1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/SSAUpdater.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<bool> PrintLVIAfterJumpThreading( 101 "print-lvi-after-jump-threading", 102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> ThreadAcrossLoopHeaders( 106 "jump-threading-across-loop-headers", 107 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 108 cl::init(false), cl::Hidden); 109 110 111 namespace { 112 113 /// This pass performs 'jump threading', which looks at blocks that have 114 /// multiple predecessors and multiple successors. If one or more of the 115 /// predecessors of the block can be proven to always jump to one of the 116 /// successors, we forward the edge from the predecessor to the successor by 117 /// duplicating the contents of this block. 118 /// 119 /// An example of when this can occur is code like this: 120 /// 121 /// if () { ... 122 /// X = 4; 123 /// } 124 /// if (X < 3) { 125 /// 126 /// In this case, the unconditional branch at the end of the first if can be 127 /// revectored to the false side of the second if. 128 class JumpThreading : public FunctionPass { 129 JumpThreadingPass Impl; 130 131 public: 132 static char ID; // Pass identification 133 134 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 135 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 136 } 137 138 bool runOnFunction(Function &F) override; 139 140 void getAnalysisUsage(AnalysisUsage &AU) const override { 141 AU.addRequired<DominatorTreeWrapperPass>(); 142 AU.addPreserved<DominatorTreeWrapperPass>(); 143 AU.addRequired<AAResultsWrapperPass>(); 144 AU.addRequired<LazyValueInfoWrapperPass>(); 145 AU.addPreserved<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<GlobalsAAWrapperPass>(); 147 AU.addRequired<TargetLibraryInfoWrapperPass>(); 148 } 149 150 void releaseMemory() override { Impl.releaseMemory(); } 151 }; 152 153 } // end anonymous namespace 154 155 char JumpThreading::ID = 0; 156 157 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 158 "Jump Threading", false, false) 159 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 160 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 163 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 164 "Jump Threading", false, false) 165 166 // Public interface to the Jump Threading pass 167 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 168 return new JumpThreading(Threshold); 169 } 170 171 JumpThreadingPass::JumpThreadingPass(int T) { 172 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 173 } 174 175 // Update branch probability information according to conditional 176 // branch probability. This is usually made possible for cloned branches 177 // in inline instances by the context specific profile in the caller. 178 // For instance, 179 // 180 // [Block PredBB] 181 // [Branch PredBr] 182 // if (t) { 183 // Block A; 184 // } else { 185 // Block B; 186 // } 187 // 188 // [Block BB] 189 // cond = PN([true, %A], [..., %B]); // PHI node 190 // [Branch CondBr] 191 // if (cond) { 192 // ... // P(cond == true) = 1% 193 // } 194 // 195 // Here we know that when block A is taken, cond must be true, which means 196 // P(cond == true | A) = 1 197 // 198 // Given that P(cond == true) = P(cond == true | A) * P(A) + 199 // P(cond == true | B) * P(B) 200 // we get: 201 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 202 // 203 // which gives us: 204 // P(A) is less than P(cond == true), i.e. 205 // P(t == true) <= P(cond == true) 206 // 207 // In other words, if we know P(cond == true) is unlikely, we know 208 // that P(t == true) is also unlikely. 209 // 210 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 211 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 212 if (!CondBr) 213 return; 214 215 BranchProbability BP; 216 uint64_t TrueWeight, FalseWeight; 217 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 218 return; 219 220 // Returns the outgoing edge of the dominating predecessor block 221 // that leads to the PhiNode's incoming block: 222 auto GetPredOutEdge = 223 [](BasicBlock *IncomingBB, 224 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 225 auto *PredBB = IncomingBB; 226 auto *SuccBB = PhiBB; 227 SmallPtrSet<BasicBlock *, 16> Visited; 228 while (true) { 229 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 230 if (PredBr && PredBr->isConditional()) 231 return {PredBB, SuccBB}; 232 Visited.insert(PredBB); 233 auto *SinglePredBB = PredBB->getSinglePredecessor(); 234 if (!SinglePredBB) 235 return {nullptr, nullptr}; 236 237 // Stop searching when SinglePredBB has been visited. It means we see 238 // an unreachable loop. 239 if (Visited.count(SinglePredBB)) 240 return {nullptr, nullptr}; 241 242 SuccBB = PredBB; 243 PredBB = SinglePredBB; 244 } 245 }; 246 247 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 248 Value *PhiOpnd = PN->getIncomingValue(i); 249 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 250 251 if (!CI || !CI->getType()->isIntegerTy(1)) 252 continue; 253 254 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 255 TrueWeight, TrueWeight + FalseWeight) 256 : BranchProbability::getBranchProbability( 257 FalseWeight, TrueWeight + FalseWeight)); 258 259 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 260 if (!PredOutEdge.first) 261 return; 262 263 BasicBlock *PredBB = PredOutEdge.first; 264 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 265 if (!PredBr) 266 return; 267 268 uint64_t PredTrueWeight, PredFalseWeight; 269 // FIXME: We currently only set the profile data when it is missing. 270 // With PGO, this can be used to refine even existing profile data with 271 // context information. This needs to be done after more performance 272 // testing. 273 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 274 continue; 275 276 // We can not infer anything useful when BP >= 50%, because BP is the 277 // upper bound probability value. 278 if (BP >= BranchProbability(50, 100)) 279 continue; 280 281 SmallVector<uint32_t, 2> Weights; 282 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 283 Weights.push_back(BP.getNumerator()); 284 Weights.push_back(BP.getCompl().getNumerator()); 285 } else { 286 Weights.push_back(BP.getCompl().getNumerator()); 287 Weights.push_back(BP.getNumerator()); 288 } 289 PredBr->setMetadata(LLVMContext::MD_prof, 290 MDBuilder(PredBr->getParent()->getContext()) 291 .createBranchWeights(Weights)); 292 } 293 } 294 295 /// runOnFunction - Toplevel algorithm. 296 bool JumpThreading::runOnFunction(Function &F) { 297 if (skipFunction(F)) 298 return false; 299 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 300 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 301 // DT if it's available. 302 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 303 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 304 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 305 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 306 std::unique_ptr<BlockFrequencyInfo> BFI; 307 std::unique_ptr<BranchProbabilityInfo> BPI; 308 bool HasProfileData = F.hasProfileData(); 309 if (HasProfileData) { 310 LoopInfo LI{DominatorTree(F)}; 311 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 312 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 313 } 314 315 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 316 std::move(BFI), std::move(BPI)); 317 if (PrintLVIAfterJumpThreading) { 318 dbgs() << "LVI for function '" << F.getName() << "':\n"; 319 LVI->printLVI(F, *DT, dbgs()); 320 } 321 return Changed; 322 } 323 324 PreservedAnalyses JumpThreadingPass::run(Function &F, 325 FunctionAnalysisManager &AM) { 326 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 327 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 328 // DT if it's available. 329 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 330 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 331 auto &AA = AM.getResult<AAManager>(F); 332 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 333 334 std::unique_ptr<BlockFrequencyInfo> BFI; 335 std::unique_ptr<BranchProbabilityInfo> BPI; 336 if (F.hasProfileData()) { 337 LoopInfo LI{DominatorTree(F)}; 338 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 339 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 340 } 341 342 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 343 std::move(BFI), std::move(BPI)); 344 345 if (!Changed) 346 return PreservedAnalyses::all(); 347 PreservedAnalyses PA; 348 PA.preserve<GlobalsAA>(); 349 PA.preserve<DominatorTreeAnalysis>(); 350 PA.preserve<LazyValueAnalysis>(); 351 return PA; 352 } 353 354 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 355 LazyValueInfo *LVI_, AliasAnalysis *AA_, 356 DomTreeUpdater *DTU_, bool HasProfileData_, 357 std::unique_ptr<BlockFrequencyInfo> BFI_, 358 std::unique_ptr<BranchProbabilityInfo> BPI_) { 359 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 360 TLI = TLI_; 361 LVI = LVI_; 362 AA = AA_; 363 DTU = DTU_; 364 BFI.reset(); 365 BPI.reset(); 366 // When profile data is available, we need to update edge weights after 367 // successful jump threading, which requires both BPI and BFI being available. 368 HasProfileData = HasProfileData_; 369 auto *GuardDecl = F.getParent()->getFunction( 370 Intrinsic::getName(Intrinsic::experimental_guard)); 371 HasGuards = GuardDecl && !GuardDecl->use_empty(); 372 if (HasProfileData) { 373 BPI = std::move(BPI_); 374 BFI = std::move(BFI_); 375 } 376 377 // JumpThreading must not processes blocks unreachable from entry. It's a 378 // waste of compute time and can potentially lead to hangs. 379 SmallPtrSet<BasicBlock *, 16> Unreachable; 380 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 381 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 382 DominatorTree &DT = DTU->getDomTree(); 383 for (auto &BB : F) 384 if (!DT.isReachableFromEntry(&BB)) 385 Unreachable.insert(&BB); 386 387 if (!ThreadAcrossLoopHeaders) 388 FindLoopHeaders(F); 389 390 bool EverChanged = false; 391 bool Changed; 392 do { 393 Changed = false; 394 for (auto &BB : F) { 395 if (Unreachable.count(&BB)) 396 continue; 397 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 398 Changed = true; 399 // Stop processing BB if it's the entry or is now deleted. The following 400 // routines attempt to eliminate BB and locating a suitable replacement 401 // for the entry is non-trivial. 402 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 403 continue; 404 405 if (pred_empty(&BB)) { 406 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 407 // the instructions in it. We must remove BB to prevent invalid IR. 408 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 409 << "' with terminator: " << *BB.getTerminator() 410 << '\n'); 411 LoopHeaders.erase(&BB); 412 LVI->eraseBlock(&BB); 413 DeleteDeadBlock(&BB, DTU); 414 Changed = true; 415 continue; 416 } 417 418 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 419 // is "almost empty", we attempt to merge BB with its sole successor. 420 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 421 if (BI && BI->isUnconditional() && 422 // The terminator must be the only non-phi instruction in BB. 423 BB.getFirstNonPHIOrDbg()->isTerminator() && 424 // Don't alter Loop headers and latches to ensure another pass can 425 // detect and transform nested loops later. 426 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 427 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 428 // BB is valid for cleanup here because we passed in DTU. F remains 429 // BB's parent until a DTU->getDomTree() event. 430 LVI->eraseBlock(&BB); 431 Changed = true; 432 } 433 } 434 EverChanged |= Changed; 435 } while (Changed); 436 437 LoopHeaders.clear(); 438 // Flush only the Dominator Tree. 439 DTU->getDomTree(); 440 LVI->enableDT(); 441 return EverChanged; 442 } 443 444 // Replace uses of Cond with ToVal when safe to do so. If all uses are 445 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 446 // because we may incorrectly replace uses when guards/assumes are uses of 447 // of `Cond` and we used the guards/assume to reason about the `Cond` value 448 // at the end of block. RAUW unconditionally replaces all uses 449 // including the guards/assumes themselves and the uses before the 450 // guard/assume. 451 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 452 assert(Cond->getType() == ToVal->getType()); 453 auto *BB = Cond->getParent(); 454 // We can unconditionally replace all uses in non-local blocks (i.e. uses 455 // strictly dominated by BB), since LVI information is true from the 456 // terminator of BB. 457 replaceNonLocalUsesWith(Cond, ToVal); 458 for (Instruction &I : reverse(*BB)) { 459 // Reached the Cond whose uses we are trying to replace, so there are no 460 // more uses. 461 if (&I == Cond) 462 break; 463 // We only replace uses in instructions that are guaranteed to reach the end 464 // of BB, where we know Cond is ToVal. 465 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 466 break; 467 I.replaceUsesOfWith(Cond, ToVal); 468 } 469 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 470 Cond->eraseFromParent(); 471 } 472 473 /// Return the cost of duplicating a piece of this block from first non-phi 474 /// and before StopAt instruction to thread across it. Stop scanning the block 475 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 476 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 477 Instruction *StopAt, 478 unsigned Threshold) { 479 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 480 /// Ignore PHI nodes, these will be flattened when duplication happens. 481 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 482 483 // FIXME: THREADING will delete values that are just used to compute the 484 // branch, so they shouldn't count against the duplication cost. 485 486 unsigned Bonus = 0; 487 if (BB->getTerminator() == StopAt) { 488 // Threading through a switch statement is particularly profitable. If this 489 // block ends in a switch, decrease its cost to make it more likely to 490 // happen. 491 if (isa<SwitchInst>(StopAt)) 492 Bonus = 6; 493 494 // The same holds for indirect branches, but slightly more so. 495 if (isa<IndirectBrInst>(StopAt)) 496 Bonus = 8; 497 } 498 499 // Bump the threshold up so the early exit from the loop doesn't skip the 500 // terminator-based Size adjustment at the end. 501 Threshold += Bonus; 502 503 // Sum up the cost of each instruction until we get to the terminator. Don't 504 // include the terminator because the copy won't include it. 505 unsigned Size = 0; 506 for (; &*I != StopAt; ++I) { 507 508 // Stop scanning the block if we've reached the threshold. 509 if (Size > Threshold) 510 return Size; 511 512 // Debugger intrinsics don't incur code size. 513 if (isa<DbgInfoIntrinsic>(I)) continue; 514 515 // If this is a pointer->pointer bitcast, it is free. 516 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 517 continue; 518 519 // Bail out if this instruction gives back a token type, it is not possible 520 // to duplicate it if it is used outside this BB. 521 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 522 return ~0U; 523 524 // All other instructions count for at least one unit. 525 ++Size; 526 527 // Calls are more expensive. If they are non-intrinsic calls, we model them 528 // as having cost of 4. If they are a non-vector intrinsic, we model them 529 // as having cost of 2 total, and if they are a vector intrinsic, we model 530 // them as having cost 1. 531 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 532 if (CI->cannotDuplicate() || CI->isConvergent()) 533 // Blocks with NoDuplicate are modelled as having infinite cost, so they 534 // are never duplicated. 535 return ~0U; 536 else if (!isa<IntrinsicInst>(CI)) 537 Size += 3; 538 else if (!CI->getType()->isVectorTy()) 539 Size += 1; 540 } 541 } 542 543 return Size > Bonus ? Size - Bonus : 0; 544 } 545 546 /// FindLoopHeaders - We do not want jump threading to turn proper loop 547 /// structures into irreducible loops. Doing this breaks up the loop nesting 548 /// hierarchy and pessimizes later transformations. To prevent this from 549 /// happening, we first have to find the loop headers. Here we approximate this 550 /// by finding targets of backedges in the CFG. 551 /// 552 /// Note that there definitely are cases when we want to allow threading of 553 /// edges across a loop header. For example, threading a jump from outside the 554 /// loop (the preheader) to an exit block of the loop is definitely profitable. 555 /// It is also almost always profitable to thread backedges from within the loop 556 /// to exit blocks, and is often profitable to thread backedges to other blocks 557 /// within the loop (forming a nested loop). This simple analysis is not rich 558 /// enough to track all of these properties and keep it up-to-date as the CFG 559 /// mutates, so we don't allow any of these transformations. 560 void JumpThreadingPass::FindLoopHeaders(Function &F) { 561 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 562 FindFunctionBackedges(F, Edges); 563 564 for (const auto &Edge : Edges) 565 LoopHeaders.insert(Edge.second); 566 } 567 568 /// getKnownConstant - Helper method to determine if we can thread over a 569 /// terminator with the given value as its condition, and if so what value to 570 /// use for that. What kind of value this is depends on whether we want an 571 /// integer or a block address, but an undef is always accepted. 572 /// Returns null if Val is null or not an appropriate constant. 573 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 574 if (!Val) 575 return nullptr; 576 577 // Undef is "known" enough. 578 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 579 return U; 580 581 if (Preference == WantBlockAddress) 582 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 583 584 return dyn_cast<ConstantInt>(Val); 585 } 586 587 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 588 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 589 /// in any of our predecessors. If so, return the known list of value and pred 590 /// BB in the result vector. 591 /// 592 /// This returns true if there were any known values. 593 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 594 Value *V, BasicBlock *BB, PredValueInfo &Result, 595 ConstantPreference Preference, 596 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 597 Instruction *CxtI) { 598 // This method walks up use-def chains recursively. Because of this, we could 599 // get into an infinite loop going around loops in the use-def chain. To 600 // prevent this, keep track of what (value, block) pairs we've already visited 601 // and terminate the search if we loop back to them 602 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 603 return false; 604 605 // If V is a constant, then it is known in all predecessors. 606 if (Constant *KC = getKnownConstant(V, Preference)) { 607 for (BasicBlock *Pred : predecessors(BB)) 608 Result.push_back(std::make_pair(KC, Pred)); 609 610 return !Result.empty(); 611 } 612 613 // If V is a non-instruction value, or an instruction in a different block, 614 // then it can't be derived from a PHI. 615 Instruction *I = dyn_cast<Instruction>(V); 616 if (!I || I->getParent() != BB) { 617 618 // Okay, if this is a live-in value, see if it has a known value at the end 619 // of any of our predecessors. 620 // 621 // FIXME: This should be an edge property, not a block end property. 622 /// TODO: Per PR2563, we could infer value range information about a 623 /// predecessor based on its terminator. 624 // 625 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 626 // "I" is a non-local compare-with-a-constant instruction. This would be 627 // able to handle value inequalities better, for example if the compare is 628 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 629 // Perhaps getConstantOnEdge should be smart enough to do this? 630 631 if (DTU->hasPendingDomTreeUpdates()) 632 LVI->disableDT(); 633 else 634 LVI->enableDT(); 635 for (BasicBlock *P : predecessors(BB)) { 636 // If the value is known by LazyValueInfo to be a constant in a 637 // predecessor, use that information to try to thread this block. 638 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 639 if (Constant *KC = getKnownConstant(PredCst, Preference)) 640 Result.push_back(std::make_pair(KC, P)); 641 } 642 643 return !Result.empty(); 644 } 645 646 /// If I is a PHI node, then we know the incoming values for any constants. 647 if (PHINode *PN = dyn_cast<PHINode>(I)) { 648 if (DTU->hasPendingDomTreeUpdates()) 649 LVI->disableDT(); 650 else 651 LVI->enableDT(); 652 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 653 Value *InVal = PN->getIncomingValue(i); 654 if (Constant *KC = getKnownConstant(InVal, Preference)) { 655 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 656 } else { 657 Constant *CI = LVI->getConstantOnEdge(InVal, 658 PN->getIncomingBlock(i), 659 BB, CxtI); 660 if (Constant *KC = getKnownConstant(CI, Preference)) 661 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 662 } 663 } 664 665 return !Result.empty(); 666 } 667 668 // Handle Cast instructions. Only see through Cast when the source operand is 669 // PHI or Cmp to save the compilation time. 670 if (CastInst *CI = dyn_cast<CastInst>(I)) { 671 Value *Source = CI->getOperand(0); 672 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 673 return false; 674 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 675 RecursionSet, CxtI); 676 if (Result.empty()) 677 return false; 678 679 // Convert the known values. 680 for (auto &R : Result) 681 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 682 683 return true; 684 } 685 686 // Handle some boolean conditions. 687 if (I->getType()->getPrimitiveSizeInBits() == 1) { 688 assert(Preference == WantInteger && "One-bit non-integer type?"); 689 // X | true -> true 690 // X & false -> false 691 if (I->getOpcode() == Instruction::Or || 692 I->getOpcode() == Instruction::And) { 693 PredValueInfoTy LHSVals, RHSVals; 694 695 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 696 WantInteger, RecursionSet, CxtI); 697 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 698 WantInteger, RecursionSet, CxtI); 699 700 if (LHSVals.empty() && RHSVals.empty()) 701 return false; 702 703 ConstantInt *InterestingVal; 704 if (I->getOpcode() == Instruction::Or) 705 InterestingVal = ConstantInt::getTrue(I->getContext()); 706 else 707 InterestingVal = ConstantInt::getFalse(I->getContext()); 708 709 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 710 711 // Scan for the sentinel. If we find an undef, force it to the 712 // interesting value: x|undef -> true and x&undef -> false. 713 for (const auto &LHSVal : LHSVals) 714 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 715 Result.emplace_back(InterestingVal, LHSVal.second); 716 LHSKnownBBs.insert(LHSVal.second); 717 } 718 for (const auto &RHSVal : RHSVals) 719 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 720 // If we already inferred a value for this block on the LHS, don't 721 // re-add it. 722 if (!LHSKnownBBs.count(RHSVal.second)) 723 Result.emplace_back(InterestingVal, RHSVal.second); 724 } 725 726 return !Result.empty(); 727 } 728 729 // Handle the NOT form of XOR. 730 if (I->getOpcode() == Instruction::Xor && 731 isa<ConstantInt>(I->getOperand(1)) && 732 cast<ConstantInt>(I->getOperand(1))->isOne()) { 733 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 734 WantInteger, RecursionSet, CxtI); 735 if (Result.empty()) 736 return false; 737 738 // Invert the known values. 739 for (auto &R : Result) 740 R.first = ConstantExpr::getNot(R.first); 741 742 return true; 743 } 744 745 // Try to simplify some other binary operator values. 746 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 747 assert(Preference != WantBlockAddress 748 && "A binary operator creating a block address?"); 749 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 750 PredValueInfoTy LHSVals; 751 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 752 WantInteger, RecursionSet, CxtI); 753 754 // Try to use constant folding to simplify the binary operator. 755 for (const auto &LHSVal : LHSVals) { 756 Constant *V = LHSVal.first; 757 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 758 759 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 760 Result.push_back(std::make_pair(KC, LHSVal.second)); 761 } 762 } 763 764 return !Result.empty(); 765 } 766 767 // Handle compare with phi operand, where the PHI is defined in this block. 768 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 769 assert(Preference == WantInteger && "Compares only produce integers"); 770 Type *CmpType = Cmp->getType(); 771 Value *CmpLHS = Cmp->getOperand(0); 772 Value *CmpRHS = Cmp->getOperand(1); 773 CmpInst::Predicate Pred = Cmp->getPredicate(); 774 775 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 776 if (!PN) 777 PN = dyn_cast<PHINode>(CmpRHS); 778 if (PN && PN->getParent() == BB) { 779 const DataLayout &DL = PN->getModule()->getDataLayout(); 780 // We can do this simplification if any comparisons fold to true or false. 781 // See if any do. 782 if (DTU->hasPendingDomTreeUpdates()) 783 LVI->disableDT(); 784 else 785 LVI->enableDT(); 786 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 787 BasicBlock *PredBB = PN->getIncomingBlock(i); 788 Value *LHS, *RHS; 789 if (PN == CmpLHS) { 790 LHS = PN->getIncomingValue(i); 791 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 792 } else { 793 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 794 RHS = PN->getIncomingValue(i); 795 } 796 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 797 if (!Res) { 798 if (!isa<Constant>(RHS)) 799 continue; 800 801 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 802 auto LHSInst = dyn_cast<Instruction>(LHS); 803 if (LHSInst && LHSInst->getParent() == BB) 804 continue; 805 806 LazyValueInfo::Tristate 807 ResT = LVI->getPredicateOnEdge(Pred, LHS, 808 cast<Constant>(RHS), PredBB, BB, 809 CxtI ? CxtI : Cmp); 810 if (ResT == LazyValueInfo::Unknown) 811 continue; 812 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 813 } 814 815 if (Constant *KC = getKnownConstant(Res, WantInteger)) 816 Result.push_back(std::make_pair(KC, PredBB)); 817 } 818 819 return !Result.empty(); 820 } 821 822 // If comparing a live-in value against a constant, see if we know the 823 // live-in value on any predecessors. 824 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 825 Constant *CmpConst = cast<Constant>(CmpRHS); 826 827 if (!isa<Instruction>(CmpLHS) || 828 cast<Instruction>(CmpLHS)->getParent() != BB) { 829 if (DTU->hasPendingDomTreeUpdates()) 830 LVI->disableDT(); 831 else 832 LVI->enableDT(); 833 for (BasicBlock *P : predecessors(BB)) { 834 // If the value is known by LazyValueInfo to be a constant in a 835 // predecessor, use that information to try to thread this block. 836 LazyValueInfo::Tristate Res = 837 LVI->getPredicateOnEdge(Pred, CmpLHS, 838 CmpConst, P, BB, CxtI ? CxtI : Cmp); 839 if (Res == LazyValueInfo::Unknown) 840 continue; 841 842 Constant *ResC = ConstantInt::get(CmpType, Res); 843 Result.push_back(std::make_pair(ResC, P)); 844 } 845 846 return !Result.empty(); 847 } 848 849 // InstCombine can fold some forms of constant range checks into 850 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 851 // x as a live-in. 852 { 853 using namespace PatternMatch; 854 855 Value *AddLHS; 856 ConstantInt *AddConst; 857 if (isa<ConstantInt>(CmpConst) && 858 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 859 if (!isa<Instruction>(AddLHS) || 860 cast<Instruction>(AddLHS)->getParent() != BB) { 861 if (DTU->hasPendingDomTreeUpdates()) 862 LVI->disableDT(); 863 else 864 LVI->enableDT(); 865 for (BasicBlock *P : predecessors(BB)) { 866 // If the value is known by LazyValueInfo to be a ConstantRange in 867 // a predecessor, use that information to try to thread this 868 // block. 869 ConstantRange CR = LVI->getConstantRangeOnEdge( 870 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 871 // Propagate the range through the addition. 872 CR = CR.add(AddConst->getValue()); 873 874 // Get the range where the compare returns true. 875 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 876 Pred, cast<ConstantInt>(CmpConst)->getValue()); 877 878 Constant *ResC; 879 if (CmpRange.contains(CR)) 880 ResC = ConstantInt::getTrue(CmpType); 881 else if (CmpRange.inverse().contains(CR)) 882 ResC = ConstantInt::getFalse(CmpType); 883 else 884 continue; 885 886 Result.push_back(std::make_pair(ResC, P)); 887 } 888 889 return !Result.empty(); 890 } 891 } 892 } 893 894 // Try to find a constant value for the LHS of a comparison, 895 // and evaluate it statically if we can. 896 PredValueInfoTy LHSVals; 897 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 898 WantInteger, RecursionSet, CxtI); 899 900 for (const auto &LHSVal : LHSVals) { 901 Constant *V = LHSVal.first; 902 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 903 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 904 Result.push_back(std::make_pair(KC, LHSVal.second)); 905 } 906 907 return !Result.empty(); 908 } 909 } 910 911 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 912 // Handle select instructions where at least one operand is a known constant 913 // and we can figure out the condition value for any predecessor block. 914 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 915 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 916 PredValueInfoTy Conds; 917 if ((TrueVal || FalseVal) && 918 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 919 WantInteger, RecursionSet, CxtI)) { 920 for (auto &C : Conds) { 921 Constant *Cond = C.first; 922 923 // Figure out what value to use for the condition. 924 bool KnownCond; 925 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 926 // A known boolean. 927 KnownCond = CI->isOne(); 928 } else { 929 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 930 // Either operand will do, so be sure to pick the one that's a known 931 // constant. 932 // FIXME: Do this more cleverly if both values are known constants? 933 KnownCond = (TrueVal != nullptr); 934 } 935 936 // See if the select has a known constant value for this predecessor. 937 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 938 Result.push_back(std::make_pair(Val, C.second)); 939 } 940 941 return !Result.empty(); 942 } 943 } 944 945 // If all else fails, see if LVI can figure out a constant value for us. 946 if (DTU->hasPendingDomTreeUpdates()) 947 LVI->disableDT(); 948 else 949 LVI->enableDT(); 950 Constant *CI = LVI->getConstant(V, BB, CxtI); 951 if (Constant *KC = getKnownConstant(CI, Preference)) { 952 for (BasicBlock *Pred : predecessors(BB)) 953 Result.push_back(std::make_pair(KC, Pred)); 954 } 955 956 return !Result.empty(); 957 } 958 959 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 960 /// in an undefined jump, decide which block is best to revector to. 961 /// 962 /// Since we can pick an arbitrary destination, we pick the successor with the 963 /// fewest predecessors. This should reduce the in-degree of the others. 964 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 965 Instruction *BBTerm = BB->getTerminator(); 966 unsigned MinSucc = 0; 967 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 968 // Compute the successor with the minimum number of predecessors. 969 unsigned MinNumPreds = pred_size(TestBB); 970 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 971 TestBB = BBTerm->getSuccessor(i); 972 unsigned NumPreds = pred_size(TestBB); 973 if (NumPreds < MinNumPreds) { 974 MinSucc = i; 975 MinNumPreds = NumPreds; 976 } 977 } 978 979 return MinSucc; 980 } 981 982 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 983 if (!BB->hasAddressTaken()) return false; 984 985 // If the block has its address taken, it may be a tree of dead constants 986 // hanging off of it. These shouldn't keep the block alive. 987 BlockAddress *BA = BlockAddress::get(BB); 988 BA->removeDeadConstantUsers(); 989 return !BA->use_empty(); 990 } 991 992 /// ProcessBlock - If there are any predecessors whose control can be threaded 993 /// through to a successor, transform them now. 994 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 995 // If the block is trivially dead, just return and let the caller nuke it. 996 // This simplifies other transformations. 997 if (DTU->isBBPendingDeletion(BB) || 998 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 999 return false; 1000 1001 // If this block has a single predecessor, and if that pred has a single 1002 // successor, merge the blocks. This encourages recursive jump threading 1003 // because now the condition in this block can be threaded through 1004 // predecessors of our predecessor block. 1005 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 1006 const Instruction *TI = SinglePred->getTerminator(); 1007 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && 1008 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 1009 // If SinglePred was a loop header, BB becomes one. 1010 if (LoopHeaders.erase(SinglePred)) 1011 LoopHeaders.insert(BB); 1012 1013 LVI->eraseBlock(SinglePred); 1014 MergeBasicBlockIntoOnlyPred(BB, DTU); 1015 1016 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1017 // BB code within one basic block `BB`), we need to invalidate the LVI 1018 // information associated with BB, because the LVI information need not be 1019 // true for all of BB after the merge. For example, 1020 // Before the merge, LVI info and code is as follows: 1021 // SinglePred: <LVI info1 for %p val> 1022 // %y = use of %p 1023 // call @exit() // need not transfer execution to successor. 1024 // assume(%p) // from this point on %p is true 1025 // br label %BB 1026 // BB: <LVI info2 for %p val, i.e. %p is true> 1027 // %x = use of %p 1028 // br label exit 1029 // 1030 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1031 // (info2 and info1 respectively). After the merge and the deletion of the 1032 // LVI info1 for SinglePred. We have the following code: 1033 // BB: <LVI info2 for %p val> 1034 // %y = use of %p 1035 // call @exit() 1036 // assume(%p) 1037 // %x = use of %p <-- LVI info2 is correct from here onwards. 1038 // br label exit 1039 // LVI info2 for BB is incorrect at the beginning of BB. 1040 1041 // Invalidate LVI information for BB if the LVI is not provably true for 1042 // all of BB. 1043 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1044 LVI->eraseBlock(BB); 1045 return true; 1046 } 1047 } 1048 1049 if (TryToUnfoldSelectInCurrBB(BB)) 1050 return true; 1051 1052 // Look if we can propagate guards to predecessors. 1053 if (HasGuards && ProcessGuards(BB)) 1054 return true; 1055 1056 // What kind of constant we're looking for. 1057 ConstantPreference Preference = WantInteger; 1058 1059 // Look to see if the terminator is a conditional branch, switch or indirect 1060 // branch, if not we can't thread it. 1061 Value *Condition; 1062 Instruction *Terminator = BB->getTerminator(); 1063 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1064 // Can't thread an unconditional jump. 1065 if (BI->isUnconditional()) return false; 1066 Condition = BI->getCondition(); 1067 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1068 Condition = SI->getCondition(); 1069 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1070 // Can't thread indirect branch with no successors. 1071 if (IB->getNumSuccessors() == 0) return false; 1072 Condition = IB->getAddress()->stripPointerCasts(); 1073 Preference = WantBlockAddress; 1074 } else { 1075 return false; // Must be an invoke or callbr. 1076 } 1077 1078 // Run constant folding to see if we can reduce the condition to a simple 1079 // constant. 1080 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1081 Value *SimpleVal = 1082 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1083 if (SimpleVal) { 1084 I->replaceAllUsesWith(SimpleVal); 1085 if (isInstructionTriviallyDead(I, TLI)) 1086 I->eraseFromParent(); 1087 Condition = SimpleVal; 1088 } 1089 } 1090 1091 // If the terminator is branching on an undef, we can pick any of the 1092 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1093 if (isa<UndefValue>(Condition)) { 1094 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1095 std::vector<DominatorTree::UpdateType> Updates; 1096 1097 // Fold the branch/switch. 1098 Instruction *BBTerm = BB->getTerminator(); 1099 Updates.reserve(BBTerm->getNumSuccessors()); 1100 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1101 if (i == BestSucc) continue; 1102 BasicBlock *Succ = BBTerm->getSuccessor(i); 1103 Succ->removePredecessor(BB, true); 1104 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1105 } 1106 1107 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1108 << "' folding undef terminator: " << *BBTerm << '\n'); 1109 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1110 BBTerm->eraseFromParent(); 1111 DTU->applyUpdatesPermissive(Updates); 1112 return true; 1113 } 1114 1115 // If the terminator of this block is branching on a constant, simplify the 1116 // terminator to an unconditional branch. This can occur due to threading in 1117 // other blocks. 1118 if (getKnownConstant(Condition, Preference)) { 1119 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1120 << "' folding terminator: " << *BB->getTerminator() 1121 << '\n'); 1122 ++NumFolds; 1123 ConstantFoldTerminator(BB, true, nullptr, DTU); 1124 return true; 1125 } 1126 1127 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1128 1129 // All the rest of our checks depend on the condition being an instruction. 1130 if (!CondInst) { 1131 // FIXME: Unify this with code below. 1132 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1133 return true; 1134 return false; 1135 } 1136 1137 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1138 // If we're branching on a conditional, LVI might be able to determine 1139 // it's value at the branch instruction. We only handle comparisons 1140 // against a constant at this time. 1141 // TODO: This should be extended to handle switches as well. 1142 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1143 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1144 if (CondBr && CondConst) { 1145 // We should have returned as soon as we turn a conditional branch to 1146 // unconditional. Because its no longer interesting as far as jump 1147 // threading is concerned. 1148 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1149 1150 if (DTU->hasPendingDomTreeUpdates()) 1151 LVI->disableDT(); 1152 else 1153 LVI->enableDT(); 1154 LazyValueInfo::Tristate Ret = 1155 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1156 CondConst, CondBr); 1157 if (Ret != LazyValueInfo::Unknown) { 1158 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1159 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1160 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1161 ToRemoveSucc->removePredecessor(BB, true); 1162 BranchInst *UncondBr = 1163 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1164 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1165 CondBr->eraseFromParent(); 1166 if (CondCmp->use_empty()) 1167 CondCmp->eraseFromParent(); 1168 // We can safely replace *some* uses of the CondInst if it has 1169 // exactly one value as returned by LVI. RAUW is incorrect in the 1170 // presence of guards and assumes, that have the `Cond` as the use. This 1171 // is because we use the guards/assume to reason about the `Cond` value 1172 // at the end of block, but RAUW unconditionally replaces all uses 1173 // including the guards/assumes themselves and the uses before the 1174 // guard/assume. 1175 else if (CondCmp->getParent() == BB) { 1176 auto *CI = Ret == LazyValueInfo::True ? 1177 ConstantInt::getTrue(CondCmp->getType()) : 1178 ConstantInt::getFalse(CondCmp->getType()); 1179 ReplaceFoldableUses(CondCmp, CI); 1180 } 1181 DTU->applyUpdatesPermissive( 1182 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1183 return true; 1184 } 1185 1186 // We did not manage to simplify this branch, try to see whether 1187 // CondCmp depends on a known phi-select pattern. 1188 if (TryToUnfoldSelect(CondCmp, BB)) 1189 return true; 1190 } 1191 } 1192 1193 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1194 if (TryToUnfoldSelect(SI, BB)) 1195 return true; 1196 1197 // Check for some cases that are worth simplifying. Right now we want to look 1198 // for loads that are used by a switch or by the condition for the branch. If 1199 // we see one, check to see if it's partially redundant. If so, insert a PHI 1200 // which can then be used to thread the values. 1201 Value *SimplifyValue = CondInst; 1202 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1203 if (isa<Constant>(CondCmp->getOperand(1))) 1204 SimplifyValue = CondCmp->getOperand(0); 1205 1206 // TODO: There are other places where load PRE would be profitable, such as 1207 // more complex comparisons. 1208 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1209 if (SimplifyPartiallyRedundantLoad(LoadI)) 1210 return true; 1211 1212 // Before threading, try to propagate profile data backwards: 1213 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1214 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1215 updatePredecessorProfileMetadata(PN, BB); 1216 1217 // Handle a variety of cases where we are branching on something derived from 1218 // a PHI node in the current block. If we can prove that any predecessors 1219 // compute a predictable value based on a PHI node, thread those predecessors. 1220 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1221 return true; 1222 1223 // If this is an otherwise-unfoldable branch on a phi node in the current 1224 // block, see if we can simplify. 1225 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1226 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1227 return ProcessBranchOnPHI(PN); 1228 1229 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1230 if (CondInst->getOpcode() == Instruction::Xor && 1231 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1232 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1233 1234 // Search for a stronger dominating condition that can be used to simplify a 1235 // conditional branch leaving BB. 1236 if (ProcessImpliedCondition(BB)) 1237 return true; 1238 1239 return false; 1240 } 1241 1242 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1243 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1244 if (!BI || !BI->isConditional()) 1245 return false; 1246 1247 Value *Cond = BI->getCondition(); 1248 BasicBlock *CurrentBB = BB; 1249 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1250 unsigned Iter = 0; 1251 1252 auto &DL = BB->getModule()->getDataLayout(); 1253 1254 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1255 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1256 if (!PBI || !PBI->isConditional()) 1257 return false; 1258 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1259 return false; 1260 1261 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1262 Optional<bool> Implication = 1263 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1264 if (Implication) { 1265 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1266 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1267 RemoveSucc->removePredecessor(BB); 1268 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1269 UncondBI->setDebugLoc(BI->getDebugLoc()); 1270 BI->eraseFromParent(); 1271 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1272 return true; 1273 } 1274 CurrentBB = CurrentPred; 1275 CurrentPred = CurrentBB->getSinglePredecessor(); 1276 } 1277 1278 return false; 1279 } 1280 1281 /// Return true if Op is an instruction defined in the given block. 1282 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1283 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1284 if (OpInst->getParent() == BB) 1285 return true; 1286 return false; 1287 } 1288 1289 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1290 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1291 /// This is an important optimization that encourages jump threading, and needs 1292 /// to be run interlaced with other jump threading tasks. 1293 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1294 // Don't hack volatile and ordered loads. 1295 if (!LoadI->isUnordered()) return false; 1296 1297 // If the load is defined in a block with exactly one predecessor, it can't be 1298 // partially redundant. 1299 BasicBlock *LoadBB = LoadI->getParent(); 1300 if (LoadBB->getSinglePredecessor()) 1301 return false; 1302 1303 // If the load is defined in an EH pad, it can't be partially redundant, 1304 // because the edges between the invoke and the EH pad cannot have other 1305 // instructions between them. 1306 if (LoadBB->isEHPad()) 1307 return false; 1308 1309 Value *LoadedPtr = LoadI->getOperand(0); 1310 1311 // If the loaded operand is defined in the LoadBB and its not a phi, 1312 // it can't be available in predecessors. 1313 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1314 return false; 1315 1316 // Scan a few instructions up from the load, to see if it is obviously live at 1317 // the entry to its block. 1318 BasicBlock::iterator BBIt(LoadI); 1319 bool IsLoadCSE; 1320 if (Value *AvailableVal = FindAvailableLoadedValue( 1321 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1322 // If the value of the load is locally available within the block, just use 1323 // it. This frequently occurs for reg2mem'd allocas. 1324 1325 if (IsLoadCSE) { 1326 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1327 combineMetadataForCSE(NLoadI, LoadI, false); 1328 }; 1329 1330 // If the returned value is the load itself, replace with an undef. This can 1331 // only happen in dead loops. 1332 if (AvailableVal == LoadI) 1333 AvailableVal = UndefValue::get(LoadI->getType()); 1334 if (AvailableVal->getType() != LoadI->getType()) 1335 AvailableVal = CastInst::CreateBitOrPointerCast( 1336 AvailableVal, LoadI->getType(), "", LoadI); 1337 LoadI->replaceAllUsesWith(AvailableVal); 1338 LoadI->eraseFromParent(); 1339 return true; 1340 } 1341 1342 // Otherwise, if we scanned the whole block and got to the top of the block, 1343 // we know the block is locally transparent to the load. If not, something 1344 // might clobber its value. 1345 if (BBIt != LoadBB->begin()) 1346 return false; 1347 1348 // If all of the loads and stores that feed the value have the same AA tags, 1349 // then we can propagate them onto any newly inserted loads. 1350 AAMDNodes AATags; 1351 LoadI->getAAMetadata(AATags); 1352 1353 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1354 1355 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1356 1357 AvailablePredsTy AvailablePreds; 1358 BasicBlock *OneUnavailablePred = nullptr; 1359 SmallVector<LoadInst*, 8> CSELoads; 1360 1361 // If we got here, the loaded value is transparent through to the start of the 1362 // block. Check to see if it is available in any of the predecessor blocks. 1363 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1364 // If we already scanned this predecessor, skip it. 1365 if (!PredsScanned.insert(PredBB).second) 1366 continue; 1367 1368 BBIt = PredBB->end(); 1369 unsigned NumScanedInst = 0; 1370 Value *PredAvailable = nullptr; 1371 // NOTE: We don't CSE load that is volatile or anything stronger than 1372 // unordered, that should have been checked when we entered the function. 1373 assert(LoadI->isUnordered() && 1374 "Attempting to CSE volatile or atomic loads"); 1375 // If this is a load on a phi pointer, phi-translate it and search 1376 // for available load/store to the pointer in predecessors. 1377 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1378 PredAvailable = FindAvailablePtrLoadStore( 1379 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1380 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1381 1382 // If PredBB has a single predecessor, continue scanning through the 1383 // single predecessor. 1384 BasicBlock *SinglePredBB = PredBB; 1385 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1386 NumScanedInst < DefMaxInstsToScan) { 1387 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1388 if (SinglePredBB) { 1389 BBIt = SinglePredBB->end(); 1390 PredAvailable = FindAvailablePtrLoadStore( 1391 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1392 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1393 &NumScanedInst); 1394 } 1395 } 1396 1397 if (!PredAvailable) { 1398 OneUnavailablePred = PredBB; 1399 continue; 1400 } 1401 1402 if (IsLoadCSE) 1403 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1404 1405 // If so, this load is partially redundant. Remember this info so that we 1406 // can create a PHI node. 1407 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1408 } 1409 1410 // If the loaded value isn't available in any predecessor, it isn't partially 1411 // redundant. 1412 if (AvailablePreds.empty()) return false; 1413 1414 // Okay, the loaded value is available in at least one (and maybe all!) 1415 // predecessors. If the value is unavailable in more than one unique 1416 // predecessor, we want to insert a merge block for those common predecessors. 1417 // This ensures that we only have to insert one reload, thus not increasing 1418 // code size. 1419 BasicBlock *UnavailablePred = nullptr; 1420 1421 // If the value is unavailable in one of predecessors, we will end up 1422 // inserting a new instruction into them. It is only valid if all the 1423 // instructions before LoadI are guaranteed to pass execution to its 1424 // successor, or if LoadI is safe to speculate. 1425 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1426 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1427 // It requires domination tree analysis, so for this simple case it is an 1428 // overkill. 1429 if (PredsScanned.size() != AvailablePreds.size() && 1430 !isSafeToSpeculativelyExecute(LoadI)) 1431 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1432 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1433 return false; 1434 1435 // If there is exactly one predecessor where the value is unavailable, the 1436 // already computed 'OneUnavailablePred' block is it. If it ends in an 1437 // unconditional branch, we know that it isn't a critical edge. 1438 if (PredsScanned.size() == AvailablePreds.size()+1 && 1439 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1440 UnavailablePred = OneUnavailablePred; 1441 } else if (PredsScanned.size() != AvailablePreds.size()) { 1442 // Otherwise, we had multiple unavailable predecessors or we had a critical 1443 // edge from the one. 1444 SmallVector<BasicBlock*, 8> PredsToSplit; 1445 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1446 1447 for (const auto &AvailablePred : AvailablePreds) 1448 AvailablePredSet.insert(AvailablePred.first); 1449 1450 // Add all the unavailable predecessors to the PredsToSplit list. 1451 for (BasicBlock *P : predecessors(LoadBB)) { 1452 // If the predecessor is an indirect goto, we can't split the edge. 1453 // Same for CallBr. 1454 if (isa<IndirectBrInst>(P->getTerminator()) || 1455 isa<CallBrInst>(P->getTerminator())) 1456 return false; 1457 1458 if (!AvailablePredSet.count(P)) 1459 PredsToSplit.push_back(P); 1460 } 1461 1462 // Split them out to their own block. 1463 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1464 } 1465 1466 // If the value isn't available in all predecessors, then there will be 1467 // exactly one where it isn't available. Insert a load on that edge and add 1468 // it to the AvailablePreds list. 1469 if (UnavailablePred) { 1470 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1471 "Can't handle critical edge here!"); 1472 LoadInst *NewVal = new LoadInst( 1473 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1474 LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()), 1475 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1476 UnavailablePred->getTerminator()); 1477 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1478 if (AATags) 1479 NewVal->setAAMetadata(AATags); 1480 1481 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1482 } 1483 1484 // Now we know that each predecessor of this block has a value in 1485 // AvailablePreds, sort them for efficient access as we're walking the preds. 1486 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1487 1488 // Create a PHI node at the start of the block for the PRE'd load value. 1489 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1490 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1491 &LoadBB->front()); 1492 PN->takeName(LoadI); 1493 PN->setDebugLoc(LoadI->getDebugLoc()); 1494 1495 // Insert new entries into the PHI for each predecessor. A single block may 1496 // have multiple entries here. 1497 for (pred_iterator PI = PB; PI != PE; ++PI) { 1498 BasicBlock *P = *PI; 1499 AvailablePredsTy::iterator I = 1500 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1501 1502 assert(I != AvailablePreds.end() && I->first == P && 1503 "Didn't find entry for predecessor!"); 1504 1505 // If we have an available predecessor but it requires casting, insert the 1506 // cast in the predecessor and use the cast. Note that we have to update the 1507 // AvailablePreds vector as we go so that all of the PHI entries for this 1508 // predecessor use the same bitcast. 1509 Value *&PredV = I->second; 1510 if (PredV->getType() != LoadI->getType()) 1511 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1512 P->getTerminator()); 1513 1514 PN->addIncoming(PredV, I->first); 1515 } 1516 1517 for (LoadInst *PredLoadI : CSELoads) { 1518 combineMetadataForCSE(PredLoadI, LoadI, true); 1519 } 1520 1521 LoadI->replaceAllUsesWith(PN); 1522 LoadI->eraseFromParent(); 1523 1524 return true; 1525 } 1526 1527 /// FindMostPopularDest - The specified list contains multiple possible 1528 /// threadable destinations. Pick the one that occurs the most frequently in 1529 /// the list. 1530 static BasicBlock * 1531 FindMostPopularDest(BasicBlock *BB, 1532 const SmallVectorImpl<std::pair<BasicBlock *, 1533 BasicBlock *>> &PredToDestList) { 1534 assert(!PredToDestList.empty()); 1535 1536 // Determine popularity. If there are multiple possible destinations, we 1537 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1538 // blocks with known and real destinations to threading undef. We'll handle 1539 // them later if interesting. 1540 DenseMap<BasicBlock*, unsigned> DestPopularity; 1541 for (const auto &PredToDest : PredToDestList) 1542 if (PredToDest.second) 1543 DestPopularity[PredToDest.second]++; 1544 1545 if (DestPopularity.empty()) 1546 return nullptr; 1547 1548 // Find the most popular dest. 1549 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1550 BasicBlock *MostPopularDest = DPI->first; 1551 unsigned Popularity = DPI->second; 1552 SmallVector<BasicBlock*, 4> SamePopularity; 1553 1554 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1555 // If the popularity of this entry isn't higher than the popularity we've 1556 // seen so far, ignore it. 1557 if (DPI->second < Popularity) 1558 ; // ignore. 1559 else if (DPI->second == Popularity) { 1560 // If it is the same as what we've seen so far, keep track of it. 1561 SamePopularity.push_back(DPI->first); 1562 } else { 1563 // If it is more popular, remember it. 1564 SamePopularity.clear(); 1565 MostPopularDest = DPI->first; 1566 Popularity = DPI->second; 1567 } 1568 } 1569 1570 // Okay, now we know the most popular destination. If there is more than one 1571 // destination, we need to determine one. This is arbitrary, but we need 1572 // to make a deterministic decision. Pick the first one that appears in the 1573 // successor list. 1574 if (!SamePopularity.empty()) { 1575 SamePopularity.push_back(MostPopularDest); 1576 Instruction *TI = BB->getTerminator(); 1577 for (unsigned i = 0; ; ++i) { 1578 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1579 1580 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1581 continue; 1582 1583 MostPopularDest = TI->getSuccessor(i); 1584 break; 1585 } 1586 } 1587 1588 // Okay, we have finally picked the most popular destination. 1589 return MostPopularDest; 1590 } 1591 1592 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1593 ConstantPreference Preference, 1594 Instruction *CxtI) { 1595 // If threading this would thread across a loop header, don't even try to 1596 // thread the edge. 1597 if (LoopHeaders.count(BB)) 1598 return false; 1599 1600 PredValueInfoTy PredValues; 1601 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1602 return false; 1603 1604 assert(!PredValues.empty() && 1605 "ComputeValueKnownInPredecessors returned true with no values"); 1606 1607 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1608 for (const auto &PredValue : PredValues) { 1609 dbgs() << " BB '" << BB->getName() 1610 << "': FOUND condition = " << *PredValue.first 1611 << " for pred '" << PredValue.second->getName() << "'.\n"; 1612 }); 1613 1614 // Decide what we want to thread through. Convert our list of known values to 1615 // a list of known destinations for each pred. This also discards duplicate 1616 // predecessors and keeps track of the undefined inputs (which are represented 1617 // as a null dest in the PredToDestList). 1618 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1619 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1620 1621 BasicBlock *OnlyDest = nullptr; 1622 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1623 Constant *OnlyVal = nullptr; 1624 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1625 1626 for (const auto &PredValue : PredValues) { 1627 BasicBlock *Pred = PredValue.second; 1628 if (!SeenPreds.insert(Pred).second) 1629 continue; // Duplicate predecessor entry. 1630 1631 Constant *Val = PredValue.first; 1632 1633 BasicBlock *DestBB; 1634 if (isa<UndefValue>(Val)) 1635 DestBB = nullptr; 1636 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1637 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1638 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1639 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1640 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1641 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1642 } else { 1643 assert(isa<IndirectBrInst>(BB->getTerminator()) 1644 && "Unexpected terminator"); 1645 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1646 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1647 } 1648 1649 // If we have exactly one destination, remember it for efficiency below. 1650 if (PredToDestList.empty()) { 1651 OnlyDest = DestBB; 1652 OnlyVal = Val; 1653 } else { 1654 if (OnlyDest != DestBB) 1655 OnlyDest = MultipleDestSentinel; 1656 // It possible we have same destination, but different value, e.g. default 1657 // case in switchinst. 1658 if (Val != OnlyVal) 1659 OnlyVal = MultipleVal; 1660 } 1661 1662 // If the predecessor ends with an indirect goto, we can't change its 1663 // destination. Same for CallBr. 1664 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1665 isa<CallBrInst>(Pred->getTerminator())) 1666 continue; 1667 1668 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1669 } 1670 1671 // If all edges were unthreadable, we fail. 1672 if (PredToDestList.empty()) 1673 return false; 1674 1675 // If all the predecessors go to a single known successor, we want to fold, 1676 // not thread. By doing so, we do not need to duplicate the current block and 1677 // also miss potential opportunities in case we dont/cant duplicate. 1678 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1679 if (BB->hasNPredecessors(PredToDestList.size())) { 1680 bool SeenFirstBranchToOnlyDest = false; 1681 std::vector <DominatorTree::UpdateType> Updates; 1682 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1683 for (BasicBlock *SuccBB : successors(BB)) { 1684 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1685 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1686 } else { 1687 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1688 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1689 } 1690 } 1691 1692 // Finally update the terminator. 1693 Instruction *Term = BB->getTerminator(); 1694 BranchInst::Create(OnlyDest, Term); 1695 Term->eraseFromParent(); 1696 DTU->applyUpdatesPermissive(Updates); 1697 1698 // If the condition is now dead due to the removal of the old terminator, 1699 // erase it. 1700 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1701 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1702 CondInst->eraseFromParent(); 1703 // We can safely replace *some* uses of the CondInst if it has 1704 // exactly one value as returned by LVI. RAUW is incorrect in the 1705 // presence of guards and assumes, that have the `Cond` as the use. This 1706 // is because we use the guards/assume to reason about the `Cond` value 1707 // at the end of block, but RAUW unconditionally replaces all uses 1708 // including the guards/assumes themselves and the uses before the 1709 // guard/assume. 1710 else if (OnlyVal && OnlyVal != MultipleVal && 1711 CondInst->getParent() == BB) 1712 ReplaceFoldableUses(CondInst, OnlyVal); 1713 } 1714 return true; 1715 } 1716 } 1717 1718 // Determine which is the most common successor. If we have many inputs and 1719 // this block is a switch, we want to start by threading the batch that goes 1720 // to the most popular destination first. If we only know about one 1721 // threadable destination (the common case) we can avoid this. 1722 BasicBlock *MostPopularDest = OnlyDest; 1723 1724 if (MostPopularDest == MultipleDestSentinel) { 1725 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1726 // won't process them, but we might have other destination that are eligible 1727 // and we still want to process. 1728 erase_if(PredToDestList, 1729 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1730 return LoopHeaders.count(PredToDest.second) != 0; 1731 }); 1732 1733 if (PredToDestList.empty()) 1734 return false; 1735 1736 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1737 } 1738 1739 // Now that we know what the most popular destination is, factor all 1740 // predecessors that will jump to it into a single predecessor. 1741 SmallVector<BasicBlock*, 16> PredsToFactor; 1742 for (const auto &PredToDest : PredToDestList) 1743 if (PredToDest.second == MostPopularDest) { 1744 BasicBlock *Pred = PredToDest.first; 1745 1746 // This predecessor may be a switch or something else that has multiple 1747 // edges to the block. Factor each of these edges by listing them 1748 // according to # occurrences in PredsToFactor. 1749 for (BasicBlock *Succ : successors(Pred)) 1750 if (Succ == BB) 1751 PredsToFactor.push_back(Pred); 1752 } 1753 1754 // If the threadable edges are branching on an undefined value, we get to pick 1755 // the destination that these predecessors should get to. 1756 if (!MostPopularDest) 1757 MostPopularDest = BB->getTerminator()-> 1758 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1759 1760 // Ok, try to thread it! 1761 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1762 } 1763 1764 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1765 /// a PHI node in the current block. See if there are any simplifications we 1766 /// can do based on inputs to the phi node. 1767 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1768 BasicBlock *BB = PN->getParent(); 1769 1770 // TODO: We could make use of this to do it once for blocks with common PHI 1771 // values. 1772 SmallVector<BasicBlock*, 1> PredBBs; 1773 PredBBs.resize(1); 1774 1775 // If any of the predecessor blocks end in an unconditional branch, we can 1776 // *duplicate* the conditional branch into that block in order to further 1777 // encourage jump threading and to eliminate cases where we have branch on a 1778 // phi of an icmp (branch on icmp is much better). 1779 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1780 BasicBlock *PredBB = PN->getIncomingBlock(i); 1781 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1782 if (PredBr->isUnconditional()) { 1783 PredBBs[0] = PredBB; 1784 // Try to duplicate BB into PredBB. 1785 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1786 return true; 1787 } 1788 } 1789 1790 return false; 1791 } 1792 1793 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1794 /// a xor instruction in the current block. See if there are any 1795 /// simplifications we can do based on inputs to the xor. 1796 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1797 BasicBlock *BB = BO->getParent(); 1798 1799 // If either the LHS or RHS of the xor is a constant, don't do this 1800 // optimization. 1801 if (isa<ConstantInt>(BO->getOperand(0)) || 1802 isa<ConstantInt>(BO->getOperand(1))) 1803 return false; 1804 1805 // If the first instruction in BB isn't a phi, we won't be able to infer 1806 // anything special about any particular predecessor. 1807 if (!isa<PHINode>(BB->front())) 1808 return false; 1809 1810 // If this BB is a landing pad, we won't be able to split the edge into it. 1811 if (BB->isEHPad()) 1812 return false; 1813 1814 // If we have a xor as the branch input to this block, and we know that the 1815 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1816 // the condition into the predecessor and fix that value to true, saving some 1817 // logical ops on that path and encouraging other paths to simplify. 1818 // 1819 // This copies something like this: 1820 // 1821 // BB: 1822 // %X = phi i1 [1], [%X'] 1823 // %Y = icmp eq i32 %A, %B 1824 // %Z = xor i1 %X, %Y 1825 // br i1 %Z, ... 1826 // 1827 // Into: 1828 // BB': 1829 // %Y = icmp ne i32 %A, %B 1830 // br i1 %Y, ... 1831 1832 PredValueInfoTy XorOpValues; 1833 bool isLHS = true; 1834 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1835 WantInteger, BO)) { 1836 assert(XorOpValues.empty()); 1837 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1838 WantInteger, BO)) 1839 return false; 1840 isLHS = false; 1841 } 1842 1843 assert(!XorOpValues.empty() && 1844 "ComputeValueKnownInPredecessors returned true with no values"); 1845 1846 // Scan the information to see which is most popular: true or false. The 1847 // predecessors can be of the set true, false, or undef. 1848 unsigned NumTrue = 0, NumFalse = 0; 1849 for (const auto &XorOpValue : XorOpValues) { 1850 if (isa<UndefValue>(XorOpValue.first)) 1851 // Ignore undefs for the count. 1852 continue; 1853 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1854 ++NumFalse; 1855 else 1856 ++NumTrue; 1857 } 1858 1859 // Determine which value to split on, true, false, or undef if neither. 1860 ConstantInt *SplitVal = nullptr; 1861 if (NumTrue > NumFalse) 1862 SplitVal = ConstantInt::getTrue(BB->getContext()); 1863 else if (NumTrue != 0 || NumFalse != 0) 1864 SplitVal = ConstantInt::getFalse(BB->getContext()); 1865 1866 // Collect all of the blocks that this can be folded into so that we can 1867 // factor this once and clone it once. 1868 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1869 for (const auto &XorOpValue : XorOpValues) { 1870 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1871 continue; 1872 1873 BlocksToFoldInto.push_back(XorOpValue.second); 1874 } 1875 1876 // If we inferred a value for all of the predecessors, then duplication won't 1877 // help us. However, we can just replace the LHS or RHS with the constant. 1878 if (BlocksToFoldInto.size() == 1879 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1880 if (!SplitVal) { 1881 // If all preds provide undef, just nuke the xor, because it is undef too. 1882 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1883 BO->eraseFromParent(); 1884 } else if (SplitVal->isZero()) { 1885 // If all preds provide 0, replace the xor with the other input. 1886 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1887 BO->eraseFromParent(); 1888 } else { 1889 // If all preds provide 1, set the computed value to 1. 1890 BO->setOperand(!isLHS, SplitVal); 1891 } 1892 1893 return true; 1894 } 1895 1896 // Try to duplicate BB into PredBB. 1897 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1898 } 1899 1900 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1901 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1902 /// NewPred using the entries from OldPred (suitably mapped). 1903 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1904 BasicBlock *OldPred, 1905 BasicBlock *NewPred, 1906 DenseMap<Instruction*, Value*> &ValueMap) { 1907 for (PHINode &PN : PHIBB->phis()) { 1908 // Ok, we have a PHI node. Figure out what the incoming value was for the 1909 // DestBlock. 1910 Value *IV = PN.getIncomingValueForBlock(OldPred); 1911 1912 // Remap the value if necessary. 1913 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1914 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1915 if (I != ValueMap.end()) 1916 IV = I->second; 1917 } 1918 1919 PN.addIncoming(IV, NewPred); 1920 } 1921 } 1922 1923 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1924 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1925 /// across BB. Transform the IR to reflect this change. 1926 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1927 const SmallVectorImpl<BasicBlock *> &PredBBs, 1928 BasicBlock *SuccBB) { 1929 // If threading to the same block as we come from, we would infinite loop. 1930 if (SuccBB == BB) { 1931 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1932 << "' - would thread to self!\n"); 1933 return false; 1934 } 1935 1936 // If threading this would thread across a loop header, don't thread the edge. 1937 // See the comments above FindLoopHeaders for justifications and caveats. 1938 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1939 LLVM_DEBUG({ 1940 bool BBIsHeader = LoopHeaders.count(BB); 1941 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1942 dbgs() << " Not threading across " 1943 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1944 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1945 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1946 }); 1947 return false; 1948 } 1949 1950 unsigned JumpThreadCost = 1951 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1952 if (JumpThreadCost > BBDupThreshold) { 1953 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1954 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1955 return false; 1956 } 1957 1958 // And finally, do it! Start by factoring the predecessors if needed. 1959 BasicBlock *PredBB; 1960 if (PredBBs.size() == 1) 1961 PredBB = PredBBs[0]; 1962 else { 1963 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1964 << " common predecessors.\n"); 1965 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1966 } 1967 1968 // And finally, do it! 1969 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1970 << "' to '" << SuccBB->getName() 1971 << "' with cost: " << JumpThreadCost 1972 << ", across block:\n " << *BB << "\n"); 1973 1974 if (DTU->hasPendingDomTreeUpdates()) 1975 LVI->disableDT(); 1976 else 1977 LVI->enableDT(); 1978 LVI->threadEdge(PredBB, BB, SuccBB); 1979 1980 // We are going to have to map operands from the original BB block to the new 1981 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1982 // account for entry from PredBB. 1983 DenseMap<Instruction*, Value*> ValueMapping; 1984 1985 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1986 BB->getName()+".thread", 1987 BB->getParent(), BB); 1988 NewBB->moveAfter(PredBB); 1989 1990 // Set the block frequency of NewBB. 1991 if (HasProfileData) { 1992 auto NewBBFreq = 1993 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1994 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1995 } 1996 1997 BasicBlock::iterator BI = BB->begin(); 1998 // Clone the phi nodes of BB into NewBB. The resulting phi nodes are trivial, 1999 // since NewBB only has one predecessor, but SSAUpdater might need to rewrite 2000 // the operand of the cloned phi. 2001 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2002 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2003 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2004 ValueMapping[PN] = NewPN; 2005 } 2006 2007 // Clone the non-phi instructions of BB into NewBB, keeping track of the 2008 // mapping and using it to remap operands in the cloned instructions. 2009 for (; !BI->isTerminator(); ++BI) { 2010 Instruction *New = BI->clone(); 2011 New->setName(BI->getName()); 2012 NewBB->getInstList().push_back(New); 2013 ValueMapping[&*BI] = New; 2014 2015 // Remap operands to patch up intra-block references. 2016 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2017 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2018 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2019 if (I != ValueMapping.end()) 2020 New->setOperand(i, I->second); 2021 } 2022 } 2023 2024 // We didn't copy the terminator from BB over to NewBB, because there is now 2025 // an unconditional jump to SuccBB. Insert the unconditional jump. 2026 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2027 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2028 2029 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2030 // PHI nodes for NewBB now. 2031 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2032 2033 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2034 // eliminates predecessors from BB, which requires us to simplify any PHI 2035 // nodes in BB. 2036 Instruction *PredTerm = PredBB->getTerminator(); 2037 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2038 if (PredTerm->getSuccessor(i) == BB) { 2039 BB->removePredecessor(PredBB, true); 2040 PredTerm->setSuccessor(i, NewBB); 2041 } 2042 2043 // Enqueue required DT updates. 2044 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2045 {DominatorTree::Insert, PredBB, NewBB}, 2046 {DominatorTree::Delete, PredBB, BB}}); 2047 2048 // If there were values defined in BB that are used outside the block, then we 2049 // now have to update all uses of the value to use either the original value, 2050 // the cloned value, or some PHI derived value. This can require arbitrary 2051 // PHI insertion, of which we are prepared to do, clean these up now. 2052 SSAUpdater SSAUpdate; 2053 SmallVector<Use*, 16> UsesToRename; 2054 2055 for (Instruction &I : *BB) { 2056 // Scan all uses of this instruction to see if their uses are no longer 2057 // dominated by the previous def and if so, record them in UsesToRename. 2058 // Also, skip phi operands from PredBB - we'll remove them anyway. 2059 for (Use &U : I.uses()) { 2060 Instruction *User = cast<Instruction>(U.getUser()); 2061 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2062 if (UserPN->getIncomingBlock(U) == BB) 2063 continue; 2064 } else if (User->getParent() == BB) 2065 continue; 2066 2067 UsesToRename.push_back(&U); 2068 } 2069 2070 // If there are no uses outside the block, we're done with this instruction. 2071 if (UsesToRename.empty()) 2072 continue; 2073 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2074 2075 // We found a use of I outside of BB. Rename all uses of I that are outside 2076 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2077 // with the two values we know. 2078 SSAUpdate.Initialize(I.getType(), I.getName()); 2079 SSAUpdate.AddAvailableValue(BB, &I); 2080 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2081 2082 while (!UsesToRename.empty()) 2083 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2084 LLVM_DEBUG(dbgs() << "\n"); 2085 } 2086 2087 // At this point, the IR is fully up to date and consistent. Do a quick scan 2088 // over the new instructions and zap any that are constants or dead. This 2089 // frequently happens because of phi translation. 2090 SimplifyInstructionsInBlock(NewBB, TLI); 2091 2092 // Update the edge weight from BB to SuccBB, which should be less than before. 2093 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2094 2095 // Threaded an edge! 2096 ++NumThreads; 2097 return true; 2098 } 2099 2100 /// Create a new basic block that will be the predecessor of BB and successor of 2101 /// all blocks in Preds. When profile data is available, update the frequency of 2102 /// this new block. 2103 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2104 ArrayRef<BasicBlock *> Preds, 2105 const char *Suffix) { 2106 SmallVector<BasicBlock *, 2> NewBBs; 2107 2108 // Collect the frequencies of all predecessors of BB, which will be used to 2109 // update the edge weight of the result of splitting predecessors. 2110 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2111 if (HasProfileData) 2112 for (auto Pred : Preds) 2113 FreqMap.insert(std::make_pair( 2114 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2115 2116 // In the case when BB is a LandingPad block we create 2 new predecessors 2117 // instead of just one. 2118 if (BB->isLandingPad()) { 2119 std::string NewName = std::string(Suffix) + ".split-lp"; 2120 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2121 } else { 2122 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2123 } 2124 2125 std::vector<DominatorTree::UpdateType> Updates; 2126 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2127 for (auto NewBB : NewBBs) { 2128 BlockFrequency NewBBFreq(0); 2129 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2130 for (auto Pred : predecessors(NewBB)) { 2131 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2132 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2133 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2134 NewBBFreq += FreqMap.lookup(Pred); 2135 } 2136 if (HasProfileData) // Apply the summed frequency to NewBB. 2137 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2138 } 2139 2140 DTU->applyUpdatesPermissive(Updates); 2141 return NewBBs[0]; 2142 } 2143 2144 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2145 const Instruction *TI = BB->getTerminator(); 2146 assert(TI->getNumSuccessors() > 1 && "not a split"); 2147 2148 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2149 if (!WeightsNode) 2150 return false; 2151 2152 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2153 if (MDName->getString() != "branch_weights") 2154 return false; 2155 2156 // Ensure there are weights for all of the successors. Note that the first 2157 // operand to the metadata node is a name, not a weight. 2158 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2159 } 2160 2161 /// Update the block frequency of BB and branch weight and the metadata on the 2162 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2163 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2164 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2165 BasicBlock *BB, 2166 BasicBlock *NewBB, 2167 BasicBlock *SuccBB) { 2168 if (!HasProfileData) 2169 return; 2170 2171 assert(BFI && BPI && "BFI & BPI should have been created here"); 2172 2173 // As the edge from PredBB to BB is deleted, we have to update the block 2174 // frequency of BB. 2175 auto BBOrigFreq = BFI->getBlockFreq(BB); 2176 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2177 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2178 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2179 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2180 2181 // Collect updated outgoing edges' frequencies from BB and use them to update 2182 // edge probabilities. 2183 SmallVector<uint64_t, 4> BBSuccFreq; 2184 for (BasicBlock *Succ : successors(BB)) { 2185 auto SuccFreq = (Succ == SuccBB) 2186 ? BB2SuccBBFreq - NewBBFreq 2187 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2188 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2189 } 2190 2191 uint64_t MaxBBSuccFreq = 2192 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2193 2194 SmallVector<BranchProbability, 4> BBSuccProbs; 2195 if (MaxBBSuccFreq == 0) 2196 BBSuccProbs.assign(BBSuccFreq.size(), 2197 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2198 else { 2199 for (uint64_t Freq : BBSuccFreq) 2200 BBSuccProbs.push_back( 2201 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2202 // Normalize edge probabilities so that they sum up to one. 2203 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2204 BBSuccProbs.end()); 2205 } 2206 2207 // Update edge probabilities in BPI. 2208 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2209 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2210 2211 // Update the profile metadata as well. 2212 // 2213 // Don't do this if the profile of the transformed blocks was statically 2214 // estimated. (This could occur despite the function having an entry 2215 // frequency in completely cold parts of the CFG.) 2216 // 2217 // In this case we don't want to suggest to subsequent passes that the 2218 // calculated weights are fully consistent. Consider this graph: 2219 // 2220 // check_1 2221 // 50% / | 2222 // eq_1 | 50% 2223 // \ | 2224 // check_2 2225 // 50% / | 2226 // eq_2 | 50% 2227 // \ | 2228 // check_3 2229 // 50% / | 2230 // eq_3 | 50% 2231 // \ | 2232 // 2233 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2234 // the overall probabilities are inconsistent; the total probability that the 2235 // value is either 1, 2 or 3 is 150%. 2236 // 2237 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2238 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2239 // the loop exit edge. Then based solely on static estimation we would assume 2240 // the loop was extremely hot. 2241 // 2242 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2243 // shouldn't make edges extremely likely or unlikely based solely on static 2244 // estimation. 2245 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2246 SmallVector<uint32_t, 4> Weights; 2247 for (auto Prob : BBSuccProbs) 2248 Weights.push_back(Prob.getNumerator()); 2249 2250 auto TI = BB->getTerminator(); 2251 TI->setMetadata( 2252 LLVMContext::MD_prof, 2253 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2254 } 2255 } 2256 2257 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2258 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2259 /// If we can duplicate the contents of BB up into PredBB do so now, this 2260 /// improves the odds that the branch will be on an analyzable instruction like 2261 /// a compare. 2262 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2263 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2264 assert(!PredBBs.empty() && "Can't handle an empty set"); 2265 2266 // If BB is a loop header, then duplicating this block outside the loop would 2267 // cause us to transform this into an irreducible loop, don't do this. 2268 // See the comments above FindLoopHeaders for justifications and caveats. 2269 if (LoopHeaders.count(BB)) { 2270 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2271 << "' into predecessor block '" << PredBBs[0]->getName() 2272 << "' - it might create an irreducible loop!\n"); 2273 return false; 2274 } 2275 2276 unsigned DuplicationCost = 2277 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2278 if (DuplicationCost > BBDupThreshold) { 2279 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2280 << "' - Cost is too high: " << DuplicationCost << "\n"); 2281 return false; 2282 } 2283 2284 // And finally, do it! Start by factoring the predecessors if needed. 2285 std::vector<DominatorTree::UpdateType> Updates; 2286 BasicBlock *PredBB; 2287 if (PredBBs.size() == 1) 2288 PredBB = PredBBs[0]; 2289 else { 2290 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2291 << " common predecessors.\n"); 2292 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2293 } 2294 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2295 2296 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2297 // of PredBB. 2298 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2299 << "' into end of '" << PredBB->getName() 2300 << "' to eliminate branch on phi. Cost: " 2301 << DuplicationCost << " block is:" << *BB << "\n"); 2302 2303 // Unless PredBB ends with an unconditional branch, split the edge so that we 2304 // can just clone the bits from BB into the end of the new PredBB. 2305 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2306 2307 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2308 BasicBlock *OldPredBB = PredBB; 2309 PredBB = SplitEdge(OldPredBB, BB); 2310 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2311 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2312 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2313 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2314 } 2315 2316 // We are going to have to map operands from the original BB block into the 2317 // PredBB block. Evaluate PHI nodes in BB. 2318 DenseMap<Instruction*, Value*> ValueMapping; 2319 2320 BasicBlock::iterator BI = BB->begin(); 2321 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2322 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2323 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2324 // mapping and using it to remap operands in the cloned instructions. 2325 for (; BI != BB->end(); ++BI) { 2326 Instruction *New = BI->clone(); 2327 2328 // Remap operands to patch up intra-block references. 2329 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2330 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2331 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2332 if (I != ValueMapping.end()) 2333 New->setOperand(i, I->second); 2334 } 2335 2336 // If this instruction can be simplified after the operands are updated, 2337 // just use the simplified value instead. This frequently happens due to 2338 // phi translation. 2339 if (Value *IV = SimplifyInstruction( 2340 New, 2341 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2342 ValueMapping[&*BI] = IV; 2343 if (!New->mayHaveSideEffects()) { 2344 New->deleteValue(); 2345 New = nullptr; 2346 } 2347 } else { 2348 ValueMapping[&*BI] = New; 2349 } 2350 if (New) { 2351 // Otherwise, insert the new instruction into the block. 2352 New->setName(BI->getName()); 2353 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2354 // Update Dominance from simplified New instruction operands. 2355 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2356 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2357 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2358 } 2359 } 2360 2361 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2362 // add entries to the PHI nodes for branch from PredBB now. 2363 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2364 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2365 ValueMapping); 2366 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2367 ValueMapping); 2368 2369 // If there were values defined in BB that are used outside the block, then we 2370 // now have to update all uses of the value to use either the original value, 2371 // the cloned value, or some PHI derived value. This can require arbitrary 2372 // PHI insertion, of which we are prepared to do, clean these up now. 2373 SSAUpdater SSAUpdate; 2374 SmallVector<Use*, 16> UsesToRename; 2375 for (Instruction &I : *BB) { 2376 // Scan all uses of this instruction to see if it is used outside of its 2377 // block, and if so, record them in UsesToRename. 2378 for (Use &U : I.uses()) { 2379 Instruction *User = cast<Instruction>(U.getUser()); 2380 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2381 if (UserPN->getIncomingBlock(U) == BB) 2382 continue; 2383 } else if (User->getParent() == BB) 2384 continue; 2385 2386 UsesToRename.push_back(&U); 2387 } 2388 2389 // If there are no uses outside the block, we're done with this instruction. 2390 if (UsesToRename.empty()) 2391 continue; 2392 2393 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2394 2395 // We found a use of I outside of BB. Rename all uses of I that are outside 2396 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2397 // with the two values we know. 2398 SSAUpdate.Initialize(I.getType(), I.getName()); 2399 SSAUpdate.AddAvailableValue(BB, &I); 2400 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2401 2402 while (!UsesToRename.empty()) 2403 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2404 LLVM_DEBUG(dbgs() << "\n"); 2405 } 2406 2407 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2408 // that we nuked. 2409 BB->removePredecessor(PredBB, true); 2410 2411 // Remove the unconditional branch at the end of the PredBB block. 2412 OldPredBranch->eraseFromParent(); 2413 DTU->applyUpdatesPermissive(Updates); 2414 2415 ++NumDupes; 2416 return true; 2417 } 2418 2419 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2420 // a Select instruction in Pred. BB has other predecessors and SI is used in 2421 // a PHI node in BB. SI has no other use. 2422 // A new basic block, NewBB, is created and SI is converted to compare and 2423 // conditional branch. SI is erased from parent. 2424 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2425 SelectInst *SI, PHINode *SIUse, 2426 unsigned Idx) { 2427 // Expand the select. 2428 // 2429 // Pred -- 2430 // | v 2431 // | NewBB 2432 // | | 2433 // |----- 2434 // v 2435 // BB 2436 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2437 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2438 BB->getParent(), BB); 2439 // Move the unconditional branch to NewBB. 2440 PredTerm->removeFromParent(); 2441 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2442 // Create a conditional branch and update PHI nodes. 2443 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2444 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2445 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2446 2447 // The select is now dead. 2448 SI->eraseFromParent(); 2449 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2450 {DominatorTree::Insert, Pred, NewBB}}); 2451 2452 // Update any other PHI nodes in BB. 2453 for (BasicBlock::iterator BI = BB->begin(); 2454 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2455 if (Phi != SIUse) 2456 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2457 } 2458 2459 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2460 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2461 2462 if (!CondPHI || CondPHI->getParent() != BB) 2463 return false; 2464 2465 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2466 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2467 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2468 2469 // The second and third condition can be potentially relaxed. Currently 2470 // the conditions help to simplify the code and allow us to reuse existing 2471 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2472 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2473 continue; 2474 2475 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2476 if (!PredTerm || !PredTerm->isUnconditional()) 2477 continue; 2478 2479 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2480 return true; 2481 } 2482 return false; 2483 } 2484 2485 /// TryToUnfoldSelect - Look for blocks of the form 2486 /// bb1: 2487 /// %a = select 2488 /// br bb2 2489 /// 2490 /// bb2: 2491 /// %p = phi [%a, %bb1] ... 2492 /// %c = icmp %p 2493 /// br i1 %c 2494 /// 2495 /// And expand the select into a branch structure if one of its arms allows %c 2496 /// to be folded. This later enables threading from bb1 over bb2. 2497 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2498 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2499 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2500 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2501 2502 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2503 CondLHS->getParent() != BB) 2504 return false; 2505 2506 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2507 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2508 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2509 2510 // Look if one of the incoming values is a select in the corresponding 2511 // predecessor. 2512 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2513 continue; 2514 2515 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2516 if (!PredTerm || !PredTerm->isUnconditional()) 2517 continue; 2518 2519 // Now check if one of the select values would allow us to constant fold the 2520 // terminator in BB. We don't do the transform if both sides fold, those 2521 // cases will be threaded in any case. 2522 if (DTU->hasPendingDomTreeUpdates()) 2523 LVI->disableDT(); 2524 else 2525 LVI->enableDT(); 2526 LazyValueInfo::Tristate LHSFolds = 2527 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2528 CondRHS, Pred, BB, CondCmp); 2529 LazyValueInfo::Tristate RHSFolds = 2530 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2531 CondRHS, Pred, BB, CondCmp); 2532 if ((LHSFolds != LazyValueInfo::Unknown || 2533 RHSFolds != LazyValueInfo::Unknown) && 2534 LHSFolds != RHSFolds) { 2535 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2536 return true; 2537 } 2538 } 2539 return false; 2540 } 2541 2542 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2543 /// same BB in the form 2544 /// bb: 2545 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2546 /// %s = select %p, trueval, falseval 2547 /// 2548 /// or 2549 /// 2550 /// bb: 2551 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2552 /// %c = cmp %p, 0 2553 /// %s = select %c, trueval, falseval 2554 /// 2555 /// And expand the select into a branch structure. This later enables 2556 /// jump-threading over bb in this pass. 2557 /// 2558 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2559 /// select if the associated PHI has at least one constant. If the unfolded 2560 /// select is not jump-threaded, it will be folded again in the later 2561 /// optimizations. 2562 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2563 // If threading this would thread across a loop header, don't thread the edge. 2564 // See the comments above FindLoopHeaders for justifications and caveats. 2565 if (LoopHeaders.count(BB)) 2566 return false; 2567 2568 for (BasicBlock::iterator BI = BB->begin(); 2569 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2570 // Look for a Phi having at least one constant incoming value. 2571 if (llvm::all_of(PN->incoming_values(), 2572 [](Value *V) { return !isa<ConstantInt>(V); })) 2573 continue; 2574 2575 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2576 // Check if SI is in BB and use V as condition. 2577 if (SI->getParent() != BB) 2578 return false; 2579 Value *Cond = SI->getCondition(); 2580 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2581 }; 2582 2583 SelectInst *SI = nullptr; 2584 for (Use &U : PN->uses()) { 2585 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2586 // Look for a ICmp in BB that compares PN with a constant and is the 2587 // condition of a Select. 2588 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2589 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2590 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2591 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2592 SI = SelectI; 2593 break; 2594 } 2595 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2596 // Look for a Select in BB that uses PN as condition. 2597 if (isUnfoldCandidate(SelectI, U.get())) { 2598 SI = SelectI; 2599 break; 2600 } 2601 } 2602 } 2603 2604 if (!SI) 2605 continue; 2606 // Expand the select. 2607 Instruction *Term = 2608 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2609 BasicBlock *SplitBB = SI->getParent(); 2610 BasicBlock *NewBB = Term->getParent(); 2611 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2612 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2613 NewPN->addIncoming(SI->getFalseValue(), BB); 2614 SI->replaceAllUsesWith(NewPN); 2615 SI->eraseFromParent(); 2616 // NewBB and SplitBB are newly created blocks which require insertion. 2617 std::vector<DominatorTree::UpdateType> Updates; 2618 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2619 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2620 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2621 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2622 // BB's successors were moved to SplitBB, update DTU accordingly. 2623 for (auto *Succ : successors(SplitBB)) { 2624 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2625 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2626 } 2627 DTU->applyUpdatesPermissive(Updates); 2628 return true; 2629 } 2630 return false; 2631 } 2632 2633 /// Try to propagate a guard from the current BB into one of its predecessors 2634 /// in case if another branch of execution implies that the condition of this 2635 /// guard is always true. Currently we only process the simplest case that 2636 /// looks like: 2637 /// 2638 /// Start: 2639 /// %cond = ... 2640 /// br i1 %cond, label %T1, label %F1 2641 /// T1: 2642 /// br label %Merge 2643 /// F1: 2644 /// br label %Merge 2645 /// Merge: 2646 /// %condGuard = ... 2647 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2648 /// 2649 /// And cond either implies condGuard or !condGuard. In this case all the 2650 /// instructions before the guard can be duplicated in both branches, and the 2651 /// guard is then threaded to one of them. 2652 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2653 using namespace PatternMatch; 2654 2655 // We only want to deal with two predecessors. 2656 BasicBlock *Pred1, *Pred2; 2657 auto PI = pred_begin(BB), PE = pred_end(BB); 2658 if (PI == PE) 2659 return false; 2660 Pred1 = *PI++; 2661 if (PI == PE) 2662 return false; 2663 Pred2 = *PI++; 2664 if (PI != PE) 2665 return false; 2666 if (Pred1 == Pred2) 2667 return false; 2668 2669 // Try to thread one of the guards of the block. 2670 // TODO: Look up deeper than to immediate predecessor? 2671 auto *Parent = Pred1->getSinglePredecessor(); 2672 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2673 return false; 2674 2675 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2676 for (auto &I : *BB) 2677 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2678 return true; 2679 2680 return false; 2681 } 2682 2683 /// Try to propagate the guard from BB which is the lower block of a diamond 2684 /// to one of its branches, in case if diamond's condition implies guard's 2685 /// condition. 2686 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2687 BranchInst *BI) { 2688 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2689 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2690 Value *GuardCond = Guard->getArgOperand(0); 2691 Value *BranchCond = BI->getCondition(); 2692 BasicBlock *TrueDest = BI->getSuccessor(0); 2693 BasicBlock *FalseDest = BI->getSuccessor(1); 2694 2695 auto &DL = BB->getModule()->getDataLayout(); 2696 bool TrueDestIsSafe = false; 2697 bool FalseDestIsSafe = false; 2698 2699 // True dest is safe if BranchCond => GuardCond. 2700 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2701 if (Impl && *Impl) 2702 TrueDestIsSafe = true; 2703 else { 2704 // False dest is safe if !BranchCond => GuardCond. 2705 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2706 if (Impl && *Impl) 2707 FalseDestIsSafe = true; 2708 } 2709 2710 if (!TrueDestIsSafe && !FalseDestIsSafe) 2711 return false; 2712 2713 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2714 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2715 2716 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2717 Instruction *AfterGuard = Guard->getNextNode(); 2718 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2719 if (Cost > BBDupThreshold) 2720 return false; 2721 // Duplicate all instructions before the guard and the guard itself to the 2722 // branch where implication is not proved. 2723 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2724 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2725 assert(GuardedBlock && "Could not create the guarded block?"); 2726 // Duplicate all instructions before the guard in the unguarded branch. 2727 // Since we have successfully duplicated the guarded block and this block 2728 // has fewer instructions, we expect it to succeed. 2729 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2730 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2731 assert(UnguardedBlock && "Could not create the unguarded block?"); 2732 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2733 << GuardedBlock->getName() << "\n"); 2734 // Some instructions before the guard may still have uses. For them, we need 2735 // to create Phi nodes merging their copies in both guarded and unguarded 2736 // branches. Those instructions that have no uses can be just removed. 2737 SmallVector<Instruction *, 4> ToRemove; 2738 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2739 if (!isa<PHINode>(&*BI)) 2740 ToRemove.push_back(&*BI); 2741 2742 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2743 assert(InsertionPoint && "Empty block?"); 2744 // Substitute with Phis & remove. 2745 for (auto *Inst : reverse(ToRemove)) { 2746 if (!Inst->use_empty()) { 2747 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2748 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2749 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2750 NewPN->insertBefore(InsertionPoint); 2751 Inst->replaceAllUsesWith(NewPN); 2752 } 2753 Inst->eraseFromParent(); 2754 } 2755 return true; 2756 } 2757