10b57cec5SDimitry Andric //===- NaryReassociate.cpp - Reassociate n-ary expressions ----------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This pass reassociates n-ary add expressions and eliminates the redundancy 100b57cec5SDimitry Andric // exposed by the reassociation. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric // A motivating example: 130b57cec5SDimitry Andric // 140b57cec5SDimitry Andric // void foo(int a, int b) { 150b57cec5SDimitry Andric // bar(a + b); 160b57cec5SDimitry Andric // bar((a + 2) + b); 170b57cec5SDimitry Andric // } 180b57cec5SDimitry Andric // 190b57cec5SDimitry Andric // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify 200b57cec5SDimitry Andric // the above code to 210b57cec5SDimitry Andric // 220b57cec5SDimitry Andric // int t = a + b; 230b57cec5SDimitry Andric // bar(t); 240b57cec5SDimitry Andric // bar(t + 2); 250b57cec5SDimitry Andric // 260b57cec5SDimitry Andric // However, the Reassociate pass is unable to do that because it processes each 270b57cec5SDimitry Andric // instruction individually and believes (a + 2) + b is the best form according 280b57cec5SDimitry Andric // to its rank system. 290b57cec5SDimitry Andric // 300b57cec5SDimitry Andric // To address this limitation, NaryReassociate reassociates an expression in a 310b57cec5SDimitry Andric // form that reuses existing instructions. As a result, NaryReassociate can 320b57cec5SDimitry Andric // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that 330b57cec5SDimitry Andric // (a + b) is computed before. 340b57cec5SDimitry Andric // 350b57cec5SDimitry Andric // NaryReassociate works as follows. For every instruction in the form of (a + 360b57cec5SDimitry Andric // b) + c, it checks whether a + c or b + c is already computed by a dominating 370b57cec5SDimitry Andric // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b + 380b57cec5SDimitry Andric // c) + a and removes the redundancy accordingly. To efficiently look up whether 390b57cec5SDimitry Andric // an expression is computed before, we store each instruction seen and its SCEV 400b57cec5SDimitry Andric // into an SCEV-to-instruction map. 410b57cec5SDimitry Andric // 420b57cec5SDimitry Andric // Although the algorithm pattern-matches only ternary additions, it 430b57cec5SDimitry Andric // automatically handles many >3-ary expressions by walking through the function 440b57cec5SDimitry Andric // in the depth-first order. For example, given 450b57cec5SDimitry Andric // 460b57cec5SDimitry Andric // (a + c) + d 470b57cec5SDimitry Andric // ((a + b) + c) + d 480b57cec5SDimitry Andric // 490b57cec5SDimitry Andric // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites 500b57cec5SDimitry Andric // ((a + c) + b) + d into ((a + c) + d) + b. 510b57cec5SDimitry Andric // 520b57cec5SDimitry Andric // Finally, the above dominator-based algorithm may need to be run multiple 530b57cec5SDimitry Andric // iterations before emitting optimal code. One source of this need is that we 540b57cec5SDimitry Andric // only split an operand when it is used only once. The above algorithm can 550b57cec5SDimitry Andric // eliminate an instruction and decrease the usage count of its operands. As a 560b57cec5SDimitry Andric // result, an instruction that previously had multiple uses may become a 570b57cec5SDimitry Andric // single-use instruction and thus eligible for split consideration. For 580b57cec5SDimitry Andric // example, 590b57cec5SDimitry Andric // 600b57cec5SDimitry Andric // ac = a + c 610b57cec5SDimitry Andric // ab = a + b 620b57cec5SDimitry Andric // abc = ab + c 630b57cec5SDimitry Andric // ab2 = ab + b 640b57cec5SDimitry Andric // ab2c = ab2 + c 650b57cec5SDimitry Andric // 660b57cec5SDimitry Andric // In the first iteration, we cannot reassociate abc to ac+b because ab is used 670b57cec5SDimitry Andric // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a 680b57cec5SDimitry Andric // result, ab2 becomes dead and ab will be used only once in the second 690b57cec5SDimitry Andric // iteration. 700b57cec5SDimitry Andric // 710b57cec5SDimitry Andric // Limitations and TODO items: 720b57cec5SDimitry Andric // 730b57cec5SDimitry Andric // 1) We only considers n-ary adds and muls for now. This should be extended 740b57cec5SDimitry Andric // and generalized. 750b57cec5SDimitry Andric // 760b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 770b57cec5SDimitry Andric 780b57cec5SDimitry Andric #include "llvm/Transforms/Scalar/NaryReassociate.h" 790b57cec5SDimitry Andric #include "llvm/ADT/DepthFirstIterator.h" 800b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 810b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 820b57cec5SDimitry Andric #include "llvm/Analysis/ScalarEvolution.h" 83fe6060f1SDimitry Andric #include "llvm/Analysis/ScalarEvolutionExpressions.h" 840b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 850b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 860b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 870b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 880b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 890b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 900b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 910b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 920b57cec5SDimitry Andric #include "llvm/IR/Function.h" 930b57cec5SDimitry Andric #include "llvm/IR/GetElementPtrTypeIterator.h" 940b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 950b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 960b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 970b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 980b57cec5SDimitry Andric #include "llvm/IR/Module.h" 990b57cec5SDimitry Andric #include "llvm/IR/Operator.h" 1000b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 1010b57cec5SDimitry Andric #include "llvm/IR/Type.h" 1020b57cec5SDimitry Andric #include "llvm/IR/Value.h" 1030b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h" 104480093f4SDimitry Andric #include "llvm/InitializePasses.h" 1050b57cec5SDimitry Andric #include "llvm/Pass.h" 1060b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 1070b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 1080b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h" 109480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 110fe6060f1SDimitry Andric #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 1110b57cec5SDimitry Andric #include <cassert> 1120b57cec5SDimitry Andric #include <cstdint> 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric using namespace llvm; 1150b57cec5SDimitry Andric using namespace PatternMatch; 1160b57cec5SDimitry Andric 1170b57cec5SDimitry Andric #define DEBUG_TYPE "nary-reassociate" 1180b57cec5SDimitry Andric 1190b57cec5SDimitry Andric namespace { 1200b57cec5SDimitry Andric 1210b57cec5SDimitry Andric class NaryReassociateLegacyPass : public FunctionPass { 1220b57cec5SDimitry Andric public: 1230b57cec5SDimitry Andric static char ID; 1240b57cec5SDimitry Andric 1250b57cec5SDimitry Andric NaryReassociateLegacyPass() : FunctionPass(ID) { 1260b57cec5SDimitry Andric initializeNaryReassociateLegacyPassPass(*PassRegistry::getPassRegistry()); 1270b57cec5SDimitry Andric } 1280b57cec5SDimitry Andric 1290b57cec5SDimitry Andric bool doInitialization(Module &M) override { 1300b57cec5SDimitry Andric return false; 1310b57cec5SDimitry Andric } 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric bool runOnFunction(Function &F) override; 1340b57cec5SDimitry Andric 1350b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 1360b57cec5SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 1370b57cec5SDimitry Andric AU.addPreserved<ScalarEvolutionWrapperPass>(); 1380b57cec5SDimitry Andric AU.addPreserved<TargetLibraryInfoWrapperPass>(); 1390b57cec5SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 1400b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 1410b57cec5SDimitry Andric AU.addRequired<ScalarEvolutionWrapperPass>(); 1420b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 1430b57cec5SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 1440b57cec5SDimitry Andric AU.setPreservesCFG(); 1450b57cec5SDimitry Andric } 1460b57cec5SDimitry Andric 1470b57cec5SDimitry Andric private: 1480b57cec5SDimitry Andric NaryReassociatePass Impl; 1490b57cec5SDimitry Andric }; 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric } // end anonymous namespace 1520b57cec5SDimitry Andric 1530b57cec5SDimitry Andric char NaryReassociateLegacyPass::ID = 0; 1540b57cec5SDimitry Andric 1550b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(NaryReassociateLegacyPass, "nary-reassociate", 1560b57cec5SDimitry Andric "Nary reassociation", false, false) 1570b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1580b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1590b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1600b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1610b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1620b57cec5SDimitry Andric INITIALIZE_PASS_END(NaryReassociateLegacyPass, "nary-reassociate", 1630b57cec5SDimitry Andric "Nary reassociation", false, false) 1640b57cec5SDimitry Andric 1650b57cec5SDimitry Andric FunctionPass *llvm::createNaryReassociatePass() { 1660b57cec5SDimitry Andric return new NaryReassociateLegacyPass(); 1670b57cec5SDimitry Andric } 1680b57cec5SDimitry Andric 1690b57cec5SDimitry Andric bool NaryReassociateLegacyPass::runOnFunction(Function &F) { 1700b57cec5SDimitry Andric if (skipFunction(F)) 1710b57cec5SDimitry Andric return false; 1720b57cec5SDimitry Andric 1730b57cec5SDimitry Andric auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1740b57cec5SDimitry Andric auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1750b57cec5SDimitry Andric auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1768bcb0991SDimitry Andric auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1770b57cec5SDimitry Andric auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1780b57cec5SDimitry Andric 1790b57cec5SDimitry Andric return Impl.runImpl(F, AC, DT, SE, TLI, TTI); 1800b57cec5SDimitry Andric } 1810b57cec5SDimitry Andric 1820b57cec5SDimitry Andric PreservedAnalyses NaryReassociatePass::run(Function &F, 1830b57cec5SDimitry Andric FunctionAnalysisManager &AM) { 1840b57cec5SDimitry Andric auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1850b57cec5SDimitry Andric auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1860b57cec5SDimitry Andric auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); 1870b57cec5SDimitry Andric auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F); 1880b57cec5SDimitry Andric auto *TTI = &AM.getResult<TargetIRAnalysis>(F); 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric if (!runImpl(F, AC, DT, SE, TLI, TTI)) 1910b57cec5SDimitry Andric return PreservedAnalyses::all(); 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric PreservedAnalyses PA; 1940b57cec5SDimitry Andric PA.preserveSet<CFGAnalyses>(); 1950b57cec5SDimitry Andric PA.preserve<ScalarEvolutionAnalysis>(); 1960b57cec5SDimitry Andric return PA; 1970b57cec5SDimitry Andric } 1980b57cec5SDimitry Andric 1990b57cec5SDimitry Andric bool NaryReassociatePass::runImpl(Function &F, AssumptionCache *AC_, 2000b57cec5SDimitry Andric DominatorTree *DT_, ScalarEvolution *SE_, 2010b57cec5SDimitry Andric TargetLibraryInfo *TLI_, 2020b57cec5SDimitry Andric TargetTransformInfo *TTI_) { 2030b57cec5SDimitry Andric AC = AC_; 2040b57cec5SDimitry Andric DT = DT_; 2050b57cec5SDimitry Andric SE = SE_; 2060b57cec5SDimitry Andric TLI = TLI_; 2070b57cec5SDimitry Andric TTI = TTI_; 208*0fca6ea1SDimitry Andric DL = &F.getDataLayout(); 2090b57cec5SDimitry Andric 2100b57cec5SDimitry Andric bool Changed = false, ChangedInThisIteration; 2110b57cec5SDimitry Andric do { 2120b57cec5SDimitry Andric ChangedInThisIteration = doOneIteration(F); 2130b57cec5SDimitry Andric Changed |= ChangedInThisIteration; 2140b57cec5SDimitry Andric } while (ChangedInThisIteration); 2150b57cec5SDimitry Andric return Changed; 2160b57cec5SDimitry Andric } 2170b57cec5SDimitry Andric 2180b57cec5SDimitry Andric bool NaryReassociatePass::doOneIteration(Function &F) { 2190b57cec5SDimitry Andric bool Changed = false; 2200b57cec5SDimitry Andric SeenExprs.clear(); 2210b57cec5SDimitry Andric // Process the basic blocks in a depth first traversal of the dominator 2220b57cec5SDimitry Andric // tree. This order ensures that all bases of a candidate are in Candidates 2230b57cec5SDimitry Andric // when we process it. 224e8d8bef9SDimitry Andric SmallVector<WeakTrackingVH, 16> DeadInsts; 2250b57cec5SDimitry Andric for (const auto Node : depth_first(DT)) { 2260b57cec5SDimitry Andric BasicBlock *BB = Node->getBlock(); 227fe6060f1SDimitry Andric for (Instruction &OrigI : *BB) { 228e8d8bef9SDimitry Andric const SCEV *OrigSCEV = nullptr; 229fe6060f1SDimitry Andric if (Instruction *NewI = tryReassociate(&OrigI, OrigSCEV)) { 2300b57cec5SDimitry Andric Changed = true; 231fe6060f1SDimitry Andric OrigI.replaceAllUsesWith(NewI); 232e8d8bef9SDimitry Andric 233e8d8bef9SDimitry Andric // Add 'OrigI' to the list of dead instructions. 234fe6060f1SDimitry Andric DeadInsts.push_back(WeakTrackingVH(&OrigI)); 235e8d8bef9SDimitry Andric // Add the rewritten instruction to SeenExprs; the original 236e8d8bef9SDimitry Andric // instruction is deleted. 237e8d8bef9SDimitry Andric const SCEV *NewSCEV = SE->getSCEV(NewI); 238e8d8bef9SDimitry Andric SeenExprs[NewSCEV].push_back(WeakTrackingVH(NewI)); 239e8d8bef9SDimitry Andric 2400b57cec5SDimitry Andric // Ideally, NewSCEV should equal OldSCEV because tryReassociate(I) 2410b57cec5SDimitry Andric // is equivalent to I. However, ScalarEvolution::getSCEV may 242e8d8bef9SDimitry Andric // weaken nsw causing NewSCEV not to equal OldSCEV. For example, 243e8d8bef9SDimitry Andric // suppose we reassociate 2440b57cec5SDimitry Andric // I = &a[sext(i +nsw j)] // assuming sizeof(a[0]) = 4 2450b57cec5SDimitry Andric // to 2460b57cec5SDimitry Andric // NewI = &a[sext(i)] + sext(j). 2470b57cec5SDimitry Andric // 2480b57cec5SDimitry Andric // ScalarEvolution computes 2490b57cec5SDimitry Andric // getSCEV(I) = a + 4 * sext(i + j) 2500b57cec5SDimitry Andric // getSCEV(newI) = a + 4 * sext(i) + 4 * sext(j) 2510b57cec5SDimitry Andric // which are different SCEVs. 2520b57cec5SDimitry Andric // 2530b57cec5SDimitry Andric // To alleviate this issue of ScalarEvolution not always capturing 2540b57cec5SDimitry Andric // equivalence, we add I to SeenExprs[OldSCEV] as well so that we can 2550b57cec5SDimitry Andric // map both SCEV before and after tryReassociate(I) to I. 2560b57cec5SDimitry Andric // 257e8d8bef9SDimitry Andric // This improvement is exercised in @reassociate_gep_nsw in 258e8d8bef9SDimitry Andric // nary-gep.ll. 259e8d8bef9SDimitry Andric if (NewSCEV != OrigSCEV) 260e8d8bef9SDimitry Andric SeenExprs[OrigSCEV].push_back(WeakTrackingVH(NewI)); 261e8d8bef9SDimitry Andric } else if (OrigSCEV) 262fe6060f1SDimitry Andric SeenExprs[OrigSCEV].push_back(WeakTrackingVH(&OrigI)); 2630b57cec5SDimitry Andric } 2640b57cec5SDimitry Andric } 265e8d8bef9SDimitry Andric // Delete all dead instructions from 'DeadInsts'. 266e8d8bef9SDimitry Andric // Please note ScalarEvolution is updated along the way. 267e8d8bef9SDimitry Andric RecursivelyDeleteTriviallyDeadInstructionsPermissive( 268e8d8bef9SDimitry Andric DeadInsts, TLI, nullptr, [this](Value *V) { SE->forgetValue(V); }); 269e8d8bef9SDimitry Andric 2700b57cec5SDimitry Andric return Changed; 2710b57cec5SDimitry Andric } 2720b57cec5SDimitry Andric 273fe6060f1SDimitry Andric template <typename PredT> 274fe6060f1SDimitry Andric Instruction * 275fe6060f1SDimitry Andric NaryReassociatePass::matchAndReassociateMinOrMax(Instruction *I, 276fe6060f1SDimitry Andric const SCEV *&OrigSCEV) { 277fe6060f1SDimitry Andric Value *LHS = nullptr; 278fe6060f1SDimitry Andric Value *RHS = nullptr; 279fe6060f1SDimitry Andric 280fe6060f1SDimitry Andric auto MinMaxMatcher = 281fe6060f1SDimitry Andric MaxMin_match<ICmpInst, bind_ty<Value>, bind_ty<Value>, PredT>( 282fe6060f1SDimitry Andric m_Value(LHS), m_Value(RHS)); 283fe6060f1SDimitry Andric if (match(I, MinMaxMatcher)) { 284fe6060f1SDimitry Andric OrigSCEV = SE->getSCEV(I); 285349cc55cSDimitry Andric if (auto *NewMinMax = dyn_cast_or_null<Instruction>( 286349cc55cSDimitry Andric tryReassociateMinOrMax(I, MinMaxMatcher, LHS, RHS))) 287349cc55cSDimitry Andric return NewMinMax; 288349cc55cSDimitry Andric if (auto *NewMinMax = dyn_cast_or_null<Instruction>( 289349cc55cSDimitry Andric tryReassociateMinOrMax(I, MinMaxMatcher, RHS, LHS))) 290349cc55cSDimitry Andric return NewMinMax; 291fe6060f1SDimitry Andric } 292fe6060f1SDimitry Andric return nullptr; 293fe6060f1SDimitry Andric } 294fe6060f1SDimitry Andric 295e8d8bef9SDimitry Andric Instruction *NaryReassociatePass::tryReassociate(Instruction * I, 296e8d8bef9SDimitry Andric const SCEV *&OrigSCEV) { 297e8d8bef9SDimitry Andric 298e8d8bef9SDimitry Andric if (!SE->isSCEVable(I->getType())) 299e8d8bef9SDimitry Andric return nullptr; 300e8d8bef9SDimitry Andric 3010b57cec5SDimitry Andric switch (I->getOpcode()) { 3020b57cec5SDimitry Andric case Instruction::Add: 3030b57cec5SDimitry Andric case Instruction::Mul: 304e8d8bef9SDimitry Andric OrigSCEV = SE->getSCEV(I); 3050b57cec5SDimitry Andric return tryReassociateBinaryOp(cast<BinaryOperator>(I)); 3060b57cec5SDimitry Andric case Instruction::GetElementPtr: 307e8d8bef9SDimitry Andric OrigSCEV = SE->getSCEV(I); 3080b57cec5SDimitry Andric return tryReassociateGEP(cast<GetElementPtrInst>(I)); 3090b57cec5SDimitry Andric default: 310fe6060f1SDimitry Andric break; 3110b57cec5SDimitry Andric } 312e8d8bef9SDimitry Andric 313fe6060f1SDimitry Andric // Try to match signed/unsigned Min/Max. 314fe6060f1SDimitry Andric Instruction *ResI = nullptr; 315fe6060f1SDimitry Andric // TODO: Currently min/max reassociation is restricted to integer types only 316fe6060f1SDimitry Andric // due to use of SCEVExpander which my introduce incompatible forms of min/max 317fe6060f1SDimitry Andric // for pointer types. 318fe6060f1SDimitry Andric if (I->getType()->isIntegerTy()) 319fe6060f1SDimitry Andric if ((ResI = matchAndReassociateMinOrMax<umin_pred_ty>(I, OrigSCEV)) || 320fe6060f1SDimitry Andric (ResI = matchAndReassociateMinOrMax<smin_pred_ty>(I, OrigSCEV)) || 321fe6060f1SDimitry Andric (ResI = matchAndReassociateMinOrMax<umax_pred_ty>(I, OrigSCEV)) || 322fe6060f1SDimitry Andric (ResI = matchAndReassociateMinOrMax<smax_pred_ty>(I, OrigSCEV))) 323fe6060f1SDimitry Andric return ResI; 324fe6060f1SDimitry Andric 325e8d8bef9SDimitry Andric return nullptr; 3260b57cec5SDimitry Andric } 3270b57cec5SDimitry Andric 3280b57cec5SDimitry Andric static bool isGEPFoldable(GetElementPtrInst *GEP, 3290b57cec5SDimitry Andric const TargetTransformInfo *TTI) { 330e8d8bef9SDimitry Andric SmallVector<const Value *, 4> Indices(GEP->indices()); 3310b57cec5SDimitry Andric return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), 3320b57cec5SDimitry Andric Indices) == TargetTransformInfo::TCC_Free; 3330b57cec5SDimitry Andric } 3340b57cec5SDimitry Andric 3350b57cec5SDimitry Andric Instruction *NaryReassociatePass::tryReassociateGEP(GetElementPtrInst *GEP) { 3360b57cec5SDimitry Andric // Not worth reassociating GEP if it is foldable. 3370b57cec5SDimitry Andric if (isGEPFoldable(GEP, TTI)) 3380b57cec5SDimitry Andric return nullptr; 3390b57cec5SDimitry Andric 3400b57cec5SDimitry Andric gep_type_iterator GTI = gep_type_begin(*GEP); 3410b57cec5SDimitry Andric for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { 3420b57cec5SDimitry Andric if (GTI.isSequential()) { 3430b57cec5SDimitry Andric if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I - 1, 3440b57cec5SDimitry Andric GTI.getIndexedType())) { 3450b57cec5SDimitry Andric return NewGEP; 3460b57cec5SDimitry Andric } 3470b57cec5SDimitry Andric } 3480b57cec5SDimitry Andric } 3490b57cec5SDimitry Andric return nullptr; 3500b57cec5SDimitry Andric } 3510b57cec5SDimitry Andric 3520b57cec5SDimitry Andric bool NaryReassociatePass::requiresSignExtension(Value *Index, 3530b57cec5SDimitry Andric GetElementPtrInst *GEP) { 35406c3fb27SDimitry Andric unsigned IndexSizeInBits = 35506c3fb27SDimitry Andric DL->getIndexSizeInBits(GEP->getType()->getPointerAddressSpace()); 35606c3fb27SDimitry Andric return cast<IntegerType>(Index->getType())->getBitWidth() < IndexSizeInBits; 3570b57cec5SDimitry Andric } 3580b57cec5SDimitry Andric 3590b57cec5SDimitry Andric GetElementPtrInst * 3600b57cec5SDimitry Andric NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, 3610b57cec5SDimitry Andric unsigned I, Type *IndexedType) { 3625f757f3fSDimitry Andric SimplifyQuery SQ(*DL, DT, AC, GEP); 3630b57cec5SDimitry Andric Value *IndexToSplit = GEP->getOperand(I + 1); 3640b57cec5SDimitry Andric if (SExtInst *SExt = dyn_cast<SExtInst>(IndexToSplit)) { 3650b57cec5SDimitry Andric IndexToSplit = SExt->getOperand(0); 3660b57cec5SDimitry Andric } else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) { 3670b57cec5SDimitry Andric // zext can be treated as sext if the source is non-negative. 3685f757f3fSDimitry Andric if (isKnownNonNegative(ZExt->getOperand(0), SQ)) 3690b57cec5SDimitry Andric IndexToSplit = ZExt->getOperand(0); 3700b57cec5SDimitry Andric } 3710b57cec5SDimitry Andric 3720b57cec5SDimitry Andric if (AddOperator *AO = dyn_cast<AddOperator>(IndexToSplit)) { 3730b57cec5SDimitry Andric // If the I-th index needs sext and the underlying add is not equipped with 3740b57cec5SDimitry Andric // nsw, we cannot split the add because 3750b57cec5SDimitry Andric // sext(LHS + RHS) != sext(LHS) + sext(RHS). 3760b57cec5SDimitry Andric if (requiresSignExtension(IndexToSplit, GEP) && 3775f757f3fSDimitry Andric computeOverflowForSignedAdd(AO, SQ) != OverflowResult::NeverOverflows) 3780b57cec5SDimitry Andric return nullptr; 3790b57cec5SDimitry Andric 3800b57cec5SDimitry Andric Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1); 3810b57cec5SDimitry Andric // IndexToSplit = LHS + RHS. 3820b57cec5SDimitry Andric if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType)) 3830b57cec5SDimitry Andric return NewGEP; 3840b57cec5SDimitry Andric // Symmetrically, try IndexToSplit = RHS + LHS. 3850b57cec5SDimitry Andric if (LHS != RHS) { 3860b57cec5SDimitry Andric if (auto *NewGEP = 3870b57cec5SDimitry Andric tryReassociateGEPAtIndex(GEP, I, RHS, LHS, IndexedType)) 3880b57cec5SDimitry Andric return NewGEP; 3890b57cec5SDimitry Andric } 3900b57cec5SDimitry Andric } 3910b57cec5SDimitry Andric return nullptr; 3920b57cec5SDimitry Andric } 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric GetElementPtrInst * 3950b57cec5SDimitry Andric NaryReassociatePass::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, 3960b57cec5SDimitry Andric unsigned I, Value *LHS, 3970b57cec5SDimitry Andric Value *RHS, Type *IndexedType) { 3980b57cec5SDimitry Andric // Look for GEP's closest dominator that has the same SCEV as GEP except that 3990b57cec5SDimitry Andric // the I-th index is replaced with LHS. 4000b57cec5SDimitry Andric SmallVector<const SCEV *, 4> IndexExprs; 401fe6060f1SDimitry Andric for (Use &Index : GEP->indices()) 402fe6060f1SDimitry Andric IndexExprs.push_back(SE->getSCEV(Index)); 4030b57cec5SDimitry Andric // Replace the I-th index with LHS. 4040b57cec5SDimitry Andric IndexExprs[I] = SE->getSCEV(LHS); 4055f757f3fSDimitry Andric if (isKnownNonNegative(LHS, SimplifyQuery(*DL, DT, AC, GEP)) && 406bdd1243dSDimitry Andric DL->getTypeSizeInBits(LHS->getType()).getFixedValue() < 407bdd1243dSDimitry Andric DL->getTypeSizeInBits(GEP->getOperand(I)->getType()) 408bdd1243dSDimitry Andric .getFixedValue()) { 4090b57cec5SDimitry Andric // Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to 4100b57cec5SDimitry Andric // zext if the source operand is proved non-negative. We should do that 4110b57cec5SDimitry Andric // consistently so that CandidateExpr more likely appears before. See 4120b57cec5SDimitry Andric // @reassociate_gep_assume for an example of this canonicalization. 4130b57cec5SDimitry Andric IndexExprs[I] = 4140b57cec5SDimitry Andric SE->getZeroExtendExpr(IndexExprs[I], GEP->getOperand(I)->getType()); 4150b57cec5SDimitry Andric } 4160b57cec5SDimitry Andric const SCEV *CandidateExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), 4170b57cec5SDimitry Andric IndexExprs); 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric Value *Candidate = findClosestMatchingDominator(CandidateExpr, GEP); 4200b57cec5SDimitry Andric if (Candidate == nullptr) 4210b57cec5SDimitry Andric return nullptr; 4220b57cec5SDimitry Andric 4230b57cec5SDimitry Andric IRBuilder<> Builder(GEP); 4240b57cec5SDimitry Andric // Candidate does not necessarily have the same pointer type as GEP. Use 4250b57cec5SDimitry Andric // bitcast or pointer cast to make sure they have the same type, so that the 4260b57cec5SDimitry Andric // later RAUW doesn't complain. 4270b57cec5SDimitry Andric Candidate = Builder.CreateBitOrPointerCast(Candidate, GEP->getType()); 4280b57cec5SDimitry Andric assert(Candidate->getType() == GEP->getType()); 4290b57cec5SDimitry Andric 4300b57cec5SDimitry Andric // NewGEP = (char *)Candidate + RHS * sizeof(IndexedType) 4310b57cec5SDimitry Andric uint64_t IndexedSize = DL->getTypeAllocSize(IndexedType); 4320b57cec5SDimitry Andric Type *ElementType = GEP->getResultElementType(); 4330b57cec5SDimitry Andric uint64_t ElementSize = DL->getTypeAllocSize(ElementType); 4340b57cec5SDimitry Andric // Another less rare case: because I is not necessarily the last index of the 4350b57cec5SDimitry Andric // GEP, the size of the type at the I-th index (IndexedSize) is not 4360b57cec5SDimitry Andric // necessarily divisible by ElementSize. For example, 4370b57cec5SDimitry Andric // 4380b57cec5SDimitry Andric // #pragma pack(1) 4390b57cec5SDimitry Andric // struct S { 4400b57cec5SDimitry Andric // int a[3]; 4410b57cec5SDimitry Andric // int64 b[8]; 4420b57cec5SDimitry Andric // }; 4430b57cec5SDimitry Andric // #pragma pack() 4440b57cec5SDimitry Andric // 4450b57cec5SDimitry Andric // sizeof(S) = 100 is indivisible by sizeof(int64) = 8. 4460b57cec5SDimitry Andric // 4470b57cec5SDimitry Andric // TODO: bail out on this case for now. We could emit uglygep. 4480b57cec5SDimitry Andric if (IndexedSize % ElementSize != 0) 4490b57cec5SDimitry Andric return nullptr; 4500b57cec5SDimitry Andric 4510b57cec5SDimitry Andric // NewGEP = &Candidate[RHS * (sizeof(IndexedType) / sizeof(Candidate[0]))); 45206c3fb27SDimitry Andric Type *PtrIdxTy = DL->getIndexType(GEP->getType()); 45306c3fb27SDimitry Andric if (RHS->getType() != PtrIdxTy) 45406c3fb27SDimitry Andric RHS = Builder.CreateSExtOrTrunc(RHS, PtrIdxTy); 4550b57cec5SDimitry Andric if (IndexedSize != ElementSize) { 4560b57cec5SDimitry Andric RHS = Builder.CreateMul( 45706c3fb27SDimitry Andric RHS, ConstantInt::get(PtrIdxTy, IndexedSize / ElementSize)); 4580b57cec5SDimitry Andric } 4590b57cec5SDimitry Andric GetElementPtrInst *NewGEP = cast<GetElementPtrInst>( 4600b57cec5SDimitry Andric Builder.CreateGEP(GEP->getResultElementType(), Candidate, RHS)); 4610b57cec5SDimitry Andric NewGEP->setIsInBounds(GEP->isInBounds()); 4620b57cec5SDimitry Andric NewGEP->takeName(GEP); 4630b57cec5SDimitry Andric return NewGEP; 4640b57cec5SDimitry Andric } 4650b57cec5SDimitry Andric 4660b57cec5SDimitry Andric Instruction *NaryReassociatePass::tryReassociateBinaryOp(BinaryOperator *I) { 4670b57cec5SDimitry Andric Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); 4680b57cec5SDimitry Andric // There is no need to reassociate 0. 4690b57cec5SDimitry Andric if (SE->getSCEV(I)->isZero()) 4700b57cec5SDimitry Andric return nullptr; 4710b57cec5SDimitry Andric if (auto *NewI = tryReassociateBinaryOp(LHS, RHS, I)) 4720b57cec5SDimitry Andric return NewI; 4730b57cec5SDimitry Andric if (auto *NewI = tryReassociateBinaryOp(RHS, LHS, I)) 4740b57cec5SDimitry Andric return NewI; 4750b57cec5SDimitry Andric return nullptr; 4760b57cec5SDimitry Andric } 4770b57cec5SDimitry Andric 4780b57cec5SDimitry Andric Instruction *NaryReassociatePass::tryReassociateBinaryOp(Value *LHS, Value *RHS, 4790b57cec5SDimitry Andric BinaryOperator *I) { 4800b57cec5SDimitry Andric Value *A = nullptr, *B = nullptr; 4810b57cec5SDimitry Andric // To be conservative, we reassociate I only when it is the only user of (A op 4820b57cec5SDimitry Andric // B). 4830b57cec5SDimitry Andric if (LHS->hasOneUse() && matchTernaryOp(I, LHS, A, B)) { 4840b57cec5SDimitry Andric // I = (A op B) op RHS 4850b57cec5SDimitry Andric // = (A op RHS) op B or (B op RHS) op A 4860b57cec5SDimitry Andric const SCEV *AExpr = SE->getSCEV(A), *BExpr = SE->getSCEV(B); 4870b57cec5SDimitry Andric const SCEV *RHSExpr = SE->getSCEV(RHS); 4880b57cec5SDimitry Andric if (BExpr != RHSExpr) { 4890b57cec5SDimitry Andric if (auto *NewI = 4900b57cec5SDimitry Andric tryReassociatedBinaryOp(getBinarySCEV(I, AExpr, RHSExpr), B, I)) 4910b57cec5SDimitry Andric return NewI; 4920b57cec5SDimitry Andric } 4930b57cec5SDimitry Andric if (AExpr != RHSExpr) { 4940b57cec5SDimitry Andric if (auto *NewI = 4950b57cec5SDimitry Andric tryReassociatedBinaryOp(getBinarySCEV(I, BExpr, RHSExpr), A, I)) 4960b57cec5SDimitry Andric return NewI; 4970b57cec5SDimitry Andric } 4980b57cec5SDimitry Andric } 4990b57cec5SDimitry Andric return nullptr; 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 5020b57cec5SDimitry Andric Instruction *NaryReassociatePass::tryReassociatedBinaryOp(const SCEV *LHSExpr, 5030b57cec5SDimitry Andric Value *RHS, 5040b57cec5SDimitry Andric BinaryOperator *I) { 5050b57cec5SDimitry Andric // Look for the closest dominator LHS of I that computes LHSExpr, and replace 5060b57cec5SDimitry Andric // I with LHS op RHS. 5070b57cec5SDimitry Andric auto *LHS = findClosestMatchingDominator(LHSExpr, I); 5080b57cec5SDimitry Andric if (LHS == nullptr) 5090b57cec5SDimitry Andric return nullptr; 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric Instruction *NewI = nullptr; 5120b57cec5SDimitry Andric switch (I->getOpcode()) { 5130b57cec5SDimitry Andric case Instruction::Add: 514*0fca6ea1SDimitry Andric NewI = BinaryOperator::CreateAdd(LHS, RHS, "", I->getIterator()); 5150b57cec5SDimitry Andric break; 5160b57cec5SDimitry Andric case Instruction::Mul: 517*0fca6ea1SDimitry Andric NewI = BinaryOperator::CreateMul(LHS, RHS, "", I->getIterator()); 5180b57cec5SDimitry Andric break; 5190b57cec5SDimitry Andric default: 5200b57cec5SDimitry Andric llvm_unreachable("Unexpected instruction."); 5210b57cec5SDimitry Andric } 522*0fca6ea1SDimitry Andric NewI->setDebugLoc(I->getDebugLoc()); 5230b57cec5SDimitry Andric NewI->takeName(I); 5240b57cec5SDimitry Andric return NewI; 5250b57cec5SDimitry Andric } 5260b57cec5SDimitry Andric 5270b57cec5SDimitry Andric bool NaryReassociatePass::matchTernaryOp(BinaryOperator *I, Value *V, 5280b57cec5SDimitry Andric Value *&Op1, Value *&Op2) { 5290b57cec5SDimitry Andric switch (I->getOpcode()) { 5300b57cec5SDimitry Andric case Instruction::Add: 5310b57cec5SDimitry Andric return match(V, m_Add(m_Value(Op1), m_Value(Op2))); 5320b57cec5SDimitry Andric case Instruction::Mul: 5330b57cec5SDimitry Andric return match(V, m_Mul(m_Value(Op1), m_Value(Op2))); 5340b57cec5SDimitry Andric default: 5350b57cec5SDimitry Andric llvm_unreachable("Unexpected instruction."); 5360b57cec5SDimitry Andric } 5370b57cec5SDimitry Andric return false; 5380b57cec5SDimitry Andric } 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric const SCEV *NaryReassociatePass::getBinarySCEV(BinaryOperator *I, 5410b57cec5SDimitry Andric const SCEV *LHS, 5420b57cec5SDimitry Andric const SCEV *RHS) { 5430b57cec5SDimitry Andric switch (I->getOpcode()) { 5440b57cec5SDimitry Andric case Instruction::Add: 5450b57cec5SDimitry Andric return SE->getAddExpr(LHS, RHS); 5460b57cec5SDimitry Andric case Instruction::Mul: 5470b57cec5SDimitry Andric return SE->getMulExpr(LHS, RHS); 5480b57cec5SDimitry Andric default: 5490b57cec5SDimitry Andric llvm_unreachable("Unexpected instruction."); 5500b57cec5SDimitry Andric } 5510b57cec5SDimitry Andric return nullptr; 5520b57cec5SDimitry Andric } 5530b57cec5SDimitry Andric 5540b57cec5SDimitry Andric Instruction * 5550b57cec5SDimitry Andric NaryReassociatePass::findClosestMatchingDominator(const SCEV *CandidateExpr, 5560b57cec5SDimitry Andric Instruction *Dominatee) { 5570b57cec5SDimitry Andric auto Pos = SeenExprs.find(CandidateExpr); 5580b57cec5SDimitry Andric if (Pos == SeenExprs.end()) 5590b57cec5SDimitry Andric return nullptr; 5600b57cec5SDimitry Andric 5610b57cec5SDimitry Andric auto &Candidates = Pos->second; 5620b57cec5SDimitry Andric // Because we process the basic blocks in pre-order of the dominator tree, a 5630b57cec5SDimitry Andric // candidate that doesn't dominate the current instruction won't dominate any 5640b57cec5SDimitry Andric // future instruction either. Therefore, we pop it out of the stack. This 5650b57cec5SDimitry Andric // optimization makes the algorithm O(n). 5660b57cec5SDimitry Andric while (!Candidates.empty()) { 5670b57cec5SDimitry Andric // Candidates stores WeakTrackingVHs, so a candidate can be nullptr if it's 568*0fca6ea1SDimitry Andric // removed during rewriting. 569*0fca6ea1SDimitry Andric if (Value *Candidate = Candidates.pop_back_val()) { 5700b57cec5SDimitry Andric Instruction *CandidateInstruction = cast<Instruction>(Candidate); 571*0fca6ea1SDimitry Andric if (!DT->dominates(CandidateInstruction, Dominatee)) 572*0fca6ea1SDimitry Andric continue; 573*0fca6ea1SDimitry Andric 574*0fca6ea1SDimitry Andric // Make sure that the instruction is safe to reuse without introducing 575*0fca6ea1SDimitry Andric // poison. 576*0fca6ea1SDimitry Andric SmallVector<Instruction *> DropPoisonGeneratingInsts; 577*0fca6ea1SDimitry Andric if (!SE->canReuseInstruction(CandidateExpr, CandidateInstruction, 578*0fca6ea1SDimitry Andric DropPoisonGeneratingInsts)) 579*0fca6ea1SDimitry Andric continue; 580*0fca6ea1SDimitry Andric 581*0fca6ea1SDimitry Andric for (Instruction *I : DropPoisonGeneratingInsts) 582*0fca6ea1SDimitry Andric I->dropPoisonGeneratingAnnotations(); 583*0fca6ea1SDimitry Andric 5840b57cec5SDimitry Andric return CandidateInstruction; 5850b57cec5SDimitry Andric } 5860b57cec5SDimitry Andric } 5870b57cec5SDimitry Andric return nullptr; 5880b57cec5SDimitry Andric } 589fe6060f1SDimitry Andric 590fe6060f1SDimitry Andric template <typename MaxMinT> static SCEVTypes convertToSCEVype(MaxMinT &MM) { 591bdd1243dSDimitry Andric if (std::is_same_v<smax_pred_ty, typename MaxMinT::PredType>) 592fe6060f1SDimitry Andric return scSMaxExpr; 593bdd1243dSDimitry Andric else if (std::is_same_v<umax_pred_ty, typename MaxMinT::PredType>) 594fe6060f1SDimitry Andric return scUMaxExpr; 595bdd1243dSDimitry Andric else if (std::is_same_v<smin_pred_ty, typename MaxMinT::PredType>) 596fe6060f1SDimitry Andric return scSMinExpr; 597bdd1243dSDimitry Andric else if (std::is_same_v<umin_pred_ty, typename MaxMinT::PredType>) 598fe6060f1SDimitry Andric return scUMinExpr; 599fe6060f1SDimitry Andric 600fe6060f1SDimitry Andric llvm_unreachable("Can't convert MinMax pattern to SCEV type"); 601fe6060f1SDimitry Andric return scUnknown; 602fe6060f1SDimitry Andric } 603fe6060f1SDimitry Andric 604fe6060f1SDimitry Andric // Parameters: 605fe6060f1SDimitry Andric // I - instruction matched by MaxMinMatch matcher 606fe6060f1SDimitry Andric // MaxMinMatch - min/max idiom matcher 607fe6060f1SDimitry Andric // LHS - first operand of I 608fe6060f1SDimitry Andric // RHS - second operand of I 609fe6060f1SDimitry Andric template <typename MaxMinT> 610fe6060f1SDimitry Andric Value *NaryReassociatePass::tryReassociateMinOrMax(Instruction *I, 611fe6060f1SDimitry Andric MaxMinT MaxMinMatch, 612fe6060f1SDimitry Andric Value *LHS, Value *RHS) { 613fe6060f1SDimitry Andric Value *A = nullptr, *B = nullptr; 614fe6060f1SDimitry Andric MaxMinT m_MaxMin(m_Value(A), m_Value(B)); 615fe6060f1SDimitry Andric 616349cc55cSDimitry Andric if (LHS->hasNUsesOrMore(3) || 617fe6060f1SDimitry Andric // The optimization is profitable only if LHS can be removed in the end. 618fe6060f1SDimitry Andric // In other words LHS should be used (directly or indirectly) by I only. 619349cc55cSDimitry Andric llvm::any_of(LHS->users(), 620349cc55cSDimitry Andric [&](auto *U) { 621349cc55cSDimitry Andric return U != I && 622349cc55cSDimitry Andric !(U->hasOneUser() && *U->users().begin() == I); 623349cc55cSDimitry Andric }) || 624349cc55cSDimitry Andric !match(LHS, m_MaxMin)) 625349cc55cSDimitry Andric return nullptr; 626fe6060f1SDimitry Andric 627349cc55cSDimitry Andric auto tryCombination = [&](Value *A, const SCEV *AExpr, Value *B, 628349cc55cSDimitry Andric const SCEV *BExpr, Value *C, 629349cc55cSDimitry Andric const SCEV *CExpr) -> Value * { 630fe6060f1SDimitry Andric SmallVector<const SCEV *, 2> Ops1{BExpr, AExpr}; 631fe6060f1SDimitry Andric const SCEVTypes SCEVType = convertToSCEVype(m_MaxMin); 632fe6060f1SDimitry Andric const SCEV *R1Expr = SE->getMinMaxExpr(SCEVType, Ops1); 633fe6060f1SDimitry Andric 634fe6060f1SDimitry Andric Instruction *R1MinMax = findClosestMatchingDominator(R1Expr, I); 635fe6060f1SDimitry Andric 636fe6060f1SDimitry Andric if (!R1MinMax) 637349cc55cSDimitry Andric return nullptr; 638fe6060f1SDimitry Andric 639349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "NARY: Found common sub-expr: " << *R1MinMax << "\n"); 640fe6060f1SDimitry Andric 641349cc55cSDimitry Andric SmallVector<const SCEV *, 2> Ops2{SE->getUnknown(C), 642349cc55cSDimitry Andric SE->getUnknown(R1MinMax)}; 643fe6060f1SDimitry Andric const SCEV *R2Expr = SE->getMinMaxExpr(SCEVType, Ops2); 644fe6060f1SDimitry Andric 645349cc55cSDimitry Andric SCEVExpander Expander(*SE, *DL, "nary-reassociate"); 646fe6060f1SDimitry Andric Value *NewMinMax = Expander.expandCodeFor(R2Expr, I->getType(), I); 647fe6060f1SDimitry Andric NewMinMax->setName(Twine(I->getName()).concat(".nary")); 648fe6060f1SDimitry Andric 649fe6060f1SDimitry Andric LLVM_DEBUG(dbgs() << "NARY: Deleting: " << *I << "\n" 650fe6060f1SDimitry Andric << "NARY: Inserting: " << *NewMinMax << "\n"); 651fe6060f1SDimitry Andric return NewMinMax; 652349cc55cSDimitry Andric }; 653349cc55cSDimitry Andric 654349cc55cSDimitry Andric const SCEV *AExpr = SE->getSCEV(A); 655349cc55cSDimitry Andric const SCEV *BExpr = SE->getSCEV(B); 656349cc55cSDimitry Andric const SCEV *RHSExpr = SE->getSCEV(RHS); 657349cc55cSDimitry Andric 658349cc55cSDimitry Andric if (BExpr != RHSExpr) { 659349cc55cSDimitry Andric // Try (A op RHS) op B 660349cc55cSDimitry Andric if (auto *NewMinMax = tryCombination(A, AExpr, RHS, RHSExpr, B, BExpr)) 661349cc55cSDimitry Andric return NewMinMax; 662fe6060f1SDimitry Andric } 663349cc55cSDimitry Andric 664349cc55cSDimitry Andric if (AExpr != RHSExpr) { 665349cc55cSDimitry Andric // Try (RHS op B) op A 666349cc55cSDimitry Andric if (auto *NewMinMax = tryCombination(RHS, RHSExpr, B, BExpr, A, AExpr)) 667349cc55cSDimitry Andric return NewMinMax; 668fe6060f1SDimitry Andric } 669349cc55cSDimitry Andric 670fe6060f1SDimitry Andric return nullptr; 671fe6060f1SDimitry Andric } 672