() < 1691bdd1243dSDimitry Andric LHS->getType()->getPrimitiveSizeInBits().getFixedValue(); 16925ffd83dbSDimitry Andric }); 16935ffd83dbSDimitry Andric 16945ffd83dbSDimitry Andric unsigned NumElim = 0; 16955ffd83dbSDimitry Andric DenseMap<const SCEV *, PHINode *> ExprToIVMap; 16965ffd83dbSDimitry Andric // Process phis from wide to narrow. Map wide phis to their truncation 16975ffd83dbSDimitry Andric // so narrow phis can reuse them. 16985ffd83dbSDimitry Andric for (PHINode *Phi : Phis) { 16995ffd83dbSDimitry Andric auto SimplifyPHINode = [&](PHINode *PN) -> Value * { 170081ad6265SDimitry Andric if (Value *V = simplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC})) 17015ffd83dbSDimitry Andric return V; 17025ffd83dbSDimitry Andric if (!SE.isSCEVable(PN->getType())) 17035ffd83dbSDimitry Andric return nullptr; 17045ffd83dbSDimitry Andric auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN)); 17055ffd83dbSDimitry Andric if (!Const) 17065ffd83dbSDimitry Andric return nullptr; 17075ffd83dbSDimitry Andric return Const->getValue(); 17085ffd83dbSDimitry Andric }; 17095ffd83dbSDimitry Andric 17105ffd83dbSDimitry Andric // Fold constant phis. They may be congruent to other constant phis and 17115ffd83dbSDimitry Andric // would confuse the logic below that expects proper IVs. 17125ffd83dbSDimitry Andric if (Value *V = SimplifyPHINode(Phi)) { 17135ffd83dbSDimitry Andric if (V->getType() != Phi->getType()) 17145ffd83dbSDimitry Andric continue; 1715bdd1243dSDimitry Andric SE.forgetValue(Phi); 17165ffd83dbSDimitry Andric Phi->replaceAllUsesWith(V); 17175ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 17185ffd83dbSDimitry Andric ++NumElim; 1719fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1720fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated constant iv: " << *Phi 1721fe6060f1SDimitry Andric << '\n'); 17225ffd83dbSDimitry Andric continue; 17235ffd83dbSDimitry Andric } 17245ffd83dbSDimitry Andric 17255ffd83dbSDimitry Andric if (!SE.isSCEVable(Phi->getType())) 17265ffd83dbSDimitry Andric continue; 17275ffd83dbSDimitry Andric 17285ffd83dbSDimitry Andric PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 17295ffd83dbSDimitry Andric if (!OrigPhiRef) { 17305ffd83dbSDimitry Andric OrigPhiRef = Phi; 17315ffd83dbSDimitry Andric if (Phi->getType()->isIntegerTy() && TTI && 17325ffd83dbSDimitry Andric TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 173306c3fb27SDimitry Andric // Make sure we only rewrite using simple induction variables; 173406c3fb27SDimitry Andric // otherwise, we can make the trip count of a loop unanalyzable 173506c3fb27SDimitry Andric // to SCEV. 173606c3fb27SDimitry Andric const SCEV *PhiExpr = SE.getSCEV(Phi); 173706c3fb27SDimitry Andric if (isa<SCEVAddRecExpr>(PhiExpr)) { 17385ffd83dbSDimitry Andric // This phi can be freely truncated to the narrowest phi type. Map the 17395ffd83dbSDimitry Andric // truncated expression to it so it will be reused for narrow types. 17405ffd83dbSDimitry Andric const SCEV *TruncExpr = 174106c3fb27SDimitry Andric SE.getTruncateExpr(PhiExpr, Phis.back()->getType()); 17425ffd83dbSDimitry Andric ExprToIVMap[TruncExpr] = Phi; 17435ffd83dbSDimitry Andric } 174406c3fb27SDimitry Andric } 17455ffd83dbSDimitry Andric continue; 17465ffd83dbSDimitry Andric } 17475ffd83dbSDimitry Andric 17485ffd83dbSDimitry Andric // Replacing a pointer phi with an integer phi or vice-versa doesn't make 17495ffd83dbSDimitry Andric // sense. 17505ffd83dbSDimitry Andric if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 17515ffd83dbSDimitry Andric continue; 17525ffd83dbSDimitry Andric 1753*0fca6ea1SDimitry Andric replaceCongruentIVInc(Phi, OrigPhiRef, L, DT, DeadInsts); 1754fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE(DebugType, 1755fe6060f1SDimitry Andric dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi 1756fe6060f1SDimitry Andric << '\n'); 1757fe6060f1SDimitry Andric SCEV_DEBUG_WITH_TYPE( 1758fe6060f1SDimitry Andric DebugType, dbgs() << "INDVARS: Original iv: " << *OrigPhiRef << '\n'); 17595ffd83dbSDimitry Andric ++NumElim; 17605ffd83dbSDimitry Andric Value *NewIV = OrigPhiRef; 17615ffd83dbSDimitry Andric if (OrigPhiRef->getType() != Phi->getType()) { 17625f757f3fSDimitry Andric IRBuilder<> Builder(L->getHeader(), 17635f757f3fSDimitry Andric L->getHeader()->getFirstInsertionPt()); 17645ffd83dbSDimitry Andric Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 17655ffd83dbSDimitry Andric NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 17665ffd83dbSDimitry Andric } 17675ffd83dbSDimitry Andric Phi->replaceAllUsesWith(NewIV); 17685ffd83dbSDimitry Andric DeadInsts.emplace_back(Phi); 17695ffd83dbSDimitry Andric } 17705ffd83dbSDimitry Andric return NumElim; 17715ffd83dbSDimitry Andric } 17725ffd83dbSDimitry Andric 17735f757f3fSDimitry Andric bool SCEVExpander::hasRelatedExistingExpansion(const SCEV *S, 177481ad6265SDimitry Andric const Instruction *At, 17755ffd83dbSDimitry Andric Loop *L) { 17765ffd83dbSDimitry Andric using namespace llvm::PatternMatch; 17775ffd83dbSDimitry Andric 17785ffd83dbSDimitry Andric SmallVector<BasicBlock *, 4> ExitingBlocks; 17795ffd83dbSDimitry Andric L->getExitingBlocks(ExitingBlocks); 17805ffd83dbSDimitry Andric 17815ffd83dbSDimitry Andric // Look for suitable value in simple conditions at the loop exits. 17825ffd83dbSDimitry Andric for (BasicBlock *BB : ExitingBlocks) { 17835ffd83dbSDimitry Andric ICmpInst::Predicate Pred; 17845ffd83dbSDimitry Andric Instruction *LHS, *RHS; 17855ffd83dbSDimitry Andric 17865ffd83dbSDimitry Andric if (!match(BB->getTerminator(), 17875ffd83dbSDimitry Andric m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 17885ffd83dbSDimitry Andric m_BasicBlock(), m_BasicBlock()))) 17895ffd83dbSDimitry Andric continue; 17905ffd83dbSDimitry Andric 17915ffd83dbSDimitry Andric if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At)) 17925f757f3fSDimitry Andric return true; 17935ffd83dbSDimitry Andric 17945ffd83dbSDimitry Andric if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At)) 17955f757f3fSDimitry Andric return true; 17965ffd83dbSDimitry Andric } 17975ffd83dbSDimitry Andric 17985ffd83dbSDimitry Andric // Use expand's logic which is used for reusing a previous Value in 17994824e7fdSDimitry Andric // ExprValueMap. Note that we don't currently model the cost of 18004824e7fdSDimitry Andric // needing to drop poison generating flags on the instruction if we 18014824e7fdSDimitry Andric // want to reuse it. We effectively assume that has zero cost. 18025f757f3fSDimitry Andric SmallVector<Instruction *> DropPoisonGeneratingInsts; 18035f757f3fSDimitry Andric return FindValueInExprValueMap(S, At, DropPoisonGeneratingInsts) != nullptr; 18045ffd83dbSDimitry Andric } 18055ffd83dbSDimitry Andric 1806fe6060f1SDimitry Andric template<typename T> static InstructionCost costAndCollectOperands( 1807e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, const TargetTransformInfo &TTI, 1808e8d8bef9SDimitry Andric TargetTransformInfo::TargetCostKind CostKind, 1809e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1810e8d8bef9SDimitry Andric 1811e8d8bef9SDimitry Andric const T *S = cast<T>(WorkItem.S); 1812fe6060f1SDimitry Andric InstructionCost Cost = 0; 1813e8d8bef9SDimitry Andric // Object to help map SCEV operands to expanded IR instructions. 1814e8d8bef9SDimitry Andric struct OperationIndices { 1815e8d8bef9SDimitry Andric OperationIndices(unsigned Opc, size_t min, size_t max) : 1816e8d8bef9SDimitry Andric Opcode(Opc), MinIdx(min), MaxIdx(max) { } 1817e8d8bef9SDimitry Andric unsigned Opcode; 1818e8d8bef9SDimitry Andric size_t MinIdx; 1819e8d8bef9SDimitry Andric size_t MaxIdx; 1820e8d8bef9SDimitry Andric }; 1821e8d8bef9SDimitry Andric 1822e8d8bef9SDimitry Andric // Collect the operations of all the instructions that will be needed to 1823e8d8bef9SDimitry Andric // expand the SCEVExpr. This is so that when we come to cost the operands, 1824e8d8bef9SDimitry Andric // we know what the generated user(s) will be. 1825e8d8bef9SDimitry Andric SmallVector<OperationIndices, 2> Operations; 1826e8d8bef9SDimitry Andric 1827fe6060f1SDimitry Andric auto CastCost = [&](unsigned Opcode) -> InstructionCost { 1828e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, 0, 0); 1829e8d8bef9SDimitry Andric return TTI.getCastInstrCost(Opcode, S->getType(), 1830e8d8bef9SDimitry Andric S->getOperand(0)->getType(), 1831e8d8bef9SDimitry Andric TTI::CastContextHint::None, CostKind); 1832e8d8bef9SDimitry Andric }; 1833e8d8bef9SDimitry Andric 1834e8d8bef9SDimitry Andric auto ArithCost = [&](unsigned Opcode, unsigned NumRequired, 1835fe6060f1SDimitry Andric unsigned MinIdx = 0, 1836fe6060f1SDimitry Andric unsigned MaxIdx = 1) -> InstructionCost { 1837e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1838e8d8bef9SDimitry Andric return NumRequired * 1839e8d8bef9SDimitry Andric TTI.getArithmeticInstrCost(Opcode, S->getType(), CostKind); 1840e8d8bef9SDimitry Andric }; 1841e8d8bef9SDimitry Andric 1842fe6060f1SDimitry Andric auto CmpSelCost = [&](unsigned Opcode, unsigned NumRequired, unsigned MinIdx, 1843fe6060f1SDimitry Andric unsigned MaxIdx) -> InstructionCost { 1844e8d8bef9SDimitry Andric Operations.emplace_back(Opcode, MinIdx, MaxIdx); 1845bdd1243dSDimitry Andric Type *OpType = S->getType(); 1846e8d8bef9SDimitry Andric return NumRequired * TTI.getCmpSelInstrCost( 1847e8d8bef9SDimitry Andric Opcode, OpType, CmpInst::makeCmpResultType(OpType), 1848e8d8bef9SDimitry Andric CmpInst::BAD_ICMP_PREDICATE, CostKind); 1849e8d8bef9SDimitry Andric }; 1850e8d8bef9SDimitry Andric 1851e8d8bef9SDimitry Andric switch (S->getSCEVType()) { 1852e8d8bef9SDimitry Andric case scCouldNotCompute: 1853e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1854e8d8bef9SDimitry Andric case scUnknown: 1855e8d8bef9SDimitry Andric case scConstant: 185606c3fb27SDimitry Andric case scVScale: 1857e8d8bef9SDimitry Andric return 0; 1858e8d8bef9SDimitry Andric case scPtrToInt: 1859e8d8bef9SDimitry Andric Cost = CastCost(Instruction::PtrToInt); 1860e8d8bef9SDimitry Andric break; 1861e8d8bef9SDimitry Andric case scTruncate: 1862e8d8bef9SDimitry Andric Cost = CastCost(Instruction::Trunc); 1863e8d8bef9SDimitry Andric break; 1864e8d8bef9SDimitry Andric case scZeroExtend: 1865e8d8bef9SDimitry Andric Cost = CastCost(Instruction::ZExt); 1866e8d8bef9SDimitry Andric break; 1867e8d8bef9SDimitry Andric case scSignExtend: 1868e8d8bef9SDimitry Andric Cost = CastCost(Instruction::SExt); 1869e8d8bef9SDimitry Andric break; 1870e8d8bef9SDimitry Andric case scUDivExpr: { 1871e8d8bef9SDimitry Andric unsigned Opcode = Instruction::UDiv; 1872e8d8bef9SDimitry Andric if (auto *SC = dyn_cast<SCEVConstant>(S->getOperand(1))) 1873e8d8bef9SDimitry Andric if (SC->getAPInt().isPowerOf2()) 1874e8d8bef9SDimitry Andric Opcode = Instruction::LShr; 1875e8d8bef9SDimitry Andric Cost = ArithCost(Opcode, 1); 1876e8d8bef9SDimitry Andric break; 1877e8d8bef9SDimitry Andric } 1878e8d8bef9SDimitry Andric case scAddExpr: 1879e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Add, S->getNumOperands() - 1); 1880e8d8bef9SDimitry Andric break; 1881e8d8bef9SDimitry Andric case scMulExpr: 1882e8d8bef9SDimitry Andric // TODO: this is a very pessimistic cost modelling for Mul, 1883e8d8bef9SDimitry Andric // because of Bin Pow algorithm actually used by the expander, 1884e8d8bef9SDimitry Andric // see SCEVExpander::visitMulExpr(), ExpandOpBinPowN(). 1885e8d8bef9SDimitry Andric Cost = ArithCost(Instruction::Mul, S->getNumOperands() - 1); 1886e8d8bef9SDimitry Andric break; 1887e8d8bef9SDimitry Andric case scSMaxExpr: 1888e8d8bef9SDimitry Andric case scUMaxExpr: 1889e8d8bef9SDimitry Andric case scSMinExpr: 189004eeddc0SDimitry Andric case scUMinExpr: 189104eeddc0SDimitry Andric case scSequentialUMinExpr: { 1892fe6060f1SDimitry Andric // FIXME: should this ask the cost for Intrinsic's? 189304eeddc0SDimitry Andric // The reduction tree. 1894e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 1); 1895e8d8bef9SDimitry Andric Cost += CmpSelCost(Instruction::Select, S->getNumOperands() - 1, 0, 2); 189604eeddc0SDimitry Andric switch (S->getSCEVType()) { 189704eeddc0SDimitry Andric case scSequentialUMinExpr: { 189804eeddc0SDimitry Andric // The safety net against poison. 189904eeddc0SDimitry Andric // FIXME: this is broken. 190004eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::ICmp, S->getNumOperands() - 1, 0, 0); 190104eeddc0SDimitry Andric Cost += ArithCost(Instruction::Or, 190204eeddc0SDimitry Andric S->getNumOperands() > 2 ? S->getNumOperands() - 2 : 0); 190304eeddc0SDimitry Andric Cost += CmpSelCost(Instruction::Select, 1, 0, 1); 190404eeddc0SDimitry Andric break; 190504eeddc0SDimitry Andric } 190604eeddc0SDimitry Andric default: 190704eeddc0SDimitry Andric assert(!isa<SCEVSequentialMinMaxExpr>(S) && 190804eeddc0SDimitry Andric "Unhandled SCEV expression type?"); 190904eeddc0SDimitry Andric break; 191004eeddc0SDimitry Andric } 1911e8d8bef9SDimitry Andric break; 1912e8d8bef9SDimitry Andric } 1913e8d8bef9SDimitry Andric case scAddRecExpr: { 1914e8d8bef9SDimitry Andric // In this polynominal, we may have some zero operands, and we shouldn't 1915bdd1243dSDimitry Andric // really charge for those. So how many non-zero coefficients are there? 1916e8d8bef9SDimitry Andric int NumTerms = llvm::count_if(S->operands(), [](const SCEV *Op) { 1917e8d8bef9SDimitry Andric return !Op->isZero(); 1918e8d8bef9SDimitry Andric }); 1919e8d8bef9SDimitry Andric 1920e8d8bef9SDimitry Andric assert(NumTerms >= 1 && "Polynominal should have at least one term."); 1921e8d8bef9SDimitry Andric assert(!(*std::prev(S->operands().end()))->isZero() && 1922e8d8bef9SDimitry Andric "Last operand should not be zero"); 1923e8d8bef9SDimitry Andric 1924bdd1243dSDimitry Andric // Ignoring constant term (operand 0), how many of the coefficients are u> 1? 1925e8d8bef9SDimitry Andric int NumNonZeroDegreeNonOneTerms = 1926e8d8bef9SDimitry Andric llvm::count_if(S->operands(), [](const SCEV *Op) { 1927e8d8bef9SDimitry Andric auto *SConst = dyn_cast<SCEVConstant>(Op); 1928e8d8bef9SDimitry Andric return !SConst || SConst->getAPInt().ugt(1); 1929e8d8bef9SDimitry Andric }); 1930e8d8bef9SDimitry Andric 1931e8d8bef9SDimitry Andric // Much like with normal add expr, the polynominal will require 1932e8d8bef9SDimitry Andric // one less addition than the number of it's terms. 1933fe6060f1SDimitry Andric InstructionCost AddCost = ArithCost(Instruction::Add, NumTerms - 1, 1934e8d8bef9SDimitry Andric /*MinIdx*/ 1, /*MaxIdx*/ 1); 1935e8d8bef9SDimitry Andric // Here, *each* one of those will require a multiplication. 1936fe6060f1SDimitry Andric InstructionCost MulCost = 1937fe6060f1SDimitry Andric ArithCost(Instruction::Mul, NumNonZeroDegreeNonOneTerms); 1938e8d8bef9SDimitry Andric Cost = AddCost + MulCost; 1939e8d8bef9SDimitry Andric 1940e8d8bef9SDimitry Andric // What is the degree of this polynominal? 1941e8d8bef9SDimitry Andric int PolyDegree = S->getNumOperands() - 1; 1942e8d8bef9SDimitry Andric assert(PolyDegree >= 1 && "Should be at least affine."); 1943e8d8bef9SDimitry Andric 1944e8d8bef9SDimitry Andric // The final term will be: 1945e8d8bef9SDimitry Andric // Op_{PolyDegree} * x ^ {PolyDegree} 1946e8d8bef9SDimitry Andric // Where x ^ {PolyDegree} will again require PolyDegree-1 mul operations. 1947e8d8bef9SDimitry Andric // Note that x ^ {PolyDegree} = x * x ^ {PolyDegree-1} so charging for 1948e8d8bef9SDimitry Andric // x ^ {PolyDegree} will give us x ^ {2} .. x ^ {PolyDegree-1} for free. 1949e8d8bef9SDimitry Andric // FIXME: this is conservatively correct, but might be overly pessimistic. 1950e8d8bef9SDimitry Andric Cost += MulCost * (PolyDegree - 1); 1951e8d8bef9SDimitry Andric break; 1952e8d8bef9SDimitry Andric } 1953e8d8bef9SDimitry Andric } 1954e8d8bef9SDimitry Andric 1955e8d8bef9SDimitry Andric for (auto &CostOp : Operations) { 1956e8d8bef9SDimitry Andric for (auto SCEVOp : enumerate(S->operands())) { 1957e8d8bef9SDimitry Andric // Clamp the index to account for multiple IR operations being chained. 1958e8d8bef9SDimitry Andric size_t MinIdx = std::max(SCEVOp.index(), CostOp.MinIdx); 1959e8d8bef9SDimitry Andric size_t OpIdx = std::min(MinIdx, CostOp.MaxIdx); 1960e8d8bef9SDimitry Andric Worklist.emplace_back(CostOp.Opcode, OpIdx, SCEVOp.value()); 1961e8d8bef9SDimitry Andric } 1962e8d8bef9SDimitry Andric } 1963e8d8bef9SDimitry Andric return Cost; 1964e8d8bef9SDimitry Andric } 1965e8d8bef9SDimitry Andric 19665ffd83dbSDimitry Andric bool SCEVExpander::isHighCostExpansionHelper( 1967e8d8bef9SDimitry Andric const SCEVOperand &WorkItem, Loop *L, const Instruction &At, 1968fe6060f1SDimitry Andric InstructionCost &Cost, unsigned Budget, const TargetTransformInfo &TTI, 1969e8d8bef9SDimitry Andric SmallPtrSetImpl<const SCEV *> &Processed, 1970e8d8bef9SDimitry Andric SmallVectorImpl<SCEVOperand> &Worklist) { 1971fe6060f1SDimitry Andric if (Cost > Budget) 19725ffd83dbSDimitry Andric return true; // Already run out of budget, give up. 19735ffd83dbSDimitry Andric 1974e8d8bef9SDimitry Andric const SCEV *S = WorkItem.S; 19755ffd83dbSDimitry Andric // Was the cost of expansion of this expression already accounted for? 1976e8d8bef9SDimitry Andric if (!isa<SCEVConstant>(S) && !Processed.insert(S).second) 19775ffd83dbSDimitry Andric return false; // We have already accounted for this expression. 19785ffd83dbSDimitry Andric 19795ffd83dbSDimitry Andric // If we can find an existing value for this scev available at the point "At" 19805ffd83dbSDimitry Andric // then consider the expression cheap. 19815f757f3fSDimitry Andric if (hasRelatedExistingExpansion(S, &At, L)) 19825ffd83dbSDimitry Andric return false; // Consider the expression to be free. 19835ffd83dbSDimitry Andric 19845ffd83dbSDimitry Andric TargetTransformInfo::TargetCostKind CostKind = 1985e8d8bef9SDimitry Andric L->getHeader()->getParent()->hasMinSize() 1986e8d8bef9SDimitry Andric ? TargetTransformInfo::TCK_CodeSize 1987e8d8bef9SDimitry Andric : TargetTransformInfo::TCK_RecipThroughput; 19885ffd83dbSDimitry Andric 19895ffd83dbSDimitry Andric switch (S->getSCEVType()) { 1990e8d8bef9SDimitry Andric case scCouldNotCompute: 1991e8d8bef9SDimitry Andric llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 1992e8d8bef9SDimitry Andric case scUnknown: 199306c3fb27SDimitry Andric case scVScale: 1994e8d8bef9SDimitry Andric // Assume to be zero-cost. 1995e8d8bef9SDimitry Andric return false; 1996e8d8bef9SDimitry Andric case scConstant: { 1997e8d8bef9SDimitry Andric // Only evalulate the costs of constants when optimizing for size. 1998e8d8bef9SDimitry Andric if (CostKind != TargetTransformInfo::TCK_CodeSize) 199904eeddc0SDimitry Andric return false; 2000e8d8bef9SDimitry Andric const APInt &Imm = cast<SCEVConstant>(S)->getAPInt(); 2001e8d8bef9SDimitry Andric Type *Ty = S->getType(); 2002fe6060f1SDimitry Andric Cost += TTI.getIntImmCostInst( 2003e8d8bef9SDimitry Andric WorkItem.ParentOpcode, WorkItem.OperandIdx, Imm, Ty, CostKind); 2004fe6060f1SDimitry Andric return Cost > Budget; 2005e8d8bef9SDimitry Andric } 20065ffd83dbSDimitry Andric case scTruncate: 2007e8d8bef9SDimitry Andric case scPtrToInt: 20085ffd83dbSDimitry Andric case scZeroExtend: 2009e8d8bef9SDimitry Andric case scSignExtend: { 2010fe6060f1SDimitry Andric Cost += 2011e8d8bef9SDimitry Andric costAndCollectOperands<SCEVCastExpr>(WorkItem, TTI, CostKind, Worklist); 20125ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 20135ffd83dbSDimitry Andric } 2014e8d8bef9SDimitry Andric case scUDivExpr: { 20155ffd83dbSDimitry Andric // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or 20165ffd83dbSDimitry Andric // HowManyLessThans produced to compute a precise expression, rather than a 20175ffd83dbSDimitry Andric // UDiv from the user's code. If we can't find a UDiv in the code with some 20185ffd83dbSDimitry Andric // simple searching, we need to account for it's cost. 20195ffd83dbSDimitry Andric 20205ffd83dbSDimitry Andric // At the beginning of this function we already tried to find existing 20215ffd83dbSDimitry Andric // value for plain 'S'. Now try to lookup 'S + 1' since it is common 20225ffd83dbSDimitry Andric // pattern involving division. This is just a simple search heuristic. 20235f757f3fSDimitry Andric if (hasRelatedExistingExpansion( 20245ffd83dbSDimitry Andric SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), &At, L)) 20255ffd83dbSDimitry Andric return false; // Consider it to be free. 20265ffd83dbSDimitry Andric 2027fe6060f1SDimitry Andric Cost += 2028e8d8bef9SDimitry Andric costAndCollectOperands<SCEVUDivExpr>(WorkItem, TTI, CostKind, Worklist); 20295ffd83dbSDimitry Andric return false; // Will answer upon next entry into this function. 20305ffd83dbSDimitry Andric } 20315ffd83dbSDimitry Andric case scAddExpr: 20325ffd83dbSDimitry Andric case scMulExpr: 20335ffd83dbSDimitry Andric case scUMaxExpr: 2034e8d8bef9SDimitry Andric case scSMaxExpr: 20355ffd83dbSDimitry Andric case scUMinExpr: 203604eeddc0SDimitry Andric case scSMinExpr: 203704eeddc0SDimitry Andric case scSequentialUMinExpr: { 2038e8d8bef9SDimitry Andric assert(cast<SCEVNAryExpr>(S)->getNumOperands() > 1 && 20395ffd83dbSDimitry Andric "Nary expr should have more than 1 operand."); 20405ffd83dbSDimitry Andric // The simple nary expr will require one less op (or pair of ops) 20415ffd83dbSDimitry Andric // than the number of it's terms. 2042fe6060f1SDimitry Andric Cost += 2043e8d8bef9SDimitry Andric costAndCollectOperands<SCEVNAryExpr>(WorkItem, TTI, CostKind, Worklist); 2044fe6060f1SDimitry Andric return Cost > Budget; 20455ffd83dbSDimitry Andric } 2046e8d8bef9SDimitry Andric case scAddRecExpr: { 2047e8d8bef9SDimitry Andric assert(cast<SCEVAddRecExpr>(S)->getNumOperands() >= 2 && 2048e8d8bef9SDimitry Andric "Polynomial should be at least linear"); 2049fe6060f1SDimitry Andric Cost += costAndCollectOperands<SCEVAddRecExpr>( 2050e8d8bef9SDimitry Andric WorkItem, TTI, CostKind, Worklist); 2051fe6060f1SDimitry Andric return Cost > Budget; 2052e8d8bef9SDimitry Andric } 2053e8d8bef9SDimitry Andric } 2054e8d8bef9SDimitry Andric llvm_unreachable("Unknown SCEV kind!"); 20555ffd83dbSDimitry Andric } 20565ffd83dbSDimitry Andric 20575ffd83dbSDimitry Andric Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred, 20585ffd83dbSDimitry Andric Instruction *IP) { 20595ffd83dbSDimitry Andric assert(IP); 20605ffd83dbSDimitry Andric switch (Pred->getKind()) { 20615ffd83dbSDimitry Andric case SCEVPredicate::P_Union: 20625ffd83dbSDimitry Andric return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP); 206381ad6265SDimitry Andric case SCEVPredicate::P_Compare: 206481ad6265SDimitry Andric return expandComparePredicate(cast<SCEVComparePredicate>(Pred), IP); 20655ffd83dbSDimitry Andric case SCEVPredicate::P_Wrap: { 20665ffd83dbSDimitry Andric auto *AddRecPred = cast<SCEVWrapPredicate>(Pred); 20675ffd83dbSDimitry Andric return expandWrapPredicate(AddRecPred, IP); 20685ffd83dbSDimitry Andric } 20695ffd83dbSDimitry Andric } 20705ffd83dbSDimitry Andric llvm_unreachable("Unknown SCEV predicate type"); 20715ffd83dbSDimitry Andric } 20725ffd83dbSDimitry Andric 207381ad6265SDimitry Andric Value *SCEVExpander::expandComparePredicate(const SCEVComparePredicate *Pred, 20745ffd83dbSDimitry Andric Instruction *IP) { 20755f757f3fSDimitry Andric Value *Expr0 = expand(Pred->getLHS(), IP); 20765f757f3fSDimitry Andric Value *Expr1 = expand(Pred->getRHS(), IP); 20775ffd83dbSDimitry Andric 20785ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 207981ad6265SDimitry Andric auto InvPred = ICmpInst::getInversePredicate(Pred->getPredicate()); 208081ad6265SDimitry Andric auto *I = Builder.CreateICmp(InvPred, Expr0, Expr1, "ident.check"); 20815ffd83dbSDimitry Andric return I; 20825ffd83dbSDimitry Andric } 20835ffd83dbSDimitry Andric 20845ffd83dbSDimitry Andric Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR, 20855ffd83dbSDimitry Andric Instruction *Loc, bool Signed) { 20865ffd83dbSDimitry Andric assert(AR->isAffine() && "Cannot generate RT check for " 20875ffd83dbSDimitry Andric "non-affine expression"); 20885ffd83dbSDimitry Andric 208981ad6265SDimitry Andric // FIXME: It is highly suspicious that we're ignoring the predicates here. 209081ad6265SDimitry Andric SmallVector<const SCEVPredicate *, 4> Pred; 20915ffd83dbSDimitry Andric const SCEV *ExitCount = 2092*0fca6ea1SDimitry Andric SE.getPredicatedSymbolicMaxBackedgeTakenCount(AR->getLoop(), Pred); 20935ffd83dbSDimitry Andric 2094e8d8bef9SDimitry Andric assert(!isa<SCEVCouldNotCompute>(ExitCount) && "Invalid loop count"); 20955ffd83dbSDimitry Andric 20965ffd83dbSDimitry Andric const SCEV *Step = AR->getStepRecurrence(SE); 20975ffd83dbSDimitry Andric const SCEV *Start = AR->getStart(); 20985ffd83dbSDimitry Andric 20995ffd83dbSDimitry Andric Type *ARTy = AR->getType(); 21005ffd83dbSDimitry Andric unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType()); 21015ffd83dbSDimitry Andric unsigned DstBits = SE.getTypeSizeInBits(ARTy); 21025ffd83dbSDimitry Andric 21035ffd83dbSDimitry Andric // The expression {Start,+,Step} has nusw/nssw if 21045ffd83dbSDimitry Andric // Step < 0, Start - |Step| * Backedge <= Start 21055ffd83dbSDimitry Andric // Step >= 0, Start + |Step| * Backedge > Start 21065ffd83dbSDimitry Andric // and |Step| * Backedge doesn't unsigned overflow. 21075ffd83dbSDimitry Andric 21085ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 21095f757f3fSDimitry Andric Value *TripCountVal = expand(ExitCount, Loc); 21105ffd83dbSDimitry Andric 21115ffd83dbSDimitry Andric IntegerType *Ty = 21125ffd83dbSDimitry Andric IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy)); 21135ffd83dbSDimitry Andric 21145f757f3fSDimitry Andric Value *StepValue = expand(Step, Loc); 21155f757f3fSDimitry Andric Value *NegStepValue = expand(SE.getNegativeSCEV(Step), Loc); 21165f757f3fSDimitry Andric Value *StartValue = expand(Start, Loc); 21175ffd83dbSDimitry Andric 21185ffd83dbSDimitry Andric ConstantInt *Zero = 2119349cc55cSDimitry Andric ConstantInt::get(Loc->getContext(), APInt::getZero(DstBits)); 21205ffd83dbSDimitry Andric 21215ffd83dbSDimitry Andric Builder.SetInsertPoint(Loc); 21225ffd83dbSDimitry Andric // Compute |Step| 21235ffd83dbSDimitry Andric Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero); 21245ffd83dbSDimitry Andric Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue); 21255ffd83dbSDimitry Andric 212604eeddc0SDimitry Andric // Compute |Step| * Backedge 212704eeddc0SDimitry Andric // Compute: 212804eeddc0SDimitry Andric // 1. Start + |Step| * Backedge < Start 212904eeddc0SDimitry Andric // 2. Start - |Step| * Backedge > Start 213004eeddc0SDimitry Andric // 213104eeddc0SDimitry Andric // And select either 1. or 2. depending on whether step is positive or 213204eeddc0SDimitry Andric // negative. If Step is known to be positive or negative, only create 213304eeddc0SDimitry Andric // either 1. or 2. 213404eeddc0SDimitry Andric auto ComputeEndCheck = [&]() -> Value * { 213504eeddc0SDimitry Andric // Checking <u 0 is always false. 213604eeddc0SDimitry Andric if (!Signed && Start->isZero() && SE.isKnownPositive(Step)) 213704eeddc0SDimitry Andric return ConstantInt::getFalse(Loc->getContext()); 213804eeddc0SDimitry Andric 21395ffd83dbSDimitry Andric // Get the backedge taken count and truncate or extended to the AR type. 21405ffd83dbSDimitry Andric Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty); 21415ffd83dbSDimitry Andric 2142349cc55cSDimitry Andric Value *MulV, *OfMul; 2143349cc55cSDimitry Andric if (Step->isOne()) { 2144349cc55cSDimitry Andric // Special-case Step of one. Potentially-costly `umul_with_overflow` isn't 2145349cc55cSDimitry Andric // needed, there is never an overflow, so to avoid artificially inflating 2146349cc55cSDimitry Andric // the cost of the check, directly emit the optimized IR. 2147349cc55cSDimitry Andric MulV = TruncTripCount; 2148349cc55cSDimitry Andric OfMul = ConstantInt::getFalse(MulV->getContext()); 2149349cc55cSDimitry Andric } else { 2150349cc55cSDimitry Andric auto *MulF = Intrinsic::getDeclaration(Loc->getModule(), 2151349cc55cSDimitry Andric Intrinsic::umul_with_overflow, Ty); 215204eeddc0SDimitry Andric CallInst *Mul = 215304eeddc0SDimitry Andric Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul"); 2154349cc55cSDimitry Andric MulV = Builder.CreateExtractValue(Mul, 0, "mul.result"); 2155349cc55cSDimitry Andric OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow"); 2156349cc55cSDimitry Andric } 21575ffd83dbSDimitry Andric 21585ffd83dbSDimitry Andric Value *Add = nullptr, *Sub = nullptr; 215904eeddc0SDimitry Andric bool NeedPosCheck = !SE.isKnownNegative(Step); 216004eeddc0SDimitry Andric bool NeedNegCheck = !SE.isKnownPositive(Step); 216104eeddc0SDimitry Andric 21625f757f3fSDimitry Andric if (isa<PointerType>(ARTy)) { 2163349cc55cSDimitry Andric Value *NegMulV = Builder.CreateNeg(MulV); 216404eeddc0SDimitry Andric if (NeedPosCheck) 21657a6dacacSDimitry Andric Add = Builder.CreatePtrAdd(StartValue, MulV); 216604eeddc0SDimitry Andric if (NeedNegCheck) 21677a6dacacSDimitry Andric Sub = Builder.CreatePtrAdd(StartValue, NegMulV); 21685ffd83dbSDimitry Andric } else { 216904eeddc0SDimitry Andric if (NeedPosCheck) 21705ffd83dbSDimitry Andric Add = Builder.CreateAdd(StartValue, MulV); 217104eeddc0SDimitry Andric if (NeedNegCheck) 21725ffd83dbSDimitry Andric Sub = Builder.CreateSub(StartValue, MulV); 21735ffd83dbSDimitry Andric } 21745ffd83dbSDimitry Andric 217504eeddc0SDimitry Andric Value *EndCompareLT = nullptr; 217604eeddc0SDimitry Andric Value *EndCompareGT = nullptr; 217704eeddc0SDimitry Andric Value *EndCheck = nullptr; 217804eeddc0SDimitry Andric if (NeedPosCheck) 217904eeddc0SDimitry Andric EndCheck = EndCompareLT = Builder.CreateICmp( 21805ffd83dbSDimitry Andric Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue); 218104eeddc0SDimitry Andric if (NeedNegCheck) 218204eeddc0SDimitry Andric EndCheck = EndCompareGT = Builder.CreateICmp( 218304eeddc0SDimitry Andric Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue); 218404eeddc0SDimitry Andric if (NeedPosCheck && NeedNegCheck) { 21855ffd83dbSDimitry Andric // Select the answer based on the sign of Step. 218604eeddc0SDimitry Andric EndCheck = Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT); 218704eeddc0SDimitry Andric } 218804eeddc0SDimitry Andric return Builder.CreateOr(EndCheck, OfMul); 218904eeddc0SDimitry Andric }; 219004eeddc0SDimitry Andric Value *EndCheck = ComputeEndCheck(); 21915ffd83dbSDimitry Andric 21925ffd83dbSDimitry Andric // If the backedge taken count type is larger than the AR type, 21935ffd83dbSDimitry Andric // check that we don't drop any bits by truncating it. If we are 21945ffd83dbSDimitry Andric // dropping bits, then we have overflow (unless the step is zero). 21955f757f3fSDimitry Andric if (SrcBits > DstBits) { 21965ffd83dbSDimitry Andric auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits); 21975ffd83dbSDimitry Andric auto *BackedgeCheck = 21985ffd83dbSDimitry Andric Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal, 21995ffd83dbSDimitry Andric ConstantInt::get(Loc->getContext(), MaxVal)); 22005ffd83dbSDimitry Andric BackedgeCheck = Builder.CreateAnd( 22015ffd83dbSDimitry Andric BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero)); 22025ffd83dbSDimitry Andric 22035ffd83dbSDimitry Andric EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck); 22045ffd83dbSDimitry Andric } 22055ffd83dbSDimitry Andric 220604eeddc0SDimitry Andric return EndCheck; 22075ffd83dbSDimitry Andric } 22085ffd83dbSDimitry Andric 22095ffd83dbSDimitry Andric Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred, 22105ffd83dbSDimitry Andric Instruction *IP) { 22115ffd83dbSDimitry Andric const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr()); 22125ffd83dbSDimitry Andric Value *NSSWCheck = nullptr, *NUSWCheck = nullptr; 22135ffd83dbSDimitry Andric 22145ffd83dbSDimitry Andric // Add a check for NUSW 22155ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW) 22165ffd83dbSDimitry Andric NUSWCheck = generateOverflowCheck(A, IP, false); 22175ffd83dbSDimitry Andric 22185ffd83dbSDimitry Andric // Add a check for NSSW 22195ffd83dbSDimitry Andric if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW) 22205ffd83dbSDimitry Andric NSSWCheck = generateOverflowCheck(A, IP, true); 22215ffd83dbSDimitry Andric 22225ffd83dbSDimitry Andric if (NUSWCheck && NSSWCheck) 22235ffd83dbSDimitry Andric return Builder.CreateOr(NUSWCheck, NSSWCheck); 22245ffd83dbSDimitry Andric 22255ffd83dbSDimitry Andric if (NUSWCheck) 22265ffd83dbSDimitry Andric return NUSWCheck; 22275ffd83dbSDimitry Andric 22285ffd83dbSDimitry Andric if (NSSWCheck) 22295ffd83dbSDimitry Andric return NSSWCheck; 22305ffd83dbSDimitry Andric 22315ffd83dbSDimitry Andric return ConstantInt::getFalse(IP->getContext()); 22325ffd83dbSDimitry Andric } 22335ffd83dbSDimitry Andric 22345ffd83dbSDimitry Andric Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union, 22355ffd83dbSDimitry Andric Instruction *IP) { 22365ffd83dbSDimitry Andric // Loop over all checks in this set. 223704eeddc0SDimitry Andric SmallVector<Value *> Checks; 2238bdd1243dSDimitry Andric for (const auto *Pred : Union->getPredicates()) { 223904eeddc0SDimitry Andric Checks.push_back(expandCodeForPredicate(Pred, IP)); 22405ffd83dbSDimitry Andric Builder.SetInsertPoint(IP); 22415ffd83dbSDimitry Andric } 22425ffd83dbSDimitry Andric 224304eeddc0SDimitry Andric if (Checks.empty()) 224404eeddc0SDimitry Andric return ConstantInt::getFalse(IP->getContext()); 224504eeddc0SDimitry Andric return Builder.CreateOr(Checks); 22465ffd83dbSDimitry Andric } 22475ffd83dbSDimitry Andric 2248bdd1243dSDimitry Andric Value *SCEVExpander::fixupLCSSAFormFor(Value *V) { 2249bdd1243dSDimitry Andric auto *DefI = dyn_cast<Instruction>(V); 2250bdd1243dSDimitry Andric if (!PreserveLCSSA || !DefI) 2251bdd1243dSDimitry Andric return V; 2252e8d8bef9SDimitry Andric 2253*0fca6ea1SDimitry Andric BasicBlock::iterator InsertPt = Builder.GetInsertPoint(); 2254bdd1243dSDimitry Andric Loop *DefLoop = SE.LI.getLoopFor(DefI->getParent()); 2255bdd1243dSDimitry Andric Loop *UseLoop = SE.LI.getLoopFor(InsertPt->getParent()); 2256e8d8bef9SDimitry Andric if (!DefLoop || UseLoop == DefLoop || DefLoop->contains(UseLoop)) 2257bdd1243dSDimitry Andric return V; 2258e8d8bef9SDimitry Andric 2259bdd1243dSDimitry Andric // Create a temporary instruction to at the current insertion point, so we 2260bdd1243dSDimitry Andric // can hand it off to the helper to create LCSSA PHIs if required for the 2261bdd1243dSDimitry Andric // new use. 2262bdd1243dSDimitry Andric // FIXME: Ideally formLCSSAForInstructions (used in fixupLCSSAFormFor) 2263bdd1243dSDimitry Andric // would accept a insertion point and return an LCSSA phi for that 2264bdd1243dSDimitry Andric // insertion point, so there is no need to insert & remove the temporary 2265bdd1243dSDimitry Andric // instruction. 2266bdd1243dSDimitry Andric Type *ToTy; 2267bdd1243dSDimitry Andric if (DefI->getType()->isIntegerTy()) 22685f757f3fSDimitry Andric ToTy = PointerType::get(DefI->getContext(), 0); 2269bdd1243dSDimitry Andric else 2270bdd1243dSDimitry Andric ToTy = Type::getInt32Ty(DefI->getContext()); 2271bdd1243dSDimitry Andric Instruction *User = 2272bdd1243dSDimitry Andric CastInst::CreateBitOrPointerCast(DefI, ToTy, "tmp.lcssa.user", InsertPt); 2273bdd1243dSDimitry Andric auto RemoveUserOnExit = 2274bdd1243dSDimitry Andric make_scope_exit([User]() { User->eraseFromParent(); }); 2275bdd1243dSDimitry Andric 2276bdd1243dSDimitry Andric SmallVector<Instruction *, 1> ToUpdate; 2277bdd1243dSDimitry Andric ToUpdate.push_back(DefI); 2278e8d8bef9SDimitry Andric SmallVector<PHINode *, 16> PHIsToRemove; 227906c3fb27SDimitry Andric SmallVector<PHINode *, 16> InsertedPHIs; 228006c3fb27SDimitry Andric formLCSSAForInstructions(ToUpdate, SE.DT, SE.LI, &SE, &PHIsToRemove, 228106c3fb27SDimitry Andric &InsertedPHIs); 228206c3fb27SDimitry Andric for (PHINode *PN : InsertedPHIs) 228306c3fb27SDimitry Andric rememberInstruction(PN); 2284e8d8bef9SDimitry Andric for (PHINode *PN : PHIsToRemove) { 2285e8d8bef9SDimitry Andric if (!PN->use_empty()) 2286e8d8bef9SDimitry Andric continue; 2287e8d8bef9SDimitry Andric InsertedValues.erase(PN); 2288e8d8bef9SDimitry Andric InsertedPostIncValues.erase(PN); 2289e8d8bef9SDimitry Andric PN->eraseFromParent(); 2290e8d8bef9SDimitry Andric } 2291e8d8bef9SDimitry Andric 2292bdd1243dSDimitry Andric return User->getOperand(0); 2293e8d8bef9SDimitry Andric } 2294e8d8bef9SDimitry Andric 22955ffd83dbSDimitry Andric namespace { 22965ffd83dbSDimitry Andric // Search for a SCEV subexpression that is not safe to expand. Any expression 22975ffd83dbSDimitry Andric // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 22985ffd83dbSDimitry Andric // UDiv expressions. We don't know if the UDiv is derived from an IR divide 22995ffd83dbSDimitry Andric // instruction, but the important thing is that we prove the denominator is 23005ffd83dbSDimitry Andric // nonzero before expansion. 23015ffd83dbSDimitry Andric // 23025ffd83dbSDimitry Andric // IVUsers already checks that IV-derived expressions are safe. So this check is 23035ffd83dbSDimitry Andric // only needed when the expression includes some subexpression that is not IV 23045ffd83dbSDimitry Andric // derived. 23055ffd83dbSDimitry Andric // 2306fcaf7f86SDimitry Andric // Currently, we only allow division by a value provably non-zero here. 23075ffd83dbSDimitry Andric // 23085ffd83dbSDimitry Andric // We cannot generally expand recurrences unless the step dominates the loop 23095ffd83dbSDimitry Andric // header. The expander handles the special case of affine recurrences by 23105ffd83dbSDimitry Andric // scaling the recurrence outside the loop, but this technique isn't generally 23115ffd83dbSDimitry Andric // applicable. Expanding a nested recurrence outside a loop requires computing 23125ffd83dbSDimitry Andric // binomial coefficients. This could be done, but the recurrence has to be in a 23135ffd83dbSDimitry Andric // perfectly reduced form, which can't be guaranteed. 23145ffd83dbSDimitry Andric struct SCEVFindUnsafe { 23155ffd83dbSDimitry Andric ScalarEvolution &SE; 2316349cc55cSDimitry Andric bool CanonicalMode; 231781ad6265SDimitry Andric bool IsUnsafe = false; 23185ffd83dbSDimitry Andric 2319349cc55cSDimitry Andric SCEVFindUnsafe(ScalarEvolution &SE, bool CanonicalMode) 232081ad6265SDimitry Andric : SE(SE), CanonicalMode(CanonicalMode) {} 23215ffd83dbSDimitry Andric 23225ffd83dbSDimitry Andric bool follow(const SCEV *S) { 23235ffd83dbSDimitry Andric if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2324fcaf7f86SDimitry Andric if (!SE.isKnownNonZero(D->getRHS())) { 23255ffd83dbSDimitry Andric IsUnsafe = true; 23265ffd83dbSDimitry Andric return false; 23275ffd83dbSDimitry Andric } 23285ffd83dbSDimitry Andric } 23295ffd83dbSDimitry Andric if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2330349cc55cSDimitry Andric // For non-affine addrecs or in non-canonical mode we need a preheader 2331349cc55cSDimitry Andric // to insert into. 2332349cc55cSDimitry Andric if (!AR->getLoop()->getLoopPreheader() && 2333349cc55cSDimitry Andric (!CanonicalMode || !AR->isAffine())) { 2334349cc55cSDimitry Andric IsUnsafe = true; 2335349cc55cSDimitry Andric return false; 2336349cc55cSDimitry Andric } 23375ffd83dbSDimitry Andric } 23385ffd83dbSDimitry Andric return true; 23395ffd83dbSDimitry Andric } 23405ffd83dbSDimitry Andric bool isDone() const { return IsUnsafe; } 23415ffd83dbSDimitry Andric }; 2342fcaf7f86SDimitry Andric } // namespace 23435ffd83dbSDimitry Andric 2344fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpand(const SCEV *S) const { 2345349cc55cSDimitry Andric SCEVFindUnsafe Search(SE, CanonicalMode); 23465ffd83dbSDimitry Andric visitAll(S, Search); 23475ffd83dbSDimitry Andric return !Search.IsUnsafe; 23485ffd83dbSDimitry Andric } 23495ffd83dbSDimitry Andric 2350fcaf7f86SDimitry Andric bool SCEVExpander::isSafeToExpandAt(const SCEV *S, 2351fcaf7f86SDimitry Andric const Instruction *InsertionPoint) const { 2352fcaf7f86SDimitry Andric if (!isSafeToExpand(S)) 23535ffd83dbSDimitry Andric return false; 23545ffd83dbSDimitry Andric // We have to prove that the expanded site of S dominates InsertionPoint. 23555ffd83dbSDimitry Andric // This is easy when not in the same block, but hard when S is an instruction 23565ffd83dbSDimitry Andric // to be expanded somewhere inside the same block as our insertion point. 23575ffd83dbSDimitry Andric // What we really need here is something analogous to an OrderedBasicBlock, 23585ffd83dbSDimitry Andric // but for the moment, we paper over the problem by handling two common and 23595ffd83dbSDimitry Andric // cheap to check cases. 23605ffd83dbSDimitry Andric if (SE.properlyDominates(S, InsertionPoint->getParent())) 23615ffd83dbSDimitry Andric return true; 23625ffd83dbSDimitry Andric if (SE.dominates(S, InsertionPoint->getParent())) { 23635ffd83dbSDimitry Andric if (InsertionPoint->getParent()->getTerminator() == InsertionPoint) 23645ffd83dbSDimitry Andric return true; 23655ffd83dbSDimitry Andric if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) 2366fe6060f1SDimitry Andric if (llvm::is_contained(InsertionPoint->operand_values(), U->getValue())) 23675ffd83dbSDimitry Andric return true; 23685ffd83dbSDimitry Andric } 23695ffd83dbSDimitry Andric return false; 23705ffd83dbSDimitry Andric } 2371e8d8bef9SDimitry Andric 2372fe6060f1SDimitry Andric void SCEVExpanderCleaner::cleanup() { 2373e8d8bef9SDimitry Andric // Result is used, nothing to remove. 2374e8d8bef9SDimitry Andric if (ResultUsed) 2375e8d8bef9SDimitry Andric return; 2376e8d8bef9SDimitry Andric 2377*0fca6ea1SDimitry Andric // Restore original poison flags. 2378*0fca6ea1SDimitry Andric for (auto [I, Flags] : Expander.OrigFlags) 2379*0fca6ea1SDimitry Andric Flags.apply(I); 2380*0fca6ea1SDimitry Andric 2381e8d8bef9SDimitry Andric auto InsertedInstructions = Expander.getAllInsertedInstructions(); 2382e8d8bef9SDimitry Andric #ifndef NDEBUG 2383e8d8bef9SDimitry Andric SmallPtrSet<Instruction *, 8> InsertedSet(InsertedInstructions.begin(), 2384e8d8bef9SDimitry Andric InsertedInstructions.end()); 2385e8d8bef9SDimitry Andric (void)InsertedSet; 2386e8d8bef9SDimitry Andric #endif 2387e8d8bef9SDimitry Andric // Remove sets with value handles. 2388e8d8bef9SDimitry Andric Expander.clear(); 2389e8d8bef9SDimitry Andric 2390e8d8bef9SDimitry Andric // Remove all inserted instructions. 239104eeddc0SDimitry Andric for (Instruction *I : reverse(InsertedInstructions)) { 2392e8d8bef9SDimitry Andric #ifndef NDEBUG 2393e8d8bef9SDimitry Andric assert(all_of(I->users(), 2394e8d8bef9SDimitry Andric [&InsertedSet](Value *U) { 2395e8d8bef9SDimitry Andric return InsertedSet.contains(cast<Instruction>(U)); 2396e8d8bef9SDimitry Andric }) && 2397e8d8bef9SDimitry Andric "removed instruction should only be used by instructions inserted " 2398e8d8bef9SDimitry Andric "during expansion"); 2399e8d8bef9SDimitry Andric #endif 2400e8d8bef9SDimitry Andric assert(!I->getType()->isVoidTy() && 2401e8d8bef9SDimitry Andric "inserted instruction should have non-void types"); 2402bdd1243dSDimitry Andric I->replaceAllUsesWith(PoisonValue::get(I->getType())); 2403e8d8bef9SDimitry Andric I->eraseFromParent(); 2404e8d8bef9SDimitry Andric } 2405e8d8bef9SDimitry Andric } 2406