xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/Scalar/JumpThreading.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements the Jump Threading pass.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "llvm/Transforms/Scalar/JumpThreading.h"
140b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
150b57cec5SDimitry Andric #include "llvm/ADT/DenseSet.h"
165ffd83dbSDimitry Andric #include "llvm/ADT/MapVector.h"
170b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
180b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
190b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
200b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
220b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h"
230b57cec5SDimitry Andric #include "llvm/Analysis/BranchProbabilityInfo.h"
240b57cec5SDimitry Andric #include "llvm/Analysis/CFG.h"
250b57cec5SDimitry Andric #include "llvm/Analysis/ConstantFolding.h"
260b57cec5SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h"
270b57cec5SDimitry Andric #include "llvm/Analysis/GuardUtils.h"
280b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
290b57cec5SDimitry Andric #include "llvm/Analysis/LazyValueInfo.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/Loads.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h"
32fe6060f1SDimitry Andric #include "llvm/Analysis/MemoryLocation.h"
3306c3fb27SDimitry Andric #include "llvm/Analysis/PostDominators.h"
340b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h"
35e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
360b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
370b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
380b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
390b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
400b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h"
410b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
420b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
4306c3fb27SDimitry Andric #include "llvm/IR/DebugInfo.h"
440b57cec5SDimitry Andric #include "llvm/IR/Dominators.h"
450b57cec5SDimitry Andric #include "llvm/IR/Function.h"
460b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
470b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
480b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
490b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
500b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
510b57cec5SDimitry Andric #include "llvm/IR/LLVMContext.h"
520b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
530b57cec5SDimitry Andric #include "llvm/IR/Metadata.h"
540b57cec5SDimitry Andric #include "llvm/IR/Module.h"
550b57cec5SDimitry Andric #include "llvm/IR/PassManager.h"
560b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h"
57bdd1243dSDimitry Andric #include "llvm/IR/ProfDataUtils.h"
580b57cec5SDimitry Andric #include "llvm/IR/Type.h"
590b57cec5SDimitry Andric #include "llvm/IR/Use.h"
600b57cec5SDimitry Andric #include "llvm/IR/Value.h"
610b57cec5SDimitry Andric #include "llvm/Support/BlockFrequency.h"
620b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h"
630b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
640b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
650b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
660b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
670b57cec5SDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
680b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Cloning.h"
690b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
700b57cec5SDimitry Andric #include "llvm/Transforms/Utils/SSAUpdater.h"
710b57cec5SDimitry Andric #include "llvm/Transforms/Utils/ValueMapper.h"
720b57cec5SDimitry Andric #include <algorithm>
730b57cec5SDimitry Andric #include <cassert>
740b57cec5SDimitry Andric #include <cstdint>
750b57cec5SDimitry Andric #include <iterator>
760b57cec5SDimitry Andric #include <memory>
770b57cec5SDimitry Andric #include <utility>
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric using namespace llvm;
800b57cec5SDimitry Andric using namespace jumpthreading;
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric #define DEBUG_TYPE "jump-threading"
830b57cec5SDimitry Andric 
840b57cec5SDimitry Andric STATISTIC(NumThreads, "Number of jumps threaded");
850b57cec5SDimitry Andric STATISTIC(NumFolds,   "Number of terminators folded");
860b57cec5SDimitry Andric STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
870b57cec5SDimitry Andric 
880b57cec5SDimitry Andric static cl::opt<unsigned>
890b57cec5SDimitry Andric BBDuplicateThreshold("jump-threading-threshold",
900b57cec5SDimitry Andric           cl::desc("Max block size to duplicate for jump threading"),
910b57cec5SDimitry Andric           cl::init(6), cl::Hidden);
920b57cec5SDimitry Andric 
930b57cec5SDimitry Andric static cl::opt<unsigned>
940b57cec5SDimitry Andric ImplicationSearchThreshold(
950b57cec5SDimitry Andric   "jump-threading-implication-search-threshold",
960b57cec5SDimitry Andric   cl::desc("The number of predecessors to search for a stronger "
970b57cec5SDimitry Andric            "condition to use to thread over a weaker condition"),
980b57cec5SDimitry Andric   cl::init(3), cl::Hidden);
990b57cec5SDimitry Andric 
100bdd1243dSDimitry Andric static cl::opt<unsigned> PhiDuplicateThreshold(
101bdd1243dSDimitry Andric     "jump-threading-phi-threshold",
102bdd1243dSDimitry Andric     cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103bdd1243dSDimitry Andric     cl::Hidden);
104bdd1243dSDimitry Andric 
1050b57cec5SDimitry Andric static cl::opt<bool> ThreadAcrossLoopHeaders(
1060b57cec5SDimitry Andric     "jump-threading-across-loop-headers",
1070b57cec5SDimitry Andric     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
1080b57cec5SDimitry Andric     cl::init(false), cl::Hidden);
1090b57cec5SDimitry Andric 
11081ad6265SDimitry Andric JumpThreadingPass::JumpThreadingPass(int T) {
1115ffd83dbSDimitry Andric   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
1120b57cec5SDimitry Andric }
1130b57cec5SDimitry Andric 
1140b57cec5SDimitry Andric // Update branch probability information according to conditional
1150b57cec5SDimitry Andric // branch probability. This is usually made possible for cloned branches
1160b57cec5SDimitry Andric // in inline instances by the context specific profile in the caller.
1170b57cec5SDimitry Andric // For instance,
1180b57cec5SDimitry Andric //
1190b57cec5SDimitry Andric //  [Block PredBB]
1200b57cec5SDimitry Andric //  [Branch PredBr]
1210b57cec5SDimitry Andric //  if (t) {
1220b57cec5SDimitry Andric //     Block A;
1230b57cec5SDimitry Andric //  } else {
1240b57cec5SDimitry Andric //     Block B;
1250b57cec5SDimitry Andric //  }
1260b57cec5SDimitry Andric //
1270b57cec5SDimitry Andric //  [Block BB]
1280b57cec5SDimitry Andric //  cond = PN([true, %A], [..., %B]); // PHI node
1290b57cec5SDimitry Andric //  [Branch CondBr]
1300b57cec5SDimitry Andric //  if (cond) {
1310b57cec5SDimitry Andric //    ...  // P(cond == true) = 1%
1320b57cec5SDimitry Andric //  }
1330b57cec5SDimitry Andric //
1340b57cec5SDimitry Andric //  Here we know that when block A is taken, cond must be true, which means
1350b57cec5SDimitry Andric //      P(cond == true | A) = 1
1360b57cec5SDimitry Andric //
1370b57cec5SDimitry Andric //  Given that P(cond == true) = P(cond == true | A) * P(A) +
1380b57cec5SDimitry Andric //                               P(cond == true | B) * P(B)
1390b57cec5SDimitry Andric //  we get:
1400b57cec5SDimitry Andric //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
1410b57cec5SDimitry Andric //
1420b57cec5SDimitry Andric //  which gives us:
1430b57cec5SDimitry Andric //     P(A) is less than P(cond == true), i.e.
1440b57cec5SDimitry Andric //     P(t == true) <= P(cond == true)
1450b57cec5SDimitry Andric //
1460b57cec5SDimitry Andric //  In other words, if we know P(cond == true) is unlikely, we know
1470b57cec5SDimitry Andric //  that P(t == true) is also unlikely.
1480b57cec5SDimitry Andric //
1490b57cec5SDimitry Andric static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
1500b57cec5SDimitry Andric   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1510b57cec5SDimitry Andric   if (!CondBr)
1520b57cec5SDimitry Andric     return;
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric   uint64_t TrueWeight, FalseWeight;
155bdd1243dSDimitry Andric   if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
1560b57cec5SDimitry Andric     return;
1570b57cec5SDimitry Andric 
1585ffd83dbSDimitry Andric   if (TrueWeight + FalseWeight == 0)
1595ffd83dbSDimitry Andric     // Zero branch_weights do not give a hint for getting branch probabilities.
1605ffd83dbSDimitry Andric     // Technically it would result in division by zero denominator, which is
1615ffd83dbSDimitry Andric     // TrueWeight + FalseWeight.
1625ffd83dbSDimitry Andric     return;
1635ffd83dbSDimitry Andric 
1640b57cec5SDimitry Andric   // Returns the outgoing edge of the dominating predecessor block
1650b57cec5SDimitry Andric   // that leads to the PhiNode's incoming block:
1660b57cec5SDimitry Andric   auto GetPredOutEdge =
1670b57cec5SDimitry Andric       [](BasicBlock *IncomingBB,
1680b57cec5SDimitry Andric          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
1690b57cec5SDimitry Andric     auto *PredBB = IncomingBB;
1700b57cec5SDimitry Andric     auto *SuccBB = PhiBB;
1718bcb0991SDimitry Andric     SmallPtrSet<BasicBlock *, 16> Visited;
1720b57cec5SDimitry Andric     while (true) {
1730b57cec5SDimitry Andric       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
1740b57cec5SDimitry Andric       if (PredBr && PredBr->isConditional())
1750b57cec5SDimitry Andric         return {PredBB, SuccBB};
1768bcb0991SDimitry Andric       Visited.insert(PredBB);
1770b57cec5SDimitry Andric       auto *SinglePredBB = PredBB->getSinglePredecessor();
1780b57cec5SDimitry Andric       if (!SinglePredBB)
1790b57cec5SDimitry Andric         return {nullptr, nullptr};
1808bcb0991SDimitry Andric 
1818bcb0991SDimitry Andric       // Stop searching when SinglePredBB has been visited. It means we see
1828bcb0991SDimitry Andric       // an unreachable loop.
1838bcb0991SDimitry Andric       if (Visited.count(SinglePredBB))
1848bcb0991SDimitry Andric         return {nullptr, nullptr};
1858bcb0991SDimitry Andric 
1860b57cec5SDimitry Andric       SuccBB = PredBB;
1870b57cec5SDimitry Andric       PredBB = SinglePredBB;
1880b57cec5SDimitry Andric     }
1890b57cec5SDimitry Andric   };
1900b57cec5SDimitry Andric 
1910b57cec5SDimitry Andric   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1920b57cec5SDimitry Andric     Value *PhiOpnd = PN->getIncomingValue(i);
1930b57cec5SDimitry Andric     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric     if (!CI || !CI->getType()->isIntegerTy(1))
1960b57cec5SDimitry Andric       continue;
1970b57cec5SDimitry Andric 
1985ffd83dbSDimitry Andric     BranchProbability BP =
1995ffd83dbSDimitry Andric         (CI->isOne() ? BranchProbability::getBranchProbability(
2000b57cec5SDimitry Andric                            TrueWeight, TrueWeight + FalseWeight)
2010b57cec5SDimitry Andric                      : BranchProbability::getBranchProbability(
2020b57cec5SDimitry Andric                            FalseWeight, TrueWeight + FalseWeight));
2030b57cec5SDimitry Andric 
2040b57cec5SDimitry Andric     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
2050b57cec5SDimitry Andric     if (!PredOutEdge.first)
2060b57cec5SDimitry Andric       return;
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric     BasicBlock *PredBB = PredOutEdge.first;
2098bcb0991SDimitry Andric     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
2108bcb0991SDimitry Andric     if (!PredBr)
2118bcb0991SDimitry Andric       return;
2120b57cec5SDimitry Andric 
2130b57cec5SDimitry Andric     uint64_t PredTrueWeight, PredFalseWeight;
2140b57cec5SDimitry Andric     // FIXME: We currently only set the profile data when it is missing.
2150b57cec5SDimitry Andric     // With PGO, this can be used to refine even existing profile data with
2160b57cec5SDimitry Andric     // context information. This needs to be done after more performance
2170b57cec5SDimitry Andric     // testing.
218bdd1243dSDimitry Andric     if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
2190b57cec5SDimitry Andric       continue;
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric     // We can not infer anything useful when BP >= 50%, because BP is the
2220b57cec5SDimitry Andric     // upper bound probability value.
2230b57cec5SDimitry Andric     if (BP >= BranchProbability(50, 100))
2240b57cec5SDimitry Andric       continue;
2250b57cec5SDimitry Andric 
2265f757f3fSDimitry Andric     uint32_t Weights[2];
2270b57cec5SDimitry Andric     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
2285f757f3fSDimitry Andric       Weights[0] = BP.getNumerator();
2295f757f3fSDimitry Andric       Weights[1] = BP.getCompl().getNumerator();
2300b57cec5SDimitry Andric     } else {
2315f757f3fSDimitry Andric       Weights[0] = BP.getCompl().getNumerator();
2325f757f3fSDimitry Andric       Weights[1] = BP.getNumerator();
2330b57cec5SDimitry Andric     }
234*0fca6ea1SDimitry Andric     setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
2350b57cec5SDimitry Andric   }
2360b57cec5SDimitry Andric }
2370b57cec5SDimitry Andric 
2380b57cec5SDimitry Andric PreservedAnalyses JumpThreadingPass::run(Function &F,
2390b57cec5SDimitry Andric                                          FunctionAnalysisManager &AM) {
240e8d8bef9SDimitry Andric   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
241e8d8bef9SDimitry Andric   // Jump Threading has no sense for the targets with divergent CF
24206c3fb27SDimitry Andric   if (TTI.hasBranchDivergence(&F))
243e8d8bef9SDimitry Andric     return PreservedAnalyses::all();
2440b57cec5SDimitry Andric   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
2450b57cec5SDimitry Andric   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
2460b57cec5SDimitry Andric   auto &AA = AM.getResult<AAManager>(F);
24706c3fb27SDimitry Andric   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2480b57cec5SDimitry Andric 
24906c3fb27SDimitry Andric   bool Changed =
25006c3fb27SDimitry Andric       runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
25106c3fb27SDimitry Andric               std::make_unique<DomTreeUpdater>(
25206c3fb27SDimitry Andric                   &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
25306c3fb27SDimitry Andric               std::nullopt, std::nullopt);
2540b57cec5SDimitry Andric 
2550b57cec5SDimitry Andric   if (!Changed)
2560b57cec5SDimitry Andric     return PreservedAnalyses::all();
25706c3fb27SDimitry Andric 
25806c3fb27SDimitry Andric 
25906c3fb27SDimitry Andric   getDomTreeUpdater()->flush();
26006c3fb27SDimitry Andric 
26106c3fb27SDimitry Andric #if defined(EXPENSIVE_CHECKS)
26206c3fb27SDimitry Andric   assert(getDomTreeUpdater()->getDomTree().verify(
26306c3fb27SDimitry Andric              DominatorTree::VerificationLevel::Full) &&
26406c3fb27SDimitry Andric          "DT broken after JumpThreading");
26506c3fb27SDimitry Andric   assert((!getDomTreeUpdater()->hasPostDomTree() ||
26606c3fb27SDimitry Andric           getDomTreeUpdater()->getPostDomTree().verify(
26706c3fb27SDimitry Andric               PostDominatorTree::VerificationLevel::Full)) &&
26806c3fb27SDimitry Andric          "PDT broken after JumpThreading");
26906c3fb27SDimitry Andric #else
27006c3fb27SDimitry Andric   assert(getDomTreeUpdater()->getDomTree().verify(
27106c3fb27SDimitry Andric              DominatorTree::VerificationLevel::Fast) &&
27206c3fb27SDimitry Andric          "DT broken after JumpThreading");
27306c3fb27SDimitry Andric   assert((!getDomTreeUpdater()->hasPostDomTree() ||
27406c3fb27SDimitry Andric           getDomTreeUpdater()->getPostDomTree().verify(
27506c3fb27SDimitry Andric               PostDominatorTree::VerificationLevel::Fast)) &&
27606c3fb27SDimitry Andric          "PDT broken after JumpThreading");
27706c3fb27SDimitry Andric #endif
27806c3fb27SDimitry Andric 
27906c3fb27SDimitry Andric   return getPreservedAnalysis();
2800b57cec5SDimitry Andric }
2810b57cec5SDimitry Andric 
28206c3fb27SDimitry Andric bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
28306c3fb27SDimitry Andric                                 TargetLibraryInfo *TLI_,
284349cc55cSDimitry Andric                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
28506c3fb27SDimitry Andric                                 AliasAnalysis *AA_,
28606c3fb27SDimitry Andric                                 std::unique_ptr<DomTreeUpdater> DTU_,
28706c3fb27SDimitry Andric                                 std::optional<BlockFrequencyInfo *> BFI_,
28806c3fb27SDimitry Andric                                 std::optional<BranchProbabilityInfo *> BPI_) {
28906c3fb27SDimitry Andric   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
29006c3fb27SDimitry Andric   F = &F_;
29106c3fb27SDimitry Andric   FAM = FAM_;
2920b57cec5SDimitry Andric   TLI = TLI_;
293349cc55cSDimitry Andric   TTI = TTI_;
2940b57cec5SDimitry Andric   LVI = LVI_;
2950b57cec5SDimitry Andric   AA = AA_;
29606c3fb27SDimitry Andric   DTU = std::move(DTU_);
29706c3fb27SDimitry Andric   BFI = BFI_;
29806c3fb27SDimitry Andric   BPI = BPI_;
29906c3fb27SDimitry Andric   auto *GuardDecl = F->getParent()->getFunction(
3000b57cec5SDimitry Andric       Intrinsic::getName(Intrinsic::experimental_guard));
3010b57cec5SDimitry Andric   HasGuards = GuardDecl && !GuardDecl->use_empty();
3020b57cec5SDimitry Andric 
3035ffd83dbSDimitry Andric   // Reduce the number of instructions duplicated when optimizing strictly for
3045ffd83dbSDimitry Andric   // size.
3055ffd83dbSDimitry Andric   if (BBDuplicateThreshold.getNumOccurrences())
3065ffd83dbSDimitry Andric     BBDupThreshold = BBDuplicateThreshold;
30706c3fb27SDimitry Andric   else if (F->hasFnAttribute(Attribute::MinSize))
3085ffd83dbSDimitry Andric     BBDupThreshold = 3;
3095ffd83dbSDimitry Andric   else
3105ffd83dbSDimitry Andric     BBDupThreshold = DefaultBBDupThreshold;
3115ffd83dbSDimitry Andric 
3120b57cec5SDimitry Andric   // JumpThreading must not processes blocks unreachable from entry. It's a
3130b57cec5SDimitry Andric   // waste of compute time and can potentially lead to hangs.
3140b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 16> Unreachable;
3150b57cec5SDimitry Andric   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
3160b57cec5SDimitry Andric   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
3170b57cec5SDimitry Andric   DominatorTree &DT = DTU->getDomTree();
31806c3fb27SDimitry Andric   for (auto &BB : *F)
3190b57cec5SDimitry Andric     if (!DT.isReachableFromEntry(&BB))
3200b57cec5SDimitry Andric       Unreachable.insert(&BB);
3210b57cec5SDimitry Andric 
3220b57cec5SDimitry Andric   if (!ThreadAcrossLoopHeaders)
32306c3fb27SDimitry Andric     findLoopHeaders(*F);
3240b57cec5SDimitry Andric 
3250b57cec5SDimitry Andric   bool EverChanged = false;
3260b57cec5SDimitry Andric   bool Changed;
3270b57cec5SDimitry Andric   do {
3280b57cec5SDimitry Andric     Changed = false;
32906c3fb27SDimitry Andric     for (auto &BB : *F) {
3300b57cec5SDimitry Andric       if (Unreachable.count(&BB))
3310b57cec5SDimitry Andric         continue;
332e8d8bef9SDimitry Andric       while (processBlock(&BB)) // Thread all of the branches we can over BB.
33306c3fb27SDimitry Andric         Changed = ChangedSinceLastAnalysisUpdate = true;
3345ffd83dbSDimitry Andric 
3355ffd83dbSDimitry Andric       // Jump threading may have introduced redundant debug values into BB
3365ffd83dbSDimitry Andric       // which should be removed.
3375ffd83dbSDimitry Andric       if (Changed)
3385ffd83dbSDimitry Andric         RemoveRedundantDbgInstrs(&BB);
3395ffd83dbSDimitry Andric 
3400b57cec5SDimitry Andric       // Stop processing BB if it's the entry or is now deleted. The following
3410b57cec5SDimitry Andric       // routines attempt to eliminate BB and locating a suitable replacement
3420b57cec5SDimitry Andric       // for the entry is non-trivial.
34306c3fb27SDimitry Andric       if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
3440b57cec5SDimitry Andric         continue;
3450b57cec5SDimitry Andric 
3460b57cec5SDimitry Andric       if (pred_empty(&BB)) {
347e8d8bef9SDimitry Andric         // When processBlock makes BB unreachable it doesn't bother to fix up
3480b57cec5SDimitry Andric         // the instructions in it. We must remove BB to prevent invalid IR.
3490b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
3500b57cec5SDimitry Andric                           << "' with terminator: " << *BB.getTerminator()
3510b57cec5SDimitry Andric                           << '\n');
3520b57cec5SDimitry Andric         LoopHeaders.erase(&BB);
3530b57cec5SDimitry Andric         LVI->eraseBlock(&BB);
35406c3fb27SDimitry Andric         DeleteDeadBlock(&BB, DTU.get());
35506c3fb27SDimitry Andric         Changed = ChangedSinceLastAnalysisUpdate = true;
3560b57cec5SDimitry Andric         continue;
3570b57cec5SDimitry Andric       }
3580b57cec5SDimitry Andric 
359e8d8bef9SDimitry Andric       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
3600b57cec5SDimitry Andric       // is "almost empty", we attempt to merge BB with its sole successor.
3610b57cec5SDimitry Andric       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
3625ffd83dbSDimitry Andric       if (BI && BI->isUnconditional()) {
3635ffd83dbSDimitry Andric         BasicBlock *Succ = BI->getSuccessor(0);
3645ffd83dbSDimitry Andric         if (
3650b57cec5SDimitry Andric             // The terminator must be the only non-phi instruction in BB.
366fe6060f1SDimitry Andric             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
3670b57cec5SDimitry Andric             // Don't alter Loop headers and latches to ensure another pass can
3680b57cec5SDimitry Andric             // detect and transform nested loops later.
3695ffd83dbSDimitry Andric             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
37006c3fb27SDimitry Andric             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
3715ffd83dbSDimitry Andric           RemoveRedundantDbgInstrs(Succ);
3720b57cec5SDimitry Andric           // BB is valid for cleanup here because we passed in DTU. F remains
3730b57cec5SDimitry Andric           // BB's parent until a DTU->getDomTree() event.
3740b57cec5SDimitry Andric           LVI->eraseBlock(&BB);
37506c3fb27SDimitry Andric           Changed = ChangedSinceLastAnalysisUpdate = true;
3760b57cec5SDimitry Andric         }
3770b57cec5SDimitry Andric       }
3785ffd83dbSDimitry Andric     }
3790b57cec5SDimitry Andric     EverChanged |= Changed;
3800b57cec5SDimitry Andric   } while (Changed);
3810b57cec5SDimitry Andric 
3820b57cec5SDimitry Andric   LoopHeaders.clear();
3830b57cec5SDimitry Andric   return EverChanged;
3840b57cec5SDimitry Andric }
3850b57cec5SDimitry Andric 
3860b57cec5SDimitry Andric // Replace uses of Cond with ToVal when safe to do so. If all uses are
3870b57cec5SDimitry Andric // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
3880b57cec5SDimitry Andric // because we may incorrectly replace uses when guards/assumes are uses of
3890b57cec5SDimitry Andric // of `Cond` and we used the guards/assume to reason about the `Cond` value
3900b57cec5SDimitry Andric // at the end of block. RAUW unconditionally replaces all uses
3910b57cec5SDimitry Andric // including the guards/assumes themselves and the uses before the
3920b57cec5SDimitry Andric // guard/assume.
39381ad6265SDimitry Andric static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
39481ad6265SDimitry Andric                                 BasicBlock *KnownAtEndOfBB) {
39581ad6265SDimitry Andric   bool Changed = false;
3960b57cec5SDimitry Andric   assert(Cond->getType() == ToVal->getType());
3970b57cec5SDimitry Andric   // We can unconditionally replace all uses in non-local blocks (i.e. uses
3980b57cec5SDimitry Andric   // strictly dominated by BB), since LVI information is true from the
3990b57cec5SDimitry Andric   // terminator of BB.
40081ad6265SDimitry Andric   if (Cond->getParent() == KnownAtEndOfBB)
40181ad6265SDimitry Andric     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
40281ad6265SDimitry Andric   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
4035f757f3fSDimitry Andric     // Replace any debug-info record users of Cond with ToVal.
404*0fca6ea1SDimitry Andric     for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
405*0fca6ea1SDimitry Andric       DVR.replaceVariableLocationOp(Cond, ToVal, true);
4065f757f3fSDimitry Andric 
4070b57cec5SDimitry Andric     // Reached the Cond whose uses we are trying to replace, so there are no
4080b57cec5SDimitry Andric     // more uses.
4090b57cec5SDimitry Andric     if (&I == Cond)
4100b57cec5SDimitry Andric       break;
4110b57cec5SDimitry Andric     // We only replace uses in instructions that are guaranteed to reach the end
4120b57cec5SDimitry Andric     // of BB, where we know Cond is ToVal.
4130b57cec5SDimitry Andric     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4140b57cec5SDimitry Andric       break;
41581ad6265SDimitry Andric     Changed |= I.replaceUsesOfWith(Cond, ToVal);
4160b57cec5SDimitry Andric   }
41781ad6265SDimitry Andric   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
4180b57cec5SDimitry Andric     Cond->eraseFromParent();
41981ad6265SDimitry Andric     Changed = true;
42081ad6265SDimitry Andric   }
42181ad6265SDimitry Andric   return Changed;
4220b57cec5SDimitry Andric }
4230b57cec5SDimitry Andric 
4240b57cec5SDimitry Andric /// Return the cost of duplicating a piece of this block from first non-phi
4250b57cec5SDimitry Andric /// and before StopAt instruction to thread across it. Stop scanning the block
4260b57cec5SDimitry Andric /// when exceeding the threshold. If duplication is impossible, returns ~0U.
427349cc55cSDimitry Andric static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
428349cc55cSDimitry Andric                                              BasicBlock *BB,
4290b57cec5SDimitry Andric                                              Instruction *StopAt,
4300b57cec5SDimitry Andric                                              unsigned Threshold) {
4310b57cec5SDimitry Andric   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
432bdd1243dSDimitry Andric 
433bdd1243dSDimitry Andric   // Do not duplicate the BB if it has a lot of PHI nodes.
434bdd1243dSDimitry Andric   // If a threadable chain is too long then the number of PHI nodes can add up,
435bdd1243dSDimitry Andric   // leading to a substantial increase in compile time when rewriting the SSA.
436bdd1243dSDimitry Andric   unsigned PhiCount = 0;
437bdd1243dSDimitry Andric   Instruction *FirstNonPHI = nullptr;
438bdd1243dSDimitry Andric   for (Instruction &I : *BB) {
439bdd1243dSDimitry Andric     if (!isa<PHINode>(&I)) {
440bdd1243dSDimitry Andric       FirstNonPHI = &I;
441bdd1243dSDimitry Andric       break;
442bdd1243dSDimitry Andric     }
443bdd1243dSDimitry Andric     if (++PhiCount > PhiDuplicateThreshold)
444bdd1243dSDimitry Andric       return ~0U;
445bdd1243dSDimitry Andric   }
446bdd1243dSDimitry Andric 
4470b57cec5SDimitry Andric   /// Ignore PHI nodes, these will be flattened when duplication happens.
448bdd1243dSDimitry Andric   BasicBlock::const_iterator I(FirstNonPHI);
4490b57cec5SDimitry Andric 
4500b57cec5SDimitry Andric   // FIXME: THREADING will delete values that are just used to compute the
4510b57cec5SDimitry Andric   // branch, so they shouldn't count against the duplication cost.
4520b57cec5SDimitry Andric 
4530b57cec5SDimitry Andric   unsigned Bonus = 0;
4540b57cec5SDimitry Andric   if (BB->getTerminator() == StopAt) {
4550b57cec5SDimitry Andric     // Threading through a switch statement is particularly profitable.  If this
4560b57cec5SDimitry Andric     // block ends in a switch, decrease its cost to make it more likely to
4570b57cec5SDimitry Andric     // happen.
4580b57cec5SDimitry Andric     if (isa<SwitchInst>(StopAt))
4590b57cec5SDimitry Andric       Bonus = 6;
4600b57cec5SDimitry Andric 
4610b57cec5SDimitry Andric     // The same holds for indirect branches, but slightly more so.
4620b57cec5SDimitry Andric     if (isa<IndirectBrInst>(StopAt))
4630b57cec5SDimitry Andric       Bonus = 8;
4640b57cec5SDimitry Andric   }
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric   // Bump the threshold up so the early exit from the loop doesn't skip the
4670b57cec5SDimitry Andric   // terminator-based Size adjustment at the end.
4680b57cec5SDimitry Andric   Threshold += Bonus;
4690b57cec5SDimitry Andric 
4700b57cec5SDimitry Andric   // Sum up the cost of each instruction until we get to the terminator.  Don't
4710b57cec5SDimitry Andric   // include the terminator because the copy won't include it.
4720b57cec5SDimitry Andric   unsigned Size = 0;
4730b57cec5SDimitry Andric   for (; &*I != StopAt; ++I) {
4740b57cec5SDimitry Andric 
4750b57cec5SDimitry Andric     // Stop scanning the block if we've reached the threshold.
4760b57cec5SDimitry Andric     if (Size > Threshold)
4770b57cec5SDimitry Andric       return Size;
4780b57cec5SDimitry Andric 
4790b57cec5SDimitry Andric     // Bail out if this instruction gives back a token type, it is not possible
4800b57cec5SDimitry Andric     // to duplicate it if it is used outside this BB.
4810b57cec5SDimitry Andric     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
4820b57cec5SDimitry Andric       return ~0U;
4830b57cec5SDimitry Andric 
484349cc55cSDimitry Andric     // Blocks with NoDuplicate are modelled as having infinite cost, so they
485349cc55cSDimitry Andric     // are never duplicated.
486349cc55cSDimitry Andric     if (const CallInst *CI = dyn_cast<CallInst>(I))
487349cc55cSDimitry Andric       if (CI->cannotDuplicate() || CI->isConvergent())
488349cc55cSDimitry Andric         return ~0U;
489349cc55cSDimitry Andric 
490bdd1243dSDimitry Andric     if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
491bdd1243dSDimitry Andric         TargetTransformInfo::TCC_Free)
492349cc55cSDimitry Andric       continue;
493349cc55cSDimitry Andric 
4940b57cec5SDimitry Andric     // All other instructions count for at least one unit.
4950b57cec5SDimitry Andric     ++Size;
4960b57cec5SDimitry Andric 
4970b57cec5SDimitry Andric     // Calls are more expensive.  If they are non-intrinsic calls, we model them
4980b57cec5SDimitry Andric     // as having cost of 4.  If they are a non-vector intrinsic, we model them
4990b57cec5SDimitry Andric     // as having cost of 2 total, and if they are a vector intrinsic, we model
5000b57cec5SDimitry Andric     // them as having cost 1.
5010b57cec5SDimitry Andric     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
502349cc55cSDimitry Andric       if (!isa<IntrinsicInst>(CI))
5030b57cec5SDimitry Andric         Size += 3;
5040b57cec5SDimitry Andric       else if (!CI->getType()->isVectorTy())
5050b57cec5SDimitry Andric         Size += 1;
5060b57cec5SDimitry Andric     }
5070b57cec5SDimitry Andric   }
5080b57cec5SDimitry Andric 
5090b57cec5SDimitry Andric   return Size > Bonus ? Size - Bonus : 0;
5100b57cec5SDimitry Andric }
5110b57cec5SDimitry Andric 
512e8d8bef9SDimitry Andric /// findLoopHeaders - We do not want jump threading to turn proper loop
5130b57cec5SDimitry Andric /// structures into irreducible loops.  Doing this breaks up the loop nesting
5140b57cec5SDimitry Andric /// hierarchy and pessimizes later transformations.  To prevent this from
5150b57cec5SDimitry Andric /// happening, we first have to find the loop headers.  Here we approximate this
5160b57cec5SDimitry Andric /// by finding targets of backedges in the CFG.
5170b57cec5SDimitry Andric ///
5180b57cec5SDimitry Andric /// Note that there definitely are cases when we want to allow threading of
5190b57cec5SDimitry Andric /// edges across a loop header.  For example, threading a jump from outside the
5200b57cec5SDimitry Andric /// loop (the preheader) to an exit block of the loop is definitely profitable.
5210b57cec5SDimitry Andric /// It is also almost always profitable to thread backedges from within the loop
5220b57cec5SDimitry Andric /// to exit blocks, and is often profitable to thread backedges to other blocks
5230b57cec5SDimitry Andric /// within the loop (forming a nested loop).  This simple analysis is not rich
5240b57cec5SDimitry Andric /// enough to track all of these properties and keep it up-to-date as the CFG
5250b57cec5SDimitry Andric /// mutates, so we don't allow any of these transformations.
526e8d8bef9SDimitry Andric void JumpThreadingPass::findLoopHeaders(Function &F) {
5270b57cec5SDimitry Andric   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
5280b57cec5SDimitry Andric   FindFunctionBackedges(F, Edges);
5290b57cec5SDimitry Andric 
5300b57cec5SDimitry Andric   for (const auto &Edge : Edges)
5310b57cec5SDimitry Andric     LoopHeaders.insert(Edge.second);
5320b57cec5SDimitry Andric }
5330b57cec5SDimitry Andric 
5340b57cec5SDimitry Andric /// getKnownConstant - Helper method to determine if we can thread over a
5350b57cec5SDimitry Andric /// terminator with the given value as its condition, and if so what value to
5360b57cec5SDimitry Andric /// use for that. What kind of value this is depends on whether we want an
5370b57cec5SDimitry Andric /// integer or a block address, but an undef is always accepted.
5380b57cec5SDimitry Andric /// Returns null if Val is null or not an appropriate constant.
5390b57cec5SDimitry Andric static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
5400b57cec5SDimitry Andric   if (!Val)
5410b57cec5SDimitry Andric     return nullptr;
5420b57cec5SDimitry Andric 
5430b57cec5SDimitry Andric   // Undef is "known" enough.
5440b57cec5SDimitry Andric   if (UndefValue *U = dyn_cast<UndefValue>(Val))
5450b57cec5SDimitry Andric     return U;
5460b57cec5SDimitry Andric 
5470b57cec5SDimitry Andric   if (Preference == WantBlockAddress)
5480b57cec5SDimitry Andric     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
5490b57cec5SDimitry Andric 
5500b57cec5SDimitry Andric   return dyn_cast<ConstantInt>(Val);
5510b57cec5SDimitry Andric }
5520b57cec5SDimitry Andric 
553e8d8bef9SDimitry Andric /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
5540b57cec5SDimitry Andric /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
5550b57cec5SDimitry Andric /// in any of our predecessors.  If so, return the known list of value and pred
5560b57cec5SDimitry Andric /// BB in the result vector.
5570b57cec5SDimitry Andric ///
5580b57cec5SDimitry Andric /// This returns true if there were any known values.
559e8d8bef9SDimitry Andric bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
5600b57cec5SDimitry Andric     Value *V, BasicBlock *BB, PredValueInfo &Result,
561*0fca6ea1SDimitry Andric     ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet,
5620b57cec5SDimitry Andric     Instruction *CxtI) {
563*0fca6ea1SDimitry Andric   const DataLayout &DL = BB->getDataLayout();
5645f757f3fSDimitry Andric 
5650b57cec5SDimitry Andric   // This method walks up use-def chains recursively.  Because of this, we could
5660b57cec5SDimitry Andric   // get into an infinite loop going around loops in the use-def chain.  To
5670b57cec5SDimitry Andric   // prevent this, keep track of what (value, block) pairs we've already visited
5680b57cec5SDimitry Andric   // and terminate the search if we loop back to them
5695ffd83dbSDimitry Andric   if (!RecursionSet.insert(V).second)
5700b57cec5SDimitry Andric     return false;
5710b57cec5SDimitry Andric 
5720b57cec5SDimitry Andric   // If V is a constant, then it is known in all predecessors.
5730b57cec5SDimitry Andric   if (Constant *KC = getKnownConstant(V, Preference)) {
5740b57cec5SDimitry Andric     for (BasicBlock *Pred : predecessors(BB))
5755ffd83dbSDimitry Andric       Result.emplace_back(KC, Pred);
5760b57cec5SDimitry Andric 
5770b57cec5SDimitry Andric     return !Result.empty();
5780b57cec5SDimitry Andric   }
5790b57cec5SDimitry Andric 
5800b57cec5SDimitry Andric   // If V is a non-instruction value, or an instruction in a different block,
5810b57cec5SDimitry Andric   // then it can't be derived from a PHI.
5820b57cec5SDimitry Andric   Instruction *I = dyn_cast<Instruction>(V);
5830b57cec5SDimitry Andric   if (!I || I->getParent() != BB) {
5840b57cec5SDimitry Andric 
585bdd1243dSDimitry Andric     // Okay, if this is a live-in value, see if it has a known value at the any
586bdd1243dSDimitry Andric     // edge from our predecessors.
5870b57cec5SDimitry Andric     for (BasicBlock *P : predecessors(BB)) {
588bdd1243dSDimitry Andric       using namespace PatternMatch;
5890b57cec5SDimitry Andric       // If the value is known by LazyValueInfo to be a constant in a
5900b57cec5SDimitry Andric       // predecessor, use that information to try to thread this block.
5910b57cec5SDimitry Andric       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
592bdd1243dSDimitry Andric       // If I is a non-local compare-with-constant instruction, use more-rich
593bdd1243dSDimitry Andric       // 'getPredicateOnEdge' method. This would be able to handle value
594bdd1243dSDimitry Andric       // inequalities better, for example if the compare is "X < 4" and "X < 3"
595bdd1243dSDimitry Andric       // is known true but "X < 4" itself is not available.
596bdd1243dSDimitry Andric       CmpInst::Predicate Pred;
597bdd1243dSDimitry Andric       Value *Val;
598bdd1243dSDimitry Andric       Constant *Cst;
599*0fca6ea1SDimitry Andric       if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst))))
600*0fca6ea1SDimitry Andric         PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
6010b57cec5SDimitry Andric       if (Constant *KC = getKnownConstant(PredCst, Preference))
6025ffd83dbSDimitry Andric         Result.emplace_back(KC, P);
6030b57cec5SDimitry Andric     }
6040b57cec5SDimitry Andric 
6050b57cec5SDimitry Andric     return !Result.empty();
6060b57cec5SDimitry Andric   }
6070b57cec5SDimitry Andric 
6080b57cec5SDimitry Andric   /// If I is a PHI node, then we know the incoming values for any constants.
6090b57cec5SDimitry Andric   if (PHINode *PN = dyn_cast<PHINode>(I)) {
6100b57cec5SDimitry Andric     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6110b57cec5SDimitry Andric       Value *InVal = PN->getIncomingValue(i);
6120b57cec5SDimitry Andric       if (Constant *KC = getKnownConstant(InVal, Preference)) {
6135ffd83dbSDimitry Andric         Result.emplace_back(KC, PN->getIncomingBlock(i));
6140b57cec5SDimitry Andric       } else {
6150b57cec5SDimitry Andric         Constant *CI = LVI->getConstantOnEdge(InVal,
6160b57cec5SDimitry Andric                                               PN->getIncomingBlock(i),
6170b57cec5SDimitry Andric                                               BB, CxtI);
6180b57cec5SDimitry Andric         if (Constant *KC = getKnownConstant(CI, Preference))
6195ffd83dbSDimitry Andric           Result.emplace_back(KC, PN->getIncomingBlock(i));
6200b57cec5SDimitry Andric       }
6210b57cec5SDimitry Andric     }
6220b57cec5SDimitry Andric 
6230b57cec5SDimitry Andric     return !Result.empty();
6240b57cec5SDimitry Andric   }
6250b57cec5SDimitry Andric 
626e8d8bef9SDimitry Andric   // Handle Cast instructions.
6270b57cec5SDimitry Andric   if (CastInst *CI = dyn_cast<CastInst>(I)) {
6280b57cec5SDimitry Andric     Value *Source = CI->getOperand(0);
6295f757f3fSDimitry Andric     PredValueInfoTy Vals;
6305f757f3fSDimitry Andric     computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
6310b57cec5SDimitry Andric                                         RecursionSet, CxtI);
6325f757f3fSDimitry Andric     if (Vals.empty())
6330b57cec5SDimitry Andric       return false;
6340b57cec5SDimitry Andric 
6350b57cec5SDimitry Andric     // Convert the known values.
6365f757f3fSDimitry Andric     for (auto &Val : Vals)
6375f757f3fSDimitry Andric       if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
6385f757f3fSDimitry Andric                                                      CI->getType(), DL))
6395f757f3fSDimitry Andric         Result.emplace_back(Folded, Val.second);
6400b57cec5SDimitry Andric 
6415f757f3fSDimitry Andric     return !Result.empty();
6420b57cec5SDimitry Andric   }
6430b57cec5SDimitry Andric 
644e8d8bef9SDimitry Andric   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
645e8d8bef9SDimitry Andric     Value *Source = FI->getOperand(0);
646e8d8bef9SDimitry Andric     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
647e8d8bef9SDimitry Andric                                         RecursionSet, CxtI);
648e8d8bef9SDimitry Andric 
649e8d8bef9SDimitry Andric     erase_if(Result, [](auto &Pair) {
650e8d8bef9SDimitry Andric       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
651e8d8bef9SDimitry Andric     });
652e8d8bef9SDimitry Andric 
653e8d8bef9SDimitry Andric     return !Result.empty();
654e8d8bef9SDimitry Andric   }
655e8d8bef9SDimitry Andric 
6560b57cec5SDimitry Andric   // Handle some boolean conditions.
6570b57cec5SDimitry Andric   if (I->getType()->getPrimitiveSizeInBits() == 1) {
658fe6060f1SDimitry Andric     using namespace PatternMatch;
65904eeddc0SDimitry Andric     if (Preference != WantInteger)
66004eeddc0SDimitry Andric       return false;
6610b57cec5SDimitry Andric     // X | true -> true
6620b57cec5SDimitry Andric     // X & false -> false
663fe6060f1SDimitry Andric     Value *Op0, *Op1;
664fe6060f1SDimitry Andric     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
665fe6060f1SDimitry Andric         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
6660b57cec5SDimitry Andric       PredValueInfoTy LHSVals, RHSVals;
6670b57cec5SDimitry Andric 
668fe6060f1SDimitry Andric       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
669fe6060f1SDimitry Andric                                           RecursionSet, CxtI);
670fe6060f1SDimitry Andric       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
671fe6060f1SDimitry Andric                                           RecursionSet, CxtI);
6720b57cec5SDimitry Andric 
6730b57cec5SDimitry Andric       if (LHSVals.empty() && RHSVals.empty())
6740b57cec5SDimitry Andric         return false;
6750b57cec5SDimitry Andric 
6760b57cec5SDimitry Andric       ConstantInt *InterestingVal;
677fe6060f1SDimitry Andric       if (match(I, m_LogicalOr()))
6780b57cec5SDimitry Andric         InterestingVal = ConstantInt::getTrue(I->getContext());
6790b57cec5SDimitry Andric       else
6800b57cec5SDimitry Andric         InterestingVal = ConstantInt::getFalse(I->getContext());
6810b57cec5SDimitry Andric 
6820b57cec5SDimitry Andric       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
6830b57cec5SDimitry Andric 
6840b57cec5SDimitry Andric       // Scan for the sentinel.  If we find an undef, force it to the
6850b57cec5SDimitry Andric       // interesting value: x|undef -> true and x&undef -> false.
6860b57cec5SDimitry Andric       for (const auto &LHSVal : LHSVals)
6870b57cec5SDimitry Andric         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
6880b57cec5SDimitry Andric           Result.emplace_back(InterestingVal, LHSVal.second);
6890b57cec5SDimitry Andric           LHSKnownBBs.insert(LHSVal.second);
6900b57cec5SDimitry Andric         }
6910b57cec5SDimitry Andric       for (const auto &RHSVal : RHSVals)
6920b57cec5SDimitry Andric         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
6930b57cec5SDimitry Andric           // If we already inferred a value for this block on the LHS, don't
6940b57cec5SDimitry Andric           // re-add it.
6950b57cec5SDimitry Andric           if (!LHSKnownBBs.count(RHSVal.second))
6960b57cec5SDimitry Andric             Result.emplace_back(InterestingVal, RHSVal.second);
6970b57cec5SDimitry Andric         }
6980b57cec5SDimitry Andric 
6990b57cec5SDimitry Andric       return !Result.empty();
7000b57cec5SDimitry Andric     }
7010b57cec5SDimitry Andric 
7020b57cec5SDimitry Andric     // Handle the NOT form of XOR.
7030b57cec5SDimitry Andric     if (I->getOpcode() == Instruction::Xor &&
7040b57cec5SDimitry Andric         isa<ConstantInt>(I->getOperand(1)) &&
7050b57cec5SDimitry Andric         cast<ConstantInt>(I->getOperand(1))->isOne()) {
706e8d8bef9SDimitry Andric       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
7070b57cec5SDimitry Andric                                           WantInteger, RecursionSet, CxtI);
7080b57cec5SDimitry Andric       if (Result.empty())
7090b57cec5SDimitry Andric         return false;
7100b57cec5SDimitry Andric 
7110b57cec5SDimitry Andric       // Invert the known values.
7120b57cec5SDimitry Andric       for (auto &R : Result)
7130b57cec5SDimitry Andric         R.first = ConstantExpr::getNot(R.first);
7140b57cec5SDimitry Andric 
7150b57cec5SDimitry Andric       return true;
7160b57cec5SDimitry Andric     }
7170b57cec5SDimitry Andric 
7180b57cec5SDimitry Andric   // Try to simplify some other binary operator values.
7190b57cec5SDimitry Andric   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
72004eeddc0SDimitry Andric     if (Preference != WantInteger)
72104eeddc0SDimitry Andric       return false;
7220b57cec5SDimitry Andric     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
7230b57cec5SDimitry Andric       PredValueInfoTy LHSVals;
724e8d8bef9SDimitry Andric       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
7250b57cec5SDimitry Andric                                           WantInteger, RecursionSet, CxtI);
7260b57cec5SDimitry Andric 
7270b57cec5SDimitry Andric       // Try to use constant folding to simplify the binary operator.
7280b57cec5SDimitry Andric       for (const auto &LHSVal : LHSVals) {
7290b57cec5SDimitry Andric         Constant *V = LHSVal.first;
73081ad6265SDimitry Andric         Constant *Folded =
73181ad6265SDimitry Andric             ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
7320b57cec5SDimitry Andric 
7330b57cec5SDimitry Andric         if (Constant *KC = getKnownConstant(Folded, WantInteger))
7345ffd83dbSDimitry Andric           Result.emplace_back(KC, LHSVal.second);
7350b57cec5SDimitry Andric       }
7360b57cec5SDimitry Andric     }
7370b57cec5SDimitry Andric 
7380b57cec5SDimitry Andric     return !Result.empty();
7390b57cec5SDimitry Andric   }
7400b57cec5SDimitry Andric 
7410b57cec5SDimitry Andric   // Handle compare with phi operand, where the PHI is defined in this block.
7420b57cec5SDimitry Andric   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
74304eeddc0SDimitry Andric     if (Preference != WantInteger)
74404eeddc0SDimitry Andric       return false;
7450b57cec5SDimitry Andric     Type *CmpType = Cmp->getType();
7460b57cec5SDimitry Andric     Value *CmpLHS = Cmp->getOperand(0);
7470b57cec5SDimitry Andric     Value *CmpRHS = Cmp->getOperand(1);
7480b57cec5SDimitry Andric     CmpInst::Predicate Pred = Cmp->getPredicate();
7490b57cec5SDimitry Andric 
7500b57cec5SDimitry Andric     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
7510b57cec5SDimitry Andric     if (!PN)
7520b57cec5SDimitry Andric       PN = dyn_cast<PHINode>(CmpRHS);
7535f757f3fSDimitry Andric     // Do not perform phi translation across a loop header phi, because this
7545f757f3fSDimitry Andric     // may result in comparison of values from two different loop iterations.
7555f757f3fSDimitry Andric     // FIXME: This check is broken if LoopHeaders is not populated.
7565f757f3fSDimitry Andric     if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
757*0fca6ea1SDimitry Andric       const DataLayout &DL = PN->getDataLayout();
7580b57cec5SDimitry Andric       // We can do this simplification if any comparisons fold to true or false.
7590b57cec5SDimitry Andric       // See if any do.
7600b57cec5SDimitry Andric       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7610b57cec5SDimitry Andric         BasicBlock *PredBB = PN->getIncomingBlock(i);
7620b57cec5SDimitry Andric         Value *LHS, *RHS;
7630b57cec5SDimitry Andric         if (PN == CmpLHS) {
7640b57cec5SDimitry Andric           LHS = PN->getIncomingValue(i);
7650b57cec5SDimitry Andric           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
7660b57cec5SDimitry Andric         } else {
7670b57cec5SDimitry Andric           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
7680b57cec5SDimitry Andric           RHS = PN->getIncomingValue(i);
7690b57cec5SDimitry Andric         }
77081ad6265SDimitry Andric         Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
7710b57cec5SDimitry Andric         if (!Res) {
7720b57cec5SDimitry Andric           if (!isa<Constant>(RHS))
7730b57cec5SDimitry Andric             continue;
7740b57cec5SDimitry Andric 
7750b57cec5SDimitry Andric           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
7760b57cec5SDimitry Andric           auto LHSInst = dyn_cast<Instruction>(LHS);
7770b57cec5SDimitry Andric           if (LHSInst && LHSInst->getParent() == BB)
7780b57cec5SDimitry Andric             continue;
7790b57cec5SDimitry Andric 
780*0fca6ea1SDimitry Andric           Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB,
781*0fca6ea1SDimitry Andric                                         BB, CxtI ? CxtI : Cmp);
7820b57cec5SDimitry Andric         }
7830b57cec5SDimitry Andric 
7840b57cec5SDimitry Andric         if (Constant *KC = getKnownConstant(Res, WantInteger))
7855ffd83dbSDimitry Andric           Result.emplace_back(KC, PredBB);
7860b57cec5SDimitry Andric       }
7870b57cec5SDimitry Andric 
7880b57cec5SDimitry Andric       return !Result.empty();
7890b57cec5SDimitry Andric     }
7900b57cec5SDimitry Andric 
7910b57cec5SDimitry Andric     // If comparing a live-in value against a constant, see if we know the
7920b57cec5SDimitry Andric     // live-in value on any predecessors.
7930b57cec5SDimitry Andric     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
7940b57cec5SDimitry Andric       Constant *CmpConst = cast<Constant>(CmpRHS);
7950b57cec5SDimitry Andric 
7960b57cec5SDimitry Andric       if (!isa<Instruction>(CmpLHS) ||
7970b57cec5SDimitry Andric           cast<Instruction>(CmpLHS)->getParent() != BB) {
7980b57cec5SDimitry Andric         for (BasicBlock *P : predecessors(BB)) {
7990b57cec5SDimitry Andric           // If the value is known by LazyValueInfo to be a constant in a
8000b57cec5SDimitry Andric           // predecessor, use that information to try to thread this block.
801*0fca6ea1SDimitry Andric           Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB,
802*0fca6ea1SDimitry Andric                                                   CxtI ? CxtI : Cmp);
803*0fca6ea1SDimitry Andric           if (Constant *KC = getKnownConstant(Res, WantInteger))
804*0fca6ea1SDimitry Andric             Result.emplace_back(KC, P);
8050b57cec5SDimitry Andric         }
8060b57cec5SDimitry Andric 
8070b57cec5SDimitry Andric         return !Result.empty();
8080b57cec5SDimitry Andric       }
8090b57cec5SDimitry Andric 
8100b57cec5SDimitry Andric       // InstCombine can fold some forms of constant range checks into
8110b57cec5SDimitry Andric       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
8120b57cec5SDimitry Andric       // x as a live-in.
8130b57cec5SDimitry Andric       {
8140b57cec5SDimitry Andric         using namespace PatternMatch;
8150b57cec5SDimitry Andric 
8160b57cec5SDimitry Andric         Value *AddLHS;
8170b57cec5SDimitry Andric         ConstantInt *AddConst;
8180b57cec5SDimitry Andric         if (isa<ConstantInt>(CmpConst) &&
8190b57cec5SDimitry Andric             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
8200b57cec5SDimitry Andric           if (!isa<Instruction>(AddLHS) ||
8210b57cec5SDimitry Andric               cast<Instruction>(AddLHS)->getParent() != BB) {
8220b57cec5SDimitry Andric             for (BasicBlock *P : predecessors(BB)) {
8230b57cec5SDimitry Andric               // If the value is known by LazyValueInfo to be a ConstantRange in
8240b57cec5SDimitry Andric               // a predecessor, use that information to try to thread this
8250b57cec5SDimitry Andric               // block.
8260b57cec5SDimitry Andric               ConstantRange CR = LVI->getConstantRangeOnEdge(
8270b57cec5SDimitry Andric                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
8280b57cec5SDimitry Andric               // Propagate the range through the addition.
8290b57cec5SDimitry Andric               CR = CR.add(AddConst->getValue());
8300b57cec5SDimitry Andric 
8310b57cec5SDimitry Andric               // Get the range where the compare returns true.
8320b57cec5SDimitry Andric               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
8330b57cec5SDimitry Andric                   Pred, cast<ConstantInt>(CmpConst)->getValue());
8340b57cec5SDimitry Andric 
8350b57cec5SDimitry Andric               Constant *ResC;
8360b57cec5SDimitry Andric               if (CmpRange.contains(CR))
8370b57cec5SDimitry Andric                 ResC = ConstantInt::getTrue(CmpType);
8380b57cec5SDimitry Andric               else if (CmpRange.inverse().contains(CR))
8390b57cec5SDimitry Andric                 ResC = ConstantInt::getFalse(CmpType);
8400b57cec5SDimitry Andric               else
8410b57cec5SDimitry Andric                 continue;
8420b57cec5SDimitry Andric 
8435ffd83dbSDimitry Andric               Result.emplace_back(ResC, P);
8440b57cec5SDimitry Andric             }
8450b57cec5SDimitry Andric 
8460b57cec5SDimitry Andric             return !Result.empty();
8470b57cec5SDimitry Andric           }
8480b57cec5SDimitry Andric         }
8490b57cec5SDimitry Andric       }
8500b57cec5SDimitry Andric 
8510b57cec5SDimitry Andric       // Try to find a constant value for the LHS of a comparison,
8520b57cec5SDimitry Andric       // and evaluate it statically if we can.
8530b57cec5SDimitry Andric       PredValueInfoTy LHSVals;
854e8d8bef9SDimitry Andric       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
8550b57cec5SDimitry Andric                                           WantInteger, RecursionSet, CxtI);
8560b57cec5SDimitry Andric 
8570b57cec5SDimitry Andric       for (const auto &LHSVal : LHSVals) {
8580b57cec5SDimitry Andric         Constant *V = LHSVal.first;
859*0fca6ea1SDimitry Andric         Constant *Folded =
860*0fca6ea1SDimitry Andric             ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
8610b57cec5SDimitry Andric         if (Constant *KC = getKnownConstant(Folded, WantInteger))
8625ffd83dbSDimitry Andric           Result.emplace_back(KC, LHSVal.second);
8630b57cec5SDimitry Andric       }
8640b57cec5SDimitry Andric 
8650b57cec5SDimitry Andric       return !Result.empty();
8660b57cec5SDimitry Andric     }
8670b57cec5SDimitry Andric   }
8680b57cec5SDimitry Andric 
8690b57cec5SDimitry Andric   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
8700b57cec5SDimitry Andric     // Handle select instructions where at least one operand is a known constant
8710b57cec5SDimitry Andric     // and we can figure out the condition value for any predecessor block.
8720b57cec5SDimitry Andric     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
8730b57cec5SDimitry Andric     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
8740b57cec5SDimitry Andric     PredValueInfoTy Conds;
8750b57cec5SDimitry Andric     if ((TrueVal || FalseVal) &&
876e8d8bef9SDimitry Andric         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
8770b57cec5SDimitry Andric                                             WantInteger, RecursionSet, CxtI)) {
8780b57cec5SDimitry Andric       for (auto &C : Conds) {
8790b57cec5SDimitry Andric         Constant *Cond = C.first;
8800b57cec5SDimitry Andric 
8810b57cec5SDimitry Andric         // Figure out what value to use for the condition.
8820b57cec5SDimitry Andric         bool KnownCond;
8830b57cec5SDimitry Andric         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
8840b57cec5SDimitry Andric           // A known boolean.
8850b57cec5SDimitry Andric           KnownCond = CI->isOne();
8860b57cec5SDimitry Andric         } else {
8870b57cec5SDimitry Andric           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
8880b57cec5SDimitry Andric           // Either operand will do, so be sure to pick the one that's a known
8890b57cec5SDimitry Andric           // constant.
8900b57cec5SDimitry Andric           // FIXME: Do this more cleverly if both values are known constants?
8910b57cec5SDimitry Andric           KnownCond = (TrueVal != nullptr);
8920b57cec5SDimitry Andric         }
8930b57cec5SDimitry Andric 
8940b57cec5SDimitry Andric         // See if the select has a known constant value for this predecessor.
8950b57cec5SDimitry Andric         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
8965ffd83dbSDimitry Andric           Result.emplace_back(Val, C.second);
8970b57cec5SDimitry Andric       }
8980b57cec5SDimitry Andric 
8990b57cec5SDimitry Andric       return !Result.empty();
9000b57cec5SDimitry Andric     }
9010b57cec5SDimitry Andric   }
9020b57cec5SDimitry Andric 
9030b57cec5SDimitry Andric   // If all else fails, see if LVI can figure out a constant value for us.
904e8d8bef9SDimitry Andric   assert(CxtI->getParent() == BB && "CxtI should be in BB");
905e8d8bef9SDimitry Andric   Constant *CI = LVI->getConstant(V, CxtI);
9060b57cec5SDimitry Andric   if (Constant *KC = getKnownConstant(CI, Preference)) {
9070b57cec5SDimitry Andric     for (BasicBlock *Pred : predecessors(BB))
9085ffd83dbSDimitry Andric       Result.emplace_back(KC, Pred);
9090b57cec5SDimitry Andric   }
9100b57cec5SDimitry Andric 
9110b57cec5SDimitry Andric   return !Result.empty();
9120b57cec5SDimitry Andric }
9130b57cec5SDimitry Andric 
9140b57cec5SDimitry Andric /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
9150b57cec5SDimitry Andric /// in an undefined jump, decide which block is best to revector to.
9160b57cec5SDimitry Andric ///
9170b57cec5SDimitry Andric /// Since we can pick an arbitrary destination, we pick the successor with the
9180b57cec5SDimitry Andric /// fewest predecessors.  This should reduce the in-degree of the others.
919e8d8bef9SDimitry Andric static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
9200b57cec5SDimitry Andric   Instruction *BBTerm = BB->getTerminator();
9210b57cec5SDimitry Andric   unsigned MinSucc = 0;
9220b57cec5SDimitry Andric   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
9230b57cec5SDimitry Andric   // Compute the successor with the minimum number of predecessors.
9240b57cec5SDimitry Andric   unsigned MinNumPreds = pred_size(TestBB);
9250b57cec5SDimitry Andric   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
9260b57cec5SDimitry Andric     TestBB = BBTerm->getSuccessor(i);
9270b57cec5SDimitry Andric     unsigned NumPreds = pred_size(TestBB);
9280b57cec5SDimitry Andric     if (NumPreds < MinNumPreds) {
9290b57cec5SDimitry Andric       MinSucc = i;
9300b57cec5SDimitry Andric       MinNumPreds = NumPreds;
9310b57cec5SDimitry Andric     }
9320b57cec5SDimitry Andric   }
9330b57cec5SDimitry Andric 
9340b57cec5SDimitry Andric   return MinSucc;
9350b57cec5SDimitry Andric }
9360b57cec5SDimitry Andric 
9370b57cec5SDimitry Andric static bool hasAddressTakenAndUsed(BasicBlock *BB) {
9380b57cec5SDimitry Andric   if (!BB->hasAddressTaken()) return false;
9390b57cec5SDimitry Andric 
9400b57cec5SDimitry Andric   // If the block has its address taken, it may be a tree of dead constants
9410b57cec5SDimitry Andric   // hanging off of it.  These shouldn't keep the block alive.
9420b57cec5SDimitry Andric   BlockAddress *BA = BlockAddress::get(BB);
9430b57cec5SDimitry Andric   BA->removeDeadConstantUsers();
9440b57cec5SDimitry Andric   return !BA->use_empty();
9450b57cec5SDimitry Andric }
9460b57cec5SDimitry Andric 
947e8d8bef9SDimitry Andric /// processBlock - If there are any predecessors whose control can be threaded
9480b57cec5SDimitry Andric /// through to a successor, transform them now.
949e8d8bef9SDimitry Andric bool JumpThreadingPass::processBlock(BasicBlock *BB) {
9500b57cec5SDimitry Andric   // If the block is trivially dead, just return and let the caller nuke it.
9510b57cec5SDimitry Andric   // This simplifies other transformations.
9520b57cec5SDimitry Andric   if (DTU->isBBPendingDeletion(BB) ||
9530b57cec5SDimitry Andric       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
9540b57cec5SDimitry Andric     return false;
9550b57cec5SDimitry Andric 
9560b57cec5SDimitry Andric   // If this block has a single predecessor, and if that pred has a single
9570b57cec5SDimitry Andric   // successor, merge the blocks.  This encourages recursive jump threading
9580b57cec5SDimitry Andric   // because now the condition in this block can be threaded through
9590b57cec5SDimitry Andric   // predecessors of our predecessor block.
960e8d8bef9SDimitry Andric   if (maybeMergeBasicBlockIntoOnlyPred(BB))
9610b57cec5SDimitry Andric     return true;
9620b57cec5SDimitry Andric 
963e8d8bef9SDimitry Andric   if (tryToUnfoldSelectInCurrBB(BB))
9640b57cec5SDimitry Andric     return true;
9650b57cec5SDimitry Andric 
9660b57cec5SDimitry Andric   // Look if we can propagate guards to predecessors.
967e8d8bef9SDimitry Andric   if (HasGuards && processGuards(BB))
9680b57cec5SDimitry Andric     return true;
9690b57cec5SDimitry Andric 
9700b57cec5SDimitry Andric   // What kind of constant we're looking for.
9710b57cec5SDimitry Andric   ConstantPreference Preference = WantInteger;
9720b57cec5SDimitry Andric 
9730b57cec5SDimitry Andric   // Look to see if the terminator is a conditional branch, switch or indirect
9740b57cec5SDimitry Andric   // branch, if not we can't thread it.
9750b57cec5SDimitry Andric   Value *Condition;
9760b57cec5SDimitry Andric   Instruction *Terminator = BB->getTerminator();
9770b57cec5SDimitry Andric   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
9780b57cec5SDimitry Andric     // Can't thread an unconditional jump.
9790b57cec5SDimitry Andric     if (BI->isUnconditional()) return false;
9800b57cec5SDimitry Andric     Condition = BI->getCondition();
9810b57cec5SDimitry Andric   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
9820b57cec5SDimitry Andric     Condition = SI->getCondition();
9830b57cec5SDimitry Andric   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
9840b57cec5SDimitry Andric     // Can't thread indirect branch with no successors.
9850b57cec5SDimitry Andric     if (IB->getNumSuccessors() == 0) return false;
9860b57cec5SDimitry Andric     Condition = IB->getAddress()->stripPointerCasts();
9870b57cec5SDimitry Andric     Preference = WantBlockAddress;
9880b57cec5SDimitry Andric   } else {
9890b57cec5SDimitry Andric     return false; // Must be an invoke or callbr.
9900b57cec5SDimitry Andric   }
9910b57cec5SDimitry Andric 
992e8d8bef9SDimitry Andric   // Keep track if we constant folded the condition in this invocation.
993e8d8bef9SDimitry Andric   bool ConstantFolded = false;
994e8d8bef9SDimitry Andric 
9950b57cec5SDimitry Andric   // Run constant folding to see if we can reduce the condition to a simple
9960b57cec5SDimitry Andric   // constant.
9970b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
9980b57cec5SDimitry Andric     Value *SimpleVal =
999*0fca6ea1SDimitry Andric         ConstantFoldInstruction(I, BB->getDataLayout(), TLI);
10000b57cec5SDimitry Andric     if (SimpleVal) {
10010b57cec5SDimitry Andric       I->replaceAllUsesWith(SimpleVal);
10020b57cec5SDimitry Andric       if (isInstructionTriviallyDead(I, TLI))
10030b57cec5SDimitry Andric         I->eraseFromParent();
10040b57cec5SDimitry Andric       Condition = SimpleVal;
1005e8d8bef9SDimitry Andric       ConstantFolded = true;
10060b57cec5SDimitry Andric     }
10070b57cec5SDimitry Andric   }
10080b57cec5SDimitry Andric 
1009e8d8bef9SDimitry Andric   // If the terminator is branching on an undef or freeze undef, we can pick any
1010e8d8bef9SDimitry Andric   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1011e8d8bef9SDimitry Andric   auto *FI = dyn_cast<FreezeInst>(Condition);
1012e8d8bef9SDimitry Andric   if (isa<UndefValue>(Condition) ||
1013e8d8bef9SDimitry Andric       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1014e8d8bef9SDimitry Andric     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
10150b57cec5SDimitry Andric     std::vector<DominatorTree::UpdateType> Updates;
10160b57cec5SDimitry Andric 
10170b57cec5SDimitry Andric     // Fold the branch/switch.
10180b57cec5SDimitry Andric     Instruction *BBTerm = BB->getTerminator();
10190b57cec5SDimitry Andric     Updates.reserve(BBTerm->getNumSuccessors());
10200b57cec5SDimitry Andric     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
10210b57cec5SDimitry Andric       if (i == BestSucc) continue;
10220b57cec5SDimitry Andric       BasicBlock *Succ = BBTerm->getSuccessor(i);
10230b57cec5SDimitry Andric       Succ->removePredecessor(BB, true);
10240b57cec5SDimitry Andric       Updates.push_back({DominatorTree::Delete, BB, Succ});
10250b57cec5SDimitry Andric     }
10260b57cec5SDimitry Andric 
10270b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
10280b57cec5SDimitry Andric                       << "' folding undef terminator: " << *BBTerm << '\n');
1029*0fca6ea1SDimitry Andric     Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1030*0fca6ea1SDimitry Andric     NewBI->setDebugLoc(BBTerm->getDebugLoc());
1031fe6060f1SDimitry Andric     ++NumFolds;
10320b57cec5SDimitry Andric     BBTerm->eraseFromParent();
10330b57cec5SDimitry Andric     DTU->applyUpdatesPermissive(Updates);
1034e8d8bef9SDimitry Andric     if (FI)
1035e8d8bef9SDimitry Andric       FI->eraseFromParent();
10360b57cec5SDimitry Andric     return true;
10370b57cec5SDimitry Andric   }
10380b57cec5SDimitry Andric 
10390b57cec5SDimitry Andric   // If the terminator of this block is branching on a constant, simplify the
10400b57cec5SDimitry Andric   // terminator to an unconditional branch.  This can occur due to threading in
10410b57cec5SDimitry Andric   // other blocks.
10420b57cec5SDimitry Andric   if (getKnownConstant(Condition, Preference)) {
10430b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
10440b57cec5SDimitry Andric                       << "' folding terminator: " << *BB->getTerminator()
10450b57cec5SDimitry Andric                       << '\n');
10460b57cec5SDimitry Andric     ++NumFolds;
104706c3fb27SDimitry Andric     ConstantFoldTerminator(BB, true, nullptr, DTU.get());
104806c3fb27SDimitry Andric     if (auto *BPI = getBPI())
1049e8d8bef9SDimitry Andric       BPI->eraseBlock(BB);
10500b57cec5SDimitry Andric     return true;
10510b57cec5SDimitry Andric   }
10520b57cec5SDimitry Andric 
10530b57cec5SDimitry Andric   Instruction *CondInst = dyn_cast<Instruction>(Condition);
10540b57cec5SDimitry Andric 
10550b57cec5SDimitry Andric   // All the rest of our checks depend on the condition being an instruction.
10560b57cec5SDimitry Andric   if (!CondInst) {
10570b57cec5SDimitry Andric     // FIXME: Unify this with code below.
1058e8d8bef9SDimitry Andric     if (processThreadableEdges(Condition, BB, Preference, Terminator))
10590b57cec5SDimitry Andric       return true;
1060e8d8bef9SDimitry Andric     return ConstantFolded;
10610b57cec5SDimitry Andric   }
10620b57cec5SDimitry Andric 
106381ad6265SDimitry Andric   // Some of the following optimization can safely work on the unfrozen cond.
106481ad6265SDimitry Andric   Value *CondWithoutFreeze = CondInst;
106581ad6265SDimitry Andric   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
106681ad6265SDimitry Andric     CondWithoutFreeze = FI->getOperand(0);
106781ad6265SDimitry Andric 
106881ad6265SDimitry Andric   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
10690b57cec5SDimitry Andric     // If we're branching on a conditional, LVI might be able to determine
10700b57cec5SDimitry Andric     // it's value at the branch instruction.  We only handle comparisons
10710b57cec5SDimitry Andric     // against a constant at this time.
107281ad6265SDimitry Andric     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1073*0fca6ea1SDimitry Andric       Constant *Res =
10740b57cec5SDimitry Andric           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
107581ad6265SDimitry Andric                               CondConst, BB->getTerminator(),
107681ad6265SDimitry Andric                               /*UseBlockValue=*/false);
1077*0fca6ea1SDimitry Andric       if (Res) {
10780b57cec5SDimitry Andric         // We can safely replace *some* uses of the CondInst if it has
10790b57cec5SDimitry Andric         // exactly one value as returned by LVI. RAUW is incorrect in the
10800b57cec5SDimitry Andric         // presence of guards and assumes, that have the `Cond` as the use. This
10810b57cec5SDimitry Andric         // is because we use the guards/assume to reason about the `Cond` value
10820b57cec5SDimitry Andric         // at the end of block, but RAUW unconditionally replaces all uses
10830b57cec5SDimitry Andric         // including the guards/assumes themselves and the uses before the
10840b57cec5SDimitry Andric         // guard/assume.
1085*0fca6ea1SDimitry Andric         if (replaceFoldableUses(CondCmp, Res, BB))
10860b57cec5SDimitry Andric           return true;
10870b57cec5SDimitry Andric       }
10880b57cec5SDimitry Andric 
10890b57cec5SDimitry Andric       // We did not manage to simplify this branch, try to see whether
10900b57cec5SDimitry Andric       // CondCmp depends on a known phi-select pattern.
1091e8d8bef9SDimitry Andric       if (tryToUnfoldSelect(CondCmp, BB))
10920b57cec5SDimitry Andric         return true;
10930b57cec5SDimitry Andric     }
10940b57cec5SDimitry Andric   }
10950b57cec5SDimitry Andric 
10960b57cec5SDimitry Andric   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1097e8d8bef9SDimitry Andric     if (tryToUnfoldSelect(SI, BB))
10980b57cec5SDimitry Andric       return true;
10990b57cec5SDimitry Andric 
11000b57cec5SDimitry Andric   // Check for some cases that are worth simplifying.  Right now we want to look
11010b57cec5SDimitry Andric   // for loads that are used by a switch or by the condition for the branch.  If
11020b57cec5SDimitry Andric   // we see one, check to see if it's partially redundant.  If so, insert a PHI
11030b57cec5SDimitry Andric   // which can then be used to thread the values.
110481ad6265SDimitry Andric   Value *SimplifyValue = CondWithoutFreeze;
1105e8d8bef9SDimitry Andric 
11060b57cec5SDimitry Andric   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
11070b57cec5SDimitry Andric     if (isa<Constant>(CondCmp->getOperand(1)))
11080b57cec5SDimitry Andric       SimplifyValue = CondCmp->getOperand(0);
11090b57cec5SDimitry Andric 
11100b57cec5SDimitry Andric   // TODO: There are other places where load PRE would be profitable, such as
11110b57cec5SDimitry Andric   // more complex comparisons.
11120b57cec5SDimitry Andric   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1113e8d8bef9SDimitry Andric     if (simplifyPartiallyRedundantLoad(LoadI))
11140b57cec5SDimitry Andric       return true;
11150b57cec5SDimitry Andric 
11160b57cec5SDimitry Andric   // Before threading, try to propagate profile data backwards:
11170b57cec5SDimitry Andric   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
11180b57cec5SDimitry Andric     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
11190b57cec5SDimitry Andric       updatePredecessorProfileMetadata(PN, BB);
11200b57cec5SDimitry Andric 
11210b57cec5SDimitry Andric   // Handle a variety of cases where we are branching on something derived from
11220b57cec5SDimitry Andric   // a PHI node in the current block.  If we can prove that any predecessors
11230b57cec5SDimitry Andric   // compute a predictable value based on a PHI node, thread those predecessors.
1124e8d8bef9SDimitry Andric   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
11250b57cec5SDimitry Andric     return true;
11260b57cec5SDimitry Andric 
1127e8d8bef9SDimitry Andric   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1128e8d8bef9SDimitry Andric   // the current block, see if we can simplify.
112981ad6265SDimitry Andric   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1130e8d8bef9SDimitry Andric   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1131e8d8bef9SDimitry Andric     return processBranchOnPHI(PN);
11320b57cec5SDimitry Andric 
11330b57cec5SDimitry Andric   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
11340b57cec5SDimitry Andric   if (CondInst->getOpcode() == Instruction::Xor &&
11350b57cec5SDimitry Andric       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1136e8d8bef9SDimitry Andric     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
11370b57cec5SDimitry Andric 
11380b57cec5SDimitry Andric   // Search for a stronger dominating condition that can be used to simplify a
11390b57cec5SDimitry Andric   // conditional branch leaving BB.
1140e8d8bef9SDimitry Andric   if (processImpliedCondition(BB))
11410b57cec5SDimitry Andric     return true;
11420b57cec5SDimitry Andric 
11430b57cec5SDimitry Andric   return false;
11440b57cec5SDimitry Andric }
11450b57cec5SDimitry Andric 
1146e8d8bef9SDimitry Andric bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
11470b57cec5SDimitry Andric   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
11480b57cec5SDimitry Andric   if (!BI || !BI->isConditional())
11490b57cec5SDimitry Andric     return false;
11500b57cec5SDimitry Andric 
11510b57cec5SDimitry Andric   Value *Cond = BI->getCondition();
115281ad6265SDimitry Andric   // Assuming that predecessor's branch was taken, if pred's branch condition
115381ad6265SDimitry Andric   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
115481ad6265SDimitry Andric   // freeze(Cond) is either true or a nondeterministic value.
115581ad6265SDimitry Andric   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
115681ad6265SDimitry Andric   // without affecting other instructions.
115781ad6265SDimitry Andric   auto *FICond = dyn_cast<FreezeInst>(Cond);
115881ad6265SDimitry Andric   if (FICond && FICond->hasOneUse())
115981ad6265SDimitry Andric     Cond = FICond->getOperand(0);
116081ad6265SDimitry Andric   else
116181ad6265SDimitry Andric     FICond = nullptr;
116281ad6265SDimitry Andric 
11630b57cec5SDimitry Andric   BasicBlock *CurrentBB = BB;
11640b57cec5SDimitry Andric   BasicBlock *CurrentPred = BB->getSinglePredecessor();
11650b57cec5SDimitry Andric   unsigned Iter = 0;
11660b57cec5SDimitry Andric 
1167*0fca6ea1SDimitry Andric   auto &DL = BB->getDataLayout();
11680b57cec5SDimitry Andric 
11690b57cec5SDimitry Andric   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
11700b57cec5SDimitry Andric     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
11710b57cec5SDimitry Andric     if (!PBI || !PBI->isConditional())
11720b57cec5SDimitry Andric       return false;
11730b57cec5SDimitry Andric     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
11740b57cec5SDimitry Andric       return false;
11750b57cec5SDimitry Andric 
11760b57cec5SDimitry Andric     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1177bdd1243dSDimitry Andric     std::optional<bool> Implication =
11780b57cec5SDimitry Andric         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
117981ad6265SDimitry Andric 
118081ad6265SDimitry Andric     // If the branch condition of BB (which is Cond) and CurrentPred are
118181ad6265SDimitry Andric     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
118281ad6265SDimitry Andric     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
118381ad6265SDimitry Andric       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
118481ad6265SDimitry Andric           FICond->getOperand(0))
118581ad6265SDimitry Andric         Implication = CondIsTrue;
118681ad6265SDimitry Andric     }
118781ad6265SDimitry Andric 
11880b57cec5SDimitry Andric     if (Implication) {
11890b57cec5SDimitry Andric       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
11900b57cec5SDimitry Andric       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
11910b57cec5SDimitry Andric       RemoveSucc->removePredecessor(BB);
1192*0fca6ea1SDimitry Andric       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
11930b57cec5SDimitry Andric       UncondBI->setDebugLoc(BI->getDebugLoc());
1194fe6060f1SDimitry Andric       ++NumFolds;
11950b57cec5SDimitry Andric       BI->eraseFromParent();
119681ad6265SDimitry Andric       if (FICond)
119781ad6265SDimitry Andric         FICond->eraseFromParent();
119881ad6265SDimitry Andric 
11990b57cec5SDimitry Andric       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
120006c3fb27SDimitry Andric       if (auto *BPI = getBPI())
1201e8d8bef9SDimitry Andric         BPI->eraseBlock(BB);
12020b57cec5SDimitry Andric       return true;
12030b57cec5SDimitry Andric     }
12040b57cec5SDimitry Andric     CurrentBB = CurrentPred;
12050b57cec5SDimitry Andric     CurrentPred = CurrentBB->getSinglePredecessor();
12060b57cec5SDimitry Andric   }
12070b57cec5SDimitry Andric 
12080b57cec5SDimitry Andric   return false;
12090b57cec5SDimitry Andric }
12100b57cec5SDimitry Andric 
12110b57cec5SDimitry Andric /// Return true if Op is an instruction defined in the given block.
12120b57cec5SDimitry Andric static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
12130b57cec5SDimitry Andric   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
12140b57cec5SDimitry Andric     if (OpInst->getParent() == BB)
12150b57cec5SDimitry Andric       return true;
12160b57cec5SDimitry Andric   return false;
12170b57cec5SDimitry Andric }
12180b57cec5SDimitry Andric 
1219e8d8bef9SDimitry Andric /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
12200b57cec5SDimitry Andric /// redundant load instruction, eliminate it by replacing it with a PHI node.
12210b57cec5SDimitry Andric /// This is an important optimization that encourages jump threading, and needs
12220b57cec5SDimitry Andric /// to be run interlaced with other jump threading tasks.
1223e8d8bef9SDimitry Andric bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
12240b57cec5SDimitry Andric   // Don't hack volatile and ordered loads.
12250b57cec5SDimitry Andric   if (!LoadI->isUnordered()) return false;
12260b57cec5SDimitry Andric 
12270b57cec5SDimitry Andric   // If the load is defined in a block with exactly one predecessor, it can't be
12280b57cec5SDimitry Andric   // partially redundant.
12290b57cec5SDimitry Andric   BasicBlock *LoadBB = LoadI->getParent();
12300b57cec5SDimitry Andric   if (LoadBB->getSinglePredecessor())
12310b57cec5SDimitry Andric     return false;
12320b57cec5SDimitry Andric 
12330b57cec5SDimitry Andric   // If the load is defined in an EH pad, it can't be partially redundant,
12340b57cec5SDimitry Andric   // because the edges between the invoke and the EH pad cannot have other
12350b57cec5SDimitry Andric   // instructions between them.
12360b57cec5SDimitry Andric   if (LoadBB->isEHPad())
12370b57cec5SDimitry Andric     return false;
12380b57cec5SDimitry Andric 
12390b57cec5SDimitry Andric   Value *LoadedPtr = LoadI->getOperand(0);
12400b57cec5SDimitry Andric 
12410b57cec5SDimitry Andric   // If the loaded operand is defined in the LoadBB and its not a phi,
12420b57cec5SDimitry Andric   // it can't be available in predecessors.
12430b57cec5SDimitry Andric   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
12440b57cec5SDimitry Andric     return false;
12450b57cec5SDimitry Andric 
12460b57cec5SDimitry Andric   // Scan a few instructions up from the load, to see if it is obviously live at
12470b57cec5SDimitry Andric   // the entry to its block.
12480b57cec5SDimitry Andric   BasicBlock::iterator BBIt(LoadI);
12490b57cec5SDimitry Andric   bool IsLoadCSE;
1250b3edf446SDimitry Andric   BatchAAResults BatchAA(*AA);
1251b3edf446SDimitry Andric   // The dominator tree is updated lazily and may not be valid at this point.
1252b3edf446SDimitry Andric   BatchAA.disableDominatorTree();
12530b57cec5SDimitry Andric   if (Value *AvailableVal = FindAvailableLoadedValue(
1254b3edf446SDimitry Andric           LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
12550b57cec5SDimitry Andric     // If the value of the load is locally available within the block, just use
12560b57cec5SDimitry Andric     // it.  This frequently occurs for reg2mem'd allocas.
12570b57cec5SDimitry Andric 
12580b57cec5SDimitry Andric     if (IsLoadCSE) {
12590b57cec5SDimitry Andric       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
12600b57cec5SDimitry Andric       combineMetadataForCSE(NLoadI, LoadI, false);
12618a4dda33SDimitry Andric       LVI->forgetValue(NLoadI);
12620b57cec5SDimitry Andric     };
12630b57cec5SDimitry Andric 
126481ad6265SDimitry Andric     // If the returned value is the load itself, replace with poison. This can
12650b57cec5SDimitry Andric     // only happen in dead loops.
12660b57cec5SDimitry Andric     if (AvailableVal == LoadI)
126781ad6265SDimitry Andric       AvailableVal = PoisonValue::get(LoadI->getType());
1268*0fca6ea1SDimitry Andric     if (AvailableVal->getType() != LoadI->getType()) {
12690b57cec5SDimitry Andric       AvailableVal = CastInst::CreateBitOrPointerCast(
1270*0fca6ea1SDimitry Andric           AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1271*0fca6ea1SDimitry Andric       cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1272*0fca6ea1SDimitry Andric     }
12730b57cec5SDimitry Andric     LoadI->replaceAllUsesWith(AvailableVal);
12740b57cec5SDimitry Andric     LoadI->eraseFromParent();
12750b57cec5SDimitry Andric     return true;
12760b57cec5SDimitry Andric   }
12770b57cec5SDimitry Andric 
12780b57cec5SDimitry Andric   // Otherwise, if we scanned the whole block and got to the top of the block,
12790b57cec5SDimitry Andric   // we know the block is locally transparent to the load.  If not, something
12800b57cec5SDimitry Andric   // might clobber its value.
12810b57cec5SDimitry Andric   if (BBIt != LoadBB->begin())
12820b57cec5SDimitry Andric     return false;
12830b57cec5SDimitry Andric 
12840b57cec5SDimitry Andric   // If all of the loads and stores that feed the value have the same AA tags,
12850b57cec5SDimitry Andric   // then we can propagate them onto any newly inserted loads.
1286349cc55cSDimitry Andric   AAMDNodes AATags = LoadI->getAAMetadata();
12870b57cec5SDimitry Andric 
12880b57cec5SDimitry Andric   SmallPtrSet<BasicBlock*, 8> PredsScanned;
12890b57cec5SDimitry Andric 
12900b57cec5SDimitry Andric   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
12910b57cec5SDimitry Andric 
12920b57cec5SDimitry Andric   AvailablePredsTy AvailablePreds;
12930b57cec5SDimitry Andric   BasicBlock *OneUnavailablePred = nullptr;
12940b57cec5SDimitry Andric   SmallVector<LoadInst*, 8> CSELoads;
12950b57cec5SDimitry Andric 
12960b57cec5SDimitry Andric   // If we got here, the loaded value is transparent through to the start of the
12970b57cec5SDimitry Andric   // block.  Check to see if it is available in any of the predecessor blocks.
12980b57cec5SDimitry Andric   for (BasicBlock *PredBB : predecessors(LoadBB)) {
12990b57cec5SDimitry Andric     // If we already scanned this predecessor, skip it.
13000b57cec5SDimitry Andric     if (!PredsScanned.insert(PredBB).second)
13010b57cec5SDimitry Andric       continue;
13020b57cec5SDimitry Andric 
13030b57cec5SDimitry Andric     BBIt = PredBB->end();
13040b57cec5SDimitry Andric     unsigned NumScanedInst = 0;
13050b57cec5SDimitry Andric     Value *PredAvailable = nullptr;
13060b57cec5SDimitry Andric     // NOTE: We don't CSE load that is volatile or anything stronger than
13070b57cec5SDimitry Andric     // unordered, that should have been checked when we entered the function.
13080b57cec5SDimitry Andric     assert(LoadI->isUnordered() &&
13090b57cec5SDimitry Andric            "Attempting to CSE volatile or atomic loads");
13100b57cec5SDimitry Andric     // If this is a load on a phi pointer, phi-translate it and search
13110b57cec5SDimitry Andric     // for available load/store to the pointer in predecessors.
1312fe6060f1SDimitry Andric     Type *AccessTy = LoadI->getType();
1313*0fca6ea1SDimitry Andric     const auto &DL = LoadI->getDataLayout();
1314fe6060f1SDimitry Andric     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1315fe6060f1SDimitry Andric                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1316fe6060f1SDimitry Andric                        AATags);
1317b3edf446SDimitry Andric     PredAvailable = findAvailablePtrLoadStore(
1318b3edf446SDimitry Andric         Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1319b3edf446SDimitry Andric         &BatchAA, &IsLoadCSE, &NumScanedInst);
13200b57cec5SDimitry Andric 
13210b57cec5SDimitry Andric     // If PredBB has a single predecessor, continue scanning through the
13220b57cec5SDimitry Andric     // single predecessor.
13230b57cec5SDimitry Andric     BasicBlock *SinglePredBB = PredBB;
13240b57cec5SDimitry Andric     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
13250b57cec5SDimitry Andric            NumScanedInst < DefMaxInstsToScan) {
13260b57cec5SDimitry Andric       SinglePredBB = SinglePredBB->getSinglePredecessor();
13270b57cec5SDimitry Andric       if (SinglePredBB) {
13280b57cec5SDimitry Andric         BBIt = SinglePredBB->end();
1329fe6060f1SDimitry Andric         PredAvailable = findAvailablePtrLoadStore(
1330fe6060f1SDimitry Andric             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1331b3edf446SDimitry Andric             (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
13320b57cec5SDimitry Andric             &NumScanedInst);
13330b57cec5SDimitry Andric       }
13340b57cec5SDimitry Andric     }
13350b57cec5SDimitry Andric 
13360b57cec5SDimitry Andric     if (!PredAvailable) {
13370b57cec5SDimitry Andric       OneUnavailablePred = PredBB;
13380b57cec5SDimitry Andric       continue;
13390b57cec5SDimitry Andric     }
13400b57cec5SDimitry Andric 
13410b57cec5SDimitry Andric     if (IsLoadCSE)
13420b57cec5SDimitry Andric       CSELoads.push_back(cast<LoadInst>(PredAvailable));
13430b57cec5SDimitry Andric 
13440b57cec5SDimitry Andric     // If so, this load is partially redundant.  Remember this info so that we
13450b57cec5SDimitry Andric     // can create a PHI node.
13465ffd83dbSDimitry Andric     AvailablePreds.emplace_back(PredBB, PredAvailable);
13470b57cec5SDimitry Andric   }
13480b57cec5SDimitry Andric 
13490b57cec5SDimitry Andric   // If the loaded value isn't available in any predecessor, it isn't partially
13500b57cec5SDimitry Andric   // redundant.
13510b57cec5SDimitry Andric   if (AvailablePreds.empty()) return false;
13520b57cec5SDimitry Andric 
13530b57cec5SDimitry Andric   // Okay, the loaded value is available in at least one (and maybe all!)
13540b57cec5SDimitry Andric   // predecessors.  If the value is unavailable in more than one unique
13550b57cec5SDimitry Andric   // predecessor, we want to insert a merge block for those common predecessors.
13560b57cec5SDimitry Andric   // This ensures that we only have to insert one reload, thus not increasing
13570b57cec5SDimitry Andric   // code size.
13580b57cec5SDimitry Andric   BasicBlock *UnavailablePred = nullptr;
13590b57cec5SDimitry Andric 
13600b57cec5SDimitry Andric   // If the value is unavailable in one of predecessors, we will end up
13610b57cec5SDimitry Andric   // inserting a new instruction into them. It is only valid if all the
13620b57cec5SDimitry Andric   // instructions before LoadI are guaranteed to pass execution to its
13630b57cec5SDimitry Andric   // successor, or if LoadI is safe to speculate.
13640b57cec5SDimitry Andric   // TODO: If this logic becomes more complex, and we will perform PRE insertion
13650b57cec5SDimitry Andric   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
13660b57cec5SDimitry Andric   // It requires domination tree analysis, so for this simple case it is an
13670b57cec5SDimitry Andric   // overkill.
13680b57cec5SDimitry Andric   if (PredsScanned.size() != AvailablePreds.size() &&
13690b57cec5SDimitry Andric       !isSafeToSpeculativelyExecute(LoadI))
13700b57cec5SDimitry Andric     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
13710b57cec5SDimitry Andric       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
13720b57cec5SDimitry Andric         return false;
13730b57cec5SDimitry Andric 
13740b57cec5SDimitry Andric   // If there is exactly one predecessor where the value is unavailable, the
13750b57cec5SDimitry Andric   // already computed 'OneUnavailablePred' block is it.  If it ends in an
13760b57cec5SDimitry Andric   // unconditional branch, we know that it isn't a critical edge.
13770b57cec5SDimitry Andric   if (PredsScanned.size() == AvailablePreds.size()+1 &&
13780b57cec5SDimitry Andric       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
13790b57cec5SDimitry Andric     UnavailablePred = OneUnavailablePred;
13800b57cec5SDimitry Andric   } else if (PredsScanned.size() != AvailablePreds.size()) {
13810b57cec5SDimitry Andric     // Otherwise, we had multiple unavailable predecessors or we had a critical
13820b57cec5SDimitry Andric     // edge from the one.
13830b57cec5SDimitry Andric     SmallVector<BasicBlock*, 8> PredsToSplit;
13840b57cec5SDimitry Andric     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
13850b57cec5SDimitry Andric 
13860b57cec5SDimitry Andric     for (const auto &AvailablePred : AvailablePreds)
13870b57cec5SDimitry Andric       AvailablePredSet.insert(AvailablePred.first);
13880b57cec5SDimitry Andric 
13890b57cec5SDimitry Andric     // Add all the unavailable predecessors to the PredsToSplit list.
13900b57cec5SDimitry Andric     for (BasicBlock *P : predecessors(LoadBB)) {
13910b57cec5SDimitry Andric       // If the predecessor is an indirect goto, we can't split the edge.
1392753f127fSDimitry Andric       if (isa<IndirectBrInst>(P->getTerminator()))
13930b57cec5SDimitry Andric         return false;
13940b57cec5SDimitry Andric 
13950b57cec5SDimitry Andric       if (!AvailablePredSet.count(P))
13960b57cec5SDimitry Andric         PredsToSplit.push_back(P);
13970b57cec5SDimitry Andric     }
13980b57cec5SDimitry Andric 
13990b57cec5SDimitry Andric     // Split them out to their own block.
1400e8d8bef9SDimitry Andric     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
14010b57cec5SDimitry Andric   }
14020b57cec5SDimitry Andric 
14030b57cec5SDimitry Andric   // If the value isn't available in all predecessors, then there will be
14040b57cec5SDimitry Andric   // exactly one where it isn't available.  Insert a load on that edge and add
14050b57cec5SDimitry Andric   // it to the AvailablePreds list.
14060b57cec5SDimitry Andric   if (UnavailablePred) {
14070b57cec5SDimitry Andric     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
14080b57cec5SDimitry Andric            "Can't handle critical edge here!");
14090b57cec5SDimitry Andric     LoadInst *NewVal = new LoadInst(
14100b57cec5SDimitry Andric         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
14115ffd83dbSDimitry Andric         LoadI->getName() + ".pr", false, LoadI->getAlign(),
14120b57cec5SDimitry Andric         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1413*0fca6ea1SDimitry Andric         UnavailablePred->getTerminator()->getIterator());
14140b57cec5SDimitry Andric     NewVal->setDebugLoc(LoadI->getDebugLoc());
14150b57cec5SDimitry Andric     if (AATags)
14160b57cec5SDimitry Andric       NewVal->setAAMetadata(AATags);
14170b57cec5SDimitry Andric 
14185ffd83dbSDimitry Andric     AvailablePreds.emplace_back(UnavailablePred, NewVal);
14190b57cec5SDimitry Andric   }
14200b57cec5SDimitry Andric 
14210b57cec5SDimitry Andric   // Now we know that each predecessor of this block has a value in
14220b57cec5SDimitry Andric   // AvailablePreds, sort them for efficient access as we're walking the preds.
14230b57cec5SDimitry Andric   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
14240b57cec5SDimitry Andric 
14250b57cec5SDimitry Andric   // Create a PHI node at the start of the block for the PRE'd load value.
1426*0fca6ea1SDimitry Andric   PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
14275f757f3fSDimitry Andric   PN->insertBefore(LoadBB->begin());
14280b57cec5SDimitry Andric   PN->takeName(LoadI);
14290b57cec5SDimitry Andric   PN->setDebugLoc(LoadI->getDebugLoc());
14300b57cec5SDimitry Andric 
14310b57cec5SDimitry Andric   // Insert new entries into the PHI for each predecessor.  A single block may
14320b57cec5SDimitry Andric   // have multiple entries here.
1433*0fca6ea1SDimitry Andric   for (BasicBlock *P : predecessors(LoadBB)) {
14340b57cec5SDimitry Andric     AvailablePredsTy::iterator I =
14350b57cec5SDimitry Andric         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
14360b57cec5SDimitry Andric 
14370b57cec5SDimitry Andric     assert(I != AvailablePreds.end() && I->first == P &&
14380b57cec5SDimitry Andric            "Didn't find entry for predecessor!");
14390b57cec5SDimitry Andric 
14400b57cec5SDimitry Andric     // If we have an available predecessor but it requires casting, insert the
14410b57cec5SDimitry Andric     // cast in the predecessor and use the cast. Note that we have to update the
14420b57cec5SDimitry Andric     // AvailablePreds vector as we go so that all of the PHI entries for this
14430b57cec5SDimitry Andric     // predecessor use the same bitcast.
14440b57cec5SDimitry Andric     Value *&PredV = I->second;
14450b57cec5SDimitry Andric     if (PredV->getType() != LoadI->getType())
1446*0fca6ea1SDimitry Andric       PredV = CastInst::CreateBitOrPointerCast(
1447*0fca6ea1SDimitry Andric           PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
14480b57cec5SDimitry Andric 
14490b57cec5SDimitry Andric     PN->addIncoming(PredV, I->first);
14500b57cec5SDimitry Andric   }
14510b57cec5SDimitry Andric 
14520b57cec5SDimitry Andric   for (LoadInst *PredLoadI : CSELoads) {
14530b57cec5SDimitry Andric     combineMetadataForCSE(PredLoadI, LoadI, true);
14548a4dda33SDimitry Andric     LVI->forgetValue(PredLoadI);
14550b57cec5SDimitry Andric   }
14560b57cec5SDimitry Andric 
14570b57cec5SDimitry Andric   LoadI->replaceAllUsesWith(PN);
14580b57cec5SDimitry Andric   LoadI->eraseFromParent();
14590b57cec5SDimitry Andric 
14600b57cec5SDimitry Andric   return true;
14610b57cec5SDimitry Andric }
14620b57cec5SDimitry Andric 
1463e8d8bef9SDimitry Andric /// findMostPopularDest - The specified list contains multiple possible
14640b57cec5SDimitry Andric /// threadable destinations.  Pick the one that occurs the most frequently in
14650b57cec5SDimitry Andric /// the list.
14660b57cec5SDimitry Andric static BasicBlock *
1467e8d8bef9SDimitry Andric findMostPopularDest(BasicBlock *BB,
14680b57cec5SDimitry Andric                     const SmallVectorImpl<std::pair<BasicBlock *,
14690b57cec5SDimitry Andric                                           BasicBlock *>> &PredToDestList) {
14700b57cec5SDimitry Andric   assert(!PredToDestList.empty());
14710b57cec5SDimitry Andric 
14720b57cec5SDimitry Andric   // Determine popularity.  If there are multiple possible destinations, we
14730b57cec5SDimitry Andric   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
14740b57cec5SDimitry Andric   // blocks with known and real destinations to threading undef.  We'll handle
14750b57cec5SDimitry Andric   // them later if interesting.
14765ffd83dbSDimitry Andric   MapVector<BasicBlock *, unsigned> DestPopularity;
14775ffd83dbSDimitry Andric 
14785ffd83dbSDimitry Andric   // Populate DestPopularity with the successors in the order they appear in the
14795ffd83dbSDimitry Andric   // successor list.  This way, we ensure determinism by iterating it in the
1480*0fca6ea1SDimitry Andric   // same order in llvm::max_element below.  We map nullptr to 0 so that we can
14815ffd83dbSDimitry Andric   // return nullptr when PredToDestList contains nullptr only.
14825ffd83dbSDimitry Andric   DestPopularity[nullptr] = 0;
14835ffd83dbSDimitry Andric   for (auto *SuccBB : successors(BB))
14845ffd83dbSDimitry Andric     DestPopularity[SuccBB] = 0;
14855ffd83dbSDimitry Andric 
14860b57cec5SDimitry Andric   for (const auto &PredToDest : PredToDestList)
14870b57cec5SDimitry Andric     if (PredToDest.second)
14880b57cec5SDimitry Andric       DestPopularity[PredToDest.second]++;
14890b57cec5SDimitry Andric 
14900b57cec5SDimitry Andric   // Find the most popular dest.
1491*0fca6ea1SDimitry Andric   auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
14920b57cec5SDimitry Andric 
14930b57cec5SDimitry Andric   // Okay, we have finally picked the most popular destination.
14945ffd83dbSDimitry Andric   return MostPopular->first;
14955ffd83dbSDimitry Andric }
14965ffd83dbSDimitry Andric 
14975ffd83dbSDimitry Andric // Try to evaluate the value of V when the control flows from PredPredBB to
14985ffd83dbSDimitry Andric // BB->getSinglePredecessor() and then on to BB.
1499e8d8bef9SDimitry Andric Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
15005ffd83dbSDimitry Andric                                                        BasicBlock *PredPredBB,
1501*0fca6ea1SDimitry Andric                                                        Value *V,
1502*0fca6ea1SDimitry Andric                                                        const DataLayout &DL) {
15035ffd83dbSDimitry Andric   BasicBlock *PredBB = BB->getSinglePredecessor();
15045ffd83dbSDimitry Andric   assert(PredBB && "Expected a single predecessor");
15055ffd83dbSDimitry Andric 
15065ffd83dbSDimitry Andric   if (Constant *Cst = dyn_cast<Constant>(V)) {
15075ffd83dbSDimitry Andric     return Cst;
15085ffd83dbSDimitry Andric   }
15095ffd83dbSDimitry Andric 
15105ffd83dbSDimitry Andric   // Consult LVI if V is not an instruction in BB or PredBB.
15115ffd83dbSDimitry Andric   Instruction *I = dyn_cast<Instruction>(V);
15125ffd83dbSDimitry Andric   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
15135ffd83dbSDimitry Andric     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
15145ffd83dbSDimitry Andric   }
15155ffd83dbSDimitry Andric 
15165ffd83dbSDimitry Andric   // Look into a PHI argument.
15175ffd83dbSDimitry Andric   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
15185ffd83dbSDimitry Andric     if (PHI->getParent() == PredBB)
15195ffd83dbSDimitry Andric       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
15205ffd83dbSDimitry Andric     return nullptr;
15215ffd83dbSDimitry Andric   }
15225ffd83dbSDimitry Andric 
15235ffd83dbSDimitry Andric   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
15245ffd83dbSDimitry Andric   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
15255ffd83dbSDimitry Andric     if (CondCmp->getParent() == BB) {
15265ffd83dbSDimitry Andric       Constant *Op0 =
1527*0fca6ea1SDimitry Andric           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL);
15285ffd83dbSDimitry Andric       Constant *Op1 =
1529*0fca6ea1SDimitry Andric           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL);
15305ffd83dbSDimitry Andric       if (Op0 && Op1) {
1531*0fca6ea1SDimitry Andric         return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1532*0fca6ea1SDimitry Andric                                                Op1, DL);
15335ffd83dbSDimitry Andric       }
15345ffd83dbSDimitry Andric     }
15355ffd83dbSDimitry Andric     return nullptr;
15365ffd83dbSDimitry Andric   }
15375ffd83dbSDimitry Andric 
15385ffd83dbSDimitry Andric   return nullptr;
15390b57cec5SDimitry Andric }
15400b57cec5SDimitry Andric 
1541e8d8bef9SDimitry Andric bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
15420b57cec5SDimitry Andric                                                ConstantPreference Preference,
15430b57cec5SDimitry Andric                                                Instruction *CxtI) {
15440b57cec5SDimitry Andric   // If threading this would thread across a loop header, don't even try to
15450b57cec5SDimitry Andric   // thread the edge.
15460b57cec5SDimitry Andric   if (LoopHeaders.count(BB))
15470b57cec5SDimitry Andric     return false;
15480b57cec5SDimitry Andric 
15490b57cec5SDimitry Andric   PredValueInfoTy PredValues;
1550e8d8bef9SDimitry Andric   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
15515ffd83dbSDimitry Andric                                        CxtI)) {
15525ffd83dbSDimitry Andric     // We don't have known values in predecessors.  See if we can thread through
15535ffd83dbSDimitry Andric     // BB and its sole predecessor.
1554e8d8bef9SDimitry Andric     return maybethreadThroughTwoBasicBlocks(BB, Cond);
15555ffd83dbSDimitry Andric   }
15560b57cec5SDimitry Andric 
15570b57cec5SDimitry Andric   assert(!PredValues.empty() &&
1558e8d8bef9SDimitry Andric          "computeValueKnownInPredecessors returned true with no values");
15590b57cec5SDimitry Andric 
15600b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
15610b57cec5SDimitry Andric              for (const auto &PredValue : PredValues) {
15620b57cec5SDimitry Andric                dbgs() << "  BB '" << BB->getName()
15630b57cec5SDimitry Andric                       << "': FOUND condition = " << *PredValue.first
15640b57cec5SDimitry Andric                       << " for pred '" << PredValue.second->getName() << "'.\n";
15650b57cec5SDimitry Andric   });
15660b57cec5SDimitry Andric 
15670b57cec5SDimitry Andric   // Decide what we want to thread through.  Convert our list of known values to
15680b57cec5SDimitry Andric   // a list of known destinations for each pred.  This also discards duplicate
15690b57cec5SDimitry Andric   // predecessors and keeps track of the undefined inputs (which are represented
15700b57cec5SDimitry Andric   // as a null dest in the PredToDestList).
15710b57cec5SDimitry Andric   SmallPtrSet<BasicBlock*, 16> SeenPreds;
15720b57cec5SDimitry Andric   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
15730b57cec5SDimitry Andric 
15740b57cec5SDimitry Andric   BasicBlock *OnlyDest = nullptr;
15750b57cec5SDimitry Andric   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
15760b57cec5SDimitry Andric   Constant *OnlyVal = nullptr;
15770b57cec5SDimitry Andric   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
15780b57cec5SDimitry Andric 
15790b57cec5SDimitry Andric   for (const auto &PredValue : PredValues) {
15800b57cec5SDimitry Andric     BasicBlock *Pred = PredValue.second;
15810b57cec5SDimitry Andric     if (!SeenPreds.insert(Pred).second)
15820b57cec5SDimitry Andric       continue;  // Duplicate predecessor entry.
15830b57cec5SDimitry Andric 
15840b57cec5SDimitry Andric     Constant *Val = PredValue.first;
15850b57cec5SDimitry Andric 
15860b57cec5SDimitry Andric     BasicBlock *DestBB;
15870b57cec5SDimitry Andric     if (isa<UndefValue>(Val))
15880b57cec5SDimitry Andric       DestBB = nullptr;
15890b57cec5SDimitry Andric     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
15900b57cec5SDimitry Andric       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
15910b57cec5SDimitry Andric       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
15920b57cec5SDimitry Andric     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
15930b57cec5SDimitry Andric       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
15940b57cec5SDimitry Andric       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
15950b57cec5SDimitry Andric     } else {
15960b57cec5SDimitry Andric       assert(isa<IndirectBrInst>(BB->getTerminator())
15970b57cec5SDimitry Andric               && "Unexpected terminator");
15980b57cec5SDimitry Andric       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
15990b57cec5SDimitry Andric       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
16000b57cec5SDimitry Andric     }
16010b57cec5SDimitry Andric 
16020b57cec5SDimitry Andric     // If we have exactly one destination, remember it for efficiency below.
16030b57cec5SDimitry Andric     if (PredToDestList.empty()) {
16040b57cec5SDimitry Andric       OnlyDest = DestBB;
16050b57cec5SDimitry Andric       OnlyVal = Val;
16060b57cec5SDimitry Andric     } else {
16070b57cec5SDimitry Andric       if (OnlyDest != DestBB)
16080b57cec5SDimitry Andric         OnlyDest = MultipleDestSentinel;
16090b57cec5SDimitry Andric       // It possible we have same destination, but different value, e.g. default
16100b57cec5SDimitry Andric       // case in switchinst.
16110b57cec5SDimitry Andric       if (Val != OnlyVal)
16120b57cec5SDimitry Andric         OnlyVal = MultipleVal;
16130b57cec5SDimitry Andric     }
16140b57cec5SDimitry Andric 
16150b57cec5SDimitry Andric     // If the predecessor ends with an indirect goto, we can't change its
1616753f127fSDimitry Andric     // destination.
1617753f127fSDimitry Andric     if (isa<IndirectBrInst>(Pred->getTerminator()))
16180b57cec5SDimitry Andric       continue;
16190b57cec5SDimitry Andric 
16205ffd83dbSDimitry Andric     PredToDestList.emplace_back(Pred, DestBB);
16210b57cec5SDimitry Andric   }
16220b57cec5SDimitry Andric 
16230b57cec5SDimitry Andric   // If all edges were unthreadable, we fail.
16240b57cec5SDimitry Andric   if (PredToDestList.empty())
16250b57cec5SDimitry Andric     return false;
16260b57cec5SDimitry Andric 
16270b57cec5SDimitry Andric   // If all the predecessors go to a single known successor, we want to fold,
16280b57cec5SDimitry Andric   // not thread. By doing so, we do not need to duplicate the current block and
16290b57cec5SDimitry Andric   // also miss potential opportunities in case we dont/cant duplicate.
16300b57cec5SDimitry Andric   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
16310b57cec5SDimitry Andric     if (BB->hasNPredecessors(PredToDestList.size())) {
16320b57cec5SDimitry Andric       bool SeenFirstBranchToOnlyDest = false;
16330b57cec5SDimitry Andric       std::vector <DominatorTree::UpdateType> Updates;
16340b57cec5SDimitry Andric       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
16350b57cec5SDimitry Andric       for (BasicBlock *SuccBB : successors(BB)) {
16360b57cec5SDimitry Andric         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
16370b57cec5SDimitry Andric           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
16380b57cec5SDimitry Andric         } else {
16390b57cec5SDimitry Andric           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
16400b57cec5SDimitry Andric           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
16410b57cec5SDimitry Andric         }
16420b57cec5SDimitry Andric       }
16430b57cec5SDimitry Andric 
16440b57cec5SDimitry Andric       // Finally update the terminator.
16450b57cec5SDimitry Andric       Instruction *Term = BB->getTerminator();
1646*0fca6ea1SDimitry Andric       Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator());
1647*0fca6ea1SDimitry Andric       NewBI->setDebugLoc(Term->getDebugLoc());
1648fe6060f1SDimitry Andric       ++NumFolds;
16490b57cec5SDimitry Andric       Term->eraseFromParent();
16500b57cec5SDimitry Andric       DTU->applyUpdatesPermissive(Updates);
165106c3fb27SDimitry Andric       if (auto *BPI = getBPI())
1652e8d8bef9SDimitry Andric         BPI->eraseBlock(BB);
16530b57cec5SDimitry Andric 
16540b57cec5SDimitry Andric       // If the condition is now dead due to the removal of the old terminator,
16550b57cec5SDimitry Andric       // erase it.
16560b57cec5SDimitry Andric       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
16570b57cec5SDimitry Andric         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
16580b57cec5SDimitry Andric           CondInst->eraseFromParent();
16590b57cec5SDimitry Andric         // We can safely replace *some* uses of the CondInst if it has
16600b57cec5SDimitry Andric         // exactly one value as returned by LVI. RAUW is incorrect in the
16610b57cec5SDimitry Andric         // presence of guards and assumes, that have the `Cond` as the use. This
16620b57cec5SDimitry Andric         // is because we use the guards/assume to reason about the `Cond` value
16630b57cec5SDimitry Andric         // at the end of block, but RAUW unconditionally replaces all uses
16640b57cec5SDimitry Andric         // including the guards/assumes themselves and the uses before the
16650b57cec5SDimitry Andric         // guard/assume.
166681ad6265SDimitry Andric         else if (OnlyVal && OnlyVal != MultipleVal)
166781ad6265SDimitry Andric           replaceFoldableUses(CondInst, OnlyVal, BB);
16680b57cec5SDimitry Andric       }
16690b57cec5SDimitry Andric       return true;
16700b57cec5SDimitry Andric     }
16710b57cec5SDimitry Andric   }
16720b57cec5SDimitry Andric 
16730b57cec5SDimitry Andric   // Determine which is the most common successor.  If we have many inputs and
16740b57cec5SDimitry Andric   // this block is a switch, we want to start by threading the batch that goes
16750b57cec5SDimitry Andric   // to the most popular destination first.  If we only know about one
16760b57cec5SDimitry Andric   // threadable destination (the common case) we can avoid this.
16770b57cec5SDimitry Andric   BasicBlock *MostPopularDest = OnlyDest;
16780b57cec5SDimitry Andric 
16790b57cec5SDimitry Andric   if (MostPopularDest == MultipleDestSentinel) {
1680e8d8bef9SDimitry Andric     // Remove any loop headers from the Dest list, threadEdge conservatively
16810b57cec5SDimitry Andric     // won't process them, but we might have other destination that are eligible
16820b57cec5SDimitry Andric     // and we still want to process.
16830b57cec5SDimitry Andric     erase_if(PredToDestList,
16840b57cec5SDimitry Andric              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1685e8d8bef9SDimitry Andric                return LoopHeaders.contains(PredToDest.second);
16860b57cec5SDimitry Andric              });
16870b57cec5SDimitry Andric 
16880b57cec5SDimitry Andric     if (PredToDestList.empty())
16890b57cec5SDimitry Andric       return false;
16900b57cec5SDimitry Andric 
1691e8d8bef9SDimitry Andric     MostPopularDest = findMostPopularDest(BB, PredToDestList);
16920b57cec5SDimitry Andric   }
16930b57cec5SDimitry Andric 
16940b57cec5SDimitry Andric   // Now that we know what the most popular destination is, factor all
16950b57cec5SDimitry Andric   // predecessors that will jump to it into a single predecessor.
16960b57cec5SDimitry Andric   SmallVector<BasicBlock*, 16> PredsToFactor;
16970b57cec5SDimitry Andric   for (const auto &PredToDest : PredToDestList)
16980b57cec5SDimitry Andric     if (PredToDest.second == MostPopularDest) {
16990b57cec5SDimitry Andric       BasicBlock *Pred = PredToDest.first;
17000b57cec5SDimitry Andric 
17010b57cec5SDimitry Andric       // This predecessor may be a switch or something else that has multiple
17020b57cec5SDimitry Andric       // edges to the block.  Factor each of these edges by listing them
17030b57cec5SDimitry Andric       // according to # occurrences in PredsToFactor.
17040b57cec5SDimitry Andric       for (BasicBlock *Succ : successors(Pred))
17050b57cec5SDimitry Andric         if (Succ == BB)
17060b57cec5SDimitry Andric           PredsToFactor.push_back(Pred);
17070b57cec5SDimitry Andric     }
17080b57cec5SDimitry Andric 
17090b57cec5SDimitry Andric   // If the threadable edges are branching on an undefined value, we get to pick
17100b57cec5SDimitry Andric   // the destination that these predecessors should get to.
17110b57cec5SDimitry Andric   if (!MostPopularDest)
17120b57cec5SDimitry Andric     MostPopularDest = BB->getTerminator()->
1713e8d8bef9SDimitry Andric                             getSuccessor(getBestDestForJumpOnUndef(BB));
17140b57cec5SDimitry Andric 
17150b57cec5SDimitry Andric   // Ok, try to thread it!
1716e8d8bef9SDimitry Andric   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
17170b57cec5SDimitry Andric }
17180b57cec5SDimitry Andric 
1719e8d8bef9SDimitry Andric /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1720e8d8bef9SDimitry Andric /// a PHI node (or freeze PHI) in the current block.  See if there are any
1721e8d8bef9SDimitry Andric /// simplifications we can do based on inputs to the phi node.
1722e8d8bef9SDimitry Andric bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
17230b57cec5SDimitry Andric   BasicBlock *BB = PN->getParent();
17240b57cec5SDimitry Andric 
17250b57cec5SDimitry Andric   // TODO: We could make use of this to do it once for blocks with common PHI
17260b57cec5SDimitry Andric   // values.
17270b57cec5SDimitry Andric   SmallVector<BasicBlock*, 1> PredBBs;
17280b57cec5SDimitry Andric   PredBBs.resize(1);
17290b57cec5SDimitry Andric 
17300b57cec5SDimitry Andric   // If any of the predecessor blocks end in an unconditional branch, we can
17310b57cec5SDimitry Andric   // *duplicate* the conditional branch into that block in order to further
17320b57cec5SDimitry Andric   // encourage jump threading and to eliminate cases where we have branch on a
17330b57cec5SDimitry Andric   // phi of an icmp (branch on icmp is much better).
1734e8d8bef9SDimitry Andric   // This is still beneficial when a frozen phi is used as the branch condition
1735e8d8bef9SDimitry Andric   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1736e8d8bef9SDimitry Andric   // to br(icmp(freeze ...)).
17370b57cec5SDimitry Andric   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
17380b57cec5SDimitry Andric     BasicBlock *PredBB = PN->getIncomingBlock(i);
17390b57cec5SDimitry Andric     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
17400b57cec5SDimitry Andric       if (PredBr->isUnconditional()) {
17410b57cec5SDimitry Andric         PredBBs[0] = PredBB;
17420b57cec5SDimitry Andric         // Try to duplicate BB into PredBB.
1743e8d8bef9SDimitry Andric         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
17440b57cec5SDimitry Andric           return true;
17450b57cec5SDimitry Andric       }
17460b57cec5SDimitry Andric   }
17470b57cec5SDimitry Andric 
17480b57cec5SDimitry Andric   return false;
17490b57cec5SDimitry Andric }
17500b57cec5SDimitry Andric 
1751e8d8bef9SDimitry Andric /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
17520b57cec5SDimitry Andric /// a xor instruction in the current block.  See if there are any
17530b57cec5SDimitry Andric /// simplifications we can do based on inputs to the xor.
1754e8d8bef9SDimitry Andric bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
17550b57cec5SDimitry Andric   BasicBlock *BB = BO->getParent();
17560b57cec5SDimitry Andric 
17570b57cec5SDimitry Andric   // If either the LHS or RHS of the xor is a constant, don't do this
17580b57cec5SDimitry Andric   // optimization.
17590b57cec5SDimitry Andric   if (isa<ConstantInt>(BO->getOperand(0)) ||
17600b57cec5SDimitry Andric       isa<ConstantInt>(BO->getOperand(1)))
17610b57cec5SDimitry Andric     return false;
17620b57cec5SDimitry Andric 
17630b57cec5SDimitry Andric   // If the first instruction in BB isn't a phi, we won't be able to infer
17640b57cec5SDimitry Andric   // anything special about any particular predecessor.
17650b57cec5SDimitry Andric   if (!isa<PHINode>(BB->front()))
17660b57cec5SDimitry Andric     return false;
17670b57cec5SDimitry Andric 
17680b57cec5SDimitry Andric   // If this BB is a landing pad, we won't be able to split the edge into it.
17690b57cec5SDimitry Andric   if (BB->isEHPad())
17700b57cec5SDimitry Andric     return false;
17710b57cec5SDimitry Andric 
17720b57cec5SDimitry Andric   // If we have a xor as the branch input to this block, and we know that the
17730b57cec5SDimitry Andric   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
17740b57cec5SDimitry Andric   // the condition into the predecessor and fix that value to true, saving some
17750b57cec5SDimitry Andric   // logical ops on that path and encouraging other paths to simplify.
17760b57cec5SDimitry Andric   //
17770b57cec5SDimitry Andric   // This copies something like this:
17780b57cec5SDimitry Andric   //
17790b57cec5SDimitry Andric   //  BB:
17800b57cec5SDimitry Andric   //    %X = phi i1 [1],  [%X']
17810b57cec5SDimitry Andric   //    %Y = icmp eq i32 %A, %B
17820b57cec5SDimitry Andric   //    %Z = xor i1 %X, %Y
17830b57cec5SDimitry Andric   //    br i1 %Z, ...
17840b57cec5SDimitry Andric   //
17850b57cec5SDimitry Andric   // Into:
17860b57cec5SDimitry Andric   //  BB':
17870b57cec5SDimitry Andric   //    %Y = icmp ne i32 %A, %B
17880b57cec5SDimitry Andric   //    br i1 %Y, ...
17890b57cec5SDimitry Andric 
17900b57cec5SDimitry Andric   PredValueInfoTy XorOpValues;
17910b57cec5SDimitry Andric   bool isLHS = true;
1792e8d8bef9SDimitry Andric   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
17930b57cec5SDimitry Andric                                        WantInteger, BO)) {
17940b57cec5SDimitry Andric     assert(XorOpValues.empty());
1795e8d8bef9SDimitry Andric     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
17960b57cec5SDimitry Andric                                          WantInteger, BO))
17970b57cec5SDimitry Andric       return false;
17980b57cec5SDimitry Andric     isLHS = false;
17990b57cec5SDimitry Andric   }
18000b57cec5SDimitry Andric 
18010b57cec5SDimitry Andric   assert(!XorOpValues.empty() &&
1802e8d8bef9SDimitry Andric          "computeValueKnownInPredecessors returned true with no values");
18030b57cec5SDimitry Andric 
18040b57cec5SDimitry Andric   // Scan the information to see which is most popular: true or false.  The
18050b57cec5SDimitry Andric   // predecessors can be of the set true, false, or undef.
18060b57cec5SDimitry Andric   unsigned NumTrue = 0, NumFalse = 0;
18070b57cec5SDimitry Andric   for (const auto &XorOpValue : XorOpValues) {
18080b57cec5SDimitry Andric     if (isa<UndefValue>(XorOpValue.first))
18090b57cec5SDimitry Andric       // Ignore undefs for the count.
18100b57cec5SDimitry Andric       continue;
18110b57cec5SDimitry Andric     if (cast<ConstantInt>(XorOpValue.first)->isZero())
18120b57cec5SDimitry Andric       ++NumFalse;
18130b57cec5SDimitry Andric     else
18140b57cec5SDimitry Andric       ++NumTrue;
18150b57cec5SDimitry Andric   }
18160b57cec5SDimitry Andric 
18170b57cec5SDimitry Andric   // Determine which value to split on, true, false, or undef if neither.
18180b57cec5SDimitry Andric   ConstantInt *SplitVal = nullptr;
18190b57cec5SDimitry Andric   if (NumTrue > NumFalse)
18200b57cec5SDimitry Andric     SplitVal = ConstantInt::getTrue(BB->getContext());
18210b57cec5SDimitry Andric   else if (NumTrue != 0 || NumFalse != 0)
18220b57cec5SDimitry Andric     SplitVal = ConstantInt::getFalse(BB->getContext());
18230b57cec5SDimitry Andric 
18240b57cec5SDimitry Andric   // Collect all of the blocks that this can be folded into so that we can
18250b57cec5SDimitry Andric   // factor this once and clone it once.
18260b57cec5SDimitry Andric   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
18270b57cec5SDimitry Andric   for (const auto &XorOpValue : XorOpValues) {
18280b57cec5SDimitry Andric     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
18290b57cec5SDimitry Andric       continue;
18300b57cec5SDimitry Andric 
18310b57cec5SDimitry Andric     BlocksToFoldInto.push_back(XorOpValue.second);
18320b57cec5SDimitry Andric   }
18330b57cec5SDimitry Andric 
18340b57cec5SDimitry Andric   // If we inferred a value for all of the predecessors, then duplication won't
18350b57cec5SDimitry Andric   // help us.  However, we can just replace the LHS or RHS with the constant.
18360b57cec5SDimitry Andric   if (BlocksToFoldInto.size() ==
18370b57cec5SDimitry Andric       cast<PHINode>(BB->front()).getNumIncomingValues()) {
18380b57cec5SDimitry Andric     if (!SplitVal) {
18390b57cec5SDimitry Andric       // If all preds provide undef, just nuke the xor, because it is undef too.
18400b57cec5SDimitry Andric       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
18410b57cec5SDimitry Andric       BO->eraseFromParent();
1842bdd1243dSDimitry Andric     } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
18430b57cec5SDimitry Andric       // If all preds provide 0, replace the xor with the other input.
18440b57cec5SDimitry Andric       BO->replaceAllUsesWith(BO->getOperand(isLHS));
18450b57cec5SDimitry Andric       BO->eraseFromParent();
18460b57cec5SDimitry Andric     } else {
18470b57cec5SDimitry Andric       // If all preds provide 1, set the computed value to 1.
18480b57cec5SDimitry Andric       BO->setOperand(!isLHS, SplitVal);
18490b57cec5SDimitry Andric     }
18500b57cec5SDimitry Andric 
18510b57cec5SDimitry Andric     return true;
18520b57cec5SDimitry Andric   }
18530b57cec5SDimitry Andric 
1854979e22ffSDimitry Andric   // If any of predecessors end with an indirect goto, we can't change its
1855753f127fSDimitry Andric   // destination.
1856979e22ffSDimitry Andric   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1857753f127fSDimitry Andric         return isa<IndirectBrInst>(Pred->getTerminator());
1858979e22ffSDimitry Andric       }))
1859979e22ffSDimitry Andric     return false;
1860979e22ffSDimitry Andric 
18610b57cec5SDimitry Andric   // Try to duplicate BB into PredBB.
1862e8d8bef9SDimitry Andric   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
18630b57cec5SDimitry Andric }
18640b57cec5SDimitry Andric 
1865e8d8bef9SDimitry Andric /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
18660b57cec5SDimitry Andric /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
18670b57cec5SDimitry Andric /// NewPred using the entries from OldPred (suitably mapped).
1868e8d8bef9SDimitry Andric static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
18690b57cec5SDimitry Andric                                             BasicBlock *OldPred,
18700b57cec5SDimitry Andric                                             BasicBlock *NewPred,
1871*0fca6ea1SDimitry Andric                                             ValueToValueMapTy &ValueMap) {
18720b57cec5SDimitry Andric   for (PHINode &PN : PHIBB->phis()) {
18730b57cec5SDimitry Andric     // Ok, we have a PHI node.  Figure out what the incoming value was for the
18740b57cec5SDimitry Andric     // DestBlock.
18750b57cec5SDimitry Andric     Value *IV = PN.getIncomingValueForBlock(OldPred);
18760b57cec5SDimitry Andric 
18770b57cec5SDimitry Andric     // Remap the value if necessary.
18780b57cec5SDimitry Andric     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1879*0fca6ea1SDimitry Andric       ValueToValueMapTy::iterator I = ValueMap.find(Inst);
18800b57cec5SDimitry Andric       if (I != ValueMap.end())
18810b57cec5SDimitry Andric         IV = I->second;
18820b57cec5SDimitry Andric     }
18830b57cec5SDimitry Andric 
18840b57cec5SDimitry Andric     PN.addIncoming(IV, NewPred);
18850b57cec5SDimitry Andric   }
18860b57cec5SDimitry Andric }
18870b57cec5SDimitry Andric 
1888480093f4SDimitry Andric /// Merge basic block BB into its sole predecessor if possible.
1889e8d8bef9SDimitry Andric bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1890480093f4SDimitry Andric   BasicBlock *SinglePred = BB->getSinglePredecessor();
1891480093f4SDimitry Andric   if (!SinglePred)
1892480093f4SDimitry Andric     return false;
1893480093f4SDimitry Andric 
1894480093f4SDimitry Andric   const Instruction *TI = SinglePred->getTerminator();
18955f757f3fSDimitry Andric   if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1896480093f4SDimitry Andric       SinglePred == BB || hasAddressTakenAndUsed(BB))
1897480093f4SDimitry Andric     return false;
1898480093f4SDimitry Andric 
1899480093f4SDimitry Andric   // If SinglePred was a loop header, BB becomes one.
1900480093f4SDimitry Andric   if (LoopHeaders.erase(SinglePred))
1901480093f4SDimitry Andric     LoopHeaders.insert(BB);
1902480093f4SDimitry Andric 
1903480093f4SDimitry Andric   LVI->eraseBlock(SinglePred);
190406c3fb27SDimitry Andric   MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1905480093f4SDimitry Andric 
1906480093f4SDimitry Andric   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1907480093f4SDimitry Andric   // BB code within one basic block `BB`), we need to invalidate the LVI
1908480093f4SDimitry Andric   // information associated with BB, because the LVI information need not be
1909480093f4SDimitry Andric   // true for all of BB after the merge. For example,
1910480093f4SDimitry Andric   // Before the merge, LVI info and code is as follows:
1911480093f4SDimitry Andric   // SinglePred: <LVI info1 for %p val>
1912480093f4SDimitry Andric   // %y = use of %p
1913480093f4SDimitry Andric   // call @exit() // need not transfer execution to successor.
1914480093f4SDimitry Andric   // assume(%p) // from this point on %p is true
1915480093f4SDimitry Andric   // br label %BB
1916480093f4SDimitry Andric   // BB: <LVI info2 for %p val, i.e. %p is true>
1917480093f4SDimitry Andric   // %x = use of %p
1918480093f4SDimitry Andric   // br label exit
1919480093f4SDimitry Andric   //
1920480093f4SDimitry Andric   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1921480093f4SDimitry Andric   // (info2 and info1 respectively). After the merge and the deletion of the
1922480093f4SDimitry Andric   // LVI info1 for SinglePred. We have the following code:
1923480093f4SDimitry Andric   // BB: <LVI info2 for %p val>
1924480093f4SDimitry Andric   // %y = use of %p
1925480093f4SDimitry Andric   // call @exit()
1926480093f4SDimitry Andric   // assume(%p)
1927480093f4SDimitry Andric   // %x = use of %p <-- LVI info2 is correct from here onwards.
1928480093f4SDimitry Andric   // br label exit
1929480093f4SDimitry Andric   // LVI info2 for BB is incorrect at the beginning of BB.
1930480093f4SDimitry Andric 
1931480093f4SDimitry Andric   // Invalidate LVI information for BB if the LVI is not provably true for
1932480093f4SDimitry Andric   // all of BB.
1933480093f4SDimitry Andric   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1934480093f4SDimitry Andric     LVI->eraseBlock(BB);
1935480093f4SDimitry Andric   return true;
1936480093f4SDimitry Andric }
1937480093f4SDimitry Andric 
1938480093f4SDimitry Andric /// Update the SSA form.  NewBB contains instructions that are copied from BB.
1939480093f4SDimitry Andric /// ValueMapping maps old values in BB to new ones in NewBB.
1940*0fca6ea1SDimitry Andric void JumpThreadingPass::updateSSA(BasicBlock *BB, BasicBlock *NewBB,
1941*0fca6ea1SDimitry Andric                                   ValueToValueMapTy &ValueMapping) {
1942480093f4SDimitry Andric   // If there were values defined in BB that are used outside the block, then we
1943480093f4SDimitry Andric   // now have to update all uses of the value to use either the original value,
1944480093f4SDimitry Andric   // the cloned value, or some PHI derived value.  This can require arbitrary
1945480093f4SDimitry Andric   // PHI insertion, of which we are prepared to do, clean these up now.
1946480093f4SDimitry Andric   SSAUpdater SSAUpdate;
1947480093f4SDimitry Andric   SmallVector<Use *, 16> UsesToRename;
194806c3fb27SDimitry Andric   SmallVector<DbgValueInst *, 4> DbgValues;
1949*0fca6ea1SDimitry Andric   SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1950480093f4SDimitry Andric 
1951480093f4SDimitry Andric   for (Instruction &I : *BB) {
1952480093f4SDimitry Andric     // Scan all uses of this instruction to see if it is used outside of its
1953480093f4SDimitry Andric     // block, and if so, record them in UsesToRename.
1954480093f4SDimitry Andric     for (Use &U : I.uses()) {
1955480093f4SDimitry Andric       Instruction *User = cast<Instruction>(U.getUser());
1956480093f4SDimitry Andric       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1957480093f4SDimitry Andric         if (UserPN->getIncomingBlock(U) == BB)
1958480093f4SDimitry Andric           continue;
1959480093f4SDimitry Andric       } else if (User->getParent() == BB)
1960480093f4SDimitry Andric         continue;
1961480093f4SDimitry Andric 
1962480093f4SDimitry Andric       UsesToRename.push_back(&U);
1963480093f4SDimitry Andric     }
1964480093f4SDimitry Andric 
196506c3fb27SDimitry Andric     // Find debug values outside of the block
1966*0fca6ea1SDimitry Andric     findDbgValues(DbgValues, &I, &DbgVariableRecords);
19675f757f3fSDimitry Andric     llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
196806c3fb27SDimitry Andric       return DbgVal->getParent() == BB;
19695f757f3fSDimitry Andric     });
1970*0fca6ea1SDimitry Andric     llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1971*0fca6ea1SDimitry Andric       return DbgVarRec->getParent() == BB;
19725f757f3fSDimitry Andric     });
197306c3fb27SDimitry Andric 
1974480093f4SDimitry Andric     // If there are no uses outside the block, we're done with this instruction.
1975*0fca6ea1SDimitry Andric     if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty())
1976480093f4SDimitry Andric       continue;
1977480093f4SDimitry Andric     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1978480093f4SDimitry Andric 
1979480093f4SDimitry Andric     // We found a use of I outside of BB.  Rename all uses of I that are outside
1980480093f4SDimitry Andric     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1981480093f4SDimitry Andric     // with the two values we know.
1982480093f4SDimitry Andric     SSAUpdate.Initialize(I.getType(), I.getName());
1983480093f4SDimitry Andric     SSAUpdate.AddAvailableValue(BB, &I);
1984480093f4SDimitry Andric     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1985480093f4SDimitry Andric 
1986480093f4SDimitry Andric     while (!UsesToRename.empty())
1987480093f4SDimitry Andric       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1988*0fca6ea1SDimitry Andric     if (!DbgValues.empty() || !DbgVariableRecords.empty()) {
198906c3fb27SDimitry Andric       SSAUpdate.UpdateDebugValues(&I, DbgValues);
1990*0fca6ea1SDimitry Andric       SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
199106c3fb27SDimitry Andric       DbgValues.clear();
1992*0fca6ea1SDimitry Andric       DbgVariableRecords.clear();
199306c3fb27SDimitry Andric     }
199406c3fb27SDimitry Andric 
1995480093f4SDimitry Andric     LLVM_DEBUG(dbgs() << "\n");
1996480093f4SDimitry Andric   }
1997480093f4SDimitry Andric }
1998480093f4SDimitry Andric 
1999480093f4SDimitry Andric /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2000480093f4SDimitry Andric /// arguments that come from PredBB.  Return the map from the variables in the
2001480093f4SDimitry Andric /// source basic block to the variables in the newly created basic block.
2002*0fca6ea1SDimitry Andric 
2003*0fca6ea1SDimitry Andric void JumpThreadingPass::cloneInstructions(ValueToValueMapTy &ValueMapping,
2004*0fca6ea1SDimitry Andric                                           BasicBlock::iterator BI,
2005*0fca6ea1SDimitry Andric                                           BasicBlock::iterator BE,
2006*0fca6ea1SDimitry Andric                                           BasicBlock *NewBB,
2007480093f4SDimitry Andric                                           BasicBlock *PredBB) {
2008480093f4SDimitry Andric   // We are going to have to map operands from the source basic block to the new
2009480093f4SDimitry Andric   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2010480093f4SDimitry Andric   // block, evaluate them to account for entry from PredBB.
2011480093f4SDimitry Andric 
2012bdd1243dSDimitry Andric   // Retargets llvm.dbg.value to any renamed variables.
2013bdd1243dSDimitry Andric   auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2014bdd1243dSDimitry Andric     auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2015bdd1243dSDimitry Andric     if (!DbgInstruction)
2016bdd1243dSDimitry Andric       return false;
2017bdd1243dSDimitry Andric 
2018bdd1243dSDimitry Andric     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2019bdd1243dSDimitry Andric     for (auto DbgOperand : DbgInstruction->location_ops()) {
2020bdd1243dSDimitry Andric       auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2021bdd1243dSDimitry Andric       if (!DbgOperandInstruction)
2022bdd1243dSDimitry Andric         continue;
2023bdd1243dSDimitry Andric 
2024bdd1243dSDimitry Andric       auto I = ValueMapping.find(DbgOperandInstruction);
2025bdd1243dSDimitry Andric       if (I != ValueMapping.end()) {
2026bdd1243dSDimitry Andric         OperandsToRemap.insert(
2027bdd1243dSDimitry Andric             std::pair<Value *, Value *>(DbgOperand, I->second));
2028bdd1243dSDimitry Andric       }
2029bdd1243dSDimitry Andric     }
2030bdd1243dSDimitry Andric 
2031bdd1243dSDimitry Andric     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2032bdd1243dSDimitry Andric       DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2033bdd1243dSDimitry Andric     return true;
2034bdd1243dSDimitry Andric   };
2035bdd1243dSDimitry Andric 
2036*0fca6ea1SDimitry Andric   // Duplicate implementation of the above dbg.value code, using
2037*0fca6ea1SDimitry Andric   // DbgVariableRecords instead.
2038*0fca6ea1SDimitry Andric   auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
20395f757f3fSDimitry Andric     SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2040*0fca6ea1SDimitry Andric     for (auto *Op : DVR->location_ops()) {
20415f757f3fSDimitry Andric       Instruction *OpInst = dyn_cast<Instruction>(Op);
20425f757f3fSDimitry Andric       if (!OpInst)
20435f757f3fSDimitry Andric         continue;
20445f757f3fSDimitry Andric 
20455f757f3fSDimitry Andric       auto I = ValueMapping.find(OpInst);
20465f757f3fSDimitry Andric       if (I != ValueMapping.end())
20475f757f3fSDimitry Andric         OperandsToRemap.insert({OpInst, I->second});
20485f757f3fSDimitry Andric     }
20495f757f3fSDimitry Andric 
20505f757f3fSDimitry Andric     for (auto &[OldOp, MappedOp] : OperandsToRemap)
2051*0fca6ea1SDimitry Andric       DVR->replaceVariableLocationOp(OldOp, MappedOp);
20525f757f3fSDimitry Andric   };
20535f757f3fSDimitry Andric 
20545f757f3fSDimitry Andric   BasicBlock *RangeBB = BI->getParent();
20555f757f3fSDimitry Andric 
2056480093f4SDimitry Andric   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2057480093f4SDimitry Andric   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2058480093f4SDimitry Andric   // might need to rewrite the operand of the cloned phi.
2059480093f4SDimitry Andric   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2060480093f4SDimitry Andric     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2061480093f4SDimitry Andric     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2062480093f4SDimitry Andric     ValueMapping[PN] = NewPN;
2063480093f4SDimitry Andric   }
2064480093f4SDimitry Andric 
2065d409305fSDimitry Andric   // Clone noalias scope declarations in the threaded block. When threading a
2066d409305fSDimitry Andric   // loop exit, we would otherwise end up with two idential scope declarations
2067d409305fSDimitry Andric   // visible at the same time.
2068d409305fSDimitry Andric   SmallVector<MDNode *> NoAliasScopes;
2069d409305fSDimitry Andric   DenseMap<MDNode *, MDNode *> ClonedScopes;
2070d409305fSDimitry Andric   LLVMContext &Context = PredBB->getContext();
2071d409305fSDimitry Andric   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2072d409305fSDimitry Andric   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2073d409305fSDimitry Andric 
20745f757f3fSDimitry Andric   auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2075*0fca6ea1SDimitry Andric     auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2076*0fca6ea1SDimitry Andric     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2077*0fca6ea1SDimitry Andric       RetargetDbgVariableRecordIfPossible(&DVR);
20785f757f3fSDimitry Andric   };
20795f757f3fSDimitry Andric 
2080480093f4SDimitry Andric   // Clone the non-phi instructions of the source basic block into NewBB,
2081480093f4SDimitry Andric   // keeping track of the mapping and using it to remap operands in the cloned
2082480093f4SDimitry Andric   // instructions.
2083480093f4SDimitry Andric   for (; BI != BE; ++BI) {
2084480093f4SDimitry Andric     Instruction *New = BI->clone();
2085480093f4SDimitry Andric     New->setName(BI->getName());
2086bdd1243dSDimitry Andric     New->insertInto(NewBB, NewBB->end());
2087480093f4SDimitry Andric     ValueMapping[&*BI] = New;
2088d409305fSDimitry Andric     adaptNoAliasScopes(New, ClonedScopes, Context);
2089480093f4SDimitry Andric 
20905f757f3fSDimitry Andric     CloneAndRemapDbgInfo(New, &*BI);
20915f757f3fSDimitry Andric 
2092bdd1243dSDimitry Andric     if (RetargetDbgValueIfPossible(New))
2093bdd1243dSDimitry Andric       continue;
2094bdd1243dSDimitry Andric 
2095480093f4SDimitry Andric     // Remap operands to patch up intra-block references.
2096480093f4SDimitry Andric     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2097480093f4SDimitry Andric       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2098*0fca6ea1SDimitry Andric         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2099480093f4SDimitry Andric         if (I != ValueMapping.end())
2100480093f4SDimitry Andric           New->setOperand(i, I->second);
2101480093f4SDimitry Andric       }
2102480093f4SDimitry Andric   }
2103480093f4SDimitry Andric 
2104*0fca6ea1SDimitry Andric   // There may be DbgVariableRecords on the terminator, clone directly from
2105*0fca6ea1SDimitry Andric   // marker to marker as there isn't an instruction there.
2106*0fca6ea1SDimitry Andric   if (BE != RangeBB->end() && BE->hasDbgRecords()) {
21075f757f3fSDimitry Andric     // Dump them at the end.
2108*0fca6ea1SDimitry Andric     DbgMarker *Marker = RangeBB->getMarker(BE);
2109*0fca6ea1SDimitry Andric     DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2110*0fca6ea1SDimitry Andric     auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2111*0fca6ea1SDimitry Andric     for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2112*0fca6ea1SDimitry Andric       RetargetDbgVariableRecordIfPossible(&DVR);
21135f757f3fSDimitry Andric   }
21145f757f3fSDimitry Andric 
2115*0fca6ea1SDimitry Andric   return;
2116480093f4SDimitry Andric }
2117480093f4SDimitry Andric 
21185ffd83dbSDimitry Andric /// Attempt to thread through two successive basic blocks.
2119e8d8bef9SDimitry Andric bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
21205ffd83dbSDimitry Andric                                                          Value *Cond) {
21215ffd83dbSDimitry Andric   // Consider:
21225ffd83dbSDimitry Andric   //
21235ffd83dbSDimitry Andric   // PredBB:
21245ffd83dbSDimitry Andric   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
21255ffd83dbSDimitry Andric   //   %tobool = icmp eq i32 %cond, 0
21265ffd83dbSDimitry Andric   //   br i1 %tobool, label %BB, label ...
21275ffd83dbSDimitry Andric   //
21285ffd83dbSDimitry Andric   // BB:
21295ffd83dbSDimitry Andric   //   %cmp = icmp eq i32* %var, null
21305ffd83dbSDimitry Andric   //   br i1 %cmp, label ..., label ...
21315ffd83dbSDimitry Andric   //
21325ffd83dbSDimitry Andric   // We don't know the value of %var at BB even if we know which incoming edge
21335ffd83dbSDimitry Andric   // we take to BB.  However, once we duplicate PredBB for each of its incoming
21345ffd83dbSDimitry Andric   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
21355ffd83dbSDimitry Andric   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
21365ffd83dbSDimitry Andric 
21375ffd83dbSDimitry Andric   // Require that BB end with a Branch for simplicity.
21385ffd83dbSDimitry Andric   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
21395ffd83dbSDimitry Andric   if (!CondBr)
21405ffd83dbSDimitry Andric     return false;
21415ffd83dbSDimitry Andric 
21425ffd83dbSDimitry Andric   // BB must have exactly one predecessor.
21435ffd83dbSDimitry Andric   BasicBlock *PredBB = BB->getSinglePredecessor();
21445ffd83dbSDimitry Andric   if (!PredBB)
21455ffd83dbSDimitry Andric     return false;
21465ffd83dbSDimitry Andric 
21475ffd83dbSDimitry Andric   // Require that PredBB end with a conditional Branch. If PredBB ends with an
21485ffd83dbSDimitry Andric   // unconditional branch, we should be merging PredBB and BB instead. For
21495ffd83dbSDimitry Andric   // simplicity, we don't deal with a switch.
21505ffd83dbSDimitry Andric   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
21515ffd83dbSDimitry Andric   if (!PredBBBranch || PredBBBranch->isUnconditional())
21525ffd83dbSDimitry Andric     return false;
21535ffd83dbSDimitry Andric 
21545ffd83dbSDimitry Andric   // If PredBB has exactly one incoming edge, we don't gain anything by copying
21555ffd83dbSDimitry Andric   // PredBB.
21565ffd83dbSDimitry Andric   if (PredBB->getSinglePredecessor())
21575ffd83dbSDimitry Andric     return false;
21585ffd83dbSDimitry Andric 
21595ffd83dbSDimitry Andric   // Don't thread through PredBB if it contains a successor edge to itself, in
21605ffd83dbSDimitry Andric   // which case we would infinite loop.  Suppose we are threading an edge from
21615ffd83dbSDimitry Andric   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
21625ffd83dbSDimitry Andric   // successor edge to itself.  If we allowed jump threading in this case, we
21635ffd83dbSDimitry Andric   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
21645ffd83dbSDimitry Andric   // PredBB.thread has a successor edge to PredBB, we would immediately come up
21655ffd83dbSDimitry Andric   // with another jump threading opportunity from PredBB.thread through PredBB
21665ffd83dbSDimitry Andric   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
21675ffd83dbSDimitry Andric   // would keep peeling one iteration from PredBB.
21685ffd83dbSDimitry Andric   if (llvm::is_contained(successors(PredBB), PredBB))
21695ffd83dbSDimitry Andric     return false;
21705ffd83dbSDimitry Andric 
21715ffd83dbSDimitry Andric   // Don't thread across a loop header.
21725ffd83dbSDimitry Andric   if (LoopHeaders.count(PredBB))
21735ffd83dbSDimitry Andric     return false;
21745ffd83dbSDimitry Andric 
21755ffd83dbSDimitry Andric   // Avoid complication with duplicating EH pads.
21765ffd83dbSDimitry Andric   if (PredBB->isEHPad())
21775ffd83dbSDimitry Andric     return false;
21785ffd83dbSDimitry Andric 
21795ffd83dbSDimitry Andric   // Find a predecessor that we can thread.  For simplicity, we only consider a
21805ffd83dbSDimitry Andric   // successor edge out of BB to which we thread exactly one incoming edge into
21815ffd83dbSDimitry Andric   // PredBB.
21825ffd83dbSDimitry Andric   unsigned ZeroCount = 0;
21835ffd83dbSDimitry Andric   unsigned OneCount = 0;
21845ffd83dbSDimitry Andric   BasicBlock *ZeroPred = nullptr;
21855ffd83dbSDimitry Andric   BasicBlock *OnePred = nullptr;
2186*0fca6ea1SDimitry Andric   const DataLayout &DL = BB->getDataLayout();
21875ffd83dbSDimitry Andric   for (BasicBlock *P : predecessors(PredBB)) {
2188753f127fSDimitry Andric     // If PredPred ends with IndirectBrInst, we can't handle it.
2189753f127fSDimitry Andric     if (isa<IndirectBrInst>(P->getTerminator()))
2190753f127fSDimitry Andric       continue;
21915ffd83dbSDimitry Andric     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2192*0fca6ea1SDimitry Andric             evaluateOnPredecessorEdge(BB, P, Cond, DL))) {
21935ffd83dbSDimitry Andric       if (CI->isZero()) {
21945ffd83dbSDimitry Andric         ZeroCount++;
21955ffd83dbSDimitry Andric         ZeroPred = P;
21965ffd83dbSDimitry Andric       } else if (CI->isOne()) {
21975ffd83dbSDimitry Andric         OneCount++;
21985ffd83dbSDimitry Andric         OnePred = P;
21995ffd83dbSDimitry Andric       }
22005ffd83dbSDimitry Andric     }
22015ffd83dbSDimitry Andric   }
22025ffd83dbSDimitry Andric 
22035ffd83dbSDimitry Andric   // Disregard complicated cases where we have to thread multiple edges.
22045ffd83dbSDimitry Andric   BasicBlock *PredPredBB;
22055ffd83dbSDimitry Andric   if (ZeroCount == 1) {
22065ffd83dbSDimitry Andric     PredPredBB = ZeroPred;
22075ffd83dbSDimitry Andric   } else if (OneCount == 1) {
22085ffd83dbSDimitry Andric     PredPredBB = OnePred;
22095ffd83dbSDimitry Andric   } else {
22105ffd83dbSDimitry Andric     return false;
22115ffd83dbSDimitry Andric   }
22125ffd83dbSDimitry Andric 
22135ffd83dbSDimitry Andric   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
22145ffd83dbSDimitry Andric 
22155ffd83dbSDimitry Andric   // If threading to the same block as we come from, we would infinite loop.
22165ffd83dbSDimitry Andric   if (SuccBB == BB) {
22175ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
22185ffd83dbSDimitry Andric                       << "' - would thread to self!\n");
22195ffd83dbSDimitry Andric     return false;
22205ffd83dbSDimitry Andric   }
22215ffd83dbSDimitry Andric 
22225ffd83dbSDimitry Andric   // If threading this would thread across a loop header, don't thread the edge.
2223e8d8bef9SDimitry Andric   // See the comments above findLoopHeaders for justifications and caveats.
22245ffd83dbSDimitry Andric   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
22255ffd83dbSDimitry Andric     LLVM_DEBUG({
22265ffd83dbSDimitry Andric       bool BBIsHeader = LoopHeaders.count(BB);
22275ffd83dbSDimitry Andric       bool SuccIsHeader = LoopHeaders.count(SuccBB);
22285ffd83dbSDimitry Andric       dbgs() << "  Not threading across "
22295ffd83dbSDimitry Andric              << (BBIsHeader ? "loop header BB '" : "block BB '")
22305ffd83dbSDimitry Andric              << BB->getName() << "' to dest "
22315ffd83dbSDimitry Andric              << (SuccIsHeader ? "loop header BB '" : "block BB '")
22325ffd83dbSDimitry Andric              << SuccBB->getName()
22335ffd83dbSDimitry Andric              << "' - it might create an irreducible loop!\n";
22345ffd83dbSDimitry Andric     });
22355ffd83dbSDimitry Andric     return false;
22365ffd83dbSDimitry Andric   }
22375ffd83dbSDimitry Andric 
22385ffd83dbSDimitry Andric   // Compute the cost of duplicating BB and PredBB.
2239349cc55cSDimitry Andric   unsigned BBCost = getJumpThreadDuplicationCost(
2240349cc55cSDimitry Andric       TTI, BB, BB->getTerminator(), BBDupThreshold);
22415ffd83dbSDimitry Andric   unsigned PredBBCost = getJumpThreadDuplicationCost(
2242349cc55cSDimitry Andric       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
22435ffd83dbSDimitry Andric 
22445ffd83dbSDimitry Andric   // Give up if costs are too high.  We need to check BBCost and PredBBCost
22455ffd83dbSDimitry Andric   // individually before checking their sum because getJumpThreadDuplicationCost
22465ffd83dbSDimitry Andric   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
22475ffd83dbSDimitry Andric   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
22485ffd83dbSDimitry Andric       BBCost + PredBBCost > BBDupThreshold) {
22495ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
22505ffd83dbSDimitry Andric                       << "' - Cost is too high: " << PredBBCost
22515ffd83dbSDimitry Andric                       << " for PredBB, " << BBCost << "for BB\n");
22525ffd83dbSDimitry Andric     return false;
22535ffd83dbSDimitry Andric   }
22545ffd83dbSDimitry Andric 
22555ffd83dbSDimitry Andric   // Now we are ready to duplicate PredBB.
2256e8d8bef9SDimitry Andric   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
22575ffd83dbSDimitry Andric   return true;
22585ffd83dbSDimitry Andric }
22595ffd83dbSDimitry Andric 
2260e8d8bef9SDimitry Andric void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
22615ffd83dbSDimitry Andric                                                     BasicBlock *PredBB,
22625ffd83dbSDimitry Andric                                                     BasicBlock *BB,
22635ffd83dbSDimitry Andric                                                     BasicBlock *SuccBB) {
22645ffd83dbSDimitry Andric   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
22655ffd83dbSDimitry Andric                     << BB->getName() << "'\n");
22665ffd83dbSDimitry Andric 
226706c3fb27SDimitry Andric   // Build BPI/BFI before any changes are made to IR.
226806c3fb27SDimitry Andric   bool HasProfile = doesBlockHaveProfileData(BB);
226906c3fb27SDimitry Andric   auto *BFI = getOrCreateBFI(HasProfile);
227006c3fb27SDimitry Andric   auto *BPI = getOrCreateBPI(BFI != nullptr);
227106c3fb27SDimitry Andric 
22725ffd83dbSDimitry Andric   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
22735ffd83dbSDimitry Andric   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
22745ffd83dbSDimitry Andric 
22755ffd83dbSDimitry Andric   BasicBlock *NewBB =
22765ffd83dbSDimitry Andric       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
22775ffd83dbSDimitry Andric                          PredBB->getParent(), PredBB);
22785ffd83dbSDimitry Andric   NewBB->moveAfter(PredBB);
22795ffd83dbSDimitry Andric 
22805ffd83dbSDimitry Andric   // Set the block frequency of NewBB.
228106c3fb27SDimitry Andric   if (BFI) {
228206c3fb27SDimitry Andric     assert(BPI && "It's expected BPI to exist along with BFI");
22835ffd83dbSDimitry Andric     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
22845ffd83dbSDimitry Andric                      BPI->getEdgeProbability(PredPredBB, PredBB);
22855f757f3fSDimitry Andric     BFI->setBlockFreq(NewBB, NewBBFreq);
22865ffd83dbSDimitry Andric   }
22875ffd83dbSDimitry Andric 
22885ffd83dbSDimitry Andric   // We are going to have to map operands from the original BB block to the new
22895ffd83dbSDimitry Andric   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
22905ffd83dbSDimitry Andric   // to account for entry from PredPredBB.
2291*0fca6ea1SDimitry Andric   ValueToValueMapTy ValueMapping;
2292*0fca6ea1SDimitry Andric   cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2293*0fca6ea1SDimitry Andric                     PredPredBB);
2294e8d8bef9SDimitry Andric 
2295e8d8bef9SDimitry Andric   // Copy the edge probabilities from PredBB to NewBB.
229606c3fb27SDimitry Andric   if (BPI)
2297e8d8bef9SDimitry Andric     BPI->copyEdgeProbabilities(PredBB, NewBB);
22985ffd83dbSDimitry Andric 
22995ffd83dbSDimitry Andric   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
23005ffd83dbSDimitry Andric   // This eliminates predecessors from PredPredBB, which requires us to simplify
23015ffd83dbSDimitry Andric   // any PHI nodes in PredBB.
23025ffd83dbSDimitry Andric   Instruction *PredPredTerm = PredPredBB->getTerminator();
23035ffd83dbSDimitry Andric   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
23045ffd83dbSDimitry Andric     if (PredPredTerm->getSuccessor(i) == PredBB) {
23055ffd83dbSDimitry Andric       PredBB->removePredecessor(PredPredBB, true);
23065ffd83dbSDimitry Andric       PredPredTerm->setSuccessor(i, NewBB);
23075ffd83dbSDimitry Andric     }
23085ffd83dbSDimitry Andric 
2309e8d8bef9SDimitry Andric   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
23105ffd83dbSDimitry Andric                                   ValueMapping);
2311e8d8bef9SDimitry Andric   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
23125ffd83dbSDimitry Andric                                   ValueMapping);
23135ffd83dbSDimitry Andric 
23145ffd83dbSDimitry Andric   DTU->applyUpdatesPermissive(
23155ffd83dbSDimitry Andric       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
23165ffd83dbSDimitry Andric        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
23175ffd83dbSDimitry Andric        {DominatorTree::Insert, PredPredBB, NewBB},
23185ffd83dbSDimitry Andric        {DominatorTree::Delete, PredPredBB, PredBB}});
23195ffd83dbSDimitry Andric 
2320e8d8bef9SDimitry Andric   updateSSA(PredBB, NewBB, ValueMapping);
23215ffd83dbSDimitry Andric 
23225ffd83dbSDimitry Andric   // Clean up things like PHI nodes with single operands, dead instructions,
23235ffd83dbSDimitry Andric   // etc.
23245ffd83dbSDimitry Andric   SimplifyInstructionsInBlock(NewBB, TLI);
23255ffd83dbSDimitry Andric   SimplifyInstructionsInBlock(PredBB, TLI);
23265ffd83dbSDimitry Andric 
23275ffd83dbSDimitry Andric   SmallVector<BasicBlock *, 1> PredsToFactor;
23285ffd83dbSDimitry Andric   PredsToFactor.push_back(NewBB);
2329e8d8bef9SDimitry Andric   threadEdge(BB, PredsToFactor, SuccBB);
23305ffd83dbSDimitry Andric }
23315ffd83dbSDimitry Andric 
2332e8d8bef9SDimitry Andric /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2333e8d8bef9SDimitry Andric bool JumpThreadingPass::tryThreadEdge(
2334480093f4SDimitry Andric     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
23350b57cec5SDimitry Andric     BasicBlock *SuccBB) {
23360b57cec5SDimitry Andric   // If threading to the same block as we come from, we would infinite loop.
23370b57cec5SDimitry Andric   if (SuccBB == BB) {
23380b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
23390b57cec5SDimitry Andric                       << "' - would thread to self!\n");
23400b57cec5SDimitry Andric     return false;
23410b57cec5SDimitry Andric   }
23420b57cec5SDimitry Andric 
23430b57cec5SDimitry Andric   // If threading this would thread across a loop header, don't thread the edge.
2344e8d8bef9SDimitry Andric   // See the comments above findLoopHeaders for justifications and caveats.
23450b57cec5SDimitry Andric   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
23460b57cec5SDimitry Andric     LLVM_DEBUG({
23470b57cec5SDimitry Andric       bool BBIsHeader = LoopHeaders.count(BB);
23480b57cec5SDimitry Andric       bool SuccIsHeader = LoopHeaders.count(SuccBB);
23490b57cec5SDimitry Andric       dbgs() << "  Not threading across "
23500b57cec5SDimitry Andric           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
23510b57cec5SDimitry Andric           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
23520b57cec5SDimitry Andric           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
23530b57cec5SDimitry Andric     });
23540b57cec5SDimitry Andric     return false;
23550b57cec5SDimitry Andric   }
23560b57cec5SDimitry Andric 
2357349cc55cSDimitry Andric   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2358349cc55cSDimitry Andric       TTI, BB, BB->getTerminator(), BBDupThreshold);
23590b57cec5SDimitry Andric   if (JumpThreadCost > BBDupThreshold) {
23600b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
23610b57cec5SDimitry Andric                       << "' - Cost is too high: " << JumpThreadCost << "\n");
23620b57cec5SDimitry Andric     return false;
23630b57cec5SDimitry Andric   }
23640b57cec5SDimitry Andric 
2365e8d8bef9SDimitry Andric   threadEdge(BB, PredBBs, SuccBB);
2366480093f4SDimitry Andric   return true;
2367480093f4SDimitry Andric }
2368480093f4SDimitry Andric 
2369e8d8bef9SDimitry Andric /// threadEdge - We have decided that it is safe and profitable to factor the
2370480093f4SDimitry Andric /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2371480093f4SDimitry Andric /// across BB.  Transform the IR to reflect this change.
2372e8d8bef9SDimitry Andric void JumpThreadingPass::threadEdge(BasicBlock *BB,
2373480093f4SDimitry Andric                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2374480093f4SDimitry Andric                                    BasicBlock *SuccBB) {
2375480093f4SDimitry Andric   assert(SuccBB != BB && "Don't create an infinite loop");
2376480093f4SDimitry Andric 
2377480093f4SDimitry Andric   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2378480093f4SDimitry Andric          "Don't thread across loop headers");
2379480093f4SDimitry Andric 
238006c3fb27SDimitry Andric   // Build BPI/BFI before any changes are made to IR.
238106c3fb27SDimitry Andric   bool HasProfile = doesBlockHaveProfileData(BB);
238206c3fb27SDimitry Andric   auto *BFI = getOrCreateBFI(HasProfile);
238306c3fb27SDimitry Andric   auto *BPI = getOrCreateBPI(BFI != nullptr);
238406c3fb27SDimitry Andric 
23850b57cec5SDimitry Andric   // And finally, do it!  Start by factoring the predecessors if needed.
23860b57cec5SDimitry Andric   BasicBlock *PredBB;
23870b57cec5SDimitry Andric   if (PredBBs.size() == 1)
23880b57cec5SDimitry Andric     PredBB = PredBBs[0];
23890b57cec5SDimitry Andric   else {
23900b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
23910b57cec5SDimitry Andric                       << " common predecessors.\n");
2392e8d8bef9SDimitry Andric     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
23930b57cec5SDimitry Andric   }
23940b57cec5SDimitry Andric 
23950b57cec5SDimitry Andric   // And finally, do it!
23960b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
23970b57cec5SDimitry Andric                     << "' to '" << SuccBB->getName()
23980b57cec5SDimitry Andric                     << ", across block:\n    " << *BB << "\n");
23990b57cec5SDimitry Andric 
24000b57cec5SDimitry Andric   LVI->threadEdge(PredBB, BB, SuccBB);
24010b57cec5SDimitry Andric 
24020b57cec5SDimitry Andric   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
24030b57cec5SDimitry Andric                                          BB->getName()+".thread",
24040b57cec5SDimitry Andric                                          BB->getParent(), BB);
24050b57cec5SDimitry Andric   NewBB->moveAfter(PredBB);
24060b57cec5SDimitry Andric 
24070b57cec5SDimitry Andric   // Set the block frequency of NewBB.
240806c3fb27SDimitry Andric   if (BFI) {
240906c3fb27SDimitry Andric     assert(BPI && "It's expected BPI to exist along with BFI");
24100b57cec5SDimitry Andric     auto NewBBFreq =
24110b57cec5SDimitry Andric         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
24125f757f3fSDimitry Andric     BFI->setBlockFreq(NewBB, NewBBFreq);
24130b57cec5SDimitry Andric   }
24140b57cec5SDimitry Andric 
2415480093f4SDimitry Andric   // Copy all the instructions from BB to NewBB except the terminator.
2416*0fca6ea1SDimitry Andric   ValueToValueMapTy ValueMapping;
2417*0fca6ea1SDimitry Andric   cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2418*0fca6ea1SDimitry Andric                     PredBB);
24190b57cec5SDimitry Andric 
24200b57cec5SDimitry Andric   // We didn't copy the terminator from BB over to NewBB, because there is now
24210b57cec5SDimitry Andric   // an unconditional jump to SuccBB.  Insert the unconditional jump.
24220b57cec5SDimitry Andric   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
24230b57cec5SDimitry Andric   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
24240b57cec5SDimitry Andric 
24250b57cec5SDimitry Andric   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
24260b57cec5SDimitry Andric   // PHI nodes for NewBB now.
2427e8d8bef9SDimitry Andric   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
24280b57cec5SDimitry Andric 
24290b57cec5SDimitry Andric   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
24300b57cec5SDimitry Andric   // eliminates predecessors from BB, which requires us to simplify any PHI
24310b57cec5SDimitry Andric   // nodes in BB.
24320b57cec5SDimitry Andric   Instruction *PredTerm = PredBB->getTerminator();
24330b57cec5SDimitry Andric   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
24340b57cec5SDimitry Andric     if (PredTerm->getSuccessor(i) == BB) {
24350b57cec5SDimitry Andric       BB->removePredecessor(PredBB, true);
24360b57cec5SDimitry Andric       PredTerm->setSuccessor(i, NewBB);
24370b57cec5SDimitry Andric     }
24380b57cec5SDimitry Andric 
24390b57cec5SDimitry Andric   // Enqueue required DT updates.
24400b57cec5SDimitry Andric   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
24410b57cec5SDimitry Andric                                {DominatorTree::Insert, PredBB, NewBB},
24420b57cec5SDimitry Andric                                {DominatorTree::Delete, PredBB, BB}});
24430b57cec5SDimitry Andric 
2444e8d8bef9SDimitry Andric   updateSSA(BB, NewBB, ValueMapping);
24450b57cec5SDimitry Andric 
24460b57cec5SDimitry Andric   // At this point, the IR is fully up to date and consistent.  Do a quick scan
24470b57cec5SDimitry Andric   // over the new instructions and zap any that are constants or dead.  This
24480b57cec5SDimitry Andric   // frequently happens because of phi translation.
24490b57cec5SDimitry Andric   SimplifyInstructionsInBlock(NewBB, TLI);
24500b57cec5SDimitry Andric 
24510b57cec5SDimitry Andric   // Update the edge weight from BB to SuccBB, which should be less than before.
245206c3fb27SDimitry Andric   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
24530b57cec5SDimitry Andric 
24540b57cec5SDimitry Andric   // Threaded an edge!
24550b57cec5SDimitry Andric   ++NumThreads;
24560b57cec5SDimitry Andric }
24570b57cec5SDimitry Andric 
24580b57cec5SDimitry Andric /// Create a new basic block that will be the predecessor of BB and successor of
24590b57cec5SDimitry Andric /// all blocks in Preds. When profile data is available, update the frequency of
24600b57cec5SDimitry Andric /// this new block.
2461e8d8bef9SDimitry Andric BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
24620b57cec5SDimitry Andric                                                ArrayRef<BasicBlock *> Preds,
24630b57cec5SDimitry Andric                                                const char *Suffix) {
24640b57cec5SDimitry Andric   SmallVector<BasicBlock *, 2> NewBBs;
24650b57cec5SDimitry Andric 
24660b57cec5SDimitry Andric   // Collect the frequencies of all predecessors of BB, which will be used to
24670b57cec5SDimitry Andric   // update the edge weight of the result of splitting predecessors.
24680b57cec5SDimitry Andric   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
246906c3fb27SDimitry Andric   auto *BFI = getBFI();
247006c3fb27SDimitry Andric   if (BFI) {
247106c3fb27SDimitry Andric     auto *BPI = getOrCreateBPI(true);
2472bdd1243dSDimitry Andric     for (auto *Pred : Preds)
24730b57cec5SDimitry Andric       FreqMap.insert(std::make_pair(
24740b57cec5SDimitry Andric           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
247506c3fb27SDimitry Andric   }
24760b57cec5SDimitry Andric 
24770b57cec5SDimitry Andric   // In the case when BB is a LandingPad block we create 2 new predecessors
24780b57cec5SDimitry Andric   // instead of just one.
24790b57cec5SDimitry Andric   if (BB->isLandingPad()) {
24800b57cec5SDimitry Andric     std::string NewName = std::string(Suffix) + ".split-lp";
24810b57cec5SDimitry Andric     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
24820b57cec5SDimitry Andric   } else {
24830b57cec5SDimitry Andric     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
24840b57cec5SDimitry Andric   }
24850b57cec5SDimitry Andric 
24860b57cec5SDimitry Andric   std::vector<DominatorTree::UpdateType> Updates;
24870b57cec5SDimitry Andric   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2488bdd1243dSDimitry Andric   for (auto *NewBB : NewBBs) {
24890b57cec5SDimitry Andric     BlockFrequency NewBBFreq(0);
24900b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2491bdd1243dSDimitry Andric     for (auto *Pred : predecessors(NewBB)) {
24920b57cec5SDimitry Andric       Updates.push_back({DominatorTree::Delete, Pred, BB});
24930b57cec5SDimitry Andric       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
249406c3fb27SDimitry Andric       if (BFI) // Update frequencies between Pred -> NewBB.
24950b57cec5SDimitry Andric         NewBBFreq += FreqMap.lookup(Pred);
24960b57cec5SDimitry Andric     }
249706c3fb27SDimitry Andric     if (BFI) // Apply the summed frequency to NewBB.
24985f757f3fSDimitry Andric       BFI->setBlockFreq(NewBB, NewBBFreq);
24990b57cec5SDimitry Andric   }
25000b57cec5SDimitry Andric 
25010b57cec5SDimitry Andric   DTU->applyUpdatesPermissive(Updates);
25020b57cec5SDimitry Andric   return NewBBs[0];
25030b57cec5SDimitry Andric }
25040b57cec5SDimitry Andric 
25050b57cec5SDimitry Andric bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
25060b57cec5SDimitry Andric   const Instruction *TI = BB->getTerminator();
250706c3fb27SDimitry Andric   if (!TI || TI->getNumSuccessors() < 2)
250806c3fb27SDimitry Andric     return false;
250906c3fb27SDimitry Andric 
2510bdd1243dSDimitry Andric   return hasValidBranchWeightMD(*TI);
25110b57cec5SDimitry Andric }
25120b57cec5SDimitry Andric 
25130b57cec5SDimitry Andric /// Update the block frequency of BB and branch weight and the metadata on the
25140b57cec5SDimitry Andric /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
25150b57cec5SDimitry Andric /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2516e8d8bef9SDimitry Andric void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
25170b57cec5SDimitry Andric                                                      BasicBlock *BB,
25180b57cec5SDimitry Andric                                                      BasicBlock *NewBB,
251906c3fb27SDimitry Andric                                                      BasicBlock *SuccBB,
252006c3fb27SDimitry Andric                                                      BlockFrequencyInfo *BFI,
252106c3fb27SDimitry Andric                                                      BranchProbabilityInfo *BPI,
252206c3fb27SDimitry Andric                                                      bool HasProfile) {
252306c3fb27SDimitry Andric   assert(((BFI && BPI) || (!BFI && !BFI)) &&
252406c3fb27SDimitry Andric          "Both BFI & BPI should either be set or unset");
25250b57cec5SDimitry Andric 
252606c3fb27SDimitry Andric   if (!BFI) {
252706c3fb27SDimitry Andric     assert(!HasProfile &&
252806c3fb27SDimitry Andric            "It's expected to have BFI/BPI when profile info exists");
252906c3fb27SDimitry Andric     return;
253006c3fb27SDimitry Andric   }
25310b57cec5SDimitry Andric 
25320b57cec5SDimitry Andric   // As the edge from PredBB to BB is deleted, we have to update the block
25330b57cec5SDimitry Andric   // frequency of BB.
25340b57cec5SDimitry Andric   auto BBOrigFreq = BFI->getBlockFreq(BB);
25350b57cec5SDimitry Andric   auto NewBBFreq = BFI->getBlockFreq(NewBB);
25360b57cec5SDimitry Andric   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
25370b57cec5SDimitry Andric   auto BBNewFreq = BBOrigFreq - NewBBFreq;
25385f757f3fSDimitry Andric   BFI->setBlockFreq(BB, BBNewFreq);
25390b57cec5SDimitry Andric 
25400b57cec5SDimitry Andric   // Collect updated outgoing edges' frequencies from BB and use them to update
25410b57cec5SDimitry Andric   // edge probabilities.
25420b57cec5SDimitry Andric   SmallVector<uint64_t, 4> BBSuccFreq;
25430b57cec5SDimitry Andric   for (BasicBlock *Succ : successors(BB)) {
25440b57cec5SDimitry Andric     auto SuccFreq = (Succ == SuccBB)
25450b57cec5SDimitry Andric                         ? BB2SuccBBFreq - NewBBFreq
25460b57cec5SDimitry Andric                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
25470b57cec5SDimitry Andric     BBSuccFreq.push_back(SuccFreq.getFrequency());
25480b57cec5SDimitry Andric   }
25490b57cec5SDimitry Andric 
2550*0fca6ea1SDimitry Andric   uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
25510b57cec5SDimitry Andric 
25520b57cec5SDimitry Andric   SmallVector<BranchProbability, 4> BBSuccProbs;
25530b57cec5SDimitry Andric   if (MaxBBSuccFreq == 0)
25540b57cec5SDimitry Andric     BBSuccProbs.assign(BBSuccFreq.size(),
25550b57cec5SDimitry Andric                        {1, static_cast<unsigned>(BBSuccFreq.size())});
25560b57cec5SDimitry Andric   else {
25570b57cec5SDimitry Andric     for (uint64_t Freq : BBSuccFreq)
25580b57cec5SDimitry Andric       BBSuccProbs.push_back(
25590b57cec5SDimitry Andric           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
25600b57cec5SDimitry Andric     // Normalize edge probabilities so that they sum up to one.
25610b57cec5SDimitry Andric     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
25620b57cec5SDimitry Andric                                               BBSuccProbs.end());
25630b57cec5SDimitry Andric   }
25640b57cec5SDimitry Andric 
25650b57cec5SDimitry Andric   // Update edge probabilities in BPI.
25665ffd83dbSDimitry Andric   BPI->setEdgeProbability(BB, BBSuccProbs);
25670b57cec5SDimitry Andric 
25680b57cec5SDimitry Andric   // Update the profile metadata as well.
25690b57cec5SDimitry Andric   //
25700b57cec5SDimitry Andric   // Don't do this if the profile of the transformed blocks was statically
25710b57cec5SDimitry Andric   // estimated.  (This could occur despite the function having an entry
25720b57cec5SDimitry Andric   // frequency in completely cold parts of the CFG.)
25730b57cec5SDimitry Andric   //
25740b57cec5SDimitry Andric   // In this case we don't want to suggest to subsequent passes that the
25750b57cec5SDimitry Andric   // calculated weights are fully consistent.  Consider this graph:
25760b57cec5SDimitry Andric   //
25770b57cec5SDimitry Andric   //                 check_1
25780b57cec5SDimitry Andric   //             50% /  |
25790b57cec5SDimitry Andric   //             eq_1   | 50%
25800b57cec5SDimitry Andric   //                 \  |
25810b57cec5SDimitry Andric   //                 check_2
25820b57cec5SDimitry Andric   //             50% /  |
25830b57cec5SDimitry Andric   //             eq_2   | 50%
25840b57cec5SDimitry Andric   //                 \  |
25850b57cec5SDimitry Andric   //                 check_3
25860b57cec5SDimitry Andric   //             50% /  |
25870b57cec5SDimitry Andric   //             eq_3   | 50%
25880b57cec5SDimitry Andric   //                 \  |
25890b57cec5SDimitry Andric   //
25900b57cec5SDimitry Andric   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
25910b57cec5SDimitry Andric   // the overall probabilities are inconsistent; the total probability that the
25920b57cec5SDimitry Andric   // value is either 1, 2 or 3 is 150%.
25930b57cec5SDimitry Andric   //
25940b57cec5SDimitry Andric   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
25950b57cec5SDimitry Andric   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
25960b57cec5SDimitry Andric   // the loop exit edge.  Then based solely on static estimation we would assume
25970b57cec5SDimitry Andric   // the loop was extremely hot.
25980b57cec5SDimitry Andric   //
25990b57cec5SDimitry Andric   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
26000b57cec5SDimitry Andric   // shouldn't make edges extremely likely or unlikely based solely on static
26010b57cec5SDimitry Andric   // estimation.
260206c3fb27SDimitry Andric   if (BBSuccProbs.size() >= 2 && HasProfile) {
26030b57cec5SDimitry Andric     SmallVector<uint32_t, 4> Weights;
26040b57cec5SDimitry Andric     for (auto Prob : BBSuccProbs)
26050b57cec5SDimitry Andric       Weights.push_back(Prob.getNumerator());
26060b57cec5SDimitry Andric 
26070b57cec5SDimitry Andric     auto TI = BB->getTerminator();
2608*0fca6ea1SDimitry Andric     setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
26090b57cec5SDimitry Andric   }
26100b57cec5SDimitry Andric }
26110b57cec5SDimitry Andric 
2612e8d8bef9SDimitry Andric /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
26130b57cec5SDimitry Andric /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
26140b57cec5SDimitry Andric /// If we can duplicate the contents of BB up into PredBB do so now, this
26150b57cec5SDimitry Andric /// improves the odds that the branch will be on an analyzable instruction like
26160b57cec5SDimitry Andric /// a compare.
2617e8d8bef9SDimitry Andric bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
26180b57cec5SDimitry Andric     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
26190b57cec5SDimitry Andric   assert(!PredBBs.empty() && "Can't handle an empty set");
26200b57cec5SDimitry Andric 
26210b57cec5SDimitry Andric   // If BB is a loop header, then duplicating this block outside the loop would
26220b57cec5SDimitry Andric   // cause us to transform this into an irreducible loop, don't do this.
2623e8d8bef9SDimitry Andric   // See the comments above findLoopHeaders for justifications and caveats.
26240b57cec5SDimitry Andric   if (LoopHeaders.count(BB)) {
26250b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
26260b57cec5SDimitry Andric                       << "' into predecessor block '" << PredBBs[0]->getName()
26270b57cec5SDimitry Andric                       << "' - it might create an irreducible loop!\n");
26280b57cec5SDimitry Andric     return false;
26290b57cec5SDimitry Andric   }
26300b57cec5SDimitry Andric 
2631349cc55cSDimitry Andric   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2632349cc55cSDimitry Andric       TTI, BB, BB->getTerminator(), BBDupThreshold);
26330b57cec5SDimitry Andric   if (DuplicationCost > BBDupThreshold) {
26340b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
26350b57cec5SDimitry Andric                       << "' - Cost is too high: " << DuplicationCost << "\n");
26360b57cec5SDimitry Andric     return false;
26370b57cec5SDimitry Andric   }
26380b57cec5SDimitry Andric 
26390b57cec5SDimitry Andric   // And finally, do it!  Start by factoring the predecessors if needed.
26400b57cec5SDimitry Andric   std::vector<DominatorTree::UpdateType> Updates;
26410b57cec5SDimitry Andric   BasicBlock *PredBB;
26420b57cec5SDimitry Andric   if (PredBBs.size() == 1)
26430b57cec5SDimitry Andric     PredBB = PredBBs[0];
26440b57cec5SDimitry Andric   else {
26450b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
26460b57cec5SDimitry Andric                       << " common predecessors.\n");
2647e8d8bef9SDimitry Andric     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
26480b57cec5SDimitry Andric   }
26490b57cec5SDimitry Andric   Updates.push_back({DominatorTree::Delete, PredBB, BB});
26500b57cec5SDimitry Andric 
26510b57cec5SDimitry Andric   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
26520b57cec5SDimitry Andric   // of PredBB.
26530b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
26540b57cec5SDimitry Andric                     << "' into end of '" << PredBB->getName()
26550b57cec5SDimitry Andric                     << "' to eliminate branch on phi.  Cost: "
26560b57cec5SDimitry Andric                     << DuplicationCost << " block is:" << *BB << "\n");
26570b57cec5SDimitry Andric 
26580b57cec5SDimitry Andric   // Unless PredBB ends with an unconditional branch, split the edge so that we
26590b57cec5SDimitry Andric   // can just clone the bits from BB into the end of the new PredBB.
26600b57cec5SDimitry Andric   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
26610b57cec5SDimitry Andric 
26620b57cec5SDimitry Andric   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
26630b57cec5SDimitry Andric     BasicBlock *OldPredBB = PredBB;
26640b57cec5SDimitry Andric     PredBB = SplitEdge(OldPredBB, BB);
26650b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
26660b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, PredBB, BB});
26670b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
26680b57cec5SDimitry Andric     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
26690b57cec5SDimitry Andric   }
26700b57cec5SDimitry Andric 
26710b57cec5SDimitry Andric   // We are going to have to map operands from the original BB block into the
26720b57cec5SDimitry Andric   // PredBB block.  Evaluate PHI nodes in BB.
2673*0fca6ea1SDimitry Andric   ValueToValueMapTy ValueMapping;
26740b57cec5SDimitry Andric 
26750b57cec5SDimitry Andric   BasicBlock::iterator BI = BB->begin();
26760b57cec5SDimitry Andric   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
26770b57cec5SDimitry Andric     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
26780b57cec5SDimitry Andric   // Clone the non-phi instructions of BB into PredBB, keeping track of the
26790b57cec5SDimitry Andric   // mapping and using it to remap operands in the cloned instructions.
26800b57cec5SDimitry Andric   for (; BI != BB->end(); ++BI) {
26810b57cec5SDimitry Andric     Instruction *New = BI->clone();
268206c3fb27SDimitry Andric     New->insertInto(PredBB, OldPredBranch->getIterator());
26830b57cec5SDimitry Andric 
26840b57cec5SDimitry Andric     // Remap operands to patch up intra-block references.
26850b57cec5SDimitry Andric     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
26860b57cec5SDimitry Andric       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2687*0fca6ea1SDimitry Andric         ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
26880b57cec5SDimitry Andric         if (I != ValueMapping.end())
26890b57cec5SDimitry Andric           New->setOperand(i, I->second);
26900b57cec5SDimitry Andric       }
26910b57cec5SDimitry Andric 
2692*0fca6ea1SDimitry Andric     // Remap debug variable operands.
2693*0fca6ea1SDimitry Andric     remapDebugVariable(ValueMapping, New);
2694*0fca6ea1SDimitry Andric 
26950b57cec5SDimitry Andric     // If this instruction can be simplified after the operands are updated,
26960b57cec5SDimitry Andric     // just use the simplified value instead.  This frequently happens due to
26970b57cec5SDimitry Andric     // phi translation.
269881ad6265SDimitry Andric     if (Value *IV = simplifyInstruction(
26990b57cec5SDimitry Andric             New,
2700*0fca6ea1SDimitry Andric             {BB->getDataLayout(), TLI, nullptr, nullptr, New})) {
27010b57cec5SDimitry Andric       ValueMapping[&*BI] = IV;
27020b57cec5SDimitry Andric       if (!New->mayHaveSideEffects()) {
270306c3fb27SDimitry Andric         New->eraseFromParent();
27040b57cec5SDimitry Andric         New = nullptr;
27055f757f3fSDimitry Andric         // Clone debug-info on the elided instruction to the destination
27065f757f3fSDimitry Andric         // position.
27075f757f3fSDimitry Andric         OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
27080b57cec5SDimitry Andric       }
27090b57cec5SDimitry Andric     } else {
27100b57cec5SDimitry Andric       ValueMapping[&*BI] = New;
27110b57cec5SDimitry Andric     }
27120b57cec5SDimitry Andric     if (New) {
27130b57cec5SDimitry Andric       // Otherwise, insert the new instruction into the block.
27140b57cec5SDimitry Andric       New->setName(BI->getName());
27155f757f3fSDimitry Andric       // Clone across any debug-info attached to the old instruction.
27165f757f3fSDimitry Andric       New->cloneDebugInfoFrom(&*BI);
27170b57cec5SDimitry Andric       // Update Dominance from simplified New instruction operands.
27180b57cec5SDimitry Andric       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
27190b57cec5SDimitry Andric         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
27200b57cec5SDimitry Andric           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
27210b57cec5SDimitry Andric     }
27220b57cec5SDimitry Andric   }
27230b57cec5SDimitry Andric 
27240b57cec5SDimitry Andric   // Check to see if the targets of the branch had PHI nodes. If so, we need to
27250b57cec5SDimitry Andric   // add entries to the PHI nodes for branch from PredBB now.
27260b57cec5SDimitry Andric   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2727e8d8bef9SDimitry Andric   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
27280b57cec5SDimitry Andric                                   ValueMapping);
2729e8d8bef9SDimitry Andric   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
27300b57cec5SDimitry Andric                                   ValueMapping);
27310b57cec5SDimitry Andric 
2732e8d8bef9SDimitry Andric   updateSSA(BB, PredBB, ValueMapping);
27330b57cec5SDimitry Andric 
27340b57cec5SDimitry Andric   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
27350b57cec5SDimitry Andric   // that we nuked.
27360b57cec5SDimitry Andric   BB->removePredecessor(PredBB, true);
27370b57cec5SDimitry Andric 
27380b57cec5SDimitry Andric   // Remove the unconditional branch at the end of the PredBB block.
27390b57cec5SDimitry Andric   OldPredBranch->eraseFromParent();
274006c3fb27SDimitry Andric   if (auto *BPI = getBPI())
2741e8d8bef9SDimitry Andric     BPI->copyEdgeProbabilities(BB, PredBB);
27420b57cec5SDimitry Andric   DTU->applyUpdatesPermissive(Updates);
27430b57cec5SDimitry Andric 
27440b57cec5SDimitry Andric   ++NumDupes;
27450b57cec5SDimitry Andric   return true;
27460b57cec5SDimitry Andric }
27470b57cec5SDimitry Andric 
27480b57cec5SDimitry Andric // Pred is a predecessor of BB with an unconditional branch to BB. SI is
27490b57cec5SDimitry Andric // a Select instruction in Pred. BB has other predecessors and SI is used in
27500b57cec5SDimitry Andric // a PHI node in BB. SI has no other use.
27510b57cec5SDimitry Andric // A new basic block, NewBB, is created and SI is converted to compare and
27520b57cec5SDimitry Andric // conditional branch. SI is erased from parent.
2753e8d8bef9SDimitry Andric void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
27540b57cec5SDimitry Andric                                           SelectInst *SI, PHINode *SIUse,
27550b57cec5SDimitry Andric                                           unsigned Idx) {
27560b57cec5SDimitry Andric   // Expand the select.
27570b57cec5SDimitry Andric   //
27580b57cec5SDimitry Andric   // Pred --
27590b57cec5SDimitry Andric   //  |    v
27600b57cec5SDimitry Andric   //  |  NewBB
27610b57cec5SDimitry Andric   //  |    |
27620b57cec5SDimitry Andric   //  |-----
27630b57cec5SDimitry Andric   //  v
27640b57cec5SDimitry Andric   // BB
27658bcb0991SDimitry Andric   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
27660b57cec5SDimitry Andric   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
27670b57cec5SDimitry Andric                                          BB->getParent(), BB);
27680b57cec5SDimitry Andric   // Move the unconditional branch to NewBB.
27690b57cec5SDimitry Andric   PredTerm->removeFromParent();
2770bdd1243dSDimitry Andric   PredTerm->insertInto(NewBB, NewBB->end());
27710b57cec5SDimitry Andric   // Create a conditional branch and update PHI nodes.
2772fe6060f1SDimitry Andric   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2773fe6060f1SDimitry Andric   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2774bdd1243dSDimitry Andric   BI->copyMetadata(*SI, {LLVMContext::MD_prof});
27750b57cec5SDimitry Andric   SIUse->setIncomingValue(Idx, SI->getFalseValue());
27760b57cec5SDimitry Andric   SIUse->addIncoming(SI->getTrueValue(), NewBB);
277706c3fb27SDimitry Andric 
277806c3fb27SDimitry Andric   uint64_t TrueWeight = 1;
277906c3fb27SDimitry Andric   uint64_t FalseWeight = 1;
278006c3fb27SDimitry Andric   // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2781bdd1243dSDimitry Andric   if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2782bdd1243dSDimitry Andric       (TrueWeight + FalseWeight) != 0) {
2783bdd1243dSDimitry Andric     SmallVector<BranchProbability, 2> BP;
2784bdd1243dSDimitry Andric     BP.emplace_back(BranchProbability::getBranchProbability(
2785bdd1243dSDimitry Andric         TrueWeight, TrueWeight + FalseWeight));
2786bdd1243dSDimitry Andric     BP.emplace_back(BranchProbability::getBranchProbability(
2787bdd1243dSDimitry Andric         FalseWeight, TrueWeight + FalseWeight));
278806c3fb27SDimitry Andric     // Update BPI if exists.
278906c3fb27SDimitry Andric     if (auto *BPI = getBPI())
2790bdd1243dSDimitry Andric       BPI->setEdgeProbability(Pred, BP);
2791bdd1243dSDimitry Andric   }
279206c3fb27SDimitry Andric   // Set the block frequency of NewBB.
279306c3fb27SDimitry Andric   if (auto *BFI = getBFI()) {
279406c3fb27SDimitry Andric     if ((TrueWeight + FalseWeight) == 0) {
279506c3fb27SDimitry Andric       TrueWeight = 1;
279606c3fb27SDimitry Andric       FalseWeight = 1;
279706c3fb27SDimitry Andric     }
279806c3fb27SDimitry Andric     BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
279906c3fb27SDimitry Andric         TrueWeight, TrueWeight + FalseWeight);
280006c3fb27SDimitry Andric     auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
28015f757f3fSDimitry Andric     BFI->setBlockFreq(NewBB, NewBBFreq);
2802bdd1243dSDimitry Andric   }
28030b57cec5SDimitry Andric 
28040b57cec5SDimitry Andric   // The select is now dead.
28050b57cec5SDimitry Andric   SI->eraseFromParent();
28060b57cec5SDimitry Andric   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
28070b57cec5SDimitry Andric                                {DominatorTree::Insert, Pred, NewBB}});
28080b57cec5SDimitry Andric 
28090b57cec5SDimitry Andric   // Update any other PHI nodes in BB.
28100b57cec5SDimitry Andric   for (BasicBlock::iterator BI = BB->begin();
28110b57cec5SDimitry Andric        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
28120b57cec5SDimitry Andric     if (Phi != SIUse)
28130b57cec5SDimitry Andric       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
28140b57cec5SDimitry Andric }
28150b57cec5SDimitry Andric 
2816e8d8bef9SDimitry Andric bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
28170b57cec5SDimitry Andric   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
28180b57cec5SDimitry Andric 
28190b57cec5SDimitry Andric   if (!CondPHI || CondPHI->getParent() != BB)
28200b57cec5SDimitry Andric     return false;
28210b57cec5SDimitry Andric 
28220b57cec5SDimitry Andric   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
28230b57cec5SDimitry Andric     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
28240b57cec5SDimitry Andric     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
28250b57cec5SDimitry Andric 
28260b57cec5SDimitry Andric     // The second and third condition can be potentially relaxed. Currently
28270b57cec5SDimitry Andric     // the conditions help to simplify the code and allow us to reuse existing
2828e8d8bef9SDimitry Andric     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
28290b57cec5SDimitry Andric     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
28300b57cec5SDimitry Andric       continue;
28310b57cec5SDimitry Andric 
28320b57cec5SDimitry Andric     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
28330b57cec5SDimitry Andric     if (!PredTerm || !PredTerm->isUnconditional())
28340b57cec5SDimitry Andric       continue;
28350b57cec5SDimitry Andric 
2836e8d8bef9SDimitry Andric     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
28370b57cec5SDimitry Andric     return true;
28380b57cec5SDimitry Andric   }
28390b57cec5SDimitry Andric   return false;
28400b57cec5SDimitry Andric }
28410b57cec5SDimitry Andric 
2842e8d8bef9SDimitry Andric /// tryToUnfoldSelect - Look for blocks of the form
28430b57cec5SDimitry Andric /// bb1:
28440b57cec5SDimitry Andric ///   %a = select
28450b57cec5SDimitry Andric ///   br bb2
28460b57cec5SDimitry Andric ///
28470b57cec5SDimitry Andric /// bb2:
28480b57cec5SDimitry Andric ///   %p = phi [%a, %bb1] ...
28490b57cec5SDimitry Andric ///   %c = icmp %p
28500b57cec5SDimitry Andric ///   br i1 %c
28510b57cec5SDimitry Andric ///
28520b57cec5SDimitry Andric /// And expand the select into a branch structure if one of its arms allows %c
28530b57cec5SDimitry Andric /// to be folded. This later enables threading from bb1 over bb2.
2854e8d8bef9SDimitry Andric bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
28550b57cec5SDimitry Andric   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
28560b57cec5SDimitry Andric   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
28570b57cec5SDimitry Andric   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
28580b57cec5SDimitry Andric 
28590b57cec5SDimitry Andric   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
28600b57cec5SDimitry Andric       CondLHS->getParent() != BB)
28610b57cec5SDimitry Andric     return false;
28620b57cec5SDimitry Andric 
28630b57cec5SDimitry Andric   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
28640b57cec5SDimitry Andric     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
28650b57cec5SDimitry Andric     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
28660b57cec5SDimitry Andric 
28670b57cec5SDimitry Andric     // Look if one of the incoming values is a select in the corresponding
28680b57cec5SDimitry Andric     // predecessor.
28690b57cec5SDimitry Andric     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
28700b57cec5SDimitry Andric       continue;
28710b57cec5SDimitry Andric 
28720b57cec5SDimitry Andric     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
28730b57cec5SDimitry Andric     if (!PredTerm || !PredTerm->isUnconditional())
28740b57cec5SDimitry Andric       continue;
28750b57cec5SDimitry Andric 
28760b57cec5SDimitry Andric     // Now check if one of the select values would allow us to constant fold the
28770b57cec5SDimitry Andric     // terminator in BB. We don't do the transform if both sides fold, those
28780b57cec5SDimitry Andric     // cases will be threaded in any case.
2879*0fca6ea1SDimitry Andric     Constant *LHSRes =
28800b57cec5SDimitry Andric         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
28810b57cec5SDimitry Andric                                 CondRHS, Pred, BB, CondCmp);
2882*0fca6ea1SDimitry Andric     Constant *RHSRes =
28830b57cec5SDimitry Andric         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
28840b57cec5SDimitry Andric                                 CondRHS, Pred, BB, CondCmp);
2885*0fca6ea1SDimitry Andric     if ((LHSRes || RHSRes) && LHSRes != RHSRes) {
2886e8d8bef9SDimitry Andric       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
28870b57cec5SDimitry Andric       return true;
28880b57cec5SDimitry Andric     }
28890b57cec5SDimitry Andric   }
28900b57cec5SDimitry Andric   return false;
28910b57cec5SDimitry Andric }
28920b57cec5SDimitry Andric 
2893e8d8bef9SDimitry Andric /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
28940b57cec5SDimitry Andric /// same BB in the form
28950b57cec5SDimitry Andric /// bb:
28960b57cec5SDimitry Andric ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
28970b57cec5SDimitry Andric ///   %s = select %p, trueval, falseval
28980b57cec5SDimitry Andric ///
28990b57cec5SDimitry Andric /// or
29000b57cec5SDimitry Andric ///
29010b57cec5SDimitry Andric /// bb:
29020b57cec5SDimitry Andric ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
29030b57cec5SDimitry Andric ///   %c = cmp %p, 0
29040b57cec5SDimitry Andric ///   %s = select %c, trueval, falseval
29050b57cec5SDimitry Andric ///
29060b57cec5SDimitry Andric /// And expand the select into a branch structure. This later enables
29070b57cec5SDimitry Andric /// jump-threading over bb in this pass.
29080b57cec5SDimitry Andric ///
29090b57cec5SDimitry Andric /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
29100b57cec5SDimitry Andric /// select if the associated PHI has at least one constant.  If the unfolded
29110b57cec5SDimitry Andric /// select is not jump-threaded, it will be folded again in the later
29120b57cec5SDimitry Andric /// optimizations.
2913e8d8bef9SDimitry Andric bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2914e8d8bef9SDimitry Andric   // This transform would reduce the quality of msan diagnostics.
29155ffd83dbSDimitry Andric   // Disable this transform under MemorySanitizer.
29165ffd83dbSDimitry Andric   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
29175ffd83dbSDimitry Andric     return false;
29185ffd83dbSDimitry Andric 
29190b57cec5SDimitry Andric   // If threading this would thread across a loop header, don't thread the edge.
2920e8d8bef9SDimitry Andric   // See the comments above findLoopHeaders for justifications and caveats.
29210b57cec5SDimitry Andric   if (LoopHeaders.count(BB))
29220b57cec5SDimitry Andric     return false;
29230b57cec5SDimitry Andric 
29240b57cec5SDimitry Andric   for (BasicBlock::iterator BI = BB->begin();
29250b57cec5SDimitry Andric        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
29260b57cec5SDimitry Andric     // Look for a Phi having at least one constant incoming value.
29270b57cec5SDimitry Andric     if (llvm::all_of(PN->incoming_values(),
29280b57cec5SDimitry Andric                      [](Value *V) { return !isa<ConstantInt>(V); }))
29290b57cec5SDimitry Andric       continue;
29300b57cec5SDimitry Andric 
29310b57cec5SDimitry Andric     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2932fe6060f1SDimitry Andric       using namespace PatternMatch;
2933fe6060f1SDimitry Andric 
29340b57cec5SDimitry Andric       // Check if SI is in BB and use V as condition.
29350b57cec5SDimitry Andric       if (SI->getParent() != BB)
29360b57cec5SDimitry Andric         return false;
29370b57cec5SDimitry Andric       Value *Cond = SI->getCondition();
2938fe6060f1SDimitry Andric       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2939fe6060f1SDimitry Andric       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
29400b57cec5SDimitry Andric     };
29410b57cec5SDimitry Andric 
29420b57cec5SDimitry Andric     SelectInst *SI = nullptr;
29430b57cec5SDimitry Andric     for (Use &U : PN->uses()) {
29440b57cec5SDimitry Andric       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
29450b57cec5SDimitry Andric         // Look for a ICmp in BB that compares PN with a constant and is the
29460b57cec5SDimitry Andric         // condition of a Select.
29470b57cec5SDimitry Andric         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
29480b57cec5SDimitry Andric             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
29490b57cec5SDimitry Andric           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
29500b57cec5SDimitry Andric             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
29510b57cec5SDimitry Andric               SI = SelectI;
29520b57cec5SDimitry Andric               break;
29530b57cec5SDimitry Andric             }
29540b57cec5SDimitry Andric       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
29550b57cec5SDimitry Andric         // Look for a Select in BB that uses PN as condition.
29560b57cec5SDimitry Andric         if (isUnfoldCandidate(SelectI, U.get())) {
29570b57cec5SDimitry Andric           SI = SelectI;
29580b57cec5SDimitry Andric           break;
29590b57cec5SDimitry Andric         }
29600b57cec5SDimitry Andric       }
29610b57cec5SDimitry Andric     }
29620b57cec5SDimitry Andric 
29630b57cec5SDimitry Andric     if (!SI)
29640b57cec5SDimitry Andric       continue;
29650b57cec5SDimitry Andric     // Expand the select.
2966e8d8bef9SDimitry Andric     Value *Cond = SI->getCondition();
296781ad6265SDimitry Andric     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2968*0fca6ea1SDimitry Andric       Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
29695f757f3fSDimitry Andric     MDNode *BranchWeights = getBranchWeightMDNode(*SI);
29705f757f3fSDimitry Andric     Instruction *Term =
29715f757f3fSDimitry Andric         SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
29720b57cec5SDimitry Andric     BasicBlock *SplitBB = SI->getParent();
29730b57cec5SDimitry Andric     BasicBlock *NewBB = Term->getParent();
2974*0fca6ea1SDimitry Andric     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
29750b57cec5SDimitry Andric     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
29760b57cec5SDimitry Andric     NewPN->addIncoming(SI->getFalseValue(), BB);
2977*0fca6ea1SDimitry Andric     NewPN->setDebugLoc(SI->getDebugLoc());
29780b57cec5SDimitry Andric     SI->replaceAllUsesWith(NewPN);
29790b57cec5SDimitry Andric     SI->eraseFromParent();
29800b57cec5SDimitry Andric     // NewBB and SplitBB are newly created blocks which require insertion.
29810b57cec5SDimitry Andric     std::vector<DominatorTree::UpdateType> Updates;
29820b57cec5SDimitry Andric     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
29830b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
29840b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, BB, NewBB});
29850b57cec5SDimitry Andric     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
29860b57cec5SDimitry Andric     // BB's successors were moved to SplitBB, update DTU accordingly.
29870b57cec5SDimitry Andric     for (auto *Succ : successors(SplitBB)) {
29880b57cec5SDimitry Andric       Updates.push_back({DominatorTree::Delete, BB, Succ});
29890b57cec5SDimitry Andric       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
29900b57cec5SDimitry Andric     }
29910b57cec5SDimitry Andric     DTU->applyUpdatesPermissive(Updates);
29920b57cec5SDimitry Andric     return true;
29930b57cec5SDimitry Andric   }
29940b57cec5SDimitry Andric   return false;
29950b57cec5SDimitry Andric }
29960b57cec5SDimitry Andric 
29970b57cec5SDimitry Andric /// Try to propagate a guard from the current BB into one of its predecessors
29980b57cec5SDimitry Andric /// in case if another branch of execution implies that the condition of this
29990b57cec5SDimitry Andric /// guard is always true. Currently we only process the simplest case that
30000b57cec5SDimitry Andric /// looks like:
30010b57cec5SDimitry Andric ///
30020b57cec5SDimitry Andric /// Start:
30030b57cec5SDimitry Andric ///   %cond = ...
30040b57cec5SDimitry Andric ///   br i1 %cond, label %T1, label %F1
30050b57cec5SDimitry Andric /// T1:
30060b57cec5SDimitry Andric ///   br label %Merge
30070b57cec5SDimitry Andric /// F1:
30080b57cec5SDimitry Andric ///   br label %Merge
30090b57cec5SDimitry Andric /// Merge:
30100b57cec5SDimitry Andric ///   %condGuard = ...
30110b57cec5SDimitry Andric ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
30120b57cec5SDimitry Andric ///
30130b57cec5SDimitry Andric /// And cond either implies condGuard or !condGuard. In this case all the
30140b57cec5SDimitry Andric /// instructions before the guard can be duplicated in both branches, and the
30150b57cec5SDimitry Andric /// guard is then threaded to one of them.
3016e8d8bef9SDimitry Andric bool JumpThreadingPass::processGuards(BasicBlock *BB) {
30170b57cec5SDimitry Andric   using namespace PatternMatch;
30180b57cec5SDimitry Andric 
30190b57cec5SDimitry Andric   // We only want to deal with two predecessors.
30200b57cec5SDimitry Andric   BasicBlock *Pred1, *Pred2;
30210b57cec5SDimitry Andric   auto PI = pred_begin(BB), PE = pred_end(BB);
30220b57cec5SDimitry Andric   if (PI == PE)
30230b57cec5SDimitry Andric     return false;
30240b57cec5SDimitry Andric   Pred1 = *PI++;
30250b57cec5SDimitry Andric   if (PI == PE)
30260b57cec5SDimitry Andric     return false;
30270b57cec5SDimitry Andric   Pred2 = *PI++;
30280b57cec5SDimitry Andric   if (PI != PE)
30290b57cec5SDimitry Andric     return false;
30300b57cec5SDimitry Andric   if (Pred1 == Pred2)
30310b57cec5SDimitry Andric     return false;
30320b57cec5SDimitry Andric 
30330b57cec5SDimitry Andric   // Try to thread one of the guards of the block.
30340b57cec5SDimitry Andric   // TODO: Look up deeper than to immediate predecessor?
30350b57cec5SDimitry Andric   auto *Parent = Pred1->getSinglePredecessor();
30360b57cec5SDimitry Andric   if (!Parent || Parent != Pred2->getSinglePredecessor())
30370b57cec5SDimitry Andric     return false;
30380b57cec5SDimitry Andric 
30390b57cec5SDimitry Andric   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
30400b57cec5SDimitry Andric     for (auto &I : *BB)
3041e8d8bef9SDimitry Andric       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
30420b57cec5SDimitry Andric         return true;
30430b57cec5SDimitry Andric 
30440b57cec5SDimitry Andric   return false;
30450b57cec5SDimitry Andric }
30460b57cec5SDimitry Andric 
30470b57cec5SDimitry Andric /// Try to propagate the guard from BB which is the lower block of a diamond
30480b57cec5SDimitry Andric /// to one of its branches, in case if diamond's condition implies guard's
30490b57cec5SDimitry Andric /// condition.
3050e8d8bef9SDimitry Andric bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
30510b57cec5SDimitry Andric                                     BranchInst *BI) {
30520b57cec5SDimitry Andric   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
30530b57cec5SDimitry Andric   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
30540b57cec5SDimitry Andric   Value *GuardCond = Guard->getArgOperand(0);
30550b57cec5SDimitry Andric   Value *BranchCond = BI->getCondition();
30560b57cec5SDimitry Andric   BasicBlock *TrueDest = BI->getSuccessor(0);
30570b57cec5SDimitry Andric   BasicBlock *FalseDest = BI->getSuccessor(1);
30580b57cec5SDimitry Andric 
3059*0fca6ea1SDimitry Andric   auto &DL = BB->getDataLayout();
30600b57cec5SDimitry Andric   bool TrueDestIsSafe = false;
30610b57cec5SDimitry Andric   bool FalseDestIsSafe = false;
30620b57cec5SDimitry Andric 
30630b57cec5SDimitry Andric   // True dest is safe if BranchCond => GuardCond.
30640b57cec5SDimitry Andric   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
30650b57cec5SDimitry Andric   if (Impl && *Impl)
30660b57cec5SDimitry Andric     TrueDestIsSafe = true;
30670b57cec5SDimitry Andric   else {
30680b57cec5SDimitry Andric     // False dest is safe if !BranchCond => GuardCond.
30690b57cec5SDimitry Andric     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
30700b57cec5SDimitry Andric     if (Impl && *Impl)
30710b57cec5SDimitry Andric       FalseDestIsSafe = true;
30720b57cec5SDimitry Andric   }
30730b57cec5SDimitry Andric 
30740b57cec5SDimitry Andric   if (!TrueDestIsSafe && !FalseDestIsSafe)
30750b57cec5SDimitry Andric     return false;
30760b57cec5SDimitry Andric 
30770b57cec5SDimitry Andric   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
30780b57cec5SDimitry Andric   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
30790b57cec5SDimitry Andric 
30800b57cec5SDimitry Andric   ValueToValueMapTy UnguardedMapping, GuardedMapping;
30810b57cec5SDimitry Andric   Instruction *AfterGuard = Guard->getNextNode();
3082349cc55cSDimitry Andric   unsigned Cost =
3083349cc55cSDimitry Andric       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
30840b57cec5SDimitry Andric   if (Cost > BBDupThreshold)
30850b57cec5SDimitry Andric     return false;
30860b57cec5SDimitry Andric   // Duplicate all instructions before the guard and the guard itself to the
30870b57cec5SDimitry Andric   // branch where implication is not proved.
30880b57cec5SDimitry Andric   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
30890b57cec5SDimitry Andric       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
30900b57cec5SDimitry Andric   assert(GuardedBlock && "Could not create the guarded block?");
30910b57cec5SDimitry Andric   // Duplicate all instructions before the guard in the unguarded branch.
30920b57cec5SDimitry Andric   // Since we have successfully duplicated the guarded block and this block
30930b57cec5SDimitry Andric   // has fewer instructions, we expect it to succeed.
30940b57cec5SDimitry Andric   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
30950b57cec5SDimitry Andric       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
30960b57cec5SDimitry Andric   assert(UnguardedBlock && "Could not create the unguarded block?");
30970b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
30980b57cec5SDimitry Andric                     << GuardedBlock->getName() << "\n");
30990b57cec5SDimitry Andric   // Some instructions before the guard may still have uses. For them, we need
31000b57cec5SDimitry Andric   // to create Phi nodes merging their copies in both guarded and unguarded
31010b57cec5SDimitry Andric   // branches. Those instructions that have no uses can be just removed.
31020b57cec5SDimitry Andric   SmallVector<Instruction *, 4> ToRemove;
31030b57cec5SDimitry Andric   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
31040b57cec5SDimitry Andric     if (!isa<PHINode>(&*BI))
31050b57cec5SDimitry Andric       ToRemove.push_back(&*BI);
31060b57cec5SDimitry Andric 
31075f757f3fSDimitry Andric   BasicBlock::iterator InsertionPoint = BB->getFirstInsertionPt();
31085f757f3fSDimitry Andric   assert(InsertionPoint != BB->end() && "Empty block?");
31090b57cec5SDimitry Andric   // Substitute with Phis & remove.
31100b57cec5SDimitry Andric   for (auto *Inst : reverse(ToRemove)) {
31110b57cec5SDimitry Andric     if (!Inst->use_empty()) {
31120b57cec5SDimitry Andric       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
31130b57cec5SDimitry Andric       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
31140b57cec5SDimitry Andric       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3115*0fca6ea1SDimitry Andric       NewPN->setDebugLoc(Inst->getDebugLoc());
31160b57cec5SDimitry Andric       NewPN->insertBefore(InsertionPoint);
31170b57cec5SDimitry Andric       Inst->replaceAllUsesWith(NewPN);
31180b57cec5SDimitry Andric     }
3119*0fca6ea1SDimitry Andric     Inst->dropDbgRecords();
31200b57cec5SDimitry Andric     Inst->eraseFromParent();
31210b57cec5SDimitry Andric   }
31220b57cec5SDimitry Andric   return true;
31230b57cec5SDimitry Andric }
312406c3fb27SDimitry Andric 
312506c3fb27SDimitry Andric PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
312606c3fb27SDimitry Andric   PreservedAnalyses PA;
312706c3fb27SDimitry Andric   PA.preserve<LazyValueAnalysis>();
312806c3fb27SDimitry Andric   PA.preserve<DominatorTreeAnalysis>();
312906c3fb27SDimitry Andric 
313006c3fb27SDimitry Andric   // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
313106c3fb27SDimitry Andric   // TODO: Would be nice to verify BPI/BFI consistency as well.
313206c3fb27SDimitry Andric   return PA;
313306c3fb27SDimitry Andric }
313406c3fb27SDimitry Andric 
313506c3fb27SDimitry Andric template <typename AnalysisT>
313606c3fb27SDimitry Andric typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
313706c3fb27SDimitry Andric   assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
313806c3fb27SDimitry Andric 
313906c3fb27SDimitry Andric   // If there were no changes since last call to 'runExternalAnalysis' then all
314006c3fb27SDimitry Andric   // analysis is either up to date or explicitly invalidated. Just go ahead and
314106c3fb27SDimitry Andric   // run the "external" analysis.
314206c3fb27SDimitry Andric   if (!ChangedSinceLastAnalysisUpdate) {
314306c3fb27SDimitry Andric     assert(!DTU->hasPendingUpdates() &&
314406c3fb27SDimitry Andric            "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
314506c3fb27SDimitry Andric     // Run the "external" analysis.
314606c3fb27SDimitry Andric     return &FAM->getResult<AnalysisT>(*F);
314706c3fb27SDimitry Andric   }
314806c3fb27SDimitry Andric   ChangedSinceLastAnalysisUpdate = false;
314906c3fb27SDimitry Andric 
315006c3fb27SDimitry Andric   auto PA = getPreservedAnalysis();
315106c3fb27SDimitry Andric   // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
315206c3fb27SDimitry Andric   // as preserved.
315306c3fb27SDimitry Andric   PA.preserve<BranchProbabilityAnalysis>();
315406c3fb27SDimitry Andric   PA.preserve<BlockFrequencyAnalysis>();
315506c3fb27SDimitry Andric   // Report everything except explicitly preserved as invalid.
315606c3fb27SDimitry Andric   FAM->invalidate(*F, PA);
315706c3fb27SDimitry Andric   // Update DT/PDT.
315806c3fb27SDimitry Andric   DTU->flush();
315906c3fb27SDimitry Andric   // Make sure DT/PDT are valid before running "external" analysis.
316006c3fb27SDimitry Andric   assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
316106c3fb27SDimitry Andric   assert((!DTU->hasPostDomTree() ||
316206c3fb27SDimitry Andric           DTU->getPostDomTree().verify(
316306c3fb27SDimitry Andric               PostDominatorTree::VerificationLevel::Fast)));
316406c3fb27SDimitry Andric   // Run the "external" analysis.
316506c3fb27SDimitry Andric   auto *Result = &FAM->getResult<AnalysisT>(*F);
316606c3fb27SDimitry Andric   // Update analysis JumpThreading depends on and not explicitly preserved.
316706c3fb27SDimitry Andric   TTI = &FAM->getResult<TargetIRAnalysis>(*F);
316806c3fb27SDimitry Andric   TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
316906c3fb27SDimitry Andric   AA = &FAM->getResult<AAManager>(*F);
317006c3fb27SDimitry Andric 
317106c3fb27SDimitry Andric   return Result;
317206c3fb27SDimitry Andric }
317306c3fb27SDimitry Andric 
317406c3fb27SDimitry Andric BranchProbabilityInfo *JumpThreadingPass::getBPI() {
317506c3fb27SDimitry Andric   if (!BPI) {
317606c3fb27SDimitry Andric     assert(FAM && "Can't create BPI without FunctionAnalysisManager");
317706c3fb27SDimitry Andric     BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
317806c3fb27SDimitry Andric   }
317906c3fb27SDimitry Andric   return *BPI;
318006c3fb27SDimitry Andric }
318106c3fb27SDimitry Andric 
318206c3fb27SDimitry Andric BlockFrequencyInfo *JumpThreadingPass::getBFI() {
318306c3fb27SDimitry Andric   if (!BFI) {
318406c3fb27SDimitry Andric     assert(FAM && "Can't create BFI without FunctionAnalysisManager");
318506c3fb27SDimitry Andric     BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
318606c3fb27SDimitry Andric   }
318706c3fb27SDimitry Andric   return *BFI;
318806c3fb27SDimitry Andric }
318906c3fb27SDimitry Andric 
319006c3fb27SDimitry Andric // Important note on validity of BPI/BFI. JumpThreading tries to preserve
319106c3fb27SDimitry Andric // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
319206c3fb27SDimitry Andric // Otherwise, new instance of BPI/BFI is created (up to date by definition).
319306c3fb27SDimitry Andric BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
319406c3fb27SDimitry Andric   auto *Res = getBPI();
319506c3fb27SDimitry Andric   if (Res)
319606c3fb27SDimitry Andric     return Res;
319706c3fb27SDimitry Andric 
319806c3fb27SDimitry Andric   if (Force)
319906c3fb27SDimitry Andric     BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
320006c3fb27SDimitry Andric 
320106c3fb27SDimitry Andric   return *BPI;
320206c3fb27SDimitry Andric }
320306c3fb27SDimitry Andric 
320406c3fb27SDimitry Andric BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
320506c3fb27SDimitry Andric   auto *Res = getBFI();
320606c3fb27SDimitry Andric   if (Res)
320706c3fb27SDimitry Andric     return Res;
320806c3fb27SDimitry Andric 
320906c3fb27SDimitry Andric   if (Force)
321006c3fb27SDimitry Andric     BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
321106c3fb27SDimitry Andric 
321206c3fb27SDimitry Andric   return *BFI;
321306c3fb27SDimitry Andric }
3214