1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform manipulations on basic blocks, and 10 // instructions contained within basic blocks. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/Twine.h" 19 #include "llvm/Analysis/CFG.h" 20 #include "llvm/Analysis/DomTreeUpdater.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 23 #include "llvm/Analysis/MemorySSAUpdater.h" 24 #include "llvm/Analysis/PostDominators.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/InstrTypes.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/User.h" 38 #include "llvm/IR/Value.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/Casting.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include <cassert> 45 #include <cstdint> 46 #include <string> 47 #include <utility> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "basicblock-utils" 53 54 void llvm::DetatchDeadBlocks( 55 ArrayRef<BasicBlock *> BBs, 56 SmallVectorImpl<DominatorTree::UpdateType> *Updates, 57 bool KeepOneInputPHIs) { 58 for (auto *BB : BBs) { 59 // Loop through all of our successors and make sure they know that one 60 // of their predecessors is going away. 61 SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; 62 for (BasicBlock *Succ : successors(BB)) { 63 Succ->removePredecessor(BB, KeepOneInputPHIs); 64 if (Updates && UniqueSuccessors.insert(Succ).second) 65 Updates->push_back({DominatorTree::Delete, BB, Succ}); 66 } 67 68 // Zap all the instructions in the block. 69 while (!BB->empty()) { 70 Instruction &I = BB->back(); 71 // If this instruction is used, replace uses with an arbitrary value. 72 // Because control flow can't get here, we don't care what we replace the 73 // value with. Note that since this block is unreachable, and all values 74 // contained within it must dominate their uses, that all uses will 75 // eventually be removed (they are themselves dead). 76 if (!I.use_empty()) 77 I.replaceAllUsesWith(UndefValue::get(I.getType())); 78 BB->getInstList().pop_back(); 79 } 80 new UnreachableInst(BB->getContext(), BB); 81 assert(BB->getInstList().size() == 1 && 82 isa<UnreachableInst>(BB->getTerminator()) && 83 "The successor list of BB isn't empty before " 84 "applying corresponding DTU updates."); 85 } 86 } 87 88 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU, 89 bool KeepOneInputPHIs) { 90 DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs); 91 } 92 93 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU, 94 bool KeepOneInputPHIs) { 95 #ifndef NDEBUG 96 // Make sure that all predecessors of each dead block is also dead. 97 SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); 98 assert(Dead.size() == BBs.size() && "Duplicating blocks?"); 99 for (auto *BB : Dead) 100 for (BasicBlock *Pred : predecessors(BB)) 101 assert(Dead.count(Pred) && "All predecessors must be dead!"); 102 #endif 103 104 SmallVector<DominatorTree::UpdateType, 4> Updates; 105 DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs); 106 107 if (DTU) 108 DTU->applyUpdatesPermissive(Updates); 109 110 for (BasicBlock *BB : BBs) 111 if (DTU) 112 DTU->deleteBB(BB); 113 else 114 BB->eraseFromParent(); 115 } 116 117 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU, 118 bool KeepOneInputPHIs) { 119 df_iterator_default_set<BasicBlock*> Reachable; 120 121 // Mark all reachable blocks. 122 for (BasicBlock *BB : depth_first_ext(&F, Reachable)) 123 (void)BB/* Mark all reachable blocks */; 124 125 // Collect all dead blocks. 126 std::vector<BasicBlock*> DeadBlocks; 127 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) 128 if (!Reachable.count(&*I)) { 129 BasicBlock *BB = &*I; 130 DeadBlocks.push_back(BB); 131 } 132 133 // Delete the dead blocks. 134 DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs); 135 136 return !DeadBlocks.empty(); 137 } 138 139 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, 140 MemoryDependenceResults *MemDep) { 141 if (!isa<PHINode>(BB->begin())) return; 142 143 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { 144 if (PN->getIncomingValue(0) != PN) 145 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 146 else 147 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 148 149 if (MemDep) 150 MemDep->removeInstruction(PN); // Memdep updates AA itself. 151 152 PN->eraseFromParent(); 153 } 154 } 155 156 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { 157 // Recursively deleting a PHI may cause multiple PHIs to be deleted 158 // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. 159 SmallVector<WeakTrackingVH, 8> PHIs; 160 for (PHINode &PN : BB->phis()) 161 PHIs.push_back(&PN); 162 163 bool Changed = false; 164 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 165 if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) 166 Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); 167 168 return Changed; 169 } 170 171 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, 172 LoopInfo *LI, MemorySSAUpdater *MSSAU, 173 MemoryDependenceResults *MemDep, 174 bool PredecessorWithTwoSuccessors) { 175 if (BB->hasAddressTaken()) 176 return false; 177 178 // Can't merge if there are multiple predecessors, or no predecessors. 179 BasicBlock *PredBB = BB->getUniquePredecessor(); 180 if (!PredBB) return false; 181 182 // Don't break self-loops. 183 if (PredBB == BB) return false; 184 // Don't break unwinding instructions. 185 if (PredBB->getTerminator()->isExceptionalTerminator()) 186 return false; 187 188 // Can't merge if there are multiple distinct successors. 189 if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB) 190 return false; 191 192 // Currently only allow PredBB to have two predecessors, one being BB. 193 // Update BI to branch to BB's only successor instead of BB. 194 BranchInst *PredBB_BI; 195 BasicBlock *NewSucc = nullptr; 196 unsigned FallThruPath; 197 if (PredecessorWithTwoSuccessors) { 198 if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator()))) 199 return false; 200 BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator()); 201 if (!BB_JmpI || !BB_JmpI->isUnconditional()) 202 return false; 203 NewSucc = BB_JmpI->getSuccessor(0); 204 FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1; 205 } 206 207 // Can't merge if there is PHI loop. 208 for (PHINode &PN : BB->phis()) 209 for (Value *IncValue : PN.incoming_values()) 210 if (IncValue == &PN) 211 return false; 212 213 LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into " 214 << PredBB->getName() << "\n"); 215 216 // Begin by getting rid of unneeded PHIs. 217 SmallVector<AssertingVH<Value>, 4> IncomingValues; 218 if (isa<PHINode>(BB->front())) { 219 for (PHINode &PN : BB->phis()) 220 if (!isa<PHINode>(PN.getIncomingValue(0)) || 221 cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) 222 IncomingValues.push_back(PN.getIncomingValue(0)); 223 FoldSingleEntryPHINodes(BB, MemDep); 224 } 225 226 // DTU update: Collect all the edges that exit BB. 227 // These dominator edges will be redirected from Pred. 228 std::vector<DominatorTree::UpdateType> Updates; 229 if (DTU) { 230 Updates.reserve(1 + (2 * succ_size(BB))); 231 // Add insert edges first. Experimentally, for the particular case of two 232 // blocks that can be merged, with a single successor and single predecessor 233 // respectively, it is beneficial to have all insert updates first. Deleting 234 // edges first may lead to unreachable blocks, followed by inserting edges 235 // making the blocks reachable again. Such DT updates lead to high compile 236 // times. We add inserts before deletes here to reduce compile time. 237 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 238 // This successor of BB may already have PredBB as a predecessor. 239 if (llvm::find(successors(PredBB), *I) == succ_end(PredBB)) 240 Updates.push_back({DominatorTree::Insert, PredBB, *I}); 241 for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 242 Updates.push_back({DominatorTree::Delete, BB, *I}); 243 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 244 } 245 246 Instruction *PTI = PredBB->getTerminator(); 247 Instruction *STI = BB->getTerminator(); 248 Instruction *Start = &*BB->begin(); 249 // If there's nothing to move, mark the starting instruction as the last 250 // instruction in the block. 251 if (Start == STI) 252 Start = PTI; 253 254 // Move all definitions in the successor to the predecessor... 255 PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(), 256 BB->begin(), STI->getIterator()); 257 258 if (MSSAU) 259 MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start); 260 261 // Make all PHI nodes that referred to BB now refer to Pred as their 262 // source... 263 BB->replaceAllUsesWith(PredBB); 264 265 if (PredecessorWithTwoSuccessors) { 266 // Delete the unconditional branch from BB. 267 BB->getInstList().pop_back(); 268 269 // Update branch in the predecessor. 270 PredBB_BI->setSuccessor(FallThruPath, NewSucc); 271 } else { 272 // Delete the unconditional branch from the predecessor. 273 PredBB->getInstList().pop_back(); 274 275 // Move terminator instruction. 276 PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); 277 } 278 // Add unreachable to now empty BB. 279 new UnreachableInst(BB->getContext(), BB); 280 281 // Eliminate duplicate dbg.values describing the entry PHI node post-splice. 282 for (auto Incoming : IncomingValues) { 283 if (isa<Instruction>(*Incoming)) { 284 SmallVector<DbgValueInst *, 2> DbgValues; 285 SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> 286 DbgValueSet; 287 llvm::findDbgValues(DbgValues, Incoming); 288 for (auto &DVI : DbgValues) { 289 auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); 290 if (!R.second) 291 DVI->eraseFromParent(); 292 } 293 } 294 } 295 296 // Inherit predecessors name if it exists. 297 if (!PredBB->hasName()) 298 PredBB->takeName(BB); 299 300 if (LI) 301 LI->removeBlock(BB); 302 303 if (MemDep) 304 MemDep->invalidateCachedPredecessors(); 305 306 // Finally, erase the old block and update dominator info. 307 if (DTU) { 308 assert(BB->getInstList().size() == 1 && 309 isa<UnreachableInst>(BB->getTerminator()) && 310 "The successor list of BB isn't empty before " 311 "applying corresponding DTU updates."); 312 DTU->applyUpdatesPermissive(Updates); 313 DTU->deleteBB(BB); 314 } else { 315 BB->eraseFromParent(); // Nuke BB if DTU is nullptr. 316 } 317 318 return true; 319 } 320 321 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, 322 BasicBlock::iterator &BI, Value *V) { 323 Instruction &I = *BI; 324 // Replaces all of the uses of the instruction with uses of the value 325 I.replaceAllUsesWith(V); 326 327 // Make sure to propagate a name if there is one already. 328 if (I.hasName() && !V->hasName()) 329 V->takeName(&I); 330 331 // Delete the unnecessary instruction now... 332 BI = BIL.erase(BI); 333 } 334 335 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, 336 BasicBlock::iterator &BI, Instruction *I) { 337 assert(I->getParent() == nullptr && 338 "ReplaceInstWithInst: Instruction already inserted into basic block!"); 339 340 // Copy debug location to newly added instruction, if it wasn't already set 341 // by the caller. 342 if (!I->getDebugLoc()) 343 I->setDebugLoc(BI->getDebugLoc()); 344 345 // Insert the new instruction into the basic block... 346 BasicBlock::iterator New = BIL.insert(BI, I); 347 348 // Replace all uses of the old instruction, and delete it. 349 ReplaceInstWithValue(BIL, BI, I); 350 351 // Move BI back to point to the newly inserted instruction 352 BI = New; 353 } 354 355 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { 356 BasicBlock::iterator BI(From); 357 ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); 358 } 359 360 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, 361 LoopInfo *LI, MemorySSAUpdater *MSSAU) { 362 unsigned SuccNum = GetSuccessorNumber(BB, Succ); 363 364 // If this is a critical edge, let SplitCriticalEdge do it. 365 Instruction *LatchTerm = BB->getTerminator(); 366 if (SplitCriticalEdge( 367 LatchTerm, SuccNum, 368 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) 369 return LatchTerm->getSuccessor(SuccNum); 370 371 // If the edge isn't critical, then BB has a single successor or Succ has a 372 // single pred. Split the block. 373 if (BasicBlock *SP = Succ->getSinglePredecessor()) { 374 // If the successor only has a single pred, split the top of the successor 375 // block. 376 assert(SP == BB && "CFG broken"); 377 SP = nullptr; 378 return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); 379 } 380 381 // Otherwise, if BB has a single successor, split it at the bottom of the 382 // block. 383 assert(BB->getTerminator()->getNumSuccessors() == 1 && 384 "Should have a single succ!"); 385 return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); 386 } 387 388 unsigned 389 llvm::SplitAllCriticalEdges(Function &F, 390 const CriticalEdgeSplittingOptions &Options) { 391 unsigned NumBroken = 0; 392 for (BasicBlock &BB : F) { 393 Instruction *TI = BB.getTerminator(); 394 if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) 395 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 396 if (SplitCriticalEdge(TI, i, Options)) 397 ++NumBroken; 398 } 399 return NumBroken; 400 } 401 402 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, 403 DominatorTree *DT, LoopInfo *LI, 404 MemorySSAUpdater *MSSAU, const Twine &BBName) { 405 BasicBlock::iterator SplitIt = SplitPt->getIterator(); 406 while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) 407 ++SplitIt; 408 std::string Name = BBName.str(); 409 BasicBlock *New = Old->splitBasicBlock( 410 SplitIt, Name.empty() ? Old->getName() + ".split" : Name); 411 412 // The new block lives in whichever loop the old one did. This preserves 413 // LCSSA as well, because we force the split point to be after any PHI nodes. 414 if (LI) 415 if (Loop *L = LI->getLoopFor(Old)) 416 L->addBasicBlockToLoop(New, *LI); 417 418 if (DT) 419 // Old dominates New. New node dominates all other nodes dominated by Old. 420 if (DomTreeNode *OldNode = DT->getNode(Old)) { 421 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 422 423 DomTreeNode *NewNode = DT->addNewBlock(New, Old); 424 for (DomTreeNode *I : Children) 425 DT->changeImmediateDominator(I, NewNode); 426 } 427 428 // Move MemoryAccesses still tracked in Old, but part of New now. 429 // Update accesses in successor blocks accordingly. 430 if (MSSAU) 431 MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); 432 433 return New; 434 } 435 436 /// Update DominatorTree, LoopInfo, and LCCSA analysis information. 437 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, 438 ArrayRef<BasicBlock *> Preds, 439 DominatorTree *DT, LoopInfo *LI, 440 MemorySSAUpdater *MSSAU, 441 bool PreserveLCSSA, bool &HasLoopExit) { 442 // Update dominator tree if available. 443 if (DT) { 444 if (OldBB == DT->getRootNode()->getBlock()) { 445 assert(NewBB == &NewBB->getParent()->getEntryBlock()); 446 DT->setNewRoot(NewBB); 447 } else { 448 // Split block expects NewBB to have a non-empty set of predecessors. 449 DT->splitBlock(NewBB); 450 } 451 } 452 453 // Update MemoryPhis after split if MemorySSA is available 454 if (MSSAU) 455 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); 456 457 // The rest of the logic is only relevant for updating the loop structures. 458 if (!LI) 459 return; 460 461 assert(DT && "DT should be available to update LoopInfo!"); 462 Loop *L = LI->getLoopFor(OldBB); 463 464 // If we need to preserve loop analyses, collect some information about how 465 // this split will affect loops. 466 bool IsLoopEntry = !!L; 467 bool SplitMakesNewLoopHeader = false; 468 for (BasicBlock *Pred : Preds) { 469 // Preds that are not reachable from entry should not be used to identify if 470 // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks 471 // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader 472 // as true and make the NewBB the header of some loop. This breaks LI. 473 if (!DT->isReachableFromEntry(Pred)) 474 continue; 475 // If we need to preserve LCSSA, determine if any of the preds is a loop 476 // exit. 477 if (PreserveLCSSA) 478 if (Loop *PL = LI->getLoopFor(Pred)) 479 if (!PL->contains(OldBB)) 480 HasLoopExit = true; 481 482 // If we need to preserve LoopInfo, note whether any of the preds crosses 483 // an interesting loop boundary. 484 if (!L) 485 continue; 486 if (L->contains(Pred)) 487 IsLoopEntry = false; 488 else 489 SplitMakesNewLoopHeader = true; 490 } 491 492 // Unless we have a loop for OldBB, nothing else to do here. 493 if (!L) 494 return; 495 496 if (IsLoopEntry) { 497 // Add the new block to the nearest enclosing loop (and not an adjacent 498 // loop). To find this, examine each of the predecessors and determine which 499 // loops enclose them, and select the most-nested loop which contains the 500 // loop containing the block being split. 501 Loop *InnermostPredLoop = nullptr; 502 for (BasicBlock *Pred : Preds) { 503 if (Loop *PredLoop = LI->getLoopFor(Pred)) { 504 // Seek a loop which actually contains the block being split (to avoid 505 // adjacent loops). 506 while (PredLoop && !PredLoop->contains(OldBB)) 507 PredLoop = PredLoop->getParentLoop(); 508 509 // Select the most-nested of these loops which contains the block. 510 if (PredLoop && PredLoop->contains(OldBB) && 511 (!InnermostPredLoop || 512 InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) 513 InnermostPredLoop = PredLoop; 514 } 515 } 516 517 if (InnermostPredLoop) 518 InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); 519 } else { 520 L->addBasicBlockToLoop(NewBB, *LI); 521 if (SplitMakesNewLoopHeader) 522 L->moveToHeader(NewBB); 523 } 524 } 525 526 /// Update the PHI nodes in OrigBB to include the values coming from NewBB. 527 /// This also updates AliasAnalysis, if available. 528 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, 529 ArrayRef<BasicBlock *> Preds, BranchInst *BI, 530 bool HasLoopExit) { 531 // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. 532 SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); 533 for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { 534 PHINode *PN = cast<PHINode>(I++); 535 536 // Check to see if all of the values coming in are the same. If so, we 537 // don't need to create a new PHI node, unless it's needed for LCSSA. 538 Value *InVal = nullptr; 539 if (!HasLoopExit) { 540 InVal = PN->getIncomingValueForBlock(Preds[0]); 541 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 542 if (!PredSet.count(PN->getIncomingBlock(i))) 543 continue; 544 if (!InVal) 545 InVal = PN->getIncomingValue(i); 546 else if (InVal != PN->getIncomingValue(i)) { 547 InVal = nullptr; 548 break; 549 } 550 } 551 } 552 553 if (InVal) { 554 // If all incoming values for the new PHI would be the same, just don't 555 // make a new PHI. Instead, just remove the incoming values from the old 556 // PHI. 557 558 // NOTE! This loop walks backwards for a reason! First off, this minimizes 559 // the cost of removal if we end up removing a large number of values, and 560 // second off, this ensures that the indices for the incoming values 561 // aren't invalidated when we remove one. 562 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) 563 if (PredSet.count(PN->getIncomingBlock(i))) 564 PN->removeIncomingValue(i, false); 565 566 // Add an incoming value to the PHI node in the loop for the preheader 567 // edge. 568 PN->addIncoming(InVal, NewBB); 569 continue; 570 } 571 572 // If the values coming into the block are not the same, we need a new 573 // PHI. 574 // Create the new PHI node, insert it into NewBB at the end of the block 575 PHINode *NewPHI = 576 PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); 577 578 // NOTE! This loop walks backwards for a reason! First off, this minimizes 579 // the cost of removal if we end up removing a large number of values, and 580 // second off, this ensures that the indices for the incoming values aren't 581 // invalidated when we remove one. 582 for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { 583 BasicBlock *IncomingBB = PN->getIncomingBlock(i); 584 if (PredSet.count(IncomingBB)) { 585 Value *V = PN->removeIncomingValue(i, false); 586 NewPHI->addIncoming(V, IncomingBB); 587 } 588 } 589 590 PN->addIncoming(NewPHI, NewBB); 591 } 592 } 593 594 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, 595 ArrayRef<BasicBlock *> Preds, 596 const char *Suffix, DominatorTree *DT, 597 LoopInfo *LI, MemorySSAUpdater *MSSAU, 598 bool PreserveLCSSA) { 599 // Do not attempt to split that which cannot be split. 600 if (!BB->canSplitPredecessors()) 601 return nullptr; 602 603 // For the landingpads we need to act a bit differently. 604 // Delegate this work to the SplitLandingPadPredecessors. 605 if (BB->isLandingPad()) { 606 SmallVector<BasicBlock*, 2> NewBBs; 607 std::string NewName = std::string(Suffix) + ".split-lp"; 608 609 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, 610 LI, MSSAU, PreserveLCSSA); 611 return NewBBs[0]; 612 } 613 614 // Create new basic block, insert right before the original block. 615 BasicBlock *NewBB = BasicBlock::Create( 616 BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); 617 618 // The new block unconditionally branches to the old block. 619 BranchInst *BI = BranchInst::Create(BB, NewBB); 620 // Splitting the predecessors of a loop header creates a preheader block. 621 if (LI && LI->isLoopHeader(BB)) 622 // Using the loop start line number prevents debuggers stepping into the 623 // loop body for this instruction. 624 BI->setDebugLoc(LI->getLoopFor(BB)->getStartLoc()); 625 else 626 BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); 627 628 // Move the edges from Preds to point to NewBB instead of BB. 629 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 630 // This is slightly more strict than necessary; the minimum requirement 631 // is that there be no more than one indirectbr branching to BB. And 632 // all BlockAddress uses would need to be updated. 633 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 634 "Cannot split an edge from an IndirectBrInst"); 635 assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && 636 "Cannot split an edge from a CallBrInst"); 637 Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); 638 } 639 640 // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI 641 // node becomes an incoming value for BB's phi node. However, if the Preds 642 // list is empty, we need to insert dummy entries into the PHI nodes in BB to 643 // account for the newly created predecessor. 644 if (Preds.empty()) { 645 // Insert dummy values as the incoming value. 646 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) 647 cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); 648 } 649 650 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 651 bool HasLoopExit = false; 652 UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, 653 HasLoopExit); 654 655 if (!Preds.empty()) { 656 // Update the PHI nodes in BB with the values coming from NewBB. 657 UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); 658 } 659 660 return NewBB; 661 } 662 663 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, 664 ArrayRef<BasicBlock *> Preds, 665 const char *Suffix1, const char *Suffix2, 666 SmallVectorImpl<BasicBlock *> &NewBBs, 667 DominatorTree *DT, LoopInfo *LI, 668 MemorySSAUpdater *MSSAU, 669 bool PreserveLCSSA) { 670 assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); 671 672 // Create a new basic block for OrigBB's predecessors listed in Preds. Insert 673 // it right before the original block. 674 BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), 675 OrigBB->getName() + Suffix1, 676 OrigBB->getParent(), OrigBB); 677 NewBBs.push_back(NewBB1); 678 679 // The new block unconditionally branches to the old block. 680 BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); 681 BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 682 683 // Move the edges from Preds to point to NewBB1 instead of OrigBB. 684 for (unsigned i = 0, e = Preds.size(); i != e; ++i) { 685 // This is slightly more strict than necessary; the minimum requirement 686 // is that there be no more than one indirectbr branching to BB. And 687 // all BlockAddress uses would need to be updated. 688 assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && 689 "Cannot split an edge from an IndirectBrInst"); 690 Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); 691 } 692 693 bool HasLoopExit = false; 694 UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, 695 HasLoopExit); 696 697 // Update the PHI nodes in OrigBB with the values coming from NewBB1. 698 UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); 699 700 // Move the remaining edges from OrigBB to point to NewBB2. 701 SmallVector<BasicBlock*, 8> NewBB2Preds; 702 for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); 703 i != e; ) { 704 BasicBlock *Pred = *i++; 705 if (Pred == NewBB1) continue; 706 assert(!isa<IndirectBrInst>(Pred->getTerminator()) && 707 "Cannot split an edge from an IndirectBrInst"); 708 NewBB2Preds.push_back(Pred); 709 e = pred_end(OrigBB); 710 } 711 712 BasicBlock *NewBB2 = nullptr; 713 if (!NewBB2Preds.empty()) { 714 // Create another basic block for the rest of OrigBB's predecessors. 715 NewBB2 = BasicBlock::Create(OrigBB->getContext(), 716 OrigBB->getName() + Suffix2, 717 OrigBB->getParent(), OrigBB); 718 NewBBs.push_back(NewBB2); 719 720 // The new block unconditionally branches to the old block. 721 BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); 722 BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); 723 724 // Move the remaining edges from OrigBB to point to NewBB2. 725 for (BasicBlock *NewBB2Pred : NewBB2Preds) 726 NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); 727 728 // Update DominatorTree, LoopInfo, and LCCSA analysis information. 729 HasLoopExit = false; 730 UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, 731 PreserveLCSSA, HasLoopExit); 732 733 // Update the PHI nodes in OrigBB with the values coming from NewBB2. 734 UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); 735 } 736 737 LandingPadInst *LPad = OrigBB->getLandingPadInst(); 738 Instruction *Clone1 = LPad->clone(); 739 Clone1->setName(Twine("lpad") + Suffix1); 740 NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); 741 742 if (NewBB2) { 743 Instruction *Clone2 = LPad->clone(); 744 Clone2->setName(Twine("lpad") + Suffix2); 745 NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); 746 747 // Create a PHI node for the two cloned landingpad instructions only 748 // if the original landingpad instruction has some uses. 749 if (!LPad->use_empty()) { 750 assert(!LPad->getType()->isTokenTy() && 751 "Split cannot be applied if LPad is token type. Otherwise an " 752 "invalid PHINode of token type would be created."); 753 PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); 754 PN->addIncoming(Clone1, NewBB1); 755 PN->addIncoming(Clone2, NewBB2); 756 LPad->replaceAllUsesWith(PN); 757 } 758 LPad->eraseFromParent(); 759 } else { 760 // There is no second clone. Just replace the landing pad with the first 761 // clone. 762 LPad->replaceAllUsesWith(Clone1); 763 LPad->eraseFromParent(); 764 } 765 } 766 767 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, 768 BasicBlock *Pred, 769 DomTreeUpdater *DTU) { 770 Instruction *UncondBranch = Pred->getTerminator(); 771 // Clone the return and add it to the end of the predecessor. 772 Instruction *NewRet = RI->clone(); 773 Pred->getInstList().push_back(NewRet); 774 775 // If the return instruction returns a value, and if the value was a 776 // PHI node in "BB", propagate the right value into the return. 777 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); 778 i != e; ++i) { 779 Value *V = *i; 780 Instruction *NewBC = nullptr; 781 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { 782 // Return value might be bitcasted. Clone and insert it before the 783 // return instruction. 784 V = BCI->getOperand(0); 785 NewBC = BCI->clone(); 786 Pred->getInstList().insert(NewRet->getIterator(), NewBC); 787 *i = NewBC; 788 } 789 if (PHINode *PN = dyn_cast<PHINode>(V)) { 790 if (PN->getParent() == BB) { 791 if (NewBC) 792 NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); 793 else 794 *i = PN->getIncomingValueForBlock(Pred); 795 } 796 } 797 } 798 799 // Update any PHI nodes in the returning block to realize that we no 800 // longer branch to them. 801 BB->removePredecessor(Pred); 802 UncondBranch->eraseFromParent(); 803 804 if (DTU) 805 DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}}); 806 807 return cast<ReturnInst>(NewRet); 808 } 809 810 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, 811 Instruction *SplitBefore, 812 bool Unreachable, 813 MDNode *BranchWeights, 814 DominatorTree *DT, LoopInfo *LI, 815 BasicBlock *ThenBlock) { 816 BasicBlock *Head = SplitBefore->getParent(); 817 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 818 Instruction *HeadOldTerm = Head->getTerminator(); 819 LLVMContext &C = Head->getContext(); 820 Instruction *CheckTerm; 821 bool CreateThenBlock = (ThenBlock == nullptr); 822 if (CreateThenBlock) { 823 ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 824 if (Unreachable) 825 CheckTerm = new UnreachableInst(C, ThenBlock); 826 else 827 CheckTerm = BranchInst::Create(Tail, ThenBlock); 828 CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); 829 } else 830 CheckTerm = ThenBlock->getTerminator(); 831 BranchInst *HeadNewTerm = 832 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); 833 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 834 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 835 836 if (DT) { 837 if (DomTreeNode *OldNode = DT->getNode(Head)) { 838 std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); 839 840 DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); 841 for (DomTreeNode *Child : Children) 842 DT->changeImmediateDominator(Child, NewNode); 843 844 // Head dominates ThenBlock. 845 if (CreateThenBlock) 846 DT->addNewBlock(ThenBlock, Head); 847 else 848 DT->changeImmediateDominator(ThenBlock, Head); 849 } 850 } 851 852 if (LI) { 853 if (Loop *L = LI->getLoopFor(Head)) { 854 L->addBasicBlockToLoop(ThenBlock, *LI); 855 L->addBasicBlockToLoop(Tail, *LI); 856 } 857 } 858 859 return CheckTerm; 860 } 861 862 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, 863 Instruction **ThenTerm, 864 Instruction **ElseTerm, 865 MDNode *BranchWeights) { 866 BasicBlock *Head = SplitBefore->getParent(); 867 BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); 868 Instruction *HeadOldTerm = Head->getTerminator(); 869 LLVMContext &C = Head->getContext(); 870 BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 871 BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); 872 *ThenTerm = BranchInst::Create(Tail, ThenBlock); 873 (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 874 *ElseTerm = BranchInst::Create(Tail, ElseBlock); 875 (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); 876 BranchInst *HeadNewTerm = 877 BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); 878 HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); 879 ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); 880 } 881 882 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, 883 BasicBlock *&IfFalse) { 884 PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); 885 BasicBlock *Pred1 = nullptr; 886 BasicBlock *Pred2 = nullptr; 887 888 if (SomePHI) { 889 if (SomePHI->getNumIncomingValues() != 2) 890 return nullptr; 891 Pred1 = SomePHI->getIncomingBlock(0); 892 Pred2 = SomePHI->getIncomingBlock(1); 893 } else { 894 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 895 if (PI == PE) // No predecessor 896 return nullptr; 897 Pred1 = *PI++; 898 if (PI == PE) // Only one predecessor 899 return nullptr; 900 Pred2 = *PI++; 901 if (PI != PE) // More than two predecessors 902 return nullptr; 903 } 904 905 // We can only handle branches. Other control flow will be lowered to 906 // branches if possible anyway. 907 BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); 908 BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); 909 if (!Pred1Br || !Pred2Br) 910 return nullptr; 911 912 // Eliminate code duplication by ensuring that Pred1Br is conditional if 913 // either are. 914 if (Pred2Br->isConditional()) { 915 // If both branches are conditional, we don't have an "if statement". In 916 // reality, we could transform this case, but since the condition will be 917 // required anyway, we stand no chance of eliminating it, so the xform is 918 // probably not profitable. 919 if (Pred1Br->isConditional()) 920 return nullptr; 921 922 std::swap(Pred1, Pred2); 923 std::swap(Pred1Br, Pred2Br); 924 } 925 926 if (Pred1Br->isConditional()) { 927 // The only thing we have to watch out for here is to make sure that Pred2 928 // doesn't have incoming edges from other blocks. If it does, the condition 929 // doesn't dominate BB. 930 if (!Pred2->getSinglePredecessor()) 931 return nullptr; 932 933 // If we found a conditional branch predecessor, make sure that it branches 934 // to BB and Pred2Br. If it doesn't, this isn't an "if statement". 935 if (Pred1Br->getSuccessor(0) == BB && 936 Pred1Br->getSuccessor(1) == Pred2) { 937 IfTrue = Pred1; 938 IfFalse = Pred2; 939 } else if (Pred1Br->getSuccessor(0) == Pred2 && 940 Pred1Br->getSuccessor(1) == BB) { 941 IfTrue = Pred2; 942 IfFalse = Pred1; 943 } else { 944 // We know that one arm of the conditional goes to BB, so the other must 945 // go somewhere unrelated, and this must not be an "if statement". 946 return nullptr; 947 } 948 949 return Pred1Br->getCondition(); 950 } 951 952 // Ok, if we got here, both predecessors end with an unconditional branch to 953 // BB. Don't panic! If both blocks only have a single (identical) 954 // predecessor, and THAT is a conditional branch, then we're all ok! 955 BasicBlock *CommonPred = Pred1->getSinglePredecessor(); 956 if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) 957 return nullptr; 958 959 // Otherwise, if this is a conditional branch, then we can use it! 960 BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); 961 if (!BI) return nullptr; 962 963 assert(BI->isConditional() && "Two successors but not conditional?"); 964 if (BI->getSuccessor(0) == Pred1) { 965 IfTrue = Pred1; 966 IfFalse = Pred2; 967 } else { 968 IfTrue = Pred2; 969 IfFalse = Pred1; 970 } 971 return BI->getCondition(); 972 } 973