1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // InstructionCombining - Combine instructions to form fewer, simple 10 // instructions. This pass does not modify the CFG. This pass is where 11 // algebraic simplification happens. 12 // 13 // This pass combines things like: 14 // %Y = add i32 %X, 1 15 // %Z = add i32 %Y, 1 16 // into: 17 // %Z = add i32 %X, 2 18 // 19 // This is a simple worklist driven algorithm. 20 // 21 // This pass guarantees that the following canonicalizations are performed on 22 // the program: 23 // 1. If a binary operator has a constant operand, it is moved to the RHS 24 // 2. Bitwise operators with constant operands are always grouped so that 25 // shifts are performed first, then or's, then and's, then xor's. 26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 27 // 4. All cmp instructions on boolean values are replaced with logical ops 28 // 5. add X, X is represented as (X*2) => (X << 1) 29 // 6. Multiplies with a power-of-two constant argument are transformed into 30 // shifts. 31 // ... etc. 32 // 33 //===----------------------------------------------------------------------===// 34 35 #include "InstCombineInternal.h" 36 #include "llvm/ADT/APInt.h" 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/SmallPtrSet.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AssumptionCache.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CFG.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/InstructionSimplify.h" 50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 51 #include "llvm/Analysis/LoopInfo.h" 52 #include "llvm/Analysis/MemoryBuiltins.h" 53 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 54 #include "llvm/Analysis/ProfileSummaryInfo.h" 55 #include "llvm/Analysis/TargetFolder.h" 56 #include "llvm/Analysis/TargetLibraryInfo.h" 57 #include "llvm/Analysis/TargetTransformInfo.h" 58 #include "llvm/Analysis/Utils/Local.h" 59 #include "llvm/Analysis/ValueTracking.h" 60 #include "llvm/Analysis/VectorUtils.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/CFG.h" 63 #include "llvm/IR/Constant.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DIBuilder.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfo.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/IRBuilder.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instruction.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/Metadata.h" 80 #include "llvm/IR/Operator.h" 81 #include "llvm/IR/PassManager.h" 82 #include "llvm/IR/PatternMatch.h" 83 #include "llvm/IR/Type.h" 84 #include "llvm/IR/Use.h" 85 #include "llvm/IR/User.h" 86 #include "llvm/IR/Value.h" 87 #include "llvm/IR/ValueHandle.h" 88 #include "llvm/InitializePasses.h" 89 #include "llvm/Support/Casting.h" 90 #include "llvm/Support/CommandLine.h" 91 #include "llvm/Support/Compiler.h" 92 #include "llvm/Support/Debug.h" 93 #include "llvm/Support/DebugCounter.h" 94 #include "llvm/Support/ErrorHandling.h" 95 #include "llvm/Support/KnownBits.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Transforms/InstCombine/InstCombine.h" 98 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 99 #include "llvm/Transforms/Utils/Local.h" 100 #include <algorithm> 101 #include <cassert> 102 #include <cstdint> 103 #include <memory> 104 #include <optional> 105 #include <string> 106 #include <utility> 107 108 #define DEBUG_TYPE "instcombine" 109 #include "llvm/Transforms/Utils/InstructionWorklist.h" 110 #include <optional> 111 112 using namespace llvm; 113 using namespace llvm::PatternMatch; 114 115 STATISTIC(NumWorklistIterations, 116 "Number of instruction combining iterations performed"); 117 STATISTIC(NumOneIteration, "Number of functions with one iteration"); 118 STATISTIC(NumTwoIterations, "Number of functions with two iterations"); 119 STATISTIC(NumThreeIterations, "Number of functions with three iterations"); 120 STATISTIC(NumFourOrMoreIterations, 121 "Number of functions with four or more iterations"); 122 123 STATISTIC(NumCombined , "Number of insts combined"); 124 STATISTIC(NumConstProp, "Number of constant folds"); 125 STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 126 STATISTIC(NumSunkInst , "Number of instructions sunk"); 127 STATISTIC(NumExpand, "Number of expansions"); 128 STATISTIC(NumFactor , "Number of factorizations"); 129 STATISTIC(NumReassoc , "Number of reassociations"); 130 DEBUG_COUNTER(VisitCounter, "instcombine-visit", 131 "Controls which instructions are visited"); 132 133 static cl::opt<bool> 134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 135 cl::init(true)); 136 137 static cl::opt<unsigned> MaxSinkNumUsers( 138 "instcombine-max-sink-users", cl::init(32), 139 cl::desc("Maximum number of undroppable users for instruction sinking")); 140 141 static cl::opt<unsigned> 142 MaxArraySize("instcombine-maxarray-size", cl::init(1024), 143 cl::desc("Maximum array size considered when doing a combine")); 144 145 // FIXME: Remove this flag when it is no longer necessary to convert 146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 147 // increases variable availability at the cost of accuracy. Variables that 148 // cannot be promoted by mem2reg or SROA will be described as living in memory 149 // for their entire lifetime. However, passes like DSE and instcombine can 150 // delete stores to the alloca, leading to misleading and inaccurate debug 151 // information. This flag can be removed when those passes are fixed. 152 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 153 cl::Hidden, cl::init(true)); 154 155 std::optional<Instruction *> 156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 157 // Handle target specific intrinsics 158 if (II.getCalledFunction()->isTargetIntrinsic()) { 159 return TTI.instCombineIntrinsic(*this, II); 160 } 161 return std::nullopt; 162 } 163 164 std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 165 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 166 bool &KnownBitsComputed) { 167 // Handle target specific intrinsics 168 if (II.getCalledFunction()->isTargetIntrinsic()) { 169 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 170 KnownBitsComputed); 171 } 172 return std::nullopt; 173 } 174 175 std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 176 IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, 177 APInt &PoisonElts2, APInt &PoisonElts3, 178 std::function<void(Instruction *, unsigned, APInt, APInt &)> 179 SimplifyAndSetOp) { 180 // Handle target specific intrinsics 181 if (II.getCalledFunction()->isTargetIntrinsic()) { 182 return TTI.simplifyDemandedVectorEltsIntrinsic( 183 *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 184 SimplifyAndSetOp); 185 } 186 return std::nullopt; 187 } 188 189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { 190 return TTI.isValidAddrSpaceCast(FromAS, ToAS); 191 } 192 193 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) { 194 return llvm::emitGEPOffset(&Builder, DL, GEP); 195 } 196 197 /// Legal integers and common types are considered desirable. This is used to 198 /// avoid creating instructions with types that may not be supported well by the 199 /// the backend. 200 /// NOTE: This treats i8, i16 and i32 specially because they are common 201 /// types in frontend languages. 202 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 203 switch (BitWidth) { 204 case 8: 205 case 16: 206 case 32: 207 return true; 208 default: 209 return DL.isLegalInteger(BitWidth); 210 } 211 } 212 213 /// Return true if it is desirable to convert an integer computation from a 214 /// given bit width to a new bit width. 215 /// We don't want to convert from a legal or desirable type (like i8) to an 216 /// illegal type or from a smaller to a larger illegal type. A width of '1' 217 /// is always treated as a desirable type because i1 is a fundamental type in 218 /// IR, and there are many specialized optimizations for i1 types. 219 /// Common/desirable widths are equally treated as legal to convert to, in 220 /// order to open up more combining opportunities. 221 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 222 unsigned ToWidth) const { 223 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 224 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 225 226 // Convert to desirable widths even if they are not legal types. 227 // Only shrink types, to prevent infinite loops. 228 if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 229 return true; 230 231 // If this is a legal or desiable integer from type, and the result would be 232 // an illegal type, don't do the transformation. 233 if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 234 return false; 235 236 // Otherwise, if both are illegal, do not increase the size of the result. We 237 // do allow things like i160 -> i64, but not i64 -> i160. 238 if (!FromLegal && !ToLegal && ToWidth > FromWidth) 239 return false; 240 241 return true; 242 } 243 244 /// Return true if it is desirable to convert a computation from 'From' to 'To'. 245 /// We don't want to convert from a legal to an illegal type or from a smaller 246 /// to a larger illegal type. i1 is always treated as a legal type because it is 247 /// a fundamental type in IR, and there are many specialized optimizations for 248 /// i1 types. 249 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 250 // TODO: This could be extended to allow vectors. Datalayout changes might be 251 // needed to properly support that. 252 if (!From->isIntegerTy() || !To->isIntegerTy()) 253 return false; 254 255 unsigned FromWidth = From->getPrimitiveSizeInBits(); 256 unsigned ToWidth = To->getPrimitiveSizeInBits(); 257 return shouldChangeType(FromWidth, ToWidth); 258 } 259 260 // Return true, if No Signed Wrap should be maintained for I. 261 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 262 // where both B and C should be ConstantInts, results in a constant that does 263 // not overflow. This function only handles the Add and Sub opcodes. For 264 // all other opcodes, the function conservatively returns false. 265 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 266 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 267 if (!OBO || !OBO->hasNoSignedWrap()) 268 return false; 269 270 // We reason about Add and Sub Only. 271 Instruction::BinaryOps Opcode = I.getOpcode(); 272 if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 273 return false; 274 275 const APInt *BVal, *CVal; 276 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 277 return false; 278 279 bool Overflow = false; 280 if (Opcode == Instruction::Add) 281 (void)BVal->sadd_ov(*CVal, Overflow); 282 else 283 (void)BVal->ssub_ov(*CVal, Overflow); 284 285 return !Overflow; 286 } 287 288 static bool hasNoUnsignedWrap(BinaryOperator &I) { 289 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 290 return OBO && OBO->hasNoUnsignedWrap(); 291 } 292 293 static bool hasNoSignedWrap(BinaryOperator &I) { 294 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 295 return OBO && OBO->hasNoSignedWrap(); 296 } 297 298 /// Conservatively clears subclassOptionalData after a reassociation or 299 /// commutation. We preserve fast-math flags when applicable as they can be 300 /// preserved. 301 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 302 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 303 if (!FPMO) { 304 I.clearSubclassOptionalData(); 305 return; 306 } 307 308 FastMathFlags FMF = I.getFastMathFlags(); 309 I.clearSubclassOptionalData(); 310 I.setFastMathFlags(FMF); 311 } 312 313 /// Combine constant operands of associative operations either before or after a 314 /// cast to eliminate one of the associative operations: 315 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 316 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 317 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 318 InstCombinerImpl &IC) { 319 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 320 if (!Cast || !Cast->hasOneUse()) 321 return false; 322 323 // TODO: Enhance logic for other casts and remove this check. 324 auto CastOpcode = Cast->getOpcode(); 325 if (CastOpcode != Instruction::ZExt) 326 return false; 327 328 // TODO: Enhance logic for other BinOps and remove this check. 329 if (!BinOp1->isBitwiseLogicOp()) 330 return false; 331 332 auto AssocOpcode = BinOp1->getOpcode(); 333 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 334 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 335 return false; 336 337 Constant *C1, *C2; 338 if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 339 !match(BinOp2->getOperand(1), m_Constant(C2))) 340 return false; 341 342 // TODO: This assumes a zext cast. 343 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 344 // to the destination type might lose bits. 345 346 // Fold the constants together in the destination type: 347 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 348 const DataLayout &DL = IC.getDataLayout(); 349 Type *DestTy = C1->getType(); 350 Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); 351 if (!CastC2) 352 return false; 353 Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); 354 if (!FoldedC) 355 return false; 356 357 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 358 IC.replaceOperand(*BinOp1, 1, FoldedC); 359 BinOp1->dropPoisonGeneratingFlags(); 360 Cast->dropPoisonGeneratingFlags(); 361 return true; 362 } 363 364 // Simplifies IntToPtr/PtrToInt RoundTrip Cast. 365 // inttoptr ( ptrtoint (x) ) --> x 366 Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 367 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 368 if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 369 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 370 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 371 Type *CastTy = IntToPtr->getDestTy(); 372 if (PtrToInt && 373 CastTy->getPointerAddressSpace() == 374 PtrToInt->getSrcTy()->getPointerAddressSpace() && 375 DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 376 DL.getTypeSizeInBits(PtrToInt->getDestTy())) 377 return PtrToInt->getOperand(0); 378 } 379 return nullptr; 380 } 381 382 /// This performs a few simplifications for operators that are associative or 383 /// commutative: 384 /// 385 /// Commutative operators: 386 /// 387 /// 1. Order operands such that they are listed from right (least complex) to 388 /// left (most complex). This puts constants before unary operators before 389 /// binary operators. 390 /// 391 /// Associative operators: 392 /// 393 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 394 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 395 /// 396 /// Associative and commutative operators: 397 /// 398 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 399 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 400 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 401 /// if C1 and C2 are constants. 402 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 403 Instruction::BinaryOps Opcode = I.getOpcode(); 404 bool Changed = false; 405 406 do { 407 // Order operands such that they are listed from right (least complex) to 408 // left (most complex). This puts constants before unary operators before 409 // binary operators. 410 if (I.isCommutative() && getComplexity(I.getOperand(0)) < 411 getComplexity(I.getOperand(1))) 412 Changed = !I.swapOperands(); 413 414 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 415 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 416 417 if (I.isAssociative()) { 418 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 419 if (Op0 && Op0->getOpcode() == Opcode) { 420 Value *A = Op0->getOperand(0); 421 Value *B = Op0->getOperand(1); 422 Value *C = I.getOperand(1); 423 424 // Does "B op C" simplify? 425 if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 426 // It simplifies to V. Form "A op V". 427 replaceOperand(I, 0, A); 428 replaceOperand(I, 1, V); 429 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 430 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 431 432 // Conservatively clear all optional flags since they may not be 433 // preserved by the reassociation. Reset nsw/nuw based on the above 434 // analysis. 435 ClearSubclassDataAfterReassociation(I); 436 437 // Note: this is only valid because SimplifyBinOp doesn't look at 438 // the operands to Op0. 439 if (IsNUW) 440 I.setHasNoUnsignedWrap(true); 441 442 if (IsNSW) 443 I.setHasNoSignedWrap(true); 444 445 Changed = true; 446 ++NumReassoc; 447 continue; 448 } 449 } 450 451 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 452 if (Op1 && Op1->getOpcode() == Opcode) { 453 Value *A = I.getOperand(0); 454 Value *B = Op1->getOperand(0); 455 Value *C = Op1->getOperand(1); 456 457 // Does "A op B" simplify? 458 if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 459 // It simplifies to V. Form "V op C". 460 replaceOperand(I, 0, V); 461 replaceOperand(I, 1, C); 462 // Conservatively clear the optional flags, since they may not be 463 // preserved by the reassociation. 464 ClearSubclassDataAfterReassociation(I); 465 Changed = true; 466 ++NumReassoc; 467 continue; 468 } 469 } 470 } 471 472 if (I.isAssociative() && I.isCommutative()) { 473 if (simplifyAssocCastAssoc(&I, *this)) { 474 Changed = true; 475 ++NumReassoc; 476 continue; 477 } 478 479 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 480 if (Op0 && Op0->getOpcode() == Opcode) { 481 Value *A = Op0->getOperand(0); 482 Value *B = Op0->getOperand(1); 483 Value *C = I.getOperand(1); 484 485 // Does "C op A" simplify? 486 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 487 // It simplifies to V. Form "V op B". 488 replaceOperand(I, 0, V); 489 replaceOperand(I, 1, B); 490 // Conservatively clear the optional flags, since they may not be 491 // preserved by the reassociation. 492 ClearSubclassDataAfterReassociation(I); 493 Changed = true; 494 ++NumReassoc; 495 continue; 496 } 497 } 498 499 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 500 if (Op1 && Op1->getOpcode() == Opcode) { 501 Value *A = I.getOperand(0); 502 Value *B = Op1->getOperand(0); 503 Value *C = Op1->getOperand(1); 504 505 // Does "C op A" simplify? 506 if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 507 // It simplifies to V. Form "B op V". 508 replaceOperand(I, 0, B); 509 replaceOperand(I, 1, V); 510 // Conservatively clear the optional flags, since they may not be 511 // preserved by the reassociation. 512 ClearSubclassDataAfterReassociation(I); 513 Changed = true; 514 ++NumReassoc; 515 continue; 516 } 517 } 518 519 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 520 // if C1 and C2 are constants. 521 Value *A, *B; 522 Constant *C1, *C2, *CRes; 523 if (Op0 && Op1 && 524 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 525 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 526 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 527 (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 528 bool IsNUW = hasNoUnsignedWrap(I) && 529 hasNoUnsignedWrap(*Op0) && 530 hasNoUnsignedWrap(*Op1); 531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 532 BinaryOperator::CreateNUW(Opcode, A, B) : 533 BinaryOperator::Create(Opcode, A, B); 534 535 if (isa<FPMathOperator>(NewBO)) { 536 FastMathFlags Flags = I.getFastMathFlags() & 537 Op0->getFastMathFlags() & 538 Op1->getFastMathFlags(); 539 NewBO->setFastMathFlags(Flags); 540 } 541 InsertNewInstWith(NewBO, I.getIterator()); 542 NewBO->takeName(Op1); 543 replaceOperand(I, 0, NewBO); 544 replaceOperand(I, 1, CRes); 545 // Conservatively clear the optional flags, since they may not be 546 // preserved by the reassociation. 547 ClearSubclassDataAfterReassociation(I); 548 if (IsNUW) 549 I.setHasNoUnsignedWrap(true); 550 551 Changed = true; 552 continue; 553 } 554 } 555 556 // No further simplifications. 557 return Changed; 558 } while (true); 559 } 560 561 /// Return whether "X LOp (Y ROp Z)" is always equal to 562 /// "(X LOp Y) ROp (X LOp Z)". 563 static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 564 Instruction::BinaryOps ROp) { 565 // X & (Y | Z) <--> (X & Y) | (X & Z) 566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 567 if (LOp == Instruction::And) 568 return ROp == Instruction::Or || ROp == Instruction::Xor; 569 570 // X | (Y & Z) <--> (X | Y) & (X | Z) 571 if (LOp == Instruction::Or) 572 return ROp == Instruction::And; 573 574 // X * (Y + Z) <--> (X * Y) + (X * Z) 575 // X * (Y - Z) <--> (X * Y) - (X * Z) 576 if (LOp == Instruction::Mul) 577 return ROp == Instruction::Add || ROp == Instruction::Sub; 578 579 return false; 580 } 581 582 /// Return whether "(X LOp Y) ROp Z" is always equal to 583 /// "(X ROp Z) LOp (Y ROp Z)". 584 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 585 Instruction::BinaryOps ROp) { 586 if (Instruction::isCommutative(ROp)) 587 return leftDistributesOverRight(ROp, LOp); 588 589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 591 592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 593 // but this requires knowing that the addition does not overflow and other 594 // such subtleties. 595 } 596 597 /// This function returns identity value for given opcode, which can be used to 598 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 599 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 600 if (isa<Constant>(V)) 601 return nullptr; 602 603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 604 } 605 606 /// This function predicates factorization using distributive laws. By default, 607 /// it just returns the 'Op' inputs. But for special-cases like 608 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 609 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 610 /// allow more factorization opportunities. 611 static Instruction::BinaryOps 612 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 613 Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { 614 assert(Op && "Expected a binary operator"); 615 LHS = Op->getOperand(0); 616 RHS = Op->getOperand(1); 617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 618 Constant *C; 619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) { 620 // X << C --> X * (1 << C) 621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C); 622 return Instruction::Mul; 623 } 624 // TODO: We can add other conversions e.g. shr => div etc. 625 } 626 if (Instruction::isBitwiseLogicOp(TopOpcode)) { 627 if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && 628 match(Op, m_LShr(m_NonNegative(), m_Value()))) { 629 // lshr nneg C, X --> ashr nneg C, X 630 return Instruction::AShr; 631 } 632 } 633 return Op->getOpcode(); 634 } 635 636 /// This tries to simplify binary operations by factorizing out common terms 637 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 638 static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 639 InstCombiner::BuilderTy &Builder, 640 Instruction::BinaryOps InnerOpcode, Value *A, 641 Value *B, Value *C, Value *D) { 642 assert(A && B && C && D && "All values must be provided"); 643 644 Value *V = nullptr; 645 Value *RetVal = nullptr; 646 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 647 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 648 649 // Does "X op' Y" always equal "Y op' X"? 650 bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 651 652 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 653 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 654 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 655 // commutative case, "(A op' B) op (C op' A)"? 656 if (A == C || (InnerCommutative && A == D)) { 657 if (A != C) 658 std::swap(C, D); 659 // Consider forming "A op' (B op D)". 660 // If "B op D" simplifies then it can be formed with no cost. 661 V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 662 663 // If "B op D" doesn't simplify then only go on if one of the existing 664 // operations "A op' B" and "C op' D" will be zapped as no longer used. 665 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 666 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 667 if (V) 668 RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 669 } 670 } 671 672 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 673 if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 674 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 675 // commutative case, "(A op' B) op (B op' D)"? 676 if (B == D || (InnerCommutative && B == C)) { 677 if (B != D) 678 std::swap(C, D); 679 // Consider forming "(A op C) op' B". 680 // If "A op C" simplifies then it can be formed with no cost. 681 V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 682 683 // If "A op C" doesn't simplify then only go on if one of the existing 684 // operations "A op' B" and "C op' D" will be zapped as no longer used. 685 if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 686 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 687 if (V) 688 RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 689 } 690 } 691 692 if (!RetVal) 693 return nullptr; 694 695 ++NumFactor; 696 RetVal->takeName(&I); 697 698 // Try to add no-overflow flags to the final value. 699 if (isa<OverflowingBinaryOperator>(RetVal)) { 700 bool HasNSW = false; 701 bool HasNUW = false; 702 if (isa<OverflowingBinaryOperator>(&I)) { 703 HasNSW = I.hasNoSignedWrap(); 704 HasNUW = I.hasNoUnsignedWrap(); 705 } 706 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 707 HasNSW &= LOBO->hasNoSignedWrap(); 708 HasNUW &= LOBO->hasNoUnsignedWrap(); 709 } 710 711 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 712 HasNSW &= ROBO->hasNoSignedWrap(); 713 HasNUW &= ROBO->hasNoUnsignedWrap(); 714 } 715 716 if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 717 // We can propagate 'nsw' if we know that 718 // %Y = mul nsw i16 %X, C 719 // %Z = add nsw i16 %Y, %X 720 // => 721 // %Z = mul nsw i16 %X, C+1 722 // 723 // iff C+1 isn't INT_MIN 724 const APInt *CInt; 725 if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 726 cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 727 728 // nuw can be propagated with any constant or nuw value. 729 cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 730 } 731 } 732 return RetVal; 733 } 734 735 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) 736 // IFF 737 // 1) the logic_shifts match 738 // 2) either both binops are binops and one is `and` or 739 // BinOp1 is `and` 740 // (logic_shift (inv_logic_shift C1, C), C) == C1 or 741 // 742 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) 743 // 744 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) 745 // IFF 746 // 1) the logic_shifts match 747 // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). 748 // 749 // -> (BinOp (logic_shift (BinOp X, Y)), Mask) 750 // 751 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) 752 // IFF 753 // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` 754 // 2) Binop2 is `not` 755 // 756 // -> (arithmetic_shift Binop1((not X), Y), Amt) 757 758 Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { 759 const DataLayout &DL = I.getModule()->getDataLayout(); 760 auto IsValidBinOpc = [](unsigned Opc) { 761 switch (Opc) { 762 default: 763 return false; 764 case Instruction::And: 765 case Instruction::Or: 766 case Instruction::Xor: 767 case Instruction::Add: 768 // Skip Sub as we only match constant masks which will canonicalize to use 769 // add. 770 return true; 771 } 772 }; 773 774 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra 775 // constraints. 776 auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, 777 unsigned ShOpc) { 778 assert(ShOpc != Instruction::AShr); 779 return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || 780 ShOpc == Instruction::Shl; 781 }; 782 783 auto GetInvShift = [](unsigned ShOpc) { 784 assert(ShOpc != Instruction::AShr); 785 return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; 786 }; 787 788 auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, 789 unsigned ShOpc, Constant *CMask, 790 Constant *CShift) { 791 // If the BinOp1 is `and` we don't need to check the mask. 792 if (BinOpc1 == Instruction::And) 793 return true; 794 795 // For all other possible transfers we need complete distributable 796 // binop/shift (anything but `add` + `lshr`). 797 if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) 798 return false; 799 800 // If BinOp2 is `and`, any mask works (this only really helps for non-splat 801 // vecs, otherwise the mask will be simplified and the following check will 802 // handle it). 803 if (BinOpc2 == Instruction::And) 804 return true; 805 806 // Otherwise, need mask that meets the below requirement. 807 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask 808 Constant *MaskInvShift = 809 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 810 return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == 811 CMask; 812 }; 813 814 auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { 815 Constant *CMask, *CShift; 816 Value *X, *Y, *ShiftedX, *Mask, *Shift; 817 if (!match(I.getOperand(ShOpnum), 818 m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) 819 return nullptr; 820 if (!match(I.getOperand(1 - ShOpnum), 821 m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) 822 return nullptr; 823 824 if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) 825 return nullptr; 826 827 // Make sure we are matching instruction shifts and not ConstantExpr 828 auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); 829 auto *IX = dyn_cast<Instruction>(ShiftedX); 830 if (!IY || !IX) 831 return nullptr; 832 833 // LHS and RHS need same shift opcode 834 unsigned ShOpc = IY->getOpcode(); 835 if (ShOpc != IX->getOpcode()) 836 return nullptr; 837 838 // Make sure binop is real instruction and not ConstantExpr 839 auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); 840 if (!BO2) 841 return nullptr; 842 843 unsigned BinOpc = BO2->getOpcode(); 844 // Make sure we have valid binops. 845 if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) 846 return nullptr; 847 848 if (ShOpc == Instruction::AShr) { 849 if (Instruction::isBitwiseLogicOp(I.getOpcode()) && 850 BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { 851 Value *NotX = Builder.CreateNot(X); 852 Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); 853 return BinaryOperator::Create( 854 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); 855 } 856 857 return nullptr; 858 } 859 860 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just 861 // distribute to drop the shift irrelevant of constants. 862 if (BinOpc == I.getOpcode() && 863 IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { 864 Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); 865 Value *NewBinOp1 = Builder.CreateBinOp( 866 static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); 867 return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); 868 } 869 870 // Otherwise we can only distribute by constant shifting the mask, so 871 // ensure we have constants. 872 if (!match(Shift, m_ImmConstant(CShift))) 873 return nullptr; 874 if (!match(Mask, m_ImmConstant(CMask))) 875 return nullptr; 876 877 // Check if we can distribute the binops. 878 if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) 879 return nullptr; 880 881 Constant *NewCMask = 882 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 883 Value *NewBinOp2 = Builder.CreateBinOp( 884 static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); 885 Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); 886 return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), 887 NewBinOp1, CShift); 888 }; 889 890 if (Instruction *R = MatchBinOp(0)) 891 return R; 892 return MatchBinOp(1); 893 } 894 895 // (Binop (zext C), (select C, T, F)) 896 // -> (select C, (binop 1, T), (binop 0, F)) 897 // 898 // (Binop (sext C), (select C, T, F)) 899 // -> (select C, (binop -1, T), (binop 0, F)) 900 // 901 // Attempt to simplify binary operations into a select with folded args, when 902 // one operand of the binop is a select instruction and the other operand is a 903 // zext/sext extension, whose value is the select condition. 904 Instruction * 905 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { 906 // TODO: this simplification may be extended to any speculatable instruction, 907 // not just binops, and would possibly be handled better in FoldOpIntoSelect. 908 Instruction::BinaryOps Opc = I.getOpcode(); 909 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 910 Value *A, *CondVal, *TrueVal, *FalseVal; 911 Value *CastOp; 912 913 auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { 914 return match(CastOp, m_ZExtOrSExt(m_Value(A))) && 915 A->getType()->getScalarSizeInBits() == 1 && 916 match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), 917 m_Value(FalseVal))); 918 }; 919 920 // Make sure one side of the binop is a select instruction, and the other is a 921 // zero/sign extension operating on a i1. 922 if (MatchSelectAndCast(LHS, RHS)) 923 CastOp = LHS; 924 else if (MatchSelectAndCast(RHS, LHS)) 925 CastOp = RHS; 926 else 927 return nullptr; 928 929 auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { 930 bool IsCastOpRHS = (CastOp == RHS); 931 bool IsZExt = isa<ZExtInst>(CastOp); 932 Constant *C; 933 934 if (IsTrueArm) { 935 C = Constant::getNullValue(V->getType()); 936 } else if (IsZExt) { 937 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 938 C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); 939 } else { 940 C = Constant::getAllOnesValue(V->getType()); 941 } 942 943 return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) 944 : Builder.CreateBinOp(Opc, C, V); 945 }; 946 947 // If the value used in the zext/sext is the select condition, or the negated 948 // of the select condition, the binop can be simplified. 949 if (CondVal == A) { 950 Value *NewTrueVal = NewFoldedConst(false, TrueVal); 951 return SelectInst::Create(CondVal, NewTrueVal, 952 NewFoldedConst(true, FalseVal)); 953 } 954 955 if (match(A, m_Not(m_Specific(CondVal)))) { 956 Value *NewTrueVal = NewFoldedConst(true, TrueVal); 957 return SelectInst::Create(CondVal, NewTrueVal, 958 NewFoldedConst(false, FalseVal)); 959 } 960 961 return nullptr; 962 } 963 964 Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 965 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 966 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 967 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 968 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 969 Value *A, *B, *C, *D; 970 Instruction::BinaryOps LHSOpcode, RHSOpcode; 971 972 if (Op0) 973 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); 974 if (Op1) 975 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); 976 977 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 978 // a common term. 979 if (Op0 && Op1 && LHSOpcode == RHSOpcode) 980 if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 981 return V; 982 983 // The instruction has the form "(A op' B) op (C)". Try to factorize common 984 // term. 985 if (Op0) 986 if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 987 if (Value *V = 988 tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 989 return V; 990 991 // The instruction has the form "(B) op (C op' D)". Try to factorize common 992 // term. 993 if (Op1) 994 if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 995 if (Value *V = 996 tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 997 return V; 998 999 return nullptr; 1000 } 1001 1002 /// This tries to simplify binary operations which some other binary operation 1003 /// distributes over either by factorizing out common terms 1004 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 1005 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 1006 /// Returns the simplified value, or null if it didn't simplify. 1007 Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 1008 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1009 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1010 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1011 Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1012 1013 // Factorization. 1014 if (Value *R = tryFactorizationFolds(I)) 1015 return R; 1016 1017 // Expansion. 1018 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 1019 // The instruction has the form "(A op' B) op C". See if expanding it out 1020 // to "(A op C) op' (B op C)" results in simplifications. 1021 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 1022 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 1023 1024 // Disable the use of undef because it's not safe to distribute undef. 1025 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1026 Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1027 Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 1028 1029 // Do "A op C" and "B op C" both simplify? 1030 if (L && R) { 1031 // They do! Return "L op' R". 1032 ++NumExpand; 1033 C = Builder.CreateBinOp(InnerOpcode, L, R); 1034 C->takeName(&I); 1035 return C; 1036 } 1037 1038 // Does "A op C" simplify to the identity value for the inner opcode? 1039 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1040 // They do! Return "B op C". 1041 ++NumExpand; 1042 C = Builder.CreateBinOp(TopLevelOpcode, B, C); 1043 C->takeName(&I); 1044 return C; 1045 } 1046 1047 // Does "B op C" simplify to the identity value for the inner opcode? 1048 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1049 // They do! Return "A op C". 1050 ++NumExpand; 1051 C = Builder.CreateBinOp(TopLevelOpcode, A, C); 1052 C->takeName(&I); 1053 return C; 1054 } 1055 } 1056 1057 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 1058 // The instruction has the form "A op (B op' C)". See if expanding it out 1059 // to "(A op B) op' (A op C)" results in simplifications. 1060 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 1061 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 1062 1063 // Disable the use of undef because it's not safe to distribute undef. 1064 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 1065 Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 1066 Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 1067 1068 // Do "A op B" and "A op C" both simplify? 1069 if (L && R) { 1070 // They do! Return "L op' R". 1071 ++NumExpand; 1072 A = Builder.CreateBinOp(InnerOpcode, L, R); 1073 A->takeName(&I); 1074 return A; 1075 } 1076 1077 // Does "A op B" simplify to the identity value for the inner opcode? 1078 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 1079 // They do! Return "A op C". 1080 ++NumExpand; 1081 A = Builder.CreateBinOp(TopLevelOpcode, A, C); 1082 A->takeName(&I); 1083 return A; 1084 } 1085 1086 // Does "A op C" simplify to the identity value for the inner opcode? 1087 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 1088 // They do! Return "A op B". 1089 ++NumExpand; 1090 A = Builder.CreateBinOp(TopLevelOpcode, A, B); 1091 A->takeName(&I); 1092 return A; 1093 } 1094 } 1095 1096 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 1097 } 1098 1099 std::optional<std::pair<Value *, Value *>> 1100 InstCombinerImpl::matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { 1101 if (LHS->getParent() != RHS->getParent()) 1102 return std::nullopt; 1103 1104 if (LHS->getNumIncomingValues() < 2) 1105 return std::nullopt; 1106 1107 if (!equal(LHS->blocks(), RHS->blocks())) 1108 return std::nullopt; 1109 1110 Value *L0 = LHS->getIncomingValue(0); 1111 Value *R0 = RHS->getIncomingValue(0); 1112 1113 for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { 1114 Value *L1 = LHS->getIncomingValue(I); 1115 Value *R1 = RHS->getIncomingValue(I); 1116 1117 if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) 1118 continue; 1119 1120 return std::nullopt; 1121 } 1122 1123 return std::optional(std::pair(L0, R0)); 1124 } 1125 1126 Value *InstCombinerImpl::SimplifyPhiCommutativeBinaryOp(BinaryOperator &I, 1127 Value *Op0, 1128 Value *Op1) { 1129 assert(I.isCommutative() && "Instruction should be commutative"); 1130 1131 PHINode *LHS = dyn_cast<PHINode>(Op0); 1132 PHINode *RHS = dyn_cast<PHINode>(Op1); 1133 1134 if (!LHS || !RHS) 1135 return nullptr; 1136 1137 if (auto P = matchSymmetricPhiNodesPair(LHS, RHS)) { 1138 Value *BI = Builder.CreateBinOp(I.getOpcode(), P->first, P->second); 1139 if (auto *BO = dyn_cast<BinaryOperator>(BI)) 1140 BO->copyIRFlags(&I); 1141 return BI; 1142 } 1143 1144 return nullptr; 1145 } 1146 1147 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 1148 Value *LHS, 1149 Value *RHS) { 1150 Value *A, *B, *C, *D, *E, *F; 1151 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 1152 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 1153 if (!LHSIsSelect && !RHSIsSelect) 1154 return nullptr; 1155 1156 FastMathFlags FMF; 1157 BuilderTy::FastMathFlagGuard Guard(Builder); 1158 if (isa<FPMathOperator>(&I)) { 1159 FMF = I.getFastMathFlags(); 1160 Builder.setFastMathFlags(FMF); 1161 } 1162 1163 Instruction::BinaryOps Opcode = I.getOpcode(); 1164 SimplifyQuery Q = SQ.getWithInstruction(&I); 1165 1166 Value *Cond, *True = nullptr, *False = nullptr; 1167 1168 // Special-case for add/negate combination. Replace the zero in the negation 1169 // with the trailing add operand: 1170 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 1171 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 1172 auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 1173 // We need an 'add' and exactly 1 arm of the select to have been simplified. 1174 if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 1175 return nullptr; 1176 1177 Value *N; 1178 if (True && match(FVal, m_Neg(m_Value(N)))) { 1179 Value *Sub = Builder.CreateSub(Z, N); 1180 return Builder.CreateSelect(Cond, True, Sub, I.getName()); 1181 } 1182 if (False && match(TVal, m_Neg(m_Value(N)))) { 1183 Value *Sub = Builder.CreateSub(Z, N); 1184 return Builder.CreateSelect(Cond, Sub, False, I.getName()); 1185 } 1186 return nullptr; 1187 }; 1188 1189 if (LHSIsSelect && RHSIsSelect && A == D) { 1190 // op(select(%v, %x, %y), select(%v, %y, %x)) --> op(%x, %y) 1191 if (I.isCommutative() && B == F && C == E) { 1192 Value *BI = Builder.CreateBinOp(I.getOpcode(), B, E); 1193 if (auto *BO = dyn_cast<BinaryOperator>(BI)) 1194 BO->copyIRFlags(&I); 1195 return BI; 1196 } 1197 1198 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 1199 Cond = A; 1200 True = simplifyBinOp(Opcode, B, E, FMF, Q); 1201 False = simplifyBinOp(Opcode, C, F, FMF, Q); 1202 1203 if (LHS->hasOneUse() && RHS->hasOneUse()) { 1204 if (False && !True) 1205 True = Builder.CreateBinOp(Opcode, B, E); 1206 else if (True && !False) 1207 False = Builder.CreateBinOp(Opcode, C, F); 1208 } 1209 } else if (LHSIsSelect && LHS->hasOneUse()) { 1210 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 1211 Cond = A; 1212 True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 1213 False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 1214 if (Value *NewSel = foldAddNegate(B, C, RHS)) 1215 return NewSel; 1216 } else if (RHSIsSelect && RHS->hasOneUse()) { 1217 // X op (D ? E : F) -> D ? (X op E) : (X op F) 1218 Cond = D; 1219 True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 1220 False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 1221 if (Value *NewSel = foldAddNegate(E, F, LHS)) 1222 return NewSel; 1223 } 1224 1225 if (!True || !False) 1226 return nullptr; 1227 1228 Value *SI = Builder.CreateSelect(Cond, True, False); 1229 SI->takeName(&I); 1230 return SI; 1231 } 1232 1233 /// Freely adapt every user of V as-if V was changed to !V. 1234 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 1235 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 1236 assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); 1237 for (User *U : make_early_inc_range(I->users())) { 1238 if (U == IgnoredUser) 1239 continue; // Don't consider this user. 1240 switch (cast<Instruction>(U)->getOpcode()) { 1241 case Instruction::Select: { 1242 auto *SI = cast<SelectInst>(U); 1243 SI->swapValues(); 1244 SI->swapProfMetadata(); 1245 break; 1246 } 1247 case Instruction::Br: 1248 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too 1249 break; 1250 case Instruction::Xor: 1251 replaceInstUsesWith(cast<Instruction>(*U), I); 1252 // Add to worklist for DCE. 1253 addToWorklist(cast<Instruction>(U)); 1254 break; 1255 default: 1256 llvm_unreachable("Got unexpected user - out of sync with " 1257 "canFreelyInvertAllUsersOf() ?"); 1258 } 1259 } 1260 } 1261 1262 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 1263 /// constant zero (which is the 'negate' form). 1264 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 1265 Value *NegV; 1266 if (match(V, m_Neg(m_Value(NegV)))) 1267 return NegV; 1268 1269 // Constants can be considered to be negated values if they can be folded. 1270 if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 1271 return ConstantExpr::getNeg(C); 1272 1273 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 1274 if (C->getType()->getElementType()->isIntegerTy()) 1275 return ConstantExpr::getNeg(C); 1276 1277 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 1278 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1279 Constant *Elt = CV->getAggregateElement(i); 1280 if (!Elt) 1281 return nullptr; 1282 1283 if (isa<UndefValue>(Elt)) 1284 continue; 1285 1286 if (!isa<ConstantInt>(Elt)) 1287 return nullptr; 1288 } 1289 return ConstantExpr::getNeg(CV); 1290 } 1291 1292 // Negate integer vector splats. 1293 if (auto *CV = dyn_cast<Constant>(V)) 1294 if (CV->getType()->isVectorTy() && 1295 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1296 return ConstantExpr::getNeg(CV); 1297 1298 return nullptr; 1299 } 1300 1301 /// A binop with a constant operand and a sign-extended boolean operand may be 1302 /// converted into a select of constants by applying the binary operation to 1303 /// the constant with the two possible values of the extended boolean (0 or -1). 1304 Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 1305 // TODO: Handle non-commutative binop (constant is operand 0). 1306 // TODO: Handle zext. 1307 // TODO: Peek through 'not' of cast. 1308 Value *BO0 = BO.getOperand(0); 1309 Value *BO1 = BO.getOperand(1); 1310 Value *X; 1311 Constant *C; 1312 if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 1313 !X->getType()->isIntOrIntVectorTy(1)) 1314 return nullptr; 1315 1316 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 1317 Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 1318 Constant *Zero = ConstantInt::getNullValue(BO.getType()); 1319 Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 1320 Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 1321 return SelectInst::Create(X, TVal, FVal); 1322 } 1323 1324 static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, 1325 SelectInst *SI, 1326 bool IsTrueArm) { 1327 SmallVector<Constant *> ConstOps; 1328 for (Value *Op : I.operands()) { 1329 CmpInst::Predicate Pred; 1330 Constant *C = nullptr; 1331 if (Op == SI) { 1332 C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue() 1333 : SI->getFalseValue()); 1334 } else if (match(SI->getCondition(), 1335 m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && 1336 Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 1337 isGuaranteedNotToBeUndefOrPoison(C)) { 1338 // Pass 1339 } else { 1340 C = dyn_cast<Constant>(Op); 1341 } 1342 if (C == nullptr) 1343 return nullptr; 1344 1345 ConstOps.push_back(C); 1346 } 1347 1348 return ConstantFoldInstOperands(&I, ConstOps, I.getModule()->getDataLayout()); 1349 } 1350 1351 static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 1352 Value *NewOp, InstCombiner &IC) { 1353 Instruction *Clone = I.clone(); 1354 Clone->replaceUsesOfWith(SI, NewOp); 1355 IC.InsertNewInstBefore(Clone, SI->getIterator()); 1356 return Clone; 1357 } 1358 1359 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 1360 bool FoldWithMultiUse) { 1361 // Don't modify shared select instructions unless set FoldWithMultiUse 1362 if (!SI->hasOneUse() && !FoldWithMultiUse) 1363 return nullptr; 1364 1365 Value *TV = SI->getTrueValue(); 1366 Value *FV = SI->getFalseValue(); 1367 if (!(isa<Constant>(TV) || isa<Constant>(FV))) 1368 return nullptr; 1369 1370 // Bool selects with constant operands can be folded to logical ops. 1371 if (SI->getType()->isIntOrIntVectorTy(1)) 1372 return nullptr; 1373 1374 // If it's a bitcast involving vectors, make sure it has the same number of 1375 // elements on both sides. 1376 if (auto *BC = dyn_cast<BitCastInst>(&Op)) { 1377 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); 1378 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); 1379 1380 // Verify that either both or neither are vectors. 1381 if ((SrcTy == nullptr) != (DestTy == nullptr)) 1382 return nullptr; 1383 1384 // If vectors, verify that they have the same number of elements. 1385 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount()) 1386 return nullptr; 1387 } 1388 1389 // Test if a FCmpInst instruction is used exclusively by a select as 1390 // part of a minimum or maximum operation. If so, refrain from doing 1391 // any other folding. This helps out other analyses which understand 1392 // non-obfuscated minimum and maximum idioms. And in this case, at 1393 // least one of the comparison operands has at least one user besides 1394 // the compare (the select), which would often largely negate the 1395 // benefit of folding anyway. 1396 if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { 1397 if (CI->hasOneUse()) { 1398 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 1399 if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) 1400 return nullptr; 1401 } 1402 } 1403 1404 // Make sure that one of the select arms constant folds successfully. 1405 Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); 1406 Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); 1407 if (!NewTV && !NewFV) 1408 return nullptr; 1409 1410 // Create an instruction for the arm that did not fold. 1411 if (!NewTV) 1412 NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); 1413 if (!NewFV) 1414 NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); 1415 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 1416 } 1417 1418 static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, 1419 Value *InValue, BasicBlock *InBB, 1420 const DataLayout &DL, 1421 const SimplifyQuery SQ) { 1422 // NB: It is a precondition of this transform that the operands be 1423 // phi translatable! This is usually trivially satisfied by limiting it 1424 // to constant ops, and for selects we do a more sophisticated check. 1425 SmallVector<Value *> Ops; 1426 for (Value *Op : I.operands()) { 1427 if (Op == PN) 1428 Ops.push_back(InValue); 1429 else 1430 Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 1431 } 1432 1433 // Don't consider the simplification successful if we get back a constant 1434 // expression. That's just an instruction in hiding. 1435 // Also reject the case where we simplify back to the phi node. We wouldn't 1436 // be able to remove it in that case. 1437 Value *NewVal = simplifyInstructionWithOperands( 1438 &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 1439 if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) 1440 return NewVal; 1441 1442 // Check if incoming PHI value can be replaced with constant 1443 // based on implied condition. 1444 BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); 1445 const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); 1446 if (TerminatorBI && TerminatorBI->isConditional() && 1447 TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { 1448 bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); 1449 std::optional<bool> ImpliedCond = 1450 isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), 1451 Ops[0], Ops[1], DL, LHSIsTrue); 1452 if (ImpliedCond) 1453 return ConstantInt::getBool(I.getType(), ImpliedCond.value()); 1454 } 1455 1456 return nullptr; 1457 } 1458 1459 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 1460 unsigned NumPHIValues = PN->getNumIncomingValues(); 1461 if (NumPHIValues == 0) 1462 return nullptr; 1463 1464 // We normally only transform phis with a single use. However, if a PHI has 1465 // multiple uses and they are all the same operation, we can fold *all* of the 1466 // uses into the PHI. 1467 if (!PN->hasOneUse()) { 1468 // Walk the use list for the instruction, comparing them to I. 1469 for (User *U : PN->users()) { 1470 Instruction *UI = cast<Instruction>(U); 1471 if (UI != &I && !I.isIdenticalTo(UI)) 1472 return nullptr; 1473 } 1474 // Otherwise, we can replace *all* users with the new PHI we form. 1475 } 1476 1477 // Check to see whether the instruction can be folded into each phi operand. 1478 // If there is one operand that does not fold, remember the BB it is in. 1479 // If there is more than one or if *it* is a PHI, bail out. 1480 SmallVector<Value *> NewPhiValues; 1481 BasicBlock *NonSimplifiedBB = nullptr; 1482 Value *NonSimplifiedInVal = nullptr; 1483 for (unsigned i = 0; i != NumPHIValues; ++i) { 1484 Value *InVal = PN->getIncomingValue(i); 1485 BasicBlock *InBB = PN->getIncomingBlock(i); 1486 1487 if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { 1488 NewPhiValues.push_back(NewVal); 1489 continue; 1490 } 1491 1492 if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. 1493 1494 NonSimplifiedBB = InBB; 1495 NonSimplifiedInVal = InVal; 1496 NewPhiValues.push_back(nullptr); 1497 1498 // If the InVal is an invoke at the end of the pred block, then we can't 1499 // insert a computation after it without breaking the edge. 1500 if (isa<InvokeInst>(InVal)) 1501 if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) 1502 return nullptr; 1503 1504 // If the incoming non-constant value is reachable from the phis block, 1505 // we'll push the operation across a loop backedge. This could result in 1506 // an infinite combine loop, and is generally non-profitable (especially 1507 // if the operation was originally outside the loop). 1508 if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, 1509 LI)) 1510 return nullptr; 1511 } 1512 1513 // If there is exactly one non-simplified value, we can insert a copy of the 1514 // operation in that block. However, if this is a critical edge, we would be 1515 // inserting the computation on some other paths (e.g. inside a loop). Only 1516 // do this if the pred block is unconditionally branching into the phi block. 1517 // Also, make sure that the pred block is not dead code. 1518 if (NonSimplifiedBB != nullptr) { 1519 BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); 1520 if (!BI || !BI->isUnconditional() || 1521 !DT.isReachableFromEntry(NonSimplifiedBB)) 1522 return nullptr; 1523 } 1524 1525 // Okay, we can do the transformation: create the new PHI node. 1526 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 1527 InsertNewInstBefore(NewPN, PN->getIterator()); 1528 NewPN->takeName(PN); 1529 NewPN->setDebugLoc(PN->getDebugLoc()); 1530 1531 // If we are going to have to insert a new computation, do so right before the 1532 // predecessor's terminator. 1533 Instruction *Clone = nullptr; 1534 if (NonSimplifiedBB) { 1535 Clone = I.clone(); 1536 for (Use &U : Clone->operands()) { 1537 if (U == PN) 1538 U = NonSimplifiedInVal; 1539 else 1540 U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); 1541 } 1542 InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); 1543 } 1544 1545 for (unsigned i = 0; i != NumPHIValues; ++i) { 1546 if (NewPhiValues[i]) 1547 NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 1548 else 1549 NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); 1550 } 1551 1552 for (User *U : make_early_inc_range(PN->users())) { 1553 Instruction *User = cast<Instruction>(U); 1554 if (User == &I) continue; 1555 replaceInstUsesWith(*User, NewPN); 1556 eraseInstFromFunction(*User); 1557 } 1558 1559 replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), 1560 const_cast<PHINode &>(*NewPN), 1561 const_cast<PHINode &>(*PN), DT); 1562 return replaceInstUsesWith(I, NewPN); 1563 } 1564 1565 Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 1566 // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 1567 // we are guarding against replicating the binop in >1 predecessor. 1568 // This could miss matching a phi with 2 constant incoming values. 1569 auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 1570 auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 1571 if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 1572 Phi0->getNumOperands() != Phi1->getNumOperands()) 1573 return nullptr; 1574 1575 // TODO: Remove the restriction for binop being in the same block as the phis. 1576 if (BO.getParent() != Phi0->getParent() || 1577 BO.getParent() != Phi1->getParent()) 1578 return nullptr; 1579 1580 if (BO.isCommutative()) { 1581 if (Value *V = SimplifyPhiCommutativeBinaryOp(BO, Phi0, Phi1)) 1582 return replaceInstUsesWith(BO, V); 1583 } 1584 1585 // Fold if there is at least one specific constant value in phi0 or phi1's 1586 // incoming values that comes from the same block and this specific constant 1587 // value can be used to do optimization for specific binary operator. 1588 // For example: 1589 // %phi0 = phi i32 [0, %bb0], [%i, %bb1] 1590 // %phi1 = phi i32 [%j, %bb0], [0, %bb1] 1591 // %add = add i32 %phi0, %phi1 1592 // ==> 1593 // %add = phi i32 [%j, %bb0], [%i, %bb1] 1594 Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), 1595 /*AllowRHSConstant*/ false); 1596 if (C) { 1597 SmallVector<Value *, 4> NewIncomingValues; 1598 auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { 1599 auto &Phi0Use = std::get<0>(T); 1600 auto &Phi1Use = std::get<1>(T); 1601 if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) 1602 return false; 1603 Value *Phi0UseV = Phi0Use.get(); 1604 Value *Phi1UseV = Phi1Use.get(); 1605 if (Phi0UseV == C) 1606 NewIncomingValues.push_back(Phi1UseV); 1607 else if (Phi1UseV == C) 1608 NewIncomingValues.push_back(Phi0UseV); 1609 else 1610 return false; 1611 return true; 1612 }; 1613 1614 if (all_of(zip(Phi0->operands(), Phi1->operands()), 1615 CanFoldIncomingValuePair)) { 1616 PHINode *NewPhi = 1617 PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); 1618 assert(NewIncomingValues.size() == Phi0->getNumOperands() && 1619 "The number of collected incoming values should equal the number " 1620 "of the original PHINode operands!"); 1621 for (unsigned I = 0; I < Phi0->getNumOperands(); I++) 1622 NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); 1623 return NewPhi; 1624 } 1625 } 1626 1627 if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 1628 return nullptr; 1629 1630 // Match a pair of incoming constants for one of the predecessor blocks. 1631 BasicBlock *ConstBB, *OtherBB; 1632 Constant *C0, *C1; 1633 if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 1634 ConstBB = Phi0->getIncomingBlock(0); 1635 OtherBB = Phi0->getIncomingBlock(1); 1636 } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 1637 ConstBB = Phi0->getIncomingBlock(1); 1638 OtherBB = Phi0->getIncomingBlock(0); 1639 } else { 1640 return nullptr; 1641 } 1642 if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 1643 return nullptr; 1644 1645 // The block that we are hoisting to must reach here unconditionally. 1646 // Otherwise, we could be speculatively executing an expensive or 1647 // non-speculative op. 1648 auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 1649 if (!PredBlockBranch || PredBlockBranch->isConditional() || 1650 !DT.isReachableFromEntry(OtherBB)) 1651 return nullptr; 1652 1653 // TODO: This check could be tightened to only apply to binops (div/rem) that 1654 // are not safe to speculatively execute. But that could allow hoisting 1655 // potentially expensive instructions (fdiv for example). 1656 for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 1657 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 1658 return nullptr; 1659 1660 // Fold constants for the predecessor block with constant incoming values. 1661 Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1662 if (!NewC) 1663 return nullptr; 1664 1665 // Make a new binop in the predecessor block with the non-constant incoming 1666 // values. 1667 Builder.SetInsertPoint(PredBlockBranch); 1668 Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 1669 Phi0->getIncomingValueForBlock(OtherBB), 1670 Phi1->getIncomingValueForBlock(OtherBB)); 1671 if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 1672 NotFoldedNewBO->copyIRFlags(&BO); 1673 1674 // Replace the binop with a phi of the new values. The old phis are dead. 1675 PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 1676 NewPhi->addIncoming(NewBO, OtherBB); 1677 NewPhi->addIncoming(NewC, ConstBB); 1678 return NewPhi; 1679 } 1680 1681 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 1682 if (!isa<Constant>(I.getOperand(1))) 1683 return nullptr; 1684 1685 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 1686 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 1687 return NewSel; 1688 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 1689 if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 1690 return NewPhi; 1691 } 1692 return nullptr; 1693 } 1694 1695 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 1696 // If this GEP has only 0 indices, it is the same pointer as 1697 // Src. If Src is not a trivial GEP too, don't combine 1698 // the indices. 1699 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 1700 !Src.hasOneUse()) 1701 return false; 1702 return true; 1703 } 1704 1705 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 1706 if (!isa<VectorType>(Inst.getType())) 1707 return nullptr; 1708 1709 BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 1710 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 1711 assert(cast<VectorType>(LHS->getType())->getElementCount() == 1712 cast<VectorType>(Inst.getType())->getElementCount()); 1713 assert(cast<VectorType>(RHS->getType())->getElementCount() == 1714 cast<VectorType>(Inst.getType())->getElementCount()); 1715 1716 // If both operands of the binop are vector concatenations, then perform the 1717 // narrow binop on each pair of the source operands followed by concatenation 1718 // of the results. 1719 Value *L0, *L1, *R0, *R1; 1720 ArrayRef<int> Mask; 1721 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 1722 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 1723 LHS->hasOneUse() && RHS->hasOneUse() && 1724 cast<ShuffleVectorInst>(LHS)->isConcat() && 1725 cast<ShuffleVectorInst>(RHS)->isConcat()) { 1726 // This transform does not have the speculative execution constraint as 1727 // below because the shuffle is a concatenation. The new binops are 1728 // operating on exactly the same elements as the existing binop. 1729 // TODO: We could ease the mask requirement to allow different undef lanes, 1730 // but that requires an analysis of the binop-with-undef output value. 1731 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 1732 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 1733 BO->copyIRFlags(&Inst); 1734 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 1735 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 1736 BO->copyIRFlags(&Inst); 1737 return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 1738 } 1739 1740 auto createBinOpReverse = [&](Value *X, Value *Y) { 1741 Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 1742 if (auto *BO = dyn_cast<BinaryOperator>(V)) 1743 BO->copyIRFlags(&Inst); 1744 Module *M = Inst.getModule(); 1745 Function *F = Intrinsic::getDeclaration( 1746 M, Intrinsic::experimental_vector_reverse, V->getType()); 1747 return CallInst::Create(F, V); 1748 }; 1749 1750 // NOTE: Reverse shuffles don't require the speculative execution protection 1751 // below because they don't affect which lanes take part in the computation. 1752 1753 Value *V1, *V2; 1754 if (match(LHS, m_VecReverse(m_Value(V1)))) { 1755 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 1756 if (match(RHS, m_VecReverse(m_Value(V2))) && 1757 (LHS->hasOneUse() || RHS->hasOneUse() || 1758 (LHS == RHS && LHS->hasNUses(2)))) 1759 return createBinOpReverse(V1, V2); 1760 1761 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 1762 if (LHS->hasOneUse() && isSplatValue(RHS)) 1763 return createBinOpReverse(V1, RHS); 1764 } 1765 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 1766 else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 1767 return createBinOpReverse(LHS, V2); 1768 1769 // It may not be safe to reorder shuffles and things like div, urem, etc. 1770 // because we may trap when executing those ops on unknown vector elements. 1771 // See PR20059. 1772 if (!isSafeToSpeculativelyExecute(&Inst)) 1773 return nullptr; 1774 1775 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 1776 Value *XY = Builder.CreateBinOp(Opcode, X, Y); 1777 if (auto *BO = dyn_cast<BinaryOperator>(XY)) 1778 BO->copyIRFlags(&Inst); 1779 return new ShuffleVectorInst(XY, M); 1780 }; 1781 1782 // If both arguments of the binary operation are shuffles that use the same 1783 // mask and shuffle within a single vector, move the shuffle after the binop. 1784 if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && 1785 match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && 1786 V1->getType() == V2->getType() && 1787 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 1788 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 1789 return createBinOpShuffle(V1, V2, Mask); 1790 } 1791 1792 // If both arguments of a commutative binop are select-shuffles that use the 1793 // same mask with commuted operands, the shuffles are unnecessary. 1794 if (Inst.isCommutative() && 1795 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 1796 match(RHS, 1797 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 1798 auto *LShuf = cast<ShuffleVectorInst>(LHS); 1799 auto *RShuf = cast<ShuffleVectorInst>(RHS); 1800 // TODO: Allow shuffles that contain undefs in the mask? 1801 // That is legal, but it reduces undef knowledge. 1802 // TODO: Allow arbitrary shuffles by shuffling after binop? 1803 // That might be legal, but we have to deal with poison. 1804 if (LShuf->isSelect() && 1805 !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && 1806 RShuf->isSelect() && 1807 !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { 1808 // Example: 1809 // LHS = shuffle V1, V2, <0, 5, 6, 3> 1810 // RHS = shuffle V2, V1, <0, 5, 6, 3> 1811 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 1812 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 1813 NewBO->copyIRFlags(&Inst); 1814 return NewBO; 1815 } 1816 } 1817 1818 // If one argument is a shuffle within one vector and the other is a constant, 1819 // try moving the shuffle after the binary operation. This canonicalization 1820 // intends to move shuffles closer to other shuffles and binops closer to 1821 // other binops, so they can be folded. It may also enable demanded elements 1822 // transforms. 1823 Constant *C; 1824 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 1825 if (InstVTy && 1826 match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), 1827 m_Mask(Mask))), 1828 m_ImmConstant(C))) && 1829 cast<FixedVectorType>(V1->getType())->getNumElements() <= 1830 InstVTy->getNumElements()) { 1831 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 1832 "Shuffle should not change scalar type"); 1833 1834 // Find constant NewC that has property: 1835 // shuffle(NewC, ShMask) = C 1836 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 1837 // reorder is not possible. A 1-to-1 mapping is not required. Example: 1838 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 1839 bool ConstOp1 = isa<Constant>(RHS); 1840 ArrayRef<int> ShMask = Mask; 1841 unsigned SrcVecNumElts = 1842 cast<FixedVectorType>(V1->getType())->getNumElements(); 1843 PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); 1844 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar); 1845 bool MayChange = true; 1846 unsigned NumElts = InstVTy->getNumElements(); 1847 for (unsigned I = 0; I < NumElts; ++I) { 1848 Constant *CElt = C->getAggregateElement(I); 1849 if (ShMask[I] >= 0) { 1850 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 1851 Constant *NewCElt = NewVecC[ShMask[I]]; 1852 // Bail out if: 1853 // 1. The constant vector contains a constant expression. 1854 // 2. The shuffle needs an element of the constant vector that can't 1855 // be mapped to a new constant vector. 1856 // 3. This is a widening shuffle that copies elements of V1 into the 1857 // extended elements (extending with poison is allowed). 1858 if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) || 1859 I >= SrcVecNumElts) { 1860 MayChange = false; 1861 break; 1862 } 1863 NewVecC[ShMask[I]] = CElt; 1864 } 1865 // If this is a widening shuffle, we must be able to extend with poison 1866 // elements. If the original binop does not produce a poison in the high 1867 // lanes, then this transform is not safe. 1868 // Similarly for poison lanes due to the shuffle mask, we can only 1869 // transform binops that preserve poison. 1870 // TODO: We could shuffle those non-poison constant values into the 1871 // result by using a constant vector (rather than an poison vector) 1872 // as operand 1 of the new binop, but that might be too aggressive 1873 // for target-independent shuffle creation. 1874 if (I >= SrcVecNumElts || ShMask[I] < 0) { 1875 Constant *MaybePoison = 1876 ConstOp1 1877 ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) 1878 : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); 1879 if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) { 1880 MayChange = false; 1881 break; 1882 } 1883 } 1884 } 1885 if (MayChange) { 1886 Constant *NewC = ConstantVector::get(NewVecC); 1887 // It may not be safe to execute a binop on a vector with poison elements 1888 // because the entire instruction can be folded to undef or create poison 1889 // that did not exist in the original code. 1890 // TODO: The shift case should not be necessary. 1891 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 1892 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 1893 1894 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 1895 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 1896 Value *NewLHS = ConstOp1 ? V1 : NewC; 1897 Value *NewRHS = ConstOp1 ? NewC : V1; 1898 return createBinOpShuffle(NewLHS, NewRHS, Mask); 1899 } 1900 } 1901 1902 // Try to reassociate to sink a splat shuffle after a binary operation. 1903 if (Inst.isAssociative() && Inst.isCommutative()) { 1904 // Canonicalize shuffle operand as LHS. 1905 if (isa<ShuffleVectorInst>(RHS)) 1906 std::swap(LHS, RHS); 1907 1908 Value *X; 1909 ArrayRef<int> MaskC; 1910 int SplatIndex; 1911 Value *Y, *OtherOp; 1912 if (!match(LHS, 1913 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 1914 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) || 1915 X->getType() != Inst.getType() || 1916 !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 1917 return nullptr; 1918 1919 // FIXME: This may not be safe if the analysis allows undef elements. By 1920 // moving 'Y' before the splat shuffle, we are implicitly assuming 1921 // that it is not undef/poison at the splat index. 1922 if (isSplatValue(OtherOp, SplatIndex)) { 1923 std::swap(Y, OtherOp); 1924 } else if (!isSplatValue(Y, SplatIndex)) { 1925 return nullptr; 1926 } 1927 1928 // X and Y are splatted values, so perform the binary operation on those 1929 // values followed by a splat followed by the 2nd binary operation: 1930 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 1931 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 1932 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 1933 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 1934 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 1935 1936 // Intersect FMF on both new binops. Other (poison-generating) flags are 1937 // dropped to be safe. 1938 if (isa<FPMathOperator>(R)) { 1939 R->copyFastMathFlags(&Inst); 1940 R->andIRFlags(RHS); 1941 } 1942 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 1943 NewInstBO->copyIRFlags(R); 1944 return R; 1945 } 1946 1947 return nullptr; 1948 } 1949 1950 /// Try to narrow the width of a binop if at least 1 operand is an extend of 1951 /// of a value. This requires a potentially expensive known bits check to make 1952 /// sure the narrow op does not overflow. 1953 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 1954 // We need at least one extended operand. 1955 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 1956 1957 // If this is a sub, we swap the operands since we always want an extension 1958 // on the RHS. The LHS can be an extension or a constant. 1959 if (BO.getOpcode() == Instruction::Sub) 1960 std::swap(Op0, Op1); 1961 1962 Value *X; 1963 bool IsSext = match(Op0, m_SExt(m_Value(X))); 1964 if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 1965 return nullptr; 1966 1967 // If both operands are the same extension from the same source type and we 1968 // can eliminate at least one (hasOneUse), this might work. 1969 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 1970 Value *Y; 1971 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 1972 cast<Operator>(Op1)->getOpcode() == CastOpc && 1973 (Op0->hasOneUse() || Op1->hasOneUse()))) { 1974 // If that did not match, see if we have a suitable constant operand. 1975 // Truncating and extending must produce the same constant. 1976 Constant *WideC; 1977 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 1978 return nullptr; 1979 Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); 1980 if (!NarrowC) 1981 return nullptr; 1982 Y = NarrowC; 1983 } 1984 1985 // Swap back now that we found our operands. 1986 if (BO.getOpcode() == Instruction::Sub) 1987 std::swap(X, Y); 1988 1989 // Both operands have narrow versions. Last step: the math must not overflow 1990 // in the narrow width. 1991 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 1992 return nullptr; 1993 1994 // bo (ext X), (ext Y) --> ext (bo X, Y) 1995 // bo (ext X), C --> ext (bo X, C') 1996 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 1997 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 1998 if (IsSext) 1999 NewBinOp->setHasNoSignedWrap(); 2000 else 2001 NewBinOp->setHasNoUnsignedWrap(); 2002 } 2003 return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 2004 } 2005 2006 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 2007 // At least one GEP must be inbounds. 2008 if (!GEP1.isInBounds() && !GEP2.isInBounds()) 2009 return false; 2010 2011 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) && 2012 (GEP2.isInBounds() || GEP2.hasAllZeroIndices()); 2013 } 2014 2015 /// Thread a GEP operation with constant indices through the constant true/false 2016 /// arms of a select. 2017 static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 2018 InstCombiner::BuilderTy &Builder) { 2019 if (!GEP.hasAllConstantIndices()) 2020 return nullptr; 2021 2022 Instruction *Sel; 2023 Value *Cond; 2024 Constant *TrueC, *FalseC; 2025 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 2026 !match(Sel, 2027 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 2028 return nullptr; 2029 2030 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 2031 // Propagate 'inbounds' and metadata from existing instructions. 2032 // Note: using IRBuilder to create the constants for efficiency. 2033 SmallVector<Value *, 4> IndexC(GEP.indices()); 2034 bool IsInBounds = GEP.isInBounds(); 2035 Type *Ty = GEP.getSourceElementType(); 2036 Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", IsInBounds); 2037 Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", IsInBounds); 2038 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 2039 } 2040 2041 Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 2042 GEPOperator *Src) { 2043 // Combine Indices - If the source pointer to this getelementptr instruction 2044 // is a getelementptr instruction with matching element type, combine the 2045 // indices of the two getelementptr instructions into a single instruction. 2046 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 2047 return nullptr; 2048 2049 // For constant GEPs, use a more general offset-based folding approach. 2050 Type *PtrTy = Src->getType()->getScalarType(); 2051 if (GEP.hasAllConstantIndices() && 2052 (Src->hasOneUse() || Src->hasAllConstantIndices())) { 2053 // Split Src into a variable part and a constant suffix. 2054 gep_type_iterator GTI = gep_type_begin(*Src); 2055 Type *BaseType = GTI.getIndexedType(); 2056 bool IsFirstType = true; 2057 unsigned NumVarIndices = 0; 2058 for (auto Pair : enumerate(Src->indices())) { 2059 if (!isa<ConstantInt>(Pair.value())) { 2060 BaseType = GTI.getIndexedType(); 2061 IsFirstType = false; 2062 NumVarIndices = Pair.index() + 1; 2063 } 2064 ++GTI; 2065 } 2066 2067 // Determine the offset for the constant suffix of Src. 2068 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 2069 if (NumVarIndices != Src->getNumIndices()) { 2070 // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 2071 if (BaseType->isScalableTy()) 2072 return nullptr; 2073 2074 SmallVector<Value *> ConstantIndices; 2075 if (!IsFirstType) 2076 ConstantIndices.push_back( 2077 Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 2078 append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 2079 Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 2080 } 2081 2082 // Add the offset for GEP (which is fully constant). 2083 if (!GEP.accumulateConstantOffset(DL, Offset)) 2084 return nullptr; 2085 2086 APInt OffsetOld = Offset; 2087 // Convert the total offset back into indices. 2088 SmallVector<APInt> ConstIndices = 2089 DL.getGEPIndicesForOffset(BaseType, Offset); 2090 if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 2091 // If both GEP are constant-indexed, and cannot be merged in either way, 2092 // convert them to a GEP of i8. 2093 if (Src->hasAllConstantIndices()) 2094 return replaceInstUsesWith( 2095 GEP, Builder.CreateGEP( 2096 Builder.getInt8Ty(), Src->getOperand(0), 2097 Builder.getInt(OffsetOld), "", 2098 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2099 return nullptr; 2100 } 2101 2102 bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 2103 SmallVector<Value *> Indices; 2104 append_range(Indices, drop_end(Src->indices(), 2105 Src->getNumIndices() - NumVarIndices)); 2106 for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 2107 Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 2108 // Even if the total offset is inbounds, we may end up representing it 2109 // by first performing a larger negative offset, and then a smaller 2110 // positive one. The large negative offset might go out of bounds. Only 2111 // preserve inbounds if all signs are the same. 2112 IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 2113 } 2114 2115 return replaceInstUsesWith( 2116 GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), 2117 Indices, "", IsInBounds)); 2118 } 2119 2120 if (Src->getResultElementType() != GEP.getSourceElementType()) 2121 return nullptr; 2122 2123 SmallVector<Value*, 8> Indices; 2124 2125 // Find out whether the last index in the source GEP is a sequential idx. 2126 bool EndsWithSequential = false; 2127 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 2128 I != E; ++I) 2129 EndsWithSequential = I.isSequential(); 2130 2131 // Can we combine the two pointer arithmetics offsets? 2132 if (EndsWithSequential) { 2133 // Replace: gep (gep %P, long B), long A, ... 2134 // With: T = long A+B; gep %P, T, ... 2135 Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 2136 Value *GO1 = GEP.getOperand(1); 2137 2138 // If they aren't the same type, then the input hasn't been processed 2139 // by the loop above yet (which canonicalizes sequential index types to 2140 // intptr_t). Just avoid transforming this until the input has been 2141 // normalized. 2142 if (SO1->getType() != GO1->getType()) 2143 return nullptr; 2144 2145 Value *Sum = 2146 simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 2147 // Only do the combine when we are sure the cost after the 2148 // merge is never more than that before the merge. 2149 if (Sum == nullptr) 2150 return nullptr; 2151 2152 // Update the GEP in place if possible. 2153 if (Src->getNumOperands() == 2) { 2154 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 2155 replaceOperand(GEP, 0, Src->getOperand(0)); 2156 replaceOperand(GEP, 1, Sum); 2157 return &GEP; 2158 } 2159 Indices.append(Src->op_begin()+1, Src->op_end()-1); 2160 Indices.push_back(Sum); 2161 Indices.append(GEP.op_begin()+2, GEP.op_end()); 2162 } else if (isa<Constant>(*GEP.idx_begin()) && 2163 cast<Constant>(*GEP.idx_begin())->isNullValue() && 2164 Src->getNumOperands() != 1) { 2165 // Otherwise we can do the fold if the first index of the GEP is a zero 2166 Indices.append(Src->op_begin()+1, Src->op_end()); 2167 Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 2168 } 2169 2170 if (!Indices.empty()) 2171 return replaceInstUsesWith( 2172 GEP, Builder.CreateGEP( 2173 Src->getSourceElementType(), Src->getOperand(0), Indices, "", 2174 isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 2175 2176 return nullptr; 2177 } 2178 2179 Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 2180 BuilderTy *Builder, 2181 bool &DoesConsume, unsigned Depth) { 2182 static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1)); 2183 // ~(~(X)) -> X. 2184 Value *A, *B; 2185 if (match(V, m_Not(m_Value(A)))) { 2186 DoesConsume = true; 2187 return A; 2188 } 2189 2190 Constant *C; 2191 // Constants can be considered to be not'ed values. 2192 if (match(V, m_ImmConstant(C))) 2193 return ConstantExpr::getNot(C); 2194 2195 if (Depth++ >= MaxAnalysisRecursionDepth) 2196 return nullptr; 2197 2198 // The rest of the cases require that we invert all uses so don't bother 2199 // doing the analysis if we know we can't use the result. 2200 if (!WillInvertAllUses) 2201 return nullptr; 2202 2203 // Compares can be inverted if all of their uses are being modified to use 2204 // the ~V. 2205 if (auto *I = dyn_cast<CmpInst>(V)) { 2206 if (Builder != nullptr) 2207 return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), 2208 I->getOperand(1)); 2209 return NonNull; 2210 } 2211 2212 // If `V` is of the form `A + B` then `-1 - V` can be folded into 2213 // `(-1 - B) - A` if we are willing to invert all of the uses. 2214 if (match(V, m_Add(m_Value(A), m_Value(B)))) { 2215 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2216 DoesConsume, Depth)) 2217 return Builder ? Builder->CreateSub(BV, A) : NonNull; 2218 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2219 DoesConsume, Depth)) 2220 return Builder ? Builder->CreateSub(AV, B) : NonNull; 2221 return nullptr; 2222 } 2223 2224 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded 2225 // into `A ^ B` if we are willing to invert all of the uses. 2226 if (match(V, m_Xor(m_Value(A), m_Value(B)))) { 2227 if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2228 DoesConsume, Depth)) 2229 return Builder ? Builder->CreateXor(A, BV) : NonNull; 2230 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2231 DoesConsume, Depth)) 2232 return Builder ? Builder->CreateXor(AV, B) : NonNull; 2233 return nullptr; 2234 } 2235 2236 // If `V` is of the form `B - A` then `-1 - V` can be folded into 2237 // `A + (-1 - B)` if we are willing to invert all of the uses. 2238 if (match(V, m_Sub(m_Value(A), m_Value(B)))) { 2239 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2240 DoesConsume, Depth)) 2241 return Builder ? Builder->CreateAdd(AV, B) : NonNull; 2242 return nullptr; 2243 } 2244 2245 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded 2246 // into `A s>> B` if we are willing to invert all of the uses. 2247 if (match(V, m_AShr(m_Value(A), m_Value(B)))) { 2248 if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2249 DoesConsume, Depth)) 2250 return Builder ? Builder->CreateAShr(AV, B) : NonNull; 2251 return nullptr; 2252 } 2253 2254 Value *Cond; 2255 // LogicOps are special in that we canonicalize them at the cost of an 2256 // instruction. 2257 bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 2258 !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V)); 2259 // Selects/min/max with invertible operands are freely invertible 2260 if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { 2261 if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, 2262 DoesConsume, Depth)) 2263 return nullptr; 2264 if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2265 DoesConsume, Depth)) { 2266 if (Builder != nullptr) { 2267 Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2268 DoesConsume, Depth); 2269 assert(NotB != nullptr && 2270 "Unable to build inverted value for known freely invertable op"); 2271 if (auto *II = dyn_cast<IntrinsicInst>(V)) 2272 return Builder->CreateBinaryIntrinsic( 2273 getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); 2274 return Builder->CreateSelect(Cond, NotA, NotB); 2275 } 2276 return NonNull; 2277 } 2278 } 2279 2280 return nullptr; 2281 } 2282 2283 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 2284 Value *PtrOp = GEP.getOperand(0); 2285 SmallVector<Value *, 8> Indices(GEP.indices()); 2286 Type *GEPType = GEP.getType(); 2287 Type *GEPEltType = GEP.getSourceElementType(); 2288 bool IsGEPSrcEleScalable = GEPEltType->isScalableTy(); 2289 if (Value *V = simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.isInBounds(), 2290 SQ.getWithInstruction(&GEP))) 2291 return replaceInstUsesWith(GEP, V); 2292 2293 // For vector geps, use the generic demanded vector support. 2294 // Skip if GEP return type is scalable. The number of elements is unknown at 2295 // compile-time. 2296 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 2297 auto VWidth = GEPFVTy->getNumElements(); 2298 APInt PoisonElts(VWidth, 0); 2299 APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 2300 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2301 PoisonElts)) { 2302 if (V != &GEP) 2303 return replaceInstUsesWith(GEP, V); 2304 return &GEP; 2305 } 2306 2307 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 2308 // possible (decide on canonical form for pointer broadcast), 3) exploit 2309 // undef elements to decrease demanded bits 2310 } 2311 2312 // Eliminate unneeded casts for indices, and replace indices which displace 2313 // by multiples of a zero size type with zero. 2314 bool MadeChange = false; 2315 2316 // Index width may not be the same width as pointer width. 2317 // Data layout chooses the right type based on supported integer types. 2318 Type *NewScalarIndexTy = 2319 DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 2320 2321 gep_type_iterator GTI = gep_type_begin(GEP); 2322 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 2323 ++I, ++GTI) { 2324 // Skip indices into struct types. 2325 if (GTI.isStruct()) 2326 continue; 2327 2328 Type *IndexTy = (*I)->getType(); 2329 Type *NewIndexType = 2330 IndexTy->isVectorTy() 2331 ? VectorType::get(NewScalarIndexTy, 2332 cast<VectorType>(IndexTy)->getElementCount()) 2333 : NewScalarIndexTy; 2334 2335 // If the element type has zero size then any index over it is equivalent 2336 // to an index of zero, so replace it with zero if it is not zero already. 2337 Type *EltTy = GTI.getIndexedType(); 2338 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 2339 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 2340 *I = Constant::getNullValue(NewIndexType); 2341 MadeChange = true; 2342 } 2343 2344 if (IndexTy != NewIndexType) { 2345 // If we are using a wider index than needed for this platform, shrink 2346 // it to what we need. If narrower, sign-extend it to what we need. 2347 // This explicit cast can make subsequent optimizations more obvious. 2348 *I = Builder.CreateIntCast(*I, NewIndexType, true); 2349 MadeChange = true; 2350 } 2351 } 2352 if (MadeChange) 2353 return &GEP; 2354 2355 // Check to see if the inputs to the PHI node are getelementptr instructions. 2356 if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 2357 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 2358 if (!Op1) 2359 return nullptr; 2360 2361 // Don't fold a GEP into itself through a PHI node. This can only happen 2362 // through the back-edge of a loop. Folding a GEP into itself means that 2363 // the value of the previous iteration needs to be stored in the meantime, 2364 // thus requiring an additional register variable to be live, but not 2365 // actually achieving anything (the GEP still needs to be executed once per 2366 // loop iteration). 2367 if (Op1 == &GEP) 2368 return nullptr; 2369 2370 int DI = -1; 2371 2372 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 2373 auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 2374 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 2375 Op1->getSourceElementType() != Op2->getSourceElementType()) 2376 return nullptr; 2377 2378 // As for Op1 above, don't try to fold a GEP into itself. 2379 if (Op2 == &GEP) 2380 return nullptr; 2381 2382 // Keep track of the type as we walk the GEP. 2383 Type *CurTy = nullptr; 2384 2385 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 2386 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 2387 return nullptr; 2388 2389 if (Op1->getOperand(J) != Op2->getOperand(J)) { 2390 if (DI == -1) { 2391 // We have not seen any differences yet in the GEPs feeding the 2392 // PHI yet, so we record this one if it is allowed to be a 2393 // variable. 2394 2395 // The first two arguments can vary for any GEP, the rest have to be 2396 // static for struct slots 2397 if (J > 1) { 2398 assert(CurTy && "No current type?"); 2399 if (CurTy->isStructTy()) 2400 return nullptr; 2401 } 2402 2403 DI = J; 2404 } else { 2405 // The GEP is different by more than one input. While this could be 2406 // extended to support GEPs that vary by more than one variable it 2407 // doesn't make sense since it greatly increases the complexity and 2408 // would result in an R+R+R addressing mode which no backend 2409 // directly supports and would need to be broken into several 2410 // simpler instructions anyway. 2411 return nullptr; 2412 } 2413 } 2414 2415 // Sink down a layer of the type for the next iteration. 2416 if (J > 0) { 2417 if (J == 1) { 2418 CurTy = Op1->getSourceElementType(); 2419 } else { 2420 CurTy = 2421 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 2422 } 2423 } 2424 } 2425 } 2426 2427 // If not all GEPs are identical we'll have to create a new PHI node. 2428 // Check that the old PHI node has only one use so that it will get 2429 // removed. 2430 if (DI != -1 && !PN->hasOneUse()) 2431 return nullptr; 2432 2433 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 2434 if (DI == -1) { 2435 // All the GEPs feeding the PHI are identical. Clone one down into our 2436 // BB so that it can be merged with the current GEP. 2437 } else { 2438 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 2439 // into the current block so it can be merged, and create a new PHI to 2440 // set that index. 2441 PHINode *NewPN; 2442 { 2443 IRBuilderBase::InsertPointGuard Guard(Builder); 2444 Builder.SetInsertPoint(PN); 2445 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 2446 PN->getNumOperands()); 2447 } 2448 2449 for (auto &I : PN->operands()) 2450 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 2451 PN->getIncomingBlock(I)); 2452 2453 NewGEP->setOperand(DI, NewPN); 2454 } 2455 2456 NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2457 return replaceOperand(GEP, 0, NewGEP); 2458 } 2459 2460 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 2461 if (Instruction *I = visitGEPOfGEP(GEP, Src)) 2462 return I; 2463 2464 // Skip if GEP source element type is scalable. The type alloc size is unknown 2465 // at compile-time. 2466 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) { 2467 unsigned AS = GEP.getPointerAddressSpace(); 2468 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 2469 DL.getIndexSizeInBits(AS)) { 2470 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 2471 2472 if (TyAllocSize == 1) { 2473 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), 2474 // but only if the result pointer is only used as if it were an integer, 2475 // or both point to the same underlying object (otherwise provenance is 2476 // not necessarily retained). 2477 Value *X = GEP.getPointerOperand(); 2478 Value *Y; 2479 if (match(GEP.getOperand(1), 2480 m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2481 GEPType == Y->getType()) { 2482 bool HasSameUnderlyingObject = 2483 getUnderlyingObject(X) == getUnderlyingObject(Y); 2484 bool Changed = false; 2485 GEP.replaceUsesWithIf(Y, [&](Use &U) { 2486 bool ShouldReplace = HasSameUnderlyingObject || 2487 isa<ICmpInst>(U.getUser()) || 2488 isa<PtrToIntInst>(U.getUser()); 2489 Changed |= ShouldReplace; 2490 return ShouldReplace; 2491 }); 2492 return Changed ? &GEP : nullptr; 2493 } 2494 } else { 2495 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) 2496 Value *V; 2497 if ((has_single_bit(TyAllocSize) && 2498 match(GEP.getOperand(1), 2499 m_Exact(m_AShr(m_Value(V), 2500 m_SpecificInt(countr_zero(TyAllocSize)))))) || 2501 match(GEP.getOperand(1), 2502 m_Exact(m_SDiv(m_Value(V), m_SpecificInt(TyAllocSize))))) { 2503 GetElementPtrInst *NewGEP = GetElementPtrInst::Create( 2504 Builder.getInt8Ty(), GEP.getPointerOperand(), V); 2505 NewGEP->setIsInBounds(GEP.isInBounds()); 2506 return NewGEP; 2507 } 2508 } 2509 } 2510 } 2511 // We do not handle pointer-vector geps here. 2512 if (GEPType->isVectorTy()) 2513 return nullptr; 2514 2515 if (GEP.getNumIndices() == 1) { 2516 // Try to replace ADD + GEP with GEP + GEP. 2517 Value *Idx1, *Idx2; 2518 if (match(GEP.getOperand(1), 2519 m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { 2520 // %idx = add i64 %idx1, %idx2 2521 // %gep = getelementptr i32, ptr %ptr, i64 %idx 2522 // as: 2523 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 2524 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 2525 auto *NewPtr = Builder.CreateGEP(GEP.getResultElementType(), 2526 GEP.getPointerOperand(), Idx1); 2527 return GetElementPtrInst::Create(GEP.getResultElementType(), NewPtr, 2528 Idx2); 2529 } 2530 ConstantInt *C; 2531 if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( 2532 m_Value(Idx1), m_ConstantInt(C))))))) { 2533 // %add = add nsw i32 %idx1, idx2 2534 // %sidx = sext i32 %add to i64 2535 // %gep = getelementptr i32, ptr %ptr, i64 %sidx 2536 // as: 2537 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 2538 // %newgep = getelementptr i32, ptr %newptr, i32 idx2 2539 auto *NewPtr = Builder.CreateGEP( 2540 GEP.getResultElementType(), GEP.getPointerOperand(), 2541 Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType())); 2542 return GetElementPtrInst::Create( 2543 GEP.getResultElementType(), NewPtr, 2544 Builder.CreateSExt(C, GEP.getOperand(1)->getType())); 2545 } 2546 } 2547 2548 if (!GEP.isInBounds()) { 2549 unsigned IdxWidth = 2550 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 2551 APInt BasePtrOffset(IdxWidth, 0); 2552 Value *UnderlyingPtrOp = 2553 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 2554 BasePtrOffset); 2555 bool CanBeNull, CanBeFreed; 2556 uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( 2557 DL, CanBeNull, CanBeFreed); 2558 if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { 2559 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 2560 BasePtrOffset.isNonNegative()) { 2561 APInt AllocSize(IdxWidth, DerefBytes); 2562 if (BasePtrOffset.ule(AllocSize)) { 2563 return GetElementPtrInst::CreateInBounds( 2564 GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 2565 } 2566 } 2567 } 2568 } 2569 2570 if (Instruction *R = foldSelectGEP(GEP, Builder)) 2571 return R; 2572 2573 return nullptr; 2574 } 2575 2576 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 2577 Instruction *AI) { 2578 if (isa<ConstantPointerNull>(V)) 2579 return true; 2580 if (auto *LI = dyn_cast<LoadInst>(V)) 2581 return isa<GlobalVariable>(LI->getPointerOperand()); 2582 // Two distinct allocations will never be equal. 2583 return isAllocLikeFn(V, &TLI) && V != AI; 2584 } 2585 2586 /// Given a call CB which uses an address UsedV, return true if we can prove the 2587 /// call's only possible effect is storing to V. 2588 static bool isRemovableWrite(CallBase &CB, Value *UsedV, 2589 const TargetLibraryInfo &TLI) { 2590 if (!CB.use_empty()) 2591 // TODO: add recursion if returned attribute is present 2592 return false; 2593 2594 if (CB.isTerminator()) 2595 // TODO: remove implementation restriction 2596 return false; 2597 2598 if (!CB.willReturn() || !CB.doesNotThrow()) 2599 return false; 2600 2601 // If the only possible side effect of the call is writing to the alloca, 2602 // and the result isn't used, we can safely remove any reads implied by the 2603 // call including those which might read the alloca itself. 2604 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 2605 return Dest && Dest->Ptr == UsedV; 2606 } 2607 2608 static bool isAllocSiteRemovable(Instruction *AI, 2609 SmallVectorImpl<WeakTrackingVH> &Users, 2610 const TargetLibraryInfo &TLI) { 2611 SmallVector<Instruction*, 4> Worklist; 2612 const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 2613 Worklist.push_back(AI); 2614 2615 do { 2616 Instruction *PI = Worklist.pop_back_val(); 2617 for (User *U : PI->users()) { 2618 Instruction *I = cast<Instruction>(U); 2619 switch (I->getOpcode()) { 2620 default: 2621 // Give up the moment we see something we can't handle. 2622 return false; 2623 2624 case Instruction::AddrSpaceCast: 2625 case Instruction::BitCast: 2626 case Instruction::GetElementPtr: 2627 Users.emplace_back(I); 2628 Worklist.push_back(I); 2629 continue; 2630 2631 case Instruction::ICmp: { 2632 ICmpInst *ICI = cast<ICmpInst>(I); 2633 // We can fold eq/ne comparisons with null to false/true, respectively. 2634 // We also fold comparisons in some conditions provided the alloc has 2635 // not escaped (see isNeverEqualToUnescapedAlloc). 2636 if (!ICI->isEquality()) 2637 return false; 2638 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 2639 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 2640 return false; 2641 2642 // Do not fold compares to aligned_alloc calls, as they may have to 2643 // return null in case the required alignment cannot be satisfied, 2644 // unless we can prove that both alignment and size are valid. 2645 auto AlignmentAndSizeKnownValid = [](CallBase *CB) { 2646 // Check if alignment and size of a call to aligned_alloc is valid, 2647 // that is alignment is a power-of-2 and the size is a multiple of the 2648 // alignment. 2649 const APInt *Alignment; 2650 const APInt *Size; 2651 return match(CB->getArgOperand(0), m_APInt(Alignment)) && 2652 match(CB->getArgOperand(1), m_APInt(Size)) && 2653 Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); 2654 }; 2655 auto *CB = dyn_cast<CallBase>(AI); 2656 LibFunc TheLibFunc; 2657 if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && 2658 TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && 2659 !AlignmentAndSizeKnownValid(CB)) 2660 return false; 2661 Users.emplace_back(I); 2662 continue; 2663 } 2664 2665 case Instruction::Call: 2666 // Ignore no-op and store intrinsics. 2667 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2668 switch (II->getIntrinsicID()) { 2669 default: 2670 return false; 2671 2672 case Intrinsic::memmove: 2673 case Intrinsic::memcpy: 2674 case Intrinsic::memset: { 2675 MemIntrinsic *MI = cast<MemIntrinsic>(II); 2676 if (MI->isVolatile() || MI->getRawDest() != PI) 2677 return false; 2678 [[fallthrough]]; 2679 } 2680 case Intrinsic::assume: 2681 case Intrinsic::invariant_start: 2682 case Intrinsic::invariant_end: 2683 case Intrinsic::lifetime_start: 2684 case Intrinsic::lifetime_end: 2685 case Intrinsic::objectsize: 2686 Users.emplace_back(I); 2687 continue; 2688 case Intrinsic::launder_invariant_group: 2689 case Intrinsic::strip_invariant_group: 2690 Users.emplace_back(I); 2691 Worklist.push_back(I); 2692 continue; 2693 } 2694 } 2695 2696 if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 2697 Users.emplace_back(I); 2698 continue; 2699 } 2700 2701 if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 2702 getAllocationFamily(I, &TLI) == Family) { 2703 assert(Family); 2704 Users.emplace_back(I); 2705 continue; 2706 } 2707 2708 if (getReallocatedOperand(cast<CallBase>(I)) == PI && 2709 getAllocationFamily(I, &TLI) == Family) { 2710 assert(Family); 2711 Users.emplace_back(I); 2712 Worklist.push_back(I); 2713 continue; 2714 } 2715 2716 return false; 2717 2718 case Instruction::Store: { 2719 StoreInst *SI = cast<StoreInst>(I); 2720 if (SI->isVolatile() || SI->getPointerOperand() != PI) 2721 return false; 2722 Users.emplace_back(I); 2723 continue; 2724 } 2725 } 2726 llvm_unreachable("missing a return?"); 2727 } 2728 } while (!Worklist.empty()); 2729 return true; 2730 } 2731 2732 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 2733 assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 2734 2735 // If we have a malloc call which is only used in any amount of comparisons to 2736 // null and free calls, delete the calls and replace the comparisons with true 2737 // or false as appropriate. 2738 2739 // This is based on the principle that we can substitute our own allocation 2740 // function (which will never return null) rather than knowledge of the 2741 // specific function being called. In some sense this can change the permitted 2742 // outputs of a program (when we convert a malloc to an alloca, the fact that 2743 // the allocation is now on the stack is potentially visible, for example), 2744 // but we believe in a permissible manner. 2745 SmallVector<WeakTrackingVH, 64> Users; 2746 2747 // If we are removing an alloca with a dbg.declare, insert dbg.value calls 2748 // before each store. 2749 SmallVector<DbgVariableIntrinsic *, 8> DVIs; 2750 SmallVector<DPValue *, 8> DPVs; 2751 std::unique_ptr<DIBuilder> DIB; 2752 if (isa<AllocaInst>(MI)) { 2753 findDbgUsers(DVIs, &MI, &DPVs); 2754 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 2755 } 2756 2757 if (isAllocSiteRemovable(&MI, Users, TLI)) { 2758 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2759 // Lowering all @llvm.objectsize calls first because they may 2760 // use a bitcast/GEP of the alloca we are removing. 2761 if (!Users[i]) 2762 continue; 2763 2764 Instruction *I = cast<Instruction>(&*Users[i]); 2765 2766 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 2767 if (II->getIntrinsicID() == Intrinsic::objectsize) { 2768 SmallVector<Instruction *> InsertedInstructions; 2769 Value *Result = lowerObjectSizeCall( 2770 II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); 2771 for (Instruction *Inserted : InsertedInstructions) 2772 Worklist.add(Inserted); 2773 replaceInstUsesWith(*I, Result); 2774 eraseInstFromFunction(*I); 2775 Users[i] = nullptr; // Skip examining in the next loop. 2776 } 2777 } 2778 } 2779 for (unsigned i = 0, e = Users.size(); i != e; ++i) { 2780 if (!Users[i]) 2781 continue; 2782 2783 Instruction *I = cast<Instruction>(&*Users[i]); 2784 2785 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 2786 replaceInstUsesWith(*C, 2787 ConstantInt::get(Type::getInt1Ty(C->getContext()), 2788 C->isFalseWhenEqual())); 2789 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 2790 for (auto *DVI : DVIs) 2791 if (DVI->isAddressOfVariable()) 2792 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 2793 for (auto *DPV : DPVs) 2794 if (DPV->isAddressOfVariable()) 2795 ConvertDebugDeclareToDebugValue(DPV, SI, *DIB); 2796 } else { 2797 // Casts, GEP, or anything else: we're about to delete this instruction, 2798 // so it can not have any valid uses. 2799 replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 2800 } 2801 eraseInstFromFunction(*I); 2802 } 2803 2804 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 2805 // Replace invoke with a NOP intrinsic to maintain the original CFG 2806 Module *M = II->getModule(); 2807 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 2808 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 2809 std::nullopt, "", II->getParent()); 2810 } 2811 2812 // Remove debug intrinsics which describe the value contained within the 2813 // alloca. In addition to removing dbg.{declare,addr} which simply point to 2814 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 2815 // 2816 // ``` 2817 // define void @foo(i32 %0) { 2818 // %a = alloca i32 ; Deleted. 2819 // store i32 %0, i32* %a 2820 // dbg.value(i32 %0, "arg0") ; Not deleted. 2821 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 2822 // call void @trivially_inlinable_no_op(i32* %a) 2823 // ret void 2824 // } 2825 // ``` 2826 // 2827 // This may not be required if we stop describing the contents of allocas 2828 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 2829 // the LowerDbgDeclare utility. 2830 // 2831 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 2832 // "arg0" dbg.value may be stale after the call. However, failing to remove 2833 // the DW_OP_deref dbg.value causes large gaps in location coverage. 2834 // 2835 // FIXME: the Assignment Tracking project has now likely made this 2836 // redundant (and it's sometimes harmful). 2837 for (auto *DVI : DVIs) 2838 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 2839 DVI->eraseFromParent(); 2840 for (auto *DPV : DPVs) 2841 if (DPV->isAddressOfVariable() || DPV->getExpression()->startsWithDeref()) 2842 DPV->eraseFromParent(); 2843 2844 return eraseInstFromFunction(MI); 2845 } 2846 return nullptr; 2847 } 2848 2849 /// Move the call to free before a NULL test. 2850 /// 2851 /// Check if this free is accessed after its argument has been test 2852 /// against NULL (property 0). 2853 /// If yes, it is legal to move this call in its predecessor block. 2854 /// 2855 /// The move is performed only if the block containing the call to free 2856 /// will be removed, i.e.: 2857 /// 1. it has only one predecessor P, and P has two successors 2858 /// 2. it contains the call, noops, and an unconditional branch 2859 /// 3. its successor is the same as its predecessor's successor 2860 /// 2861 /// The profitability is out-of concern here and this function should 2862 /// be called only if the caller knows this transformation would be 2863 /// profitable (e.g., for code size). 2864 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 2865 const DataLayout &DL) { 2866 Value *Op = FI.getArgOperand(0); 2867 BasicBlock *FreeInstrBB = FI.getParent(); 2868 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 2869 2870 // Validate part of constraint #1: Only one predecessor 2871 // FIXME: We can extend the number of predecessor, but in that case, we 2872 // would duplicate the call to free in each predecessor and it may 2873 // not be profitable even for code size. 2874 if (!PredBB) 2875 return nullptr; 2876 2877 // Validate constraint #2: Does this block contains only the call to 2878 // free, noops, and an unconditional branch? 2879 BasicBlock *SuccBB; 2880 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 2881 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 2882 return nullptr; 2883 2884 // If there are only 2 instructions in the block, at this point, 2885 // this is the call to free and unconditional. 2886 // If there are more than 2 instructions, check that they are noops 2887 // i.e., they won't hurt the performance of the generated code. 2888 if (FreeInstrBB->size() != 2) { 2889 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 2890 if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 2891 continue; 2892 auto *Cast = dyn_cast<CastInst>(&Inst); 2893 if (!Cast || !Cast->isNoopCast(DL)) 2894 return nullptr; 2895 } 2896 } 2897 // Validate the rest of constraint #1 by matching on the pred branch. 2898 Instruction *TI = PredBB->getTerminator(); 2899 BasicBlock *TrueBB, *FalseBB; 2900 ICmpInst::Predicate Pred; 2901 if (!match(TI, m_Br(m_ICmp(Pred, 2902 m_CombineOr(m_Specific(Op), 2903 m_Specific(Op->stripPointerCasts())), 2904 m_Zero()), 2905 TrueBB, FalseBB))) 2906 return nullptr; 2907 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 2908 return nullptr; 2909 2910 // Validate constraint #3: Ensure the null case just falls through. 2911 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 2912 return nullptr; 2913 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 2914 "Broken CFG: missing edge from predecessor to successor"); 2915 2916 // At this point, we know that everything in FreeInstrBB can be moved 2917 // before TI. 2918 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 2919 if (&Instr == FreeInstrBBTerminator) 2920 break; 2921 Instr.moveBeforePreserving(TI); 2922 } 2923 assert(FreeInstrBB->size() == 1 && 2924 "Only the branch instruction should remain"); 2925 2926 // Now that we've moved the call to free before the NULL check, we have to 2927 // remove any attributes on its parameter that imply it's non-null, because 2928 // those attributes might have only been valid because of the NULL check, and 2929 // we can get miscompiles if we keep them. This is conservative if non-null is 2930 // also implied by something other than the NULL check, but it's guaranteed to 2931 // be correct, and the conservativeness won't matter in practice, since the 2932 // attributes are irrelevant for the call to free itself and the pointer 2933 // shouldn't be used after the call. 2934 AttributeList Attrs = FI.getAttributes(); 2935 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 2936 Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 2937 if (Dereferenceable.isValid()) { 2938 uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 2939 Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 2940 Attribute::Dereferenceable); 2941 Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 2942 } 2943 FI.setAttributes(Attrs); 2944 2945 return &FI; 2946 } 2947 2948 Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 2949 // free undef -> unreachable. 2950 if (isa<UndefValue>(Op)) { 2951 // Leave a marker since we can't modify the CFG here. 2952 CreateNonTerminatorUnreachable(&FI); 2953 return eraseInstFromFunction(FI); 2954 } 2955 2956 // If we have 'free null' delete the instruction. This can happen in stl code 2957 // when lots of inlining happens. 2958 if (isa<ConstantPointerNull>(Op)) 2959 return eraseInstFromFunction(FI); 2960 2961 // If we had free(realloc(...)) with no intervening uses, then eliminate the 2962 // realloc() entirely. 2963 CallInst *CI = dyn_cast<CallInst>(Op); 2964 if (CI && CI->hasOneUse()) 2965 if (Value *ReallocatedOp = getReallocatedOperand(CI)) 2966 return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 2967 2968 // If we optimize for code size, try to move the call to free before the null 2969 // test so that simplify cfg can remove the empty block and dead code 2970 // elimination the branch. I.e., helps to turn something like: 2971 // if (foo) free(foo); 2972 // into 2973 // free(foo); 2974 // 2975 // Note that we can only do this for 'free' and not for any flavor of 2976 // 'operator delete'; there is no 'operator delete' symbol for which we are 2977 // permitted to invent a call, even if we're passing in a null pointer. 2978 if (MinimizeSize) { 2979 LibFunc Func; 2980 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 2981 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 2982 return I; 2983 } 2984 2985 return nullptr; 2986 } 2987 2988 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 2989 // Nothing for now. 2990 return nullptr; 2991 } 2992 2993 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 2994 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { 2995 // Try to remove the previous instruction if it must lead to unreachable. 2996 // This includes instructions like stores and "llvm.assume" that may not get 2997 // removed by simple dead code elimination. 2998 bool Changed = false; 2999 while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3000 // While we theoretically can erase EH, that would result in a block that 3001 // used to start with an EH no longer starting with EH, which is invalid. 3002 // To make it valid, we'd need to fixup predecessors to no longer refer to 3003 // this block, but that changes CFG, which is not allowed in InstCombine. 3004 if (Prev->isEHPad()) 3005 break; // Can not drop any more instructions. We're done here. 3006 3007 if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 3008 break; // Can not drop any more instructions. We're done here. 3009 // Otherwise, this instruction can be freely erased, 3010 // even if it is not side-effect free. 3011 3012 // A value may still have uses before we process it here (for example, in 3013 // another unreachable block), so convert those to poison. 3014 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3015 eraseInstFromFunction(*Prev); 3016 Changed = true; 3017 } 3018 return Changed; 3019 } 3020 3021 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 3022 removeInstructionsBeforeUnreachable(I); 3023 return nullptr; 3024 } 3025 3026 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 3027 assert(BI.isUnconditional() && "Only for unconditional branches."); 3028 3029 // If this store is the second-to-last instruction in the basic block 3030 // (excluding debug info and bitcasts of pointers) and if the block ends with 3031 // an unconditional branch, try to move the store to the successor block. 3032 3033 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 3034 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3035 return BBI->isDebugOrPseudoInst() || 3036 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 3037 }; 3038 3039 BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 3040 do { 3041 if (BBI != FirstInstr) 3042 --BBI; 3043 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 3044 3045 return dyn_cast<StoreInst>(BBI); 3046 }; 3047 3048 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 3049 if (mergeStoreIntoSuccessor(*SI)) 3050 return &BI; 3051 3052 return nullptr; 3053 } 3054 3055 void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, 3056 SmallVectorImpl<BasicBlock *> &Worklist) { 3057 if (!DeadEdges.insert({From, To}).second) 3058 return; 3059 3060 // Replace phi node operands in successor with poison. 3061 for (PHINode &PN : To->phis()) 3062 for (Use &U : PN.incoming_values()) 3063 if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { 3064 replaceUse(U, PoisonValue::get(PN.getType())); 3065 addToWorklist(&PN); 3066 MadeIRChange = true; 3067 } 3068 3069 Worklist.push_back(To); 3070 } 3071 3072 // Under the assumption that I is unreachable, remove it and following 3073 // instructions. Changes are reported directly to MadeIRChange. 3074 void InstCombinerImpl::handleUnreachableFrom( 3075 Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { 3076 BasicBlock *BB = I->getParent(); 3077 for (Instruction &Inst : make_early_inc_range( 3078 make_range(std::next(BB->getTerminator()->getReverseIterator()), 3079 std::next(I->getReverseIterator())))) { 3080 if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { 3081 replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); 3082 MadeIRChange = true; 3083 } 3084 if (Inst.isEHPad() || Inst.getType()->isTokenTy()) 3085 continue; 3086 // RemoveDIs: erase debug-info on this instruction manually. 3087 Inst.dropDbgValues(); 3088 eraseInstFromFunction(Inst); 3089 MadeIRChange = true; 3090 } 3091 3092 // RemoveDIs: to match behaviour in dbg.value mode, drop debug-info on 3093 // terminator too. 3094 BB->getTerminator()->dropDbgValues(); 3095 3096 // Handle potentially dead successors. 3097 for (BasicBlock *Succ : successors(BB)) 3098 addDeadEdge(BB, Succ, Worklist); 3099 } 3100 3101 void InstCombinerImpl::handlePotentiallyDeadBlocks( 3102 SmallVectorImpl<BasicBlock *> &Worklist) { 3103 while (!Worklist.empty()) { 3104 BasicBlock *BB = Worklist.pop_back_val(); 3105 if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { 3106 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 3107 })) 3108 continue; 3109 3110 handleUnreachableFrom(&BB->front(), Worklist); 3111 } 3112 } 3113 3114 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, 3115 BasicBlock *LiveSucc) { 3116 SmallVector<BasicBlock *> Worklist; 3117 for (BasicBlock *Succ : successors(BB)) { 3118 // The live successor isn't dead. 3119 if (Succ == LiveSucc) 3120 continue; 3121 3122 addDeadEdge(BB, Succ, Worklist); 3123 } 3124 3125 handlePotentiallyDeadBlocks(Worklist); 3126 } 3127 3128 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 3129 if (BI.isUnconditional()) 3130 return visitUnconditionalBranchInst(BI); 3131 3132 // Change br (not X), label True, label False to: br X, label False, True 3133 Value *Cond = BI.getCondition(); 3134 Value *X; 3135 if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 3136 // Swap Destinations and condition... 3137 BI.swapSuccessors(); 3138 return replaceOperand(BI, 0, X); 3139 } 3140 3141 // Canonicalize logical-and-with-invert as logical-or-with-invert. 3142 // This is done by inverting the condition and swapping successors: 3143 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3144 Value *Y; 3145 if (isa<SelectInst>(Cond) && 3146 match(Cond, 3147 m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3148 Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3149 Value *Or = Builder.CreateLogicalOr(NotX, Y); 3150 BI.swapSuccessors(); 3151 return replaceOperand(BI, 0, Or); 3152 } 3153 3154 // If the condition is irrelevant, remove the use so that other 3155 // transforms on the condition become more effective. 3156 if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3157 return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 3158 3159 // Canonicalize, for example, fcmp_one -> fcmp_oeq. 3160 CmpInst::Predicate Pred; 3161 if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 3162 !isCanonicalPredicate(Pred)) { 3163 // Swap destinations and condition. 3164 auto *Cmp = cast<CmpInst>(Cond); 3165 Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 3166 BI.swapSuccessors(); 3167 Worklist.push(Cmp); 3168 return &BI; 3169 } 3170 3171 if (isa<UndefValue>(Cond)) { 3172 handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); 3173 return nullptr; 3174 } 3175 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3176 handlePotentiallyDeadSuccessors(BI.getParent(), 3177 BI.getSuccessor(!CI->getZExtValue())); 3178 return nullptr; 3179 } 3180 3181 DC.registerBranch(&BI); 3182 return nullptr; 3183 } 3184 3185 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 3186 Value *Cond = SI.getCondition(); 3187 Value *Op0; 3188 ConstantInt *AddRHS; 3189 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 3190 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 3191 for (auto Case : SI.cases()) { 3192 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 3193 assert(isa<ConstantInt>(NewCase) && 3194 "Result of expression should be constant"); 3195 Case.setValue(cast<ConstantInt>(NewCase)); 3196 } 3197 return replaceOperand(SI, 0, Op0); 3198 } 3199 3200 KnownBits Known = computeKnownBits(Cond, 0, &SI); 3201 unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 3202 unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 3203 3204 // Compute the number of leading bits we can ignore. 3205 // TODO: A better way to determine this would use ComputeNumSignBits(). 3206 for (const auto &C : SI.cases()) { 3207 LeadingKnownZeros = 3208 std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); 3209 LeadingKnownOnes = 3210 std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); 3211 } 3212 3213 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 3214 3215 // Shrink the condition operand if the new type is smaller than the old type. 3216 // But do not shrink to a non-standard type, because backend can't generate 3217 // good code for that yet. 3218 // TODO: We can make it aggressive again after fixing PR39569. 3219 if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 3220 shouldChangeType(Known.getBitWidth(), NewWidth)) { 3221 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 3222 Builder.SetInsertPoint(&SI); 3223 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 3224 3225 for (auto Case : SI.cases()) { 3226 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 3227 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 3228 } 3229 return replaceOperand(SI, 0, NewCond); 3230 } 3231 3232 if (isa<UndefValue>(Cond)) { 3233 handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); 3234 return nullptr; 3235 } 3236 if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 3237 handlePotentiallyDeadSuccessors(SI.getParent(), 3238 SI.findCaseValue(CI)->getCaseSuccessor()); 3239 return nullptr; 3240 } 3241 3242 return nullptr; 3243 } 3244 3245 Instruction * 3246 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3247 auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3248 if (!WO) 3249 return nullptr; 3250 3251 Intrinsic::ID OvID = WO->getIntrinsicID(); 3252 const APInt *C = nullptr; 3253 if (match(WO->getRHS(), m_APIntAllowUndef(C))) { 3254 if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3255 OvID == Intrinsic::umul_with_overflow)) { 3256 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3257 if (C->isAllOnes()) 3258 return BinaryOperator::CreateNeg(WO->getLHS()); 3259 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 3260 if (C->isPowerOf2()) { 3261 return BinaryOperator::CreateShl( 3262 WO->getLHS(), 3263 ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 3264 } 3265 } 3266 } 3267 3268 // We're extracting from an overflow intrinsic. See if we're the only user. 3269 // That allows us to simplify multiple result intrinsics to simpler things 3270 // that just get one value. 3271 if (!WO->hasOneUse()) 3272 return nullptr; 3273 3274 // Check if we're grabbing only the result of a 'with overflow' intrinsic 3275 // and replace it with a traditional binary instruction. 3276 if (*EV.idx_begin() == 0) { 3277 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3278 Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3279 // Replace the old instruction's uses with poison. 3280 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3281 eraseInstFromFunction(*WO); 3282 return BinaryOperator::Create(BinOp, LHS, RHS); 3283 } 3284 3285 assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 3286 3287 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 3288 if (OvID == Intrinsic::usub_with_overflow) 3289 return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 3290 3291 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 3292 // +1 is not possible because we assume signed values. 3293 if (OvID == Intrinsic::smul_with_overflow && 3294 WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 3295 return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 3296 3297 // If only the overflow result is used, and the right hand side is a 3298 // constant (or constant splat), we can remove the intrinsic by directly 3299 // checking for overflow. 3300 if (C) { 3301 // Compute the no-wrap range for LHS given RHS=C, then construct an 3302 // equivalent icmp, potentially using an offset. 3303 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 3304 WO->getBinaryOp(), *C, WO->getNoWrapKind()); 3305 3306 CmpInst::Predicate Pred; 3307 APInt NewRHSC, Offset; 3308 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3309 auto *OpTy = WO->getRHS()->getType(); 3310 auto *NewLHS = WO->getLHS(); 3311 if (Offset != 0) 3312 NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3313 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3314 ConstantInt::get(OpTy, NewRHSC)); 3315 } 3316 3317 return nullptr; 3318 } 3319 3320 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 3321 Value *Agg = EV.getAggregateOperand(); 3322 3323 if (!EV.hasIndices()) 3324 return replaceInstUsesWith(EV, Agg); 3325 3326 if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 3327 SQ.getWithInstruction(&EV))) 3328 return replaceInstUsesWith(EV, V); 3329 3330 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 3331 // We're extracting from an insertvalue instruction, compare the indices 3332 const unsigned *exti, *exte, *insi, *inse; 3333 for (exti = EV.idx_begin(), insi = IV->idx_begin(), 3334 exte = EV.idx_end(), inse = IV->idx_end(); 3335 exti != exte && insi != inse; 3336 ++exti, ++insi) { 3337 if (*insi != *exti) 3338 // The insert and extract both reference distinctly different elements. 3339 // This means the extract is not influenced by the insert, and we can 3340 // replace the aggregate operand of the extract with the aggregate 3341 // operand of the insert. i.e., replace 3342 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3343 // %E = extractvalue { i32, { i32 } } %I, 0 3344 // with 3345 // %E = extractvalue { i32, { i32 } } %A, 0 3346 return ExtractValueInst::Create(IV->getAggregateOperand(), 3347 EV.getIndices()); 3348 } 3349 if (exti == exte && insi == inse) 3350 // Both iterators are at the end: Index lists are identical. Replace 3351 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3352 // %C = extractvalue { i32, { i32 } } %B, 1, 0 3353 // with "i32 42" 3354 return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 3355 if (exti == exte) { 3356 // The extract list is a prefix of the insert list. i.e. replace 3357 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 3358 // %E = extractvalue { i32, { i32 } } %I, 1 3359 // with 3360 // %X = extractvalue { i32, { i32 } } %A, 1 3361 // %E = insertvalue { i32 } %X, i32 42, 0 3362 // by switching the order of the insert and extract (though the 3363 // insertvalue should be left in, since it may have other uses). 3364 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 3365 EV.getIndices()); 3366 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 3367 ArrayRef(insi, inse)); 3368 } 3369 if (insi == inse) 3370 // The insert list is a prefix of the extract list 3371 // We can simply remove the common indices from the extract and make it 3372 // operate on the inserted value instead of the insertvalue result. 3373 // i.e., replace 3374 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 3375 // %E = extractvalue { i32, { i32 } } %I, 1, 0 3376 // with 3377 // %E extractvalue { i32 } { i32 42 }, 0 3378 return ExtractValueInst::Create(IV->getInsertedValueOperand(), 3379 ArrayRef(exti, exte)); 3380 } 3381 3382 if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 3383 return R; 3384 3385 if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 3386 // Bail out if the aggregate contains scalable vector type 3387 if (auto *STy = dyn_cast<StructType>(Agg->getType()); 3388 STy && STy->containsScalableVectorType()) 3389 return nullptr; 3390 3391 // If the (non-volatile) load only has one use, we can rewrite this to a 3392 // load from a GEP. This reduces the size of the load. If a load is used 3393 // only by extractvalue instructions then this either must have been 3394 // optimized before, or it is a struct with padding, in which case we 3395 // don't want to do the transformation as it loses padding knowledge. 3396 if (L->isSimple() && L->hasOneUse()) { 3397 // extractvalue has integer indices, getelementptr has Value*s. Convert. 3398 SmallVector<Value*, 4> Indices; 3399 // Prefix an i32 0 since we need the first element. 3400 Indices.push_back(Builder.getInt32(0)); 3401 for (unsigned Idx : EV.indices()) 3402 Indices.push_back(Builder.getInt32(Idx)); 3403 3404 // We need to insert these at the location of the old load, not at that of 3405 // the extractvalue. 3406 Builder.SetInsertPoint(L); 3407 Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 3408 L->getPointerOperand(), Indices); 3409 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 3410 // Whatever aliasing information we had for the orignal load must also 3411 // hold for the smaller load, so propagate the annotations. 3412 NL->setAAMetadata(L->getAAMetadata()); 3413 // Returning the load directly will cause the main loop to insert it in 3414 // the wrong spot, so use replaceInstUsesWith(). 3415 return replaceInstUsesWith(EV, NL); 3416 } 3417 } 3418 3419 if (auto *PN = dyn_cast<PHINode>(Agg)) 3420 if (Instruction *Res = foldOpIntoPhi(EV, PN)) 3421 return Res; 3422 3423 // We could simplify extracts from other values. Note that nested extracts may 3424 // already be simplified implicitly by the above: extract (extract (insert) ) 3425 // will be translated into extract ( insert ( extract ) ) first and then just 3426 // the value inserted, if appropriate. Similarly for extracts from single-use 3427 // loads: extract (extract (load)) will be translated to extract (load (gep)) 3428 // and if again single-use then via load (gep (gep)) to load (gep). 3429 // However, double extracts from e.g. function arguments or return values 3430 // aren't handled yet. 3431 return nullptr; 3432 } 3433 3434 /// Return 'true' if the given typeinfo will match anything. 3435 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 3436 switch (Personality) { 3437 case EHPersonality::GNU_C: 3438 case EHPersonality::GNU_C_SjLj: 3439 case EHPersonality::Rust: 3440 // The GCC C EH and Rust personality only exists to support cleanups, so 3441 // it's not clear what the semantics of catch clauses are. 3442 return false; 3443 case EHPersonality::Unknown: 3444 return false; 3445 case EHPersonality::GNU_Ada: 3446 // While __gnat_all_others_value will match any Ada exception, it doesn't 3447 // match foreign exceptions (or didn't, before gcc-4.7). 3448 return false; 3449 case EHPersonality::GNU_CXX: 3450 case EHPersonality::GNU_CXX_SjLj: 3451 case EHPersonality::GNU_ObjC: 3452 case EHPersonality::MSVC_X86SEH: 3453 case EHPersonality::MSVC_TableSEH: 3454 case EHPersonality::MSVC_CXX: 3455 case EHPersonality::CoreCLR: 3456 case EHPersonality::Wasm_CXX: 3457 case EHPersonality::XL_CXX: 3458 return TypeInfo->isNullValue(); 3459 } 3460 llvm_unreachable("invalid enum"); 3461 } 3462 3463 static bool shorter_filter(const Value *LHS, const Value *RHS) { 3464 return 3465 cast<ArrayType>(LHS->getType())->getNumElements() 3466 < 3467 cast<ArrayType>(RHS->getType())->getNumElements(); 3468 } 3469 3470 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 3471 // The logic here should be correct for any real-world personality function. 3472 // However if that turns out not to be true, the offending logic can always 3473 // be conditioned on the personality function, like the catch-all logic is. 3474 EHPersonality Personality = 3475 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 3476 3477 // Simplify the list of clauses, eg by removing repeated catch clauses 3478 // (these are often created by inlining). 3479 bool MakeNewInstruction = false; // If true, recreate using the following: 3480 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 3481 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 3482 3483 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 3484 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 3485 bool isLastClause = i + 1 == e; 3486 if (LI.isCatch(i)) { 3487 // A catch clause. 3488 Constant *CatchClause = LI.getClause(i); 3489 Constant *TypeInfo = CatchClause->stripPointerCasts(); 3490 3491 // If we already saw this clause, there is no point in having a second 3492 // copy of it. 3493 if (AlreadyCaught.insert(TypeInfo).second) { 3494 // This catch clause was not already seen. 3495 NewClauses.push_back(CatchClause); 3496 } else { 3497 // Repeated catch clause - drop the redundant copy. 3498 MakeNewInstruction = true; 3499 } 3500 3501 // If this is a catch-all then there is no point in keeping any following 3502 // clauses or marking the landingpad as having a cleanup. 3503 if (isCatchAll(Personality, TypeInfo)) { 3504 if (!isLastClause) 3505 MakeNewInstruction = true; 3506 CleanupFlag = false; 3507 break; 3508 } 3509 } else { 3510 // A filter clause. If any of the filter elements were already caught 3511 // then they can be dropped from the filter. It is tempting to try to 3512 // exploit the filter further by saying that any typeinfo that does not 3513 // occur in the filter can't be caught later (and thus can be dropped). 3514 // However this would be wrong, since typeinfos can match without being 3515 // equal (for example if one represents a C++ class, and the other some 3516 // class derived from it). 3517 assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 3518 Constant *FilterClause = LI.getClause(i); 3519 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 3520 unsigned NumTypeInfos = FilterType->getNumElements(); 3521 3522 // An empty filter catches everything, so there is no point in keeping any 3523 // following clauses or marking the landingpad as having a cleanup. By 3524 // dealing with this case here the following code is made a bit simpler. 3525 if (!NumTypeInfos) { 3526 NewClauses.push_back(FilterClause); 3527 if (!isLastClause) 3528 MakeNewInstruction = true; 3529 CleanupFlag = false; 3530 break; 3531 } 3532 3533 bool MakeNewFilter = false; // If true, make a new filter. 3534 SmallVector<Constant *, 16> NewFilterElts; // New elements. 3535 if (isa<ConstantAggregateZero>(FilterClause)) { 3536 // Not an empty filter - it contains at least one null typeinfo. 3537 assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 3538 Constant *TypeInfo = 3539 Constant::getNullValue(FilterType->getElementType()); 3540 // If this typeinfo is a catch-all then the filter can never match. 3541 if (isCatchAll(Personality, TypeInfo)) { 3542 // Throw the filter away. 3543 MakeNewInstruction = true; 3544 continue; 3545 } 3546 3547 // There is no point in having multiple copies of this typeinfo, so 3548 // discard all but the first copy if there is more than one. 3549 NewFilterElts.push_back(TypeInfo); 3550 if (NumTypeInfos > 1) 3551 MakeNewFilter = true; 3552 } else { 3553 ConstantArray *Filter = cast<ConstantArray>(FilterClause); 3554 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 3555 NewFilterElts.reserve(NumTypeInfos); 3556 3557 // Remove any filter elements that were already caught or that already 3558 // occurred in the filter. While there, see if any of the elements are 3559 // catch-alls. If so, the filter can be discarded. 3560 bool SawCatchAll = false; 3561 for (unsigned j = 0; j != NumTypeInfos; ++j) { 3562 Constant *Elt = Filter->getOperand(j); 3563 Constant *TypeInfo = Elt->stripPointerCasts(); 3564 if (isCatchAll(Personality, TypeInfo)) { 3565 // This element is a catch-all. Bail out, noting this fact. 3566 SawCatchAll = true; 3567 break; 3568 } 3569 3570 // Even if we've seen a type in a catch clause, we don't want to 3571 // remove it from the filter. An unexpected type handler may be 3572 // set up for a call site which throws an exception of the same 3573 // type caught. In order for the exception thrown by the unexpected 3574 // handler to propagate correctly, the filter must be correctly 3575 // described for the call site. 3576 // 3577 // Example: 3578 // 3579 // void unexpected() { throw 1;} 3580 // void foo() throw (int) { 3581 // std::set_unexpected(unexpected); 3582 // try { 3583 // throw 2.0; 3584 // } catch (int i) {} 3585 // } 3586 3587 // There is no point in having multiple copies of the same typeinfo in 3588 // a filter, so only add it if we didn't already. 3589 if (SeenInFilter.insert(TypeInfo).second) 3590 NewFilterElts.push_back(cast<Constant>(Elt)); 3591 } 3592 // A filter containing a catch-all cannot match anything by definition. 3593 if (SawCatchAll) { 3594 // Throw the filter away. 3595 MakeNewInstruction = true; 3596 continue; 3597 } 3598 3599 // If we dropped something from the filter, make a new one. 3600 if (NewFilterElts.size() < NumTypeInfos) 3601 MakeNewFilter = true; 3602 } 3603 if (MakeNewFilter) { 3604 FilterType = ArrayType::get(FilterType->getElementType(), 3605 NewFilterElts.size()); 3606 FilterClause = ConstantArray::get(FilterType, NewFilterElts); 3607 MakeNewInstruction = true; 3608 } 3609 3610 NewClauses.push_back(FilterClause); 3611 3612 // If the new filter is empty then it will catch everything so there is 3613 // no point in keeping any following clauses or marking the landingpad 3614 // as having a cleanup. The case of the original filter being empty was 3615 // already handled above. 3616 if (MakeNewFilter && !NewFilterElts.size()) { 3617 assert(MakeNewInstruction && "New filter but not a new instruction!"); 3618 CleanupFlag = false; 3619 break; 3620 } 3621 } 3622 } 3623 3624 // If several filters occur in a row then reorder them so that the shortest 3625 // filters come first (those with the smallest number of elements). This is 3626 // advantageous because shorter filters are more likely to match, speeding up 3627 // unwinding, but mostly because it increases the effectiveness of the other 3628 // filter optimizations below. 3629 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 3630 unsigned j; 3631 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 3632 for (j = i; j != e; ++j) 3633 if (!isa<ArrayType>(NewClauses[j]->getType())) 3634 break; 3635 3636 // Check whether the filters are already sorted by length. We need to know 3637 // if sorting them is actually going to do anything so that we only make a 3638 // new landingpad instruction if it does. 3639 for (unsigned k = i; k + 1 < j; ++k) 3640 if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 3641 // Not sorted, so sort the filters now. Doing an unstable sort would be 3642 // correct too but reordering filters pointlessly might confuse users. 3643 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 3644 shorter_filter); 3645 MakeNewInstruction = true; 3646 break; 3647 } 3648 3649 // Look for the next batch of filters. 3650 i = j + 1; 3651 } 3652 3653 // If typeinfos matched if and only if equal, then the elements of a filter L 3654 // that occurs later than a filter F could be replaced by the intersection of 3655 // the elements of F and L. In reality two typeinfos can match without being 3656 // equal (for example if one represents a C++ class, and the other some class 3657 // derived from it) so it would be wrong to perform this transform in general. 3658 // However the transform is correct and useful if F is a subset of L. In that 3659 // case L can be replaced by F, and thus removed altogether since repeating a 3660 // filter is pointless. So here we look at all pairs of filters F and L where 3661 // L follows F in the list of clauses, and remove L if every element of F is 3662 // an element of L. This can occur when inlining C++ functions with exception 3663 // specifications. 3664 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 3665 // Examine each filter in turn. 3666 Value *Filter = NewClauses[i]; 3667 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 3668 if (!FTy) 3669 // Not a filter - skip it. 3670 continue; 3671 unsigned FElts = FTy->getNumElements(); 3672 // Examine each filter following this one. Doing this backwards means that 3673 // we don't have to worry about filters disappearing under us when removed. 3674 for (unsigned j = NewClauses.size() - 1; j != i; --j) { 3675 Value *LFilter = NewClauses[j]; 3676 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 3677 if (!LTy) 3678 // Not a filter - skip it. 3679 continue; 3680 // If Filter is a subset of LFilter, i.e. every element of Filter is also 3681 // an element of LFilter, then discard LFilter. 3682 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 3683 // If Filter is empty then it is a subset of LFilter. 3684 if (!FElts) { 3685 // Discard LFilter. 3686 NewClauses.erase(J); 3687 MakeNewInstruction = true; 3688 // Move on to the next filter. 3689 continue; 3690 } 3691 unsigned LElts = LTy->getNumElements(); 3692 // If Filter is longer than LFilter then it cannot be a subset of it. 3693 if (FElts > LElts) 3694 // Move on to the next filter. 3695 continue; 3696 // At this point we know that LFilter has at least one element. 3697 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 3698 // Filter is a subset of LFilter iff Filter contains only zeros (as we 3699 // already know that Filter is not longer than LFilter). 3700 if (isa<ConstantAggregateZero>(Filter)) { 3701 assert(FElts <= LElts && "Should have handled this case earlier!"); 3702 // Discard LFilter. 3703 NewClauses.erase(J); 3704 MakeNewInstruction = true; 3705 } 3706 // Move on to the next filter. 3707 continue; 3708 } 3709 ConstantArray *LArray = cast<ConstantArray>(LFilter); 3710 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 3711 // Since Filter is non-empty and contains only zeros, it is a subset of 3712 // LFilter iff LFilter contains a zero. 3713 assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 3714 for (unsigned l = 0; l != LElts; ++l) 3715 if (LArray->getOperand(l)->isNullValue()) { 3716 // LFilter contains a zero - discard it. 3717 NewClauses.erase(J); 3718 MakeNewInstruction = true; 3719 break; 3720 } 3721 // Move on to the next filter. 3722 continue; 3723 } 3724 // At this point we know that both filters are ConstantArrays. Loop over 3725 // operands to see whether every element of Filter is also an element of 3726 // LFilter. Since filters tend to be short this is probably faster than 3727 // using a method that scales nicely. 3728 ConstantArray *FArray = cast<ConstantArray>(Filter); 3729 bool AllFound = true; 3730 for (unsigned f = 0; f != FElts; ++f) { 3731 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 3732 AllFound = false; 3733 for (unsigned l = 0; l != LElts; ++l) { 3734 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 3735 if (LTypeInfo == FTypeInfo) { 3736 AllFound = true; 3737 break; 3738 } 3739 } 3740 if (!AllFound) 3741 break; 3742 } 3743 if (AllFound) { 3744 // Discard LFilter. 3745 NewClauses.erase(J); 3746 MakeNewInstruction = true; 3747 } 3748 // Move on to the next filter. 3749 } 3750 } 3751 3752 // If we changed any of the clauses, replace the old landingpad instruction 3753 // with a new one. 3754 if (MakeNewInstruction) { 3755 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 3756 NewClauses.size()); 3757 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) 3758 NLI->addClause(NewClauses[i]); 3759 // A landing pad with no clauses must have the cleanup flag set. It is 3760 // theoretically possible, though highly unlikely, that we eliminated all 3761 // clauses. If so, force the cleanup flag to true. 3762 if (NewClauses.empty()) 3763 CleanupFlag = true; 3764 NLI->setCleanup(CleanupFlag); 3765 return NLI; 3766 } 3767 3768 // Even if none of the clauses changed, we may nonetheless have understood 3769 // that the cleanup flag is pointless. Clear it if so. 3770 if (LI.isCleanup() != CleanupFlag) { 3771 assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 3772 LI.setCleanup(CleanupFlag); 3773 return &LI; 3774 } 3775 3776 return nullptr; 3777 } 3778 3779 Value * 3780 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 3781 // Try to push freeze through instructions that propagate but don't produce 3782 // poison as far as possible. If an operand of freeze follows three 3783 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 3784 // guaranteed-non-poison operands then push the freeze through to the one 3785 // operand that is not guaranteed non-poison. The actual transform is as 3786 // follows. 3787 // Op1 = ... ; Op1 can be posion 3788 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 3789 // ; single guaranteed-non-poison operands 3790 // ... = Freeze(Op0) 3791 // => 3792 // Op1 = ... 3793 // Op1.fr = Freeze(Op1) 3794 // ... = Inst(Op1.fr, NonPoisonOps...) 3795 auto *OrigOp = OrigFI.getOperand(0); 3796 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 3797 3798 // While we could change the other users of OrigOp to use freeze(OrigOp), that 3799 // potentially reduces their optimization potential, so let's only do this iff 3800 // the OrigOp is only used by the freeze. 3801 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 3802 return nullptr; 3803 3804 // We can't push the freeze through an instruction which can itself create 3805 // poison. If the only source of new poison is flags, we can simply 3806 // strip them (since we know the only use is the freeze and nothing can 3807 // benefit from them.) 3808 if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 3809 /*ConsiderFlagsAndMetadata*/ false)) 3810 return nullptr; 3811 3812 // If operand is guaranteed not to be poison, there is no need to add freeze 3813 // to the operand. So we first find the operand that is not guaranteed to be 3814 // poison. 3815 Use *MaybePoisonOperand = nullptr; 3816 for (Use &U : OrigOpInst->operands()) { 3817 if (isa<MetadataAsValue>(U.get()) || 3818 isGuaranteedNotToBeUndefOrPoison(U.get())) 3819 continue; 3820 if (!MaybePoisonOperand) 3821 MaybePoisonOperand = &U; 3822 else 3823 return nullptr; 3824 } 3825 3826 OrigOpInst->dropPoisonGeneratingFlagsAndMetadata(); 3827 3828 // If all operands are guaranteed to be non-poison, we can drop freeze. 3829 if (!MaybePoisonOperand) 3830 return OrigOp; 3831 3832 Builder.SetInsertPoint(OrigOpInst); 3833 auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 3834 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 3835 3836 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 3837 return OrigOp; 3838 } 3839 3840 Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 3841 PHINode *PN) { 3842 // Detect whether this is a recurrence with a start value and some number of 3843 // backedge values. We'll check whether we can push the freeze through the 3844 // backedge values (possibly dropping poison flags along the way) until we 3845 // reach the phi again. In that case, we can move the freeze to the start 3846 // value. 3847 Use *StartU = nullptr; 3848 SmallVector<Value *> Worklist; 3849 for (Use &U : PN->incoming_values()) { 3850 if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 3851 // Add backedge value to worklist. 3852 Worklist.push_back(U.get()); 3853 continue; 3854 } 3855 3856 // Don't bother handling multiple start values. 3857 if (StartU) 3858 return nullptr; 3859 StartU = &U; 3860 } 3861 3862 if (!StartU || Worklist.empty()) 3863 return nullptr; // Not a recurrence. 3864 3865 Value *StartV = StartU->get(); 3866 BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 3867 bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 3868 // We can't insert freeze if the start value is the result of the 3869 // terminator (e.g. an invoke). 3870 if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 3871 return nullptr; 3872 3873 SmallPtrSet<Value *, 32> Visited; 3874 SmallVector<Instruction *> DropFlags; 3875 while (!Worklist.empty()) { 3876 Value *V = Worklist.pop_back_val(); 3877 if (!Visited.insert(V).second) 3878 continue; 3879 3880 if (Visited.size() > 32) 3881 return nullptr; // Limit the total number of values we inspect. 3882 3883 // Assume that PN is non-poison, because it will be after the transform. 3884 if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 3885 continue; 3886 3887 Instruction *I = dyn_cast<Instruction>(V); 3888 if (!I || canCreateUndefOrPoison(cast<Operator>(I), 3889 /*ConsiderFlagsAndMetadata*/ false)) 3890 return nullptr; 3891 3892 DropFlags.push_back(I); 3893 append_range(Worklist, I->operands()); 3894 } 3895 3896 for (Instruction *I : DropFlags) 3897 I->dropPoisonGeneratingFlagsAndMetadata(); 3898 3899 if (StartNeedsFreeze) { 3900 Builder.SetInsertPoint(StartBB->getTerminator()); 3901 Value *FrozenStartV = Builder.CreateFreeze(StartV, 3902 StartV->getName() + ".fr"); 3903 replaceUse(*StartU, FrozenStartV); 3904 } 3905 return replaceInstUsesWith(FI, PN); 3906 } 3907 3908 bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 3909 Value *Op = FI.getOperand(0); 3910 3911 if (isa<Constant>(Op) || Op->hasOneUse()) 3912 return false; 3913 3914 // Move the freeze directly after the definition of its operand, so that 3915 // it dominates the maximum number of uses. Note that it may not dominate 3916 // *all* uses if the operand is an invoke/callbr and the use is in a phi on 3917 // the normal/default destination. This is why the domination check in the 3918 // replacement below is still necessary. 3919 BasicBlock::iterator MoveBefore; 3920 if (isa<Argument>(Op)) { 3921 MoveBefore = 3922 FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 3923 } else { 3924 auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef(); 3925 if (!MoveBeforeOpt) 3926 return false; 3927 MoveBefore = *MoveBeforeOpt; 3928 } 3929 3930 // Don't move to the position of a debug intrinsic. 3931 if (isa<DbgInfoIntrinsic>(MoveBefore)) 3932 MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); 3933 // Re-point iterator to come after any debug-info records, if we're 3934 // running in "RemoveDIs" mode 3935 MoveBefore.setHeadBit(false); 3936 3937 bool Changed = false; 3938 if (&FI != &*MoveBefore) { 3939 FI.moveBefore(*MoveBefore->getParent(), MoveBefore); 3940 Changed = true; 3941 } 3942 3943 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 3944 bool Dominates = DT.dominates(&FI, U); 3945 Changed |= Dominates; 3946 return Dominates; 3947 }); 3948 3949 return Changed; 3950 } 3951 3952 // Check if any direct or bitcast user of this value is a shuffle instruction. 3953 static bool isUsedWithinShuffleVector(Value *V) { 3954 for (auto *U : V->users()) { 3955 if (isa<ShuffleVectorInst>(U)) 3956 return true; 3957 else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) 3958 return true; 3959 } 3960 return false; 3961 } 3962 3963 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 3964 Value *Op0 = I.getOperand(0); 3965 3966 if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 3967 return replaceInstUsesWith(I, V); 3968 3969 // freeze (phi const, x) --> phi const, (freeze x) 3970 if (auto *PN = dyn_cast<PHINode>(Op0)) { 3971 if (Instruction *NV = foldOpIntoPhi(I, PN)) 3972 return NV; 3973 if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 3974 return NV; 3975 } 3976 3977 if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 3978 return replaceInstUsesWith(I, NI); 3979 3980 // If I is freeze(undef), check its uses and fold it to a fixed constant. 3981 // - or: pick -1 3982 // - select's condition: if the true value is constant, choose it by making 3983 // the condition true. 3984 // - default: pick 0 3985 // 3986 // Note that this transform is intentionally done here rather than 3987 // via an analysis in InstSimplify or at individual user sites. That is 3988 // because we must produce the same value for all uses of the freeze - 3989 // it's the reason "freeze" exists! 3990 // 3991 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 3992 // duplicating logic for binops at least. 3993 auto getUndefReplacement = [&I](Type *Ty) { 3994 Constant *BestValue = nullptr; 3995 Constant *NullValue = Constant::getNullValue(Ty); 3996 for (const auto *U : I.users()) { 3997 Constant *C = NullValue; 3998 if (match(U, m_Or(m_Value(), m_Value()))) 3999 C = ConstantInt::getAllOnesValue(Ty); 4000 else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 4001 C = ConstantInt::getTrue(Ty); 4002 4003 if (!BestValue) 4004 BestValue = C; 4005 else if (BestValue != C) 4006 BestValue = NullValue; 4007 } 4008 assert(BestValue && "Must have at least one use"); 4009 return BestValue; 4010 }; 4011 4012 if (match(Op0, m_Undef())) { 4013 // Don't fold freeze(undef/poison) if it's used as a vector operand in 4014 // a shuffle. This may improve codegen for shuffles that allow 4015 // unspecified inputs. 4016 if (isUsedWithinShuffleVector(&I)) 4017 return nullptr; 4018 return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 4019 } 4020 4021 Constant *C; 4022 if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 4023 Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 4024 return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4025 } 4026 4027 // Replace uses of Op with freeze(Op). 4028 if (freezeOtherUses(I)) 4029 return &I; 4030 4031 return nullptr; 4032 } 4033 4034 /// Check for case where the call writes to an otherwise dead alloca. This 4035 /// shows up for unused out-params in idiomatic C/C++ code. Note that this 4036 /// helper *only* analyzes the write; doesn't check any other legality aspect. 4037 static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 4038 auto *CB = dyn_cast<CallBase>(I); 4039 if (!CB) 4040 // TODO: handle e.g. store to alloca here - only worth doing if we extend 4041 // to allow reload along used path as described below. Otherwise, this 4042 // is simply a store to a dead allocation which will be removed. 4043 return false; 4044 std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 4045 if (!Dest) 4046 return false; 4047 auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 4048 if (!AI) 4049 // TODO: allow malloc? 4050 return false; 4051 // TODO: allow memory access dominated by move point? Note that since AI 4052 // could have a reference to itself captured by the call, we would need to 4053 // account for cycles in doing so. 4054 SmallVector<const User *> AllocaUsers; 4055 SmallPtrSet<const User *, 4> Visited; 4056 auto pushUsers = [&](const Instruction &I) { 4057 for (const User *U : I.users()) { 4058 if (Visited.insert(U).second) 4059 AllocaUsers.push_back(U); 4060 } 4061 }; 4062 pushUsers(*AI); 4063 while (!AllocaUsers.empty()) { 4064 auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 4065 if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 4066 isa<AddrSpaceCastInst>(UserI)) { 4067 pushUsers(*UserI); 4068 continue; 4069 } 4070 if (UserI == CB) 4071 continue; 4072 // TODO: support lifetime.start/end here 4073 return false; 4074 } 4075 return true; 4076 } 4077 4078 /// Try to move the specified instruction from its current block into the 4079 /// beginning of DestBlock, which can only happen if it's safe to move the 4080 /// instruction past all of the instructions between it and the end of its 4081 /// block. 4082 bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, 4083 BasicBlock *DestBlock) { 4084 BasicBlock *SrcBlock = I->getParent(); 4085 4086 // Cannot move control-flow-involving, volatile loads, vaarg, etc. 4087 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 4088 I->isTerminator()) 4089 return false; 4090 4091 // Do not sink static or dynamic alloca instructions. Static allocas must 4092 // remain in the entry block, and dynamic allocas must not be sunk in between 4093 // a stacksave / stackrestore pair, which would incorrectly shorten its 4094 // lifetime. 4095 if (isa<AllocaInst>(I)) 4096 return false; 4097 4098 // Do not sink into catchswitch blocks. 4099 if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 4100 return false; 4101 4102 // Do not sink convergent call instructions. 4103 if (auto *CI = dyn_cast<CallInst>(I)) { 4104 if (CI->isConvergent()) 4105 return false; 4106 } 4107 4108 // Unless we can prove that the memory write isn't visibile except on the 4109 // path we're sinking to, we must bail. 4110 if (I->mayWriteToMemory()) { 4111 if (!SoleWriteToDeadLocal(I, TLI)) 4112 return false; 4113 } 4114 4115 // We can only sink load instructions if there is nothing between the load and 4116 // the end of block that could change the value. 4117 if (I->mayReadFromMemory()) { 4118 // We don't want to do any sophisticated alias analysis, so we only check 4119 // the instructions after I in I's parent block if we try to sink to its 4120 // successor block. 4121 if (DestBlock->getUniquePredecessor() != I->getParent()) 4122 return false; 4123 for (BasicBlock::iterator Scan = std::next(I->getIterator()), 4124 E = I->getParent()->end(); 4125 Scan != E; ++Scan) 4126 if (Scan->mayWriteToMemory()) 4127 return false; 4128 } 4129 4130 I->dropDroppableUses([&](const Use *U) { 4131 auto *I = dyn_cast<Instruction>(U->getUser()); 4132 if (I && I->getParent() != DestBlock) { 4133 Worklist.add(I); 4134 return true; 4135 } 4136 return false; 4137 }); 4138 /// FIXME: We could remove droppable uses that are not dominated by 4139 /// the new position. 4140 4141 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 4142 I->moveBefore(*DestBlock, InsertPos); 4143 ++NumSunkInst; 4144 4145 // Also sink all related debug uses from the source basic block. Otherwise we 4146 // get debug use before the def. Attempt to salvage debug uses first, to 4147 // maximise the range variables have location for. If we cannot salvage, then 4148 // mark the location undef: we know it was supposed to receive a new location 4149 // here, but that computation has been sunk. 4150 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4151 findDbgUsers(DbgUsers, I); 4152 4153 // For all debug values in the destination block, the sunk instruction 4154 // will still be available, so they do not need to be dropped. 4155 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; 4156 SmallVector<DPValue *, 2> DPValuesToSalvage; 4157 for (auto &DbgUser : DbgUsers) 4158 if (DbgUser->getParent() != DestBlock) 4159 DbgUsersToSalvage.push_back(DbgUser); 4160 4161 // Process the sinking DbgUsersToSalvage in reverse order, as we only want 4162 // to clone the last appearing debug intrinsic for each given variable. 4163 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 4164 for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) 4165 if (DVI->getParent() == SrcBlock) 4166 DbgUsersToSink.push_back(DVI); 4167 llvm::sort(DbgUsersToSink, 4168 [](auto *A, auto *B) { return B->comesBefore(A); }); 4169 4170 SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4171 SmallSet<DebugVariable, 4> SunkVariables; 4172 for (auto *User : DbgUsersToSink) { 4173 // A dbg.declare instruction should not be cloned, since there can only be 4174 // one per variable fragment. It should be left in the original place 4175 // because the sunk instruction is not an alloca (otherwise we could not be 4176 // here). 4177 if (isa<DbgDeclareInst>(User)) 4178 continue; 4179 4180 DebugVariable DbgUserVariable = 4181 DebugVariable(User->getVariable(), User->getExpression(), 4182 User->getDebugLoc()->getInlinedAt()); 4183 4184 if (!SunkVariables.insert(DbgUserVariable).second) 4185 continue; 4186 4187 // Leave dbg.assign intrinsics in their original positions and there should 4188 // be no need to insert a clone. 4189 if (isa<DbgAssignIntrinsic>(User)) 4190 continue; 4191 4192 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4193 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4194 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 4195 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 4196 } 4197 4198 // Perform salvaging without the clones, then sink the clones. 4199 if (!DIIClones.empty()) { 4200 // RemoveDIs: pass in empty vector of DPValues until we get to instrumenting 4201 // this pass. 4202 SmallVector<DPValue *, 1> DummyDPValues; 4203 salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, DummyDPValues); 4204 // The clones are in reverse order of original appearance, reverse again to 4205 // maintain the original order. 4206 for (auto &DIIClone : llvm::reverse(DIIClones)) { 4207 DIIClone->insertBefore(&*InsertPos); 4208 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 4209 } 4210 } 4211 4212 return true; 4213 } 4214 4215 bool InstCombinerImpl::run() { 4216 while (!Worklist.isEmpty()) { 4217 // Walk deferred instructions in reverse order, and push them to the 4218 // worklist, which means they'll end up popped from the worklist in-order. 4219 while (Instruction *I = Worklist.popDeferred()) { 4220 // Check to see if we can DCE the instruction. We do this already here to 4221 // reduce the number of uses and thus allow other folds to trigger. 4222 // Note that eraseInstFromFunction() may push additional instructions on 4223 // the deferred worklist, so this will DCE whole instruction chains. 4224 if (isInstructionTriviallyDead(I, &TLI)) { 4225 eraseInstFromFunction(*I); 4226 ++NumDeadInst; 4227 continue; 4228 } 4229 4230 Worklist.push(I); 4231 } 4232 4233 Instruction *I = Worklist.removeOne(); 4234 if (I == nullptr) continue; // skip null values. 4235 4236 // Check to see if we can DCE the instruction. 4237 if (isInstructionTriviallyDead(I, &TLI)) { 4238 eraseInstFromFunction(*I); 4239 ++NumDeadInst; 4240 continue; 4241 } 4242 4243 if (!DebugCounter::shouldExecute(VisitCounter)) 4244 continue; 4245 4246 // See if we can trivially sink this instruction to its user if we can 4247 // prove that the successor is not executed more frequently than our block. 4248 // Return the UserBlock if successful. 4249 auto getOptionalSinkBlockForInst = 4250 [this](Instruction *I) -> std::optional<BasicBlock *> { 4251 if (!EnableCodeSinking) 4252 return std::nullopt; 4253 4254 BasicBlock *BB = I->getParent(); 4255 BasicBlock *UserParent = nullptr; 4256 unsigned NumUsers = 0; 4257 4258 for (auto *U : I->users()) { 4259 if (U->isDroppable()) 4260 continue; 4261 if (NumUsers > MaxSinkNumUsers) 4262 return std::nullopt; 4263 4264 Instruction *UserInst = cast<Instruction>(U); 4265 // Special handling for Phi nodes - get the block the use occurs in. 4266 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) { 4267 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 4268 if (PN->getIncomingValue(i) == I) { 4269 // Bail out if we have uses in different blocks. We don't do any 4270 // sophisticated analysis (i.e finding NearestCommonDominator of 4271 // these use blocks). 4272 if (UserParent && UserParent != PN->getIncomingBlock(i)) 4273 return std::nullopt; 4274 UserParent = PN->getIncomingBlock(i); 4275 } 4276 } 4277 assert(UserParent && "expected to find user block!"); 4278 } else { 4279 if (UserParent && UserParent != UserInst->getParent()) 4280 return std::nullopt; 4281 UserParent = UserInst->getParent(); 4282 } 4283 4284 // Make sure these checks are done only once, naturally we do the checks 4285 // the first time we get the userparent, this will save compile time. 4286 if (NumUsers == 0) { 4287 // Try sinking to another block. If that block is unreachable, then do 4288 // not bother. SimplifyCFG should handle it. 4289 if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 4290 return std::nullopt; 4291 4292 auto *Term = UserParent->getTerminator(); 4293 // See if the user is one of our successors that has only one 4294 // predecessor, so that we don't have to split the critical edge. 4295 // Another option where we can sink is a block that ends with a 4296 // terminator that does not pass control to other block (such as 4297 // return or unreachable or resume). In this case: 4298 // - I dominates the User (by SSA form); 4299 // - the User will be executed at most once. 4300 // So sinking I down to User is always profitable or neutral. 4301 if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 4302 return std::nullopt; 4303 4304 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 4305 } 4306 4307 NumUsers++; 4308 } 4309 4310 // No user or only has droppable users. 4311 if (!UserParent) 4312 return std::nullopt; 4313 4314 return UserParent; 4315 }; 4316 4317 auto OptBB = getOptionalSinkBlockForInst(I); 4318 if (OptBB) { 4319 auto *UserParent = *OptBB; 4320 // Okay, the CFG is simple enough, try to sink this instruction. 4321 if (tryToSinkInstruction(I, UserParent)) { 4322 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 4323 MadeIRChange = true; 4324 // We'll add uses of the sunk instruction below, but since 4325 // sinking can expose opportunities for it's *operands* add 4326 // them to the worklist 4327 for (Use &U : I->operands()) 4328 if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 4329 Worklist.push(OpI); 4330 } 4331 } 4332 4333 // Now that we have an instruction, try combining it to simplify it. 4334 Builder.SetInsertPoint(I); 4335 Builder.CollectMetadataToCopy( 4336 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4337 4338 #ifndef NDEBUG 4339 std::string OrigI; 4340 #endif 4341 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); 4342 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 4343 4344 if (Instruction *Result = visit(*I)) { 4345 ++NumCombined; 4346 // Should we replace the old instruction with a new one? 4347 if (Result != I) { 4348 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 4349 << " New = " << *Result << '\n'); 4350 4351 Result->copyMetadata(*I, 4352 {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 4353 // Everything uses the new instruction now. 4354 I->replaceAllUsesWith(Result); 4355 4356 // Move the name to the new instruction first. 4357 Result->takeName(I); 4358 4359 // Insert the new instruction into the basic block... 4360 BasicBlock *InstParent = I->getParent(); 4361 BasicBlock::iterator InsertPos = I->getIterator(); 4362 4363 // Are we replace a PHI with something that isn't a PHI, or vice versa? 4364 if (isa<PHINode>(Result) != isa<PHINode>(I)) { 4365 // We need to fix up the insertion point. 4366 if (isa<PHINode>(I)) // PHI -> Non-PHI 4367 InsertPos = InstParent->getFirstInsertionPt(); 4368 else // Non-PHI -> PHI 4369 InsertPos = InstParent->getFirstNonPHI()->getIterator(); 4370 } 4371 4372 Result->insertInto(InstParent, InsertPos); 4373 4374 // Push the new instruction and any users onto the worklist. 4375 Worklist.pushUsersToWorkList(*Result); 4376 Worklist.push(Result); 4377 4378 eraseInstFromFunction(*I); 4379 } else { 4380 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 4381 << " New = " << *I << '\n'); 4382 4383 // If the instruction was modified, it's possible that it is now dead. 4384 // if so, remove it. 4385 if (isInstructionTriviallyDead(I, &TLI)) { 4386 eraseInstFromFunction(*I); 4387 } else { 4388 Worklist.pushUsersToWorkList(*I); 4389 Worklist.push(I); 4390 } 4391 } 4392 MadeIRChange = true; 4393 } 4394 } 4395 4396 Worklist.zap(); 4397 return MadeIRChange; 4398 } 4399 4400 // Track the scopes used by !alias.scope and !noalias. In a function, a 4401 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 4402 // by both sets. If not, the declaration of the scope can be safely omitted. 4403 // The MDNode of the scope can be omitted as well for the instructions that are 4404 // part of this function. We do not do that at this point, as this might become 4405 // too time consuming to do. 4406 class AliasScopeTracker { 4407 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 4408 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 4409 4410 public: 4411 void analyse(Instruction *I) { 4412 // This seems to be faster than checking 'mayReadOrWriteMemory()'. 4413 if (!I->hasMetadataOtherThanDebugLoc()) 4414 return; 4415 4416 auto Track = [](Metadata *ScopeList, auto &Container) { 4417 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 4418 if (!MDScopeList || !Container.insert(MDScopeList).second) 4419 return; 4420 for (const auto &MDOperand : MDScopeList->operands()) 4421 if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 4422 Container.insert(MDScope); 4423 }; 4424 4425 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 4426 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 4427 } 4428 4429 bool isNoAliasScopeDeclDead(Instruction *Inst) { 4430 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 4431 if (!Decl) 4432 return false; 4433 4434 assert(Decl->use_empty() && 4435 "llvm.experimental.noalias.scope.decl in use ?"); 4436 const MDNode *MDSL = Decl->getScopeList(); 4437 assert(MDSL->getNumOperands() == 1 && 4438 "llvm.experimental.noalias.scope should refer to a single scope"); 4439 auto &MDOperand = MDSL->getOperand(0); 4440 if (auto *MD = dyn_cast<MDNode>(MDOperand)) 4441 return !UsedAliasScopesAndLists.contains(MD) || 4442 !UsedNoAliasScopesAndLists.contains(MD); 4443 4444 // Not an MDNode ? throw away. 4445 return true; 4446 } 4447 }; 4448 4449 /// Populate the IC worklist from a function, by walking it in reverse 4450 /// post-order and adding all reachable code to the worklist. 4451 /// 4452 /// This has a couple of tricks to make the code faster and more powerful. In 4453 /// particular, we constant fold and DCE instructions as we go, to avoid adding 4454 /// them to the worklist (this significantly speeds up instcombine on code where 4455 /// many instructions are dead or constant). Additionally, if we find a branch 4456 /// whose condition is a known constant, we only visit the reachable successors. 4457 bool InstCombinerImpl::prepareWorklist( 4458 Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) { 4459 bool MadeIRChange = false; 4460 SmallPtrSet<BasicBlock *, 32> LiveBlocks; 4461 SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 4462 DenseMap<Constant *, Constant *> FoldedConstants; 4463 AliasScopeTracker SeenAliasScopes; 4464 4465 auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { 4466 for (BasicBlock *Succ : successors(BB)) 4467 if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) 4468 for (PHINode &PN : Succ->phis()) 4469 for (Use &U : PN.incoming_values()) 4470 if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { 4471 U.set(PoisonValue::get(PN.getType())); 4472 MadeIRChange = true; 4473 } 4474 }; 4475 4476 for (BasicBlock *BB : RPOT) { 4477 if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { 4478 return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 4479 })) { 4480 HandleOnlyLiveSuccessor(BB, nullptr); 4481 continue; 4482 } 4483 LiveBlocks.insert(BB); 4484 4485 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 4486 // ConstantProp instruction if trivially constant. 4487 if (!Inst.use_empty() && 4488 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 4489 if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { 4490 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 4491 << '\n'); 4492 Inst.replaceAllUsesWith(C); 4493 ++NumConstProp; 4494 if (isInstructionTriviallyDead(&Inst, &TLI)) 4495 Inst.eraseFromParent(); 4496 MadeIRChange = true; 4497 continue; 4498 } 4499 4500 // See if we can constant fold its operands. 4501 for (Use &U : Inst.operands()) { 4502 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 4503 continue; 4504 4505 auto *C = cast<Constant>(U); 4506 Constant *&FoldRes = FoldedConstants[C]; 4507 if (!FoldRes) 4508 FoldRes = ConstantFoldConstant(C, DL, &TLI); 4509 4510 if (FoldRes != C) { 4511 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 4512 << "\n Old = " << *C 4513 << "\n New = " << *FoldRes << '\n'); 4514 U = FoldRes; 4515 MadeIRChange = true; 4516 } 4517 } 4518 4519 // Skip processing debug and pseudo intrinsics in InstCombine. Processing 4520 // these call instructions consumes non-trivial amount of time and 4521 // provides no value for the optimization. 4522 if (!Inst.isDebugOrPseudoInst()) { 4523 InstrsForInstructionWorklist.push_back(&Inst); 4524 SeenAliasScopes.analyse(&Inst); 4525 } 4526 } 4527 4528 // If this is a branch or switch on a constant, mark only the single 4529 // live successor. Otherwise assume all successors are live. 4530 Instruction *TI = BB->getTerminator(); 4531 if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { 4532 if (isa<UndefValue>(BI->getCondition())) { 4533 // Branch on undef is UB. 4534 HandleOnlyLiveSuccessor(BB, nullptr); 4535 continue; 4536 } 4537 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 4538 bool CondVal = Cond->getZExtValue(); 4539 HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); 4540 continue; 4541 } 4542 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 4543 if (isa<UndefValue>(SI->getCondition())) { 4544 // Switch on undef is UB. 4545 HandleOnlyLiveSuccessor(BB, nullptr); 4546 continue; 4547 } 4548 if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 4549 HandleOnlyLiveSuccessor(BB, 4550 SI->findCaseValue(Cond)->getCaseSuccessor()); 4551 continue; 4552 } 4553 } 4554 } 4555 4556 // Remove instructions inside unreachable blocks. This prevents the 4557 // instcombine code from having to deal with some bad special cases, and 4558 // reduces use counts of instructions. 4559 for (BasicBlock &BB : F) { 4560 if (LiveBlocks.count(&BB)) 4561 continue; 4562 4563 unsigned NumDeadInstInBB; 4564 unsigned NumDeadDbgInstInBB; 4565 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 4566 removeAllNonTerminatorAndEHPadInstructions(&BB); 4567 4568 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 4569 NumDeadInst += NumDeadInstInBB; 4570 } 4571 4572 // Once we've found all of the instructions to add to instcombine's worklist, 4573 // add them in reverse order. This way instcombine will visit from the top 4574 // of the function down. This jives well with the way that it adds all uses 4575 // of instructions to the worklist after doing a transformation, thus avoiding 4576 // some N^2 behavior in pathological cases. 4577 Worklist.reserve(InstrsForInstructionWorklist.size()); 4578 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 4579 // DCE instruction if trivially dead. As we iterate in reverse program 4580 // order here, we will clean up whole chains of dead instructions. 4581 if (isInstructionTriviallyDead(Inst, &TLI) || 4582 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 4583 ++NumDeadInst; 4584 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 4585 salvageDebugInfo(*Inst); 4586 Inst->eraseFromParent(); 4587 MadeIRChange = true; 4588 continue; 4589 } 4590 4591 Worklist.push(Inst); 4592 } 4593 4594 return MadeIRChange; 4595 } 4596 4597 static bool combineInstructionsOverFunction( 4598 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 4599 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 4600 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 4601 ProfileSummaryInfo *PSI, LoopInfo *LI, const InstCombineOptions &Opts) { 4602 auto &DL = F.getParent()->getDataLayout(); 4603 4604 /// Builder - This is an IRBuilder that automatically inserts new 4605 /// instructions into the worklist when they are created. 4606 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 4607 F.getContext(), TargetFolder(DL), 4608 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 4609 Worklist.add(I); 4610 if (auto *Assume = dyn_cast<AssumeInst>(I)) 4611 AC.registerAssumption(Assume); 4612 })); 4613 4614 ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); 4615 4616 // Lower dbg.declare intrinsics otherwise their value may be clobbered 4617 // by instcombiner. 4618 bool MadeIRChange = false; 4619 if (ShouldLowerDbgDeclare) 4620 MadeIRChange = LowerDbgDeclare(F); 4621 4622 // Iterate while there is work to do. 4623 unsigned Iteration = 0; 4624 while (true) { 4625 ++Iteration; 4626 4627 if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) { 4628 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations 4629 << " on " << F.getName() 4630 << " reached; stopping without verifying fixpoint\n"); 4631 break; 4632 } 4633 4634 ++NumWorklistIterations; 4635 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 4636 << F.getName() << "\n"); 4637 4638 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 4639 ORE, BFI, PSI, DL, LI); 4640 IC.MaxArraySizeForCombine = MaxArraySize; 4641 bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); 4642 MadeChangeInThisIteration |= IC.run(); 4643 if (!MadeChangeInThisIteration) 4644 break; 4645 4646 MadeIRChange = true; 4647 if (Iteration > Opts.MaxIterations) { 4648 report_fatal_error( 4649 "Instruction Combining did not reach a fixpoint after " + 4650 Twine(Opts.MaxIterations) + " iterations"); 4651 } 4652 } 4653 4654 if (Iteration == 1) 4655 ++NumOneIteration; 4656 else if (Iteration == 2) 4657 ++NumTwoIterations; 4658 else if (Iteration == 3) 4659 ++NumThreeIterations; 4660 else 4661 ++NumFourOrMoreIterations; 4662 4663 return MadeIRChange; 4664 } 4665 4666 InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} 4667 4668 void InstCombinePass::printPipeline( 4669 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 4670 static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( 4671 OS, MapClassName2PassName); 4672 OS << '<'; 4673 OS << "max-iterations=" << Options.MaxIterations << ";"; 4674 OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; 4675 OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; 4676 OS << '>'; 4677 } 4678 4679 PreservedAnalyses InstCombinePass::run(Function &F, 4680 FunctionAnalysisManager &AM) { 4681 auto &AC = AM.getResult<AssumptionAnalysis>(F); 4682 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 4683 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 4684 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 4685 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 4686 4687 // TODO: Only use LoopInfo when the option is set. This requires that the 4688 // callers in the pass pipeline explicitly set the option. 4689 auto *LI = AM.getCachedResult<LoopAnalysis>(F); 4690 if (!LI && Options.UseLoopInfo) 4691 LI = &AM.getResult<LoopAnalysis>(F); 4692 4693 auto *AA = &AM.getResult<AAManager>(F); 4694 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 4695 ProfileSummaryInfo *PSI = 4696 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 4697 auto *BFI = (PSI && PSI->hasProfileSummary()) ? 4698 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 4699 4700 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4701 BFI, PSI, LI, Options)) 4702 // No changes, all analyses are preserved. 4703 return PreservedAnalyses::all(); 4704 4705 // Mark all the analyses that instcombine updates as preserved. 4706 PreservedAnalyses PA; 4707 PA.preserveSet<CFGAnalyses>(); 4708 return PA; 4709 } 4710 4711 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 4712 AU.setPreservesCFG(); 4713 AU.addRequired<AAResultsWrapperPass>(); 4714 AU.addRequired<AssumptionCacheTracker>(); 4715 AU.addRequired<TargetLibraryInfoWrapperPass>(); 4716 AU.addRequired<TargetTransformInfoWrapperPass>(); 4717 AU.addRequired<DominatorTreeWrapperPass>(); 4718 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 4719 AU.addPreserved<DominatorTreeWrapperPass>(); 4720 AU.addPreserved<AAResultsWrapperPass>(); 4721 AU.addPreserved<BasicAAWrapperPass>(); 4722 AU.addPreserved<GlobalsAAWrapperPass>(); 4723 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 4724 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 4725 } 4726 4727 bool InstructionCombiningPass::runOnFunction(Function &F) { 4728 if (skipFunction(F)) 4729 return false; 4730 4731 // Required analyses. 4732 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 4733 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 4734 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 4735 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 4736 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 4737 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 4738 4739 // Optional analyses. 4740 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 4741 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 4742 ProfileSummaryInfo *PSI = 4743 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 4744 BlockFrequencyInfo *BFI = 4745 (PSI && PSI->hasProfileSummary()) ? 4746 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 4747 nullptr; 4748 4749 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 4750 BFI, PSI, LI, InstCombineOptions()); 4751 } 4752 4753 char InstructionCombiningPass::ID = 0; 4754 4755 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { 4756 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 4757 } 4758 4759 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 4760 "Combine redundant instructions", false, false) 4761 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 4762 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 4763 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4764 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4765 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 4766 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 4767 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 4768 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 4769 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 4770 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 4771 "Combine redundant instructions", false, false) 4772 4773 // Initialization Routines 4774 void llvm::initializeInstCombine(PassRegistry &Registry) { 4775 initializeInstructionCombiningPassPass(Registry); 4776 } 4777 4778 FunctionPass *llvm::createInstructionCombiningPass() { 4779 return new InstructionCombiningPass(); 4780 } 4781