xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Utils/BasicBlockUtils.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This family of functions perform manipulations on basic blocks, and
10 // instructions contained within basic blocks.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/CFG.h"
20 #include "llvm/Analysis/DomTreeUpdater.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/PostDominators.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/PseudoProbe.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/IR/User.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include <cassert>
47 #include <cstdint>
48 #include <string>
49 #include <utility>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "basicblock-utils"
55 
56 static cl::opt<unsigned> MaxDeoptOrUnreachableSuccessorCheckDepth(
57     "max-deopt-or-unreachable-succ-check-depth", cl::init(8), cl::Hidden,
58     cl::desc("Set the maximum path length when checking whether a basic block "
59              "is followed by a block that either has a terminating "
60              "deoptimizing call or is terminated with an unreachable"));
61 
62 void llvm::DetatchDeadBlocks(
63     ArrayRef<BasicBlock *> BBs,
64     SmallVectorImpl<DominatorTree::UpdateType> *Updates,
65     bool KeepOneInputPHIs) {
66   for (auto *BB : BBs) {
67     // Loop through all of our successors and make sure they know that one
68     // of their predecessors is going away.
69     SmallPtrSet<BasicBlock *, 4> UniqueSuccessors;
70     for (BasicBlock *Succ : successors(BB)) {
71       Succ->removePredecessor(BB, KeepOneInputPHIs);
72       if (Updates && UniqueSuccessors.insert(Succ).second)
73         Updates->push_back({DominatorTree::Delete, BB, Succ});
74     }
75 
76     // Zap all the instructions in the block.
77     while (!BB->empty()) {
78       Instruction &I = BB->back();
79       // If this instruction is used, replace uses with an arbitrary value.
80       // Because control flow can't get here, we don't care what we replace the
81       // value with.  Note that since this block is unreachable, and all values
82       // contained within it must dominate their uses, that all uses will
83       // eventually be removed (they are themselves dead).
84       if (!I.use_empty())
85         I.replaceAllUsesWith(UndefValue::get(I.getType()));
86       BB->getInstList().pop_back();
87     }
88     new UnreachableInst(BB->getContext(), BB);
89     assert(BB->getInstList().size() == 1 &&
90            isa<UnreachableInst>(BB->getTerminator()) &&
91            "The successor list of BB isn't empty before "
92            "applying corresponding DTU updates.");
93   }
94 }
95 
96 void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU,
97                            bool KeepOneInputPHIs) {
98   DeleteDeadBlocks({BB}, DTU, KeepOneInputPHIs);
99 }
100 
101 void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, DomTreeUpdater *DTU,
102                             bool KeepOneInputPHIs) {
103 #ifndef NDEBUG
104   // Make sure that all predecessors of each dead block is also dead.
105   SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
106   assert(Dead.size() == BBs.size() && "Duplicating blocks?");
107   for (auto *BB : Dead)
108     for (BasicBlock *Pred : predecessors(BB))
109       assert(Dead.count(Pred) && "All predecessors must be dead!");
110 #endif
111 
112   SmallVector<DominatorTree::UpdateType, 4> Updates;
113   DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr, KeepOneInputPHIs);
114 
115   if (DTU)
116     DTU->applyUpdates(Updates);
117 
118   for (BasicBlock *BB : BBs)
119     if (DTU)
120       DTU->deleteBB(BB);
121     else
122       BB->eraseFromParent();
123 }
124 
125 bool llvm::EliminateUnreachableBlocks(Function &F, DomTreeUpdater *DTU,
126                                       bool KeepOneInputPHIs) {
127   df_iterator_default_set<BasicBlock*> Reachable;
128 
129   // Mark all reachable blocks.
130   for (BasicBlock *BB : depth_first_ext(&F, Reachable))
131     (void)BB/* Mark all reachable blocks */;
132 
133   // Collect all dead blocks.
134   std::vector<BasicBlock*> DeadBlocks;
135   for (BasicBlock &BB : F)
136     if (!Reachable.count(&BB))
137       DeadBlocks.push_back(&BB);
138 
139   // Delete the dead blocks.
140   DeleteDeadBlocks(DeadBlocks, DTU, KeepOneInputPHIs);
141 
142   return !DeadBlocks.empty();
143 }
144 
145 bool llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
146                                    MemoryDependenceResults *MemDep) {
147   if (!isa<PHINode>(BB->begin()))
148     return false;
149 
150   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
151     if (PN->getIncomingValue(0) != PN)
152       PN->replaceAllUsesWith(PN->getIncomingValue(0));
153     else
154       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
155 
156     if (MemDep)
157       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
158 
159     PN->eraseFromParent();
160   }
161   return true;
162 }
163 
164 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI,
165                           MemorySSAUpdater *MSSAU) {
166   // Recursively deleting a PHI may cause multiple PHIs to be deleted
167   // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
168   SmallVector<WeakTrackingVH, 8> PHIs;
169   for (PHINode &PN : BB->phis())
170     PHIs.push_back(&PN);
171 
172   bool Changed = false;
173   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
174     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
175       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI, MSSAU);
176 
177   return Changed;
178 }
179 
180 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
181                                      LoopInfo *LI, MemorySSAUpdater *MSSAU,
182                                      MemoryDependenceResults *MemDep,
183                                      bool PredecessorWithTwoSuccessors) {
184   if (BB->hasAddressTaken())
185     return false;
186 
187   // Can't merge if there are multiple predecessors, or no predecessors.
188   BasicBlock *PredBB = BB->getUniquePredecessor();
189   if (!PredBB) return false;
190 
191   // Don't break self-loops.
192   if (PredBB == BB) return false;
193   // Don't break unwinding instructions.
194   if (PredBB->getTerminator()->isExceptionalTerminator())
195     return false;
196 
197   // Can't merge if there are multiple distinct successors.
198   if (!PredecessorWithTwoSuccessors && PredBB->getUniqueSuccessor() != BB)
199     return false;
200 
201   // Currently only allow PredBB to have two predecessors, one being BB.
202   // Update BI to branch to BB's only successor instead of BB.
203   BranchInst *PredBB_BI;
204   BasicBlock *NewSucc = nullptr;
205   unsigned FallThruPath;
206   if (PredecessorWithTwoSuccessors) {
207     if (!(PredBB_BI = dyn_cast<BranchInst>(PredBB->getTerminator())))
208       return false;
209     BranchInst *BB_JmpI = dyn_cast<BranchInst>(BB->getTerminator());
210     if (!BB_JmpI || !BB_JmpI->isUnconditional())
211       return false;
212     NewSucc = BB_JmpI->getSuccessor(0);
213     FallThruPath = PredBB_BI->getSuccessor(0) == BB ? 0 : 1;
214   }
215 
216   // Can't merge if there is PHI loop.
217   for (PHINode &PN : BB->phis())
218     if (llvm::is_contained(PN.incoming_values(), &PN))
219       return false;
220 
221   LLVM_DEBUG(dbgs() << "Merging: " << BB->getName() << " into "
222                     << PredBB->getName() << "\n");
223 
224   // Begin by getting rid of unneeded PHIs.
225   SmallVector<AssertingVH<Value>, 4> IncomingValues;
226   if (isa<PHINode>(BB->front())) {
227     for (PHINode &PN : BB->phis())
228       if (!isa<PHINode>(PN.getIncomingValue(0)) ||
229           cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
230         IncomingValues.push_back(PN.getIncomingValue(0));
231     FoldSingleEntryPHINodes(BB, MemDep);
232   }
233 
234   // DTU update: Collect all the edges that exit BB.
235   // These dominator edges will be redirected from Pred.
236   std::vector<DominatorTree::UpdateType> Updates;
237   if (DTU) {
238     SmallPtrSet<BasicBlock *, 2> SuccsOfBB(succ_begin(BB), succ_end(BB));
239     SmallPtrSet<BasicBlock *, 2> SuccsOfPredBB(succ_begin(PredBB),
240                                                succ_end(PredBB));
241     Updates.reserve(Updates.size() + 2 * SuccsOfBB.size() + 1);
242     // Add insert edges first. Experimentally, for the particular case of two
243     // blocks that can be merged, with a single successor and single predecessor
244     // respectively, it is beneficial to have all insert updates first. Deleting
245     // edges first may lead to unreachable blocks, followed by inserting edges
246     // making the blocks reachable again. Such DT updates lead to high compile
247     // times. We add inserts before deletes here to reduce compile time.
248     for (BasicBlock *SuccOfBB : SuccsOfBB)
249       // This successor of BB may already be a PredBB's successor.
250       if (!SuccsOfPredBB.contains(SuccOfBB))
251         Updates.push_back({DominatorTree::Insert, PredBB, SuccOfBB});
252     for (BasicBlock *SuccOfBB : SuccsOfBB)
253       Updates.push_back({DominatorTree::Delete, BB, SuccOfBB});
254     Updates.push_back({DominatorTree::Delete, PredBB, BB});
255   }
256 
257   Instruction *PTI = PredBB->getTerminator();
258   Instruction *STI = BB->getTerminator();
259   Instruction *Start = &*BB->begin();
260   // If there's nothing to move, mark the starting instruction as the last
261   // instruction in the block. Terminator instruction is handled separately.
262   if (Start == STI)
263     Start = PTI;
264 
265   // Move all definitions in the successor to the predecessor...
266   PredBB->getInstList().splice(PTI->getIterator(), BB->getInstList(),
267                                BB->begin(), STI->getIterator());
268 
269   if (MSSAU)
270     MSSAU->moveAllAfterMergeBlocks(BB, PredBB, Start);
271 
272   // Make all PHI nodes that referred to BB now refer to Pred as their
273   // source...
274   BB->replaceAllUsesWith(PredBB);
275 
276   if (PredecessorWithTwoSuccessors) {
277     // Delete the unconditional branch from BB.
278     BB->getInstList().pop_back();
279 
280     // Update branch in the predecessor.
281     PredBB_BI->setSuccessor(FallThruPath, NewSucc);
282   } else {
283     // Delete the unconditional branch from the predecessor.
284     PredBB->getInstList().pop_back();
285 
286     // Move terminator instruction.
287     PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
288 
289     // Terminator may be a memory accessing instruction too.
290     if (MSSAU)
291       if (MemoryUseOrDef *MUD = cast_or_null<MemoryUseOrDef>(
292               MSSAU->getMemorySSA()->getMemoryAccess(PredBB->getTerminator())))
293         MSSAU->moveToPlace(MUD, PredBB, MemorySSA::End);
294   }
295   // Add unreachable to now empty BB.
296   new UnreachableInst(BB->getContext(), BB);
297 
298   // Inherit predecessors name if it exists.
299   if (!PredBB->hasName())
300     PredBB->takeName(BB);
301 
302   if (LI)
303     LI->removeBlock(BB);
304 
305   if (MemDep)
306     MemDep->invalidateCachedPredecessors();
307 
308   if (DTU)
309     DTU->applyUpdates(Updates);
310 
311   // Finally, erase the old block and update dominator info.
312   DeleteDeadBlock(BB, DTU);
313 
314   return true;
315 }
316 
317 bool llvm::MergeBlockSuccessorsIntoGivenBlocks(
318     SmallPtrSetImpl<BasicBlock *> &MergeBlocks, Loop *L, DomTreeUpdater *DTU,
319     LoopInfo *LI) {
320   assert(!MergeBlocks.empty() && "MergeBlocks should not be empty");
321 
322   bool BlocksHaveBeenMerged = false;
323   while (!MergeBlocks.empty()) {
324     BasicBlock *BB = *MergeBlocks.begin();
325     BasicBlock *Dest = BB->getSingleSuccessor();
326     if (Dest && (!L || L->contains(Dest))) {
327       BasicBlock *Fold = Dest->getUniquePredecessor();
328       (void)Fold;
329       if (MergeBlockIntoPredecessor(Dest, DTU, LI)) {
330         assert(Fold == BB &&
331                "Expecting BB to be unique predecessor of the Dest block");
332         MergeBlocks.erase(Dest);
333         BlocksHaveBeenMerged = true;
334       } else
335         MergeBlocks.erase(BB);
336     } else
337       MergeBlocks.erase(BB);
338   }
339   return BlocksHaveBeenMerged;
340 }
341 
342 /// Remove redundant instructions within sequences of consecutive dbg.value
343 /// instructions. This is done using a backward scan to keep the last dbg.value
344 /// describing a specific variable/fragment.
345 ///
346 /// BackwardScan strategy:
347 /// ----------------------
348 /// Given a sequence of consecutive DbgValueInst like this
349 ///
350 ///   dbg.value ..., "x", FragmentX1  (*)
351 ///   dbg.value ..., "y", FragmentY1
352 ///   dbg.value ..., "x", FragmentX2
353 ///   dbg.value ..., "x", FragmentX1  (**)
354 ///
355 /// then the instruction marked with (*) can be removed (it is guaranteed to be
356 /// obsoleted by the instruction marked with (**) as the latter instruction is
357 /// describing the same variable using the same fragment info).
358 ///
359 /// Possible improvements:
360 /// - Check fully overlapping fragments and not only identical fragments.
361 /// - Support dbg.addr, dbg.declare. dbg.label, and possibly other meta
362 ///   instructions being part of the sequence of consecutive instructions.
363 static bool removeRedundantDbgInstrsUsingBackwardScan(BasicBlock *BB) {
364   SmallVector<DbgValueInst *, 8> ToBeRemoved;
365   SmallDenseSet<DebugVariable> VariableSet;
366   for (auto &I : reverse(*BB)) {
367     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
368       DebugVariable Key(DVI->getVariable(),
369                         DVI->getExpression(),
370                         DVI->getDebugLoc()->getInlinedAt());
371       auto R = VariableSet.insert(Key);
372       // If the same variable fragment is described more than once it is enough
373       // to keep the last one (i.e. the first found since we for reverse
374       // iteration).
375       if (!R.second)
376         ToBeRemoved.push_back(DVI);
377       continue;
378     }
379     // Sequence with consecutive dbg.value instrs ended. Clear the map to
380     // restart identifying redundant instructions if case we find another
381     // dbg.value sequence.
382     VariableSet.clear();
383   }
384 
385   for (auto &Instr : ToBeRemoved)
386     Instr->eraseFromParent();
387 
388   return !ToBeRemoved.empty();
389 }
390 
391 /// Remove redundant dbg.value instructions using a forward scan. This can
392 /// remove a dbg.value instruction that is redundant due to indicating that a
393 /// variable has the same value as already being indicated by an earlier
394 /// dbg.value.
395 ///
396 /// ForwardScan strategy:
397 /// ---------------------
398 /// Given two identical dbg.value instructions, separated by a block of
399 /// instructions that isn't describing the same variable, like this
400 ///
401 ///   dbg.value X1, "x", FragmentX1  (**)
402 ///   <block of instructions, none being "dbg.value ..., "x", ...">
403 ///   dbg.value X1, "x", FragmentX1  (*)
404 ///
405 /// then the instruction marked with (*) can be removed. Variable "x" is already
406 /// described as being mapped to the SSA value X1.
407 ///
408 /// Possible improvements:
409 /// - Keep track of non-overlapping fragments.
410 static bool removeRedundantDbgInstrsUsingForwardScan(BasicBlock *BB) {
411   SmallVector<DbgValueInst *, 8> ToBeRemoved;
412   DenseMap<DebugVariable, std::pair<SmallVector<Value *, 4>, DIExpression *>>
413       VariableMap;
414   for (auto &I : *BB) {
415     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(&I)) {
416       DebugVariable Key(DVI->getVariable(),
417                         NoneType(),
418                         DVI->getDebugLoc()->getInlinedAt());
419       auto VMI = VariableMap.find(Key);
420       // Update the map if we found a new value/expression describing the
421       // variable, or if the variable wasn't mapped already.
422       SmallVector<Value *, 4> Values(DVI->getValues());
423       if (VMI == VariableMap.end() || VMI->second.first != Values ||
424           VMI->second.second != DVI->getExpression()) {
425         VariableMap[Key] = {Values, DVI->getExpression()};
426         continue;
427       }
428       // Found an identical mapping. Remember the instruction for later removal.
429       ToBeRemoved.push_back(DVI);
430     }
431   }
432 
433   for (auto &Instr : ToBeRemoved)
434     Instr->eraseFromParent();
435 
436   return !ToBeRemoved.empty();
437 }
438 
439 bool llvm::RemoveRedundantDbgInstrs(BasicBlock *BB) {
440   bool MadeChanges = false;
441   // By using the "backward scan" strategy before the "forward scan" strategy we
442   // can remove both dbg.value (2) and (3) in a situation like this:
443   //
444   //   (1) dbg.value V1, "x", DIExpression()
445   //       ...
446   //   (2) dbg.value V2, "x", DIExpression()
447   //   (3) dbg.value V1, "x", DIExpression()
448   //
449   // The backward scan will remove (2), it is made obsolete by (3). After
450   // getting (2) out of the way, the foward scan will remove (3) since "x"
451   // already is described as having the value V1 at (1).
452   MadeChanges |= removeRedundantDbgInstrsUsingBackwardScan(BB);
453   MadeChanges |= removeRedundantDbgInstrsUsingForwardScan(BB);
454 
455   if (MadeChanges)
456     LLVM_DEBUG(dbgs() << "Removed redundant dbg instrs from: "
457                       << BB->getName() << "\n");
458   return MadeChanges;
459 }
460 
461 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
462                                 BasicBlock::iterator &BI, Value *V) {
463   Instruction &I = *BI;
464   // Replaces all of the uses of the instruction with uses of the value
465   I.replaceAllUsesWith(V);
466 
467   // Make sure to propagate a name if there is one already.
468   if (I.hasName() && !V->hasName())
469     V->takeName(&I);
470 
471   // Delete the unnecessary instruction now...
472   BI = BIL.erase(BI);
473 }
474 
475 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
476                                BasicBlock::iterator &BI, Instruction *I) {
477   assert(I->getParent() == nullptr &&
478          "ReplaceInstWithInst: Instruction already inserted into basic block!");
479 
480   // Copy debug location to newly added instruction, if it wasn't already set
481   // by the caller.
482   if (!I->getDebugLoc())
483     I->setDebugLoc(BI->getDebugLoc());
484 
485   // Insert the new instruction into the basic block...
486   BasicBlock::iterator New = BIL.insert(BI, I);
487 
488   // Replace all uses of the old instruction, and delete it.
489   ReplaceInstWithValue(BIL, BI, I);
490 
491   // Move BI back to point to the newly inserted instruction
492   BI = New;
493 }
494 
495 bool llvm::IsBlockFollowedByDeoptOrUnreachable(const BasicBlock *BB) {
496   // Remember visited blocks to avoid infinite loop
497   SmallPtrSet<const BasicBlock *, 8> VisitedBlocks;
498   unsigned Depth = 0;
499   while (BB && Depth++ < MaxDeoptOrUnreachableSuccessorCheckDepth &&
500          VisitedBlocks.insert(BB).second) {
501     if (BB->getTerminatingDeoptimizeCall() ||
502         isa<UnreachableInst>(BB->getTerminator()))
503       return true;
504     BB = BB->getUniqueSuccessor();
505   }
506   return false;
507 }
508 
509 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
510   BasicBlock::iterator BI(From);
511   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
512 }
513 
514 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
515                             LoopInfo *LI, MemorySSAUpdater *MSSAU,
516                             const Twine &BBName) {
517   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
518 
519   Instruction *LatchTerm = BB->getTerminator();
520 
521   CriticalEdgeSplittingOptions Options =
522       CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA();
523 
524   if ((isCriticalEdge(LatchTerm, SuccNum, Options.MergeIdenticalEdges))) {
525     // If it is a critical edge, and the succesor is an exception block, handle
526     // the split edge logic in this specific function
527     if (Succ->isEHPad())
528       return ehAwareSplitEdge(BB, Succ, nullptr, nullptr, Options, BBName);
529 
530     // If this is a critical edge, let SplitKnownCriticalEdge do it.
531     return SplitKnownCriticalEdge(LatchTerm, SuccNum, Options, BBName);
532   }
533 
534   // If the edge isn't critical, then BB has a single successor or Succ has a
535   // single pred.  Split the block.
536   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
537     // If the successor only has a single pred, split the top of the successor
538     // block.
539     assert(SP == BB && "CFG broken");
540     SP = nullptr;
541     return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU, BBName,
542                       /*Before=*/true);
543   }
544 
545   // Otherwise, if BB has a single successor, split it at the bottom of the
546   // block.
547   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
548          "Should have a single succ!");
549   return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU, BBName);
550 }
551 
552 void llvm::setUnwindEdgeTo(Instruction *TI, BasicBlock *Succ) {
553   if (auto *II = dyn_cast<InvokeInst>(TI))
554     II->setUnwindDest(Succ);
555   else if (auto *CS = dyn_cast<CatchSwitchInst>(TI))
556     CS->setUnwindDest(Succ);
557   else if (auto *CR = dyn_cast<CleanupReturnInst>(TI))
558     CR->setUnwindDest(Succ);
559   else
560     llvm_unreachable("unexpected terminator instruction");
561 }
562 
563 void llvm::updatePhiNodes(BasicBlock *DestBB, BasicBlock *OldPred,
564                           BasicBlock *NewPred, PHINode *Until) {
565   int BBIdx = 0;
566   for (PHINode &PN : DestBB->phis()) {
567     // We manually update the LandingPadReplacement PHINode and it is the last
568     // PHI Node. So, if we find it, we are done.
569     if (Until == &PN)
570       break;
571 
572     // Reuse the previous value of BBIdx if it lines up.  In cases where we
573     // have multiple phi nodes with *lots* of predecessors, this is a speed
574     // win because we don't have to scan the PHI looking for TIBB.  This
575     // happens because the BB list of PHI nodes are usually in the same
576     // order.
577     if (PN.getIncomingBlock(BBIdx) != OldPred)
578       BBIdx = PN.getBasicBlockIndex(OldPred);
579 
580     assert(BBIdx != -1 && "Invalid PHI Index!");
581     PN.setIncomingBlock(BBIdx, NewPred);
582   }
583 }
584 
585 BasicBlock *llvm::ehAwareSplitEdge(BasicBlock *BB, BasicBlock *Succ,
586                                    LandingPadInst *OriginalPad,
587                                    PHINode *LandingPadReplacement,
588                                    const CriticalEdgeSplittingOptions &Options,
589                                    const Twine &BBName) {
590 
591   auto *PadInst = Succ->getFirstNonPHI();
592   if (!LandingPadReplacement && !PadInst->isEHPad())
593     return SplitEdge(BB, Succ, Options.DT, Options.LI, Options.MSSAU, BBName);
594 
595   auto *LI = Options.LI;
596   SmallVector<BasicBlock *, 4> LoopPreds;
597   // Check if extra modifications will be required to preserve loop-simplify
598   // form after splitting. If it would require splitting blocks with IndirectBr
599   // terminators, bail out if preserving loop-simplify form is requested.
600   if (Options.PreserveLoopSimplify && LI) {
601     if (Loop *BBLoop = LI->getLoopFor(BB)) {
602 
603       // The only way that we can break LoopSimplify form by splitting a
604       // critical edge is when there exists some edge from BBLoop to Succ *and*
605       // the only edge into Succ from outside of BBLoop is that of NewBB after
606       // the split. If the first isn't true, then LoopSimplify still holds,
607       // NewBB is the new exit block and it has no non-loop predecessors. If the
608       // second isn't true, then Succ was not in LoopSimplify form prior to
609       // the split as it had a non-loop predecessor. In both of these cases,
610       // the predecessor must be directly in BBLoop, not in a subloop, or again
611       // LoopSimplify doesn't hold.
612       for (BasicBlock *P : predecessors(Succ)) {
613         if (P == BB)
614           continue; // The new block is known.
615         if (LI->getLoopFor(P) != BBLoop) {
616           // Loop is not in LoopSimplify form, no need to re simplify after
617           // splitting edge.
618           LoopPreds.clear();
619           break;
620         }
621         LoopPreds.push_back(P);
622       }
623       // Loop-simplify form can be preserved, if we can split all in-loop
624       // predecessors.
625       if (any_of(LoopPreds, [](BasicBlock *Pred) {
626             return isa<IndirectBrInst>(Pred->getTerminator());
627           })) {
628         return nullptr;
629       }
630     }
631   }
632 
633   auto *NewBB =
634       BasicBlock::Create(BB->getContext(), BBName, BB->getParent(), Succ);
635   setUnwindEdgeTo(BB->getTerminator(), NewBB);
636   updatePhiNodes(Succ, BB, NewBB, LandingPadReplacement);
637 
638   if (LandingPadReplacement) {
639     auto *NewLP = OriginalPad->clone();
640     auto *Terminator = BranchInst::Create(Succ, NewBB);
641     NewLP->insertBefore(Terminator);
642     LandingPadReplacement->addIncoming(NewLP, NewBB);
643   } else {
644     Value *ParentPad = nullptr;
645     if (auto *FuncletPad = dyn_cast<FuncletPadInst>(PadInst))
646       ParentPad = FuncletPad->getParentPad();
647     else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(PadInst))
648       ParentPad = CatchSwitch->getParentPad();
649     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(PadInst))
650       ParentPad = CleanupPad->getParentPad();
651     else if (auto *LandingPad = dyn_cast<LandingPadInst>(PadInst))
652       ParentPad = LandingPad->getParent();
653     else
654       llvm_unreachable("handling for other EHPads not implemented yet");
655 
656     auto *NewCleanupPad = CleanupPadInst::Create(ParentPad, {}, BBName, NewBB);
657     CleanupReturnInst::Create(NewCleanupPad, Succ, NewBB);
658   }
659 
660   auto *DT = Options.DT;
661   auto *MSSAU = Options.MSSAU;
662   if (!DT && !LI)
663     return NewBB;
664 
665   if (DT) {
666     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
667     SmallVector<DominatorTree::UpdateType, 3> Updates;
668 
669     Updates.push_back({DominatorTree::Insert, BB, NewBB});
670     Updates.push_back({DominatorTree::Insert, NewBB, Succ});
671     Updates.push_back({DominatorTree::Delete, BB, Succ});
672 
673     DTU.applyUpdates(Updates);
674     DTU.flush();
675 
676     if (MSSAU) {
677       MSSAU->applyUpdates(Updates, *DT);
678       if (VerifyMemorySSA)
679         MSSAU->getMemorySSA()->verifyMemorySSA();
680     }
681   }
682 
683   if (LI) {
684     if (Loop *BBLoop = LI->getLoopFor(BB)) {
685       // If one or the other blocks were not in a loop, the new block is not
686       // either, and thus LI doesn't need to be updated.
687       if (Loop *SuccLoop = LI->getLoopFor(Succ)) {
688         if (BBLoop == SuccLoop) {
689           // Both in the same loop, the NewBB joins loop.
690           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
691         } else if (BBLoop->contains(SuccLoop)) {
692           // Edge from an outer loop to an inner loop.  Add to the outer loop.
693           BBLoop->addBasicBlockToLoop(NewBB, *LI);
694         } else if (SuccLoop->contains(BBLoop)) {
695           // Edge from an inner loop to an outer loop.  Add to the outer loop.
696           SuccLoop->addBasicBlockToLoop(NewBB, *LI);
697         } else {
698           // Edge from two loops with no containment relation.  Because these
699           // are natural loops, we know that the destination block must be the
700           // header of its loop (adding a branch into a loop elsewhere would
701           // create an irreducible loop).
702           assert(SuccLoop->getHeader() == Succ &&
703                  "Should not create irreducible loops!");
704           if (Loop *P = SuccLoop->getParentLoop())
705             P->addBasicBlockToLoop(NewBB, *LI);
706         }
707       }
708 
709       // If BB is in a loop and Succ is outside of that loop, we may need to
710       // update LoopSimplify form and LCSSA form.
711       if (!BBLoop->contains(Succ)) {
712         assert(!BBLoop->contains(NewBB) &&
713                "Split point for loop exit is contained in loop!");
714 
715         // Update LCSSA form in the newly created exit block.
716         if (Options.PreserveLCSSA) {
717           createPHIsForSplitLoopExit(BB, NewBB, Succ);
718         }
719 
720         if (!LoopPreds.empty()) {
721           BasicBlock *NewExitBB = SplitBlockPredecessors(
722               Succ, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
723           if (Options.PreserveLCSSA)
724             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, Succ);
725         }
726       }
727     }
728   }
729 
730   return NewBB;
731 }
732 
733 void llvm::createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
734                                       BasicBlock *SplitBB, BasicBlock *DestBB) {
735   // SplitBB shouldn't have anything non-trivial in it yet.
736   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
737           SplitBB->isLandingPad()) &&
738          "SplitBB has non-PHI nodes!");
739 
740   // For each PHI in the destination block.
741   for (PHINode &PN : DestBB->phis()) {
742     int Idx = PN.getBasicBlockIndex(SplitBB);
743     assert(Idx >= 0 && "Invalid Block Index");
744     Value *V = PN.getIncomingValue(Idx);
745 
746     // If the input is a PHI which already satisfies LCSSA, don't create
747     // a new one.
748     if (const PHINode *VP = dyn_cast<PHINode>(V))
749       if (VP->getParent() == SplitBB)
750         continue;
751 
752     // Otherwise a new PHI is needed. Create one and populate it.
753     PHINode *NewPN = PHINode::Create(
754         PN.getType(), Preds.size(), "split",
755         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
756     for (BasicBlock *BB : Preds)
757       NewPN->addIncoming(V, BB);
758 
759     // Update the original PHI.
760     PN.setIncomingValue(Idx, NewPN);
761   }
762 }
763 
764 unsigned
765 llvm::SplitAllCriticalEdges(Function &F,
766                             const CriticalEdgeSplittingOptions &Options) {
767   unsigned NumBroken = 0;
768   for (BasicBlock &BB : F) {
769     Instruction *TI = BB.getTerminator();
770     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI) &&
771         !isa<CallBrInst>(TI))
772       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
773         if (SplitCriticalEdge(TI, i, Options))
774           ++NumBroken;
775   }
776   return NumBroken;
777 }
778 
779 static BasicBlock *SplitBlockImpl(BasicBlock *Old, Instruction *SplitPt,
780                                   DomTreeUpdater *DTU, DominatorTree *DT,
781                                   LoopInfo *LI, MemorySSAUpdater *MSSAU,
782                                   const Twine &BBName, bool Before) {
783   if (Before) {
784     DomTreeUpdater LocalDTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
785     return splitBlockBefore(Old, SplitPt,
786                             DTU ? DTU : (DT ? &LocalDTU : nullptr), LI, MSSAU,
787                             BBName);
788   }
789   BasicBlock::iterator SplitIt = SplitPt->getIterator();
790   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) {
791     ++SplitIt;
792     assert(SplitIt != SplitPt->getParent()->end());
793   }
794   std::string Name = BBName.str();
795   BasicBlock *New = Old->splitBasicBlock(
796       SplitIt, Name.empty() ? Old->getName() + ".split" : Name);
797 
798   // The new block lives in whichever loop the old one did. This preserves
799   // LCSSA as well, because we force the split point to be after any PHI nodes.
800   if (LI)
801     if (Loop *L = LI->getLoopFor(Old))
802       L->addBasicBlockToLoop(New, *LI);
803 
804   if (DTU) {
805     SmallVector<DominatorTree::UpdateType, 8> Updates;
806     // Old dominates New. New node dominates all other nodes dominated by Old.
807     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfOld(succ_begin(New),
808                                                        succ_end(New));
809     Updates.push_back({DominatorTree::Insert, Old, New});
810     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfOld.size());
811     for (BasicBlock *UniqueSuccessorOfOld : UniqueSuccessorsOfOld) {
812       Updates.push_back({DominatorTree::Insert, New, UniqueSuccessorOfOld});
813       Updates.push_back({DominatorTree::Delete, Old, UniqueSuccessorOfOld});
814     }
815 
816     DTU->applyUpdates(Updates);
817   } else if (DT)
818     // Old dominates New. New node dominates all other nodes dominated by Old.
819     if (DomTreeNode *OldNode = DT->getNode(Old)) {
820       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
821 
822       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
823       for (DomTreeNode *I : Children)
824         DT->changeImmediateDominator(I, NewNode);
825     }
826 
827   // Move MemoryAccesses still tracked in Old, but part of New now.
828   // Update accesses in successor blocks accordingly.
829   if (MSSAU)
830     MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
831 
832   return New;
833 }
834 
835 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
836                              DominatorTree *DT, LoopInfo *LI,
837                              MemorySSAUpdater *MSSAU, const Twine &BBName,
838                              bool Before) {
839   return SplitBlockImpl(Old, SplitPt, /*DTU=*/nullptr, DT, LI, MSSAU, BBName,
840                         Before);
841 }
842 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
843                              DomTreeUpdater *DTU, LoopInfo *LI,
844                              MemorySSAUpdater *MSSAU, const Twine &BBName,
845                              bool Before) {
846   return SplitBlockImpl(Old, SplitPt, DTU, /*DT=*/nullptr, LI, MSSAU, BBName,
847                         Before);
848 }
849 
850 BasicBlock *llvm::splitBlockBefore(BasicBlock *Old, Instruction *SplitPt,
851                                    DomTreeUpdater *DTU, LoopInfo *LI,
852                                    MemorySSAUpdater *MSSAU,
853                                    const Twine &BBName) {
854 
855   BasicBlock::iterator SplitIt = SplitPt->getIterator();
856   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
857     ++SplitIt;
858   std::string Name = BBName.str();
859   BasicBlock *New = Old->splitBasicBlock(
860       SplitIt, Name.empty() ? Old->getName() + ".split" : Name,
861       /* Before=*/true);
862 
863   // The new block lives in whichever loop the old one did. This preserves
864   // LCSSA as well, because we force the split point to be after any PHI nodes.
865   if (LI)
866     if (Loop *L = LI->getLoopFor(Old))
867       L->addBasicBlockToLoop(New, *LI);
868 
869   if (DTU) {
870     SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
871     // New dominates Old. The predecessor nodes of the Old node dominate
872     // New node.
873     SmallPtrSet<BasicBlock *, 8> UniquePredecessorsOfOld(pred_begin(New),
874                                                          pred_end(New));
875     DTUpdates.push_back({DominatorTree::Insert, New, Old});
876     DTUpdates.reserve(DTUpdates.size() + 2 * UniquePredecessorsOfOld.size());
877     for (BasicBlock *UniquePredecessorOfOld : UniquePredecessorsOfOld) {
878       DTUpdates.push_back({DominatorTree::Insert, UniquePredecessorOfOld, New});
879       DTUpdates.push_back({DominatorTree::Delete, UniquePredecessorOfOld, Old});
880     }
881 
882     DTU->applyUpdates(DTUpdates);
883 
884     // Move MemoryAccesses still tracked in Old, but part of New now.
885     // Update accesses in successor blocks accordingly.
886     if (MSSAU) {
887       MSSAU->applyUpdates(DTUpdates, DTU->getDomTree());
888       if (VerifyMemorySSA)
889         MSSAU->getMemorySSA()->verifyMemorySSA();
890     }
891   }
892   return New;
893 }
894 
895 /// Update DominatorTree, LoopInfo, and LCCSA analysis information.
896 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
897                                       ArrayRef<BasicBlock *> Preds,
898                                       DomTreeUpdater *DTU, DominatorTree *DT,
899                                       LoopInfo *LI, MemorySSAUpdater *MSSAU,
900                                       bool PreserveLCSSA, bool &HasLoopExit) {
901   // Update dominator tree if available.
902   if (DTU) {
903     // Recalculation of DomTree is needed when updating a forward DomTree and
904     // the Entry BB is replaced.
905     if (NewBB->isEntryBlock() && DTU->hasDomTree()) {
906       // The entry block was removed and there is no external interface for
907       // the dominator tree to be notified of this change. In this corner-case
908       // we recalculate the entire tree.
909       DTU->recalculate(*NewBB->getParent());
910     } else {
911       // Split block expects NewBB to have a non-empty set of predecessors.
912       SmallVector<DominatorTree::UpdateType, 8> Updates;
913       SmallPtrSet<BasicBlock *, 8> UniquePreds(Preds.begin(), Preds.end());
914       Updates.push_back({DominatorTree::Insert, NewBB, OldBB});
915       Updates.reserve(Updates.size() + 2 * UniquePreds.size());
916       for (auto *UniquePred : UniquePreds) {
917         Updates.push_back({DominatorTree::Insert, UniquePred, NewBB});
918         Updates.push_back({DominatorTree::Delete, UniquePred, OldBB});
919       }
920       DTU->applyUpdates(Updates);
921     }
922   } else if (DT) {
923     if (OldBB == DT->getRootNode()->getBlock()) {
924       assert(NewBB->isEntryBlock());
925       DT->setNewRoot(NewBB);
926     } else {
927       // Split block expects NewBB to have a non-empty set of predecessors.
928       DT->splitBlock(NewBB);
929     }
930   }
931 
932   // Update MemoryPhis after split if MemorySSA is available
933   if (MSSAU)
934     MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
935 
936   // The rest of the logic is only relevant for updating the loop structures.
937   if (!LI)
938     return;
939 
940   if (DTU && DTU->hasDomTree())
941     DT = &DTU->getDomTree();
942   assert(DT && "DT should be available to update LoopInfo!");
943   Loop *L = LI->getLoopFor(OldBB);
944 
945   // If we need to preserve loop analyses, collect some information about how
946   // this split will affect loops.
947   bool IsLoopEntry = !!L;
948   bool SplitMakesNewLoopHeader = false;
949   for (BasicBlock *Pred : Preds) {
950     // Preds that are not reachable from entry should not be used to identify if
951     // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
952     // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
953     // as true and make the NewBB the header of some loop. This breaks LI.
954     if (!DT->isReachableFromEntry(Pred))
955       continue;
956     // If we need to preserve LCSSA, determine if any of the preds is a loop
957     // exit.
958     if (PreserveLCSSA)
959       if (Loop *PL = LI->getLoopFor(Pred))
960         if (!PL->contains(OldBB))
961           HasLoopExit = true;
962 
963     // If we need to preserve LoopInfo, note whether any of the preds crosses
964     // an interesting loop boundary.
965     if (!L)
966       continue;
967     if (L->contains(Pred))
968       IsLoopEntry = false;
969     else
970       SplitMakesNewLoopHeader = true;
971   }
972 
973   // Unless we have a loop for OldBB, nothing else to do here.
974   if (!L)
975     return;
976 
977   if (IsLoopEntry) {
978     // Add the new block to the nearest enclosing loop (and not an adjacent
979     // loop). To find this, examine each of the predecessors and determine which
980     // loops enclose them, and select the most-nested loop which contains the
981     // loop containing the block being split.
982     Loop *InnermostPredLoop = nullptr;
983     for (BasicBlock *Pred : Preds) {
984       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
985         // Seek a loop which actually contains the block being split (to avoid
986         // adjacent loops).
987         while (PredLoop && !PredLoop->contains(OldBB))
988           PredLoop = PredLoop->getParentLoop();
989 
990         // Select the most-nested of these loops which contains the block.
991         if (PredLoop && PredLoop->contains(OldBB) &&
992             (!InnermostPredLoop ||
993              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
994           InnermostPredLoop = PredLoop;
995       }
996     }
997 
998     if (InnermostPredLoop)
999       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
1000   } else {
1001     L->addBasicBlockToLoop(NewBB, *LI);
1002     if (SplitMakesNewLoopHeader)
1003       L->moveToHeader(NewBB);
1004   }
1005 }
1006 
1007 /// Update the PHI nodes in OrigBB to include the values coming from NewBB.
1008 /// This also updates AliasAnalysis, if available.
1009 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
1010                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
1011                            bool HasLoopExit) {
1012   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
1013   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
1014   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
1015     PHINode *PN = cast<PHINode>(I++);
1016 
1017     // Check to see if all of the values coming in are the same.  If so, we
1018     // don't need to create a new PHI node, unless it's needed for LCSSA.
1019     Value *InVal = nullptr;
1020     if (!HasLoopExit) {
1021       InVal = PN->getIncomingValueForBlock(Preds[0]);
1022       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1023         if (!PredSet.count(PN->getIncomingBlock(i)))
1024           continue;
1025         if (!InVal)
1026           InVal = PN->getIncomingValue(i);
1027         else if (InVal != PN->getIncomingValue(i)) {
1028           InVal = nullptr;
1029           break;
1030         }
1031       }
1032     }
1033 
1034     if (InVal) {
1035       // If all incoming values for the new PHI would be the same, just don't
1036       // make a new PHI.  Instead, just remove the incoming values from the old
1037       // PHI.
1038 
1039       // NOTE! This loop walks backwards for a reason! First off, this minimizes
1040       // the cost of removal if we end up removing a large number of values, and
1041       // second off, this ensures that the indices for the incoming values
1042       // aren't invalidated when we remove one.
1043       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
1044         if (PredSet.count(PN->getIncomingBlock(i)))
1045           PN->removeIncomingValue(i, false);
1046 
1047       // Add an incoming value to the PHI node in the loop for the preheader
1048       // edge.
1049       PN->addIncoming(InVal, NewBB);
1050       continue;
1051     }
1052 
1053     // If the values coming into the block are not the same, we need a new
1054     // PHI.
1055     // Create the new PHI node, insert it into NewBB at the end of the block
1056     PHINode *NewPHI =
1057         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
1058 
1059     // NOTE! This loop walks backwards for a reason! First off, this minimizes
1060     // the cost of removal if we end up removing a large number of values, and
1061     // second off, this ensures that the indices for the incoming values aren't
1062     // invalidated when we remove one.
1063     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
1064       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
1065       if (PredSet.count(IncomingBB)) {
1066         Value *V = PN->removeIncomingValue(i, false);
1067         NewPHI->addIncoming(V, IncomingBB);
1068       }
1069     }
1070 
1071     PN->addIncoming(NewPHI, NewBB);
1072   }
1073 }
1074 
1075 static void SplitLandingPadPredecessorsImpl(
1076     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1077     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1078     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1079     MemorySSAUpdater *MSSAU, bool PreserveLCSSA);
1080 
1081 static BasicBlock *
1082 SplitBlockPredecessorsImpl(BasicBlock *BB, ArrayRef<BasicBlock *> Preds,
1083                            const char *Suffix, DomTreeUpdater *DTU,
1084                            DominatorTree *DT, LoopInfo *LI,
1085                            MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1086   // Do not attempt to split that which cannot be split.
1087   if (!BB->canSplitPredecessors())
1088     return nullptr;
1089 
1090   // For the landingpads we need to act a bit differently.
1091   // Delegate this work to the SplitLandingPadPredecessors.
1092   if (BB->isLandingPad()) {
1093     SmallVector<BasicBlock*, 2> NewBBs;
1094     std::string NewName = std::string(Suffix) + ".split-lp";
1095 
1096     SplitLandingPadPredecessorsImpl(BB, Preds, Suffix, NewName.c_str(), NewBBs,
1097                                     DTU, DT, LI, MSSAU, PreserveLCSSA);
1098     return NewBBs[0];
1099   }
1100 
1101   // Create new basic block, insert right before the original block.
1102   BasicBlock *NewBB = BasicBlock::Create(
1103       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
1104 
1105   // The new block unconditionally branches to the old block.
1106   BranchInst *BI = BranchInst::Create(BB, NewBB);
1107 
1108   Loop *L = nullptr;
1109   BasicBlock *OldLatch = nullptr;
1110   // Splitting the predecessors of a loop header creates a preheader block.
1111   if (LI && LI->isLoopHeader(BB)) {
1112     L = LI->getLoopFor(BB);
1113     // Using the loop start line number prevents debuggers stepping into the
1114     // loop body for this instruction.
1115     BI->setDebugLoc(L->getStartLoc());
1116 
1117     // If BB is the header of the Loop, it is possible that the loop is
1118     // modified, such that the current latch does not remain the latch of the
1119     // loop. If that is the case, the loop metadata from the current latch needs
1120     // to be applied to the new latch.
1121     OldLatch = L->getLoopLatch();
1122   } else
1123     BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
1124 
1125   // Move the edges from Preds to point to NewBB instead of BB.
1126   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1127     // This is slightly more strict than necessary; the minimum requirement
1128     // is that there be no more than one indirectbr branching to BB. And
1129     // all BlockAddress uses would need to be updated.
1130     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1131            "Cannot split an edge from an IndirectBrInst");
1132     assert(!isa<CallBrInst>(Preds[i]->getTerminator()) &&
1133            "Cannot split an edge from a CallBrInst");
1134     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
1135   }
1136 
1137   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
1138   // node becomes an incoming value for BB's phi node.  However, if the Preds
1139   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
1140   // account for the newly created predecessor.
1141   if (Preds.empty()) {
1142     // Insert dummy values as the incoming value.
1143     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
1144       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
1145   }
1146 
1147   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1148   bool HasLoopExit = false;
1149   UpdateAnalysisInformation(BB, NewBB, Preds, DTU, DT, LI, MSSAU, PreserveLCSSA,
1150                             HasLoopExit);
1151 
1152   if (!Preds.empty()) {
1153     // Update the PHI nodes in BB with the values coming from NewBB.
1154     UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
1155   }
1156 
1157   if (OldLatch) {
1158     BasicBlock *NewLatch = L->getLoopLatch();
1159     if (NewLatch != OldLatch) {
1160       MDNode *MD = OldLatch->getTerminator()->getMetadata("llvm.loop");
1161       NewLatch->getTerminator()->setMetadata("llvm.loop", MD);
1162       OldLatch->getTerminator()->setMetadata("llvm.loop", nullptr);
1163     }
1164   }
1165 
1166   return NewBB;
1167 }
1168 
1169 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1170                                          ArrayRef<BasicBlock *> Preds,
1171                                          const char *Suffix, DominatorTree *DT,
1172                                          LoopInfo *LI, MemorySSAUpdater *MSSAU,
1173                                          bool PreserveLCSSA) {
1174   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, /*DTU=*/nullptr, DT, LI,
1175                                     MSSAU, PreserveLCSSA);
1176 }
1177 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
1178                                          ArrayRef<BasicBlock *> Preds,
1179                                          const char *Suffix,
1180                                          DomTreeUpdater *DTU, LoopInfo *LI,
1181                                          MemorySSAUpdater *MSSAU,
1182                                          bool PreserveLCSSA) {
1183   return SplitBlockPredecessorsImpl(BB, Preds, Suffix, DTU,
1184                                     /*DT=*/nullptr, LI, MSSAU, PreserveLCSSA);
1185 }
1186 
1187 static void SplitLandingPadPredecessorsImpl(
1188     BasicBlock *OrigBB, ArrayRef<BasicBlock *> Preds, const char *Suffix1,
1189     const char *Suffix2, SmallVectorImpl<BasicBlock *> &NewBBs,
1190     DomTreeUpdater *DTU, DominatorTree *DT, LoopInfo *LI,
1191     MemorySSAUpdater *MSSAU, bool PreserveLCSSA) {
1192   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
1193 
1194   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
1195   // it right before the original block.
1196   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
1197                                           OrigBB->getName() + Suffix1,
1198                                           OrigBB->getParent(), OrigBB);
1199   NewBBs.push_back(NewBB1);
1200 
1201   // The new block unconditionally branches to the old block.
1202   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
1203   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1204 
1205   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
1206   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1207     // This is slightly more strict than necessary; the minimum requirement
1208     // is that there be no more than one indirectbr branching to BB. And
1209     // all BlockAddress uses would need to be updated.
1210     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
1211            "Cannot split an edge from an IndirectBrInst");
1212     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
1213   }
1214 
1215   bool HasLoopExit = false;
1216   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DTU, DT, LI, MSSAU,
1217                             PreserveLCSSA, HasLoopExit);
1218 
1219   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
1220   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
1221 
1222   // Move the remaining edges from OrigBB to point to NewBB2.
1223   SmallVector<BasicBlock*, 8> NewBB2Preds;
1224   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
1225        i != e; ) {
1226     BasicBlock *Pred = *i++;
1227     if (Pred == NewBB1) continue;
1228     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
1229            "Cannot split an edge from an IndirectBrInst");
1230     NewBB2Preds.push_back(Pred);
1231     e = pred_end(OrigBB);
1232   }
1233 
1234   BasicBlock *NewBB2 = nullptr;
1235   if (!NewBB2Preds.empty()) {
1236     // Create another basic block for the rest of OrigBB's predecessors.
1237     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
1238                                 OrigBB->getName() + Suffix2,
1239                                 OrigBB->getParent(), OrigBB);
1240     NewBBs.push_back(NewBB2);
1241 
1242     // The new block unconditionally branches to the old block.
1243     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
1244     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
1245 
1246     // Move the remaining edges from OrigBB to point to NewBB2.
1247     for (BasicBlock *NewBB2Pred : NewBB2Preds)
1248       NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
1249 
1250     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
1251     HasLoopExit = false;
1252     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DTU, DT, LI, MSSAU,
1253                               PreserveLCSSA, HasLoopExit);
1254 
1255     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
1256     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
1257   }
1258 
1259   LandingPadInst *LPad = OrigBB->getLandingPadInst();
1260   Instruction *Clone1 = LPad->clone();
1261   Clone1->setName(Twine("lpad") + Suffix1);
1262   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
1263 
1264   if (NewBB2) {
1265     Instruction *Clone2 = LPad->clone();
1266     Clone2->setName(Twine("lpad") + Suffix2);
1267     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
1268 
1269     // Create a PHI node for the two cloned landingpad instructions only
1270     // if the original landingpad instruction has some uses.
1271     if (!LPad->use_empty()) {
1272       assert(!LPad->getType()->isTokenTy() &&
1273              "Split cannot be applied if LPad is token type. Otherwise an "
1274              "invalid PHINode of token type would be created.");
1275       PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
1276       PN->addIncoming(Clone1, NewBB1);
1277       PN->addIncoming(Clone2, NewBB2);
1278       LPad->replaceAllUsesWith(PN);
1279     }
1280     LPad->eraseFromParent();
1281   } else {
1282     // There is no second clone. Just replace the landing pad with the first
1283     // clone.
1284     LPad->replaceAllUsesWith(Clone1);
1285     LPad->eraseFromParent();
1286   }
1287 }
1288 
1289 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1290                                        ArrayRef<BasicBlock *> Preds,
1291                                        const char *Suffix1, const char *Suffix2,
1292                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1293                                        DominatorTree *DT, LoopInfo *LI,
1294                                        MemorySSAUpdater *MSSAU,
1295                                        bool PreserveLCSSA) {
1296   return SplitLandingPadPredecessorsImpl(
1297       OrigBB, Preds, Suffix1, Suffix2, NewBBs,
1298       /*DTU=*/nullptr, DT, LI, MSSAU, PreserveLCSSA);
1299 }
1300 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
1301                                        ArrayRef<BasicBlock *> Preds,
1302                                        const char *Suffix1, const char *Suffix2,
1303                                        SmallVectorImpl<BasicBlock *> &NewBBs,
1304                                        DomTreeUpdater *DTU, LoopInfo *LI,
1305                                        MemorySSAUpdater *MSSAU,
1306                                        bool PreserveLCSSA) {
1307   return SplitLandingPadPredecessorsImpl(OrigBB, Preds, Suffix1, Suffix2,
1308                                          NewBBs, DTU, /*DT=*/nullptr, LI, MSSAU,
1309                                          PreserveLCSSA);
1310 }
1311 
1312 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
1313                                              BasicBlock *Pred,
1314                                              DomTreeUpdater *DTU) {
1315   Instruction *UncondBranch = Pred->getTerminator();
1316   // Clone the return and add it to the end of the predecessor.
1317   Instruction *NewRet = RI->clone();
1318   Pred->getInstList().push_back(NewRet);
1319 
1320   // If the return instruction returns a value, and if the value was a
1321   // PHI node in "BB", propagate the right value into the return.
1322   for (Use &Op : NewRet->operands()) {
1323     Value *V = Op;
1324     Instruction *NewBC = nullptr;
1325     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
1326       // Return value might be bitcasted. Clone and insert it before the
1327       // return instruction.
1328       V = BCI->getOperand(0);
1329       NewBC = BCI->clone();
1330       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
1331       Op = NewBC;
1332     }
1333 
1334     Instruction *NewEV = nullptr;
1335     if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
1336       V = EVI->getOperand(0);
1337       NewEV = EVI->clone();
1338       if (NewBC) {
1339         NewBC->setOperand(0, NewEV);
1340         Pred->getInstList().insert(NewBC->getIterator(), NewEV);
1341       } else {
1342         Pred->getInstList().insert(NewRet->getIterator(), NewEV);
1343         Op = NewEV;
1344       }
1345     }
1346 
1347     if (PHINode *PN = dyn_cast<PHINode>(V)) {
1348       if (PN->getParent() == BB) {
1349         if (NewEV) {
1350           NewEV->setOperand(0, PN->getIncomingValueForBlock(Pred));
1351         } else if (NewBC)
1352           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
1353         else
1354           Op = PN->getIncomingValueForBlock(Pred);
1355       }
1356     }
1357   }
1358 
1359   // Update any PHI nodes in the returning block to realize that we no
1360   // longer branch to them.
1361   BB->removePredecessor(Pred);
1362   UncondBranch->eraseFromParent();
1363 
1364   if (DTU)
1365     DTU->applyUpdates({{DominatorTree::Delete, Pred, BB}});
1366 
1367   return cast<ReturnInst>(NewRet);
1368 }
1369 
1370 static Instruction *
1371 SplitBlockAndInsertIfThenImpl(Value *Cond, Instruction *SplitBefore,
1372                               bool Unreachable, MDNode *BranchWeights,
1373                               DomTreeUpdater *DTU, DominatorTree *DT,
1374                               LoopInfo *LI, BasicBlock *ThenBlock) {
1375   SmallVector<DominatorTree::UpdateType, 8> Updates;
1376   BasicBlock *Head = SplitBefore->getParent();
1377   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1378   if (DTU) {
1379     SmallPtrSet<BasicBlock *, 8> UniqueSuccessorsOfHead(succ_begin(Tail),
1380                                                         succ_end(Tail));
1381     Updates.push_back({DominatorTree::Insert, Head, Tail});
1382     Updates.reserve(Updates.size() + 2 * UniqueSuccessorsOfHead.size());
1383     for (BasicBlock *UniqueSuccessorOfHead : UniqueSuccessorsOfHead) {
1384       Updates.push_back({DominatorTree::Insert, Tail, UniqueSuccessorOfHead});
1385       Updates.push_back({DominatorTree::Delete, Head, UniqueSuccessorOfHead});
1386     }
1387   }
1388   Instruction *HeadOldTerm = Head->getTerminator();
1389   LLVMContext &C = Head->getContext();
1390   Instruction *CheckTerm;
1391   bool CreateThenBlock = (ThenBlock == nullptr);
1392   if (CreateThenBlock) {
1393     ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1394     if (Unreachable)
1395       CheckTerm = new UnreachableInst(C, ThenBlock);
1396     else {
1397       CheckTerm = BranchInst::Create(Tail, ThenBlock);
1398       if (DTU)
1399         Updates.push_back({DominatorTree::Insert, ThenBlock, Tail});
1400     }
1401     CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
1402   } else
1403     CheckTerm = ThenBlock->getTerminator();
1404   BranchInst *HeadNewTerm =
1405       BranchInst::Create(/*ifTrue*/ ThenBlock, /*ifFalse*/ Tail, Cond);
1406   if (DTU)
1407     Updates.push_back({DominatorTree::Insert, Head, ThenBlock});
1408   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1409   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1410 
1411   if (DTU)
1412     DTU->applyUpdates(Updates);
1413   else if (DT) {
1414     if (DomTreeNode *OldNode = DT->getNode(Head)) {
1415       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
1416 
1417       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
1418       for (DomTreeNode *Child : Children)
1419         DT->changeImmediateDominator(Child, NewNode);
1420 
1421       // Head dominates ThenBlock.
1422       if (CreateThenBlock)
1423         DT->addNewBlock(ThenBlock, Head);
1424       else
1425         DT->changeImmediateDominator(ThenBlock, Head);
1426     }
1427   }
1428 
1429   if (LI) {
1430     if (Loop *L = LI->getLoopFor(Head)) {
1431       L->addBasicBlockToLoop(ThenBlock, *LI);
1432       L->addBasicBlockToLoop(Tail, *LI);
1433     }
1434   }
1435 
1436   return CheckTerm;
1437 }
1438 
1439 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1440                                              Instruction *SplitBefore,
1441                                              bool Unreachable,
1442                                              MDNode *BranchWeights,
1443                                              DominatorTree *DT, LoopInfo *LI,
1444                                              BasicBlock *ThenBlock) {
1445   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1446                                        BranchWeights,
1447                                        /*DTU=*/nullptr, DT, LI, ThenBlock);
1448 }
1449 Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
1450                                              Instruction *SplitBefore,
1451                                              bool Unreachable,
1452                                              MDNode *BranchWeights,
1453                                              DomTreeUpdater *DTU, LoopInfo *LI,
1454                                              BasicBlock *ThenBlock) {
1455   return SplitBlockAndInsertIfThenImpl(Cond, SplitBefore, Unreachable,
1456                                        BranchWeights, DTU, /*DT=*/nullptr, LI,
1457                                        ThenBlock);
1458 }
1459 
1460 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
1461                                          Instruction **ThenTerm,
1462                                          Instruction **ElseTerm,
1463                                          MDNode *BranchWeights) {
1464   BasicBlock *Head = SplitBefore->getParent();
1465   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
1466   Instruction *HeadOldTerm = Head->getTerminator();
1467   LLVMContext &C = Head->getContext();
1468   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1469   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
1470   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
1471   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1472   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
1473   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
1474   BranchInst *HeadNewTerm =
1475     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
1476   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
1477   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
1478 }
1479 
1480 BranchInst *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
1481                                  BasicBlock *&IfFalse) {
1482   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
1483   BasicBlock *Pred1 = nullptr;
1484   BasicBlock *Pred2 = nullptr;
1485 
1486   if (SomePHI) {
1487     if (SomePHI->getNumIncomingValues() != 2)
1488       return nullptr;
1489     Pred1 = SomePHI->getIncomingBlock(0);
1490     Pred2 = SomePHI->getIncomingBlock(1);
1491   } else {
1492     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1493     if (PI == PE) // No predecessor
1494       return nullptr;
1495     Pred1 = *PI++;
1496     if (PI == PE) // Only one predecessor
1497       return nullptr;
1498     Pred2 = *PI++;
1499     if (PI != PE) // More than two predecessors
1500       return nullptr;
1501   }
1502 
1503   // We can only handle branches.  Other control flow will be lowered to
1504   // branches if possible anyway.
1505   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
1506   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
1507   if (!Pred1Br || !Pred2Br)
1508     return nullptr;
1509 
1510   // Eliminate code duplication by ensuring that Pred1Br is conditional if
1511   // either are.
1512   if (Pred2Br->isConditional()) {
1513     // If both branches are conditional, we don't have an "if statement".  In
1514     // reality, we could transform this case, but since the condition will be
1515     // required anyway, we stand no chance of eliminating it, so the xform is
1516     // probably not profitable.
1517     if (Pred1Br->isConditional())
1518       return nullptr;
1519 
1520     std::swap(Pred1, Pred2);
1521     std::swap(Pred1Br, Pred2Br);
1522   }
1523 
1524   if (Pred1Br->isConditional()) {
1525     // The only thing we have to watch out for here is to make sure that Pred2
1526     // doesn't have incoming edges from other blocks.  If it does, the condition
1527     // doesn't dominate BB.
1528     if (!Pred2->getSinglePredecessor())
1529       return nullptr;
1530 
1531     // If we found a conditional branch predecessor, make sure that it branches
1532     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
1533     if (Pred1Br->getSuccessor(0) == BB &&
1534         Pred1Br->getSuccessor(1) == Pred2) {
1535       IfTrue = Pred1;
1536       IfFalse = Pred2;
1537     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
1538                Pred1Br->getSuccessor(1) == BB) {
1539       IfTrue = Pred2;
1540       IfFalse = Pred1;
1541     } else {
1542       // We know that one arm of the conditional goes to BB, so the other must
1543       // go somewhere unrelated, and this must not be an "if statement".
1544       return nullptr;
1545     }
1546 
1547     return Pred1Br;
1548   }
1549 
1550   // Ok, if we got here, both predecessors end with an unconditional branch to
1551   // BB.  Don't panic!  If both blocks only have a single (identical)
1552   // predecessor, and THAT is a conditional branch, then we're all ok!
1553   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
1554   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
1555     return nullptr;
1556 
1557   // Otherwise, if this is a conditional branch, then we can use it!
1558   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
1559   if (!BI) return nullptr;
1560 
1561   assert(BI->isConditional() && "Two successors but not conditional?");
1562   if (BI->getSuccessor(0) == Pred1) {
1563     IfTrue = Pred1;
1564     IfFalse = Pred2;
1565   } else {
1566     IfTrue = Pred2;
1567     IfFalse = Pred1;
1568   }
1569   return BI;
1570 }
1571 
1572 // After creating a control flow hub, the operands of PHINodes in an outgoing
1573 // block Out no longer match the predecessors of that block. Predecessors of Out
1574 // that are incoming blocks to the hub are now replaced by just one edge from
1575 // the hub. To match this new control flow, the corresponding values from each
1576 // PHINode must now be moved a new PHINode in the first guard block of the hub.
1577 //
1578 // This operation cannot be performed with SSAUpdater, because it involves one
1579 // new use: If the block Out is in the list of Incoming blocks, then the newly
1580 // created PHI in the Hub will use itself along that edge from Out to Hub.
1581 static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
1582                           const SetVector<BasicBlock *> &Incoming,
1583                           BasicBlock *FirstGuardBlock) {
1584   auto I = Out->begin();
1585   while (I != Out->end() && isa<PHINode>(I)) {
1586     auto Phi = cast<PHINode>(I);
1587     auto NewPhi =
1588         PHINode::Create(Phi->getType(), Incoming.size(),
1589                         Phi->getName() + ".moved", &FirstGuardBlock->back());
1590     for (auto In : Incoming) {
1591       Value *V = UndefValue::get(Phi->getType());
1592       if (In == Out) {
1593         V = NewPhi;
1594       } else if (Phi->getBasicBlockIndex(In) != -1) {
1595         V = Phi->removeIncomingValue(In, false);
1596       }
1597       NewPhi->addIncoming(V, In);
1598     }
1599     assert(NewPhi->getNumIncomingValues() == Incoming.size());
1600     if (Phi->getNumOperands() == 0) {
1601       Phi->replaceAllUsesWith(NewPhi);
1602       I = Phi->eraseFromParent();
1603       continue;
1604     }
1605     Phi->addIncoming(NewPhi, GuardBlock);
1606     ++I;
1607   }
1608 }
1609 
1610 using BBPredicates = DenseMap<BasicBlock *, PHINode *>;
1611 using BBSetVector = SetVector<BasicBlock *>;
1612 
1613 // Redirects the terminator of the incoming block to the first guard
1614 // block in the hub. The condition of the original terminator (if it
1615 // was conditional) and its original successors are returned as a
1616 // tuple <condition, succ0, succ1>. The function additionally filters
1617 // out successors that are not in the set of outgoing blocks.
1618 //
1619 // - condition is non-null iff the branch is conditional.
1620 // - Succ1 is non-null iff the sole/taken target is an outgoing block.
1621 // - Succ2 is non-null iff condition is non-null and the fallthrough
1622 //         target is an outgoing block.
1623 static std::tuple<Value *, BasicBlock *, BasicBlock *>
1624 redirectToHub(BasicBlock *BB, BasicBlock *FirstGuardBlock,
1625               const BBSetVector &Outgoing) {
1626   auto Branch = cast<BranchInst>(BB->getTerminator());
1627   auto Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
1628 
1629   BasicBlock *Succ0 = Branch->getSuccessor(0);
1630   BasicBlock *Succ1 = nullptr;
1631   Succ0 = Outgoing.count(Succ0) ? Succ0 : nullptr;
1632 
1633   if (Branch->isUnconditional()) {
1634     Branch->setSuccessor(0, FirstGuardBlock);
1635     assert(Succ0);
1636   } else {
1637     Succ1 = Branch->getSuccessor(1);
1638     Succ1 = Outgoing.count(Succ1) ? Succ1 : nullptr;
1639     assert(Succ0 || Succ1);
1640     if (Succ0 && !Succ1) {
1641       Branch->setSuccessor(0, FirstGuardBlock);
1642     } else if (Succ1 && !Succ0) {
1643       Branch->setSuccessor(1, FirstGuardBlock);
1644     } else {
1645       Branch->eraseFromParent();
1646       BranchInst::Create(FirstGuardBlock, BB);
1647     }
1648   }
1649 
1650   assert(Succ0 || Succ1);
1651   return std::make_tuple(Condition, Succ0, Succ1);
1652 }
1653 
1654 // Capture the existing control flow as guard predicates, and redirect
1655 // control flow from every incoming block to the first guard block in
1656 // the hub.
1657 //
1658 // There is one guard predicate for each outgoing block OutBB. The
1659 // predicate is a PHINode with one input for each InBB which
1660 // represents whether the hub should transfer control flow to OutBB if
1661 // it arrived from InBB. These predicates are NOT ORTHOGONAL. The Hub
1662 // evaluates them in the same order as the Outgoing set-vector, and
1663 // control branches to the first outgoing block whose predicate
1664 // evaluates to true.
1665 static void convertToGuardPredicates(
1666     BasicBlock *FirstGuardBlock, BBPredicates &GuardPredicates,
1667     SmallVectorImpl<WeakVH> &DeletionCandidates, const BBSetVector &Incoming,
1668     const BBSetVector &Outgoing) {
1669   auto &Context = Incoming.front()->getContext();
1670   auto BoolTrue = ConstantInt::getTrue(Context);
1671   auto BoolFalse = ConstantInt::getFalse(Context);
1672 
1673   // The predicate for the last outgoing is trivially true, and so we
1674   // process only the first N-1 successors.
1675   for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1676     auto Out = Outgoing[i];
1677     LLVM_DEBUG(dbgs() << "Creating guard for " << Out->getName() << "\n");
1678     auto Phi =
1679         PHINode::Create(Type::getInt1Ty(Context), Incoming.size(),
1680                         StringRef("Guard.") + Out->getName(), FirstGuardBlock);
1681     GuardPredicates[Out] = Phi;
1682   }
1683 
1684   for (auto In : Incoming) {
1685     Value *Condition;
1686     BasicBlock *Succ0;
1687     BasicBlock *Succ1;
1688     std::tie(Condition, Succ0, Succ1) =
1689         redirectToHub(In, FirstGuardBlock, Outgoing);
1690 
1691     // Optimization: Consider an incoming block A with both successors
1692     // Succ0 and Succ1 in the set of outgoing blocks. The predicates
1693     // for Succ0 and Succ1 complement each other. If Succ0 is visited
1694     // first in the loop below, control will branch to Succ0 using the
1695     // corresponding predicate. But if that branch is not taken, then
1696     // control must reach Succ1, which means that the predicate for
1697     // Succ1 is always true.
1698     bool OneSuccessorDone = false;
1699     for (int i = 0, e = Outgoing.size() - 1; i != e; ++i) {
1700       auto Out = Outgoing[i];
1701       auto Phi = GuardPredicates[Out];
1702       if (Out != Succ0 && Out != Succ1) {
1703         Phi->addIncoming(BoolFalse, In);
1704         continue;
1705       }
1706       // Optimization: When only one successor is an outgoing block,
1707       // the predicate is always true.
1708       if (!Succ0 || !Succ1 || OneSuccessorDone) {
1709         Phi->addIncoming(BoolTrue, In);
1710         continue;
1711       }
1712       assert(Succ0 && Succ1);
1713       OneSuccessorDone = true;
1714       if (Out == Succ0) {
1715         Phi->addIncoming(Condition, In);
1716         continue;
1717       }
1718       auto Inverted = invertCondition(Condition);
1719       DeletionCandidates.push_back(Condition);
1720       Phi->addIncoming(Inverted, In);
1721     }
1722   }
1723 }
1724 
1725 // For each outgoing block OutBB, create a guard block in the Hub. The
1726 // first guard block was already created outside, and available as the
1727 // first element in the vector of guard blocks.
1728 //
1729 // Each guard block terminates in a conditional branch that transfers
1730 // control to the corresponding outgoing block or the next guard
1731 // block. The last guard block has two outgoing blocks as successors
1732 // since the condition for the final outgoing block is trivially
1733 // true. So we create one less block (including the first guard block)
1734 // than the number of outgoing blocks.
1735 static void createGuardBlocks(SmallVectorImpl<BasicBlock *> &GuardBlocks,
1736                               Function *F, const BBSetVector &Outgoing,
1737                               BBPredicates &GuardPredicates, StringRef Prefix) {
1738   for (int i = 0, e = Outgoing.size() - 2; i != e; ++i) {
1739     GuardBlocks.push_back(
1740         BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
1741   }
1742   assert(GuardBlocks.size() == GuardPredicates.size());
1743 
1744   // To help keep the loop simple, temporarily append the last
1745   // outgoing block to the list of guard blocks.
1746   GuardBlocks.push_back(Outgoing.back());
1747 
1748   for (int i = 0, e = GuardBlocks.size() - 1; i != e; ++i) {
1749     auto Out = Outgoing[i];
1750     assert(GuardPredicates.count(Out));
1751     BranchInst::Create(Out, GuardBlocks[i + 1], GuardPredicates[Out],
1752                        GuardBlocks[i]);
1753   }
1754 
1755   // Remove the last block from the guard list.
1756   GuardBlocks.pop_back();
1757 }
1758 
1759 BasicBlock *llvm::CreateControlFlowHub(
1760     DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
1761     const BBSetVector &Incoming, const BBSetVector &Outgoing,
1762     const StringRef Prefix) {
1763   auto F = Incoming.front()->getParent();
1764   auto FirstGuardBlock =
1765       BasicBlock::Create(F->getContext(), Prefix + ".guard", F);
1766 
1767   SmallVector<DominatorTree::UpdateType, 16> Updates;
1768   if (DTU) {
1769     for (auto In : Incoming) {
1770       Updates.push_back({DominatorTree::Insert, In, FirstGuardBlock});
1771       for (auto Succ : successors(In)) {
1772         if (Outgoing.count(Succ))
1773           Updates.push_back({DominatorTree::Delete, In, Succ});
1774       }
1775     }
1776   }
1777 
1778   BBPredicates GuardPredicates;
1779   SmallVector<WeakVH, 8> DeletionCandidates;
1780   convertToGuardPredicates(FirstGuardBlock, GuardPredicates, DeletionCandidates,
1781                            Incoming, Outgoing);
1782 
1783   GuardBlocks.push_back(FirstGuardBlock);
1784   createGuardBlocks(GuardBlocks, F, Outgoing, GuardPredicates, Prefix);
1785 
1786   // Update the PHINodes in each outgoing block to match the new control flow.
1787   for (int i = 0, e = GuardBlocks.size(); i != e; ++i) {
1788     reconnectPhis(Outgoing[i], GuardBlocks[i], Incoming, FirstGuardBlock);
1789   }
1790   reconnectPhis(Outgoing.back(), GuardBlocks.back(), Incoming, FirstGuardBlock);
1791 
1792   if (DTU) {
1793     int NumGuards = GuardBlocks.size();
1794     assert((int)Outgoing.size() == NumGuards + 1);
1795     for (int i = 0; i != NumGuards - 1; ++i) {
1796       Updates.push_back({DominatorTree::Insert, GuardBlocks[i], Outgoing[i]});
1797       Updates.push_back(
1798           {DominatorTree::Insert, GuardBlocks[i], GuardBlocks[i + 1]});
1799     }
1800     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1801                        Outgoing[NumGuards - 1]});
1802     Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
1803                        Outgoing[NumGuards]});
1804     DTU->applyUpdates(Updates);
1805   }
1806 
1807   for (auto I : DeletionCandidates) {
1808     if (I->use_empty())
1809       if (auto Inst = dyn_cast_or_null<Instruction>(I))
1810         Inst->eraseFromParent();
1811   }
1812 
1813   return FirstGuardBlock;
1814 }
1815