xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
49 
50 using namespace llvm;
51 
52 #define DEBUG_TYPE "loop-interchange"
53 
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
55 
56 static cl::opt<int> LoopInterchangeCostThreshold(
57     "loop-interchange-threshold", cl::init(0), cl::Hidden,
58     cl::desc("Interchange if you gain more than this number"));
59 
60 namespace {
61 
62 using LoopVector = SmallVector<Loop *, 8>;
63 
64 // TODO: Check if we can use a sparse matrix here.
65 using CharMatrix = std::vector<std::vector<char>>;
66 
67 } // end anonymous namespace
68 
69 // Maximum number of dependencies that can be handled in the dependency matrix.
70 static const unsigned MaxMemInstrCount = 100;
71 
72 // Maximum loop depth supported.
73 static const unsigned MaxLoopNestDepth = 10;
74 
75 #ifdef DUMP_DEP_MATRICIES
76 static void printDepMatrix(CharMatrix &DepMatrix) {
77   for (auto &Row : DepMatrix) {
78     for (auto D : Row)
79       LLVM_DEBUG(dbgs() << D << " ");
80     LLVM_DEBUG(dbgs() << "\n");
81   }
82 }
83 #endif
84 
85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
86                                      Loop *L, DependenceInfo *DI) {
87   using ValueVector = SmallVector<Value *, 16>;
88 
89   ValueVector MemInstr;
90 
91   // For each block.
92   for (BasicBlock *BB : L->blocks()) {
93     // Scan the BB and collect legal loads and stores.
94     for (Instruction &I : *BB) {
95       if (!isa<Instruction>(I))
96         return false;
97       if (auto *Ld = dyn_cast<LoadInst>(&I)) {
98         if (!Ld->isSimple())
99           return false;
100         MemInstr.push_back(&I);
101       } else if (auto *St = dyn_cast<StoreInst>(&I)) {
102         if (!St->isSimple())
103           return false;
104         MemInstr.push_back(&I);
105       }
106     }
107   }
108 
109   LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
110                     << " Loads and Stores to analyze\n");
111 
112   ValueVector::iterator I, IE, J, JE;
113 
114   for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
115     for (J = I, JE = MemInstr.end(); J != JE; ++J) {
116       std::vector<char> Dep;
117       Instruction *Src = cast<Instruction>(*I);
118       Instruction *Dst = cast<Instruction>(*J);
119       if (Src == Dst)
120         continue;
121       // Ignore Input dependencies.
122       if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
123         continue;
124       // Track Output, Flow, and Anti dependencies.
125       if (auto D = DI->depends(Src, Dst, true)) {
126         assert(D->isOrdered() && "Expected an output, flow or anti dep.");
127         LLVM_DEBUG(StringRef DepType =
128                        D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
129                    dbgs() << "Found " << DepType
130                           << " dependency between Src and Dst\n"
131                           << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
132         unsigned Levels = D->getLevels();
133         char Direction;
134         for (unsigned II = 1; II <= Levels; ++II) {
135           const SCEV *Distance = D->getDistance(II);
136           const SCEVConstant *SCEVConst =
137               dyn_cast_or_null<SCEVConstant>(Distance);
138           if (SCEVConst) {
139             const ConstantInt *CI = SCEVConst->getValue();
140             if (CI->isNegative())
141               Direction = '<';
142             else if (CI->isZero())
143               Direction = '=';
144             else
145               Direction = '>';
146             Dep.push_back(Direction);
147           } else if (D->isScalar(II)) {
148             Direction = 'S';
149             Dep.push_back(Direction);
150           } else {
151             unsigned Dir = D->getDirection(II);
152             if (Dir == Dependence::DVEntry::LT ||
153                 Dir == Dependence::DVEntry::LE)
154               Direction = '<';
155             else if (Dir == Dependence::DVEntry::GT ||
156                      Dir == Dependence::DVEntry::GE)
157               Direction = '>';
158             else if (Dir == Dependence::DVEntry::EQ)
159               Direction = '=';
160             else
161               Direction = '*';
162             Dep.push_back(Direction);
163           }
164         }
165         while (Dep.size() != Level) {
166           Dep.push_back('I');
167         }
168 
169         DepMatrix.push_back(Dep);
170         if (DepMatrix.size() > MaxMemInstrCount) {
171           LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
172                             << " dependencies inside loop\n");
173           return false;
174         }
175       }
176     }
177   }
178 
179   return true;
180 }
181 
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
185                                     unsigned ToIndx) {
186   unsigned numRows = DepMatrix.size();
187   for (unsigned i = 0; i < numRows; ++i) {
188     char TmpVal = DepMatrix[i][ToIndx];
189     DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
190     DepMatrix[i][FromIndx] = TmpVal;
191   }
192 }
193 
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197                                    unsigned Column) {
198   for (unsigned i = 0; i <= Column; ++i) {
199     if (DepMatrix[Row][i] == '<')
200       return false;
201     if (DepMatrix[Row][i] == '>')
202       return true;
203   }
204   // All dependencies were '=','S' or 'I'
205   return false;
206 }
207 
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210                                  unsigned Column) {
211   for (unsigned i = 0; i < Column; ++i) {
212     if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213         DepMatrix[Row][i] != 'I')
214       return false;
215   }
216   return true;
217 }
218 
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220                                 unsigned OuterLoopId, char InnerDep,
221                                 char OuterDep) {
222   if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223     return false;
224 
225   if (InnerDep == OuterDep)
226     return true;
227 
228   // It is legal to interchange if and only if after interchange no row has a
229   // '>' direction as the leftmost non-'='.
230 
231   if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232     return true;
233 
234   if (InnerDep == '<')
235     return true;
236 
237   if (InnerDep == '>') {
238     // If OuterLoopId represents outermost loop then interchanging will make the
239     // 1st dependency as '>'
240     if (OuterLoopId == 0)
241       return false;
242 
243     // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244     // interchanging will result in this row having an outermost non '='
245     // dependency of '>'
246     if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247       return true;
248   }
249 
250   return false;
251 }
252 
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258                                       unsigned InnerLoopId,
259                                       unsigned OuterLoopId) {
260   unsigned NumRows = DepMatrix.size();
261   // For each row check if it is valid to interchange.
262   for (unsigned Row = 0; Row < NumRows; ++Row) {
263     char InnerDep = DepMatrix[Row][InnerLoopId];
264     char OuterDep = DepMatrix[Row][OuterLoopId];
265     if (InnerDep == '*' || OuterDep == '*')
266       return false;
267     if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268       return false;
269   }
270   return true;
271 }
272 
273 static LoopVector populateWorklist(Loop &L) {
274   LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275                     << L.getHeader()->getParent()->getName() << " Loop: %"
276                     << L.getHeader()->getName() << '\n');
277   LoopVector LoopList;
278   Loop *CurrentLoop = &L;
279   const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280   while (!Vec->empty()) {
281     // The current loop has multiple subloops in it hence it is not tightly
282     // nested.
283     // Discard all loops above it added into Worklist.
284     if (Vec->size() != 1)
285       return {};
286 
287     LoopList.push_back(CurrentLoop);
288     CurrentLoop = Vec->front();
289     Vec = &CurrentLoop->getSubLoops();
290   }
291   LoopList.push_back(CurrentLoop);
292   return LoopList;
293 }
294 
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296   PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297   if (InnerIndexVar)
298     return InnerIndexVar;
299   if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300     return nullptr;
301   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302     PHINode *PhiVar = cast<PHINode>(I);
303     Type *PhiTy = PhiVar->getType();
304     if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305         !PhiTy->isPointerTy())
306       return nullptr;
307     const SCEVAddRecExpr *AddRec =
308         dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309     if (!AddRec || !AddRec->isAffine())
310       continue;
311     const SCEV *Step = AddRec->getStepRecurrence(*SE);
312     if (!isa<SCEVConstant>(Step))
313       continue;
314     // Found the induction variable.
315     // FIXME: Handle loops with more than one induction variable. Note that,
316     // currently, legality makes sure we have only one induction variable.
317     return PhiVar;
318   }
319   return nullptr;
320 }
321 
322 namespace {
323 
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327   LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328                           OptimizationRemarkEmitter *ORE)
329       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
330 
331   /// Check if the loops can be interchanged.
332   bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333                            CharMatrix &DepMatrix);
334 
335   /// Check if the loop structure is understood. We do not handle triangular
336   /// loops for now.
337   bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
338 
339   bool currentLimitations();
340 
341   const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342     return OuterInnerReductions;
343   }
344 
345 private:
346   bool tightlyNested(Loop *Outer, Loop *Inner);
347   bool containsUnsafeInstructions(BasicBlock *BB);
348 
349   /// Discover induction and reduction PHIs in the header of \p L. Induction
350   /// PHIs are added to \p Inductions, reductions are added to
351   /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352   /// to be passed as \p InnerLoop.
353   bool findInductionAndReductions(Loop *L,
354                                   SmallVector<PHINode *, 8> &Inductions,
355                                   Loop *InnerLoop);
356 
357   Loop *OuterLoop;
358   Loop *InnerLoop;
359 
360   ScalarEvolution *SE;
361 
362   /// Interface to emit optimization remarks.
363   OptimizationRemarkEmitter *ORE;
364 
365   /// Set of reduction PHIs taking part of a reduction across the inner and
366   /// outer loop.
367   SmallPtrSet<PHINode *, 4> OuterInnerReductions;
368 };
369 
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374   LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375                                OptimizationRemarkEmitter *ORE)
376       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
377 
378   /// Check if the loop interchange is profitable.
379   bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380                     CharMatrix &DepMatrix);
381 
382 private:
383   int getInstrOrderCost();
384 
385   Loop *OuterLoop;
386   Loop *InnerLoop;
387 
388   /// Scev analysis.
389   ScalarEvolution *SE;
390 
391   /// Interface to emit optimization remarks.
392   OptimizationRemarkEmitter *ORE;
393 };
394 
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398   LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399                            LoopInfo *LI, DominatorTree *DT,
400                            BasicBlock *LoopNestExit,
401                            const LoopInterchangeLegality &LIL)
402       : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403         LoopExit(LoopNestExit), LIL(LIL) {}
404 
405   /// Interchange OuterLoop and InnerLoop.
406   bool transform();
407   void restructureLoops(Loop *NewInner, Loop *NewOuter,
408                         BasicBlock *OrigInnerPreHeader,
409                         BasicBlock *OrigOuterPreHeader);
410   void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
411 
412 private:
413   bool adjustLoopLinks();
414   void adjustLoopPreheaders();
415   bool adjustLoopBranches();
416 
417   Loop *OuterLoop;
418   Loop *InnerLoop;
419 
420   /// Scev analysis.
421   ScalarEvolution *SE;
422 
423   LoopInfo *LI;
424   DominatorTree *DT;
425   BasicBlock *LoopExit;
426 
427   const LoopInterchangeLegality &LIL;
428 };
429 
430 // Main LoopInterchange Pass.
431 struct LoopInterchange : public LoopPass {
432   static char ID;
433   ScalarEvolution *SE = nullptr;
434   LoopInfo *LI = nullptr;
435   DependenceInfo *DI = nullptr;
436   DominatorTree *DT = nullptr;
437 
438   /// Interface to emit optimization remarks.
439   OptimizationRemarkEmitter *ORE;
440 
441   LoopInterchange() : LoopPass(ID) {
442     initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
443   }
444 
445   void getAnalysisUsage(AnalysisUsage &AU) const override {
446     AU.addRequired<DependenceAnalysisWrapperPass>();
447     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
448 
449     getLoopAnalysisUsage(AU);
450   }
451 
452   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
453     if (skipLoop(L) || L->getParentLoop())
454       return false;
455 
456     SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
457     LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
458     DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
459     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
460     ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
461 
462     return processLoopList(populateWorklist(*L));
463   }
464 
465   bool isComputableLoopNest(LoopVector LoopList) {
466     for (Loop *L : LoopList) {
467       const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
468       if (ExitCountOuter == SE->getCouldNotCompute()) {
469         LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
470         return false;
471       }
472       if (L->getNumBackEdges() != 1) {
473         LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
474         return false;
475       }
476       if (!L->getExitingBlock()) {
477         LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
478         return false;
479       }
480     }
481     return true;
482   }
483 
484   unsigned selectLoopForInterchange(const LoopVector &LoopList) {
485     // TODO: Add a better heuristic to select the loop to be interchanged based
486     // on the dependence matrix. Currently we select the innermost loop.
487     return LoopList.size() - 1;
488   }
489 
490   bool processLoopList(LoopVector LoopList) {
491     bool Changed = false;
492     unsigned LoopNestDepth = LoopList.size();
493     if (LoopNestDepth < 2) {
494       LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
495       return false;
496     }
497     if (LoopNestDepth > MaxLoopNestDepth) {
498       LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
499                         << MaxLoopNestDepth << "\n");
500       return false;
501     }
502     if (!isComputableLoopNest(LoopList)) {
503       LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
504       return false;
505     }
506 
507     LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
508                       << "\n");
509 
510     CharMatrix DependencyMatrix;
511     Loop *OuterMostLoop = *(LoopList.begin());
512     if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
513                                   OuterMostLoop, DI)) {
514       LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
515       return false;
516     }
517 #ifdef DUMP_DEP_MATRICIES
518     LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
519     printDepMatrix(DependencyMatrix);
520 #endif
521 
522     // Get the Outermost loop exit.
523     BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
524     if (!LoopNestExit) {
525       LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
526       return false;
527     }
528 
529     unsigned SelecLoopId = selectLoopForInterchange(LoopList);
530     // Move the selected loop outwards to the best possible position.
531     for (unsigned i = SelecLoopId; i > 0; i--) {
532       bool Interchanged =
533           processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
534       if (!Interchanged)
535         return Changed;
536       // Loops interchanged reflect the same in LoopList
537       std::swap(LoopList[i - 1], LoopList[i]);
538 
539       // Update the DependencyMatrix
540       interChangeDependencies(DependencyMatrix, i, i - 1);
541 #ifdef DUMP_DEP_MATRICIES
542       LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
543       printDepMatrix(DependencyMatrix);
544 #endif
545       Changed |= Interchanged;
546     }
547     return Changed;
548   }
549 
550   bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
551                    unsigned OuterLoopId, BasicBlock *LoopNestExit,
552                    std::vector<std::vector<char>> &DependencyMatrix) {
553     LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
554                       << " and OuterLoopId = " << OuterLoopId << "\n");
555     Loop *InnerLoop = LoopList[InnerLoopId];
556     Loop *OuterLoop = LoopList[OuterLoopId];
557 
558     LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
559     if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
560       LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
561       return false;
562     }
563     LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
564     LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
565     if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
566       LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
567       return false;
568     }
569 
570     ORE->emit([&]() {
571       return OptimizationRemark(DEBUG_TYPE, "Interchanged",
572                                 InnerLoop->getStartLoc(),
573                                 InnerLoop->getHeader())
574              << "Loop interchanged with enclosing loop.";
575     });
576 
577     LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
578                                  LIL);
579     LIT.transform();
580     LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
581     LoopsInterchanged++;
582     return true;
583   }
584 };
585 
586 } // end anonymous namespace
587 
588 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
589   return any_of(*BB, [](const Instruction &I) {
590     return I.mayHaveSideEffects() || I.mayReadFromMemory();
591   });
592 }
593 
594 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
595   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
596   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
597   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
598 
599   LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
600 
601   // A perfectly nested loop will not have any branch in between the outer and
602   // inner block i.e. outer header will branch to either inner preheader and
603   // outerloop latch.
604   BranchInst *OuterLoopHeaderBI =
605       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
606   if (!OuterLoopHeaderBI)
607     return false;
608 
609   for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
610     if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
611         Succ != OuterLoopLatch)
612       return false;
613 
614   LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
615   // We do not have any basic block in between now make sure the outer header
616   // and outer loop latch doesn't contain any unsafe instructions.
617   if (containsUnsafeInstructions(OuterLoopHeader) ||
618       containsUnsafeInstructions(OuterLoopLatch))
619     return false;
620 
621   LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
622   // We have a perfect loop nest.
623   return true;
624 }
625 
626 bool LoopInterchangeLegality::isLoopStructureUnderstood(
627     PHINode *InnerInduction) {
628   unsigned Num = InnerInduction->getNumOperands();
629   BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
630   for (unsigned i = 0; i < Num; ++i) {
631     Value *Val = InnerInduction->getOperand(i);
632     if (isa<Constant>(Val))
633       continue;
634     Instruction *I = dyn_cast<Instruction>(Val);
635     if (!I)
636       return false;
637     // TODO: Handle triangular loops.
638     // e.g. for(int i=0;i<N;i++)
639     //        for(int j=i;j<N;j++)
640     unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
641     if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
642             InnerLoopPreheader &&
643         !OuterLoop->isLoopInvariant(I)) {
644       return false;
645     }
646   }
647   return true;
648 }
649 
650 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
651 // value.
652 static Value *followLCSSA(Value *SV) {
653   PHINode *PHI = dyn_cast<PHINode>(SV);
654   if (!PHI)
655     return SV;
656 
657   if (PHI->getNumIncomingValues() != 1)
658     return SV;
659   return followLCSSA(PHI->getIncomingValue(0));
660 }
661 
662 // Check V's users to see if it is involved in a reduction in L.
663 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
664   for (Value *User : V->users()) {
665     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
666       if (PHI->getNumIncomingValues() == 1)
667         continue;
668       RecurrenceDescriptor RD;
669       if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
670         return PHI;
671       return nullptr;
672     }
673   }
674 
675   return nullptr;
676 }
677 
678 bool LoopInterchangeLegality::findInductionAndReductions(
679     Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
680   if (!L->getLoopLatch() || !L->getLoopPredecessor())
681     return false;
682   for (PHINode &PHI : L->getHeader()->phis()) {
683     RecurrenceDescriptor RD;
684     InductionDescriptor ID;
685     if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
686       Inductions.push_back(&PHI);
687     else {
688       // PHIs in inner loops need to be part of a reduction in the outer loop,
689       // discovered when checking the PHIs of the outer loop earlier.
690       if (!InnerLoop) {
691         if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) {
692           LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
693                                "across the outer loop.\n");
694           return false;
695         }
696       } else {
697         assert(PHI.getNumIncomingValues() == 2 &&
698                "Phis in loop header should have exactly 2 incoming values");
699         // Check if we have a PHI node in the outer loop that has a reduction
700         // result from the inner loop as an incoming value.
701         Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
702         PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
703         if (!InnerRedPhi ||
704             !llvm::any_of(InnerRedPhi->incoming_values(),
705                           [&PHI](Value *V) { return V == &PHI; })) {
706           LLVM_DEBUG(
707               dbgs()
708               << "Failed to recognize PHI as an induction or reduction.\n");
709           return false;
710         }
711         OuterInnerReductions.insert(&PHI);
712         OuterInnerReductions.insert(InnerRedPhi);
713       }
714     }
715   }
716   return true;
717 }
718 
719 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
720   for (PHINode &PHI : Block->phis()) {
721     // Reduction lcssa phi will have only 1 incoming block that from loop latch.
722     if (PHI.getNumIncomingValues() > 1)
723       return false;
724     Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
725     if (!Ins)
726       return false;
727     // Incoming value for lcssa phi's in outer loop exit can only be inner loop
728     // exits lcssa phi else it would not be tightly nested.
729     if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
730       return false;
731   }
732   return true;
733 }
734 
735 // This function indicates the current limitations in the transform as a result
736 // of which we do not proceed.
737 bool LoopInterchangeLegality::currentLimitations() {
738   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
739   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
740 
741   // transform currently expects the loop latches to also be the exiting
742   // blocks.
743   if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
744       OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
745       !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
746       !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
747     LLVM_DEBUG(
748         dbgs() << "Loops where the latch is not the exiting block are not"
749                << " supported currently.\n");
750     ORE->emit([&]() {
751       return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
752                                       OuterLoop->getStartLoc(),
753                                       OuterLoop->getHeader())
754              << "Loops where the latch is not the exiting block cannot be"
755                 " interchange currently.";
756     });
757     return true;
758   }
759 
760   PHINode *InnerInductionVar;
761   SmallVector<PHINode *, 8> Inductions;
762   if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
763     LLVM_DEBUG(
764         dbgs() << "Only outer loops with induction or reduction PHI nodes "
765                << "are supported currently.\n");
766     ORE->emit([&]() {
767       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
768                                       OuterLoop->getStartLoc(),
769                                       OuterLoop->getHeader())
770              << "Only outer loops with induction or reduction PHI nodes can be"
771                 " interchanged currently.";
772     });
773     return true;
774   }
775 
776   // TODO: Currently we handle only loops with 1 induction variable.
777   if (Inductions.size() != 1) {
778     LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
779                       << "supported currently.\n");
780     ORE->emit([&]() {
781       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
782                                       OuterLoop->getStartLoc(),
783                                       OuterLoop->getHeader())
784              << "Only outer loops with 1 induction variable can be "
785                 "interchanged currently.";
786     });
787     return true;
788   }
789 
790   Inductions.clear();
791   if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
792     LLVM_DEBUG(
793         dbgs() << "Only inner loops with induction or reduction PHI nodes "
794                << "are supported currently.\n");
795     ORE->emit([&]() {
796       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
797                                       InnerLoop->getStartLoc(),
798                                       InnerLoop->getHeader())
799              << "Only inner loops with induction or reduction PHI nodes can be"
800                 " interchange currently.";
801     });
802     return true;
803   }
804 
805   // TODO: Currently we handle only loops with 1 induction variable.
806   if (Inductions.size() != 1) {
807     LLVM_DEBUG(
808         dbgs() << "We currently only support loops with 1 induction variable."
809                << "Failed to interchange due to current limitation\n");
810     ORE->emit([&]() {
811       return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
812                                       InnerLoop->getStartLoc(),
813                                       InnerLoop->getHeader())
814              << "Only inner loops with 1 induction variable can be "
815                 "interchanged currently.";
816     });
817     return true;
818   }
819   InnerInductionVar = Inductions.pop_back_val();
820 
821   // TODO: Triangular loops are not handled for now.
822   if (!isLoopStructureUnderstood(InnerInductionVar)) {
823     LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
824     ORE->emit([&]() {
825       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
826                                       InnerLoop->getStartLoc(),
827                                       InnerLoop->getHeader())
828              << "Inner loop structure not understood currently.";
829     });
830     return true;
831   }
832 
833   // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
834   BasicBlock *InnerExit = InnerLoop->getExitBlock();
835   if (!containsSafePHI(InnerExit, false)) {
836     LLVM_DEBUG(
837         dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
838     ORE->emit([&]() {
839       return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
840                                       InnerLoop->getStartLoc(),
841                                       InnerLoop->getHeader())
842              << "Only inner loops with LCSSA PHIs can be interchange "
843                 "currently.";
844     });
845     return true;
846   }
847 
848   // TODO: Current limitation: Since we split the inner loop latch at the point
849   // were induction variable is incremented (induction.next); We cannot have
850   // more than 1 user of induction.next since it would result in broken code
851   // after split.
852   // e.g.
853   // for(i=0;i<N;i++) {
854   //    for(j = 0;j<M;j++) {
855   //      A[j+1][i+2] = A[j][i]+k;
856   //  }
857   // }
858   Instruction *InnerIndexVarInc = nullptr;
859   if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
860     InnerIndexVarInc =
861         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
862   else
863     InnerIndexVarInc =
864         dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
865 
866   if (!InnerIndexVarInc) {
867     LLVM_DEBUG(
868         dbgs() << "Did not find an instruction to increment the induction "
869                << "variable.\n");
870     ORE->emit([&]() {
871       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
872                                       InnerLoop->getStartLoc(),
873                                       InnerLoop->getHeader())
874              << "The inner loop does not increment the induction variable.";
875     });
876     return true;
877   }
878 
879   // Since we split the inner loop latch on this induction variable. Make sure
880   // we do not have any instruction between the induction variable and branch
881   // instruction.
882 
883   bool FoundInduction = false;
884   for (const Instruction &I :
885        llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
886     if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
887         isa<ZExtInst>(I))
888       continue;
889 
890     // We found an instruction. If this is not induction variable then it is not
891     // safe to split this loop latch.
892     if (!I.isIdenticalTo(InnerIndexVarInc)) {
893       LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
894                         << "variable increment and branch.\n");
895       ORE->emit([&]() {
896         return OptimizationRemarkMissed(
897                    DEBUG_TYPE, "UnsupportedInsBetweenInduction",
898                    InnerLoop->getStartLoc(), InnerLoop->getHeader())
899                << "Found unsupported instruction between induction variable "
900                   "increment and branch.";
901       });
902       return true;
903     }
904 
905     FoundInduction = true;
906     break;
907   }
908   // The loop latch ended and we didn't find the induction variable return as
909   // current limitation.
910   if (!FoundInduction) {
911     LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
912     ORE->emit([&]() {
913       return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
914                                       InnerLoop->getStartLoc(),
915                                       InnerLoop->getHeader())
916              << "Did not find the induction variable.";
917     });
918     return true;
919   }
920   return false;
921 }
922 
923 // We currently support LCSSA PHI nodes in the outer loop exit, if their
924 // incoming values do not come from the outer loop latch or if the
925 // outer loop latch has a single predecessor. In that case, the value will
926 // be available if both the inner and outer loop conditions are true, which
927 // will still be true after interchanging. If we have multiple predecessor,
928 // that may not be the case, e.g. because the outer loop latch may be executed
929 // if the inner loop is not executed.
930 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
931   BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
932   for (PHINode &PHI : LoopNestExit->phis()) {
933     //  FIXME: We currently are not able to detect floating point reductions
934     //         and have to use floating point PHIs as a proxy to prevent
935     //         interchanging in the presence of floating point reductions.
936     if (PHI.getType()->isFloatingPointTy())
937       return false;
938     for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
939      Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
940      if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
941        continue;
942 
943      // The incoming value is defined in the outer loop latch. Currently we
944      // only support that in case the outer loop latch has a single predecessor.
945      // This guarantees that the outer loop latch is executed if and only if
946      // the inner loop is executed (because tightlyNested() guarantees that the
947      // outer loop header only branches to the inner loop or the outer loop
948      // latch).
949      // FIXME: We could weaken this logic and allow multiple predecessors,
950      //        if the values are produced outside the loop latch. We would need
951      //        additional logic to update the PHI nodes in the exit block as
952      //        well.
953      if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
954        return false;
955     }
956   }
957   return true;
958 }
959 
960 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
961                                                   unsigned OuterLoopId,
962                                                   CharMatrix &DepMatrix) {
963   if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
964     LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
965                       << " and OuterLoopId = " << OuterLoopId
966                       << " due to dependence\n");
967     ORE->emit([&]() {
968       return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
969                                       InnerLoop->getStartLoc(),
970                                       InnerLoop->getHeader())
971              << "Cannot interchange loops due to dependences.";
972     });
973     return false;
974   }
975   // Check if outer and inner loop contain legal instructions only.
976   for (auto *BB : OuterLoop->blocks())
977     for (Instruction &I : BB->instructionsWithoutDebug())
978       if (CallInst *CI = dyn_cast<CallInst>(&I)) {
979         // readnone functions do not prevent interchanging.
980         if (CI->doesNotReadMemory())
981           continue;
982         LLVM_DEBUG(
983             dbgs() << "Loops with call instructions cannot be interchanged "
984                    << "safely.");
985         ORE->emit([&]() {
986           return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
987                                           CI->getDebugLoc(),
988                                           CI->getParent())
989                  << "Cannot interchange loops due to call instruction.";
990         });
991 
992         return false;
993       }
994 
995   // TODO: The loops could not be interchanged due to current limitations in the
996   // transform module.
997   if (currentLimitations()) {
998     LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
999     return false;
1000   }
1001 
1002   // Check if the loops are tightly nested.
1003   if (!tightlyNested(OuterLoop, InnerLoop)) {
1004     LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1005     ORE->emit([&]() {
1006       return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1007                                       InnerLoop->getStartLoc(),
1008                                       InnerLoop->getHeader())
1009              << "Cannot interchange loops because they are not tightly "
1010                 "nested.";
1011     });
1012     return false;
1013   }
1014 
1015   if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1016     LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1017     ORE->emit([&]() {
1018       return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1019                                       OuterLoop->getStartLoc(),
1020                                       OuterLoop->getHeader())
1021              << "Found unsupported PHI node in loop exit.";
1022     });
1023     return false;
1024   }
1025 
1026   return true;
1027 }
1028 
1029 int LoopInterchangeProfitability::getInstrOrderCost() {
1030   unsigned GoodOrder, BadOrder;
1031   BadOrder = GoodOrder = 0;
1032   for (BasicBlock *BB : InnerLoop->blocks()) {
1033     for (Instruction &Ins : *BB) {
1034       if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1035         unsigned NumOp = GEP->getNumOperands();
1036         bool FoundInnerInduction = false;
1037         bool FoundOuterInduction = false;
1038         for (unsigned i = 0; i < NumOp; ++i) {
1039           const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1040           const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1041           if (!AR)
1042             continue;
1043 
1044           // If we find the inner induction after an outer induction e.g.
1045           // for(int i=0;i<N;i++)
1046           //   for(int j=0;j<N;j++)
1047           //     A[i][j] = A[i-1][j-1]+k;
1048           // then it is a good order.
1049           if (AR->getLoop() == InnerLoop) {
1050             // We found an InnerLoop induction after OuterLoop induction. It is
1051             // a good order.
1052             FoundInnerInduction = true;
1053             if (FoundOuterInduction) {
1054               GoodOrder++;
1055               break;
1056             }
1057           }
1058           // If we find the outer induction after an inner induction e.g.
1059           // for(int i=0;i<N;i++)
1060           //   for(int j=0;j<N;j++)
1061           //     A[j][i] = A[j-1][i-1]+k;
1062           // then it is a bad order.
1063           if (AR->getLoop() == OuterLoop) {
1064             // We found an OuterLoop induction after InnerLoop induction. It is
1065             // a bad order.
1066             FoundOuterInduction = true;
1067             if (FoundInnerInduction) {
1068               BadOrder++;
1069               break;
1070             }
1071           }
1072         }
1073       }
1074     }
1075   }
1076   return GoodOrder - BadOrder;
1077 }
1078 
1079 static bool isProfitableForVectorization(unsigned InnerLoopId,
1080                                          unsigned OuterLoopId,
1081                                          CharMatrix &DepMatrix) {
1082   // TODO: Improve this heuristic to catch more cases.
1083   // If the inner loop is loop independent or doesn't carry any dependency it is
1084   // profitable to move this to outer position.
1085   for (auto &Row : DepMatrix) {
1086     if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1087       return false;
1088     // TODO: We need to improve this heuristic.
1089     if (Row[OuterLoopId] != '=')
1090       return false;
1091   }
1092   // If outer loop has dependence and inner loop is loop independent then it is
1093   // profitable to interchange to enable parallelism.
1094   // If there are no dependences, interchanging will not improve anything.
1095   return !DepMatrix.empty();
1096 }
1097 
1098 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1099                                                 unsigned OuterLoopId,
1100                                                 CharMatrix &DepMatrix) {
1101   // TODO: Add better profitability checks.
1102   // e.g
1103   // 1) Construct dependency matrix and move the one with no loop carried dep
1104   //    inside to enable vectorization.
1105 
1106   // This is rough cost estimation algorithm. It counts the good and bad order
1107   // of induction variables in the instruction and allows reordering if number
1108   // of bad orders is more than good.
1109   int Cost = getInstrOrderCost();
1110   LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1111   if (Cost < -LoopInterchangeCostThreshold)
1112     return true;
1113 
1114   // It is not profitable as per current cache profitability model. But check if
1115   // we can move this loop outside to improve parallelism.
1116   if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1117     return true;
1118 
1119   ORE->emit([&]() {
1120     return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1121                                     InnerLoop->getStartLoc(),
1122                                     InnerLoop->getHeader())
1123            << "Interchanging loops is too costly (cost="
1124            << ore::NV("Cost", Cost) << ", threshold="
1125            << ore::NV("Threshold", LoopInterchangeCostThreshold)
1126            << ") and it does not improve parallelism.";
1127   });
1128   return false;
1129 }
1130 
1131 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1132                                                Loop *InnerLoop) {
1133   for (Loop *L : *OuterLoop)
1134     if (L == InnerLoop) {
1135       OuterLoop->removeChildLoop(L);
1136       return;
1137     }
1138   llvm_unreachable("Couldn't find loop");
1139 }
1140 
1141 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1142 /// new inner and outer loop after interchanging: NewInner is the original
1143 /// outer loop and NewOuter is the original inner loop.
1144 ///
1145 /// Before interchanging, we have the following structure
1146 /// Outer preheader
1147 //  Outer header
1148 //    Inner preheader
1149 //    Inner header
1150 //      Inner body
1151 //      Inner latch
1152 //   outer bbs
1153 //   Outer latch
1154 //
1155 // After interchanging:
1156 // Inner preheader
1157 // Inner header
1158 //   Outer preheader
1159 //   Outer header
1160 //     Inner body
1161 //     outer bbs
1162 //     Outer latch
1163 //   Inner latch
1164 void LoopInterchangeTransform::restructureLoops(
1165     Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1166     BasicBlock *OrigOuterPreHeader) {
1167   Loop *OuterLoopParent = OuterLoop->getParentLoop();
1168   // The original inner loop preheader moves from the new inner loop to
1169   // the parent loop, if there is one.
1170   NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1171   LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1172 
1173   // Switch the loop levels.
1174   if (OuterLoopParent) {
1175     // Remove the loop from its parent loop.
1176     removeChildLoop(OuterLoopParent, NewInner);
1177     removeChildLoop(NewInner, NewOuter);
1178     OuterLoopParent->addChildLoop(NewOuter);
1179   } else {
1180     removeChildLoop(NewInner, NewOuter);
1181     LI->changeTopLevelLoop(NewInner, NewOuter);
1182   }
1183   while (!NewOuter->empty())
1184     NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1185   NewOuter->addChildLoop(NewInner);
1186 
1187   // BBs from the original inner loop.
1188   SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1189 
1190   // Add BBs from the original outer loop to the original inner loop (excluding
1191   // BBs already in inner loop)
1192   for (BasicBlock *BB : NewInner->blocks())
1193     if (LI->getLoopFor(BB) == NewInner)
1194       NewOuter->addBlockEntry(BB);
1195 
1196   // Now remove inner loop header and latch from the new inner loop and move
1197   // other BBs (the loop body) to the new inner loop.
1198   BasicBlock *OuterHeader = NewOuter->getHeader();
1199   BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1200   for (BasicBlock *BB : OrigInnerBBs) {
1201     // Nothing will change for BBs in child loops.
1202     if (LI->getLoopFor(BB) != NewOuter)
1203       continue;
1204     // Remove the new outer loop header and latch from the new inner loop.
1205     if (BB == OuterHeader || BB == OuterLatch)
1206       NewInner->removeBlockFromLoop(BB);
1207     else
1208       LI->changeLoopFor(BB, NewInner);
1209   }
1210 
1211   // The preheader of the original outer loop becomes part of the new
1212   // outer loop.
1213   NewOuter->addBlockEntry(OrigOuterPreHeader);
1214   LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1215 
1216   // Tell SE that we move the loops around.
1217   SE->forgetLoop(NewOuter);
1218   SE->forgetLoop(NewInner);
1219 }
1220 
1221 bool LoopInterchangeTransform::transform() {
1222   bool Transformed = false;
1223   Instruction *InnerIndexVar;
1224 
1225   if (InnerLoop->getSubLoops().empty()) {
1226     BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1227     LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
1228     PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1229     if (!InductionPHI) {
1230       LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1231       return false;
1232     }
1233 
1234     if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1235       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1236     else
1237       InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1238 
1239     // Ensure that InductionPHI is the first Phi node.
1240     if (&InductionPHI->getParent()->front() != InductionPHI)
1241       InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1242 
1243     // Create a new latch block for the inner loop. We split at the
1244     // current latch's terminator and then move the condition and all
1245     // operands that are not either loop-invariant or the induction PHI into the
1246     // new latch block.
1247     BasicBlock *NewLatch =
1248         SplitBlock(InnerLoop->getLoopLatch(),
1249                    InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
1250 
1251     SmallSetVector<Instruction *, 4> WorkList;
1252     unsigned i = 0;
1253     auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
1254       for (; i < WorkList.size(); i++) {
1255         // Duplicate instruction and move it the new latch. Update uses that
1256         // have been moved.
1257         Instruction *NewI = WorkList[i]->clone();
1258         NewI->insertBefore(NewLatch->getFirstNonPHI());
1259         assert(!NewI->mayHaveSideEffects() &&
1260                "Moving instructions with side-effects may change behavior of "
1261                "the loop nest!");
1262         for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
1263              UI != UE;) {
1264           Use &U = *UI++;
1265           Instruction *UserI = cast<Instruction>(U.getUser());
1266           if (!InnerLoop->contains(UserI->getParent()) ||
1267               UserI->getParent() == NewLatch || UserI == InductionPHI)
1268             U.set(NewI);
1269         }
1270         // Add operands of moved instruction to the worklist, except if they are
1271         // outside the inner loop or are the induction PHI.
1272         for (Value *Op : WorkList[i]->operands()) {
1273           Instruction *OpI = dyn_cast<Instruction>(Op);
1274           if (!OpI ||
1275               this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
1276               OpI == InductionPHI)
1277             continue;
1278           WorkList.insert(OpI);
1279         }
1280       }
1281     };
1282 
1283     // FIXME: Should we interchange when we have a constant condition?
1284     Instruction *CondI = dyn_cast<Instruction>(
1285         cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
1286             ->getCondition());
1287     if (CondI)
1288       WorkList.insert(CondI);
1289     MoveInstructions();
1290     WorkList.insert(cast<Instruction>(InnerIndexVar));
1291     MoveInstructions();
1292 
1293     // Splits the inner loops phi nodes out into a separate basic block.
1294     BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1295     SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1296     LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1297   }
1298 
1299   Transformed |= adjustLoopLinks();
1300   if (!Transformed) {
1301     LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1302     return false;
1303   }
1304 
1305   return true;
1306 }
1307 
1308 /// \brief Move all instructions except the terminator from FromBB right before
1309 /// InsertBefore
1310 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1311   auto &ToList = InsertBefore->getParent()->getInstList();
1312   auto &FromList = FromBB->getInstList();
1313 
1314   ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1315                 FromBB->getTerminator()->getIterator());
1316 }
1317 
1318 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1319 /// the dominator tree in DTUpdates, if DT should be preserved.
1320 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1321                             BasicBlock *NewBB,
1322                             std::vector<DominatorTree::UpdateType> &DTUpdates) {
1323   assert(llvm::count_if(successors(BI),
1324                         [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1325          "BI must jump to OldBB at most once.");
1326   for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1327     if (BI->getSuccessor(i) == OldBB) {
1328       BI->setSuccessor(i, NewBB);
1329 
1330       DTUpdates.push_back(
1331           {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1332       DTUpdates.push_back(
1333           {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1334       break;
1335     }
1336   }
1337 }
1338 
1339 // Move Lcssa PHIs to the right place.
1340 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1341                           BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1342                           BasicBlock *OuterLatch, BasicBlock *OuterExit) {
1343 
1344   // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1345   // defined either in the header or latch. Those blocks will become header and
1346   // latch of the new outer loop, and the only possible users can PHI nodes
1347   // in the exit block of the loop nest or the outer loop header (reduction
1348   // PHIs, in that case, the incoming value must be defined in the inner loop
1349   // header). We can just substitute the user with the incoming value and remove
1350   // the PHI.
1351   for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1352     assert(P.getNumIncomingValues() == 1 &&
1353            "Only loops with a single exit are supported!");
1354 
1355     // Incoming values are guaranteed be instructions currently.
1356     auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1357     // Skip phis with incoming values from the inner loop body, excluding the
1358     // header and latch.
1359     if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1360       continue;
1361 
1362     assert(all_of(P.users(),
1363                   [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1364                     return (cast<PHINode>(U)->getParent() == OuterHeader &&
1365                             IncI->getParent() == InnerHeader) ||
1366                            cast<PHINode>(U)->getParent() == OuterExit;
1367                   }) &&
1368            "Can only replace phis iff the uses are in the loop nest exit or "
1369            "the incoming value is defined in the inner header (it will "
1370            "dominate all loop blocks after interchanging)");
1371     P.replaceAllUsesWith(IncI);
1372     P.eraseFromParent();
1373   }
1374 
1375   SmallVector<PHINode *, 8> LcssaInnerExit;
1376   for (PHINode &P : InnerExit->phis())
1377     LcssaInnerExit.push_back(&P);
1378 
1379   SmallVector<PHINode *, 8> LcssaInnerLatch;
1380   for (PHINode &P : InnerLatch->phis())
1381     LcssaInnerLatch.push_back(&P);
1382 
1383   // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1384   // If a PHI node has users outside of InnerExit, it has a use outside the
1385   // interchanged loop and we have to preserve it. We move these to
1386   // InnerLatch, which will become the new exit block for the innermost
1387   // loop after interchanging.
1388   for (PHINode *P : LcssaInnerExit)
1389     P->moveBefore(InnerLatch->getFirstNonPHI());
1390 
1391   // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1392   // and we have to move them to the new inner latch.
1393   for (PHINode *P : LcssaInnerLatch)
1394     P->moveBefore(InnerExit->getFirstNonPHI());
1395 
1396   // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1397   // incoming values from the outer latch or header, we have to add a new PHI
1398   // in the inner loop latch, which became the exit block of the outer loop,
1399   // after interchanging.
1400   if (OuterExit) {
1401     for (PHINode &P : OuterExit->phis()) {
1402       if (P.getNumIncomingValues() != 1)
1403         continue;
1404       // Skip Phis with incoming values not defined in the outer loop's header
1405       // and latch. Also skip incoming phis defined in the latch. Those should
1406       // already have been updated.
1407       auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1408       if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) &&
1409                  I->getParent() != OuterHeader))
1410         continue;
1411 
1412       PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1413       NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1414       NewPhi->setIncomingBlock(0, OuterLatch);
1415       NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1416       P.setIncomingValue(0, NewPhi);
1417     }
1418   }
1419 
1420   // Now adjust the incoming blocks for the LCSSA PHIs.
1421   // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1422   // with the new latch.
1423   InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1424 }
1425 
1426 bool LoopInterchangeTransform::adjustLoopBranches() {
1427   LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1428   std::vector<DominatorTree::UpdateType> DTUpdates;
1429 
1430   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1431   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1432 
1433   assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1434          InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1435          InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1436   // Ensure that both preheaders do not contain PHI nodes and have single
1437   // predecessors. This allows us to move them easily. We use
1438   // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1439   // preheaders do not satisfy those conditions.
1440   if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1441       !OuterLoopPreHeader->getUniquePredecessor())
1442     OuterLoopPreHeader =
1443         InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1444   if (InnerLoopPreHeader == OuterLoop->getHeader())
1445     InnerLoopPreHeader =
1446         InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1447 
1448   // Adjust the loop preheader
1449   BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1450   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1451   BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1452   BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1453   BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1454   BasicBlock *InnerLoopLatchPredecessor =
1455       InnerLoopLatch->getUniquePredecessor();
1456   BasicBlock *InnerLoopLatchSuccessor;
1457   BasicBlock *OuterLoopLatchSuccessor;
1458 
1459   BranchInst *OuterLoopLatchBI =
1460       dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1461   BranchInst *InnerLoopLatchBI =
1462       dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1463   BranchInst *OuterLoopHeaderBI =
1464       dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1465   BranchInst *InnerLoopHeaderBI =
1466       dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1467 
1468   if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1469       !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1470       !InnerLoopHeaderBI)
1471     return false;
1472 
1473   BranchInst *InnerLoopLatchPredecessorBI =
1474       dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1475   BranchInst *OuterLoopPredecessorBI =
1476       dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1477 
1478   if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1479     return false;
1480   BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1481   if (!InnerLoopHeaderSuccessor)
1482     return false;
1483 
1484   // Adjust Loop Preheader and headers
1485   updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1486                   InnerLoopPreHeader, DTUpdates);
1487   updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1488   updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1489                   InnerLoopHeaderSuccessor, DTUpdates);
1490 
1491   // Adjust reduction PHI's now that the incoming block has changed.
1492   InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1493                                                OuterLoopHeader);
1494 
1495   updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1496                   OuterLoopPreHeader, DTUpdates);
1497 
1498   // -------------Adjust loop latches-----------
1499   if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1500     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1501   else
1502     InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1503 
1504   updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1505                   InnerLoopLatchSuccessor, DTUpdates);
1506 
1507 
1508   if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1509     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1510   else
1511     OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1512 
1513   updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1514                   OuterLoopLatchSuccessor, DTUpdates);
1515   updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1516                   DTUpdates);
1517 
1518   DT->applyUpdates(DTUpdates);
1519   restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1520                    OuterLoopPreHeader);
1521 
1522   moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1523                 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock());
1524   // For PHIs in the exit block of the outer loop, outer's latch has been
1525   // replaced by Inners'.
1526   OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1527 
1528   // Now update the reduction PHIs in the inner and outer loop headers.
1529   SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1530   for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1531     InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1532   for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1533     OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1534 
1535   auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1536   (void)OuterInnerReductions;
1537 
1538   // Now move the remaining reduction PHIs from outer to inner loop header and
1539   // vice versa. The PHI nodes must be part of a reduction across the inner and
1540   // outer loop and all the remains to do is and updating the incoming blocks.
1541   for (PHINode *PHI : OuterLoopPHIs) {
1542     PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1543     assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1544            "Expected a reduction PHI node");
1545   }
1546   for (PHINode *PHI : InnerLoopPHIs) {
1547     PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1548     assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1549            "Expected a reduction PHI node");
1550   }
1551 
1552   // Update the incoming blocks for moved PHI nodes.
1553   OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1554   OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1555   InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1556   InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1557 
1558   return true;
1559 }
1560 
1561 void LoopInterchangeTransform::adjustLoopPreheaders() {
1562   // We have interchanged the preheaders so we need to interchange the data in
1563   // the preheader as well.
1564   // This is because the content of inner preheader was previously executed
1565   // inside the outer loop.
1566   BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1567   BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1568   BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1569   BranchInst *InnerTermBI =
1570       cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1571 
1572   // These instructions should now be executed inside the loop.
1573   // Move instruction into a new block after outer header.
1574   moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1575   // These instructions were not executed previously in the loop so move them to
1576   // the older inner loop preheader.
1577   moveBBContents(OuterLoopPreHeader, InnerTermBI);
1578 }
1579 
1580 bool LoopInterchangeTransform::adjustLoopLinks() {
1581   // Adjust all branches in the inner and outer loop.
1582   bool Changed = adjustLoopBranches();
1583   if (Changed)
1584     adjustLoopPreheaders();
1585   return Changed;
1586 }
1587 
1588 char LoopInterchange::ID = 0;
1589 
1590 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1591                       "Interchanges loops for cache reuse", false, false)
1592 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1593 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1594 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1595 
1596 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1597                     "Interchanges loops for cache reuse", false, false)
1598 
1599 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }
1600