xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Type.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/IR/ValueHandle.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <string>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "basicblock-utils"
53 
54 void llvm::DetatchDeadBlocks(
55     ArrayRef<BasicBlock *> BBs,
56     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
57     bool KeepOneInputPHIs) {
58   for (auto *BB : BBs) {
59     // Loop through all of our successors and make sure they know that one
60     // of their predecessors is going away.
61     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
62     for (BasicBlock *Succ : successors(BB)) {
63       Succ->removePredecessor(BB, KeepOneInputPHIs);
64       if (Updates && UniqueSuccessors.insert(Succ).second)
65         Updates->push_back({DominatorTree::Delete, BB, Succ});
66     }
67 
68     // Zap all the instructions in the block.
69     while (!BB->empty()) {
70       Instruction &I = BB->back();
71       // If this instruction is used, replace uses with an arbitrary value.
72       // Because control flow can't get here, we don't care what we replace the
73       // value with.  Note that since this block is unreachable, and all values
74       // contained within it must dominate their uses, that all uses will
75       // eventually be removed (they are themselves dead).
76       if (!I.use_empty())
77         I.replaceAllUsesWith(UndefValue::get(I.getType()));
78       BB->getInstList().pop_back();
79     }
80     new UnreachableInst(BB->getContext(), BB);
81     assert(BB->getInstList().size() == 1 &&
82            isa<UnreachableInst>(BB->getTerminator()) &&
83            "The successor list of BB isn't empty before "
84            "applying corresponding DTU updates.");
85   }
86 }
87 
88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
89                            bool KeepOneInputPHIs) {
90   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
91 }
92 
93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
94                             bool KeepOneInputPHIs) {
95 #ifndef NDEBUG
96   // Make sure that all predecessors of each dead block is also dead.
97   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
98   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
99   for (auto *BB : Dead)
100     for (BasicBlock *Pred : predecessors(BB))
101       assert(Dead.count(Pred) && "All predecessors must be dead!");
102 #endif
103 
104   SmallVector<DominatorTree::UpdateType, 4> Updates;
105   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
106 
107   if (DTU)
108     DTU->applyUpdatesPermissive(Updates);
109 
110   for (BasicBlock *BB : BBs)
111     if (DTU)
112       DTU->deleteBB(BB);
113     else
114       BB->eraseFromParent();
115 }
116 
117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
118                                       bool KeepOneInputPHIs) {
119   df_iterator_default_set<BasicBlock*> Reachable;
120 
121   // Mark all reachable blocks.
122   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
123     (void)BB/* Mark all reachable blocks */;
124 
125   // Collect all dead blocks.
126   std::vector<BasicBlock*> DeadBlocks;
127   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
128     if (!Reachable.count(&*I)) {
129       BasicBlock *BB = &*I;
130       DeadBlocks.push_back(BB);
131     }
132 
133   // Delete the dead blocks.
134   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
135 
136   return !DeadBlocks.empty();
137 }
138 
139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
140                                    MemoryDependenceResults *MemDep) {
141   if (!isa<PHINode>(BB->begin())) return;
142 
143   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
144     if (PN->getIncomingValue(0) != PN)
145       PN->replaceAllUsesWith(PN->getIncomingValue(0));
146     else
147       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
148 
149     if (MemDep)
150       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
151 
152     PN->eraseFromParent();
153   }
154 }
155 
156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
157   // Recursively deleting a PHI may cause multiple PHIs to be deleted
158   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
159   SmallVector<WeakTrackingVH, 8> PHIs;
160   for (PHINode &PN : BB->phis())
161     PHIs.push_back(&PN);
162 
163   bool Changed = false;
164   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
165     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
166       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
167 
168   return Changed;
169 }
170 
171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
172                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
173                                      MemoryDependenceResults *MemDep,
174                                      bool PredecessorWithTwoSuccessors) {
175   if (BB->hasAddressTaken())
176     return false;
177 
178   // Can't merge if there are multiple predecessors, or no predecessors.
179   BasicBlock *PredBB = BB->getUniquePredecessor();
180   if (!PredBB) return false;
181 
182   // Don't break self-loops.
183   if (PredBB == BB) return false;
184   // Don't break unwinding instructions.
185   if (PredBB->getTerminator()->isExceptionalTerminator())
186     return false;
187 
188   // Can't merge if there are multiple distinct successors.
189   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
190     return false;
191 
192   // Currently only allow PredBB to have two predecessors, one being BB.
193   // Update BI to branch to BB's only successor instead of BB.
194   BranchInst *PredBB_BI;
195   BasicBlock *NewSucc = nullptr;
196   unsigned FallThruPath;
197   if (PredecessorWithTwoSuccessors) {
198     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
199       return false;
200     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
201     if (!BB_JmpI || !BB_JmpI->isUnconditional())
202       return false;
203     NewSucc = BB_JmpI->getSuccessor(0);
204     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
205   }
206 
207   // Can't merge if there is PHI loop.
208   for (PHINode &PN : BB->phis())
209     for (Value *IncValue : PN.incoming_values())
210       if (IncValue == &PN)
211         return false;
212 
213   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
214                     << PredBB->getName() << "\n");
215 
216   // Begin by getting rid of unneeded PHIs.
217   SmallVector<AssertingVH<Value>, 4> IncomingValues;
218   if (isa<PHINode>(BB->front())) {
219     for (PHINode &PN : BB->phis())
220       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
221           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
222         IncomingValues.push_back(PN.getIncomingValue(0));
223     FoldSingleEntryPHINodes(BB, MemDep);
224   }
225 
226   // DTU update: Collect all the edges that exit BB.
227   // These dominator edges will be redirected from Pred.
228   std::vector<DominatorTree::UpdateType> Updates;
229   if (DTU) {
230     Updates.reserve(1 + (2 * succ_size(BB)));
231     // Add insert edges first. Experimentally, for the particular case of two
232     // blocks that can be merged, with a single successor and single predecessor
233     // respectively, it is beneficial to have all insert updates first. Deleting
234     // edges first may lead to unreachable blocks, followed by inserting edges
235     // making the blocks reachable again. Such DT updates lead to high compile
236     // times. We add inserts before deletes here to reduce compile time.
237     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
238       // This successor of BB may already have PredBB as a predecessor.
239       if (llvm::find(successors(PredBB), *I) == succ_end(PredBB))
240         Updates.push_back({DominatorTree::Insert, PredBB, *I});
241     for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
242       Updates.push_back({DominatorTree::Delete, BB, *I});
243     Updates.push_back({DominatorTree::Delete, PredBB, BB});
244   }
245 
246   Instruction *PTI = PredBB->getTerminator();
247   Instruction *STI = BB->getTerminator();
248   Instruction *Start = &*BB->begin();
249   // If there's nothing to move, mark the starting instruction as the last
250   // instruction in the block.
251   if (Start == STI)
252     Start = PTI;
253 
254   // Move all definitions in the successor to the predecessor...
255   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
256                                BB->begin(), STI->getIterator());
257 
258   if (MSSAU)
259     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
260 
261   // Make all PHI nodes that referred to BB now refer to Pred as their
262   // source...
263   BB->replaceAllUsesWith(PredBB);
264 
265   if (PredecessorWithTwoSuccessors) {
266     // Delete the unconditional branch from BB.
267     BB->getInstList().pop_back();
268 
269     // Update branch in the predecessor.
270     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
271   } else {
272     // Delete the unconditional branch from the predecessor.
273     PredBB->getInstList().pop_back();
274 
275     // Move terminator instruction.
276     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
277   }
278   // Add unreachable to now empty BB.
279   new UnreachableInst(BB->getContext(), BB);
280 
281   // Eliminate duplicate dbg.values describing the entry PHI node post-splice.
282   for (auto Incoming : IncomingValues) {
283     if (isa<Instruction>(*Incoming)) {
284       SmallVector<DbgValueInst *, 2> DbgValues;
285       SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
286           DbgValueSet;
287       llvm::findDbgValues(DbgValues, Incoming);
288       for (auto &DVI : DbgValues) {
289         auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
290         if (!R.second)
291           DVI->eraseFromParent();
292       }
293     }
294   }
295 
296   // Inherit predecessors name if it exists.
297   if (!PredBB->hasName())
298     PredBB->takeName(BB);
299 
300   if (LI)
301     LI->removeBlock(BB);
302 
303   if (MemDep)
304     MemDep->invalidateCachedPredecessors();
305 
306   // Finally, erase the old block and update dominator info.
307   if (DTU) {
308     assert(BB->getInstList().size() == 1 &&
309            isa<UnreachableInst>(BB->getTerminator()) &&
310            "The successor list of BB isn't empty before "
311            "applying corresponding DTU updates.");
312     DTU->applyUpdatesPermissive(Updates);
313     DTU->deleteBB(BB);
314   } else {
315     BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
316   }
317 
318   return true;
319 }
320 
321 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
322                                 BasicBlock::iterator &BI, Value *V) {
323   Instruction &I = *BI;
324   // Replaces all of the uses of the instruction with uses of the value
325   I.replaceAllUsesWith(V);
326 
327   // Make sure to propagate a name if there is one already.
328   if (I.hasName() && !V->hasName())
329     V->takeName(&I);
330 
331   // Delete the unnecessary instruction now...
332   BI = BIL.erase(BI);
333 }
334 
335 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
336                                BasicBlock::iterator &BI, Instruction *I) {
337   assert(I->getParent() == nullptr &&
338          "ReplaceInstWithInst: Instruction already inserted into basic block!");
339 
340   // Copy debug location to newly added instruction, if it wasn't already set
341   // by the caller.
342   if (!I->getDebugLoc())
343     I->setDebugLoc(BI->getDebugLoc());
344 
345   // Insert the new instruction into the basic block...
346   BasicBlock::iterator New = BIL.insert(BI, I);
347 
348   // Replace all uses of the old instruction, and delete it.
349   ReplaceInstWithValue(BIL, BI, I);
350 
351   // Move BI back to point to the newly inserted instruction
352   BI = New;
353 }
354 
355 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
356   BasicBlock::iterator BI(From);
357   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
358 }
359 
360 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
361                             LoopInfo *LI, MemorySSAUpdater *MSSAU) {
362   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
363 
364   // If this is a critical edge, let SplitCriticalEdge do it.
365   Instruction *LatchTerm = BB->getTerminator();
366   if (SplitCriticalEdge(
367           LatchTerm, SuccNum,
368           CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
369     return LatchTerm->getSuccessor(SuccNum);
370 
371   // If the edge isn't critical, then BB has a single successor or Succ has a
372   // single pred.  Split the block.
373   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
374     // If the successor only has a single pred, split the top of the successor
375     // block.
376     assert(SP == BB && "CFG broken");
377     SP = nullptr;
378     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
379   }
380 
381   // Otherwise, if BB has a single successor, split it at the bottom of the
382   // block.
383   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
384          "Should have a single succ!");
385   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
386 }
387 
388 unsigned
389 llvm::SplitAllCriticalEdges(Function &F,
390                             const CriticalEdgeSplittingOptions &Options) {
391   unsigned NumBroken = 0;
392   for (BasicBlock &BB : F) {
393     Instruction *TI = BB.getTerminator();
394     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
395       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
396         if (SplitCriticalEdge(TI, i, Options))
397           ++NumBroken;
398   }
399   return NumBroken;
400 }
401 
402 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
403                              DominatorTree *DT, LoopInfo *LI,
404                              MemorySSAUpdater *MSSAU, const Twine &BBName) {
405   BasicBlock::iterator SplitIt = SplitPt->getIterator();
406   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
407     ++SplitIt;
408   std::string Name = BBName.str();
409   BasicBlock *New = Old->splitBasicBlock(
410       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
411 
412   // The new block lives in whichever loop the old one did. This preserves
413   // LCSSA as well, because we force the split point to be after any PHI nodes.
414   if (LI)
415     if (Loop *L = LI->getLoopFor(Old))
416       L->addBasicBlockToLoop(New, *LI);
417 
418   if (DT)
419     // Old dominates New. New node dominates all other nodes dominated by Old.
420     if (DomTreeNode *OldNode = DT->getNode(Old)) {
421       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
422 
423       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
424       for (DomTreeNode *I : Children)
425         DT->changeImmediateDominator(I, NewNode);
426     }
427 
428   // Move MemoryAccesses still tracked in Old, but part of New now.
429   // Update accesses in successor blocks accordingly.
430   if (MSSAU)
431     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
432 
433   return New;
434 }
435 
436 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
437 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
438                                       ArrayRef<BasicBlock *> Preds,
439                                       DominatorTree *DT, LoopInfo *LI,
440                                       MemorySSAUpdater *MSSAU,
441                                       bool PreserveLCSSA, bool &HasLoopExit) {
442   // Update dominator tree if available.
443   if (DT) {
444     if (OldBB == DT->getRootNode()->getBlock()) {
445       assert(NewBB == &NewBB->getParent()->getEntryBlock());
446       DT->setNewRoot(NewBB);
447     } else {
448       // Split block expects NewBB to have a non-empty set of predecessors.
449       DT->splitBlock(NewBB);
450     }
451   }
452 
453   // Update MemoryPhis after split if MemorySSA is available
454   if (MSSAU)
455     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
456 
457   // The rest of the logic is only relevant for updating the loop structures.
458   if (!LI)
459     return;
460 
461   assert(DT && "DT should be available to update LoopInfo!");
462   Loop *L = LI->getLoopFor(OldBB);
463 
464   // If we need to preserve loop analyses, collect some information about how
465   // this split will affect loops.
466   bool IsLoopEntry = !!L;
467   bool SplitMakesNewLoopHeader = false;
468   for (BasicBlock *Pred : Preds) {
469     // Preds that are not reachable from entry should not be used to identify if
470     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
471     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
472     // as true and make the NewBB the header of some loop. This breaks LI.
473     if (!DT->isReachableFromEntry(Pred))
474       continue;
475     // If we need to preserve LCSSA, determine if any of the preds is a loop
476     // exit.
477     if (PreserveLCSSA)
478       if (Loop *PL = LI->getLoopFor(Pred))
479         if (!PL->contains(OldBB))
480           HasLoopExit = true;
481 
482     // If we need to preserve LoopInfo, note whether any of the preds crosses
483     // an interesting loop boundary.
484     if (!L)
485       continue;
486     if (L->contains(Pred))
487       IsLoopEntry = false;
488     else
489       SplitMakesNewLoopHeader = true;
490   }
491 
492   // Unless we have a loop for OldBB, nothing else to do here.
493   if (!L)
494     return;
495 
496   if (IsLoopEntry) {
497     // Add the new block to the nearest enclosing loop (and not an adjacent
498     // loop). To find this, examine each of the predecessors and determine which
499     // loops enclose them, and select the most-nested loop which contains the
500     // loop containing the block being split.
501     Loop *InnermostPredLoop = nullptr;
502     for (BasicBlock *Pred : Preds) {
503       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
504         // Seek a loop which actually contains the block being split (to avoid
505         // adjacent loops).
506         while (PredLoop && !PredLoop->contains(OldBB))
507           PredLoop = PredLoop->getParentLoop();
508 
509         // Select the most-nested of these loops which contains the block.
510         if (PredLoop && PredLoop->contains(OldBB) &&
511             (!InnermostPredLoop ||
512              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
513           InnermostPredLoop = PredLoop;
514       }
515     }
516 
517     if (InnermostPredLoop)
518       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
519   } else {
520     L->addBasicBlockToLoop(NewBB, *LI);
521     if (SplitMakesNewLoopHeader)
522       L->moveToHeader(NewBB);
523   }
524 }
525 
526 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
527 /// This also updates AliasAnalysis, if available.
528 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
529                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
530                            bool HasLoopExit) {
531   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
532   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
533   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
534     PHINode *PN = cast<PHINode>(I++);
535 
536     // Check to see if all of the values coming in are the same.  If so, we
537     // don't need to create a new PHI node, unless it's needed for LCSSA.
538     Value *InVal = nullptr;
539     if (!HasLoopExit) {
540       InVal = PN->getIncomingValueForBlock(Preds[0]);
541       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
542         if (!PredSet.count(PN->getIncomingBlock(i)))
543           continue;
544         if (!InVal)
545           InVal = PN->getIncomingValue(i);
546         else if (InVal != PN->getIncomingValue(i)) {
547           InVal = nullptr;
548           break;
549         }
550       }
551     }
552 
553     if (InVal) {
554       // If all incoming values for the new PHI would be the same, just don't
555       // make a new PHI.  Instead, just remove the incoming values from the old
556       // PHI.
557 
558       // NOTE! This loop walks backwards for a reason! First off, this minimizes
559       // the cost of removal if we end up removing a large number of values, and
560       // second off, this ensures that the indices for the incoming values
561       // aren't invalidated when we remove one.
562       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
563         if (PredSet.count(PN->getIncomingBlock(i)))
564           PN->removeIncomingValue(i, false);
565 
566       // Add an incoming value to the PHI node in the loop for the preheader
567       // edge.
568       PN->addIncoming(InVal, NewBB);
569       continue;
570     }
571 
572     // If the values coming into the block are not the same, we need a new
573     // PHI.
574     // Create the new PHI node, insert it into NewBB at the end of the block
575     PHINode *NewPHI =
576         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
577 
578     // NOTE! This loop walks backwards for a reason! First off, this minimizes
579     // the cost of removal if we end up removing a large number of values, and
580     // second off, this ensures that the indices for the incoming values aren't
581     // invalidated when we remove one.
582     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
583       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
584       if (PredSet.count(IncomingBB)) {
585         Value *V = PN->removeIncomingValue(i, false);
586         NewPHI->addIncoming(V, IncomingBB);
587       }
588     }
589 
590     PN->addIncoming(NewPHI, NewBB);
591   }
592 }
593 
594 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
595                                          ArrayRef<BasicBlock *> Preds,
596                                          const char *Suffix, DominatorTree *DT,
597                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
598                                          bool PreserveLCSSA) {
599   // Do not attempt to split that which cannot be split.
600   if (!BB->canSplitPredecessors())
601     return nullptr;
602 
603   // For the landingpads we need to act a bit differently.
604   // Delegate this work to the SplitLandingPadPredecessors.
605   if (BB->isLandingPad()) {
606     SmallVector<BasicBlock*, 2> NewBBs;
607     std::string NewName = std::string(Suffix) + ".split-lp";
608 
609     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
610                                 LI, MSSAU, PreserveLCSSA);
611     return NewBBs[0];
612   }
613 
614   // Create new basic block, insert right before the original block.
615   BasicBlock *NewBB = BasicBlock::Create(
616       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
617 
618   // The new block unconditionally branches to the old block.
619   BranchInst *BI = BranchInst::Create(BB, NewBB);
620   // Splitting the predecessors of a loop header creates a preheader block.
621   if (LI && LI->isLoopHeader(BB))
622     // Using the loop start line number prevents debuggers stepping into the
623     // loop body for this instruction.
624     BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc());
625   else
626     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
627 
628   // Move the edges from Preds to point to NewBB instead of BB.
629   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
630     // This is slightly more strict than necessary; the minimum requirement
631     // is that there be no more than one indirectbr branching to BB. And
632     // all BlockAddress uses would need to be updated.
633     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
634            "Cannot split an edge from an IndirectBrInst");
635     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
636            "Cannot split an edge from a CallBrInst");
637     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
638   }
639 
640   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
641   // node becomes an incoming value for BB's phi node.  However, if the Preds
642   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
643   // account for the newly created predecessor.
644   if (Preds.empty()) {
645     // Insert dummy values as the incoming value.
646     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
647       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
648   }
649 
650   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
651   bool HasLoopExit = false;
652   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
653                             HasLoopExit);
654 
655   if (!Preds.empty()) {
656     // Update the PHI nodes in BB with the values coming from NewBB.
657     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
658   }
659 
660   return NewBB;
661 }
662 
663 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
664                                        ArrayRef<BasicBlock *> Preds,
665                                        const char *Suffix1, const char *Suffix2,
666                                        SmallVectorImpl<BasicBlock *> &NewBBs,
667                                        DominatorTree *DT, LoopInfo *LI,
668                                        MemorySSAUpdater *MSSAU,
669                                        bool PreserveLCSSA) {
670   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
671 
672   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
673   // it right before the original block.
674   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
675                                           OrigBB->getName() + Suffix1,
676                                           OrigBB->getParent(), OrigBB);
677   NewBBs.push_back(NewBB1);
678 
679   // The new block unconditionally branches to the old block.
680   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
681   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
682 
683   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
684   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
685     // This is slightly more strict than necessary; the minimum requirement
686     // is that there be no more than one indirectbr branching to BB. And
687     // all BlockAddress uses would need to be updated.
688     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
689            "Cannot split an edge from an IndirectBrInst");
690     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
691   }
692 
693   bool HasLoopExit = false;
694   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
695                             HasLoopExit);
696 
697   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
698   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
699 
700   // Move the remaining edges from OrigBB to point to NewBB2.
701   SmallVector<BasicBlock*, 8> NewBB2Preds;
702   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
703        i != e; ) {
704     BasicBlock *Pred = *i++;
705     if (Pred == NewBB1) continue;
706     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
707            "Cannot split an edge from an IndirectBrInst");
708     NewBB2Preds.push_back(Pred);
709     e = pred_end(OrigBB);
710   }
711 
712   BasicBlock *NewBB2 = nullptr;
713   if (!NewBB2Preds.empty()) {
714     // Create another basic block for the rest of OrigBB's predecessors.
715     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
716                                 OrigBB->getName() + Suffix2,
717                                 OrigBB->getParent(), OrigBB);
718     NewBBs.push_back(NewBB2);
719 
720     // The new block unconditionally branches to the old block.
721     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
722     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
723 
724     // Move the remaining edges from OrigBB to point to NewBB2.
725     for (BasicBlock *NewBB2Pred : NewBB2Preds)
726       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
727 
728     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
729     HasLoopExit = false;
730     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
731                               PreserveLCSSA, HasLoopExit);
732 
733     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
734     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
735   }
736 
737   LandingPadInst *LPad = OrigBB->getLandingPadInst();
738   Instruction *Clone1 = LPad->clone();
739   Clone1->setName(Twine("lpad") + Suffix1);
740   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
741 
742   if (NewBB2) {
743     Instruction *Clone2 = LPad->clone();
744     Clone2->setName(Twine("lpad") + Suffix2);
745     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
746 
747     // Create a PHI node for the two cloned landingpad instructions only
748     // if the original landingpad instruction has some uses.
749     if (!LPad->use_empty()) {
750       assert(!LPad->getType()->isTokenTy() &&
751              "Split cannot be applied if LPad is token type. Otherwise an "
752              "invalid PHINode of token type would be created.");
753       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
754       PN->addIncoming(Clone1, NewBB1);
755       PN->addIncoming(Clone2, NewBB2);
756       LPad->replaceAllUsesWith(PN);
757     }
758     LPad->eraseFromParent();
759   } else {
760     // There is no second clone. Just replace the landing pad with the first
761     // clone.
762     LPad->replaceAllUsesWith(Clone1);
763     LPad->eraseFromParent();
764   }
765 }
766 
767 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
768                                              BasicBlock *Pred,
769                                              DomTreeUpdater *DTU) {
770   Instruction *UncondBranch = Pred->getTerminator();
771   // Clone the return and add it to the end of the predecessor.
772   Instruction *NewRet = RI->clone();
773   Pred->getInstList().push_back(NewRet);
774 
775   // If the return instruction returns a value, and if the value was a
776   // PHI node in "BB", propagate the right value into the return.
777   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
778        i != e; ++i) {
779     Value *V = *i;
780     Instruction *NewBC = nullptr;
781     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
782       // Return value might be bitcasted. Clone and insert it before the
783       // return instruction.
784       V = BCI->getOperand(0);
785       NewBC = BCI->clone();
786       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
787       *i = NewBC;
788     }
789     if (PHINode *PN = dyn_cast<PHINode>(V)) {
790       if (PN->getParent() == BB) {
791         if (NewBC)
792           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
793         else
794           *i = PN->getIncomingValueForBlock(Pred);
795       }
796     }
797   }
798 
799   // Update any PHI nodes in the returning block to realize that we no
800   // longer branch to them.
801   BB->removePredecessor(Pred);
802   UncondBranch->eraseFromParent();
803 
804   if (DTU)
805     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
806 
807   return cast<ReturnInst>(NewRet);
808 }
809 
810 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
811                                              Instruction *SplitBefore,
812                                              bool Unreachable,
813                                              MDNode *BranchWeights,
814                                              DominatorTree *DT, LoopInfo *LI,
815                                              BasicBlock *ThenBlock) {
816   BasicBlock *Head = SplitBefore->getParent();
817   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
818   Instruction *HeadOldTerm = Head->getTerminator();
819   LLVMContext &C = Head->getContext();
820   Instruction *CheckTerm;
821   bool CreateThenBlock = (ThenBlock == nullptr);
822   if (CreateThenBlock) {
823     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
824     if (Unreachable)
825       CheckTerm = new UnreachableInst(C, ThenBlock);
826     else
827       CheckTerm = BranchInst::Create(Tail, ThenBlock);
828     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
829   } else
830     CheckTerm = ThenBlock->getTerminator();
831   BranchInst *HeadNewTerm =
832     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
833   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
834   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
835 
836   if (DT) {
837     if (DomTreeNode *OldNode = DT->getNode(Head)) {
838       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
839 
840       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
841       for (DomTreeNode *Child : Children)
842         DT->changeImmediateDominator(Child, NewNode);
843 
844       // Head dominates ThenBlock.
845       if (CreateThenBlock)
846         DT->addNewBlock(ThenBlock, Head);
847       else
848         DT->changeImmediateDominator(ThenBlock, Head);
849     }
850   }
851 
852   if (LI) {
853     if (Loop *L = LI->getLoopFor(Head)) {
854       L->addBasicBlockToLoop(ThenBlock, *LI);
855       L->addBasicBlockToLoop(Tail, *LI);
856     }
857   }
858 
859   return CheckTerm;
860 }
861 
862 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
863                                          Instruction **ThenTerm,
864                                          Instruction **ElseTerm,
865                                          MDNode *BranchWeights) {
866   BasicBlock *Head = SplitBefore->getParent();
867   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
868   Instruction *HeadOldTerm = Head->getTerminator();
869   LLVMContext &C = Head->getContext();
870   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
871   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
872   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
873   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
874   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
875   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
876   BranchInst *HeadNewTerm =
877     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
878   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
879   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
880 }
881 
882 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
883                              BasicBlock *&IfFalse) {
884   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
885   BasicBlock *Pred1 = nullptr;
886   BasicBlock *Pred2 = nullptr;
887 
888   if (SomePHI) {
889     if (SomePHI->getNumIncomingValues() != 2)
890       return nullptr;
891     Pred1 = SomePHI->getIncomingBlock(0);
892     Pred2 = SomePHI->getIncomingBlock(1);
893   } else {
894     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
895     if (PI == PE) // No predecessor
896       return nullptr;
897     Pred1 = *PI++;
898     if (PI == PE) // Only one predecessor
899       return nullptr;
900     Pred2 = *PI++;
901     if (PI != PE) // More than two predecessors
902       return nullptr;
903   }
904 
905   // We can only handle branches.  Other control flow will be lowered to
906   // branches if possible anyway.
907   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
908   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
909   if (!Pred1Br || !Pred2Br)
910     return nullptr;
911 
912   // Eliminate code duplication by ensuring that Pred1Br is conditional if
913   // either are.
914   if (Pred2Br->isConditional()) {
915     // If both branches are conditional, we don't have an "if statement".  In
916     // reality, we could transform this case, but since the condition will be
917     // required anyway, we stand no chance of eliminating it, so the xform is
918     // probably not profitable.
919     if (Pred1Br->isConditional())
920       return nullptr;
921 
922     std::swap(Pred1, Pred2);
923     std::swap(Pred1Br, Pred2Br);
924   }
925 
926   if (Pred1Br->isConditional()) {
927     // The only thing we have to watch out for here is to make sure that Pred2
928     // doesn't have incoming edges from other blocks.  If it does, the condition
929     // doesn't dominate BB.
930     if (!Pred2->getSinglePredecessor())
931       return nullptr;
932 
933     // If we found a conditional branch predecessor, make sure that it branches
934     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
935     if (Pred1Br->getSuccessor(0) == BB &&
936         Pred1Br->getSuccessor(1) == Pred2) {
937       IfTrue = Pred1;
938       IfFalse = Pred2;
939     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
940                Pred1Br->getSuccessor(1) == BB) {
941       IfTrue = Pred2;
942       IfFalse = Pred1;
943     } else {
944       // We know that one arm of the conditional goes to BB, so the other must
945       // go somewhere unrelated, and this must not be an "if statement".
946       return nullptr;
947     }
948 
949     return Pred1Br->getCondition();
950   }
951 
952   // Ok, if we got here, both predecessors end with an unconditional branch to
953   // BB.  Don't panic!  If both blocks only have a single (identical)
954   // predecessor, and THAT is a conditional branch, then we're all ok!
955   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
956   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
957     return nullptr;
958 
959   // Otherwise, if this is a conditional branch, then we can use it!
960   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
961   if (!BI) return nullptr;
962 
963   assert(BI->isConditional() && "Two successors but not conditional?");
964   if (BI->getSuccessor(0) == Pred1) {
965     IfTrue = Pred1;
966     IfFalse = Pred2;
967   } else {
968     IfTrue = Pred2;
969     IfFalse = Pred1;
970   }
971   return BI->getCondition();
972 }
973