1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm-c/Initialization.h" 37 #include "llvm-c/Transforms/InstCombine.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/ArrayRef.h" 40 #include "llvm/ADT/DenseMap.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/SmallPtrSet.h" 43 #include "llvm/ADT/SmallVector.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/ADT/TinyPtrVector.h" 46 #include "llvm/Analysis/AliasAnalysis.h" 47 #include "llvm/Analysis/AssumptionCache.h" 48 #include "llvm/Analysis/BasicAliasAnalysis.h" 49 #include "llvm/Analysis/BlockFrequencyInfo.h" 50 #include "llvm/Analysis/CFG.h" 51 #include "llvm/Analysis/ConstantFolding.h" 52 #include "llvm/Analysis/EHPersonalities.h" 53 #include "llvm/Analysis/GlobalsModRef.h" 54 #include "llvm/Analysis/InstructionSimplify.h" 55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 56 #include "llvm/Analysis/LoopInfo.h" 57 #include "llvm/Analysis/MemoryBuiltins.h" 58 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 59 #include "llvm/Analysis/ProfileSummaryInfo.h" 60 #include "llvm/Analysis/TargetFolder.h" 61 #include "llvm/Analysis/TargetLibraryInfo.h" 62 #include "llvm/Analysis/ValueTracking.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constant.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DIBuilder.h" 68 #include "llvm/IR/DataLayout.h" 69 #include "llvm/IR/DerivedTypes.h" 70 #include "llvm/IR/Dominators.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/LegacyPassManager.h" 80 #include "llvm/IR/Metadata.h" 81 #include "llvm/IR/Operator.h" 82 #include "llvm/IR/PassManager.h" 83 #include "llvm/IR/PatternMatch.h" 84 #include "llvm/IR/Type.h" 85 #include "llvm/IR/Use.h" 86 #include "llvm/IR/User.h" 87 #include "llvm/IR/Value.h" 88 #include "llvm/IR/ValueHandle.h" 89 #include "llvm/Pass.h" 90 #include "llvm/Support/CBindingWrapping.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/DebugCounter.h" 96 #include "llvm/Support/ErrorHandling.h" 97 #include "llvm/Support/KnownBits.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Transforms/InstCombine/InstCombine.h" 100 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <algorithm> 103 #include <cassert> 104 #include <cstdint> 105 #include <memory> 106 #include <string> 107 #include <utility> 108 109 using namespace llvm; 110 using namespace llvm::PatternMatch; 111 112 #define DEBUG_TYPE "instcombine" 113 114 STATISTIC(NumCombined , "Number of insts combined"); 115 STATISTIC(NumConstProp, "Number of constant folds"); 116 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 117 STATISTIC(NumSunkInst , "Number of instructions sunk"); 118 STATISTIC(NumExpand, "Number of expansions"); 119 STATISTIC(NumFactor , "Number of factorizations"); 120 STATISTIC(NumReassoc , "Number of reassociations"); 121 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 122 "Controls which instructions are visited"); 123 124 static cl::opt<bool> 125 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 126 cl::init(true)); 127 128 static cl::opt<bool> 129 EnableExpensiveCombines("expensive-combines", 130 cl::desc("Enable expensive instruction combines")); 131 132 static cl::opt<unsigned> 133 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 134 cl::desc("Maximum array size considered when doing a combine")); 135 136 // FIXME: Remove this flag when it is no longer necessary to convert 137 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 138 // increases variable availability at the cost of accuracy. Variables that 139 // cannot be promoted by mem2reg or SROA will be described as living in memory 140 // for their entire lifetime. However, passes like DSE and instcombine can 141 // delete stores to the alloca, leading to misleading and inaccurate debug 142 // information. This flag can be removed when those passes are fixed. 143 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 144 cl::Hidden, cl::init(true)); 145 146 Value *InstCombiner::EmitGEPOffset(User *GEP) { 147 return llvm::EmitGEPOffset(&Builder, DL, GEP); 148 } 149 150 /// Return true if it is desirable to convert an integer computation from a 151 /// given bit width to a new bit width. 152 /// We don't want to convert from a legal to an illegal type or from a smaller 153 /// to a larger illegal type. A width of '1' is always treated as a legal type 154 /// because i1 is a fundamental type in IR, and there are many specialized 155 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as 156 /// legal to convert to, in order to open up more combining opportunities. 157 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common 158 /// from frontend languages. 159 bool InstCombiner::shouldChangeType(unsigned FromWidth, 160 unsigned ToWidth) const { 161 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 162 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 163 164 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only 165 // shrink types, to prevent infinite loops. 166 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32)) 167 return true; 168 169 // If this is a legal integer from type, and the result would be an illegal 170 // type, don't do the transformation. 171 if (FromLegal && !ToLegal) 172 return false; 173 174 // Otherwise, if both are illegal, do not increase the size of the result. We 175 // do allow things like i160 -> i64, but not i64 -> i160. 176 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 177 return false; 178 179 return true; 180 } 181 182 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 183 /// We don't want to convert from a legal to an illegal type or from a smaller 184 /// to a larger illegal type. i1 is always treated as a legal type because it is 185 /// a fundamental type in IR, and there are many specialized optimizations for 186 /// i1 types. 187 bool InstCombiner::shouldChangeType(Type *From, Type *To) const { 188 // TODO: This could be extended to allow vectors. Datalayout changes might be 189 // needed to properly support that. 190 if (!From->isIntegerTy() || !To->isIntegerTy()) 191 return false; 192 193 unsigned FromWidth = From->getPrimitiveSizeInBits(); 194 unsigned ToWidth = To->getPrimitiveSizeInBits(); 195 return shouldChangeType(FromWidth, ToWidth); 196 } 197 198 // Return true, if No Signed Wrap should be maintained for I. 199 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 200 // where both B and C should be ConstantInts, results in a constant that does 201 // not overflow. This function only handles the Add and Sub opcodes. For 202 // all other opcodes, the function conservatively returns false. 203 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 204 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 205 if (!OBO || !OBO->hasNoSignedWrap()) 206 return false; 207 208 // We reason about Add and Sub Only. 209 Instruction::BinaryOps Opcode = I.getOpcode(); 210 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 211 return false; 212 213 const APInt *BVal, *CVal; 214 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 215 return false; 216 217 bool Overflow = false; 218 if (Opcode == Instruction::Add) 219 (void)BVal->sadd_ov(*CVal, Overflow); 220 else 221 (void)BVal->ssub_ov(*CVal, Overflow); 222 223 return !Overflow; 224 } 225 226 static bool hasNoUnsignedWrap(BinaryOperator &I) { 227 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 228 return OBO && OBO->hasNoUnsignedWrap(); 229 } 230 231 static bool hasNoSignedWrap(BinaryOperator &I) { 232 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 233 return OBO && OBO->hasNoSignedWrap(); 234 } 235 236 /// Conservatively clears subclassOptionalData after a reassociation or 237 /// commutation. We preserve fast-math flags when applicable as they can be 238 /// preserved. 239 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 240 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 241 if (!FPMO) { 242 I.clearSubclassOptionalData(); 243 return; 244 } 245 246 FastMathFlags FMF = I.getFastMathFlags(); 247 I.clearSubclassOptionalData(); 248 I.setFastMathFlags(FMF); 249 } 250 251 /// Combine constant operands of associative operations either before or after a 252 /// cast to eliminate one of the associative operations: 253 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 254 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 255 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1) { 256 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 257 if (!Cast || !Cast->hasOneUse()) 258 return false; 259 260 // TODO: Enhance logic for other casts and remove this check. 261 auto CastOpcode = Cast->getOpcode(); 262 if (CastOpcode != Instruction::ZExt) 263 return false; 264 265 // TODO: Enhance logic for other BinOps and remove this check. 266 if (!BinOp1->isBitwiseLogicOp()) 267 return false; 268 269 auto AssocOpcode = BinOp1->getOpcode(); 270 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 271 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 272 return false; 273 274 Constant *C1, *C2; 275 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 276 !match(BinOp2->getOperand(1), m_Constant(C2))) 277 return false; 278 279 // TODO: This assumes a zext cast. 280 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 281 // to the destination type might lose bits. 282 283 // Fold the constants together in the destination type: 284 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 285 Type *DestTy = C1->getType(); 286 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy); 287 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2); 288 Cast->setOperand(0, BinOp2->getOperand(0)); 289 BinOp1->setOperand(1, FoldedC); 290 return true; 291 } 292 293 /// This performs a few simplifications for operators that are associative or 294 /// commutative: 295 /// 296 /// Commutative operators: 297 /// 298 /// 1. Order operands such that they are listed from right (least complex) to 299 /// left (most complex). This puts constants before unary operators before 300 /// binary operators. 301 /// 302 /// Associative operators: 303 /// 304 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 305 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 306 /// 307 /// Associative and commutative operators: 308 /// 309 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 310 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 311 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 312 /// if C1 and C2 are constants. 313 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 314 Instruction::BinaryOps Opcode = I.getOpcode(); 315 bool Changed = false; 316 317 do { 318 // Order operands such that they are listed from right (least complex) to 319 // left (most complex). This puts constants before unary operators before 320 // binary operators. 321 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 322 getComplexity(I.getOperand(1))) 323 Changed = !I.swapOperands(); 324 325 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 326 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 327 328 if (I.isAssociative()) { 329 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 330 if (Op0 && Op0->getOpcode() == Opcode) { 331 Value *A = Op0->getOperand(0); 332 Value *B = Op0->getOperand(1); 333 Value *C = I.getOperand(1); 334 335 // Does "B op C" simplify? 336 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 337 // It simplifies to V. Form "A op V". 338 I.setOperand(0, A); 339 I.setOperand(1, V); 340 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 341 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 342 343 // Conservatively clear all optional flags since they may not be 344 // preserved by the reassociation. Reset nsw/nuw based on the above 345 // analysis. 346 ClearSubclassDataAfterReassociation(I); 347 348 // Note: this is only valid because SimplifyBinOp doesn't look at 349 // the operands to Op0. 350 if (IsNUW) 351 I.setHasNoUnsignedWrap(true); 352 353 if (IsNSW) 354 I.setHasNoSignedWrap(true); 355 356 Changed = true; 357 ++NumReassoc; 358 continue; 359 } 360 } 361 362 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 363 if (Op1 && Op1->getOpcode() == Opcode) { 364 Value *A = I.getOperand(0); 365 Value *B = Op1->getOperand(0); 366 Value *C = Op1->getOperand(1); 367 368 // Does "A op B" simplify? 369 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 370 // It simplifies to V. Form "V op C". 371 I.setOperand(0, V); 372 I.setOperand(1, C); 373 // Conservatively clear the optional flags, since they may not be 374 // preserved by the reassociation. 375 ClearSubclassDataAfterReassociation(I); 376 Changed = true; 377 ++NumReassoc; 378 continue; 379 } 380 } 381 } 382 383 if (I.isAssociative() && I.isCommutative()) { 384 if (simplifyAssocCastAssoc(&I)) { 385 Changed = true; 386 ++NumReassoc; 387 continue; 388 } 389 390 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 391 if (Op0 && Op0->getOpcode() == Opcode) { 392 Value *A = Op0->getOperand(0); 393 Value *B = Op0->getOperand(1); 394 Value *C = I.getOperand(1); 395 396 // Does "C op A" simplify? 397 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 398 // It simplifies to V. Form "V op B". 399 I.setOperand(0, V); 400 I.setOperand(1, B); 401 // Conservatively clear the optional flags, since they may not be 402 // preserved by the reassociation. 403 ClearSubclassDataAfterReassociation(I); 404 Changed = true; 405 ++NumReassoc; 406 continue; 407 } 408 } 409 410 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 411 if (Op1 && Op1->getOpcode() == Opcode) { 412 Value *A = I.getOperand(0); 413 Value *B = Op1->getOperand(0); 414 Value *C = Op1->getOperand(1); 415 416 // Does "C op A" simplify? 417 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 418 // It simplifies to V. Form "B op V". 419 I.setOperand(0, B); 420 I.setOperand(1, V); 421 // Conservatively clear the optional flags, since they may not be 422 // preserved by the reassociation. 423 ClearSubclassDataAfterReassociation(I); 424 Changed = true; 425 ++NumReassoc; 426 continue; 427 } 428 } 429 430 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 431 // if C1 and C2 are constants. 432 Value *A, *B; 433 Constant *C1, *C2; 434 if (Op0 && Op1 && 435 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 436 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 437 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) { 438 bool IsNUW = hasNoUnsignedWrap(I) && 439 hasNoUnsignedWrap(*Op0) && 440 hasNoUnsignedWrap(*Op1); 441 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 442 BinaryOperator::CreateNUW(Opcode, A, B) : 443 BinaryOperator::Create(Opcode, A, B); 444 445 if (isa<FPMathOperator>(NewBO)) { 446 FastMathFlags Flags = I.getFastMathFlags(); 447 Flags &= Op0->getFastMathFlags(); 448 Flags &= Op1->getFastMathFlags(); 449 NewBO->setFastMathFlags(Flags); 450 } 451 InsertNewInstWith(NewBO, I); 452 NewBO->takeName(Op1); 453 I.setOperand(0, NewBO); 454 I.setOperand(1, ConstantExpr::get(Opcode, C1, C2)); 455 // Conservatively clear the optional flags, since they may not be 456 // preserved by the reassociation. 457 ClearSubclassDataAfterReassociation(I); 458 if (IsNUW) 459 I.setHasNoUnsignedWrap(true); 460 461 Changed = true; 462 continue; 463 } 464 } 465 466 // No further simplifications. 467 return Changed; 468 } while (true); 469 } 470 471 /// Return whether "X LOp (Y ROp Z)" is always equal to 472 /// "(X LOp Y) ROp (X LOp Z)". 473 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 474 Instruction::BinaryOps ROp) { 475 // X & (Y | Z) <--> (X & Y) | (X & Z) 476 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 477 if (LOp == Instruction::And) 478 return ROp == Instruction::Or || ROp == Instruction::Xor; 479 480 // X | (Y & Z) <--> (X | Y) & (X | Z) 481 if (LOp == Instruction::Or) 482 return ROp == Instruction::And; 483 484 // X * (Y + Z) <--> (X * Y) + (X * Z) 485 // X * (Y - Z) <--> (X * Y) - (X * Z) 486 if (LOp == Instruction::Mul) 487 return ROp == Instruction::Add || ROp == Instruction::Sub; 488 489 return false; 490 } 491 492 /// Return whether "(X LOp Y) ROp Z" is always equal to 493 /// "(X ROp Z) LOp (Y ROp Z)". 494 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 495 Instruction::BinaryOps ROp) { 496 if (Instruction::isCommutative(ROp)) 497 return leftDistributesOverRight(ROp, LOp); 498 499 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 500 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 501 502 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 503 // but this requires knowing that the addition does not overflow and other 504 // such subtleties. 505 } 506 507 /// This function returns identity value for given opcode, which can be used to 508 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 509 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 510 if (isa<Constant>(V)) 511 return nullptr; 512 513 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 514 } 515 516 /// This function predicates factorization using distributive laws. By default, 517 /// it just returns the 'Op' inputs. But for special-cases like 518 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 519 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 520 /// allow more factorization opportunities. 521 static Instruction::BinaryOps 522 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 523 Value *&LHS, Value *&RHS) { 524 assert(Op && "Expected a binary operator"); 525 LHS = Op->getOperand(0); 526 RHS = Op->getOperand(1); 527 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 528 Constant *C; 529 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 530 // X << C --> X * (1 << C) 531 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 532 return Instruction::Mul; 533 } 534 // TODO: We can add other conversions e.g. shr => div etc. 535 } 536 return Op->getOpcode(); 537 } 538 539 /// This tries to simplify binary operations by factorizing out common terms 540 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 541 Value *InstCombiner::tryFactorization(BinaryOperator &I, 542 Instruction::BinaryOps InnerOpcode, 543 Value *A, Value *B, Value *C, Value *D) { 544 assert(A && B && C && D && "All values must be provided"); 545 546 Value *V = nullptr; 547 Value *SimplifiedInst = nullptr; 548 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 549 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 550 551 // Does "X op' Y" always equal "Y op' X"? 552 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 553 554 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 555 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) 556 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 557 // commutative case, "(A op' B) op (C op' A)"? 558 if (A == C || (InnerCommutative && A == D)) { 559 if (A != C) 560 std::swap(C, D); 561 // Consider forming "A op' (B op D)". 562 // If "B op D" simplifies then it can be formed with no cost. 563 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 564 // If "B op D" doesn't simplify then only go on if both of the existing 565 // operations "A op' B" and "C op' D" will be zapped as no longer used. 566 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 567 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 568 if (V) { 569 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V); 570 } 571 } 572 573 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 574 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) 575 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 576 // commutative case, "(A op' B) op (B op' D)"? 577 if (B == D || (InnerCommutative && B == C)) { 578 if (B != D) 579 std::swap(C, D); 580 // Consider forming "(A op C) op' B". 581 // If "A op C" simplifies then it can be formed with no cost. 582 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 583 584 // If "A op C" doesn't simplify then only go on if both of the existing 585 // operations "A op' B" and "C op' D" will be zapped as no longer used. 586 if (!V && LHS->hasOneUse() && RHS->hasOneUse()) 587 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 588 if (V) { 589 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B); 590 } 591 } 592 593 if (SimplifiedInst) { 594 ++NumFactor; 595 SimplifiedInst->takeName(&I); 596 597 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them. 598 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { 599 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { 600 bool HasNSW = false; 601 bool HasNUW = false; 602 if (isa<OverflowingBinaryOperator>(&I)) { 603 HasNSW = I.hasNoSignedWrap(); 604 HasNUW = I.hasNoUnsignedWrap(); 605 } 606 607 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 608 HasNSW &= LOBO->hasNoSignedWrap(); 609 HasNUW &= LOBO->hasNoUnsignedWrap(); 610 } 611 612 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 613 HasNSW &= ROBO->hasNoSignedWrap(); 614 HasNUW &= ROBO->hasNoUnsignedWrap(); 615 } 616 617 if (TopLevelOpcode == Instruction::Add && 618 InnerOpcode == Instruction::Mul) { 619 // We can propagate 'nsw' if we know that 620 // %Y = mul nsw i16 %X, C 621 // %Z = add nsw i16 %Y, %X 622 // => 623 // %Z = mul nsw i16 %X, C+1 624 // 625 // iff C+1 isn't INT_MIN 626 const APInt *CInt; 627 if (match(V, m_APInt(CInt))) { 628 if (!CInt->isMinSignedValue()) 629 BO->setHasNoSignedWrap(HasNSW); 630 } 631 632 // nuw can be propagated with any constant or nuw value. 633 BO->setHasNoUnsignedWrap(HasNUW); 634 } 635 } 636 } 637 } 638 return SimplifiedInst; 639 } 640 641 /// This tries to simplify binary operations which some other binary operation 642 /// distributes over either by factorizing out common terms 643 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 644 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 645 /// Returns the simplified value, or null if it didn't simplify. 646 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { 647 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 648 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 649 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 650 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 651 652 { 653 // Factorization. 654 Value *A, *B, *C, *D; 655 Instruction::BinaryOps LHSOpcode, RHSOpcode; 656 if (Op0) 657 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); 658 if (Op1) 659 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); 660 661 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 662 // a common term. 663 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 664 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D)) 665 return V; 666 667 // The instruction has the form "(A op' B) op (C)". Try to factorize common 668 // term. 669 if (Op0) 670 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 671 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident)) 672 return V; 673 674 // The instruction has the form "(B) op (C op' D)". Try to factorize common 675 // term. 676 if (Op1) 677 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 678 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D)) 679 return V; 680 } 681 682 // Expansion. 683 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 684 // The instruction has the form "(A op' B) op C". See if expanding it out 685 // to "(A op C) op' (B op C)" results in simplifications. 686 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 687 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 688 689 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 690 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQ.getWithInstruction(&I)); 691 692 // Do "A op C" and "B op C" both simplify? 693 if (L && R) { 694 // They do! Return "L op' R". 695 ++NumExpand; 696 C = Builder.CreateBinOp(InnerOpcode, L, R); 697 C->takeName(&I); 698 return C; 699 } 700 701 // Does "A op C" simplify to the identity value for the inner opcode? 702 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 703 // They do! Return "B op C". 704 ++NumExpand; 705 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 706 C->takeName(&I); 707 return C; 708 } 709 710 // Does "B op C" simplify to the identity value for the inner opcode? 711 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 712 // They do! Return "A op C". 713 ++NumExpand; 714 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 715 C->takeName(&I); 716 return C; 717 } 718 } 719 720 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 721 // The instruction has the form "A op (B op' C)". See if expanding it out 722 // to "(A op B) op' (A op C)" results in simplifications. 723 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 724 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 725 726 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQ.getWithInstruction(&I)); 727 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 728 729 // Do "A op B" and "A op C" both simplify? 730 if (L && R) { 731 // They do! Return "L op' R". 732 ++NumExpand; 733 A = Builder.CreateBinOp(InnerOpcode, L, R); 734 A->takeName(&I); 735 return A; 736 } 737 738 // Does "A op B" simplify to the identity value for the inner opcode? 739 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 740 // They do! Return "A op C". 741 ++NumExpand; 742 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 743 A->takeName(&I); 744 return A; 745 } 746 747 // Does "A op C" simplify to the identity value for the inner opcode? 748 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 749 // They do! Return "A op B". 750 ++NumExpand; 751 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 752 A->takeName(&I); 753 return A; 754 } 755 } 756 757 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 758 } 759 760 Value *InstCombiner::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 761 Value *LHS, Value *RHS) { 762 Instruction::BinaryOps Opcode = I.getOpcode(); 763 // (op (select (a, b, c)), (select (a, d, e))) -> (select (a, (op b, d), (op 764 // c, e))) 765 Value *A, *B, *C, *D, *E; 766 Value *SI = nullptr; 767 if (match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))) && 768 match(RHS, m_Select(m_Specific(A), m_Value(D), m_Value(E)))) { 769 bool SelectsHaveOneUse = LHS->hasOneUse() && RHS->hasOneUse(); 770 771 FastMathFlags FMF; 772 BuilderTy::FastMathFlagGuard Guard(Builder); 773 if (isa<FPMathOperator>(&I)) { 774 FMF = I.getFastMathFlags(); 775 Builder.setFastMathFlags(FMF); 776 } 777 778 Value *V1 = SimplifyBinOp(Opcode, C, E, FMF, SQ.getWithInstruction(&I)); 779 Value *V2 = SimplifyBinOp(Opcode, B, D, FMF, SQ.getWithInstruction(&I)); 780 if (V1 && V2) 781 SI = Builder.CreateSelect(A, V2, V1); 782 else if (V2 && SelectsHaveOneUse) 783 SI = Builder.CreateSelect(A, V2, Builder.CreateBinOp(Opcode, C, E)); 784 else if (V1 && SelectsHaveOneUse) 785 SI = Builder.CreateSelect(A, Builder.CreateBinOp(Opcode, B, D), V1); 786 787 if (SI) 788 SI->takeName(&I); 789 } 790 791 return SI; 792 } 793 794 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 795 /// constant zero (which is the 'negate' form). 796 Value *InstCombiner::dyn_castNegVal(Value *V) const { 797 Value *NegV; 798 if (match(V, m_Neg(m_Value(NegV)))) 799 return NegV; 800 801 // Constants can be considered to be negated values if they can be folded. 802 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 803 return ConstantExpr::getNeg(C); 804 805 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 806 if (C->getType()->getElementType()->isIntegerTy()) 807 return ConstantExpr::getNeg(C); 808 809 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 810 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 811 Constant *Elt = CV->getAggregateElement(i); 812 if (!Elt) 813 return nullptr; 814 815 if (isa<UndefValue>(Elt)) 816 continue; 817 818 if (!isa<ConstantInt>(Elt)) 819 return nullptr; 820 } 821 return ConstantExpr::getNeg(CV); 822 } 823 824 return nullptr; 825 } 826 827 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO, 828 InstCombiner::BuilderTy &Builder) { 829 if (auto *Cast = dyn_cast<CastInst>(&I)) 830 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType()); 831 832 assert(I.isBinaryOp() && "Unexpected opcode for select folding"); 833 834 // Figure out if the constant is the left or the right argument. 835 bool ConstIsRHS = isa<Constant>(I.getOperand(1)); 836 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); 837 838 if (auto *SOC = dyn_cast<Constant>(SO)) { 839 if (ConstIsRHS) 840 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); 841 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); 842 } 843 844 Value *Op0 = SO, *Op1 = ConstOperand; 845 if (!ConstIsRHS) 846 std::swap(Op0, Op1); 847 848 auto *BO = cast<BinaryOperator>(&I); 849 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1, 850 SO->getName() + ".op"); 851 auto *FPInst = dyn_cast<Instruction>(RI); 852 if (FPInst && isa<FPMathOperator>(FPInst)) 853 FPInst->copyFastMathFlags(BO); 854 return RI; 855 } 856 857 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { 858 // Don't modify shared select instructions. 859 if (!SI->hasOneUse()) 860 return nullptr; 861 862 Value *TV = SI->getTrueValue(); 863 Value *FV = SI->getFalseValue(); 864 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 865 return nullptr; 866 867 // Bool selects with constant operands can be folded to logical ops. 868 if (SI->getType()->isIntOrIntVectorTy(1)) 869 return nullptr; 870 871 // If it's a bitcast involving vectors, make sure it has the same number of 872 // elements on both sides. 873 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 874 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 875 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 876 877 // Verify that either both or neither are vectors. 878 if ((SrcTy == nullptr) != (DestTy == nullptr)) 879 return nullptr; 880 881 // If vectors, verify that they have the same number of elements. 882 if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) 883 return nullptr; 884 } 885 886 // Test if a CmpInst instruction is used exclusively by a select as 887 // part of a minimum or maximum operation. If so, refrain from doing 888 // any other folding. This helps out other analyses which understand 889 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution 890 // and CodeGen. And in this case, at least one of the comparison 891 // operands has at least one user besides the compare (the select), 892 // which would often largely negate the benefit of folding anyway. 893 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { 894 if (CI->hasOneUse()) { 895 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 896 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || 897 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) 898 return nullptr; 899 } 900 } 901 902 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder); 903 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder); 904 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 905 } 906 907 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV, 908 InstCombiner::BuilderTy &Builder) { 909 bool ConstIsRHS = isa<Constant>(I->getOperand(1)); 910 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS)); 911 912 if (auto *InC = dyn_cast<Constant>(InV)) { 913 if (ConstIsRHS) 914 return ConstantExpr::get(I->getOpcode(), InC, C); 915 return ConstantExpr::get(I->getOpcode(), C, InC); 916 } 917 918 Value *Op0 = InV, *Op1 = C; 919 if (!ConstIsRHS) 920 std::swap(Op0, Op1); 921 922 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phitmp"); 923 auto *FPInst = dyn_cast<Instruction>(RI); 924 if (FPInst && isa<FPMathOperator>(FPInst)) 925 FPInst->copyFastMathFlags(I); 926 return RI; 927 } 928 929 Instruction *InstCombiner::foldOpIntoPhi(Instruction &I, PHINode *PN) { 930 unsigned NumPHIValues = PN->getNumIncomingValues(); 931 if (NumPHIValues == 0) 932 return nullptr; 933 934 // We normally only transform phis with a single use. However, if a PHI has 935 // multiple uses and they are all the same operation, we can fold *all* of the 936 // uses into the PHI. 937 if (!PN->hasOneUse()) { 938 // Walk the use list for the instruction, comparing them to I. 939 for (User *U : PN->users()) { 940 Instruction *UI = cast<Instruction>(U); 941 if (UI != &I && !I.isIdenticalTo(UI)) 942 return nullptr; 943 } 944 // Otherwise, we can replace *all* users with the new PHI we form. 945 } 946 947 // Check to see if all of the operands of the PHI are simple constants 948 // (constantint/constantfp/undef). If there is one non-constant value, 949 // remember the BB it is in. If there is more than one or if *it* is a PHI, 950 // bail out. We don't do arbitrary constant expressions here because moving 951 // their computation can be expensive without a cost model. 952 BasicBlock *NonConstBB = nullptr; 953 for (unsigned i = 0; i != NumPHIValues; ++i) { 954 Value *InVal = PN->getIncomingValue(i); 955 if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) 956 continue; 957 958 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. 959 if (NonConstBB) return nullptr; // More than one non-const value. 960 961 NonConstBB = PN->getIncomingBlock(i); 962 963 // If the InVal is an invoke at the end of the pred block, then we can't 964 // insert a computation after it without breaking the edge. 965 if (isa<InvokeInst>(InVal)) 966 if (cast<Instruction>(InVal)->getParent() == NonConstBB) 967 return nullptr; 968 969 // If the incoming non-constant value is in I's block, we will remove one 970 // instruction, but insert another equivalent one, leading to infinite 971 // instcombine. 972 if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI)) 973 return nullptr; 974 } 975 976 // If there is exactly one non-constant value, we can insert a copy of the 977 // operation in that block. However, if this is a critical edge, we would be 978 // inserting the computation on some other paths (e.g. inside a loop). Only 979 // do this if the pred block is unconditionally branching into the phi block. 980 if (NonConstBB != nullptr) { 981 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); 982 if (!BI || !BI->isUnconditional()) return nullptr; 983 } 984 985 // Okay, we can do the transformation: create the new PHI node. 986 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 987 InsertNewInstBefore(NewPN, *PN); 988 NewPN->takeName(PN); 989 990 // If we are going to have to insert a new computation, do so right before the 991 // predecessor's terminator. 992 if (NonConstBB) 993 Builder.SetInsertPoint(NonConstBB->getTerminator()); 994 995 // Next, add all of the operands to the PHI. 996 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { 997 // We only currently try to fold the condition of a select when it is a phi, 998 // not the true/false values. 999 Value *TrueV = SI->getTrueValue(); 1000 Value *FalseV = SI->getFalseValue(); 1001 BasicBlock *PhiTransBB = PN->getParent(); 1002 for (unsigned i = 0; i != NumPHIValues; ++i) { 1003 BasicBlock *ThisBB = PN->getIncomingBlock(i); 1004 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); 1005 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); 1006 Value *InV = nullptr; 1007 // Beware of ConstantExpr: it may eventually evaluate to getNullValue, 1008 // even if currently isNullValue gives false. 1009 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); 1010 // For vector constants, we cannot use isNullValue to fold into 1011 // FalseVInPred versus TrueVInPred. When we have individual nonzero 1012 // elements in the vector, we will incorrectly fold InC to 1013 // `TrueVInPred`. 1014 if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC)) 1015 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; 1016 else { 1017 // Generate the select in the same block as PN's current incoming block. 1018 // Note: ThisBB need not be the NonConstBB because vector constants 1019 // which are constants by definition are handled here. 1020 // FIXME: This can lead to an increase in IR generation because we might 1021 // generate selects for vector constant phi operand, that could not be 1022 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For 1023 // non-vector phis, this transformation was always profitable because 1024 // the select would be generated exactly once in the NonConstBB. 1025 Builder.SetInsertPoint(ThisBB->getTerminator()); 1026 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred, 1027 FalseVInPred, "phitmp"); 1028 } 1029 NewPN->addIncoming(InV, ThisBB); 1030 } 1031 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { 1032 Constant *C = cast<Constant>(I.getOperand(1)); 1033 for (unsigned i = 0; i != NumPHIValues; ++i) { 1034 Value *InV = nullptr; 1035 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1036 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); 1037 else if (isa<ICmpInst>(CI)) 1038 InV = Builder.CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), 1039 C, "phitmp"); 1040 else 1041 InV = Builder.CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), 1042 C, "phitmp"); 1043 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1044 } 1045 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) { 1046 for (unsigned i = 0; i != NumPHIValues; ++i) { 1047 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i), 1048 Builder); 1049 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1050 } 1051 } else { 1052 CastInst *CI = cast<CastInst>(&I); 1053 Type *RetTy = CI->getType(); 1054 for (unsigned i = 0; i != NumPHIValues; ++i) { 1055 Value *InV; 1056 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) 1057 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); 1058 else 1059 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i), 1060 I.getType(), "phitmp"); 1061 NewPN->addIncoming(InV, PN->getIncomingBlock(i)); 1062 } 1063 } 1064 1065 for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { 1066 Instruction *User = cast<Instruction>(*UI++); 1067 if (User == &I) continue; 1068 replaceInstUsesWith(*User, NewPN); 1069 eraseInstFromFunction(*User); 1070 } 1071 return replaceInstUsesWith(I, NewPN); 1072 } 1073 1074 Instruction *InstCombiner::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1075 if (!isa<Constant>(I.getOperand(1))) 1076 return nullptr; 1077 1078 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1079 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1080 return NewSel; 1081 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1082 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1083 return NewPhi; 1084 } 1085 return nullptr; 1086 } 1087 1088 /// Given a pointer type and a constant offset, determine whether or not there 1089 /// is a sequence of GEP indices into the pointed type that will land us at the 1090 /// specified offset. If so, fill them into NewIndices and return the resultant 1091 /// element type, otherwise return null. 1092 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, 1093 SmallVectorImpl<Value *> &NewIndices) { 1094 Type *Ty = PtrTy->getElementType(); 1095 if (!Ty->isSized()) 1096 return nullptr; 1097 1098 // Start with the index over the outer type. Note that the type size 1099 // might be zero (even if the offset isn't zero) if the indexed type 1100 // is something like [0 x {int, int}] 1101 Type *IndexTy = DL.getIndexType(PtrTy); 1102 int64_t FirstIdx = 0; 1103 if (int64_t TySize = DL.getTypeAllocSize(Ty)) { 1104 FirstIdx = Offset/TySize; 1105 Offset -= FirstIdx*TySize; 1106 1107 // Handle hosts where % returns negative instead of values [0..TySize). 1108 if (Offset < 0) { 1109 --FirstIdx; 1110 Offset += TySize; 1111 assert(Offset >= 0); 1112 } 1113 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); 1114 } 1115 1116 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx)); 1117 1118 // Index into the types. If we fail, set OrigBase to null. 1119 while (Offset) { 1120 // Indexing into tail padding between struct/array elements. 1121 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) 1122 return nullptr; 1123 1124 if (StructType *STy = dyn_cast<StructType>(Ty)) { 1125 const StructLayout *SL = DL.getStructLayout(STy); 1126 assert(Offset < (int64_t)SL->getSizeInBytes() && 1127 "Offset must stay within the indexed type"); 1128 1129 unsigned Elt = SL->getElementContainingOffset(Offset); 1130 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1131 Elt)); 1132 1133 Offset -= SL->getElementOffset(Elt); 1134 Ty = STy->getElementType(Elt); 1135 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 1136 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); 1137 assert(EltSize && "Cannot index into a zero-sized array"); 1138 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize)); 1139 Offset %= EltSize; 1140 Ty = AT->getElementType(); 1141 } else { 1142 // Otherwise, we can't index into the middle of this atomic type, bail. 1143 return nullptr; 1144 } 1145 } 1146 1147 return Ty; 1148 } 1149 1150 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1151 // If this GEP has only 0 indices, it is the same pointer as 1152 // Src. If Src is not a trivial GEP too, don't combine 1153 // the indices. 1154 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1155 !Src.hasOneUse()) 1156 return false; 1157 return true; 1158 } 1159 1160 /// Return a value X such that Val = X * Scale, or null if none. 1161 /// If the multiplication is known not to overflow, then NoSignedWrap is set. 1162 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 1163 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); 1164 assert(cast<IntegerType>(Val->getType())->getBitWidth() == 1165 Scale.getBitWidth() && "Scale not compatible with value!"); 1166 1167 // If Val is zero or Scale is one then Val = Val * Scale. 1168 if (match(Val, m_Zero()) || Scale == 1) { 1169 NoSignedWrap = true; 1170 return Val; 1171 } 1172 1173 // If Scale is zero then it does not divide Val. 1174 if (Scale.isMinValue()) 1175 return nullptr; 1176 1177 // Look through chains of multiplications, searching for a constant that is 1178 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 1179 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by 1180 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore 1181 // down from Val: 1182 // 1183 // Val = M1 * X || Analysis starts here and works down 1184 // M1 = M2 * Y || Doesn't descend into terms with more 1185 // M2 = Z * 4 \/ than one use 1186 // 1187 // Then to modify a term at the bottom: 1188 // 1189 // Val = M1 * X 1190 // M1 = Z * Y || Replaced M2 with Z 1191 // 1192 // Then to work back up correcting nsw flags. 1193 1194 // Op - the term we are currently analyzing. Starts at Val then drills down. 1195 // Replaced with its descaled value before exiting from the drill down loop. 1196 Value *Op = Val; 1197 1198 // Parent - initially null, but after drilling down notes where Op came from. 1199 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the 1200 // 0'th operand of Val. 1201 std::pair<Instruction *, unsigned> Parent; 1202 1203 // Set if the transform requires a descaling at deeper levels that doesn't 1204 // overflow. 1205 bool RequireNoSignedWrap = false; 1206 1207 // Log base 2 of the scale. Negative if not a power of 2. 1208 int32_t logScale = Scale.exactLogBase2(); 1209 1210 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 1212 // If Op is a constant divisible by Scale then descale to the quotient. 1213 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. 1214 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); 1215 if (!Remainder.isMinValue()) 1216 // Not divisible by Scale. 1217 return nullptr; 1218 // Replace with the quotient in the parent. 1219 Op = ConstantInt::get(CI->getType(), Quotient); 1220 NoSignedWrap = true; 1221 break; 1222 } 1223 1224 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { 1225 if (BO->getOpcode() == Instruction::Mul) { 1226 // Multiplication. 1227 NoSignedWrap = BO->hasNoSignedWrap(); 1228 if (RequireNoSignedWrap && !NoSignedWrap) 1229 return nullptr; 1230 1231 // There are three cases for multiplication: multiplication by exactly 1232 // the scale, multiplication by a constant different to the scale, and 1233 // multiplication by something else. 1234 Value *LHS = BO->getOperand(0); 1235 Value *RHS = BO->getOperand(1); 1236 1237 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1238 // Multiplication by a constant. 1239 if (CI->getValue() == Scale) { 1240 // Multiplication by exactly the scale, replace the multiplication 1241 // by its left-hand side in the parent. 1242 Op = LHS; 1243 break; 1244 } 1245 1246 // Otherwise drill down into the constant. 1247 if (!Op->hasOneUse()) 1248 return nullptr; 1249 1250 Parent = std::make_pair(BO, 1); 1251 continue; 1252 } 1253 1254 // Multiplication by something else. Drill down into the left-hand side 1255 // since that's where the reassociate pass puts the good stuff. 1256 if (!Op->hasOneUse()) 1257 return nullptr; 1258 1259 Parent = std::make_pair(BO, 0); 1260 continue; 1261 } 1262 1263 if (logScale > 0 && BO->getOpcode() == Instruction::Shl && 1264 isa<ConstantInt>(BO->getOperand(1))) { 1265 // Multiplication by a power of 2. 1266 NoSignedWrap = BO->hasNoSignedWrap(); 1267 if (RequireNoSignedWrap && !NoSignedWrap) 1268 return nullptr; 1269 1270 Value *LHS = BO->getOperand(0); 1271 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> 1272 getLimitedValue(Scale.getBitWidth()); 1273 // Op = LHS << Amt. 1274 1275 if (Amt == logScale) { 1276 // Multiplication by exactly the scale, replace the multiplication 1277 // by its left-hand side in the parent. 1278 Op = LHS; 1279 break; 1280 } 1281 if (Amt < logScale || !Op->hasOneUse()) 1282 return nullptr; 1283 1284 // Multiplication by more than the scale. Reduce the multiplying amount 1285 // by the scale in the parent. 1286 Parent = std::make_pair(BO, 1); 1287 Op = ConstantInt::get(BO->getType(), Amt - logScale); 1288 break; 1289 } 1290 } 1291 1292 if (!Op->hasOneUse()) 1293 return nullptr; 1294 1295 if (CastInst *Cast = dyn_cast<CastInst>(Op)) { 1296 if (Cast->getOpcode() == Instruction::SExt) { 1297 // Op is sign-extended from a smaller type, descale in the smaller type. 1298 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1299 APInt SmallScale = Scale.trunc(SmallSize); 1300 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to 1301 // descale Op as (sext Y) * Scale. In order to have 1302 // sext (Y * SmallScale) = (sext Y) * Scale 1303 // some conditions need to hold however: SmallScale must sign-extend to 1304 // Scale and the multiplication Y * SmallScale should not overflow. 1305 if (SmallScale.sext(Scale.getBitWidth()) != Scale) 1306 // SmallScale does not sign-extend to Scale. 1307 return nullptr; 1308 assert(SmallScale.exactLogBase2() == logScale); 1309 // Require that Y * SmallScale must not overflow. 1310 RequireNoSignedWrap = true; 1311 1312 // Drill down through the cast. 1313 Parent = std::make_pair(Cast, 0); 1314 Scale = SmallScale; 1315 continue; 1316 } 1317 1318 if (Cast->getOpcode() == Instruction::Trunc) { 1319 // Op is truncated from a larger type, descale in the larger type. 1320 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then 1321 // trunc (Y * sext Scale) = (trunc Y) * Scale 1322 // always holds. However (trunc Y) * Scale may overflow even if 1323 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared 1324 // from this point up in the expression (see later). 1325 if (RequireNoSignedWrap) 1326 return nullptr; 1327 1328 // Drill down through the cast. 1329 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); 1330 Parent = std::make_pair(Cast, 0); 1331 Scale = Scale.sext(LargeSize); 1332 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) 1333 logScale = -1; 1334 assert(Scale.exactLogBase2() == logScale); 1335 continue; 1336 } 1337 } 1338 1339 // Unsupported expression, bail out. 1340 return nullptr; 1341 } 1342 1343 // If Op is zero then Val = Op * Scale. 1344 if (match(Op, m_Zero())) { 1345 NoSignedWrap = true; 1346 return Op; 1347 } 1348 1349 // We know that we can successfully descale, so from here on we can safely 1350 // modify the IR. Op holds the descaled version of the deepest term in the 1351 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known 1352 // not to overflow. 1353 1354 if (!Parent.first) 1355 // The expression only had one term. 1356 return Op; 1357 1358 // Rewrite the parent using the descaled version of its operand. 1359 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); 1360 assert(Op != Parent.first->getOperand(Parent.second) && 1361 "Descaling was a no-op?"); 1362 Parent.first->setOperand(Parent.second, Op); 1363 Worklist.Add(Parent.first); 1364 1365 // Now work back up the expression correcting nsw flags. The logic is based 1366 // on the following observation: if X * Y is known not to overflow as a signed 1367 // multiplication, and Y is replaced by a value Z with smaller absolute value, 1368 // then X * Z will not overflow as a signed multiplication either. As we work 1369 // our way up, having NoSignedWrap 'true' means that the descaled value at the 1370 // current level has strictly smaller absolute value than the original. 1371 Instruction *Ancestor = Parent.first; 1372 do { 1373 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { 1374 // If the multiplication wasn't nsw then we can't say anything about the 1375 // value of the descaled multiplication, and we have to clear nsw flags 1376 // from this point on up. 1377 bool OpNoSignedWrap = BO->hasNoSignedWrap(); 1378 NoSignedWrap &= OpNoSignedWrap; 1379 if (NoSignedWrap != OpNoSignedWrap) { 1380 BO->setHasNoSignedWrap(NoSignedWrap); 1381 Worklist.Add(Ancestor); 1382 } 1383 } else if (Ancestor->getOpcode() == Instruction::Trunc) { 1384 // The fact that the descaled input to the trunc has smaller absolute 1385 // value than the original input doesn't tell us anything useful about 1386 // the absolute values of the truncations. 1387 NoSignedWrap = false; 1388 } 1389 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && 1390 "Failed to keep proper track of nsw flags while drilling down?"); 1391 1392 if (Ancestor == Val) 1393 // Got to the top, all done! 1394 return Val; 1395 1396 // Move up one level in the expression. 1397 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); 1398 Ancestor = Ancestor->user_back(); 1399 } while (true); 1400 } 1401 1402 Instruction *InstCombiner::foldVectorBinop(BinaryOperator &Inst) { 1403 if (!Inst.getType()->isVectorTy()) return nullptr; 1404 1405 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1406 unsigned NumElts = cast<VectorType>(Inst.getType())->getNumElements(); 1407 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1408 assert(cast<VectorType>(LHS->getType())->getNumElements() == NumElts); 1409 assert(cast<VectorType>(RHS->getType())->getNumElements() == NumElts); 1410 1411 // If both operands of the binop are vector concatenations, then perform the 1412 // narrow binop on each pair of the source operands followed by concatenation 1413 // of the results. 1414 Value *L0, *L1, *R0, *R1; 1415 Constant *Mask; 1416 if (match(LHS, m_ShuffleVector(m_Value(L0), m_Value(L1), m_Constant(Mask))) && 1417 match(RHS, m_ShuffleVector(m_Value(R0), m_Value(R1), m_Specific(Mask))) && 1418 LHS->hasOneUse() && RHS->hasOneUse() && 1419 cast<ShuffleVectorInst>(LHS)->isConcat() && 1420 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1421 // This transform does not have the speculative execution constraint as 1422 // below because the shuffle is a concatenation. The new binops are 1423 // operating on exactly the same elements as the existing binop. 1424 // TODO: We could ease the mask requirement to allow different undef lanes, 1425 // but that requires an analysis of the binop-with-undef output value. 1426 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1427 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1428 BO->copyIRFlags(&Inst); 1429 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1430 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1431 BO->copyIRFlags(&Inst); 1432 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1433 } 1434 1435 // It may not be safe to reorder shuffles and things like div, urem, etc. 1436 // because we may trap when executing those ops on unknown vector elements. 1437 // See PR20059. 1438 if (!isSafeToSpeculativelyExecute(&Inst)) 1439 return nullptr; 1440 1441 auto createBinOpShuffle = [&](Value *X, Value *Y, Constant *M) { 1442 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1443 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1444 BO->copyIRFlags(&Inst); 1445 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M); 1446 }; 1447 1448 // If both arguments of the binary operation are shuffles that use the same 1449 // mask and shuffle within a single vector, move the shuffle after the binop. 1450 Value *V1, *V2; 1451 if (match(LHS, m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))) && 1452 match(RHS, m_ShuffleVector(m_Value(V2), m_Undef(), m_Specific(Mask))) && 1453 V1->getType() == V2->getType() && 1454 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1455 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1456 return createBinOpShuffle(V1, V2, Mask); 1457 } 1458 1459 // If both arguments of a commutative binop are select-shuffles that use the 1460 // same mask with commuted operands, the shuffles are unnecessary. 1461 if (Inst.isCommutative() && 1462 match(LHS, m_ShuffleVector(m_Value(V1), m_Value(V2), m_Constant(Mask))) && 1463 match(RHS, m_ShuffleVector(m_Specific(V2), m_Specific(V1), 1464 m_Specific(Mask)))) { 1465 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1466 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1467 // TODO: Allow shuffles that contain undefs in the mask? 1468 // That is legal, but it reduces undef knowledge. 1469 // TODO: Allow arbitrary shuffles by shuffling after binop? 1470 // That might be legal, but we have to deal with poison. 1471 if (LShuf->isSelect() && !LShuf->getMask()->containsUndefElement() && 1472 RShuf->isSelect() && !RShuf->getMask()->containsUndefElement()) { 1473 // Example: 1474 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1475 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1476 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1477 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1478 NewBO->copyIRFlags(&Inst); 1479 return NewBO; 1480 } 1481 } 1482 1483 // If one argument is a shuffle within one vector and the other is a constant, 1484 // try moving the shuffle after the binary operation. This canonicalization 1485 // intends to move shuffles closer to other shuffles and binops closer to 1486 // other binops, so they can be folded. It may also enable demanded elements 1487 // transforms. 1488 Constant *C; 1489 if (match(&Inst, m_c_BinOp( 1490 m_OneUse(m_ShuffleVector(m_Value(V1), m_Undef(), m_Constant(Mask))), 1491 m_Constant(C))) && 1492 V1->getType()->getVectorNumElements() <= NumElts) { 1493 assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() && 1494 "Shuffle should not change scalar type"); 1495 1496 // Find constant NewC that has property: 1497 // shuffle(NewC, ShMask) = C 1498 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1499 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1500 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1501 bool ConstOp1 = isa<Constant>(RHS); 1502 SmallVector<int, 16> ShMask; 1503 ShuffleVectorInst::getShuffleMask(Mask, ShMask); 1504 unsigned SrcVecNumElts = V1->getType()->getVectorNumElements(); 1505 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType()); 1506 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar); 1507 bool MayChange = true; 1508 for (unsigned I = 0; I < NumElts; ++I) { 1509 Constant *CElt = C->getAggregateElement(I); 1510 if (ShMask[I] >= 0) { 1511 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1512 Constant *NewCElt = NewVecC[ShMask[I]]; 1513 // Bail out if: 1514 // 1. The constant vector contains a constant expression. 1515 // 2. The shuffle needs an element of the constant vector that can't 1516 // be mapped to a new constant vector. 1517 // 3. This is a widening shuffle that copies elements of V1 into the 1518 // extended elements (extending with undef is allowed). 1519 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) || 1520 I >= SrcVecNumElts) { 1521 MayChange = false; 1522 break; 1523 } 1524 NewVecC[ShMask[I]] = CElt; 1525 } 1526 // If this is a widening shuffle, we must be able to extend with undef 1527 // elements. If the original binop does not produce an undef in the high 1528 // lanes, then this transform is not safe. 1529 // TODO: We could shuffle those non-undef constant values into the 1530 // result by using a constant vector (rather than an undef vector) 1531 // as operand 1 of the new binop, but that might be too aggressive 1532 // for target-independent shuffle creation. 1533 if (I >= SrcVecNumElts) { 1534 Constant *MaybeUndef = 1535 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt) 1536 : ConstantExpr::get(Opcode, CElt, UndefScalar); 1537 if (!isa<UndefValue>(MaybeUndef)) { 1538 MayChange = false; 1539 break; 1540 } 1541 } 1542 } 1543 if (MayChange) { 1544 Constant *NewC = ConstantVector::get(NewVecC); 1545 // It may not be safe to execute a binop on a vector with undef elements 1546 // because the entire instruction can be folded to undef or create poison 1547 // that did not exist in the original code. 1548 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1549 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1550 1551 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1552 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1553 Value *NewLHS = ConstOp1 ? V1 : NewC; 1554 Value *NewRHS = ConstOp1 ? NewC : V1; 1555 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1556 } 1557 } 1558 1559 return nullptr; 1560 } 1561 1562 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1563 /// of a value. This requires a potentially expensive known bits check to make 1564 /// sure the narrow op does not overflow. 1565 Instruction *InstCombiner::narrowMathIfNoOverflow(BinaryOperator &BO) { 1566 // We need at least one extended operand. 1567 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1568 1569 // If this is a sub, we swap the operands since we always want an extension 1570 // on the RHS. The LHS can be an extension or a constant. 1571 if (BO.getOpcode() == Instruction::Sub) 1572 std::swap(Op0, Op1); 1573 1574 Value *X; 1575 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1576 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1577 return nullptr; 1578 1579 // If both operands are the same extension from the same source type and we 1580 // can eliminate at least one (hasOneUse), this might work. 1581 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1582 Value *Y; 1583 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1584 cast<Operator>(Op1)->getOpcode() == CastOpc && 1585 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1586 // If that did not match, see if we have a suitable constant operand. 1587 // Truncating and extending must produce the same constant. 1588 Constant *WideC; 1589 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1590 return nullptr; 1591 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType()); 1592 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC) 1593 return nullptr; 1594 Y = NarrowC; 1595 } 1596 1597 // Swap back now that we found our operands. 1598 if (BO.getOpcode() == Instruction::Sub) 1599 std::swap(X, Y); 1600 1601 // Both operands have narrow versions. Last step: the math must not overflow 1602 // in the narrow width. 1603 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1604 return nullptr; 1605 1606 // bo (ext X), (ext Y) --> ext (bo X, Y) 1607 // bo (ext X), C --> ext (bo X, C') 1608 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1609 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1610 if (IsSext) 1611 NewBinOp->setHasNoSignedWrap(); 1612 else 1613 NewBinOp->setHasNoUnsignedWrap(); 1614 } 1615 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 1616 } 1617 1618 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { 1619 SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); 1620 Type *GEPType = GEP.getType(); 1621 Type *GEPEltType = GEP.getSourceElementType(); 1622 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP))) 1623 return replaceInstUsesWith(GEP, V); 1624 1625 // For vector geps, use the generic demanded vector support. 1626 if (GEP.getType()->isVectorTy()) { 1627 auto VWidth = GEP.getType()->getVectorNumElements(); 1628 APInt UndefElts(VWidth, 0); 1629 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1630 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 1631 UndefElts)) { 1632 if (V != &GEP) 1633 return replaceInstUsesWith(GEP, V); 1634 return &GEP; 1635 } 1636 1637 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 1638 // possible (decide on canonical form for pointer broadcast), 3) exploit 1639 // undef elements to decrease demanded bits 1640 } 1641 1642 Value *PtrOp = GEP.getOperand(0); 1643 1644 // Eliminate unneeded casts for indices, and replace indices which displace 1645 // by multiples of a zero size type with zero. 1646 bool MadeChange = false; 1647 1648 // Index width may not be the same width as pointer width. 1649 // Data layout chooses the right type based on supported integer types. 1650 Type *NewScalarIndexTy = 1651 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 1652 1653 gep_type_iterator GTI = gep_type_begin(GEP); 1654 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 1655 ++I, ++GTI) { 1656 // Skip indices into struct types. 1657 if (GTI.isStruct()) 1658 continue; 1659 1660 Type *IndexTy = (*I)->getType(); 1661 Type *NewIndexType = 1662 IndexTy->isVectorTy() 1663 ? VectorType::get(NewScalarIndexTy, IndexTy->getVectorNumElements()) 1664 : NewScalarIndexTy; 1665 1666 // If the element type has zero size then any index over it is equivalent 1667 // to an index of zero, so replace it with zero if it is not zero already. 1668 Type *EltTy = GTI.getIndexedType(); 1669 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) 1670 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 1671 *I = Constant::getNullValue(NewIndexType); 1672 MadeChange = true; 1673 } 1674 1675 if (IndexTy != NewIndexType) { 1676 // If we are using a wider index than needed for this platform, shrink 1677 // it to what we need. If narrower, sign-extend it to what we need. 1678 // This explicit cast can make subsequent optimizations more obvious. 1679 *I = Builder.CreateIntCast(*I, NewIndexType, true); 1680 MadeChange = true; 1681 } 1682 } 1683 if (MadeChange) 1684 return &GEP; 1685 1686 // Check to see if the inputs to the PHI node are getelementptr instructions. 1687 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 1688 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 1689 if (!Op1) 1690 return nullptr; 1691 1692 // Don't fold a GEP into itself through a PHI node. This can only happen 1693 // through the back-edge of a loop. Folding a GEP into itself means that 1694 // the value of the previous iteration needs to be stored in the meantime, 1695 // thus requiring an additional register variable to be live, but not 1696 // actually achieving anything (the GEP still needs to be executed once per 1697 // loop iteration). 1698 if (Op1 == &GEP) 1699 return nullptr; 1700 1701 int DI = -1; 1702 1703 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 1704 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 1705 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) 1706 return nullptr; 1707 1708 // As for Op1 above, don't try to fold a GEP into itself. 1709 if (Op2 == &GEP) 1710 return nullptr; 1711 1712 // Keep track of the type as we walk the GEP. 1713 Type *CurTy = nullptr; 1714 1715 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 1716 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 1717 return nullptr; 1718 1719 if (Op1->getOperand(J) != Op2->getOperand(J)) { 1720 if (DI == -1) { 1721 // We have not seen any differences yet in the GEPs feeding the 1722 // PHI yet, so we record this one if it is allowed to be a 1723 // variable. 1724 1725 // The first two arguments can vary for any GEP, the rest have to be 1726 // static for struct slots 1727 if (J > 1 && CurTy->isStructTy()) 1728 return nullptr; 1729 1730 DI = J; 1731 } else { 1732 // The GEP is different by more than one input. While this could be 1733 // extended to support GEPs that vary by more than one variable it 1734 // doesn't make sense since it greatly increases the complexity and 1735 // would result in an R+R+R addressing mode which no backend 1736 // directly supports and would need to be broken into several 1737 // simpler instructions anyway. 1738 return nullptr; 1739 } 1740 } 1741 1742 // Sink down a layer of the type for the next iteration. 1743 if (J > 0) { 1744 if (J == 1) { 1745 CurTy = Op1->getSourceElementType(); 1746 } else if (auto *CT = dyn_cast<CompositeType>(CurTy)) { 1747 CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); 1748 } else { 1749 CurTy = nullptr; 1750 } 1751 } 1752 } 1753 } 1754 1755 // If not all GEPs are identical we'll have to create a new PHI node. 1756 // Check that the old PHI node has only one use so that it will get 1757 // removed. 1758 if (DI != -1 && !PN->hasOneUse()) 1759 return nullptr; 1760 1761 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 1762 if (DI == -1) { 1763 // All the GEPs feeding the PHI are identical. Clone one down into our 1764 // BB so that it can be merged with the current GEP. 1765 GEP.getParent()->getInstList().insert( 1766 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1767 } else { 1768 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 1769 // into the current block so it can be merged, and create a new PHI to 1770 // set that index. 1771 PHINode *NewPN; 1772 { 1773 IRBuilderBase::InsertPointGuard Guard(Builder); 1774 Builder.SetInsertPoint(PN); 1775 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 1776 PN->getNumOperands()); 1777 } 1778 1779 for (auto &I : PN->operands()) 1780 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 1781 PN->getIncomingBlock(I)); 1782 1783 NewGEP->setOperand(DI, NewPN); 1784 GEP.getParent()->getInstList().insert( 1785 GEP.getParent()->getFirstInsertionPt(), NewGEP); 1786 NewGEP->setOperand(DI, NewPN); 1787 } 1788 1789 GEP.setOperand(0, NewGEP); 1790 PtrOp = NewGEP; 1791 } 1792 1793 // Combine Indices - If the source pointer to this getelementptr instruction 1794 // is a getelementptr instruction, combine the indices of the two 1795 // getelementptr instructions into a single instruction. 1796 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) { 1797 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 1798 return nullptr; 1799 1800 // Try to reassociate loop invariant GEP chains to enable LICM. 1801 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 && 1802 Src->hasOneUse()) { 1803 if (Loop *L = LI->getLoopFor(GEP.getParent())) { 1804 Value *GO1 = GEP.getOperand(1); 1805 Value *SO1 = Src->getOperand(1); 1806 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is 1807 // invariant: this breaks the dependence between GEPs and allows LICM 1808 // to hoist the invariant part out of the loop. 1809 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) { 1810 // We have to be careful here. 1811 // We have something like: 1812 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx 1813 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2 1814 // If we just swap idx & idx2 then we could inadvertantly 1815 // change %src from a vector to a scalar, or vice versa. 1816 // Cases: 1817 // 1) %base a scalar & idx a scalar & idx2 a vector 1818 // => Swapping idx & idx2 turns %src into a vector type. 1819 // 2) %base a scalar & idx a vector & idx2 a scalar 1820 // => Swapping idx & idx2 turns %src in a scalar type 1821 // 3) %base, %idx, and %idx2 are scalars 1822 // => %src & %gep are scalars 1823 // => swapping idx & idx2 is safe 1824 // 4) %base a vector 1825 // => %src is a vector 1826 // => swapping idx & idx2 is safe. 1827 auto *SO0 = Src->getOperand(0); 1828 auto *SO0Ty = SO0->getType(); 1829 if (!isa<VectorType>(GEPType) || // case 3 1830 isa<VectorType>(SO0Ty)) { // case 4 1831 Src->setOperand(1, GO1); 1832 GEP.setOperand(1, SO1); 1833 return &GEP; 1834 } else { 1835 // Case 1 or 2 1836 // -- have to recreate %src & %gep 1837 // put NewSrc at same location as %src 1838 Builder.SetInsertPoint(cast<Instruction>(PtrOp)); 1839 auto *NewSrc = cast<GetElementPtrInst>( 1840 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName())); 1841 NewSrc->setIsInBounds(Src->isInBounds()); 1842 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1}); 1843 NewGEP->setIsInBounds(GEP.isInBounds()); 1844 return NewGEP; 1845 } 1846 } 1847 } 1848 } 1849 1850 // Note that if our source is a gep chain itself then we wait for that 1851 // chain to be resolved before we perform this transformation. This 1852 // avoids us creating a TON of code in some cases. 1853 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) 1854 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) 1855 return nullptr; // Wait until our source is folded to completion. 1856 1857 SmallVector<Value*, 8> Indices; 1858 1859 // Find out whether the last index in the source GEP is a sequential idx. 1860 bool EndsWithSequential = false; 1861 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 1862 I != E; ++I) 1863 EndsWithSequential = I.isSequential(); 1864 1865 // Can we combine the two pointer arithmetics offsets? 1866 if (EndsWithSequential) { 1867 // Replace: gep (gep %P, long B), long A, ... 1868 // With: T = long A+B; gep %P, T, ... 1869 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 1870 Value *GO1 = GEP.getOperand(1); 1871 1872 // If they aren't the same type, then the input hasn't been processed 1873 // by the loop above yet (which canonicalizes sequential index types to 1874 // intptr_t). Just avoid transforming this until the input has been 1875 // normalized. 1876 if (SO1->getType() != GO1->getType()) 1877 return nullptr; 1878 1879 Value *Sum = 1880 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 1881 // Only do the combine when we are sure the cost after the 1882 // merge is never more than that before the merge. 1883 if (Sum == nullptr) 1884 return nullptr; 1885 1886 // Update the GEP in place if possible. 1887 if (Src->getNumOperands() == 2) { 1888 GEP.setOperand(0, Src->getOperand(0)); 1889 GEP.setOperand(1, Sum); 1890 return &GEP; 1891 } 1892 Indices.append(Src->op_begin()+1, Src->op_end()-1); 1893 Indices.push_back(Sum); 1894 Indices.append(GEP.op_begin()+2, GEP.op_end()); 1895 } else if (isa<Constant>(*GEP.idx_begin()) && 1896 cast<Constant>(*GEP.idx_begin())->isNullValue() && 1897 Src->getNumOperands() != 1) { 1898 // Otherwise we can do the fold if the first index of the GEP is a zero 1899 Indices.append(Src->op_begin()+1, Src->op_end()); 1900 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 1901 } 1902 1903 if (!Indices.empty()) 1904 return GEP.isInBounds() && Src->isInBounds() 1905 ? GetElementPtrInst::CreateInBounds( 1906 Src->getSourceElementType(), Src->getOperand(0), Indices, 1907 GEP.getName()) 1908 : GetElementPtrInst::Create(Src->getSourceElementType(), 1909 Src->getOperand(0), Indices, 1910 GEP.getName()); 1911 } 1912 1913 if (GEP.getNumIndices() == 1) { 1914 unsigned AS = GEP.getPointerAddressSpace(); 1915 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 1916 DL.getIndexSizeInBits(AS)) { 1917 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType); 1918 1919 bool Matched = false; 1920 uint64_t C; 1921 Value *V = nullptr; 1922 if (TyAllocSize == 1) { 1923 V = GEP.getOperand(1); 1924 Matched = true; 1925 } else if (match(GEP.getOperand(1), 1926 m_AShr(m_Value(V), m_ConstantInt(C)))) { 1927 if (TyAllocSize == 1ULL << C) 1928 Matched = true; 1929 } else if (match(GEP.getOperand(1), 1930 m_SDiv(m_Value(V), m_ConstantInt(C)))) { 1931 if (TyAllocSize == C) 1932 Matched = true; 1933 } 1934 1935 if (Matched) { 1936 // Canonicalize (gep i8* X, -(ptrtoint Y)) 1937 // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) 1938 // The GEP pattern is emitted by the SCEV expander for certain kinds of 1939 // pointer arithmetic. 1940 if (match(V, m_Neg(m_PtrToInt(m_Value())))) { 1941 Operator *Index = cast<Operator>(V); 1942 Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType()); 1943 Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1)); 1944 return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType); 1945 } 1946 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) 1947 // to (bitcast Y) 1948 Value *Y; 1949 if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), 1950 m_PtrToInt(m_Specific(GEP.getOperand(0)))))) 1951 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType); 1952 } 1953 } 1954 } 1955 1956 // We do not handle pointer-vector geps here. 1957 if (GEPType->isVectorTy()) 1958 return nullptr; 1959 1960 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). 1961 Value *StrippedPtr = PtrOp->stripPointerCasts(); 1962 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType()); 1963 1964 if (StrippedPtr != PtrOp) { 1965 bool HasZeroPointerIndex = false; 1966 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType(); 1967 1968 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) 1969 HasZeroPointerIndex = C->isZero(); 1970 1971 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... 1972 // into : GEP [10 x i8]* X, i32 0, ... 1973 // 1974 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... 1975 // into : GEP i8* X, ... 1976 // 1977 // This occurs when the program declares an array extern like "int X[];" 1978 if (HasZeroPointerIndex) { 1979 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) { 1980 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? 1981 if (CATy->getElementType() == StrippedPtrEltTy) { 1982 // -> GEP i8* X, ... 1983 SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); 1984 GetElementPtrInst *Res = GetElementPtrInst::Create( 1985 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName()); 1986 Res->setIsInBounds(GEP.isInBounds()); 1987 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) 1988 return Res; 1989 // Insert Res, and create an addrspacecast. 1990 // e.g., 1991 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... 1992 // -> 1993 // %0 = GEP i8 addrspace(1)* X, ... 1994 // addrspacecast i8 addrspace(1)* %0 to i8* 1995 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType); 1996 } 1997 1998 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) { 1999 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? 2000 if (CATy->getElementType() == XATy->getElementType()) { 2001 // -> GEP [10 x i8]* X, i32 0, ... 2002 // At this point, we know that the cast source type is a pointer 2003 // to an array of the same type as the destination pointer 2004 // array. Because the array type is never stepped over (there 2005 // is a leading zero) we can fold the cast into this GEP. 2006 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { 2007 GEP.setOperand(0, StrippedPtr); 2008 GEP.setSourceElementType(XATy); 2009 return &GEP; 2010 } 2011 // Cannot replace the base pointer directly because StrippedPtr's 2012 // address space is different. Instead, create a new GEP followed by 2013 // an addrspacecast. 2014 // e.g., 2015 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), 2016 // i32 0, ... 2017 // -> 2018 // %0 = GEP [10 x i8] addrspace(1)* X, ... 2019 // addrspacecast i8 addrspace(1)* %0 to i8* 2020 SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); 2021 Value *NewGEP = 2022 GEP.isInBounds() 2023 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2024 Idx, GEP.getName()) 2025 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2026 GEP.getName()); 2027 return new AddrSpaceCastInst(NewGEP, GEPType); 2028 } 2029 } 2030 } 2031 } else if (GEP.getNumOperands() == 2) { 2032 // Transform things like: 2033 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V 2034 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast 2035 if (StrippedPtrEltTy->isArrayTy() && 2036 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) == 2037 DL.getTypeAllocSize(GEPEltType)) { 2038 Type *IdxType = DL.getIndexType(GEPType); 2039 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; 2040 Value *NewGEP = 2041 GEP.isInBounds() 2042 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2043 GEP.getName()) 2044 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx, 2045 GEP.getName()); 2046 2047 // V and GEP are both pointer types --> BitCast 2048 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType); 2049 } 2050 2051 // Transform things like: 2052 // %V = mul i64 %N, 4 2053 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V 2054 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast 2055 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) { 2056 // Check that changing the type amounts to dividing the index by a scale 2057 // factor. 2058 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2059 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy); 2060 if (ResSize && SrcSize % ResSize == 0) { 2061 Value *Idx = GEP.getOperand(1); 2062 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2063 uint64_t Scale = SrcSize / ResSize; 2064 2065 // Earlier transforms ensure that the index has the right type 2066 // according to Data Layout, which considerably simplifies the 2067 // logic by eliminating implicit casts. 2068 assert(Idx->getType() == DL.getIndexType(GEPType) && 2069 "Index type does not match the Data Layout preferences"); 2070 2071 bool NSW; 2072 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2073 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2074 // If the multiplication NewIdx * Scale may overflow then the new 2075 // GEP may not be "inbounds". 2076 Value *NewGEP = 2077 GEP.isInBounds() && NSW 2078 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2079 NewIdx, GEP.getName()) 2080 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx, 2081 GEP.getName()); 2082 2083 // The NewGEP must be pointer typed, so must the old one -> BitCast 2084 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2085 GEPType); 2086 } 2087 } 2088 } 2089 2090 // Similarly, transform things like: 2091 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp 2092 // (where tmp = 8*tmp2) into: 2093 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast 2094 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() && 2095 StrippedPtrEltTy->isArrayTy()) { 2096 // Check that changing to the array element type amounts to dividing the 2097 // index by a scale factor. 2098 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType); 2099 uint64_t ArrayEltSize = 2100 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()); 2101 if (ResSize && ArrayEltSize % ResSize == 0) { 2102 Value *Idx = GEP.getOperand(1); 2103 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); 2104 uint64_t Scale = ArrayEltSize / ResSize; 2105 2106 // Earlier transforms ensure that the index has the right type 2107 // according to the Data Layout, which considerably simplifies 2108 // the logic by eliminating implicit casts. 2109 assert(Idx->getType() == DL.getIndexType(GEPType) && 2110 "Index type does not match the Data Layout preferences"); 2111 2112 bool NSW; 2113 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { 2114 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. 2115 // If the multiplication NewIdx * Scale may overflow then the new 2116 // GEP may not be "inbounds". 2117 Type *IndTy = DL.getIndexType(GEPType); 2118 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx}; 2119 2120 Value *NewGEP = 2121 GEP.isInBounds() && NSW 2122 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, 2123 Off, GEP.getName()) 2124 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off, 2125 GEP.getName()); 2126 // The NewGEP must be pointer typed, so must the old one -> BitCast 2127 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, 2128 GEPType); 2129 } 2130 } 2131 } 2132 } 2133 } 2134 2135 // addrspacecast between types is canonicalized as a bitcast, then an 2136 // addrspacecast. To take advantage of the below bitcast + struct GEP, look 2137 // through the addrspacecast. 2138 Value *ASCStrippedPtrOp = PtrOp; 2139 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { 2140 // X = bitcast A addrspace(1)* to B addrspace(1)* 2141 // Y = addrspacecast A addrspace(1)* to B addrspace(2)* 2142 // Z = gep Y, <...constant indices...> 2143 // Into an addrspacecasted GEP of the struct. 2144 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) 2145 ASCStrippedPtrOp = BC; 2146 } 2147 2148 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) { 2149 Value *SrcOp = BCI->getOperand(0); 2150 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy()); 2151 Type *SrcEltType = SrcType->getElementType(); 2152 2153 // GEP directly using the source operand if this GEP is accessing an element 2154 // of a bitcasted pointer to vector or array of the same dimensions: 2155 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z 2156 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z 2157 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy) { 2158 return ArrTy->getArrayElementType() == VecTy->getVectorElementType() && 2159 ArrTy->getArrayNumElements() == VecTy->getVectorNumElements(); 2160 }; 2161 if (GEP.getNumOperands() == 3 && 2162 ((GEPEltType->isArrayTy() && SrcEltType->isVectorTy() && 2163 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType)) || 2164 (GEPEltType->isVectorTy() && SrcEltType->isArrayTy() && 2165 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType)))) { 2166 2167 // Create a new GEP here, as using `setOperand()` followed by 2168 // `setSourceElementType()` won't actually update the type of the 2169 // existing GEP Value. Causing issues if this Value is accessed when 2170 // constructing an AddrSpaceCastInst 2171 Value *NGEP = 2172 GEP.isInBounds() 2173 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}) 2174 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]}); 2175 NGEP->takeName(&GEP); 2176 2177 // Preserve GEP address space to satisfy users 2178 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2179 return new AddrSpaceCastInst(NGEP, GEPType); 2180 2181 return replaceInstUsesWith(GEP, NGEP); 2182 } 2183 2184 // See if we can simplify: 2185 // X = bitcast A* to B* 2186 // Y = gep X, <...constant indices...> 2187 // into a gep of the original struct. This is important for SROA and alias 2188 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. 2189 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType); 2190 APInt Offset(OffsetBits, 0); 2191 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) { 2192 // If this GEP instruction doesn't move the pointer, just replace the GEP 2193 // with a bitcast of the real input to the dest type. 2194 if (!Offset) { 2195 // If the bitcast is of an allocation, and the allocation will be 2196 // converted to match the type of the cast, don't touch this. 2197 if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) { 2198 // See if the bitcast simplifies, if so, don't nuke this GEP yet. 2199 if (Instruction *I = visitBitCast(*BCI)) { 2200 if (I != BCI) { 2201 I->takeName(BCI); 2202 BCI->getParent()->getInstList().insert(BCI->getIterator(), I); 2203 replaceInstUsesWith(*BCI, I); 2204 } 2205 return &GEP; 2206 } 2207 } 2208 2209 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace()) 2210 return new AddrSpaceCastInst(SrcOp, GEPType); 2211 return new BitCastInst(SrcOp, GEPType); 2212 } 2213 2214 // Otherwise, if the offset is non-zero, we need to find out if there is a 2215 // field at Offset in 'A's type. If so, we can pull the cast through the 2216 // GEP. 2217 SmallVector<Value*, 8> NewIndices; 2218 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) { 2219 Value *NGEP = 2220 GEP.isInBounds() 2221 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices) 2222 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices); 2223 2224 if (NGEP->getType() == GEPType) 2225 return replaceInstUsesWith(GEP, NGEP); 2226 NGEP->takeName(&GEP); 2227 2228 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) 2229 return new AddrSpaceCastInst(NGEP, GEPType); 2230 return new BitCastInst(NGEP, GEPType); 2231 } 2232 } 2233 } 2234 2235 if (!GEP.isInBounds()) { 2236 unsigned IdxWidth = 2237 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2238 APInt BasePtrOffset(IdxWidth, 0); 2239 Value *UnderlyingPtrOp = 2240 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2241 BasePtrOffset); 2242 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) { 2243 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2244 BasePtrOffset.isNonNegative()) { 2245 APInt AllocSize(IdxWidth, DL.getTypeAllocSize(AI->getAllocatedType())); 2246 if (BasePtrOffset.ule(AllocSize)) { 2247 return GetElementPtrInst::CreateInBounds( 2248 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1), 2249 GEP.getName()); 2250 } 2251 } 2252 } 2253 } 2254 2255 return nullptr; 2256 } 2257 2258 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, 2259 Instruction *AI) { 2260 if (isa<ConstantPointerNull>(V)) 2261 return true; 2262 if (auto *LI = dyn_cast<LoadInst>(V)) 2263 return isa<GlobalVariable>(LI->getPointerOperand()); 2264 // Two distinct allocations will never be equal. 2265 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking 2266 // through bitcasts of V can cause 2267 // the result statement below to be true, even when AI and V (ex: 2268 // i8* ->i32* ->i8* of AI) are the same allocations. 2269 return isAllocLikeFn(V, TLI) && V != AI; 2270 } 2271 2272 static bool isAllocSiteRemovable(Instruction *AI, 2273 SmallVectorImpl<WeakTrackingVH> &Users, 2274 const TargetLibraryInfo *TLI) { 2275 SmallVector<Instruction*, 4> Worklist; 2276 Worklist.push_back(AI); 2277 2278 do { 2279 Instruction *PI = Worklist.pop_back_val(); 2280 for (User *U : PI->users()) { 2281 Instruction *I = cast<Instruction>(U); 2282 switch (I->getOpcode()) { 2283 default: 2284 // Give up the moment we see something we can't handle. 2285 return false; 2286 2287 case Instruction::AddrSpaceCast: 2288 case Instruction::BitCast: 2289 case Instruction::GetElementPtr: 2290 Users.emplace_back(I); 2291 Worklist.push_back(I); 2292 continue; 2293 2294 case Instruction::ICmp: { 2295 ICmpInst *ICI = cast<ICmpInst>(I); 2296 // We can fold eq/ne comparisons with null to false/true, respectively. 2297 // We also fold comparisons in some conditions provided the alloc has 2298 // not escaped (see isNeverEqualToUnescapedAlloc). 2299 if (!ICI->isEquality()) 2300 return false; 2301 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2302 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2303 return false; 2304 Users.emplace_back(I); 2305 continue; 2306 } 2307 2308 case Instruction::Call: 2309 // Ignore no-op and store intrinsics. 2310 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2311 switch (II->getIntrinsicID()) { 2312 default: 2313 return false; 2314 2315 case Intrinsic::memmove: 2316 case Intrinsic::memcpy: 2317 case Intrinsic::memset: { 2318 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2319 if (MI->isVolatile() || MI->getRawDest() != PI) 2320 return false; 2321 LLVM_FALLTHROUGH; 2322 } 2323 case Intrinsic::invariant_start: 2324 case Intrinsic::invariant_end: 2325 case Intrinsic::lifetime_start: 2326 case Intrinsic::lifetime_end: 2327 case Intrinsic::objectsize: 2328 Users.emplace_back(I); 2329 continue; 2330 } 2331 } 2332 2333 if (isFreeCall(I, TLI)) { 2334 Users.emplace_back(I); 2335 continue; 2336 } 2337 return false; 2338 2339 case Instruction::Store: { 2340 StoreInst *SI = cast<StoreInst>(I); 2341 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2342 return false; 2343 Users.emplace_back(I); 2344 continue; 2345 } 2346 } 2347 llvm_unreachable("missing a return?"); 2348 } 2349 } while (!Worklist.empty()); 2350 return true; 2351 } 2352 2353 Instruction *InstCombiner::visitAllocSite(Instruction &MI) { 2354 // If we have a malloc call which is only used in any amount of comparisons to 2355 // null and free calls, delete the calls and replace the comparisons with true 2356 // or false as appropriate. 2357 2358 // This is based on the principle that we can substitute our own allocation 2359 // function (which will never return null) rather than knowledge of the 2360 // specific function being called. In some sense this can change the permitted 2361 // outputs of a program (when we convert a malloc to an alloca, the fact that 2362 // the allocation is now on the stack is potentially visible, for example), 2363 // but we believe in a permissible manner. 2364 SmallVector<WeakTrackingVH, 64> Users; 2365 2366 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2367 // before each store. 2368 TinyPtrVector<DbgVariableIntrinsic *> DIIs; 2369 std::unique_ptr<DIBuilder> DIB; 2370 if (isa<AllocaInst>(MI)) { 2371 DIIs = FindDbgAddrUses(&MI); 2372 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2373 } 2374 2375 if (isAllocSiteRemovable(&MI, Users, &TLI)) { 2376 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2377 // Lowering all @llvm.objectsize calls first because they may 2378 // use a bitcast/GEP of the alloca we are removing. 2379 if (!Users[i]) 2380 continue; 2381 2382 Instruction *I = cast<Instruction>(&*Users[i]); 2383 2384 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2385 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2386 Value *Result = 2387 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true); 2388 replaceInstUsesWith(*I, Result); 2389 eraseInstFromFunction(*I); 2390 Users[i] = nullptr; // Skip examining in the next loop. 2391 } 2392 } 2393 } 2394 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2395 if (!Users[i]) 2396 continue; 2397 2398 Instruction *I = cast<Instruction>(&*Users[i]); 2399 2400 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2401 replaceInstUsesWith(*C, 2402 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2403 C->isFalseWhenEqual())); 2404 } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I) || 2405 isa<AddrSpaceCastInst>(I)) { 2406 replaceInstUsesWith(*I, UndefValue::get(I->getType())); 2407 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2408 for (auto *DII : DIIs) 2409 ConvertDebugDeclareToDebugValue(DII, SI, *DIB); 2410 } 2411 eraseInstFromFunction(*I); 2412 } 2413 2414 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2415 // Replace invoke with a NOP intrinsic to maintain the original CFG 2416 Module *M = II->getModule(); 2417 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2418 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2419 None, "", II->getParent()); 2420 } 2421 2422 for (auto *DII : DIIs) 2423 eraseInstFromFunction(*DII); 2424 2425 return eraseInstFromFunction(MI); 2426 } 2427 return nullptr; 2428 } 2429 2430 /// Move the call to free before a NULL test. 2431 /// 2432 /// Check if this free is accessed after its argument has been test 2433 /// against NULL (property 0). 2434 /// If yes, it is legal to move this call in its predecessor block. 2435 /// 2436 /// The move is performed only if the block containing the call to free 2437 /// will be removed, i.e.: 2438 /// 1. it has only one predecessor P, and P has two successors 2439 /// 2. it contains the call, noops, and an unconditional branch 2440 /// 3. its successor is the same as its predecessor's successor 2441 /// 2442 /// The profitability is out-of concern here and this function should 2443 /// be called only if the caller knows this transformation would be 2444 /// profitable (e.g., for code size). 2445 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2446 const DataLayout &DL) { 2447 Value *Op = FI.getArgOperand(0); 2448 BasicBlock *FreeInstrBB = FI.getParent(); 2449 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2450 2451 // Validate part of constraint #1: Only one predecessor 2452 // FIXME: We can extend the number of predecessor, but in that case, we 2453 // would duplicate the call to free in each predecessor and it may 2454 // not be profitable even for code size. 2455 if (!PredBB) 2456 return nullptr; 2457 2458 // Validate constraint #2: Does this block contains only the call to 2459 // free, noops, and an unconditional branch? 2460 BasicBlock *SuccBB; 2461 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2462 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2463 return nullptr; 2464 2465 // If there are only 2 instructions in the block, at this point, 2466 // this is the call to free and unconditional. 2467 // If there are more than 2 instructions, check that they are noops 2468 // i.e., they won't hurt the performance of the generated code. 2469 if (FreeInstrBB->size() != 2) { 2470 for (const Instruction &Inst : *FreeInstrBB) { 2471 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2472 continue; 2473 auto *Cast = dyn_cast<CastInst>(&Inst); 2474 if (!Cast || !Cast->isNoopCast(DL)) 2475 return nullptr; 2476 } 2477 } 2478 // Validate the rest of constraint #1 by matching on the pred branch. 2479 Instruction *TI = PredBB->getTerminator(); 2480 BasicBlock *TrueBB, *FalseBB; 2481 ICmpInst::Predicate Pred; 2482 if (!match(TI, m_Br(m_ICmp(Pred, 2483 m_CombineOr(m_Specific(Op), 2484 m_Specific(Op->stripPointerCasts())), 2485 m_Zero()), 2486 TrueBB, FalseBB))) 2487 return nullptr; 2488 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2489 return nullptr; 2490 2491 // Validate constraint #3: Ensure the null case just falls through. 2492 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2493 return nullptr; 2494 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2495 "Broken CFG: missing edge from predecessor to successor"); 2496 2497 // At this point, we know that everything in FreeInstrBB can be moved 2498 // before TI. 2499 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end(); 2500 It != End;) { 2501 Instruction &Instr = *It++; 2502 if (&Instr == FreeInstrBBTerminator) 2503 break; 2504 Instr.moveBefore(TI); 2505 } 2506 assert(FreeInstrBB->size() == 1 && 2507 "Only the branch instruction should remain"); 2508 return &FI; 2509 } 2510 2511 Instruction *InstCombiner::visitFree(CallInst &FI) { 2512 Value *Op = FI.getArgOperand(0); 2513 2514 // free undef -> unreachable. 2515 if (isa<UndefValue>(Op)) { 2516 // Leave a marker since we can't modify the CFG here. 2517 CreateNonTerminatorUnreachable(&FI); 2518 return eraseInstFromFunction(FI); 2519 } 2520 2521 // If we have 'free null' delete the instruction. This can happen in stl code 2522 // when lots of inlining happens. 2523 if (isa<ConstantPointerNull>(Op)) 2524 return eraseInstFromFunction(FI); 2525 2526 // If we optimize for code size, try to move the call to free before the null 2527 // test so that simplify cfg can remove the empty block and dead code 2528 // elimination the branch. I.e., helps to turn something like: 2529 // if (foo) free(foo); 2530 // into 2531 // free(foo); 2532 if (MinimizeSize) 2533 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2534 return I; 2535 2536 return nullptr; 2537 } 2538 2539 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { 2540 if (RI.getNumOperands() == 0) // ret void 2541 return nullptr; 2542 2543 Value *ResultOp = RI.getOperand(0); 2544 Type *VTy = ResultOp->getType(); 2545 if (!VTy->isIntegerTy()) 2546 return nullptr; 2547 2548 // There might be assume intrinsics dominating this return that completely 2549 // determine the value. If so, constant fold it. 2550 KnownBits Known = computeKnownBits(ResultOp, 0, &RI); 2551 if (Known.isConstant()) 2552 RI.setOperand(0, Constant::getIntegerValue(VTy, Known.getConstant())); 2553 2554 return nullptr; 2555 } 2556 2557 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { 2558 // Change br (not X), label True, label False to: br X, label False, True 2559 Value *X = nullptr; 2560 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) && 2561 !isa<Constant>(X)) { 2562 // Swap Destinations and condition... 2563 BI.setCondition(X); 2564 BI.swapSuccessors(); 2565 return &BI; 2566 } 2567 2568 // If the condition is irrelevant, remove the use so that other 2569 // transforms on the condition become more effective. 2570 if (BI.isConditional() && !isa<ConstantInt>(BI.getCondition()) && 2571 BI.getSuccessor(0) == BI.getSuccessor(1)) { 2572 BI.setCondition(ConstantInt::getFalse(BI.getCondition()->getType())); 2573 return &BI; 2574 } 2575 2576 // Canonicalize, for example, icmp_ne -> icmp_eq or fcmp_one -> fcmp_oeq. 2577 CmpInst::Predicate Pred; 2578 if (match(&BI, m_Br(m_OneUse(m_Cmp(Pred, m_Value(), m_Value())), 2579 m_BasicBlock(), m_BasicBlock())) && 2580 !isCanonicalPredicate(Pred)) { 2581 // Swap destinations and condition. 2582 CmpInst *Cond = cast<CmpInst>(BI.getCondition()); 2583 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2584 BI.swapSuccessors(); 2585 Worklist.Add(Cond); 2586 return &BI; 2587 } 2588 2589 return nullptr; 2590 } 2591 2592 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { 2593 Value *Cond = SI.getCondition(); 2594 Value *Op0; 2595 ConstantInt *AddRHS; 2596 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 2597 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 2598 for (auto Case : SI.cases()) { 2599 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 2600 assert(isa<ConstantInt>(NewCase) && 2601 "Result of expression should be constant"); 2602 Case.setValue(cast<ConstantInt>(NewCase)); 2603 } 2604 SI.setCondition(Op0); 2605 return &SI; 2606 } 2607 2608 KnownBits Known = computeKnownBits(Cond, 0, &SI); 2609 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 2610 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 2611 2612 // Compute the number of leading bits we can ignore. 2613 // TODO: A better way to determine this would use ComputeNumSignBits(). 2614 for (auto &C : SI.cases()) { 2615 LeadingKnownZeros = std::min( 2616 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); 2617 LeadingKnownOnes = std::min( 2618 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); 2619 } 2620 2621 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 2622 2623 // Shrink the condition operand if the new type is smaller than the old type. 2624 // But do not shrink to a non-standard type, because backend can't generate 2625 // good code for that yet. 2626 // TODO: We can make it aggressive again after fixing PR39569. 2627 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 2628 shouldChangeType(Known.getBitWidth(), NewWidth)) { 2629 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 2630 Builder.SetInsertPoint(&SI); 2631 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 2632 SI.setCondition(NewCond); 2633 2634 for (auto Case : SI.cases()) { 2635 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 2636 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 2637 } 2638 return &SI; 2639 } 2640 2641 return nullptr; 2642 } 2643 2644 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { 2645 Value *Agg = EV.getAggregateOperand(); 2646 2647 if (!EV.hasIndices()) 2648 return replaceInstUsesWith(EV, Agg); 2649 2650 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), 2651 SQ.getWithInstruction(&EV))) 2652 return replaceInstUsesWith(EV, V); 2653 2654 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 2655 // We're extracting from an insertvalue instruction, compare the indices 2656 const unsigned *exti, *exte, *insi, *inse; 2657 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 2658 exte = EV.idx_end(), inse = IV->idx_end(); 2659 exti != exte && insi != inse; 2660 ++exti, ++insi) { 2661 if (*insi != *exti) 2662 // The insert and extract both reference distinctly different elements. 2663 // This means the extract is not influenced by the insert, and we can 2664 // replace the aggregate operand of the extract with the aggregate 2665 // operand of the insert. i.e., replace 2666 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2667 // %E = extractvalue { i32, { i32 } } %I, 0 2668 // with 2669 // %E = extractvalue { i32, { i32 } } %A, 0 2670 return ExtractValueInst::Create(IV->getAggregateOperand(), 2671 EV.getIndices()); 2672 } 2673 if (exti == exte && insi == inse) 2674 // Both iterators are at the end: Index lists are identical. Replace 2675 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2676 // %C = extractvalue { i32, { i32 } } %B, 1, 0 2677 // with "i32 42" 2678 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 2679 if (exti == exte) { 2680 // The extract list is a prefix of the insert list. i.e. replace 2681 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 2682 // %E = extractvalue { i32, { i32 } } %I, 1 2683 // with 2684 // %X = extractvalue { i32, { i32 } } %A, 1 2685 // %E = insertvalue { i32 } %X, i32 42, 0 2686 // by switching the order of the insert and extract (though the 2687 // insertvalue should be left in, since it may have other uses). 2688 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 2689 EV.getIndices()); 2690 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 2691 makeArrayRef(insi, inse)); 2692 } 2693 if (insi == inse) 2694 // The insert list is a prefix of the extract list 2695 // We can simply remove the common indices from the extract and make it 2696 // operate on the inserted value instead of the insertvalue result. 2697 // i.e., replace 2698 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 2699 // %E = extractvalue { i32, { i32 } } %I, 1, 0 2700 // with 2701 // %E extractvalue { i32 } { i32 42 }, 0 2702 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 2703 makeArrayRef(exti, exte)); 2704 } 2705 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) { 2706 // We're extracting from an overflow intrinsic, see if we're the only user, 2707 // which allows us to simplify multiple result intrinsics to simpler 2708 // things that just get one value. 2709 if (WO->hasOneUse()) { 2710 // Check if we're grabbing only the result of a 'with overflow' intrinsic 2711 // and replace it with a traditional binary instruction. 2712 if (*EV.idx_begin() == 0) { 2713 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 2714 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 2715 replaceInstUsesWith(*WO, UndefValue::get(WO->getType())); 2716 eraseInstFromFunction(*WO); 2717 return BinaryOperator::Create(BinOp, LHS, RHS); 2718 } 2719 2720 // If the normal result of the add is dead, and the RHS is a constant, 2721 // we can transform this into a range comparison. 2722 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 2723 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow) 2724 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS())) 2725 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(), 2726 ConstantExpr::getNot(CI)); 2727 } 2728 } 2729 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) 2730 // If the (non-volatile) load only has one use, we can rewrite this to a 2731 // load from a GEP. This reduces the size of the load. If a load is used 2732 // only by extractvalue instructions then this either must have been 2733 // optimized before, or it is a struct with padding, in which case we 2734 // don't want to do the transformation as it loses padding knowledge. 2735 if (L->isSimple() && L->hasOneUse()) { 2736 // extractvalue has integer indices, getelementptr has Value*s. Convert. 2737 SmallVector<Value*, 4> Indices; 2738 // Prefix an i32 0 since we need the first element. 2739 Indices.push_back(Builder.getInt32(0)); 2740 for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); 2741 I != E; ++I) 2742 Indices.push_back(Builder.getInt32(*I)); 2743 2744 // We need to insert these at the location of the old load, not at that of 2745 // the extractvalue. 2746 Builder.SetInsertPoint(L); 2747 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 2748 L->getPointerOperand(), Indices); 2749 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 2750 // Whatever aliasing information we had for the orignal load must also 2751 // hold for the smaller load, so propagate the annotations. 2752 AAMDNodes Nodes; 2753 L->getAAMetadata(Nodes); 2754 NL->setAAMetadata(Nodes); 2755 // Returning the load directly will cause the main loop to insert it in 2756 // the wrong spot, so use replaceInstUsesWith(). 2757 return replaceInstUsesWith(EV, NL); 2758 } 2759 // We could simplify extracts from other values. Note that nested extracts may 2760 // already be simplified implicitly by the above: extract (extract (insert) ) 2761 // will be translated into extract ( insert ( extract ) ) first and then just 2762 // the value inserted, if appropriate. Similarly for extracts from single-use 2763 // loads: extract (extract (load)) will be translated to extract (load (gep)) 2764 // and if again single-use then via load (gep (gep)) to load (gep). 2765 // However, double extracts from e.g. function arguments or return values 2766 // aren't handled yet. 2767 return nullptr; 2768 } 2769 2770 /// Return 'true' if the given typeinfo will match anything. 2771 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 2772 switch (Personality) { 2773 case EHPersonality::GNU_C: 2774 case EHPersonality::GNU_C_SjLj: 2775 case EHPersonality::Rust: 2776 // The GCC C EH and Rust personality only exists to support cleanups, so 2777 // it's not clear what the semantics of catch clauses are. 2778 return false; 2779 case EHPersonality::Unknown: 2780 return false; 2781 case EHPersonality::GNU_Ada: 2782 // While __gnat_all_others_value will match any Ada exception, it doesn't 2783 // match foreign exceptions (or didn't, before gcc-4.7). 2784 return false; 2785 case EHPersonality::GNU_CXX: 2786 case EHPersonality::GNU_CXX_SjLj: 2787 case EHPersonality::GNU_ObjC: 2788 case EHPersonality::MSVC_X86SEH: 2789 case EHPersonality::MSVC_Win64SEH: 2790 case EHPersonality::MSVC_CXX: 2791 case EHPersonality::CoreCLR: 2792 case EHPersonality::Wasm_CXX: 2793 return TypeInfo->isNullValue(); 2794 } 2795 llvm_unreachable("invalid enum"); 2796 } 2797 2798 static bool shorter_filter(const Value *LHS, const Value *RHS) { 2799 return 2800 cast<ArrayType>(LHS->getType())->getNumElements() 2801 < 2802 cast<ArrayType>(RHS->getType())->getNumElements(); 2803 } 2804 2805 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { 2806 // The logic here should be correct for any real-world personality function. 2807 // However if that turns out not to be true, the offending logic can always 2808 // be conditioned on the personality function, like the catch-all logic is. 2809 EHPersonality Personality = 2810 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 2811 2812 // Simplify the list of clauses, eg by removing repeated catch clauses 2813 // (these are often created by inlining). 2814 bool MakeNewInstruction = false; // If true, recreate using the following: 2815 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 2816 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 2817 2818 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 2819 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 2820 bool isLastClause = i + 1 == e; 2821 if (LI.isCatch(i)) { 2822 // A catch clause. 2823 Constant *CatchClause = LI.getClause(i); 2824 Constant *TypeInfo = CatchClause->stripPointerCasts(); 2825 2826 // If we already saw this clause, there is no point in having a second 2827 // copy of it. 2828 if (AlreadyCaught.insert(TypeInfo).second) { 2829 // This catch clause was not already seen. 2830 NewClauses.push_back(CatchClause); 2831 } else { 2832 // Repeated catch clause - drop the redundant copy. 2833 MakeNewInstruction = true; 2834 } 2835 2836 // If this is a catch-all then there is no point in keeping any following 2837 // clauses or marking the landingpad as having a cleanup. 2838 if (isCatchAll(Personality, TypeInfo)) { 2839 if (!isLastClause) 2840 MakeNewInstruction = true; 2841 CleanupFlag = false; 2842 break; 2843 } 2844 } else { 2845 // A filter clause. If any of the filter elements were already caught 2846 // then they can be dropped from the filter. It is tempting to try to 2847 // exploit the filter further by saying that any typeinfo that does not 2848 // occur in the filter can't be caught later (and thus can be dropped). 2849 // However this would be wrong, since typeinfos can match without being 2850 // equal (for example if one represents a C++ class, and the other some 2851 // class derived from it). 2852 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 2853 Constant *FilterClause = LI.getClause(i); 2854 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 2855 unsigned NumTypeInfos = FilterType->getNumElements(); 2856 2857 // An empty filter catches everything, so there is no point in keeping any 2858 // following clauses or marking the landingpad as having a cleanup. By 2859 // dealing with this case here the following code is made a bit simpler. 2860 if (!NumTypeInfos) { 2861 NewClauses.push_back(FilterClause); 2862 if (!isLastClause) 2863 MakeNewInstruction = true; 2864 CleanupFlag = false; 2865 break; 2866 } 2867 2868 bool MakeNewFilter = false; // If true, make a new filter. 2869 SmallVector<Constant *, 16> NewFilterElts; // New elements. 2870 if (isa<ConstantAggregateZero>(FilterClause)) { 2871 // Not an empty filter - it contains at least one null typeinfo. 2872 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 2873 Constant *TypeInfo = 2874 Constant::getNullValue(FilterType->getElementType()); 2875 // If this typeinfo is a catch-all then the filter can never match. 2876 if (isCatchAll(Personality, TypeInfo)) { 2877 // Throw the filter away. 2878 MakeNewInstruction = true; 2879 continue; 2880 } 2881 2882 // There is no point in having multiple copies of this typeinfo, so 2883 // discard all but the first copy if there is more than one. 2884 NewFilterElts.push_back(TypeInfo); 2885 if (NumTypeInfos > 1) 2886 MakeNewFilter = true; 2887 } else { 2888 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 2889 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 2890 NewFilterElts.reserve(NumTypeInfos); 2891 2892 // Remove any filter elements that were already caught or that already 2893 // occurred in the filter. While there, see if any of the elements are 2894 // catch-alls. If so, the filter can be discarded. 2895 bool SawCatchAll = false; 2896 for (unsigned j = 0; j != NumTypeInfos; ++j) { 2897 Constant *Elt = Filter->getOperand(j); 2898 Constant *TypeInfo = Elt->stripPointerCasts(); 2899 if (isCatchAll(Personality, TypeInfo)) { 2900 // This element is a catch-all. Bail out, noting this fact. 2901 SawCatchAll = true; 2902 break; 2903 } 2904 2905 // Even if we've seen a type in a catch clause, we don't want to 2906 // remove it from the filter. An unexpected type handler may be 2907 // set up for a call site which throws an exception of the same 2908 // type caught. In order for the exception thrown by the unexpected 2909 // handler to propagate correctly, the filter must be correctly 2910 // described for the call site. 2911 // 2912 // Example: 2913 // 2914 // void unexpected() { throw 1;} 2915 // void foo() throw (int) { 2916 // std::set_unexpected(unexpected); 2917 // try { 2918 // throw 2.0; 2919 // } catch (int i) {} 2920 // } 2921 2922 // There is no point in having multiple copies of the same typeinfo in 2923 // a filter, so only add it if we didn't already. 2924 if (SeenInFilter.insert(TypeInfo).second) 2925 NewFilterElts.push_back(cast<Constant>(Elt)); 2926 } 2927 // A filter containing a catch-all cannot match anything by definition. 2928 if (SawCatchAll) { 2929 // Throw the filter away. 2930 MakeNewInstruction = true; 2931 continue; 2932 } 2933 2934 // If we dropped something from the filter, make a new one. 2935 if (NewFilterElts.size() < NumTypeInfos) 2936 MakeNewFilter = true; 2937 } 2938 if (MakeNewFilter) { 2939 FilterType = ArrayType::get(FilterType->getElementType(), 2940 NewFilterElts.size()); 2941 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 2942 MakeNewInstruction = true; 2943 } 2944 2945 NewClauses.push_back(FilterClause); 2946 2947 // If the new filter is empty then it will catch everything so there is 2948 // no point in keeping any following clauses or marking the landingpad 2949 // as having a cleanup. The case of the original filter being empty was 2950 // already handled above. 2951 if (MakeNewFilter && !NewFilterElts.size()) { 2952 assert(MakeNewInstruction && "New filter but not a new instruction!"); 2953 CleanupFlag = false; 2954 break; 2955 } 2956 } 2957 } 2958 2959 // If several filters occur in a row then reorder them so that the shortest 2960 // filters come first (those with the smallest number of elements). This is 2961 // advantageous because shorter filters are more likely to match, speeding up 2962 // unwinding, but mostly because it increases the effectiveness of the other 2963 // filter optimizations below. 2964 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 2965 unsigned j; 2966 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 2967 for (j = i; j != e; ++j) 2968 if (!isa<ArrayType>(NewClauses[j]->getType())) 2969 break; 2970 2971 // Check whether the filters are already sorted by length. We need to know 2972 // if sorting them is actually going to do anything so that we only make a 2973 // new landingpad instruction if it does. 2974 for (unsigned k = i; k + 1 < j; ++k) 2975 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 2976 // Not sorted, so sort the filters now. Doing an unstable sort would be 2977 // correct too but reordering filters pointlessly might confuse users. 2978 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 2979 shorter_filter); 2980 MakeNewInstruction = true; 2981 break; 2982 } 2983 2984 // Look for the next batch of filters. 2985 i = j + 1; 2986 } 2987 2988 // If typeinfos matched if and only if equal, then the elements of a filter L 2989 // that occurs later than a filter F could be replaced by the intersection of 2990 // the elements of F and L. In reality two typeinfos can match without being 2991 // equal (for example if one represents a C++ class, and the other some class 2992 // derived from it) so it would be wrong to perform this transform in general. 2993 // However the transform is correct and useful if F is a subset of L. In that 2994 // case L can be replaced by F, and thus removed altogether since repeating a 2995 // filter is pointless. So here we look at all pairs of filters F and L where 2996 // L follows F in the list of clauses, and remove L if every element of F is 2997 // an element of L. This can occur when inlining C++ functions with exception 2998 // specifications. 2999 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3000 // Examine each filter in turn. 3001 Value *Filter = NewClauses[i]; 3002 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3003 if (!FTy) 3004 // Not a filter - skip it. 3005 continue; 3006 unsigned FElts = FTy->getNumElements(); 3007 // Examine each filter following this one. Doing this backwards means that 3008 // we don't have to worry about filters disappearing under us when removed. 3009 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3010 Value *LFilter = NewClauses[j]; 3011 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3012 if (!LTy) 3013 // Not a filter - skip it. 3014 continue; 3015 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3016 // an element of LFilter, then discard LFilter. 3017 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3018 // If Filter is empty then it is a subset of LFilter. 3019 if (!FElts) { 3020 // Discard LFilter. 3021 NewClauses.erase(J); 3022 MakeNewInstruction = true; 3023 // Move on to the next filter. 3024 continue; 3025 } 3026 unsigned LElts = LTy->getNumElements(); 3027 // If Filter is longer than LFilter then it cannot be a subset of it. 3028 if (FElts > LElts) 3029 // Move on to the next filter. 3030 continue; 3031 // At this point we know that LFilter has at least one element. 3032 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3033 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3034 // already know that Filter is not longer than LFilter). 3035 if (isa<ConstantAggregateZero>(Filter)) { 3036 assert(FElts <= LElts && "Should have handled this case earlier!"); 3037 // Discard LFilter. 3038 NewClauses.erase(J); 3039 MakeNewInstruction = true; 3040 } 3041 // Move on to the next filter. 3042 continue; 3043 } 3044 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3045 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3046 // Since Filter is non-empty and contains only zeros, it is a subset of 3047 // LFilter iff LFilter contains a zero. 3048 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3049 for (unsigned l = 0; l != LElts; ++l) 3050 if (LArray->getOperand(l)->isNullValue()) { 3051 // LFilter contains a zero - discard it. 3052 NewClauses.erase(J); 3053 MakeNewInstruction = true; 3054 break; 3055 } 3056 // Move on to the next filter. 3057 continue; 3058 } 3059 // At this point we know that both filters are ConstantArrays. Loop over 3060 // operands to see whether every element of Filter is also an element of 3061 // LFilter. Since filters tend to be short this is probably faster than 3062 // using a method that scales nicely. 3063 ConstantArray *FArray = cast<ConstantArray>(Filter); 3064 bool AllFound = true; 3065 for (unsigned f = 0; f != FElts; ++f) { 3066 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3067 AllFound = false; 3068 for (unsigned l = 0; l != LElts; ++l) { 3069 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3070 if (LTypeInfo == FTypeInfo) { 3071 AllFound = true; 3072 break; 3073 } 3074 } 3075 if (!AllFound) 3076 break; 3077 } 3078 if (AllFound) { 3079 // Discard LFilter. 3080 NewClauses.erase(J); 3081 MakeNewInstruction = true; 3082 } 3083 // Move on to the next filter. 3084 } 3085 } 3086 3087 // If we changed any of the clauses, replace the old landingpad instruction 3088 // with a new one. 3089 if (MakeNewInstruction) { 3090 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3091 NewClauses.size()); 3092 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3093 NLI->addClause(NewClauses[i]); 3094 // A landing pad with no clauses must have the cleanup flag set. It is 3095 // theoretically possible, though highly unlikely, that we eliminated all 3096 // clauses. If so, force the cleanup flag to true. 3097 if (NewClauses.empty()) 3098 CleanupFlag = true; 3099 NLI->setCleanup(CleanupFlag); 3100 return NLI; 3101 } 3102 3103 // Even if none of the clauses changed, we may nonetheless have understood 3104 // that the cleanup flag is pointless. Clear it if so. 3105 if (LI.isCleanup() != CleanupFlag) { 3106 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3107 LI.setCleanup(CleanupFlag); 3108 return &LI; 3109 } 3110 3111 return nullptr; 3112 } 3113 3114 /// Try to move the specified instruction from its current block into the 3115 /// beginning of DestBlock, which can only happen if it's safe to move the 3116 /// instruction past all of the instructions between it and the end of its 3117 /// block. 3118 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { 3119 assert(I->hasOneUse() && "Invariants didn't hold!"); 3120 BasicBlock *SrcBlock = I->getParent(); 3121 3122 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 3123 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || 3124 I->isTerminator()) 3125 return false; 3126 3127 // Do not sink static or dynamic alloca instructions. Static allocas must 3128 // remain in the entry block, and dynamic allocas must not be sunk in between 3129 // a stacksave / stackrestore pair, which would incorrectly shorten its 3130 // lifetime. 3131 if (isa<AllocaInst>(I)) 3132 return false; 3133 3134 // Do not sink into catchswitch blocks. 3135 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 3136 return false; 3137 3138 // Do not sink convergent call instructions. 3139 if (auto *CI = dyn_cast<CallInst>(I)) { 3140 if (CI->isConvergent()) 3141 return false; 3142 } 3143 // We can only sink load instructions if there is nothing between the load and 3144 // the end of block that could change the value. 3145 if (I->mayReadFromMemory()) { 3146 for (BasicBlock::iterator Scan = I->getIterator(), 3147 E = I->getParent()->end(); 3148 Scan != E; ++Scan) 3149 if (Scan->mayWriteToMemory()) 3150 return false; 3151 } 3152 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 3153 I->moveBefore(&*InsertPos); 3154 ++NumSunkInst; 3155 3156 // Also sink all related debug uses from the source basic block. Otherwise we 3157 // get debug use before the def. Attempt to salvage debug uses first, to 3158 // maximise the range variables have location for. If we cannot salvage, then 3159 // mark the location undef: we know it was supposed to receive a new location 3160 // here, but that computation has been sunk. 3161 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 3162 findDbgUsers(DbgUsers, I); 3163 for (auto *DII : reverse(DbgUsers)) { 3164 if (DII->getParent() == SrcBlock) { 3165 if (isa<DbgDeclareInst>(DII)) { 3166 // A dbg.declare instruction should not be cloned, since there can only be 3167 // one per variable fragment. It should be left in the original place since 3168 // sunk instruction is not an alloca(otherwise we could not be here). 3169 // But we need to update arguments of dbg.declare instruction, so that it 3170 // would not point into sunk instruction. 3171 if (!isa<CastInst>(I)) 3172 continue; // dbg.declare points at something it shouldn't 3173 3174 DII->setOperand( 3175 0, MetadataAsValue::get(I->getContext(), 3176 ValueAsMetadata::get(I->getOperand(0)))); 3177 continue; 3178 } 3179 3180 // dbg.value is in the same basic block as the sunk inst, see if we can 3181 // salvage it. Clone a new copy of the instruction: on success we need 3182 // both salvaged and unsalvaged copies. 3183 SmallVector<DbgVariableIntrinsic *, 1> TmpUser{ 3184 cast<DbgVariableIntrinsic>(DII->clone())}; 3185 3186 if (!salvageDebugInfoForDbgValues(*I, TmpUser)) { 3187 // We are unable to salvage: sink the cloned dbg.value, and mark the 3188 // original as undef, terminating any earlier variable location. 3189 LLVM_DEBUG(dbgs() << "SINK: " << *DII << '\n'); 3190 TmpUser[0]->insertBefore(&*InsertPos); 3191 Value *Undef = UndefValue::get(I->getType()); 3192 DII->setOperand(0, MetadataAsValue::get(DII->getContext(), 3193 ValueAsMetadata::get(Undef))); 3194 } else { 3195 // We successfully salvaged: place the salvaged dbg.value in the 3196 // original location, and move the unmodified dbg.value to sink with 3197 // the sunk inst. 3198 TmpUser[0]->insertBefore(DII); 3199 DII->moveBefore(&*InsertPos); 3200 } 3201 } 3202 } 3203 return true; 3204 } 3205 3206 bool InstCombiner::run() { 3207 while (!Worklist.isEmpty()) { 3208 Instruction *I = Worklist.RemoveOne(); 3209 if (I == nullptr) continue; // skip null values. 3210 3211 // Check to see if we can DCE the instruction. 3212 if (isInstructionTriviallyDead(I, &TLI)) { 3213 LLVM_DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); 3214 eraseInstFromFunction(*I); 3215 ++NumDeadInst; 3216 MadeIRChange = true; 3217 continue; 3218 } 3219 3220 if (!DebugCounter::shouldExecute(VisitCounter)) 3221 continue; 3222 3223 // Instruction isn't dead, see if we can constant propagate it. 3224 if (!I->use_empty() && 3225 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { 3226 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) { 3227 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I 3228 << '\n'); 3229 3230 // Add operands to the worklist. 3231 replaceInstUsesWith(*I, C); 3232 ++NumConstProp; 3233 if (isInstructionTriviallyDead(I, &TLI)) 3234 eraseInstFromFunction(*I); 3235 MadeIRChange = true; 3236 continue; 3237 } 3238 } 3239 3240 // In general, it is possible for computeKnownBits to determine all bits in 3241 // a value even when the operands are not all constants. 3242 Type *Ty = I->getType(); 3243 if (ExpensiveCombines && !I->use_empty() && Ty->isIntOrIntVectorTy()) { 3244 KnownBits Known = computeKnownBits(I, /*Depth*/0, I); 3245 if (Known.isConstant()) { 3246 Constant *C = ConstantInt::get(Ty, Known.getConstant()); 3247 LLVM_DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C 3248 << " from: " << *I << '\n'); 3249 3250 // Add operands to the worklist. 3251 replaceInstUsesWith(*I, C); 3252 ++NumConstProp; 3253 if (isInstructionTriviallyDead(I, &TLI)) 3254 eraseInstFromFunction(*I); 3255 MadeIRChange = true; 3256 continue; 3257 } 3258 } 3259 3260 // See if we can trivially sink this instruction to a successor basic block. 3261 if (EnableCodeSinking && I->hasOneUse()) { 3262 BasicBlock *BB = I->getParent(); 3263 Instruction *UserInst = cast<Instruction>(*I->user_begin()); 3264 BasicBlock *UserParent; 3265 3266 // Get the block the use occurs in. 3267 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 3268 UserParent = PN->getIncomingBlock(*I->use_begin()); 3269 else 3270 UserParent = UserInst->getParent(); 3271 3272 if (UserParent != BB) { 3273 bool UserIsSuccessor = false; 3274 // See if the user is one of our successors. 3275 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) 3276 if (*SI == UserParent) { 3277 UserIsSuccessor = true; 3278 break; 3279 } 3280 3281 // If the user is one of our immediate successors, and if that successor 3282 // only has us as a predecessors (we'd have to split the critical edge 3283 // otherwise), we can keep going. 3284 if (UserIsSuccessor && UserParent->getUniquePredecessor()) { 3285 // Okay, the CFG is simple enough, try to sink this instruction. 3286 if (TryToSinkInstruction(I, UserParent)) { 3287 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 3288 MadeIRChange = true; 3289 // We'll add uses of the sunk instruction below, but since sinking 3290 // can expose opportunities for it's *operands* add them to the 3291 // worklist 3292 for (Use &U : I->operands()) 3293 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 3294 Worklist.Add(OpI); 3295 } 3296 } 3297 } 3298 } 3299 3300 // Now that we have an instruction, try combining it to simplify it. 3301 Builder.SetInsertPoint(I); 3302 Builder.SetCurrentDebugLocation(I->getDebugLoc()); 3303 3304 #ifndef NDEBUG 3305 std::string OrigI; 3306 #endif 3307 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 3308 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 3309 3310 if (Instruction *Result = visit(*I)) { 3311 ++NumCombined; 3312 // Should we replace the old instruction with a new one? 3313 if (Result != I) { 3314 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 3315 << " New = " << *Result << '\n'); 3316 3317 if (I->getDebugLoc()) 3318 Result->setDebugLoc(I->getDebugLoc()); 3319 // Everything uses the new instruction now. 3320 I->replaceAllUsesWith(Result); 3321 3322 // Move the name to the new instruction first. 3323 Result->takeName(I); 3324 3325 // Push the new instruction and any users onto the worklist. 3326 Worklist.AddUsersToWorkList(*Result); 3327 Worklist.Add(Result); 3328 3329 // Insert the new instruction into the basic block... 3330 BasicBlock *InstParent = I->getParent(); 3331 BasicBlock::iterator InsertPos = I->getIterator(); 3332 3333 // If we replace a PHI with something that isn't a PHI, fix up the 3334 // insertion point. 3335 if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) 3336 InsertPos = InstParent->getFirstInsertionPt(); 3337 3338 InstParent->getInstList().insert(InsertPos, Result); 3339 3340 eraseInstFromFunction(*I); 3341 } else { 3342 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 3343 << " New = " << *I << '\n'); 3344 3345 // If the instruction was modified, it's possible that it is now dead. 3346 // if so, remove it. 3347 if (isInstructionTriviallyDead(I, &TLI)) { 3348 eraseInstFromFunction(*I); 3349 } else { 3350 Worklist.AddUsersToWorkList(*I); 3351 Worklist.Add(I); 3352 } 3353 } 3354 MadeIRChange = true; 3355 } 3356 } 3357 3358 Worklist.Zap(); 3359 return MadeIRChange; 3360 } 3361 3362 /// Walk the function in depth-first order, adding all reachable code to the 3363 /// worklist. 3364 /// 3365 /// This has a couple of tricks to make the code faster and more powerful. In 3366 /// particular, we constant fold and DCE instructions as we go, to avoid adding 3367 /// them to the worklist (this significantly speeds up instcombine on code where 3368 /// many instructions are dead or constant). Additionally, if we find a branch 3369 /// whose condition is a known constant, we only visit the reachable successors. 3370 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, 3371 SmallPtrSetImpl<BasicBlock *> &Visited, 3372 InstCombineWorklist &ICWorklist, 3373 const TargetLibraryInfo *TLI) { 3374 bool MadeIRChange = false; 3375 SmallVector<BasicBlock*, 256> Worklist; 3376 Worklist.push_back(BB); 3377 3378 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; 3379 DenseMap<Constant *, Constant *> FoldedConstants; 3380 3381 do { 3382 BB = Worklist.pop_back_val(); 3383 3384 // We have now visited this block! If we've already been here, ignore it. 3385 if (!Visited.insert(BB).second) 3386 continue; 3387 3388 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 3389 Instruction *Inst = &*BBI++; 3390 3391 // DCE instruction if trivially dead. 3392 if (isInstructionTriviallyDead(Inst, TLI)) { 3393 ++NumDeadInst; 3394 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 3395 if (!salvageDebugInfo(*Inst)) 3396 replaceDbgUsesWithUndef(Inst); 3397 Inst->eraseFromParent(); 3398 MadeIRChange = true; 3399 continue; 3400 } 3401 3402 // ConstantProp instruction if trivially constant. 3403 if (!Inst->use_empty() && 3404 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) 3405 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { 3406 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst 3407 << '\n'); 3408 Inst->replaceAllUsesWith(C); 3409 ++NumConstProp; 3410 if (isInstructionTriviallyDead(Inst, TLI)) 3411 Inst->eraseFromParent(); 3412 MadeIRChange = true; 3413 continue; 3414 } 3415 3416 // See if we can constant fold its operands. 3417 for (Use &U : Inst->operands()) { 3418 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 3419 continue; 3420 3421 auto *C = cast<Constant>(U); 3422 Constant *&FoldRes = FoldedConstants[C]; 3423 if (!FoldRes) 3424 FoldRes = ConstantFoldConstant(C, DL, TLI); 3425 if (!FoldRes) 3426 FoldRes = C; 3427 3428 if (FoldRes != C) { 3429 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst 3430 << "\n Old = " << *C 3431 << "\n New = " << *FoldRes << '\n'); 3432 U = FoldRes; 3433 MadeIRChange = true; 3434 } 3435 } 3436 3437 // Skip processing debug intrinsics in InstCombine. Processing these call instructions 3438 // consumes non-trivial amount of time and provides no value for the optimization. 3439 if (!isa<DbgInfoIntrinsic>(Inst)) 3440 InstrsForInstCombineWorklist.push_back(Inst); 3441 } 3442 3443 // Recursively visit successors. If this is a branch or switch on a 3444 // constant, only visit the reachable successor. 3445 Instruction *TI = BB->getTerminator(); 3446 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { 3447 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { 3448 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); 3449 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); 3450 Worklist.push_back(ReachableBB); 3451 continue; 3452 } 3453 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 3454 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 3455 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor()); 3456 continue; 3457 } 3458 } 3459 3460 for (BasicBlock *SuccBB : successors(TI)) 3461 Worklist.push_back(SuccBB); 3462 } while (!Worklist.empty()); 3463 3464 // Once we've found all of the instructions to add to instcombine's worklist, 3465 // add them in reverse order. This way instcombine will visit from the top 3466 // of the function down. This jives well with the way that it adds all uses 3467 // of instructions to the worklist after doing a transformation, thus avoiding 3468 // some N^2 behavior in pathological cases. 3469 ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); 3470 3471 return MadeIRChange; 3472 } 3473 3474 /// Populate the IC worklist from a function, and prune any dead basic 3475 /// blocks discovered in the process. 3476 /// 3477 /// This also does basic constant propagation and other forward fixing to make 3478 /// the combiner itself run much faster. 3479 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, 3480 TargetLibraryInfo *TLI, 3481 InstCombineWorklist &ICWorklist) { 3482 bool MadeIRChange = false; 3483 3484 // Do a depth-first traversal of the function, populate the worklist with 3485 // the reachable instructions. Ignore blocks that are not reachable. Keep 3486 // track of which blocks we visit. 3487 SmallPtrSet<BasicBlock *, 32> Visited; 3488 MadeIRChange |= 3489 AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); 3490 3491 // Do a quick scan over the function. If we find any blocks that are 3492 // unreachable, remove any instructions inside of them. This prevents 3493 // the instcombine code from having to deal with some bad special cases. 3494 for (BasicBlock &BB : F) { 3495 if (Visited.count(&BB)) 3496 continue; 3497 3498 unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); 3499 MadeIRChange |= NumDeadInstInBB > 0; 3500 NumDeadInst += NumDeadInstInBB; 3501 } 3502 3503 return MadeIRChange; 3504 } 3505 3506 static bool combineInstructionsOverFunction( 3507 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, 3508 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, 3509 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 3510 ProfileSummaryInfo *PSI, bool ExpensiveCombines = true, 3511 LoopInfo *LI = nullptr) { 3512 auto &DL = F.getParent()->getDataLayout(); 3513 ExpensiveCombines |= EnableExpensiveCombines; 3514 3515 /// Builder - This is an IRBuilder that automatically inserts new 3516 /// instructions into the worklist when they are created. 3517 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 3518 F.getContext(), TargetFolder(DL), 3519 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 3520 Worklist.Add(I); 3521 if (match(I, m_Intrinsic<Intrinsic::assume>())) 3522 AC.registerAssumption(cast<CallInst>(I)); 3523 })); 3524 3525 // Lower dbg.declare intrinsics otherwise their value may be clobbered 3526 // by instcombiner. 3527 bool MadeIRChange = false; 3528 if (ShouldLowerDbgDeclare) 3529 MadeIRChange = LowerDbgDeclare(F); 3530 3531 // Iterate while there is work to do. 3532 int Iteration = 0; 3533 while (true) { 3534 ++Iteration; 3535 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 3536 << F.getName() << "\n"); 3537 3538 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist); 3539 3540 InstCombiner IC(Worklist, Builder, F.hasMinSize(), ExpensiveCombines, AA, 3541 AC, TLI, DT, ORE, BFI, PSI, DL, LI); 3542 IC.MaxArraySizeForCombine = MaxArraySize; 3543 3544 if (!IC.run()) 3545 break; 3546 } 3547 3548 return MadeIRChange || Iteration > 1; 3549 } 3550 3551 PreservedAnalyses InstCombinePass::run(Function &F, 3552 FunctionAnalysisManager &AM) { 3553 auto &AC = AM.getResult<AssumptionAnalysis>(F); 3554 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 3555 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 3556 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 3557 3558 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 3559 3560 auto *AA = &AM.getResult<AAManager>(F); 3561 const ModuleAnalysisManager &MAM = 3562 AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); 3563 ProfileSummaryInfo *PSI = 3564 MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 3565 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 3566 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 3567 3568 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3569 BFI, PSI, ExpensiveCombines, LI)) 3570 // No changes, all analyses are preserved. 3571 return PreservedAnalyses::all(); 3572 3573 // Mark all the analyses that instcombine updates as preserved. 3574 PreservedAnalyses PA; 3575 PA.preserveSet<CFGAnalyses>(); 3576 PA.preserve<AAManager>(); 3577 PA.preserve<BasicAA>(); 3578 PA.preserve<GlobalsAA>(); 3579 return PA; 3580 } 3581 3582 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 3583 AU.setPreservesCFG(); 3584 AU.addRequired<AAResultsWrapperPass>(); 3585 AU.addRequired<AssumptionCacheTracker>(); 3586 AU.addRequired<TargetLibraryInfoWrapperPass>(); 3587 AU.addRequired<DominatorTreeWrapperPass>(); 3588 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 3589 AU.addPreserved<DominatorTreeWrapperPass>(); 3590 AU.addPreserved<AAResultsWrapperPass>(); 3591 AU.addPreserved<BasicAAWrapperPass>(); 3592 AU.addPreserved<GlobalsAAWrapperPass>(); 3593 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 3594 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 3595 } 3596 3597 bool InstructionCombiningPass::runOnFunction(Function &F) { 3598 if (skipFunction(F)) 3599 return false; 3600 3601 // Required analyses. 3602 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3603 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 3604 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 3605 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 3606 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 3607 3608 // Optional analyses. 3609 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 3610 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 3611 ProfileSummaryInfo *PSI = 3612 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 3613 BlockFrequencyInfo *BFI = 3614 (PSI && PSI->hasProfileSummary()) ? 3615 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 3616 nullptr; 3617 3618 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ORE, 3619 BFI, PSI, ExpensiveCombines, LI); 3620 } 3621 3622 char InstructionCombiningPass::ID = 0; 3623 3624 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 3625 "Combine redundant instructions", false, false) 3626 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 3627 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 3628 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 3629 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 3630 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 3631 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 3632 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 3633 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 3634 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 3635 "Combine redundant instructions", false, false) 3636 3637 // Initialization Routines 3638 void llvm::initializeInstCombine(PassRegistry &Registry) { 3639 initializeInstructionCombiningPassPass(Registry); 3640 } 3641 3642 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { 3643 initializeInstructionCombiningPassPass(*unwrap(R)); 3644 } 3645 3646 FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { 3647 return new InstructionCombiningPass(ExpensiveCombines); 3648 } 3649 3650 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) { 3651 unwrap(PM)->add(createInstructionCombiningPass()); 3652 } 3653