1 //===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file is a part of DataFlowSanitizer, a generalised dynamic data flow 11 /// analysis. 12 /// 13 /// Unlike other Sanitizer tools, this tool is not designed to detect a specific 14 /// class of bugs on its own. Instead, it provides a generic dynamic data flow 15 /// analysis framework to be used by clients to help detect application-specific 16 /// issues within their own code. 17 /// 18 /// The analysis is based on automatic propagation of data flow labels (also 19 /// known as taint labels) through a program as it performs computation. 20 /// 21 /// Argument and return value labels are passed through TLS variables 22 /// __dfsan_arg_tls and __dfsan_retval_tls. 23 /// 24 /// Each byte of application memory is backed by a shadow memory byte. The 25 /// shadow byte can represent up to 8 labels. On Linux/x86_64, memory is then 26 /// laid out as follows: 27 /// 28 /// +--------------------+ 0x800000000000 (top of memory) 29 /// | application 3 | 30 /// +--------------------+ 0x700000000000 31 /// | invalid | 32 /// +--------------------+ 0x610000000000 33 /// | origin 1 | 34 /// +--------------------+ 0x600000000000 35 /// | application 2 | 36 /// +--------------------+ 0x510000000000 37 /// | shadow 1 | 38 /// +--------------------+ 0x500000000000 39 /// | invalid | 40 /// +--------------------+ 0x400000000000 41 /// | origin 3 | 42 /// +--------------------+ 0x300000000000 43 /// | shadow 3 | 44 /// +--------------------+ 0x200000000000 45 /// | origin 2 | 46 /// +--------------------+ 0x110000000000 47 /// | invalid | 48 /// +--------------------+ 0x100000000000 49 /// | shadow 2 | 50 /// +--------------------+ 0x010000000000 51 /// | application 1 | 52 /// +--------------------+ 0x000000000000 53 /// 54 /// MEM_TO_SHADOW(mem) = mem ^ 0x500000000000 55 /// SHADOW_TO_ORIGIN(shadow) = shadow + 0x100000000000 56 /// 57 /// For more information, please refer to the design document: 58 /// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html 59 // 60 //===----------------------------------------------------------------------===// 61 62 #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DenseSet.h" 65 #include "llvm/ADT/DepthFirstIterator.h" 66 #include "llvm/ADT/None.h" 67 #include "llvm/ADT/SmallPtrSet.h" 68 #include "llvm/ADT/SmallVector.h" 69 #include "llvm/ADT/StringExtras.h" 70 #include "llvm/ADT/StringRef.h" 71 #include "llvm/ADT/Triple.h" 72 #include "llvm/ADT/iterator.h" 73 #include "llvm/Analysis/ValueTracking.h" 74 #include "llvm/IR/Argument.h" 75 #include "llvm/IR/Attributes.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DataLayout.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Dominators.h" 82 #include "llvm/IR/Function.h" 83 #include "llvm/IR/GlobalAlias.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/GlobalVariable.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InlineAsm.h" 88 #include "llvm/IR/InstVisitor.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/LLVMContext.h" 94 #include "llvm/IR/MDBuilder.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/InitializePasses.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Alignment.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CommandLine.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/SpecialCaseList.h" 107 #include "llvm/Support/VirtualFileSystem.h" 108 #include "llvm/Transforms/Instrumentation.h" 109 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 110 #include "llvm/Transforms/Utils/Local.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <iterator> 116 #include <memory> 117 #include <set> 118 #include <string> 119 #include <utility> 120 #include <vector> 121 122 using namespace llvm; 123 124 // This must be consistent with ShadowWidthBits. 125 static const Align ShadowTLSAlignment = Align(2); 126 127 static const Align MinOriginAlignment = Align(4); 128 129 // The size of TLS variables. These constants must be kept in sync with the ones 130 // in dfsan.cpp. 131 static const unsigned ArgTLSSize = 800; 132 static const unsigned RetvalTLSSize = 800; 133 134 // The -dfsan-preserve-alignment flag controls whether this pass assumes that 135 // alignment requirements provided by the input IR are correct. For example, 136 // if the input IR contains a load with alignment 8, this flag will cause 137 // the shadow load to have alignment 16. This flag is disabled by default as 138 // we have unfortunately encountered too much code (including Clang itself; 139 // see PR14291) which performs misaligned access. 140 static cl::opt<bool> ClPreserveAlignment( 141 "dfsan-preserve-alignment", 142 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, 143 cl::init(false)); 144 145 // The ABI list files control how shadow parameters are passed. The pass treats 146 // every function labelled "uninstrumented" in the ABI list file as conforming 147 // to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains 148 // additional annotations for those functions, a call to one of those functions 149 // will produce a warning message, as the labelling behaviour of the function is 150 // unknown. The other supported annotations for uninstrumented functions are 151 // "functional" and "discard", which are described below under 152 // DataFlowSanitizer::WrapperKind. 153 // Functions will often be labelled with both "uninstrumented" and one of 154 // "functional" or "discard". This will leave the function unchanged by this 155 // pass, and create a wrapper function that will call the original. 156 // 157 // Instrumented functions can also be annotated as "force_zero_labels", which 158 // will make all shadow and return values set zero labels. 159 // Functions should never be labelled with both "force_zero_labels" and 160 // "uninstrumented" or any of the unistrumented wrapper kinds. 161 static cl::list<std::string> ClABIListFiles( 162 "dfsan-abilist", 163 cl::desc("File listing native ABI functions and how the pass treats them"), 164 cl::Hidden); 165 166 // Controls whether the pass includes or ignores the labels of pointers in load 167 // instructions. 168 static cl::opt<bool> ClCombinePointerLabelsOnLoad( 169 "dfsan-combine-pointer-labels-on-load", 170 cl::desc("Combine the label of the pointer with the label of the data when " 171 "loading from memory."), 172 cl::Hidden, cl::init(true)); 173 174 // Controls whether the pass includes or ignores the labels of pointers in 175 // stores instructions. 176 static cl::opt<bool> ClCombinePointerLabelsOnStore( 177 "dfsan-combine-pointer-labels-on-store", 178 cl::desc("Combine the label of the pointer with the label of the data when " 179 "storing in memory."), 180 cl::Hidden, cl::init(false)); 181 182 // Controls whether the pass propagates labels of offsets in GEP instructions. 183 static cl::opt<bool> ClCombineOffsetLabelsOnGEP( 184 "dfsan-combine-offset-labels-on-gep", 185 cl::desc( 186 "Combine the label of the offset with the label of the pointer when " 187 "doing pointer arithmetic."), 188 cl::Hidden, cl::init(true)); 189 190 static cl::opt<bool> ClDebugNonzeroLabels( 191 "dfsan-debug-nonzero-labels", 192 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " 193 "load or return with a nonzero label"), 194 cl::Hidden); 195 196 // Experimental feature that inserts callbacks for certain data events. 197 // Currently callbacks are only inserted for loads, stores, memory transfers 198 // (i.e. memcpy and memmove), and comparisons. 199 // 200 // If this flag is set to true, the user must provide definitions for the 201 // following callback functions: 202 // void __dfsan_load_callback(dfsan_label Label, void* addr); 203 // void __dfsan_store_callback(dfsan_label Label, void* addr); 204 // void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); 205 // void __dfsan_cmp_callback(dfsan_label CombinedLabel); 206 static cl::opt<bool> ClEventCallbacks( 207 "dfsan-event-callbacks", 208 cl::desc("Insert calls to __dfsan_*_callback functions on data events."), 209 cl::Hidden, cl::init(false)); 210 211 // Controls whether the pass tracks the control flow of select instructions. 212 static cl::opt<bool> ClTrackSelectControlFlow( 213 "dfsan-track-select-control-flow", 214 cl::desc("Propagate labels from condition values of select instructions " 215 "to results."), 216 cl::Hidden, cl::init(true)); 217 218 // TODO: This default value follows MSan. DFSan may use a different value. 219 static cl::opt<int> ClInstrumentWithCallThreshold( 220 "dfsan-instrument-with-call-threshold", 221 cl::desc("If the function being instrumented requires more than " 222 "this number of origin stores, use callbacks instead of " 223 "inline checks (-1 means never use callbacks)."), 224 cl::Hidden, cl::init(3500)); 225 226 // Controls how to track origins. 227 // * 0: do not track origins. 228 // * 1: track origins at memory store operations. 229 // * 2: track origins at memory load and store operations. 230 // TODO: track callsites. 231 static cl::opt<int> ClTrackOrigins("dfsan-track-origins", 232 cl::desc("Track origins of labels"), 233 cl::Hidden, cl::init(0)); 234 235 static StringRef getGlobalTypeString(const GlobalValue &G) { 236 // Types of GlobalVariables are always pointer types. 237 Type *GType = G.getValueType(); 238 // For now we support excluding struct types only. 239 if (StructType *SGType = dyn_cast<StructType>(GType)) { 240 if (!SGType->isLiteral()) 241 return SGType->getName(); 242 } 243 return "<unknown type>"; 244 } 245 246 namespace { 247 248 // Memory map parameters used in application-to-shadow address calculation. 249 // Offset = (Addr & ~AndMask) ^ XorMask 250 // Shadow = ShadowBase + Offset 251 // Origin = (OriginBase + Offset) & ~3ULL 252 struct MemoryMapParams { 253 uint64_t AndMask; 254 uint64_t XorMask; 255 uint64_t ShadowBase; 256 uint64_t OriginBase; 257 }; 258 259 } // end anonymous namespace 260 261 // x86_64 Linux 262 // NOLINTNEXTLINE(readability-identifier-naming) 263 static const MemoryMapParams Linux_X86_64_MemoryMapParams = { 264 0, // AndMask (not used) 265 0x500000000000, // XorMask 266 0, // ShadowBase (not used) 267 0x100000000000, // OriginBase 268 }; 269 270 namespace { 271 272 class DFSanABIList { 273 std::unique_ptr<SpecialCaseList> SCL; 274 275 public: 276 DFSanABIList() = default; 277 278 void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } 279 280 /// Returns whether either this function or its source file are listed in the 281 /// given category. 282 bool isIn(const Function &F, StringRef Category) const { 283 return isIn(*F.getParent(), Category) || 284 SCL->inSection("dataflow", "fun", F.getName(), Category); 285 } 286 287 /// Returns whether this global alias is listed in the given category. 288 /// 289 /// If GA aliases a function, the alias's name is matched as a function name 290 /// would be. Similarly, aliases of globals are matched like globals. 291 bool isIn(const GlobalAlias &GA, StringRef Category) const { 292 if (isIn(*GA.getParent(), Category)) 293 return true; 294 295 if (isa<FunctionType>(GA.getValueType())) 296 return SCL->inSection("dataflow", "fun", GA.getName(), Category); 297 298 return SCL->inSection("dataflow", "global", GA.getName(), Category) || 299 SCL->inSection("dataflow", "type", getGlobalTypeString(GA), 300 Category); 301 } 302 303 /// Returns whether this module is listed in the given category. 304 bool isIn(const Module &M, StringRef Category) const { 305 return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); 306 } 307 }; 308 309 /// TransformedFunction is used to express the result of transforming one 310 /// function type into another. This struct is immutable. It holds metadata 311 /// useful for updating calls of the old function to the new type. 312 struct TransformedFunction { 313 TransformedFunction(FunctionType *OriginalType, FunctionType *TransformedType, 314 std::vector<unsigned> ArgumentIndexMapping) 315 : OriginalType(OriginalType), TransformedType(TransformedType), 316 ArgumentIndexMapping(ArgumentIndexMapping) {} 317 318 // Disallow copies. 319 TransformedFunction(const TransformedFunction &) = delete; 320 TransformedFunction &operator=(const TransformedFunction &) = delete; 321 322 // Allow moves. 323 TransformedFunction(TransformedFunction &&) = default; 324 TransformedFunction &operator=(TransformedFunction &&) = default; 325 326 /// Type of the function before the transformation. 327 FunctionType *OriginalType; 328 329 /// Type of the function after the transformation. 330 FunctionType *TransformedType; 331 332 /// Transforming a function may change the position of arguments. This 333 /// member records the mapping from each argument's old position to its new 334 /// position. Argument positions are zero-indexed. If the transformation 335 /// from F to F' made the first argument of F into the third argument of F', 336 /// then ArgumentIndexMapping[0] will equal 2. 337 std::vector<unsigned> ArgumentIndexMapping; 338 }; 339 340 /// Given function attributes from a call site for the original function, 341 /// return function attributes appropriate for a call to the transformed 342 /// function. 343 AttributeList 344 transformFunctionAttributes(const TransformedFunction &TransformedFunction, 345 LLVMContext &Ctx, AttributeList CallSiteAttrs) { 346 347 // Construct a vector of AttributeSet for each function argument. 348 std::vector<llvm::AttributeSet> ArgumentAttributes( 349 TransformedFunction.TransformedType->getNumParams()); 350 351 // Copy attributes from the parameter of the original function to the 352 // transformed version. 'ArgumentIndexMapping' holds the mapping from 353 // old argument position to new. 354 for (unsigned I = 0, IE = TransformedFunction.ArgumentIndexMapping.size(); 355 I < IE; ++I) { 356 unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[I]; 357 ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttrs(I); 358 } 359 360 // Copy annotations on varargs arguments. 361 for (unsigned I = TransformedFunction.OriginalType->getNumParams(), 362 IE = CallSiteAttrs.getNumAttrSets(); 363 I < IE; ++I) { 364 ArgumentAttributes.push_back(CallSiteAttrs.getParamAttrs(I)); 365 } 366 367 return AttributeList::get(Ctx, CallSiteAttrs.getFnAttrs(), 368 CallSiteAttrs.getRetAttrs(), 369 llvm::makeArrayRef(ArgumentAttributes)); 370 } 371 372 class DataFlowSanitizer { 373 friend struct DFSanFunction; 374 friend class DFSanVisitor; 375 376 enum { ShadowWidthBits = 8, ShadowWidthBytes = ShadowWidthBits / 8 }; 377 378 enum { OriginWidthBits = 32, OriginWidthBytes = OriginWidthBits / 8 }; 379 380 /// How should calls to uninstrumented functions be handled? 381 enum WrapperKind { 382 /// This function is present in an uninstrumented form but we don't know 383 /// how it should be handled. Print a warning and call the function anyway. 384 /// Don't label the return value. 385 WK_Warning, 386 387 /// This function does not write to (user-accessible) memory, and its return 388 /// value is unlabelled. 389 WK_Discard, 390 391 /// This function does not write to (user-accessible) memory, and the label 392 /// of its return value is the union of the label of its arguments. 393 WK_Functional, 394 395 /// Instead of calling the function, a custom wrapper __dfsw_F is called, 396 /// where F is the name of the function. This function may wrap the 397 /// original function or provide its own implementation. WK_Custom uses an 398 /// extra pointer argument to return the shadow. This allows the wrapped 399 /// form of the function type to be expressed in C. 400 WK_Custom 401 }; 402 403 Module *Mod; 404 LLVMContext *Ctx; 405 Type *Int8Ptr; 406 IntegerType *OriginTy; 407 PointerType *OriginPtrTy; 408 ConstantInt *ZeroOrigin; 409 /// The shadow type for all primitive types and vector types. 410 IntegerType *PrimitiveShadowTy; 411 PointerType *PrimitiveShadowPtrTy; 412 IntegerType *IntptrTy; 413 ConstantInt *ZeroPrimitiveShadow; 414 Constant *ArgTLS; 415 ArrayType *ArgOriginTLSTy; 416 Constant *ArgOriginTLS; 417 Constant *RetvalTLS; 418 Constant *RetvalOriginTLS; 419 FunctionType *DFSanUnionLoadFnTy; 420 FunctionType *DFSanLoadLabelAndOriginFnTy; 421 FunctionType *DFSanUnimplementedFnTy; 422 FunctionType *DFSanSetLabelFnTy; 423 FunctionType *DFSanNonzeroLabelFnTy; 424 FunctionType *DFSanVarargWrapperFnTy; 425 FunctionType *DFSanCmpCallbackFnTy; 426 FunctionType *DFSanLoadStoreCallbackFnTy; 427 FunctionType *DFSanMemTransferCallbackFnTy; 428 FunctionType *DFSanChainOriginFnTy; 429 FunctionType *DFSanChainOriginIfTaintedFnTy; 430 FunctionType *DFSanMemOriginTransferFnTy; 431 FunctionType *DFSanMaybeStoreOriginFnTy; 432 FunctionCallee DFSanUnionLoadFn; 433 FunctionCallee DFSanLoadLabelAndOriginFn; 434 FunctionCallee DFSanUnimplementedFn; 435 FunctionCallee DFSanSetLabelFn; 436 FunctionCallee DFSanNonzeroLabelFn; 437 FunctionCallee DFSanVarargWrapperFn; 438 FunctionCallee DFSanLoadCallbackFn; 439 FunctionCallee DFSanStoreCallbackFn; 440 FunctionCallee DFSanMemTransferCallbackFn; 441 FunctionCallee DFSanCmpCallbackFn; 442 FunctionCallee DFSanChainOriginFn; 443 FunctionCallee DFSanChainOriginIfTaintedFn; 444 FunctionCallee DFSanMemOriginTransferFn; 445 FunctionCallee DFSanMaybeStoreOriginFn; 446 SmallPtrSet<Value *, 16> DFSanRuntimeFunctions; 447 MDNode *ColdCallWeights; 448 MDNode *OriginStoreWeights; 449 DFSanABIList ABIList; 450 DenseMap<Value *, Function *> UnwrappedFnMap; 451 AttrBuilder ReadOnlyNoneAttrs; 452 453 /// Memory map parameters used in calculation mapping application addresses 454 /// to shadow addresses and origin addresses. 455 const MemoryMapParams *MapParams; 456 457 Value *getShadowOffset(Value *Addr, IRBuilder<> &IRB); 458 Value *getShadowAddress(Value *Addr, Instruction *Pos); 459 Value *getShadowAddress(Value *Addr, Instruction *Pos, Value *ShadowOffset); 460 std::pair<Value *, Value *> 461 getShadowOriginAddress(Value *Addr, Align InstAlignment, Instruction *Pos); 462 bool isInstrumented(const Function *F); 463 bool isInstrumented(const GlobalAlias *GA); 464 bool isForceZeroLabels(const Function *F); 465 FunctionType *getTrampolineFunctionType(FunctionType *T); 466 TransformedFunction getCustomFunctionType(FunctionType *T); 467 WrapperKind getWrapperKind(Function *F); 468 void addGlobalNameSuffix(GlobalValue *GV); 469 Function *buildWrapperFunction(Function *F, StringRef NewFName, 470 GlobalValue::LinkageTypes NewFLink, 471 FunctionType *NewFT); 472 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); 473 void initializeCallbackFunctions(Module &M); 474 void initializeRuntimeFunctions(Module &M); 475 void injectMetadataGlobals(Module &M); 476 bool initializeModule(Module &M); 477 478 /// Advances \p OriginAddr to point to the next 32-bit origin and then loads 479 /// from it. Returns the origin's loaded value. 480 Value *loadNextOrigin(Instruction *Pos, Align OriginAlign, 481 Value **OriginAddr); 482 483 /// Returns whether the given load byte size is amenable to inlined 484 /// optimization patterns. 485 bool hasLoadSizeForFastPath(uint64_t Size); 486 487 /// Returns whether the pass tracks origins. Supports only TLS ABI mode. 488 bool shouldTrackOrigins(); 489 490 /// Returns a zero constant with the shadow type of OrigTy. 491 /// 492 /// getZeroShadow({T1,T2,...}) = {getZeroShadow(T1),getZeroShadow(T2,...} 493 /// getZeroShadow([n x T]) = [n x getZeroShadow(T)] 494 /// getZeroShadow(other type) = i16(0) 495 Constant *getZeroShadow(Type *OrigTy); 496 /// Returns a zero constant with the shadow type of V's type. 497 Constant *getZeroShadow(Value *V); 498 499 /// Checks if V is a zero shadow. 500 bool isZeroShadow(Value *V); 501 502 /// Returns the shadow type of OrigTy. 503 /// 504 /// getShadowTy({T1,T2,...}) = {getShadowTy(T1),getShadowTy(T2),...} 505 /// getShadowTy([n x T]) = [n x getShadowTy(T)] 506 /// getShadowTy(other type) = i16 507 Type *getShadowTy(Type *OrigTy); 508 /// Returns the shadow type of of V's type. 509 Type *getShadowTy(Value *V); 510 511 const uint64_t NumOfElementsInArgOrgTLS = ArgTLSSize / OriginWidthBytes; 512 513 public: 514 DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); 515 516 bool runImpl(Module &M); 517 }; 518 519 struct DFSanFunction { 520 DataFlowSanitizer &DFS; 521 Function *F; 522 DominatorTree DT; 523 bool IsNativeABI; 524 bool IsForceZeroLabels; 525 AllocaInst *LabelReturnAlloca = nullptr; 526 AllocaInst *OriginReturnAlloca = nullptr; 527 DenseMap<Value *, Value *> ValShadowMap; 528 DenseMap<Value *, Value *> ValOriginMap; 529 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; 530 DenseMap<AllocaInst *, AllocaInst *> AllocaOriginMap; 531 532 struct PHIFixupElement { 533 PHINode *Phi; 534 PHINode *ShadowPhi; 535 PHINode *OriginPhi; 536 }; 537 std::vector<PHIFixupElement> PHIFixups; 538 539 DenseSet<Instruction *> SkipInsts; 540 std::vector<Value *> NonZeroChecks; 541 542 struct CachedShadow { 543 BasicBlock *Block; // The block where Shadow is defined. 544 Value *Shadow; 545 }; 546 /// Maps a value to its latest shadow value in terms of domination tree. 547 DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; 548 /// Maps a value to its latest collapsed shadow value it was converted to in 549 /// terms of domination tree. When ClDebugNonzeroLabels is on, this cache is 550 /// used at a post process where CFG blocks are split. So it does not cache 551 /// BasicBlock like CachedShadows, but uses domination between values. 552 DenseMap<Value *, Value *> CachedCollapsedShadows; 553 DenseMap<Value *, std::set<Value *>> ShadowElements; 554 555 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI, 556 bool IsForceZeroLabels) 557 : DFS(DFS), F(F), IsNativeABI(IsNativeABI), 558 IsForceZeroLabels(IsForceZeroLabels) { 559 DT.recalculate(*F); 560 } 561 562 /// Computes the shadow address for a given function argument. 563 /// 564 /// Shadow = ArgTLS+ArgOffset. 565 Value *getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB); 566 567 /// Computes the shadow address for a return value. 568 Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); 569 570 /// Computes the origin address for a given function argument. 571 /// 572 /// Origin = ArgOriginTLS[ArgNo]. 573 Value *getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB); 574 575 /// Computes the origin address for a return value. 576 Value *getRetvalOriginTLS(); 577 578 Value *getOrigin(Value *V); 579 void setOrigin(Instruction *I, Value *Origin); 580 /// Generates IR to compute the origin of the last operand with a taint label. 581 Value *combineOperandOrigins(Instruction *Inst); 582 /// Before the instruction Pos, generates IR to compute the last origin with a 583 /// taint label. Labels and origins are from vectors Shadows and Origins 584 /// correspondingly. The generated IR is like 585 /// Sn-1 != Zero ? On-1: ... S2 != Zero ? O2: S1 != Zero ? O1: O0 586 /// When Zero is nullptr, it uses ZeroPrimitiveShadow. Otherwise it can be 587 /// zeros with other bitwidths. 588 Value *combineOrigins(const std::vector<Value *> &Shadows, 589 const std::vector<Value *> &Origins, Instruction *Pos, 590 ConstantInt *Zero = nullptr); 591 592 Value *getShadow(Value *V); 593 void setShadow(Instruction *I, Value *Shadow); 594 /// Generates IR to compute the union of the two given shadows, inserting it 595 /// before Pos. The combined value is with primitive type. 596 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); 597 /// Combines the shadow values of V1 and V2, then converts the combined value 598 /// with primitive type into a shadow value with the original type T. 599 Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 600 Instruction *Pos); 601 Value *combineOperandShadows(Instruction *Inst); 602 603 /// Generates IR to load shadow and origin corresponding to bytes [\p 604 /// Addr, \p Addr + \p Size), where addr has alignment \p 605 /// InstAlignment, and take the union of each of those shadows. The returned 606 /// shadow always has primitive type. 607 /// 608 /// When tracking loads is enabled, the returned origin is a chain at the 609 /// current stack if the returned shadow is tainted. 610 std::pair<Value *, Value *> loadShadowOrigin(Value *Addr, uint64_t Size, 611 Align InstAlignment, 612 Instruction *Pos); 613 614 void storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 615 Align InstAlignment, Value *PrimitiveShadow, 616 Value *Origin, Instruction *Pos); 617 /// Applies PrimitiveShadow to all primitive subtypes of T, returning 618 /// the expanded shadow value. 619 /// 620 /// EFP({T1,T2, ...}, PS) = {EFP(T1,PS),EFP(T2,PS),...} 621 /// EFP([n x T], PS) = [n x EFP(T,PS)] 622 /// EFP(other types, PS) = PS 623 Value *expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 624 Instruction *Pos); 625 /// Collapses Shadow into a single primitive shadow value, unioning all 626 /// primitive shadow values in the process. Returns the final primitive 627 /// shadow value. 628 /// 629 /// CTP({V1,V2, ...}) = UNION(CFP(V1,PS),CFP(V2,PS),...) 630 /// CTP([V1,V2,...]) = UNION(CFP(V1,PS),CFP(V2,PS),...) 631 /// CTP(other types, PS) = PS 632 Value *collapseToPrimitiveShadow(Value *Shadow, Instruction *Pos); 633 634 void storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, Align ShadowAlign, 635 Instruction *Pos); 636 637 Align getShadowAlign(Align InstAlignment); 638 639 private: 640 /// Collapses the shadow with aggregate type into a single primitive shadow 641 /// value. 642 template <class AggregateType> 643 Value *collapseAggregateShadow(AggregateType *AT, Value *Shadow, 644 IRBuilder<> &IRB); 645 646 Value *collapseToPrimitiveShadow(Value *Shadow, IRBuilder<> &IRB); 647 648 /// Returns the shadow value of an argument A. 649 Value *getShadowForTLSArgument(Argument *A); 650 651 /// The fast path of loading shadows. 652 std::pair<Value *, Value *> 653 loadShadowFast(Value *ShadowAddr, Value *OriginAddr, uint64_t Size, 654 Align ShadowAlign, Align OriginAlign, Value *FirstOrigin, 655 Instruction *Pos); 656 657 Align getOriginAlign(Align InstAlignment); 658 659 /// Because 4 contiguous bytes share one 4-byte origin, the most accurate load 660 /// is __dfsan_load_label_and_origin. This function returns the union of all 661 /// labels and the origin of the first taint label. However this is an 662 /// additional call with many instructions. To ensure common cases are fast, 663 /// checks if it is possible to load labels and origins without using the 664 /// callback function. 665 /// 666 /// When enabling tracking load instructions, we always use 667 /// __dfsan_load_label_and_origin to reduce code size. 668 bool useCallbackLoadLabelAndOrigin(uint64_t Size, Align InstAlignment); 669 670 /// Returns a chain at the current stack with previous origin V. 671 Value *updateOrigin(Value *V, IRBuilder<> &IRB); 672 673 /// Returns a chain at the current stack with previous origin V if Shadow is 674 /// tainted. 675 Value *updateOriginIfTainted(Value *Shadow, Value *Origin, IRBuilder<> &IRB); 676 677 /// Creates an Intptr = Origin | Origin << 32 if Intptr's size is 64. Returns 678 /// Origin otherwise. 679 Value *originToIntptr(IRBuilder<> &IRB, Value *Origin); 680 681 /// Stores Origin into the address range [StoreOriginAddr, StoreOriginAddr + 682 /// Size). 683 void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *StoreOriginAddr, 684 uint64_t StoreOriginSize, Align Alignment); 685 686 /// Stores Origin in terms of its Shadow value. 687 /// * Do not write origins for zero shadows because we do not trace origins 688 /// for untainted sinks. 689 /// * Use __dfsan_maybe_store_origin if there are too many origin store 690 /// instrumentations. 691 void storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, Value *Shadow, 692 Value *Origin, Value *StoreOriginAddr, Align InstAlignment); 693 694 /// Convert a scalar value to an i1 by comparing with 0. 695 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &Name = ""); 696 697 bool shouldInstrumentWithCall(); 698 699 /// Generates IR to load shadow and origin corresponding to bytes [\p 700 /// Addr, \p Addr + \p Size), where addr has alignment \p 701 /// InstAlignment, and take the union of each of those shadows. The returned 702 /// shadow always has primitive type. 703 std::pair<Value *, Value *> 704 loadShadowOriginSansLoadTracking(Value *Addr, uint64_t Size, 705 Align InstAlignment, Instruction *Pos); 706 int NumOriginStores = 0; 707 }; 708 709 class DFSanVisitor : public InstVisitor<DFSanVisitor> { 710 public: 711 DFSanFunction &DFSF; 712 713 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} 714 715 const DataLayout &getDataLayout() const { 716 return DFSF.F->getParent()->getDataLayout(); 717 } 718 719 // Combines shadow values and origins for all of I's operands. 720 void visitInstOperands(Instruction &I); 721 722 void visitUnaryOperator(UnaryOperator &UO); 723 void visitBinaryOperator(BinaryOperator &BO); 724 void visitBitCastInst(BitCastInst &BCI); 725 void visitCastInst(CastInst &CI); 726 void visitCmpInst(CmpInst &CI); 727 void visitLandingPadInst(LandingPadInst &LPI); 728 void visitGetElementPtrInst(GetElementPtrInst &GEPI); 729 void visitLoadInst(LoadInst &LI); 730 void visitStoreInst(StoreInst &SI); 731 void visitAtomicRMWInst(AtomicRMWInst &I); 732 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); 733 void visitReturnInst(ReturnInst &RI); 734 void visitCallBase(CallBase &CB); 735 void visitPHINode(PHINode &PN); 736 void visitExtractElementInst(ExtractElementInst &I); 737 void visitInsertElementInst(InsertElementInst &I); 738 void visitShuffleVectorInst(ShuffleVectorInst &I); 739 void visitExtractValueInst(ExtractValueInst &I); 740 void visitInsertValueInst(InsertValueInst &I); 741 void visitAllocaInst(AllocaInst &I); 742 void visitSelectInst(SelectInst &I); 743 void visitMemSetInst(MemSetInst &I); 744 void visitMemTransferInst(MemTransferInst &I); 745 746 private: 747 void visitCASOrRMW(Align InstAlignment, Instruction &I); 748 749 // Returns false when this is an invoke of a custom function. 750 bool visitWrappedCallBase(Function &F, CallBase &CB); 751 752 // Combines origins for all of I's operands. 753 void visitInstOperandOrigins(Instruction &I); 754 755 void addShadowArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 756 IRBuilder<> &IRB); 757 758 void addOriginArguments(Function &F, CallBase &CB, std::vector<Value *> &Args, 759 IRBuilder<> &IRB); 760 }; 761 762 } // end anonymous namespace 763 764 DataFlowSanitizer::DataFlowSanitizer( 765 const std::vector<std::string> &ABIListFiles) { 766 std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); 767 llvm::append_range(AllABIListFiles, ClABIListFiles); 768 // FIXME: should we propagate vfs::FileSystem to this constructor? 769 ABIList.set( 770 SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); 771 } 772 773 FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { 774 assert(!T->isVarArg()); 775 SmallVector<Type *, 4> ArgTypes; 776 ArgTypes.push_back(T->getPointerTo()); 777 ArgTypes.append(T->param_begin(), T->param_end()); 778 ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); 779 Type *RetType = T->getReturnType(); 780 if (!RetType->isVoidTy()) 781 ArgTypes.push_back(PrimitiveShadowPtrTy); 782 783 if (shouldTrackOrigins()) { 784 ArgTypes.append(T->getNumParams(), OriginTy); 785 if (!RetType->isVoidTy()) 786 ArgTypes.push_back(OriginPtrTy); 787 } 788 789 return FunctionType::get(T->getReturnType(), ArgTypes, false); 790 } 791 792 TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { 793 SmallVector<Type *, 4> ArgTypes; 794 795 // Some parameters of the custom function being constructed are 796 // parameters of T. Record the mapping from parameters of T to 797 // parameters of the custom function, so that parameter attributes 798 // at call sites can be updated. 799 std::vector<unsigned> ArgumentIndexMapping; 800 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) { 801 Type *ParamType = T->getParamType(I); 802 FunctionType *FT; 803 if (isa<PointerType>(ParamType) && 804 (FT = dyn_cast<FunctionType>(ParamType->getPointerElementType()))) { 805 ArgumentIndexMapping.push_back(ArgTypes.size()); 806 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); 807 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); 808 } else { 809 ArgumentIndexMapping.push_back(ArgTypes.size()); 810 ArgTypes.push_back(ParamType); 811 } 812 } 813 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 814 ArgTypes.push_back(PrimitiveShadowTy); 815 if (T->isVarArg()) 816 ArgTypes.push_back(PrimitiveShadowPtrTy); 817 Type *RetType = T->getReturnType(); 818 if (!RetType->isVoidTy()) 819 ArgTypes.push_back(PrimitiveShadowPtrTy); 820 821 if (shouldTrackOrigins()) { 822 for (unsigned I = 0, E = T->getNumParams(); I != E; ++I) 823 ArgTypes.push_back(OriginTy); 824 if (T->isVarArg()) 825 ArgTypes.push_back(OriginPtrTy); 826 if (!RetType->isVoidTy()) 827 ArgTypes.push_back(OriginPtrTy); 828 } 829 830 return TransformedFunction( 831 T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), 832 ArgumentIndexMapping); 833 } 834 835 bool DataFlowSanitizer::isZeroShadow(Value *V) { 836 Type *T = V->getType(); 837 if (!isa<ArrayType>(T) && !isa<StructType>(T)) { 838 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 839 return CI->isZero(); 840 return false; 841 } 842 843 return isa<ConstantAggregateZero>(V); 844 } 845 846 bool DataFlowSanitizer::hasLoadSizeForFastPath(uint64_t Size) { 847 uint64_t ShadowSize = Size * ShadowWidthBytes; 848 return ShadowSize % 8 == 0 || ShadowSize == 4; 849 } 850 851 bool DataFlowSanitizer::shouldTrackOrigins() { 852 static const bool ShouldTrackOrigins = ClTrackOrigins; 853 return ShouldTrackOrigins; 854 } 855 856 Constant *DataFlowSanitizer::getZeroShadow(Type *OrigTy) { 857 if (!isa<ArrayType>(OrigTy) && !isa<StructType>(OrigTy)) 858 return ZeroPrimitiveShadow; 859 Type *ShadowTy = getShadowTy(OrigTy); 860 return ConstantAggregateZero::get(ShadowTy); 861 } 862 863 Constant *DataFlowSanitizer::getZeroShadow(Value *V) { 864 return getZeroShadow(V->getType()); 865 } 866 867 static Value *expandFromPrimitiveShadowRecursive( 868 Value *Shadow, SmallVector<unsigned, 4> &Indices, Type *SubShadowTy, 869 Value *PrimitiveShadow, IRBuilder<> &IRB) { 870 if (!isa<ArrayType>(SubShadowTy) && !isa<StructType>(SubShadowTy)) 871 return IRB.CreateInsertValue(Shadow, PrimitiveShadow, Indices); 872 873 if (ArrayType *AT = dyn_cast<ArrayType>(SubShadowTy)) { 874 for (unsigned Idx = 0; Idx < AT->getNumElements(); Idx++) { 875 Indices.push_back(Idx); 876 Shadow = expandFromPrimitiveShadowRecursive( 877 Shadow, Indices, AT->getElementType(), PrimitiveShadow, IRB); 878 Indices.pop_back(); 879 } 880 return Shadow; 881 } 882 883 if (StructType *ST = dyn_cast<StructType>(SubShadowTy)) { 884 for (unsigned Idx = 0; Idx < ST->getNumElements(); Idx++) { 885 Indices.push_back(Idx); 886 Shadow = expandFromPrimitiveShadowRecursive( 887 Shadow, Indices, ST->getElementType(Idx), PrimitiveShadow, IRB); 888 Indices.pop_back(); 889 } 890 return Shadow; 891 } 892 llvm_unreachable("Unexpected shadow type"); 893 } 894 895 bool DFSanFunction::shouldInstrumentWithCall() { 896 return ClInstrumentWithCallThreshold >= 0 && 897 NumOriginStores >= ClInstrumentWithCallThreshold; 898 } 899 900 Value *DFSanFunction::expandFromPrimitiveShadow(Type *T, Value *PrimitiveShadow, 901 Instruction *Pos) { 902 Type *ShadowTy = DFS.getShadowTy(T); 903 904 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 905 return PrimitiveShadow; 906 907 if (DFS.isZeroShadow(PrimitiveShadow)) 908 return DFS.getZeroShadow(ShadowTy); 909 910 IRBuilder<> IRB(Pos); 911 SmallVector<unsigned, 4> Indices; 912 Value *Shadow = UndefValue::get(ShadowTy); 913 Shadow = expandFromPrimitiveShadowRecursive(Shadow, Indices, ShadowTy, 914 PrimitiveShadow, IRB); 915 916 // Caches the primitive shadow value that built the shadow value. 917 CachedCollapsedShadows[Shadow] = PrimitiveShadow; 918 return Shadow; 919 } 920 921 template <class AggregateType> 922 Value *DFSanFunction::collapseAggregateShadow(AggregateType *AT, Value *Shadow, 923 IRBuilder<> &IRB) { 924 if (!AT->getNumElements()) 925 return DFS.ZeroPrimitiveShadow; 926 927 Value *FirstItem = IRB.CreateExtractValue(Shadow, 0); 928 Value *Aggregator = collapseToPrimitiveShadow(FirstItem, IRB); 929 930 for (unsigned Idx = 1; Idx < AT->getNumElements(); Idx++) { 931 Value *ShadowItem = IRB.CreateExtractValue(Shadow, Idx); 932 Value *ShadowInner = collapseToPrimitiveShadow(ShadowItem, IRB); 933 Aggregator = IRB.CreateOr(Aggregator, ShadowInner); 934 } 935 return Aggregator; 936 } 937 938 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 939 IRBuilder<> &IRB) { 940 Type *ShadowTy = Shadow->getType(); 941 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 942 return Shadow; 943 if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) 944 return collapseAggregateShadow<>(AT, Shadow, IRB); 945 if (StructType *ST = dyn_cast<StructType>(ShadowTy)) 946 return collapseAggregateShadow<>(ST, Shadow, IRB); 947 llvm_unreachable("Unexpected shadow type"); 948 } 949 950 Value *DFSanFunction::collapseToPrimitiveShadow(Value *Shadow, 951 Instruction *Pos) { 952 Type *ShadowTy = Shadow->getType(); 953 if (!isa<ArrayType>(ShadowTy) && !isa<StructType>(ShadowTy)) 954 return Shadow; 955 956 // Checks if the cached collapsed shadow value dominates Pos. 957 Value *&CS = CachedCollapsedShadows[Shadow]; 958 if (CS && DT.dominates(CS, Pos)) 959 return CS; 960 961 IRBuilder<> IRB(Pos); 962 Value *PrimitiveShadow = collapseToPrimitiveShadow(Shadow, IRB); 963 // Caches the converted primitive shadow value. 964 CS = PrimitiveShadow; 965 return PrimitiveShadow; 966 } 967 968 Type *DataFlowSanitizer::getShadowTy(Type *OrigTy) { 969 if (!OrigTy->isSized()) 970 return PrimitiveShadowTy; 971 if (isa<IntegerType>(OrigTy)) 972 return PrimitiveShadowTy; 973 if (isa<VectorType>(OrigTy)) 974 return PrimitiveShadowTy; 975 if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) 976 return ArrayType::get(getShadowTy(AT->getElementType()), 977 AT->getNumElements()); 978 if (StructType *ST = dyn_cast<StructType>(OrigTy)) { 979 SmallVector<Type *, 4> Elements; 980 for (unsigned I = 0, N = ST->getNumElements(); I < N; ++I) 981 Elements.push_back(getShadowTy(ST->getElementType(I))); 982 return StructType::get(*Ctx, Elements); 983 } 984 return PrimitiveShadowTy; 985 } 986 987 Type *DataFlowSanitizer::getShadowTy(Value *V) { 988 return getShadowTy(V->getType()); 989 } 990 991 bool DataFlowSanitizer::initializeModule(Module &M) { 992 Triple TargetTriple(M.getTargetTriple()); 993 const DataLayout &DL = M.getDataLayout(); 994 995 if (TargetTriple.getOS() != Triple::Linux) 996 report_fatal_error("unsupported operating system"); 997 if (TargetTriple.getArch() != Triple::x86_64) 998 report_fatal_error("unsupported architecture"); 999 MapParams = &Linux_X86_64_MemoryMapParams; 1000 1001 Mod = &M; 1002 Ctx = &M.getContext(); 1003 Int8Ptr = Type::getInt8PtrTy(*Ctx); 1004 OriginTy = IntegerType::get(*Ctx, OriginWidthBits); 1005 OriginPtrTy = PointerType::getUnqual(OriginTy); 1006 PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1007 PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); 1008 IntptrTy = DL.getIntPtrType(*Ctx); 1009 ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); 1010 ZeroOrigin = ConstantInt::getSigned(OriginTy, 0); 1011 1012 Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1013 DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, 1014 /*isVarArg=*/false); 1015 Type *DFSanLoadLabelAndOriginArgs[2] = {Int8Ptr, IntptrTy}; 1016 DFSanLoadLabelAndOriginFnTy = 1017 FunctionType::get(IntegerType::get(*Ctx, 64), DFSanLoadLabelAndOriginArgs, 1018 /*isVarArg=*/false); 1019 DFSanUnimplementedFnTy = FunctionType::get( 1020 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1021 Type *DFSanSetLabelArgs[4] = {PrimitiveShadowTy, OriginTy, 1022 Type::getInt8PtrTy(*Ctx), IntptrTy}; 1023 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), 1024 DFSanSetLabelArgs, /*isVarArg=*/false); 1025 DFSanNonzeroLabelFnTy = 1026 FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); 1027 DFSanVarargWrapperFnTy = FunctionType::get( 1028 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); 1029 DFSanCmpCallbackFnTy = 1030 FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, 1031 /*isVarArg=*/false); 1032 DFSanChainOriginFnTy = 1033 FunctionType::get(OriginTy, OriginTy, /*isVarArg=*/false); 1034 Type *DFSanChainOriginIfTaintedArgs[2] = {PrimitiveShadowTy, OriginTy}; 1035 DFSanChainOriginIfTaintedFnTy = FunctionType::get( 1036 OriginTy, DFSanChainOriginIfTaintedArgs, /*isVarArg=*/false); 1037 Type *DFSanMaybeStoreOriginArgs[4] = {IntegerType::get(*Ctx, ShadowWidthBits), 1038 Int8Ptr, IntptrTy, OriginTy}; 1039 DFSanMaybeStoreOriginFnTy = FunctionType::get( 1040 Type::getVoidTy(*Ctx), DFSanMaybeStoreOriginArgs, /*isVarArg=*/false); 1041 Type *DFSanMemOriginTransferArgs[3] = {Int8Ptr, Int8Ptr, IntptrTy}; 1042 DFSanMemOriginTransferFnTy = FunctionType::get( 1043 Type::getVoidTy(*Ctx), DFSanMemOriginTransferArgs, /*isVarArg=*/false); 1044 Type *DFSanLoadStoreCallbackArgs[2] = {PrimitiveShadowTy, Int8Ptr}; 1045 DFSanLoadStoreCallbackFnTy = 1046 FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, 1047 /*isVarArg=*/false); 1048 Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; 1049 DFSanMemTransferCallbackFnTy = 1050 FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, 1051 /*isVarArg=*/false); 1052 1053 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1054 OriginStoreWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); 1055 return true; 1056 } 1057 1058 bool DataFlowSanitizer::isInstrumented(const Function *F) { 1059 return !ABIList.isIn(*F, "uninstrumented"); 1060 } 1061 1062 bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { 1063 return !ABIList.isIn(*GA, "uninstrumented"); 1064 } 1065 1066 bool DataFlowSanitizer::isForceZeroLabels(const Function *F) { 1067 return ABIList.isIn(*F, "force_zero_labels"); 1068 } 1069 1070 DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { 1071 if (ABIList.isIn(*F, "functional")) 1072 return WK_Functional; 1073 if (ABIList.isIn(*F, "discard")) 1074 return WK_Discard; 1075 if (ABIList.isIn(*F, "custom")) 1076 return WK_Custom; 1077 1078 return WK_Warning; 1079 } 1080 1081 void DataFlowSanitizer::addGlobalNameSuffix(GlobalValue *GV) { 1082 std::string GVName = std::string(GV->getName()), Suffix = ".dfsan"; 1083 GV->setName(GVName + Suffix); 1084 1085 // Try to change the name of the function in module inline asm. We only do 1086 // this for specific asm directives, currently only ".symver", to try to avoid 1087 // corrupting asm which happens to contain the symbol name as a substring. 1088 // Note that the substitution for .symver assumes that the versioned symbol 1089 // also has an instrumented name. 1090 std::string Asm = GV->getParent()->getModuleInlineAsm(); 1091 std::string SearchStr = ".symver " + GVName + ","; 1092 size_t Pos = Asm.find(SearchStr); 1093 if (Pos != std::string::npos) { 1094 Asm.replace(Pos, SearchStr.size(), ".symver " + GVName + Suffix + ","); 1095 Pos = Asm.find("@"); 1096 1097 if (Pos == std::string::npos) 1098 report_fatal_error(Twine("unsupported .symver: ", Asm)); 1099 1100 Asm.replace(Pos, 1, Suffix + "@"); 1101 GV->getParent()->setModuleInlineAsm(Asm); 1102 } 1103 } 1104 1105 Function * 1106 DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, 1107 GlobalValue::LinkageTypes NewFLink, 1108 FunctionType *NewFT) { 1109 FunctionType *FT = F->getFunctionType(); 1110 Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), 1111 NewFName, F->getParent()); 1112 NewF->copyAttributesFrom(F); 1113 NewF->removeRetAttrs( 1114 AttributeFuncs::typeIncompatible(NewFT->getReturnType())); 1115 1116 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); 1117 if (F->isVarArg()) { 1118 NewF->removeFnAttrs(AttrBuilder().addAttribute("split-stack")); 1119 CallInst::Create(DFSanVarargWrapperFn, 1120 IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", 1121 BB); 1122 new UnreachableInst(*Ctx, BB); 1123 } else { 1124 auto ArgIt = pointer_iterator<Argument *>(NewF->arg_begin()); 1125 std::vector<Value *> Args(ArgIt, ArgIt + FT->getNumParams()); 1126 1127 CallInst *CI = CallInst::Create(F, Args, "", BB); 1128 if (FT->getReturnType()->isVoidTy()) 1129 ReturnInst::Create(*Ctx, BB); 1130 else 1131 ReturnInst::Create(*Ctx, CI, BB); 1132 } 1133 1134 return NewF; 1135 } 1136 1137 Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, 1138 StringRef FName) { 1139 FunctionType *FTT = getTrampolineFunctionType(FT); 1140 FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); 1141 Function *F = dyn_cast<Function>(C.getCallee()); 1142 if (F && F->isDeclaration()) { 1143 F->setLinkage(GlobalValue::LinkOnceODRLinkage); 1144 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); 1145 std::vector<Value *> Args; 1146 Function::arg_iterator AI = F->arg_begin() + 1; 1147 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) 1148 Args.push_back(&*AI); 1149 CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); 1150 Type *RetType = FT->getReturnType(); 1151 ReturnInst *RI = RetType->isVoidTy() ? ReturnInst::Create(*Ctx, BB) 1152 : ReturnInst::Create(*Ctx, CI, BB); 1153 1154 // F is called by a wrapped custom function with primitive shadows. So 1155 // its arguments and return value need conversion. 1156 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true, 1157 /*ForceZeroLabels=*/false); 1158 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; 1159 ++ValAI; 1160 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { 1161 Value *Shadow = 1162 DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); 1163 DFSF.ValShadowMap[&*ValAI] = Shadow; 1164 } 1165 Function::arg_iterator RetShadowAI = ShadowAI; 1166 const bool ShouldTrackOrigins = shouldTrackOrigins(); 1167 if (ShouldTrackOrigins) { 1168 ValAI = F->arg_begin(); 1169 ++ValAI; 1170 Function::arg_iterator OriginAI = ShadowAI; 1171 if (!RetType->isVoidTy()) 1172 ++OriginAI; 1173 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++OriginAI, --N) { 1174 DFSF.ValOriginMap[&*ValAI] = &*OriginAI; 1175 } 1176 } 1177 DFSanVisitor(DFSF).visitCallInst(*CI); 1178 if (!RetType->isVoidTy()) { 1179 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( 1180 DFSF.getShadow(RI->getReturnValue()), RI); 1181 new StoreInst(PrimitiveShadow, &*RetShadowAI, RI); 1182 if (ShouldTrackOrigins) { 1183 Value *Origin = DFSF.getOrigin(RI->getReturnValue()); 1184 new StoreInst(Origin, &*std::prev(F->arg_end()), RI); 1185 } 1186 } 1187 } 1188 1189 return cast<Constant>(C.getCallee()); 1190 } 1191 1192 // Initialize DataFlowSanitizer runtime functions and declare them in the module 1193 void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { 1194 { 1195 AttributeList AL; 1196 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1197 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1198 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1199 DFSanUnionLoadFn = 1200 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); 1201 } 1202 { 1203 AttributeList AL; 1204 AL = AL.addFnAttribute(M.getContext(), Attribute::NoUnwind); 1205 AL = AL.addFnAttribute(M.getContext(), Attribute::ReadOnly); 1206 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1207 DFSanLoadLabelAndOriginFn = Mod->getOrInsertFunction( 1208 "__dfsan_load_label_and_origin", DFSanLoadLabelAndOriginFnTy, AL); 1209 } 1210 DFSanUnimplementedFn = 1211 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); 1212 { 1213 AttributeList AL; 1214 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1215 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1216 DFSanSetLabelFn = 1217 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); 1218 } 1219 DFSanNonzeroLabelFn = 1220 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); 1221 DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", 1222 DFSanVarargWrapperFnTy); 1223 { 1224 AttributeList AL; 1225 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1226 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1227 DFSanChainOriginFn = Mod->getOrInsertFunction("__dfsan_chain_origin", 1228 DFSanChainOriginFnTy, AL); 1229 } 1230 { 1231 AttributeList AL; 1232 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1233 AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); 1234 AL = AL.addRetAttribute(M.getContext(), Attribute::ZExt); 1235 DFSanChainOriginIfTaintedFn = Mod->getOrInsertFunction( 1236 "__dfsan_chain_origin_if_tainted", DFSanChainOriginIfTaintedFnTy, AL); 1237 } 1238 DFSanMemOriginTransferFn = Mod->getOrInsertFunction( 1239 "__dfsan_mem_origin_transfer", DFSanMemOriginTransferFnTy); 1240 1241 { 1242 AttributeList AL; 1243 AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); 1244 AL = AL.addParamAttribute(M.getContext(), 3, Attribute::ZExt); 1245 DFSanMaybeStoreOriginFn = Mod->getOrInsertFunction( 1246 "__dfsan_maybe_store_origin", DFSanMaybeStoreOriginFnTy, AL); 1247 } 1248 1249 DFSanRuntimeFunctions.insert( 1250 DFSanUnionLoadFn.getCallee()->stripPointerCasts()); 1251 DFSanRuntimeFunctions.insert( 1252 DFSanLoadLabelAndOriginFn.getCallee()->stripPointerCasts()); 1253 DFSanRuntimeFunctions.insert( 1254 DFSanUnimplementedFn.getCallee()->stripPointerCasts()); 1255 DFSanRuntimeFunctions.insert( 1256 DFSanSetLabelFn.getCallee()->stripPointerCasts()); 1257 DFSanRuntimeFunctions.insert( 1258 DFSanNonzeroLabelFn.getCallee()->stripPointerCasts()); 1259 DFSanRuntimeFunctions.insert( 1260 DFSanVarargWrapperFn.getCallee()->stripPointerCasts()); 1261 DFSanRuntimeFunctions.insert( 1262 DFSanLoadCallbackFn.getCallee()->stripPointerCasts()); 1263 DFSanRuntimeFunctions.insert( 1264 DFSanStoreCallbackFn.getCallee()->stripPointerCasts()); 1265 DFSanRuntimeFunctions.insert( 1266 DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts()); 1267 DFSanRuntimeFunctions.insert( 1268 DFSanCmpCallbackFn.getCallee()->stripPointerCasts()); 1269 DFSanRuntimeFunctions.insert( 1270 DFSanChainOriginFn.getCallee()->stripPointerCasts()); 1271 DFSanRuntimeFunctions.insert( 1272 DFSanChainOriginIfTaintedFn.getCallee()->stripPointerCasts()); 1273 DFSanRuntimeFunctions.insert( 1274 DFSanMemOriginTransferFn.getCallee()->stripPointerCasts()); 1275 DFSanRuntimeFunctions.insert( 1276 DFSanMaybeStoreOriginFn.getCallee()->stripPointerCasts()); 1277 } 1278 1279 // Initializes event callback functions and declare them in the module 1280 void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { 1281 DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", 1282 DFSanLoadStoreCallbackFnTy); 1283 DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", 1284 DFSanLoadStoreCallbackFnTy); 1285 DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( 1286 "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); 1287 DFSanCmpCallbackFn = 1288 Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); 1289 } 1290 1291 void DataFlowSanitizer::injectMetadataGlobals(Module &M) { 1292 // These variables can be used: 1293 // - by the runtime (to discover what the shadow width was, during 1294 // compilation) 1295 // - in testing (to avoid hardcoding the shadow width and type but instead 1296 // extract them by pattern matching) 1297 Type *IntTy = Type::getInt32Ty(*Ctx); 1298 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bits", IntTy, [&] { 1299 return new GlobalVariable( 1300 M, IntTy, /*isConstant=*/true, GlobalValue::WeakODRLinkage, 1301 ConstantInt::get(IntTy, ShadowWidthBits), "__dfsan_shadow_width_bits"); 1302 }); 1303 (void)Mod->getOrInsertGlobal("__dfsan_shadow_width_bytes", IntTy, [&] { 1304 return new GlobalVariable(M, IntTy, /*isConstant=*/true, 1305 GlobalValue::WeakODRLinkage, 1306 ConstantInt::get(IntTy, ShadowWidthBytes), 1307 "__dfsan_shadow_width_bytes"); 1308 }); 1309 } 1310 1311 bool DataFlowSanitizer::runImpl(Module &M) { 1312 initializeModule(M); 1313 1314 if (ABIList.isIn(M, "skip")) 1315 return false; 1316 1317 const unsigned InitialGlobalSize = M.global_size(); 1318 const unsigned InitialModuleSize = M.size(); 1319 1320 bool Changed = false; 1321 1322 auto GetOrInsertGlobal = [this, &Changed](StringRef Name, 1323 Type *Ty) -> Constant * { 1324 Constant *C = Mod->getOrInsertGlobal(Name, Ty); 1325 if (GlobalVariable *G = dyn_cast<GlobalVariable>(C)) { 1326 Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; 1327 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); 1328 } 1329 return C; 1330 }; 1331 1332 // These globals must be kept in sync with the ones in dfsan.cpp. 1333 ArgTLS = 1334 GetOrInsertGlobal("__dfsan_arg_tls", 1335 ArrayType::get(Type::getInt64Ty(*Ctx), ArgTLSSize / 8)); 1336 RetvalTLS = GetOrInsertGlobal( 1337 "__dfsan_retval_tls", 1338 ArrayType::get(Type::getInt64Ty(*Ctx), RetvalTLSSize / 8)); 1339 ArgOriginTLSTy = ArrayType::get(OriginTy, NumOfElementsInArgOrgTLS); 1340 ArgOriginTLS = GetOrInsertGlobal("__dfsan_arg_origin_tls", ArgOriginTLSTy); 1341 RetvalOriginTLS = GetOrInsertGlobal("__dfsan_retval_origin_tls", OriginTy); 1342 1343 (void)Mod->getOrInsertGlobal("__dfsan_track_origins", OriginTy, [&] { 1344 Changed = true; 1345 return new GlobalVariable( 1346 M, OriginTy, true, GlobalValue::WeakODRLinkage, 1347 ConstantInt::getSigned(OriginTy, 1348 shouldTrackOrigins() ? ClTrackOrigins : 0), 1349 "__dfsan_track_origins"); 1350 }); 1351 1352 injectMetadataGlobals(M); 1353 1354 initializeCallbackFunctions(M); 1355 initializeRuntimeFunctions(M); 1356 1357 std::vector<Function *> FnsToInstrument; 1358 SmallPtrSet<Function *, 2> FnsWithNativeABI; 1359 SmallPtrSet<Function *, 2> FnsWithForceZeroLabel; 1360 for (Function &F : M) 1361 if (!F.isIntrinsic() && !DFSanRuntimeFunctions.contains(&F)) 1362 FnsToInstrument.push_back(&F); 1363 1364 // Give function aliases prefixes when necessary, and build wrappers where the 1365 // instrumentedness is inconsistent. 1366 for (GlobalAlias &GA : llvm::make_early_inc_range(M.aliases())) { 1367 // Don't stop on weak. We assume people aren't playing games with the 1368 // instrumentedness of overridden weak aliases. 1369 auto *F = dyn_cast<Function>(GA.getAliaseeObject()); 1370 if (!F) 1371 continue; 1372 1373 bool GAInst = isInstrumented(&GA), FInst = isInstrumented(F); 1374 if (GAInst && FInst) { 1375 addGlobalNameSuffix(&GA); 1376 } else if (GAInst != FInst) { 1377 // Non-instrumented alias of an instrumented function, or vice versa. 1378 // Replace the alias with a native-ABI wrapper of the aliasee. The pass 1379 // below will take care of instrumenting it. 1380 Function *NewF = 1381 buildWrapperFunction(F, "", GA.getLinkage(), F->getFunctionType()); 1382 GA.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA.getType())); 1383 NewF->takeName(&GA); 1384 GA.eraseFromParent(); 1385 FnsToInstrument.push_back(NewF); 1386 } 1387 } 1388 1389 ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) 1390 .addAttribute(Attribute::ReadNone); 1391 1392 // First, change the ABI of every function in the module. ABI-listed 1393 // functions keep their original ABI and get a wrapper function. 1394 for (std::vector<Function *>::iterator FI = FnsToInstrument.begin(), 1395 FE = FnsToInstrument.end(); 1396 FI != FE; ++FI) { 1397 Function &F = **FI; 1398 FunctionType *FT = F.getFunctionType(); 1399 1400 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && 1401 FT->getReturnType()->isVoidTy()); 1402 1403 if (isInstrumented(&F)) { 1404 if (isForceZeroLabels(&F)) 1405 FnsWithForceZeroLabel.insert(&F); 1406 1407 // Instrumented functions get a '.dfsan' suffix. This allows us to more 1408 // easily identify cases of mismatching ABIs. This naming scheme is 1409 // mangling-compatible (see Itanium ABI), using a vendor-specific suffix. 1410 addGlobalNameSuffix(&F); 1411 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { 1412 // Build a wrapper function for F. The wrapper simply calls F, and is 1413 // added to FnsToInstrument so that any instrumentation according to its 1414 // WrapperKind is done in the second pass below. 1415 1416 // If the function being wrapped has local linkage, then preserve the 1417 // function's linkage in the wrapper function. 1418 GlobalValue::LinkageTypes WrapperLinkage = 1419 F.hasLocalLinkage() ? F.getLinkage() 1420 : GlobalValue::LinkOnceODRLinkage; 1421 1422 Function *NewF = buildWrapperFunction( 1423 &F, 1424 (shouldTrackOrigins() ? std::string("dfso$") : std::string("dfsw$")) + 1425 std::string(F.getName()), 1426 WrapperLinkage, FT); 1427 NewF->removeFnAttrs(ReadOnlyNoneAttrs); 1428 1429 Value *WrappedFnCst = 1430 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); 1431 F.replaceAllUsesWith(WrappedFnCst); 1432 1433 UnwrappedFnMap[WrappedFnCst] = &F; 1434 *FI = NewF; 1435 1436 if (!F.isDeclaration()) { 1437 // This function is probably defining an interposition of an 1438 // uninstrumented function and hence needs to keep the original ABI. 1439 // But any functions it may call need to use the instrumented ABI, so 1440 // we instrument it in a mode which preserves the original ABI. 1441 FnsWithNativeABI.insert(&F); 1442 1443 // This code needs to rebuild the iterators, as they may be invalidated 1444 // by the push_back, taking care that the new range does not include 1445 // any functions added by this code. 1446 size_t N = FI - FnsToInstrument.begin(), 1447 Count = FE - FnsToInstrument.begin(); 1448 FnsToInstrument.push_back(&F); 1449 FI = FnsToInstrument.begin() + N; 1450 FE = FnsToInstrument.begin() + Count; 1451 } 1452 // Hopefully, nobody will try to indirectly call a vararg 1453 // function... yet. 1454 } else if (FT->isVarArg()) { 1455 UnwrappedFnMap[&F] = &F; 1456 *FI = nullptr; 1457 } 1458 } 1459 1460 for (Function *F : FnsToInstrument) { 1461 if (!F || F->isDeclaration()) 1462 continue; 1463 1464 removeUnreachableBlocks(*F); 1465 1466 DFSanFunction DFSF(*this, F, FnsWithNativeABI.count(F), 1467 FnsWithForceZeroLabel.count(F)); 1468 1469 // DFSanVisitor may create new basic blocks, which confuses df_iterator. 1470 // Build a copy of the list before iterating over it. 1471 SmallVector<BasicBlock *, 4> BBList(depth_first(&F->getEntryBlock())); 1472 1473 for (BasicBlock *BB : BBList) { 1474 Instruction *Inst = &BB->front(); 1475 while (true) { 1476 // DFSanVisitor may split the current basic block, changing the current 1477 // instruction's next pointer and moving the next instruction to the 1478 // tail block from which we should continue. 1479 Instruction *Next = Inst->getNextNode(); 1480 // DFSanVisitor may delete Inst, so keep track of whether it was a 1481 // terminator. 1482 bool IsTerminator = Inst->isTerminator(); 1483 if (!DFSF.SkipInsts.count(Inst)) 1484 DFSanVisitor(DFSF).visit(Inst); 1485 if (IsTerminator) 1486 break; 1487 Inst = Next; 1488 } 1489 } 1490 1491 // We will not necessarily be able to compute the shadow for every phi node 1492 // until we have visited every block. Therefore, the code that handles phi 1493 // nodes adds them to the PHIFixups list so that they can be properly 1494 // handled here. 1495 for (DFSanFunction::PHIFixupElement &P : DFSF.PHIFixups) { 1496 for (unsigned Val = 0, N = P.Phi->getNumIncomingValues(); Val != N; 1497 ++Val) { 1498 P.ShadowPhi->setIncomingValue( 1499 Val, DFSF.getShadow(P.Phi->getIncomingValue(Val))); 1500 if (P.OriginPhi) 1501 P.OriginPhi->setIncomingValue( 1502 Val, DFSF.getOrigin(P.Phi->getIncomingValue(Val))); 1503 } 1504 } 1505 1506 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy 1507 // places (i.e. instructions in basic blocks we haven't even begun visiting 1508 // yet). To make our life easier, do this work in a pass after the main 1509 // instrumentation. 1510 if (ClDebugNonzeroLabels) { 1511 for (Value *V : DFSF.NonZeroChecks) { 1512 Instruction *Pos; 1513 if (Instruction *I = dyn_cast<Instruction>(V)) 1514 Pos = I->getNextNode(); 1515 else 1516 Pos = &DFSF.F->getEntryBlock().front(); 1517 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) 1518 Pos = Pos->getNextNode(); 1519 IRBuilder<> IRB(Pos); 1520 Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); 1521 Value *Ne = 1522 IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); 1523 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( 1524 Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); 1525 IRBuilder<> ThenIRB(BI); 1526 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); 1527 } 1528 } 1529 } 1530 1531 return Changed || !FnsToInstrument.empty() || 1532 M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; 1533 } 1534 1535 Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { 1536 Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); 1537 if (ArgOffset) 1538 Base = IRB.CreateAdd(Base, ConstantInt::get(DFS.IntptrTy, ArgOffset)); 1539 return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), 1540 "_dfsarg"); 1541 } 1542 1543 Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { 1544 return IRB.CreatePointerCast( 1545 DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); 1546 } 1547 1548 Value *DFSanFunction::getRetvalOriginTLS() { return DFS.RetvalOriginTLS; } 1549 1550 Value *DFSanFunction::getArgOriginTLS(unsigned ArgNo, IRBuilder<> &IRB) { 1551 return IRB.CreateConstGEP2_64(DFS.ArgOriginTLSTy, DFS.ArgOriginTLS, 0, ArgNo, 1552 "_dfsarg_o"); 1553 } 1554 1555 Value *DFSanFunction::getOrigin(Value *V) { 1556 assert(DFS.shouldTrackOrigins()); 1557 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1558 return DFS.ZeroOrigin; 1559 Value *&Origin = ValOriginMap[V]; 1560 if (!Origin) { 1561 if (Argument *A = dyn_cast<Argument>(V)) { 1562 if (IsNativeABI) 1563 return DFS.ZeroOrigin; 1564 if (A->getArgNo() < DFS.NumOfElementsInArgOrgTLS) { 1565 Instruction *ArgOriginTLSPos = &*F->getEntryBlock().begin(); 1566 IRBuilder<> IRB(ArgOriginTLSPos); 1567 Value *ArgOriginPtr = getArgOriginTLS(A->getArgNo(), IRB); 1568 Origin = IRB.CreateLoad(DFS.OriginTy, ArgOriginPtr); 1569 } else { 1570 // Overflow 1571 Origin = DFS.ZeroOrigin; 1572 } 1573 } else { 1574 Origin = DFS.ZeroOrigin; 1575 } 1576 } 1577 return Origin; 1578 } 1579 1580 void DFSanFunction::setOrigin(Instruction *I, Value *Origin) { 1581 if (!DFS.shouldTrackOrigins()) 1582 return; 1583 assert(!ValOriginMap.count(I)); 1584 assert(Origin->getType() == DFS.OriginTy); 1585 ValOriginMap[I] = Origin; 1586 } 1587 1588 Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { 1589 unsigned ArgOffset = 0; 1590 const DataLayout &DL = F->getParent()->getDataLayout(); 1591 for (auto &FArg : F->args()) { 1592 if (!FArg.getType()->isSized()) { 1593 if (A == &FArg) 1594 break; 1595 continue; 1596 } 1597 1598 unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); 1599 if (A != &FArg) { 1600 ArgOffset += alignTo(Size, ShadowTLSAlignment); 1601 if (ArgOffset > ArgTLSSize) 1602 break; // ArgTLS overflows, uses a zero shadow. 1603 continue; 1604 } 1605 1606 if (ArgOffset + Size > ArgTLSSize) 1607 break; // ArgTLS overflows, uses a zero shadow. 1608 1609 Instruction *ArgTLSPos = &*F->getEntryBlock().begin(); 1610 IRBuilder<> IRB(ArgTLSPos); 1611 Value *ArgShadowPtr = getArgTLS(FArg.getType(), ArgOffset, IRB); 1612 return IRB.CreateAlignedLoad(DFS.getShadowTy(&FArg), ArgShadowPtr, 1613 ShadowTLSAlignment); 1614 } 1615 1616 return DFS.getZeroShadow(A); 1617 } 1618 1619 Value *DFSanFunction::getShadow(Value *V) { 1620 if (!isa<Argument>(V) && !isa<Instruction>(V)) 1621 return DFS.getZeroShadow(V); 1622 if (IsForceZeroLabels) 1623 return DFS.getZeroShadow(V); 1624 Value *&Shadow = ValShadowMap[V]; 1625 if (!Shadow) { 1626 if (Argument *A = dyn_cast<Argument>(V)) { 1627 if (IsNativeABI) 1628 return DFS.getZeroShadow(V); 1629 Shadow = getShadowForTLSArgument(A); 1630 NonZeroChecks.push_back(Shadow); 1631 } else { 1632 Shadow = DFS.getZeroShadow(V); 1633 } 1634 } 1635 return Shadow; 1636 } 1637 1638 void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { 1639 assert(!ValShadowMap.count(I)); 1640 ValShadowMap[I] = Shadow; 1641 } 1642 1643 /// Compute the integer shadow offset that corresponds to a given 1644 /// application address. 1645 /// 1646 /// Offset = (Addr & ~AndMask) ^ XorMask 1647 Value *DataFlowSanitizer::getShadowOffset(Value *Addr, IRBuilder<> &IRB) { 1648 assert(Addr != RetvalTLS && "Reinstrumenting?"); 1649 Value *OffsetLong = IRB.CreatePointerCast(Addr, IntptrTy); 1650 1651 uint64_t AndMask = MapParams->AndMask; 1652 if (AndMask) 1653 OffsetLong = 1654 IRB.CreateAnd(OffsetLong, ConstantInt::get(IntptrTy, ~AndMask)); 1655 1656 uint64_t XorMask = MapParams->XorMask; 1657 if (XorMask) 1658 OffsetLong = IRB.CreateXor(OffsetLong, ConstantInt::get(IntptrTy, XorMask)); 1659 return OffsetLong; 1660 } 1661 1662 std::pair<Value *, Value *> 1663 DataFlowSanitizer::getShadowOriginAddress(Value *Addr, Align InstAlignment, 1664 Instruction *Pos) { 1665 // Returns ((Addr & shadow_mask) + origin_base - shadow_base) & ~4UL 1666 IRBuilder<> IRB(Pos); 1667 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1668 Value *ShadowLong = ShadowOffset; 1669 uint64_t ShadowBase = MapParams->ShadowBase; 1670 if (ShadowBase != 0) { 1671 ShadowLong = 1672 IRB.CreateAdd(ShadowLong, ConstantInt::get(IntptrTy, ShadowBase)); 1673 } 1674 IntegerType *ShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); 1675 Value *ShadowPtr = 1676 IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); 1677 Value *OriginPtr = nullptr; 1678 if (shouldTrackOrigins()) { 1679 Value *OriginLong = ShadowOffset; 1680 uint64_t OriginBase = MapParams->OriginBase; 1681 if (OriginBase != 0) 1682 OriginLong = 1683 IRB.CreateAdd(OriginLong, ConstantInt::get(IntptrTy, OriginBase)); 1684 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1685 // When alignment is >= 4, Addr must be aligned to 4, otherwise it is UB. 1686 // So Mask is unnecessary. 1687 if (Alignment < MinOriginAlignment) { 1688 uint64_t Mask = MinOriginAlignment.value() - 1; 1689 OriginLong = IRB.CreateAnd(OriginLong, ConstantInt::get(IntptrTy, ~Mask)); 1690 } 1691 OriginPtr = IRB.CreateIntToPtr(OriginLong, OriginPtrTy); 1692 } 1693 return std::make_pair(ShadowPtr, OriginPtr); 1694 } 1695 1696 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos, 1697 Value *ShadowOffset) { 1698 IRBuilder<> IRB(Pos); 1699 return IRB.CreateIntToPtr(ShadowOffset, PrimitiveShadowPtrTy); 1700 } 1701 1702 Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { 1703 IRBuilder<> IRB(Pos); 1704 Value *ShadowOffset = getShadowOffset(Addr, IRB); 1705 return getShadowAddress(Addr, Pos, ShadowOffset); 1706 } 1707 1708 Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, 1709 Instruction *Pos) { 1710 Value *PrimitiveValue = combineShadows(V1, V2, Pos); 1711 return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); 1712 } 1713 1714 // Generates IR to compute the union of the two given shadows, inserting it 1715 // before Pos. The combined value is with primitive type. 1716 Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { 1717 if (DFS.isZeroShadow(V1)) 1718 return collapseToPrimitiveShadow(V2, Pos); 1719 if (DFS.isZeroShadow(V2)) 1720 return collapseToPrimitiveShadow(V1, Pos); 1721 if (V1 == V2) 1722 return collapseToPrimitiveShadow(V1, Pos); 1723 1724 auto V1Elems = ShadowElements.find(V1); 1725 auto V2Elems = ShadowElements.find(V2); 1726 if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { 1727 if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), 1728 V2Elems->second.begin(), V2Elems->second.end())) { 1729 return collapseToPrimitiveShadow(V1, Pos); 1730 } 1731 if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), 1732 V1Elems->second.begin(), V1Elems->second.end())) { 1733 return collapseToPrimitiveShadow(V2, Pos); 1734 } 1735 } else if (V1Elems != ShadowElements.end()) { 1736 if (V1Elems->second.count(V2)) 1737 return collapseToPrimitiveShadow(V1, Pos); 1738 } else if (V2Elems != ShadowElements.end()) { 1739 if (V2Elems->second.count(V1)) 1740 return collapseToPrimitiveShadow(V2, Pos); 1741 } 1742 1743 auto Key = std::make_pair(V1, V2); 1744 if (V1 > V2) 1745 std::swap(Key.first, Key.second); 1746 CachedShadow &CCS = CachedShadows[Key]; 1747 if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) 1748 return CCS.Shadow; 1749 1750 // Converts inputs shadows to shadows with primitive types. 1751 Value *PV1 = collapseToPrimitiveShadow(V1, Pos); 1752 Value *PV2 = collapseToPrimitiveShadow(V2, Pos); 1753 1754 IRBuilder<> IRB(Pos); 1755 CCS.Block = Pos->getParent(); 1756 CCS.Shadow = IRB.CreateOr(PV1, PV2); 1757 1758 std::set<Value *> UnionElems; 1759 if (V1Elems != ShadowElements.end()) { 1760 UnionElems = V1Elems->second; 1761 } else { 1762 UnionElems.insert(V1); 1763 } 1764 if (V2Elems != ShadowElements.end()) { 1765 UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); 1766 } else { 1767 UnionElems.insert(V2); 1768 } 1769 ShadowElements[CCS.Shadow] = std::move(UnionElems); 1770 1771 return CCS.Shadow; 1772 } 1773 1774 // A convenience function which folds the shadows of each of the operands 1775 // of the provided instruction Inst, inserting the IR before Inst. Returns 1776 // the computed union Value. 1777 Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { 1778 if (Inst->getNumOperands() == 0) 1779 return DFS.getZeroShadow(Inst); 1780 1781 Value *Shadow = getShadow(Inst->getOperand(0)); 1782 for (unsigned I = 1, N = Inst->getNumOperands(); I < N; ++I) 1783 Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(I)), Inst); 1784 1785 return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); 1786 } 1787 1788 void DFSanVisitor::visitInstOperands(Instruction &I) { 1789 Value *CombinedShadow = DFSF.combineOperandShadows(&I); 1790 DFSF.setShadow(&I, CombinedShadow); 1791 visitInstOperandOrigins(I); 1792 } 1793 1794 Value *DFSanFunction::combineOrigins(const std::vector<Value *> &Shadows, 1795 const std::vector<Value *> &Origins, 1796 Instruction *Pos, ConstantInt *Zero) { 1797 assert(Shadows.size() == Origins.size()); 1798 size_t Size = Origins.size(); 1799 if (Size == 0) 1800 return DFS.ZeroOrigin; 1801 Value *Origin = nullptr; 1802 if (!Zero) 1803 Zero = DFS.ZeroPrimitiveShadow; 1804 for (size_t I = 0; I != Size; ++I) { 1805 Value *OpOrigin = Origins[I]; 1806 Constant *ConstOpOrigin = dyn_cast<Constant>(OpOrigin); 1807 if (ConstOpOrigin && ConstOpOrigin->isNullValue()) 1808 continue; 1809 if (!Origin) { 1810 Origin = OpOrigin; 1811 continue; 1812 } 1813 Value *OpShadow = Shadows[I]; 1814 Value *PrimitiveShadow = collapseToPrimitiveShadow(OpShadow, Pos); 1815 IRBuilder<> IRB(Pos); 1816 Value *Cond = IRB.CreateICmpNE(PrimitiveShadow, Zero); 1817 Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); 1818 } 1819 return Origin ? Origin : DFS.ZeroOrigin; 1820 } 1821 1822 Value *DFSanFunction::combineOperandOrigins(Instruction *Inst) { 1823 size_t Size = Inst->getNumOperands(); 1824 std::vector<Value *> Shadows(Size); 1825 std::vector<Value *> Origins(Size); 1826 for (unsigned I = 0; I != Size; ++I) { 1827 Shadows[I] = getShadow(Inst->getOperand(I)); 1828 Origins[I] = getOrigin(Inst->getOperand(I)); 1829 } 1830 return combineOrigins(Shadows, Origins, Inst); 1831 } 1832 1833 void DFSanVisitor::visitInstOperandOrigins(Instruction &I) { 1834 if (!DFSF.DFS.shouldTrackOrigins()) 1835 return; 1836 Value *CombinedOrigin = DFSF.combineOperandOrigins(&I); 1837 DFSF.setOrigin(&I, CombinedOrigin); 1838 } 1839 1840 Align DFSanFunction::getShadowAlign(Align InstAlignment) { 1841 const Align Alignment = ClPreserveAlignment ? InstAlignment : Align(1); 1842 return Align(Alignment.value() * DFS.ShadowWidthBytes); 1843 } 1844 1845 Align DFSanFunction::getOriginAlign(Align InstAlignment) { 1846 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1847 return Align(std::max(MinOriginAlignment, Alignment)); 1848 } 1849 1850 bool DFSanFunction::useCallbackLoadLabelAndOrigin(uint64_t Size, 1851 Align InstAlignment) { 1852 // When enabling tracking load instructions, we always use 1853 // __dfsan_load_label_and_origin to reduce code size. 1854 if (ClTrackOrigins == 2) 1855 return true; 1856 1857 assert(Size != 0); 1858 // * if Size == 1, it is sufficient to load its origin aligned at 4. 1859 // * if Size == 2, we assume most cases Addr % 2 == 0, so it is sufficient to 1860 // load its origin aligned at 4. If not, although origins may be lost, it 1861 // should not happen very often. 1862 // * if align >= 4, Addr must be aligned to 4, otherwise it is UB. When 1863 // Size % 4 == 0, it is more efficient to load origins without callbacks. 1864 // * Otherwise we use __dfsan_load_label_and_origin. 1865 // This should ensure that common cases run efficiently. 1866 if (Size <= 2) 1867 return false; 1868 1869 const Align Alignment = llvm::assumeAligned(InstAlignment.value()); 1870 return Alignment < MinOriginAlignment || !DFS.hasLoadSizeForFastPath(Size); 1871 } 1872 1873 Value *DataFlowSanitizer::loadNextOrigin(Instruction *Pos, Align OriginAlign, 1874 Value **OriginAddr) { 1875 IRBuilder<> IRB(Pos); 1876 *OriginAddr = 1877 IRB.CreateGEP(OriginTy, *OriginAddr, ConstantInt::get(IntptrTy, 1)); 1878 return IRB.CreateAlignedLoad(OriginTy, *OriginAddr, OriginAlign); 1879 } 1880 1881 std::pair<Value *, Value *> DFSanFunction::loadShadowFast( 1882 Value *ShadowAddr, Value *OriginAddr, uint64_t Size, Align ShadowAlign, 1883 Align OriginAlign, Value *FirstOrigin, Instruction *Pos) { 1884 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1885 const uint64_t ShadowSize = Size * DFS.ShadowWidthBytes; 1886 1887 assert(Size >= 4 && "Not large enough load size for fast path!"); 1888 1889 // Used for origin tracking. 1890 std::vector<Value *> Shadows; 1891 std::vector<Value *> Origins; 1892 1893 // Load instructions in LLVM can have arbitrary byte sizes (e.g., 3, 12, 20) 1894 // but this function is only used in a subset of cases that make it possible 1895 // to optimize the instrumentation. 1896 // 1897 // Specifically, when the shadow size in bytes (i.e., loaded bytes x shadow 1898 // per byte) is either: 1899 // - a multiple of 8 (common) 1900 // - equal to 4 (only for load32) 1901 // 1902 // For the second case, we can fit the wide shadow in a 32-bit integer. In all 1903 // other cases, we use a 64-bit integer to hold the wide shadow. 1904 Type *WideShadowTy = 1905 ShadowSize == 4 ? Type::getInt32Ty(*DFS.Ctx) : Type::getInt64Ty(*DFS.Ctx); 1906 1907 IRBuilder<> IRB(Pos); 1908 Value *WideAddr = IRB.CreateBitCast(ShadowAddr, WideShadowTy->getPointerTo()); 1909 Value *CombinedWideShadow = 1910 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1911 1912 unsigned WideShadowBitWidth = WideShadowTy->getIntegerBitWidth(); 1913 const uint64_t BytesPerWideShadow = WideShadowBitWidth / DFS.ShadowWidthBits; 1914 1915 auto AppendWideShadowAndOrigin = [&](Value *WideShadow, Value *Origin) { 1916 if (BytesPerWideShadow > 4) { 1917 assert(BytesPerWideShadow == 8); 1918 // The wide shadow relates to two origin pointers: one for the first four 1919 // application bytes, and one for the latest four. We use a left shift to 1920 // get just the shadow bytes that correspond to the first origin pointer, 1921 // and then the entire shadow for the second origin pointer (which will be 1922 // chosen by combineOrigins() iff the least-significant half of the wide 1923 // shadow was empty but the other half was not). 1924 Value *WideShadowLo = IRB.CreateShl( 1925 WideShadow, ConstantInt::get(WideShadowTy, WideShadowBitWidth / 2)); 1926 Shadows.push_back(WideShadow); 1927 Origins.push_back(DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr)); 1928 1929 Shadows.push_back(WideShadowLo); 1930 Origins.push_back(Origin); 1931 } else { 1932 Shadows.push_back(WideShadow); 1933 Origins.push_back(Origin); 1934 } 1935 }; 1936 1937 if (ShouldTrackOrigins) 1938 AppendWideShadowAndOrigin(CombinedWideShadow, FirstOrigin); 1939 1940 // First OR all the WideShadows (i.e., 64bit or 32bit shadow chunks) linearly; 1941 // then OR individual shadows within the combined WideShadow by binary ORing. 1942 // This is fewer instructions than ORing shadows individually, since it 1943 // needs logN shift/or instructions (N being the bytes of the combined wide 1944 // shadow). 1945 for (uint64_t ByteOfs = BytesPerWideShadow; ByteOfs < Size; 1946 ByteOfs += BytesPerWideShadow) { 1947 WideAddr = IRB.CreateGEP(WideShadowTy, WideAddr, 1948 ConstantInt::get(DFS.IntptrTy, 1)); 1949 Value *NextWideShadow = 1950 IRB.CreateAlignedLoad(WideShadowTy, WideAddr, ShadowAlign); 1951 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, NextWideShadow); 1952 if (ShouldTrackOrigins) { 1953 Value *NextOrigin = DFS.loadNextOrigin(Pos, OriginAlign, &OriginAddr); 1954 AppendWideShadowAndOrigin(NextWideShadow, NextOrigin); 1955 } 1956 } 1957 for (unsigned Width = WideShadowBitWidth / 2; Width >= DFS.ShadowWidthBits; 1958 Width >>= 1) { 1959 Value *ShrShadow = IRB.CreateLShr(CombinedWideShadow, Width); 1960 CombinedWideShadow = IRB.CreateOr(CombinedWideShadow, ShrShadow); 1961 } 1962 return {IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy), 1963 ShouldTrackOrigins 1964 ? combineOrigins(Shadows, Origins, Pos, 1965 ConstantInt::getSigned(IRB.getInt64Ty(), 0)) 1966 : DFS.ZeroOrigin}; 1967 } 1968 1969 std::pair<Value *, Value *> DFSanFunction::loadShadowOriginSansLoadTracking( 1970 Value *Addr, uint64_t Size, Align InstAlignment, Instruction *Pos) { 1971 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins(); 1972 1973 // Non-escaped loads. 1974 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 1975 const auto SI = AllocaShadowMap.find(AI); 1976 if (SI != AllocaShadowMap.end()) { 1977 IRBuilder<> IRB(Pos); 1978 Value *ShadowLI = IRB.CreateLoad(DFS.PrimitiveShadowTy, SI->second); 1979 const auto OI = AllocaOriginMap.find(AI); 1980 assert(!ShouldTrackOrigins || OI != AllocaOriginMap.end()); 1981 return {ShadowLI, ShouldTrackOrigins 1982 ? IRB.CreateLoad(DFS.OriginTy, OI->second) 1983 : nullptr}; 1984 } 1985 } 1986 1987 // Load from constant addresses. 1988 SmallVector<const Value *, 2> Objs; 1989 getUnderlyingObjects(Addr, Objs); 1990 bool AllConstants = true; 1991 for (const Value *Obj : Objs) { 1992 if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) 1993 continue; 1994 if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) 1995 continue; 1996 1997 AllConstants = false; 1998 break; 1999 } 2000 if (AllConstants) 2001 return {DFS.ZeroPrimitiveShadow, 2002 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2003 2004 if (Size == 0) 2005 return {DFS.ZeroPrimitiveShadow, 2006 ShouldTrackOrigins ? DFS.ZeroOrigin : nullptr}; 2007 2008 // Use callback to load if this is not an optimizable case for origin 2009 // tracking. 2010 if (ShouldTrackOrigins && 2011 useCallbackLoadLabelAndOrigin(Size, InstAlignment)) { 2012 IRBuilder<> IRB(Pos); 2013 CallInst *Call = 2014 IRB.CreateCall(DFS.DFSanLoadLabelAndOriginFn, 2015 {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2016 ConstantInt::get(DFS.IntptrTy, Size)}); 2017 Call->addRetAttr(Attribute::ZExt); 2018 return {IRB.CreateTrunc(IRB.CreateLShr(Call, DFS.OriginWidthBits), 2019 DFS.PrimitiveShadowTy), 2020 IRB.CreateTrunc(Call, DFS.OriginTy)}; 2021 } 2022 2023 // Other cases that support loading shadows or origins in a fast way. 2024 Value *ShadowAddr, *OriginAddr; 2025 std::tie(ShadowAddr, OriginAddr) = 2026 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2027 2028 const Align ShadowAlign = getShadowAlign(InstAlignment); 2029 const Align OriginAlign = getOriginAlign(InstAlignment); 2030 Value *Origin = nullptr; 2031 if (ShouldTrackOrigins) { 2032 IRBuilder<> IRB(Pos); 2033 Origin = IRB.CreateAlignedLoad(DFS.OriginTy, OriginAddr, OriginAlign); 2034 } 2035 2036 // When the byte size is small enough, we can load the shadow directly with 2037 // just a few instructions. 2038 switch (Size) { 2039 case 1: { 2040 LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); 2041 LI->setAlignment(ShadowAlign); 2042 return {LI, Origin}; 2043 } 2044 case 2: { 2045 IRBuilder<> IRB(Pos); 2046 Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, 2047 ConstantInt::get(DFS.IntptrTy, 1)); 2048 Value *Load = 2049 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign); 2050 Value *Load1 = 2051 IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign); 2052 return {combineShadows(Load, Load1, Pos), Origin}; 2053 } 2054 } 2055 bool HasSizeForFastPath = DFS.hasLoadSizeForFastPath(Size); 2056 2057 if (HasSizeForFastPath) 2058 return loadShadowFast(ShadowAddr, OriginAddr, Size, ShadowAlign, 2059 OriginAlign, Origin, Pos); 2060 2061 IRBuilder<> IRB(Pos); 2062 CallInst *FallbackCall = IRB.CreateCall( 2063 DFS.DFSanUnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); 2064 FallbackCall->addRetAttr(Attribute::ZExt); 2065 return {FallbackCall, Origin}; 2066 } 2067 2068 std::pair<Value *, Value *> DFSanFunction::loadShadowOrigin(Value *Addr, 2069 uint64_t Size, 2070 Align InstAlignment, 2071 Instruction *Pos) { 2072 Value *PrimitiveShadow, *Origin; 2073 std::tie(PrimitiveShadow, Origin) = 2074 loadShadowOriginSansLoadTracking(Addr, Size, InstAlignment, Pos); 2075 if (DFS.shouldTrackOrigins()) { 2076 if (ClTrackOrigins == 2) { 2077 IRBuilder<> IRB(Pos); 2078 auto *ConstantShadow = dyn_cast<Constant>(PrimitiveShadow); 2079 if (!ConstantShadow || !ConstantShadow->isZeroValue()) 2080 Origin = updateOriginIfTainted(PrimitiveShadow, Origin, IRB); 2081 } 2082 } 2083 return {PrimitiveShadow, Origin}; 2084 } 2085 2086 static AtomicOrdering addAcquireOrdering(AtomicOrdering AO) { 2087 switch (AO) { 2088 case AtomicOrdering::NotAtomic: 2089 return AtomicOrdering::NotAtomic; 2090 case AtomicOrdering::Unordered: 2091 case AtomicOrdering::Monotonic: 2092 case AtomicOrdering::Acquire: 2093 return AtomicOrdering::Acquire; 2094 case AtomicOrdering::Release: 2095 case AtomicOrdering::AcquireRelease: 2096 return AtomicOrdering::AcquireRelease; 2097 case AtomicOrdering::SequentiallyConsistent: 2098 return AtomicOrdering::SequentiallyConsistent; 2099 } 2100 llvm_unreachable("Unknown ordering"); 2101 } 2102 2103 void DFSanVisitor::visitLoadInst(LoadInst &LI) { 2104 auto &DL = LI.getModule()->getDataLayout(); 2105 uint64_t Size = DL.getTypeStoreSize(LI.getType()); 2106 if (Size == 0) { 2107 DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); 2108 DFSF.setOrigin(&LI, DFSF.DFS.ZeroOrigin); 2109 return; 2110 } 2111 2112 // When an application load is atomic, increase atomic ordering between 2113 // atomic application loads and stores to ensure happen-before order; load 2114 // shadow data after application data; store zero shadow data before 2115 // application data. This ensure shadow loads return either labels of the 2116 // initial application data or zeros. 2117 if (LI.isAtomic()) 2118 LI.setOrdering(addAcquireOrdering(LI.getOrdering())); 2119 2120 Instruction *Pos = LI.isAtomic() ? LI.getNextNode() : &LI; 2121 std::vector<Value *> Shadows; 2122 std::vector<Value *> Origins; 2123 Value *PrimitiveShadow, *Origin; 2124 std::tie(PrimitiveShadow, Origin) = 2125 DFSF.loadShadowOrigin(LI.getPointerOperand(), Size, LI.getAlign(), Pos); 2126 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2127 if (ShouldTrackOrigins) { 2128 Shadows.push_back(PrimitiveShadow); 2129 Origins.push_back(Origin); 2130 } 2131 if (ClCombinePointerLabelsOnLoad) { 2132 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); 2133 PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, Pos); 2134 if (ShouldTrackOrigins) { 2135 Shadows.push_back(PtrShadow); 2136 Origins.push_back(DFSF.getOrigin(LI.getPointerOperand())); 2137 } 2138 } 2139 if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) 2140 DFSF.NonZeroChecks.push_back(PrimitiveShadow); 2141 2142 Value *Shadow = 2143 DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, Pos); 2144 DFSF.setShadow(&LI, Shadow); 2145 2146 if (ShouldTrackOrigins) { 2147 DFSF.setOrigin(&LI, DFSF.combineOrigins(Shadows, Origins, Pos)); 2148 } 2149 2150 if (ClEventCallbacks) { 2151 IRBuilder<> IRB(Pos); 2152 Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2153 IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); 2154 } 2155 } 2156 2157 Value *DFSanFunction::updateOriginIfTainted(Value *Shadow, Value *Origin, 2158 IRBuilder<> &IRB) { 2159 assert(DFS.shouldTrackOrigins()); 2160 return IRB.CreateCall(DFS.DFSanChainOriginIfTaintedFn, {Shadow, Origin}); 2161 } 2162 2163 Value *DFSanFunction::updateOrigin(Value *V, IRBuilder<> &IRB) { 2164 if (!DFS.shouldTrackOrigins()) 2165 return V; 2166 return IRB.CreateCall(DFS.DFSanChainOriginFn, V); 2167 } 2168 2169 Value *DFSanFunction::originToIntptr(IRBuilder<> &IRB, Value *Origin) { 2170 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2171 const DataLayout &DL = F->getParent()->getDataLayout(); 2172 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2173 if (IntptrSize == OriginSize) 2174 return Origin; 2175 assert(IntptrSize == OriginSize * 2); 2176 Origin = IRB.CreateIntCast(Origin, DFS.IntptrTy, /* isSigned */ false); 2177 return IRB.CreateOr(Origin, IRB.CreateShl(Origin, OriginSize * 8)); 2178 } 2179 2180 void DFSanFunction::paintOrigin(IRBuilder<> &IRB, Value *Origin, 2181 Value *StoreOriginAddr, 2182 uint64_t StoreOriginSize, Align Alignment) { 2183 const unsigned OriginSize = DataFlowSanitizer::OriginWidthBytes; 2184 const DataLayout &DL = F->getParent()->getDataLayout(); 2185 const Align IntptrAlignment = DL.getABITypeAlign(DFS.IntptrTy); 2186 unsigned IntptrSize = DL.getTypeStoreSize(DFS.IntptrTy); 2187 assert(IntptrAlignment >= MinOriginAlignment); 2188 assert(IntptrSize >= OriginSize); 2189 2190 unsigned Ofs = 0; 2191 Align CurrentAlignment = Alignment; 2192 if (Alignment >= IntptrAlignment && IntptrSize > OriginSize) { 2193 Value *IntptrOrigin = originToIntptr(IRB, Origin); 2194 Value *IntptrStoreOriginPtr = IRB.CreatePointerCast( 2195 StoreOriginAddr, PointerType::get(DFS.IntptrTy, 0)); 2196 for (unsigned I = 0; I < StoreOriginSize / IntptrSize; ++I) { 2197 Value *Ptr = 2198 I ? IRB.CreateConstGEP1_32(DFS.IntptrTy, IntptrStoreOriginPtr, I) 2199 : IntptrStoreOriginPtr; 2200 IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); 2201 Ofs += IntptrSize / OriginSize; 2202 CurrentAlignment = IntptrAlignment; 2203 } 2204 } 2205 2206 for (unsigned I = Ofs; I < (StoreOriginSize + OriginSize - 1) / OriginSize; 2207 ++I) { 2208 Value *GEP = I ? IRB.CreateConstGEP1_32(DFS.OriginTy, StoreOriginAddr, I) 2209 : StoreOriginAddr; 2210 IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); 2211 CurrentAlignment = MinOriginAlignment; 2212 } 2213 } 2214 2215 Value *DFSanFunction::convertToBool(Value *V, IRBuilder<> &IRB, 2216 const Twine &Name) { 2217 Type *VTy = V->getType(); 2218 assert(VTy->isIntegerTy()); 2219 if (VTy->getIntegerBitWidth() == 1) 2220 // Just converting a bool to a bool, so do nothing. 2221 return V; 2222 return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), Name); 2223 } 2224 2225 void DFSanFunction::storeOrigin(Instruction *Pos, Value *Addr, uint64_t Size, 2226 Value *Shadow, Value *Origin, 2227 Value *StoreOriginAddr, Align InstAlignment) { 2228 // Do not write origins for zero shadows because we do not trace origins for 2229 // untainted sinks. 2230 const Align OriginAlignment = getOriginAlign(InstAlignment); 2231 Value *CollapsedShadow = collapseToPrimitiveShadow(Shadow, Pos); 2232 IRBuilder<> IRB(Pos); 2233 if (auto *ConstantShadow = dyn_cast<Constant>(CollapsedShadow)) { 2234 if (!ConstantShadow->isZeroValue()) 2235 paintOrigin(IRB, updateOrigin(Origin, IRB), StoreOriginAddr, Size, 2236 OriginAlignment); 2237 return; 2238 } 2239 2240 if (shouldInstrumentWithCall()) { 2241 IRB.CreateCall(DFS.DFSanMaybeStoreOriginFn, 2242 {CollapsedShadow, 2243 IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), 2244 ConstantInt::get(DFS.IntptrTy, Size), Origin}); 2245 } else { 2246 Value *Cmp = convertToBool(CollapsedShadow, IRB, "_dfscmp"); 2247 Instruction *CheckTerm = SplitBlockAndInsertIfThen( 2248 Cmp, &*IRB.GetInsertPoint(), false, DFS.OriginStoreWeights, &DT); 2249 IRBuilder<> IRBNew(CheckTerm); 2250 paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), StoreOriginAddr, Size, 2251 OriginAlignment); 2252 ++NumOriginStores; 2253 } 2254 } 2255 2256 void DFSanFunction::storeZeroPrimitiveShadow(Value *Addr, uint64_t Size, 2257 Align ShadowAlign, 2258 Instruction *Pos) { 2259 IRBuilder<> IRB(Pos); 2260 IntegerType *ShadowTy = 2261 IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); 2262 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); 2263 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); 2264 Value *ExtShadowAddr = 2265 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); 2266 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); 2267 // Do not write origins for 0 shadows because we do not trace origins for 2268 // untainted sinks. 2269 } 2270 2271 void DFSanFunction::storePrimitiveShadowOrigin(Value *Addr, uint64_t Size, 2272 Align InstAlignment, 2273 Value *PrimitiveShadow, 2274 Value *Origin, 2275 Instruction *Pos) { 2276 const bool ShouldTrackOrigins = DFS.shouldTrackOrigins() && Origin; 2277 2278 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { 2279 const auto SI = AllocaShadowMap.find(AI); 2280 if (SI != AllocaShadowMap.end()) { 2281 IRBuilder<> IRB(Pos); 2282 IRB.CreateStore(PrimitiveShadow, SI->second); 2283 2284 // Do not write origins for 0 shadows because we do not trace origins for 2285 // untainted sinks. 2286 if (ShouldTrackOrigins && !DFS.isZeroShadow(PrimitiveShadow)) { 2287 const auto OI = AllocaOriginMap.find(AI); 2288 assert(OI != AllocaOriginMap.end() && Origin); 2289 IRB.CreateStore(Origin, OI->second); 2290 } 2291 return; 2292 } 2293 } 2294 2295 const Align ShadowAlign = getShadowAlign(InstAlignment); 2296 if (DFS.isZeroShadow(PrimitiveShadow)) { 2297 storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, Pos); 2298 return; 2299 } 2300 2301 IRBuilder<> IRB(Pos); 2302 Value *ShadowAddr, *OriginAddr; 2303 std::tie(ShadowAddr, OriginAddr) = 2304 DFS.getShadowOriginAddress(Addr, InstAlignment, Pos); 2305 2306 const unsigned ShadowVecSize = 8; 2307 assert(ShadowVecSize * DFS.ShadowWidthBits <= 128 && 2308 "Shadow vector is too large!"); 2309 2310 uint64_t Offset = 0; 2311 uint64_t LeftSize = Size; 2312 if (LeftSize >= ShadowVecSize) { 2313 auto *ShadowVecTy = 2314 FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); 2315 Value *ShadowVec = UndefValue::get(ShadowVecTy); 2316 for (unsigned I = 0; I != ShadowVecSize; ++I) { 2317 ShadowVec = IRB.CreateInsertElement( 2318 ShadowVec, PrimitiveShadow, 2319 ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), I)); 2320 } 2321 Value *ShadowVecAddr = 2322 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); 2323 do { 2324 Value *CurShadowVecAddr = 2325 IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); 2326 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); 2327 LeftSize -= ShadowVecSize; 2328 ++Offset; 2329 } while (LeftSize >= ShadowVecSize); 2330 Offset *= ShadowVecSize; 2331 } 2332 while (LeftSize > 0) { 2333 Value *CurShadowAddr = 2334 IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); 2335 IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); 2336 --LeftSize; 2337 ++Offset; 2338 } 2339 2340 if (ShouldTrackOrigins) { 2341 storeOrigin(Pos, Addr, Size, PrimitiveShadow, Origin, OriginAddr, 2342 InstAlignment); 2343 } 2344 } 2345 2346 static AtomicOrdering addReleaseOrdering(AtomicOrdering AO) { 2347 switch (AO) { 2348 case AtomicOrdering::NotAtomic: 2349 return AtomicOrdering::NotAtomic; 2350 case AtomicOrdering::Unordered: 2351 case AtomicOrdering::Monotonic: 2352 case AtomicOrdering::Release: 2353 return AtomicOrdering::Release; 2354 case AtomicOrdering::Acquire: 2355 case AtomicOrdering::AcquireRelease: 2356 return AtomicOrdering::AcquireRelease; 2357 case AtomicOrdering::SequentiallyConsistent: 2358 return AtomicOrdering::SequentiallyConsistent; 2359 } 2360 llvm_unreachable("Unknown ordering"); 2361 } 2362 2363 void DFSanVisitor::visitStoreInst(StoreInst &SI) { 2364 auto &DL = SI.getModule()->getDataLayout(); 2365 Value *Val = SI.getValueOperand(); 2366 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2367 if (Size == 0) 2368 return; 2369 2370 // When an application store is atomic, increase atomic ordering between 2371 // atomic application loads and stores to ensure happen-before order; load 2372 // shadow data after application data; store zero shadow data before 2373 // application data. This ensure shadow loads return either labels of the 2374 // initial application data or zeros. 2375 if (SI.isAtomic()) 2376 SI.setOrdering(addReleaseOrdering(SI.getOrdering())); 2377 2378 const bool ShouldTrackOrigins = 2379 DFSF.DFS.shouldTrackOrigins() && !SI.isAtomic(); 2380 std::vector<Value *> Shadows; 2381 std::vector<Value *> Origins; 2382 2383 Value *Shadow = 2384 SI.isAtomic() ? DFSF.DFS.getZeroShadow(Val) : DFSF.getShadow(Val); 2385 2386 if (ShouldTrackOrigins) { 2387 Shadows.push_back(Shadow); 2388 Origins.push_back(DFSF.getOrigin(Val)); 2389 } 2390 2391 Value *PrimitiveShadow; 2392 if (ClCombinePointerLabelsOnStore) { 2393 Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); 2394 if (ShouldTrackOrigins) { 2395 Shadows.push_back(PtrShadow); 2396 Origins.push_back(DFSF.getOrigin(SI.getPointerOperand())); 2397 } 2398 PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); 2399 } else { 2400 PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); 2401 } 2402 Value *Origin = nullptr; 2403 if (ShouldTrackOrigins) 2404 Origin = DFSF.combineOrigins(Shadows, Origins, &SI); 2405 DFSF.storePrimitiveShadowOrigin(SI.getPointerOperand(), Size, SI.getAlign(), 2406 PrimitiveShadow, Origin, &SI); 2407 if (ClEventCallbacks) { 2408 IRBuilder<> IRB(&SI); 2409 Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); 2410 IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); 2411 } 2412 } 2413 2414 void DFSanVisitor::visitCASOrRMW(Align InstAlignment, Instruction &I) { 2415 assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); 2416 2417 Value *Val = I.getOperand(1); 2418 const auto &DL = I.getModule()->getDataLayout(); 2419 uint64_t Size = DL.getTypeStoreSize(Val->getType()); 2420 if (Size == 0) 2421 return; 2422 2423 // Conservatively set data at stored addresses and return with zero shadow to 2424 // prevent shadow data races. 2425 IRBuilder<> IRB(&I); 2426 Value *Addr = I.getOperand(0); 2427 const Align ShadowAlign = DFSF.getShadowAlign(InstAlignment); 2428 DFSF.storeZeroPrimitiveShadow(Addr, Size, ShadowAlign, &I); 2429 DFSF.setShadow(&I, DFSF.DFS.getZeroShadow(&I)); 2430 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2431 } 2432 2433 void DFSanVisitor::visitAtomicRMWInst(AtomicRMWInst &I) { 2434 visitCASOrRMW(I.getAlign(), I); 2435 // TODO: The ordering change follows MSan. It is possible not to change 2436 // ordering because we always set and use 0 shadows. 2437 I.setOrdering(addReleaseOrdering(I.getOrdering())); 2438 } 2439 2440 void DFSanVisitor::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { 2441 visitCASOrRMW(I.getAlign(), I); 2442 // TODO: The ordering change follows MSan. It is possible not to change 2443 // ordering because we always set and use 0 shadows. 2444 I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); 2445 } 2446 2447 void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { 2448 visitInstOperands(UO); 2449 } 2450 2451 void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { 2452 visitInstOperands(BO); 2453 } 2454 2455 void DFSanVisitor::visitBitCastInst(BitCastInst &BCI) { 2456 // Special case: if this is the bitcast (there is exactly 1 allowed) between 2457 // a musttail call and a ret, don't instrument. New instructions are not 2458 // allowed after a musttail call. 2459 if (auto *CI = dyn_cast<CallInst>(BCI.getOperand(0))) 2460 if (CI->isMustTailCall()) 2461 return; 2462 visitInstOperands(BCI); 2463 } 2464 2465 void DFSanVisitor::visitCastInst(CastInst &CI) { visitInstOperands(CI); } 2466 2467 void DFSanVisitor::visitCmpInst(CmpInst &CI) { 2468 visitInstOperands(CI); 2469 if (ClEventCallbacks) { 2470 IRBuilder<> IRB(&CI); 2471 Value *CombinedShadow = DFSF.getShadow(&CI); 2472 IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); 2473 } 2474 } 2475 2476 void DFSanVisitor::visitLandingPadInst(LandingPadInst &LPI) { 2477 // We do not need to track data through LandingPadInst. 2478 // 2479 // For the C++ exceptions, if a value is thrown, this value will be stored 2480 // in a memory location provided by __cxa_allocate_exception(...) (on the 2481 // throw side) or __cxa_begin_catch(...) (on the catch side). 2482 // This memory will have a shadow, so with the loads and stores we will be 2483 // able to propagate labels on data thrown through exceptions, without any 2484 // special handling of the LandingPadInst. 2485 // 2486 // The second element in the pair result of the LandingPadInst is a 2487 // register value, but it is for a type ID and should never be tainted. 2488 DFSF.setShadow(&LPI, DFSF.DFS.getZeroShadow(&LPI)); 2489 DFSF.setOrigin(&LPI, DFSF.DFS.ZeroOrigin); 2490 } 2491 2492 void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { 2493 if (ClCombineOffsetLabelsOnGEP) { 2494 visitInstOperands(GEPI); 2495 return; 2496 } 2497 2498 // Only propagate shadow/origin of base pointer value but ignore those of 2499 // offset operands. 2500 Value *BasePointer = GEPI.getPointerOperand(); 2501 DFSF.setShadow(&GEPI, DFSF.getShadow(BasePointer)); 2502 if (DFSF.DFS.shouldTrackOrigins()) 2503 DFSF.setOrigin(&GEPI, DFSF.getOrigin(BasePointer)); 2504 } 2505 2506 void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { 2507 visitInstOperands(I); 2508 } 2509 2510 void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { 2511 visitInstOperands(I); 2512 } 2513 2514 void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { 2515 visitInstOperands(I); 2516 } 2517 2518 void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { 2519 IRBuilder<> IRB(&I); 2520 Value *Agg = I.getAggregateOperand(); 2521 Value *AggShadow = DFSF.getShadow(Agg); 2522 Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); 2523 DFSF.setShadow(&I, ResShadow); 2524 visitInstOperandOrigins(I); 2525 } 2526 2527 void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { 2528 IRBuilder<> IRB(&I); 2529 Value *AggShadow = DFSF.getShadow(I.getAggregateOperand()); 2530 Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); 2531 Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); 2532 DFSF.setShadow(&I, Res); 2533 visitInstOperandOrigins(I); 2534 } 2535 2536 void DFSanVisitor::visitAllocaInst(AllocaInst &I) { 2537 bool AllLoadsStores = true; 2538 for (User *U : I.users()) { 2539 if (isa<LoadInst>(U)) 2540 continue; 2541 2542 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 2543 if (SI->getPointerOperand() == &I) 2544 continue; 2545 } 2546 2547 AllLoadsStores = false; 2548 break; 2549 } 2550 if (AllLoadsStores) { 2551 IRBuilder<> IRB(&I); 2552 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); 2553 if (DFSF.DFS.shouldTrackOrigins()) { 2554 DFSF.AllocaOriginMap[&I] = 2555 IRB.CreateAlloca(DFSF.DFS.OriginTy, nullptr, "_dfsa"); 2556 } 2557 } 2558 DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); 2559 DFSF.setOrigin(&I, DFSF.DFS.ZeroOrigin); 2560 } 2561 2562 void DFSanVisitor::visitSelectInst(SelectInst &I) { 2563 Value *CondShadow = DFSF.getShadow(I.getCondition()); 2564 Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); 2565 Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); 2566 Value *ShadowSel = nullptr; 2567 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2568 std::vector<Value *> Shadows; 2569 std::vector<Value *> Origins; 2570 Value *TrueOrigin = 2571 ShouldTrackOrigins ? DFSF.getOrigin(I.getTrueValue()) : nullptr; 2572 Value *FalseOrigin = 2573 ShouldTrackOrigins ? DFSF.getOrigin(I.getFalseValue()) : nullptr; 2574 2575 if (isa<VectorType>(I.getCondition()->getType())) { 2576 ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, 2577 FalseShadow, &I); 2578 if (ShouldTrackOrigins) { 2579 Shadows.push_back(TrueShadow); 2580 Shadows.push_back(FalseShadow); 2581 Origins.push_back(TrueOrigin); 2582 Origins.push_back(FalseOrigin); 2583 } 2584 } else { 2585 if (TrueShadow == FalseShadow) { 2586 ShadowSel = TrueShadow; 2587 if (ShouldTrackOrigins) { 2588 Shadows.push_back(TrueShadow); 2589 Origins.push_back(TrueOrigin); 2590 } 2591 } else { 2592 ShadowSel = 2593 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); 2594 if (ShouldTrackOrigins) { 2595 Shadows.push_back(ShadowSel); 2596 Origins.push_back(SelectInst::Create(I.getCondition(), TrueOrigin, 2597 FalseOrigin, "", &I)); 2598 } 2599 } 2600 } 2601 DFSF.setShadow(&I, ClTrackSelectControlFlow 2602 ? DFSF.combineShadowsThenConvert( 2603 I.getType(), CondShadow, ShadowSel, &I) 2604 : ShadowSel); 2605 if (ShouldTrackOrigins) { 2606 if (ClTrackSelectControlFlow) { 2607 Shadows.push_back(CondShadow); 2608 Origins.push_back(DFSF.getOrigin(I.getCondition())); 2609 } 2610 DFSF.setOrigin(&I, DFSF.combineOrigins(Shadows, Origins, &I)); 2611 } 2612 } 2613 2614 void DFSanVisitor::visitMemSetInst(MemSetInst &I) { 2615 IRBuilder<> IRB(&I); 2616 Value *ValShadow = DFSF.getShadow(I.getValue()); 2617 Value *ValOrigin = DFSF.DFS.shouldTrackOrigins() 2618 ? DFSF.getOrigin(I.getValue()) 2619 : DFSF.DFS.ZeroOrigin; 2620 IRB.CreateCall( 2621 DFSF.DFS.DFSanSetLabelFn, 2622 {ValShadow, ValOrigin, 2623 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)), 2624 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2625 } 2626 2627 void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { 2628 IRBuilder<> IRB(&I); 2629 2630 // CopyOrMoveOrigin transfers origins by refering to their shadows. So we 2631 // need to move origins before moving shadows. 2632 if (DFSF.DFS.shouldTrackOrigins()) { 2633 IRB.CreateCall( 2634 DFSF.DFS.DFSanMemOriginTransferFn, 2635 {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), 2636 IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), 2637 IRB.CreateIntCast(I.getArgOperand(2), DFSF.DFS.IntptrTy, false)}); 2638 } 2639 2640 Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); 2641 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); 2642 Value *LenShadow = 2643 IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), 2644 DFSF.DFS.ShadowWidthBytes)); 2645 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); 2646 Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); 2647 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); 2648 auto *MTI = cast<MemTransferInst>( 2649 IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), 2650 {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); 2651 if (ClPreserveAlignment) { 2652 MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); 2653 MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); 2654 } else { 2655 MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2656 MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); 2657 } 2658 if (ClEventCallbacks) { 2659 IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, 2660 {RawDestShadow, 2661 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); 2662 } 2663 } 2664 2665 static bool isAMustTailRetVal(Value *RetVal) { 2666 // Tail call may have a bitcast between return. 2667 if (auto *I = dyn_cast<BitCastInst>(RetVal)) { 2668 RetVal = I->getOperand(0); 2669 } 2670 if (auto *I = dyn_cast<CallInst>(RetVal)) { 2671 return I->isMustTailCall(); 2672 } 2673 return false; 2674 } 2675 2676 void DFSanVisitor::visitReturnInst(ReturnInst &RI) { 2677 if (!DFSF.IsNativeABI && RI.getReturnValue()) { 2678 // Don't emit the instrumentation for musttail call returns. 2679 if (isAMustTailRetVal(RI.getReturnValue())) 2680 return; 2681 2682 Value *S = DFSF.getShadow(RI.getReturnValue()); 2683 IRBuilder<> IRB(&RI); 2684 Type *RT = DFSF.F->getFunctionType()->getReturnType(); 2685 unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); 2686 if (Size <= RetvalTLSSize) { 2687 // If the size overflows, stores nothing. At callsite, oversized return 2688 // shadows are set to zero. 2689 IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), ShadowTLSAlignment); 2690 } 2691 if (DFSF.DFS.shouldTrackOrigins()) { 2692 Value *O = DFSF.getOrigin(RI.getReturnValue()); 2693 IRB.CreateStore(O, DFSF.getRetvalOriginTLS()); 2694 } 2695 } 2696 } 2697 2698 void DFSanVisitor::addShadowArguments(Function &F, CallBase &CB, 2699 std::vector<Value *> &Args, 2700 IRBuilder<> &IRB) { 2701 FunctionType *FT = F.getFunctionType(); 2702 2703 auto *I = CB.arg_begin(); 2704 2705 // Adds non-variable argument shadows. 2706 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2707 Args.push_back(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB)); 2708 2709 // Adds variable argument shadows. 2710 if (FT->isVarArg()) { 2711 auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, 2712 CB.arg_size() - FT->getNumParams()); 2713 auto *LabelVAAlloca = 2714 new AllocaInst(LabelVATy, getDataLayout().getAllocaAddrSpace(), 2715 "labelva", &DFSF.F->getEntryBlock().front()); 2716 2717 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2718 auto *LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, N); 2719 IRB.CreateStore(DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*I), &CB), 2720 LabelVAPtr); 2721 } 2722 2723 Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); 2724 } 2725 2726 // Adds the return value shadow. 2727 if (!FT->getReturnType()->isVoidTy()) { 2728 if (!DFSF.LabelReturnAlloca) { 2729 DFSF.LabelReturnAlloca = new AllocaInst( 2730 DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), 2731 "labelreturn", &DFSF.F->getEntryBlock().front()); 2732 } 2733 Args.push_back(DFSF.LabelReturnAlloca); 2734 } 2735 } 2736 2737 void DFSanVisitor::addOriginArguments(Function &F, CallBase &CB, 2738 std::vector<Value *> &Args, 2739 IRBuilder<> &IRB) { 2740 FunctionType *FT = F.getFunctionType(); 2741 2742 auto *I = CB.arg_begin(); 2743 2744 // Add non-variable argument origins. 2745 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) 2746 Args.push_back(DFSF.getOrigin(*I)); 2747 2748 // Add variable argument origins. 2749 if (FT->isVarArg()) { 2750 auto *OriginVATy = 2751 ArrayType::get(DFSF.DFS.OriginTy, CB.arg_size() - FT->getNumParams()); 2752 auto *OriginVAAlloca = 2753 new AllocaInst(OriginVATy, getDataLayout().getAllocaAddrSpace(), 2754 "originva", &DFSF.F->getEntryBlock().front()); 2755 2756 for (unsigned N = 0; I != CB.arg_end(); ++I, ++N) { 2757 auto *OriginVAPtr = IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, N); 2758 IRB.CreateStore(DFSF.getOrigin(*I), OriginVAPtr); 2759 } 2760 2761 Args.push_back(IRB.CreateStructGEP(OriginVATy, OriginVAAlloca, 0)); 2762 } 2763 2764 // Add the return value origin. 2765 if (!FT->getReturnType()->isVoidTy()) { 2766 if (!DFSF.OriginReturnAlloca) { 2767 DFSF.OriginReturnAlloca = new AllocaInst( 2768 DFSF.DFS.OriginTy, getDataLayout().getAllocaAddrSpace(), 2769 "originreturn", &DFSF.F->getEntryBlock().front()); 2770 } 2771 Args.push_back(DFSF.OriginReturnAlloca); 2772 } 2773 } 2774 2775 bool DFSanVisitor::visitWrappedCallBase(Function &F, CallBase &CB) { 2776 IRBuilder<> IRB(&CB); 2777 switch (DFSF.DFS.getWrapperKind(&F)) { 2778 case DataFlowSanitizer::WK_Warning: 2779 CB.setCalledFunction(&F); 2780 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, 2781 IRB.CreateGlobalStringPtr(F.getName())); 2782 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2783 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2784 return true; 2785 case DataFlowSanitizer::WK_Discard: 2786 CB.setCalledFunction(&F); 2787 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2788 DFSF.setOrigin(&CB, DFSF.DFS.ZeroOrigin); 2789 return true; 2790 case DataFlowSanitizer::WK_Functional: 2791 CB.setCalledFunction(&F); 2792 visitInstOperands(CB); 2793 return true; 2794 case DataFlowSanitizer::WK_Custom: 2795 // Don't try to handle invokes of custom functions, it's too complicated. 2796 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ 2797 // wrapper. 2798 CallInst *CI = dyn_cast<CallInst>(&CB); 2799 if (!CI) 2800 return false; 2801 2802 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2803 FunctionType *FT = F.getFunctionType(); 2804 TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); 2805 std::string CustomFName = ShouldTrackOrigins ? "__dfso_" : "__dfsw_"; 2806 CustomFName += F.getName(); 2807 FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( 2808 CustomFName, CustomFn.TransformedType); 2809 if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { 2810 CustomFn->copyAttributesFrom(&F); 2811 2812 // Custom functions returning non-void will write to the return label. 2813 if (!FT->getReturnType()->isVoidTy()) { 2814 CustomFn->removeFnAttrs(DFSF.DFS.ReadOnlyNoneAttrs); 2815 } 2816 } 2817 2818 std::vector<Value *> Args; 2819 2820 // Adds non-variable arguments. 2821 auto *I = CB.arg_begin(); 2822 for (unsigned N = FT->getNumParams(); N != 0; ++I, --N) { 2823 Type *T = (*I)->getType(); 2824 FunctionType *ParamFT; 2825 if (isa<PointerType>(T) && 2826 (ParamFT = dyn_cast<FunctionType>(T->getPointerElementType()))) { 2827 std::string TName = "dfst"; 2828 TName += utostr(FT->getNumParams() - N); 2829 TName += "$"; 2830 TName += F.getName(); 2831 Constant *Trampoline = 2832 DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); 2833 Args.push_back(Trampoline); 2834 Args.push_back( 2835 IRB.CreateBitCast(*I, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); 2836 } else { 2837 Args.push_back(*I); 2838 } 2839 } 2840 2841 // Adds shadow arguments. 2842 const unsigned ShadowArgStart = Args.size(); 2843 addShadowArguments(F, CB, Args, IRB); 2844 2845 // Adds origin arguments. 2846 const unsigned OriginArgStart = Args.size(); 2847 if (ShouldTrackOrigins) 2848 addOriginArguments(F, CB, Args, IRB); 2849 2850 // Adds variable arguments. 2851 append_range(Args, drop_begin(CB.args(), FT->getNumParams())); 2852 2853 CallInst *CustomCI = IRB.CreateCall(CustomF, Args); 2854 CustomCI->setCallingConv(CI->getCallingConv()); 2855 CustomCI->setAttributes(transformFunctionAttributes( 2856 CustomFn, CI->getContext(), CI->getAttributes())); 2857 2858 // Update the parameter attributes of the custom call instruction to 2859 // zero extend the shadow parameters. This is required for targets 2860 // which consider PrimitiveShadowTy an illegal type. 2861 for (unsigned N = 0; N < FT->getNumParams(); N++) { 2862 const unsigned ArgNo = ShadowArgStart + N; 2863 if (CustomCI->getArgOperand(ArgNo)->getType() == 2864 DFSF.DFS.PrimitiveShadowTy) 2865 CustomCI->addParamAttr(ArgNo, Attribute::ZExt); 2866 if (ShouldTrackOrigins) { 2867 const unsigned OriginArgNo = OriginArgStart + N; 2868 if (CustomCI->getArgOperand(OriginArgNo)->getType() == 2869 DFSF.DFS.OriginTy) 2870 CustomCI->addParamAttr(OriginArgNo, Attribute::ZExt); 2871 } 2872 } 2873 2874 // Loads the return value shadow and origin. 2875 if (!FT->getReturnType()->isVoidTy()) { 2876 LoadInst *LabelLoad = 2877 IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); 2878 DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( 2879 FT->getReturnType(), LabelLoad, &CB)); 2880 if (ShouldTrackOrigins) { 2881 LoadInst *OriginLoad = 2882 IRB.CreateLoad(DFSF.DFS.OriginTy, DFSF.OriginReturnAlloca); 2883 DFSF.setOrigin(CustomCI, OriginLoad); 2884 } 2885 } 2886 2887 CI->replaceAllUsesWith(CustomCI); 2888 CI->eraseFromParent(); 2889 return true; 2890 } 2891 return false; 2892 } 2893 2894 void DFSanVisitor::visitCallBase(CallBase &CB) { 2895 Function *F = CB.getCalledFunction(); 2896 if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { 2897 visitInstOperands(CB); 2898 return; 2899 } 2900 2901 // Calls to this function are synthesized in wrappers, and we shouldn't 2902 // instrument them. 2903 if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) 2904 return; 2905 2906 DenseMap<Value *, Function *>::iterator UnwrappedFnIt = 2907 DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); 2908 if (UnwrappedFnIt != DFSF.DFS.UnwrappedFnMap.end()) 2909 if (visitWrappedCallBase(*UnwrappedFnIt->second, CB)) 2910 return; 2911 2912 IRBuilder<> IRB(&CB); 2913 2914 const bool ShouldTrackOrigins = DFSF.DFS.shouldTrackOrigins(); 2915 FunctionType *FT = CB.getFunctionType(); 2916 const DataLayout &DL = getDataLayout(); 2917 2918 // Stores argument shadows. 2919 unsigned ArgOffset = 0; 2920 for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { 2921 if (ShouldTrackOrigins) { 2922 // Ignore overflowed origins 2923 Value *ArgShadow = DFSF.getShadow(CB.getArgOperand(I)); 2924 if (I < DFSF.DFS.NumOfElementsInArgOrgTLS && 2925 !DFSF.DFS.isZeroShadow(ArgShadow)) 2926 IRB.CreateStore(DFSF.getOrigin(CB.getArgOperand(I)), 2927 DFSF.getArgOriginTLS(I, IRB)); 2928 } 2929 2930 unsigned Size = 2931 DL.getTypeAllocSize(DFSF.DFS.getShadowTy(FT->getParamType(I))); 2932 // Stop storing if arguments' size overflows. Inside a function, arguments 2933 // after overflow have zero shadow values. 2934 if (ArgOffset + Size > ArgTLSSize) 2935 break; 2936 IRB.CreateAlignedStore(DFSF.getShadow(CB.getArgOperand(I)), 2937 DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), 2938 ShadowTLSAlignment); 2939 ArgOffset += alignTo(Size, ShadowTLSAlignment); 2940 } 2941 2942 Instruction *Next = nullptr; 2943 if (!CB.getType()->isVoidTy()) { 2944 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { 2945 if (II->getNormalDest()->getSinglePredecessor()) { 2946 Next = &II->getNormalDest()->front(); 2947 } else { 2948 BasicBlock *NewBB = 2949 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); 2950 Next = &NewBB->front(); 2951 } 2952 } else { 2953 assert(CB.getIterator() != CB.getParent()->end()); 2954 Next = CB.getNextNode(); 2955 } 2956 2957 // Don't emit the epilogue for musttail call returns. 2958 if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) 2959 return; 2960 2961 // Loads the return value shadow. 2962 IRBuilder<> NextIRB(Next); 2963 unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); 2964 if (Size > RetvalTLSSize) { 2965 // Set overflowed return shadow to be zero. 2966 DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); 2967 } else { 2968 LoadInst *LI = NextIRB.CreateAlignedLoad( 2969 DFSF.DFS.getShadowTy(&CB), DFSF.getRetvalTLS(CB.getType(), NextIRB), 2970 ShadowTLSAlignment, "_dfsret"); 2971 DFSF.SkipInsts.insert(LI); 2972 DFSF.setShadow(&CB, LI); 2973 DFSF.NonZeroChecks.push_back(LI); 2974 } 2975 2976 if (ShouldTrackOrigins) { 2977 LoadInst *LI = NextIRB.CreateLoad(DFSF.DFS.OriginTy, 2978 DFSF.getRetvalOriginTLS(), "_dfsret_o"); 2979 DFSF.SkipInsts.insert(LI); 2980 DFSF.setOrigin(&CB, LI); 2981 } 2982 } 2983 } 2984 2985 void DFSanVisitor::visitPHINode(PHINode &PN) { 2986 Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); 2987 PHINode *ShadowPN = 2988 PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); 2989 2990 // Give the shadow phi node valid predecessors to fool SplitEdge into working. 2991 Value *UndefShadow = UndefValue::get(ShadowTy); 2992 for (BasicBlock *BB : PN.blocks()) 2993 ShadowPN->addIncoming(UndefShadow, BB); 2994 2995 DFSF.setShadow(&PN, ShadowPN); 2996 2997 PHINode *OriginPN = nullptr; 2998 if (DFSF.DFS.shouldTrackOrigins()) { 2999 OriginPN = 3000 PHINode::Create(DFSF.DFS.OriginTy, PN.getNumIncomingValues(), "", &PN); 3001 Value *UndefOrigin = UndefValue::get(DFSF.DFS.OriginTy); 3002 for (BasicBlock *BB : PN.blocks()) 3003 OriginPN->addIncoming(UndefOrigin, BB); 3004 DFSF.setOrigin(&PN, OriginPN); 3005 } 3006 3007 DFSF.PHIFixups.push_back({&PN, ShadowPN, OriginPN}); 3008 } 3009 3010 namespace { 3011 class DataFlowSanitizerLegacyPass : public ModulePass { 3012 private: 3013 std::vector<std::string> ABIListFiles; 3014 3015 public: 3016 static char ID; 3017 3018 DataFlowSanitizerLegacyPass( 3019 const std::vector<std::string> &ABIListFiles = std::vector<std::string>()) 3020 : ModulePass(ID), ABIListFiles(ABIListFiles) {} 3021 3022 bool runOnModule(Module &M) override { 3023 return DataFlowSanitizer(ABIListFiles).runImpl(M); 3024 } 3025 }; 3026 } // namespace 3027 3028 char DataFlowSanitizerLegacyPass::ID; 3029 3030 INITIALIZE_PASS(DataFlowSanitizerLegacyPass, "dfsan", 3031 "DataFlowSanitizer: dynamic data flow analysis.", false, false) 3032 3033 ModulePass *llvm::createDataFlowSanitizerLegacyPassPass( 3034 const std::vector<std::string> &ABIListFiles) { 3035 return new DataFlowSanitizerLegacyPass(ABIListFiles); 3036 } 3037 3038 PreservedAnalyses DataFlowSanitizerPass::run(Module &M, 3039 ModuleAnalysisManager &AM) { 3040 if (DataFlowSanitizer(ABIListFiles).runImpl(M)) { 3041 return PreservedAnalyses::none(); 3042 } 3043 return PreservedAnalyses::all(); 3044 } 3045