10b57cec5SDimitry Andric //===- InstructionCombining.cpp - Combine multiple instructions -----------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // InstructionCombining - Combine instructions to form fewer, simple 100b57cec5SDimitry Andric // instructions. This pass does not modify the CFG. This pass is where 110b57cec5SDimitry Andric // algebraic simplification happens. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric // This pass combines things like: 140b57cec5SDimitry Andric // %Y = add i32 %X, 1 150b57cec5SDimitry Andric // %Z = add i32 %Y, 1 160b57cec5SDimitry Andric // into: 170b57cec5SDimitry Andric // %Z = add i32 %X, 2 180b57cec5SDimitry Andric // 190b57cec5SDimitry Andric // This is a simple worklist driven algorithm. 200b57cec5SDimitry Andric // 210b57cec5SDimitry Andric // This pass guarantees that the following canonicalizations are performed on 220b57cec5SDimitry Andric // the program: 230b57cec5SDimitry Andric // 1. If a binary operator has a constant operand, it is moved to the RHS 240b57cec5SDimitry Andric // 2. Bitwise operators with constant operands are always grouped so that 250b57cec5SDimitry Andric // shifts are performed first, then or's, then and's, then xor's. 260b57cec5SDimitry Andric // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible 270b57cec5SDimitry Andric // 4. All cmp instructions on boolean values are replaced with logical ops 280b57cec5SDimitry Andric // 5. add X, X is represented as (X*2) => (X << 1) 290b57cec5SDimitry Andric // 6. Multiplies with a power-of-two constant argument are transformed into 300b57cec5SDimitry Andric // shifts. 310b57cec5SDimitry Andric // ... etc. 320b57cec5SDimitry Andric // 330b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 340b57cec5SDimitry Andric 350b57cec5SDimitry Andric #include "InstCombineInternal.h" 360b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 370b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 380b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h" 390b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 400b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 410b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 420b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h" 430b57cec5SDimitry Andric #include "llvm/Analysis/AssumptionCache.h" 440b57cec5SDimitry Andric #include "llvm/Analysis/BasicAliasAnalysis.h" 450b57cec5SDimitry Andric #include "llvm/Analysis/BlockFrequencyInfo.h" 460b57cec5SDimitry Andric #include "llvm/Analysis/CFG.h" 470b57cec5SDimitry Andric #include "llvm/Analysis/ConstantFolding.h" 480b57cec5SDimitry Andric #include "llvm/Analysis/GlobalsModRef.h" 490b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 500b57cec5SDimitry Andric #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 510b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 520b57cec5SDimitry Andric #include "llvm/Analysis/MemoryBuiltins.h" 530b57cec5SDimitry Andric #include "llvm/Analysis/OptimizationRemarkEmitter.h" 540b57cec5SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h" 550b57cec5SDimitry Andric #include "llvm/Analysis/TargetFolder.h" 560b57cec5SDimitry Andric #include "llvm/Analysis/TargetLibraryInfo.h" 57e8d8bef9SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h" 5881ad6265SDimitry Andric #include "llvm/Analysis/Utils/Local.h" 590b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 605ffd83dbSDimitry Andric #include "llvm/Analysis/VectorUtils.h" 610b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h" 620b57cec5SDimitry Andric #include "llvm/IR/CFG.h" 630b57cec5SDimitry Andric #include "llvm/IR/Constant.h" 640b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 650b57cec5SDimitry Andric #include "llvm/IR/DIBuilder.h" 660b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 671fd87a68SDimitry Andric #include "llvm/IR/DebugInfo.h" 680b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 690b57cec5SDimitry Andric #include "llvm/IR/Dominators.h" 7006c3fb27SDimitry Andric #include "llvm/IR/EHPersonalities.h" 710b57cec5SDimitry Andric #include "llvm/IR/Function.h" 720b57cec5SDimitry Andric #include "llvm/IR/GetElementPtrTypeIterator.h" 730b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 740b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h" 750b57cec5SDimitry Andric #include "llvm/IR/Instruction.h" 760b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 770b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h" 780b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 790b57cec5SDimitry Andric #include "llvm/IR/Metadata.h" 800b57cec5SDimitry Andric #include "llvm/IR/Operator.h" 810b57cec5SDimitry Andric #include "llvm/IR/PassManager.h" 820b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 830b57cec5SDimitry Andric #include "llvm/IR/Type.h" 840b57cec5SDimitry Andric #include "llvm/IR/Use.h" 850b57cec5SDimitry Andric #include "llvm/IR/User.h" 860b57cec5SDimitry Andric #include "llvm/IR/Value.h" 870b57cec5SDimitry Andric #include "llvm/IR/ValueHandle.h" 88480093f4SDimitry Andric #include "llvm/InitializePasses.h" 890b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 900b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 910b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 920b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 930b57cec5SDimitry Andric #include "llvm/Support/DebugCounter.h" 940b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 950b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h" 960b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 970b57cec5SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombine.h" 98bdd1243dSDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h" 990b57cec5SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 1000b57cec5SDimitry Andric #include <algorithm> 1010b57cec5SDimitry Andric #include <cassert> 1020b57cec5SDimitry Andric #include <cstdint> 1030b57cec5SDimitry Andric #include <memory> 104bdd1243dSDimitry Andric #include <optional> 1050b57cec5SDimitry Andric #include <string> 1060b57cec5SDimitry Andric #include <utility> 1070b57cec5SDimitry Andric 108349cc55cSDimitry Andric #define DEBUG_TYPE "instcombine" 109349cc55cSDimitry Andric #include "llvm/Transforms/Utils/InstructionWorklist.h" 110bdd1243dSDimitry Andric #include <optional> 111349cc55cSDimitry Andric 1120b57cec5SDimitry Andric using namespace llvm; 1130b57cec5SDimitry Andric using namespace llvm::PatternMatch; 1140b57cec5SDimitry Andric 115e8d8bef9SDimitry Andric STATISTIC(NumWorklistIterations, 116e8d8bef9SDimitry Andric "Number of instruction combining iterations performed"); 11706c3fb27SDimitry Andric STATISTIC(NumOneIteration, "Number of functions with one iteration"); 11806c3fb27SDimitry Andric STATISTIC(NumTwoIterations, "Number of functions with two iterations"); 11906c3fb27SDimitry Andric STATISTIC(NumThreeIterations, "Number of functions with three iterations"); 12006c3fb27SDimitry Andric STATISTIC(NumFourOrMoreIterations, 12106c3fb27SDimitry Andric "Number of functions with four or more iterations"); 122e8d8bef9SDimitry Andric 1230b57cec5SDimitry Andric STATISTIC(NumCombined , "Number of insts combined"); 1240b57cec5SDimitry Andric STATISTIC(NumConstProp, "Number of constant folds"); 1250b57cec5SDimitry Andric STATISTIC(NumDeadInst , "Number of dead inst eliminated"); 1260b57cec5SDimitry Andric STATISTIC(NumSunkInst , "Number of instructions sunk"); 1270b57cec5SDimitry Andric STATISTIC(NumExpand, "Number of expansions"); 1280b57cec5SDimitry Andric STATISTIC(NumFactor , "Number of factorizations"); 1290b57cec5SDimitry Andric STATISTIC(NumReassoc , "Number of reassociations"); 1300b57cec5SDimitry Andric DEBUG_COUNTER(VisitCounter, "instcombine-visit", 1310b57cec5SDimitry Andric "Controls which instructions are visited"); 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric static cl::opt<bool> 1340b57cec5SDimitry Andric EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"), 1350b57cec5SDimitry Andric cl::init(true)); 1360b57cec5SDimitry Andric 13781ad6265SDimitry Andric static cl::opt<unsigned> MaxSinkNumUsers( 13881ad6265SDimitry Andric "instcombine-max-sink-users", cl::init(32), 13981ad6265SDimitry Andric cl::desc("Maximum number of undroppable users for instruction sinking")); 14081ad6265SDimitry Andric 1410b57cec5SDimitry Andric static cl::opt<unsigned> 1420b57cec5SDimitry Andric MaxArraySize("instcombine-maxarray-size", cl::init(1024), 1430b57cec5SDimitry Andric cl::desc("Maximum array size considered when doing a combine")); 1440b57cec5SDimitry Andric 1450b57cec5SDimitry Andric // FIXME: Remove this flag when it is no longer necessary to convert 1460b57cec5SDimitry Andric // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false 1470b57cec5SDimitry Andric // increases variable availability at the cost of accuracy. Variables that 1480b57cec5SDimitry Andric // cannot be promoted by mem2reg or SROA will be described as living in memory 1490b57cec5SDimitry Andric // for their entire lifetime. However, passes like DSE and instcombine can 1500b57cec5SDimitry Andric // delete stores to the alloca, leading to misleading and inaccurate debug 1510b57cec5SDimitry Andric // information. This flag can be removed when those passes are fixed. 1520b57cec5SDimitry Andric static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare", 1530b57cec5SDimitry Andric cl::Hidden, cl::init(true)); 1540b57cec5SDimitry Andric 155bdd1243dSDimitry Andric std::optional<Instruction *> 156e8d8bef9SDimitry Andric InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) { 157e8d8bef9SDimitry Andric // Handle target specific intrinsics 158e8d8bef9SDimitry Andric if (II.getCalledFunction()->isTargetIntrinsic()) { 159e8d8bef9SDimitry Andric return TTI.instCombineIntrinsic(*this, II); 160e8d8bef9SDimitry Andric } 161bdd1243dSDimitry Andric return std::nullopt; 162e8d8bef9SDimitry Andric } 163e8d8bef9SDimitry Andric 164bdd1243dSDimitry Andric std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic( 165e8d8bef9SDimitry Andric IntrinsicInst &II, APInt DemandedMask, KnownBits &Known, 166e8d8bef9SDimitry Andric bool &KnownBitsComputed) { 167e8d8bef9SDimitry Andric // Handle target specific intrinsics 168e8d8bef9SDimitry Andric if (II.getCalledFunction()->isTargetIntrinsic()) { 169e8d8bef9SDimitry Andric return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known, 170e8d8bef9SDimitry Andric KnownBitsComputed); 171e8d8bef9SDimitry Andric } 172bdd1243dSDimitry Andric return std::nullopt; 173e8d8bef9SDimitry Andric } 174e8d8bef9SDimitry Andric 175bdd1243dSDimitry Andric std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic( 176cb14a3feSDimitry Andric IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts, 177cb14a3feSDimitry Andric APInt &PoisonElts2, APInt &PoisonElts3, 178e8d8bef9SDimitry Andric std::function<void(Instruction *, unsigned, APInt, APInt &)> 179e8d8bef9SDimitry Andric SimplifyAndSetOp) { 180e8d8bef9SDimitry Andric // Handle target specific intrinsics 181e8d8bef9SDimitry Andric if (II.getCalledFunction()->isTargetIntrinsic()) { 182e8d8bef9SDimitry Andric return TTI.simplifyDemandedVectorEltsIntrinsic( 183cb14a3feSDimitry Andric *this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3, 184e8d8bef9SDimitry Andric SimplifyAndSetOp); 185e8d8bef9SDimitry Andric } 186bdd1243dSDimitry Andric return std::nullopt; 187e8d8bef9SDimitry Andric } 188e8d8bef9SDimitry Andric 18906c3fb27SDimitry Andric bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const { 19006c3fb27SDimitry Andric return TTI.isValidAddrSpaceCast(FromAS, ToAS); 19106c3fb27SDimitry Andric } 19206c3fb27SDimitry Andric 193*0fca6ea1SDimitry Andric Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) { 194*0fca6ea1SDimitry Andric if (!RewriteGEP) 195bdd1243dSDimitry Andric return llvm::emitGEPOffset(&Builder, DL, GEP); 196*0fca6ea1SDimitry Andric 197*0fca6ea1SDimitry Andric IRBuilderBase::InsertPointGuard Guard(Builder); 198*0fca6ea1SDimitry Andric auto *Inst = dyn_cast<Instruction>(GEP); 199*0fca6ea1SDimitry Andric if (Inst) 200*0fca6ea1SDimitry Andric Builder.SetInsertPoint(Inst); 201*0fca6ea1SDimitry Andric 202*0fca6ea1SDimitry Andric Value *Offset = EmitGEPOffset(GEP); 203*0fca6ea1SDimitry Andric // If a non-trivial GEP has other uses, rewrite it to avoid duplicating 204*0fca6ea1SDimitry Andric // the offset arithmetic. 205*0fca6ea1SDimitry Andric if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() && 206*0fca6ea1SDimitry Andric !GEP->getSourceElementType()->isIntegerTy(8)) { 207*0fca6ea1SDimitry Andric replaceInstUsesWith( 208*0fca6ea1SDimitry Andric *Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(), 209*0fca6ea1SDimitry Andric Offset, "", GEP->getNoWrapFlags())); 210*0fca6ea1SDimitry Andric eraseInstFromFunction(*Inst); 211*0fca6ea1SDimitry Andric } 212*0fca6ea1SDimitry Andric return Offset; 2130b57cec5SDimitry Andric } 2140b57cec5SDimitry Andric 215349cc55cSDimitry Andric /// Legal integers and common types are considered desirable. This is used to 216349cc55cSDimitry Andric /// avoid creating instructions with types that may not be supported well by the 217349cc55cSDimitry Andric /// the backend. 218349cc55cSDimitry Andric /// NOTE: This treats i8, i16 and i32 specially because they are common 219349cc55cSDimitry Andric /// types in frontend languages. 220349cc55cSDimitry Andric bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const { 221349cc55cSDimitry Andric switch (BitWidth) { 222349cc55cSDimitry Andric case 8: 223349cc55cSDimitry Andric case 16: 224349cc55cSDimitry Andric case 32: 225349cc55cSDimitry Andric return true; 226349cc55cSDimitry Andric default: 227349cc55cSDimitry Andric return DL.isLegalInteger(BitWidth); 228349cc55cSDimitry Andric } 229349cc55cSDimitry Andric } 230349cc55cSDimitry Andric 2310b57cec5SDimitry Andric /// Return true if it is desirable to convert an integer computation from a 2320b57cec5SDimitry Andric /// given bit width to a new bit width. 233bdd1243dSDimitry Andric /// We don't want to convert from a legal or desirable type (like i8) to an 234bdd1243dSDimitry Andric /// illegal type or from a smaller to a larger illegal type. A width of '1' 235bdd1243dSDimitry Andric /// is always treated as a desirable type because i1 is a fundamental type in 236bdd1243dSDimitry Andric /// IR, and there are many specialized optimizations for i1 types. 237bdd1243dSDimitry Andric /// Common/desirable widths are equally treated as legal to convert to, in 238bdd1243dSDimitry Andric /// order to open up more combining opportunities. 239e8d8bef9SDimitry Andric bool InstCombinerImpl::shouldChangeType(unsigned FromWidth, 2400b57cec5SDimitry Andric unsigned ToWidth) const { 2410b57cec5SDimitry Andric bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth); 2420b57cec5SDimitry Andric bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth); 2430b57cec5SDimitry Andric 244349cc55cSDimitry Andric // Convert to desirable widths even if they are not legal types. 245349cc55cSDimitry Andric // Only shrink types, to prevent infinite loops. 246349cc55cSDimitry Andric if (ToWidth < FromWidth && isDesirableIntType(ToWidth)) 2470b57cec5SDimitry Andric return true; 2480b57cec5SDimitry Andric 249bdd1243dSDimitry Andric // If this is a legal or desiable integer from type, and the result would be 250bdd1243dSDimitry Andric // an illegal type, don't do the transformation. 251bdd1243dSDimitry Andric if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal) 2520b57cec5SDimitry Andric return false; 2530b57cec5SDimitry Andric 2540b57cec5SDimitry Andric // Otherwise, if both are illegal, do not increase the size of the result. We 2550b57cec5SDimitry Andric // do allow things like i160 -> i64, but not i64 -> i160. 2560b57cec5SDimitry Andric if (!FromLegal && !ToLegal && ToWidth > FromWidth) 2570b57cec5SDimitry Andric return false; 2580b57cec5SDimitry Andric 2590b57cec5SDimitry Andric return true; 2600b57cec5SDimitry Andric } 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric /// Return true if it is desirable to convert a computation from 'From' to 'To'. 2630b57cec5SDimitry Andric /// We don't want to convert from a legal to an illegal type or from a smaller 2640b57cec5SDimitry Andric /// to a larger illegal type. i1 is always treated as a legal type because it is 2650b57cec5SDimitry Andric /// a fundamental type in IR, and there are many specialized optimizations for 2660b57cec5SDimitry Andric /// i1 types. 267e8d8bef9SDimitry Andric bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const { 2680b57cec5SDimitry Andric // TODO: This could be extended to allow vectors. Datalayout changes might be 2690b57cec5SDimitry Andric // needed to properly support that. 2700b57cec5SDimitry Andric if (!From->isIntegerTy() || !To->isIntegerTy()) 2710b57cec5SDimitry Andric return false; 2720b57cec5SDimitry Andric 2730b57cec5SDimitry Andric unsigned FromWidth = From->getPrimitiveSizeInBits(); 2740b57cec5SDimitry Andric unsigned ToWidth = To->getPrimitiveSizeInBits(); 2750b57cec5SDimitry Andric return shouldChangeType(FromWidth, ToWidth); 2760b57cec5SDimitry Andric } 2770b57cec5SDimitry Andric 2780b57cec5SDimitry Andric // Return true, if No Signed Wrap should be maintained for I. 2790b57cec5SDimitry Andric // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", 2800b57cec5SDimitry Andric // where both B and C should be ConstantInts, results in a constant that does 2810b57cec5SDimitry Andric // not overflow. This function only handles the Add and Sub opcodes. For 2820b57cec5SDimitry Andric // all other opcodes, the function conservatively returns false. 2838bcb0991SDimitry Andric static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { 2848bcb0991SDimitry Andric auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 2850b57cec5SDimitry Andric if (!OBO || !OBO->hasNoSignedWrap()) 2860b57cec5SDimitry Andric return false; 2870b57cec5SDimitry Andric 2880b57cec5SDimitry Andric // We reason about Add and Sub Only. 2890b57cec5SDimitry Andric Instruction::BinaryOps Opcode = I.getOpcode(); 2900b57cec5SDimitry Andric if (Opcode != Instruction::Add && Opcode != Instruction::Sub) 2910b57cec5SDimitry Andric return false; 2920b57cec5SDimitry Andric 2930b57cec5SDimitry Andric const APInt *BVal, *CVal; 2940b57cec5SDimitry Andric if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) 2950b57cec5SDimitry Andric return false; 2960b57cec5SDimitry Andric 2970b57cec5SDimitry Andric bool Overflow = false; 2980b57cec5SDimitry Andric if (Opcode == Instruction::Add) 2990b57cec5SDimitry Andric (void)BVal->sadd_ov(*CVal, Overflow); 3000b57cec5SDimitry Andric else 3010b57cec5SDimitry Andric (void)BVal->ssub_ov(*CVal, Overflow); 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric return !Overflow; 3040b57cec5SDimitry Andric } 3050b57cec5SDimitry Andric 3060b57cec5SDimitry Andric static bool hasNoUnsignedWrap(BinaryOperator &I) { 3078bcb0991SDimitry Andric auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 3080b57cec5SDimitry Andric return OBO && OBO->hasNoUnsignedWrap(); 3090b57cec5SDimitry Andric } 3100b57cec5SDimitry Andric 3118bcb0991SDimitry Andric static bool hasNoSignedWrap(BinaryOperator &I) { 3128bcb0991SDimitry Andric auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I); 3138bcb0991SDimitry Andric return OBO && OBO->hasNoSignedWrap(); 3148bcb0991SDimitry Andric } 3158bcb0991SDimitry Andric 3160b57cec5SDimitry Andric /// Conservatively clears subclassOptionalData after a reassociation or 3170b57cec5SDimitry Andric /// commutation. We preserve fast-math flags when applicable as they can be 3180b57cec5SDimitry Andric /// preserved. 3190b57cec5SDimitry Andric static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { 3200b57cec5SDimitry Andric FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); 3210b57cec5SDimitry Andric if (!FPMO) { 3220b57cec5SDimitry Andric I.clearSubclassOptionalData(); 3230b57cec5SDimitry Andric return; 3240b57cec5SDimitry Andric } 3250b57cec5SDimitry Andric 3260b57cec5SDimitry Andric FastMathFlags FMF = I.getFastMathFlags(); 3270b57cec5SDimitry Andric I.clearSubclassOptionalData(); 3280b57cec5SDimitry Andric I.setFastMathFlags(FMF); 3290b57cec5SDimitry Andric } 3300b57cec5SDimitry Andric 3310b57cec5SDimitry Andric /// Combine constant operands of associative operations either before or after a 3320b57cec5SDimitry Andric /// cast to eliminate one of the associative operations: 3330b57cec5SDimitry Andric /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2))) 3340b57cec5SDimitry Andric /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2)) 335e8d8bef9SDimitry Andric static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1, 336e8d8bef9SDimitry Andric InstCombinerImpl &IC) { 3370b57cec5SDimitry Andric auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0)); 3380b57cec5SDimitry Andric if (!Cast || !Cast->hasOneUse()) 3390b57cec5SDimitry Andric return false; 3400b57cec5SDimitry Andric 3410b57cec5SDimitry Andric // TODO: Enhance logic for other casts and remove this check. 3420b57cec5SDimitry Andric auto CastOpcode = Cast->getOpcode(); 3430b57cec5SDimitry Andric if (CastOpcode != Instruction::ZExt) 3440b57cec5SDimitry Andric return false; 3450b57cec5SDimitry Andric 3460b57cec5SDimitry Andric // TODO: Enhance logic for other BinOps and remove this check. 3470b57cec5SDimitry Andric if (!BinOp1->isBitwiseLogicOp()) 3480b57cec5SDimitry Andric return false; 3490b57cec5SDimitry Andric 3500b57cec5SDimitry Andric auto AssocOpcode = BinOp1->getOpcode(); 3510b57cec5SDimitry Andric auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0)); 3520b57cec5SDimitry Andric if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode) 3530b57cec5SDimitry Andric return false; 3540b57cec5SDimitry Andric 3550b57cec5SDimitry Andric Constant *C1, *C2; 3560b57cec5SDimitry Andric if (!match(BinOp1->getOperand(1), m_Constant(C1)) || 3570b57cec5SDimitry Andric !match(BinOp2->getOperand(1), m_Constant(C2))) 3580b57cec5SDimitry Andric return false; 3590b57cec5SDimitry Andric 3600b57cec5SDimitry Andric // TODO: This assumes a zext cast. 3610b57cec5SDimitry Andric // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2 3620b57cec5SDimitry Andric // to the destination type might lose bits. 3630b57cec5SDimitry Andric 3640b57cec5SDimitry Andric // Fold the constants together in the destination type: 3650b57cec5SDimitry Andric // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC) 3665f757f3fSDimitry Andric const DataLayout &DL = IC.getDataLayout(); 3670b57cec5SDimitry Andric Type *DestTy = C1->getType(); 3685f757f3fSDimitry Andric Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL); 3695f757f3fSDimitry Andric if (!CastC2) 3705f757f3fSDimitry Andric return false; 3715f757f3fSDimitry Andric Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL); 37206c3fb27SDimitry Andric if (!FoldedC) 37306c3fb27SDimitry Andric return false; 37406c3fb27SDimitry Andric 3755ffd83dbSDimitry Andric IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0)); 3765ffd83dbSDimitry Andric IC.replaceOperand(*BinOp1, 1, FoldedC); 3775f757f3fSDimitry Andric BinOp1->dropPoisonGeneratingFlags(); 3785f757f3fSDimitry Andric Cast->dropPoisonGeneratingFlags(); 3790b57cec5SDimitry Andric return true; 3800b57cec5SDimitry Andric } 3810b57cec5SDimitry Andric 38206c3fb27SDimitry Andric // Simplifies IntToPtr/PtrToInt RoundTrip Cast. 383fe6060f1SDimitry Andric // inttoptr ( ptrtoint (x) ) --> x 384fe6060f1SDimitry Andric Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) { 385fe6060f1SDimitry Andric auto *IntToPtr = dyn_cast<IntToPtrInst>(Val); 386bdd1243dSDimitry Andric if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) == 387fe6060f1SDimitry Andric DL.getTypeSizeInBits(IntToPtr->getSrcTy())) { 388fe6060f1SDimitry Andric auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0)); 389fe6060f1SDimitry Andric Type *CastTy = IntToPtr->getDestTy(); 390fe6060f1SDimitry Andric if (PtrToInt && 391fe6060f1SDimitry Andric CastTy->getPointerAddressSpace() == 392fe6060f1SDimitry Andric PtrToInt->getSrcTy()->getPointerAddressSpace() && 393bdd1243dSDimitry Andric DL.getTypeSizeInBits(PtrToInt->getSrcTy()) == 39406c3fb27SDimitry Andric DL.getTypeSizeInBits(PtrToInt->getDestTy())) 39506c3fb27SDimitry Andric return PtrToInt->getOperand(0); 396fe6060f1SDimitry Andric } 397fe6060f1SDimitry Andric return nullptr; 398fe6060f1SDimitry Andric } 399fe6060f1SDimitry Andric 4000b57cec5SDimitry Andric /// This performs a few simplifications for operators that are associative or 4010b57cec5SDimitry Andric /// commutative: 4020b57cec5SDimitry Andric /// 4030b57cec5SDimitry Andric /// Commutative operators: 4040b57cec5SDimitry Andric /// 4050b57cec5SDimitry Andric /// 1. Order operands such that they are listed from right (least complex) to 4060b57cec5SDimitry Andric /// left (most complex). This puts constants before unary operators before 4070b57cec5SDimitry Andric /// binary operators. 4080b57cec5SDimitry Andric /// 4090b57cec5SDimitry Andric /// Associative operators: 4100b57cec5SDimitry Andric /// 4110b57cec5SDimitry Andric /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 4120b57cec5SDimitry Andric /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 4130b57cec5SDimitry Andric /// 4140b57cec5SDimitry Andric /// Associative and commutative operators: 4150b57cec5SDimitry Andric /// 4160b57cec5SDimitry Andric /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 4170b57cec5SDimitry Andric /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 4180b57cec5SDimitry Andric /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 4190b57cec5SDimitry Andric /// if C1 and C2 are constants. 420e8d8bef9SDimitry Andric bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) { 4210b57cec5SDimitry Andric Instruction::BinaryOps Opcode = I.getOpcode(); 4220b57cec5SDimitry Andric bool Changed = false; 4230b57cec5SDimitry Andric 4240b57cec5SDimitry Andric do { 4250b57cec5SDimitry Andric // Order operands such that they are listed from right (least complex) to 4260b57cec5SDimitry Andric // left (most complex). This puts constants before unary operators before 4270b57cec5SDimitry Andric // binary operators. 4280b57cec5SDimitry Andric if (I.isCommutative() && getComplexity(I.getOperand(0)) < 4290b57cec5SDimitry Andric getComplexity(I.getOperand(1))) 4300b57cec5SDimitry Andric Changed = !I.swapOperands(); 4310b57cec5SDimitry Andric 4321db9f3b2SDimitry Andric if (I.isCommutative()) { 4331db9f3b2SDimitry Andric if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) { 4341db9f3b2SDimitry Andric replaceOperand(I, 0, Pair->first); 4351db9f3b2SDimitry Andric replaceOperand(I, 1, Pair->second); 4361db9f3b2SDimitry Andric Changed = true; 4371db9f3b2SDimitry Andric } 4381db9f3b2SDimitry Andric } 4391db9f3b2SDimitry Andric 4400b57cec5SDimitry Andric BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); 4410b57cec5SDimitry Andric BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); 4420b57cec5SDimitry Andric 4430b57cec5SDimitry Andric if (I.isAssociative()) { 4440b57cec5SDimitry Andric // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. 4450b57cec5SDimitry Andric if (Op0 && Op0->getOpcode() == Opcode) { 4460b57cec5SDimitry Andric Value *A = Op0->getOperand(0); 4470b57cec5SDimitry Andric Value *B = Op0->getOperand(1); 4480b57cec5SDimitry Andric Value *C = I.getOperand(1); 4490b57cec5SDimitry Andric 4500b57cec5SDimitry Andric // Does "B op C" simplify? 45181ad6265SDimitry Andric if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) { 4520b57cec5SDimitry Andric // It simplifies to V. Form "A op V". 4535ffd83dbSDimitry Andric replaceOperand(I, 0, A); 4545ffd83dbSDimitry Andric replaceOperand(I, 1, V); 4550b57cec5SDimitry Andric bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0); 4568bcb0991SDimitry Andric bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0); 4570b57cec5SDimitry Andric 4588bcb0991SDimitry Andric // Conservatively clear all optional flags since they may not be 4598bcb0991SDimitry Andric // preserved by the reassociation. Reset nsw/nuw based on the above 4608bcb0991SDimitry Andric // analysis. 4610b57cec5SDimitry Andric ClearSubclassDataAfterReassociation(I); 4620b57cec5SDimitry Andric 4638bcb0991SDimitry Andric // Note: this is only valid because SimplifyBinOp doesn't look at 4648bcb0991SDimitry Andric // the operands to Op0. 4650b57cec5SDimitry Andric if (IsNUW) 4660b57cec5SDimitry Andric I.setHasNoUnsignedWrap(true); 4670b57cec5SDimitry Andric 4688bcb0991SDimitry Andric if (IsNSW) 4690b57cec5SDimitry Andric I.setHasNoSignedWrap(true); 4700b57cec5SDimitry Andric 4710b57cec5SDimitry Andric Changed = true; 4720b57cec5SDimitry Andric ++NumReassoc; 4730b57cec5SDimitry Andric continue; 4740b57cec5SDimitry Andric } 4750b57cec5SDimitry Andric } 4760b57cec5SDimitry Andric 4770b57cec5SDimitry Andric // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. 4780b57cec5SDimitry Andric if (Op1 && Op1->getOpcode() == Opcode) { 4790b57cec5SDimitry Andric Value *A = I.getOperand(0); 4800b57cec5SDimitry Andric Value *B = Op1->getOperand(0); 4810b57cec5SDimitry Andric Value *C = Op1->getOperand(1); 4820b57cec5SDimitry Andric 4830b57cec5SDimitry Andric // Does "A op B" simplify? 48481ad6265SDimitry Andric if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) { 4850b57cec5SDimitry Andric // It simplifies to V. Form "V op C". 4865ffd83dbSDimitry Andric replaceOperand(I, 0, V); 4875ffd83dbSDimitry Andric replaceOperand(I, 1, C); 4880b57cec5SDimitry Andric // Conservatively clear the optional flags, since they may not be 4890b57cec5SDimitry Andric // preserved by the reassociation. 4900b57cec5SDimitry Andric ClearSubclassDataAfterReassociation(I); 4910b57cec5SDimitry Andric Changed = true; 4920b57cec5SDimitry Andric ++NumReassoc; 4930b57cec5SDimitry Andric continue; 4940b57cec5SDimitry Andric } 4950b57cec5SDimitry Andric } 4960b57cec5SDimitry Andric } 4970b57cec5SDimitry Andric 4980b57cec5SDimitry Andric if (I.isAssociative() && I.isCommutative()) { 4995ffd83dbSDimitry Andric if (simplifyAssocCastAssoc(&I, *this)) { 5000b57cec5SDimitry Andric Changed = true; 5010b57cec5SDimitry Andric ++NumReassoc; 5020b57cec5SDimitry Andric continue; 5030b57cec5SDimitry Andric } 5040b57cec5SDimitry Andric 5050b57cec5SDimitry Andric // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. 5060b57cec5SDimitry Andric if (Op0 && Op0->getOpcode() == Opcode) { 5070b57cec5SDimitry Andric Value *A = Op0->getOperand(0); 5080b57cec5SDimitry Andric Value *B = Op0->getOperand(1); 5090b57cec5SDimitry Andric Value *C = I.getOperand(1); 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric // Does "C op A" simplify? 51281ad6265SDimitry Andric if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 5130b57cec5SDimitry Andric // It simplifies to V. Form "V op B". 5145ffd83dbSDimitry Andric replaceOperand(I, 0, V); 5155ffd83dbSDimitry Andric replaceOperand(I, 1, B); 5160b57cec5SDimitry Andric // Conservatively clear the optional flags, since they may not be 5170b57cec5SDimitry Andric // preserved by the reassociation. 5180b57cec5SDimitry Andric ClearSubclassDataAfterReassociation(I); 5190b57cec5SDimitry Andric Changed = true; 5200b57cec5SDimitry Andric ++NumReassoc; 5210b57cec5SDimitry Andric continue; 5220b57cec5SDimitry Andric } 5230b57cec5SDimitry Andric } 5240b57cec5SDimitry Andric 5250b57cec5SDimitry Andric // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. 5260b57cec5SDimitry Andric if (Op1 && Op1->getOpcode() == Opcode) { 5270b57cec5SDimitry Andric Value *A = I.getOperand(0); 5280b57cec5SDimitry Andric Value *B = Op1->getOperand(0); 5290b57cec5SDimitry Andric Value *C = Op1->getOperand(1); 5300b57cec5SDimitry Andric 5310b57cec5SDimitry Andric // Does "C op A" simplify? 53281ad6265SDimitry Andric if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) { 5330b57cec5SDimitry Andric // It simplifies to V. Form "B op V". 5345ffd83dbSDimitry Andric replaceOperand(I, 0, B); 5355ffd83dbSDimitry Andric replaceOperand(I, 1, V); 5360b57cec5SDimitry Andric // Conservatively clear the optional flags, since they may not be 5370b57cec5SDimitry Andric // preserved by the reassociation. 5380b57cec5SDimitry Andric ClearSubclassDataAfterReassociation(I); 5390b57cec5SDimitry Andric Changed = true; 5400b57cec5SDimitry Andric ++NumReassoc; 5410b57cec5SDimitry Andric continue; 5420b57cec5SDimitry Andric } 5430b57cec5SDimitry Andric } 5440b57cec5SDimitry Andric 5450b57cec5SDimitry Andric // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" 5460b57cec5SDimitry Andric // if C1 and C2 are constants. 5470b57cec5SDimitry Andric Value *A, *B; 548753f127fSDimitry Andric Constant *C1, *C2, *CRes; 5490b57cec5SDimitry Andric if (Op0 && Op1 && 5500b57cec5SDimitry Andric Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && 5510b57cec5SDimitry Andric match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) && 552753f127fSDimitry Andric match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) && 553753f127fSDimitry Andric (CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) { 5540b57cec5SDimitry Andric bool IsNUW = hasNoUnsignedWrap(I) && 5550b57cec5SDimitry Andric hasNoUnsignedWrap(*Op0) && 5560b57cec5SDimitry Andric hasNoUnsignedWrap(*Op1); 5570b57cec5SDimitry Andric BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ? 5580b57cec5SDimitry Andric BinaryOperator::CreateNUW(Opcode, A, B) : 5590b57cec5SDimitry Andric BinaryOperator::Create(Opcode, A, B); 5600b57cec5SDimitry Andric 5610b57cec5SDimitry Andric if (isa<FPMathOperator>(NewBO)) { 5625f757f3fSDimitry Andric FastMathFlags Flags = I.getFastMathFlags() & 5635f757f3fSDimitry Andric Op0->getFastMathFlags() & 5645f757f3fSDimitry Andric Op1->getFastMathFlags(); 5650b57cec5SDimitry Andric NewBO->setFastMathFlags(Flags); 5660b57cec5SDimitry Andric } 5675f757f3fSDimitry Andric InsertNewInstWith(NewBO, I.getIterator()); 5680b57cec5SDimitry Andric NewBO->takeName(Op1); 5695ffd83dbSDimitry Andric replaceOperand(I, 0, NewBO); 570753f127fSDimitry Andric replaceOperand(I, 1, CRes); 5710b57cec5SDimitry Andric // Conservatively clear the optional flags, since they may not be 5720b57cec5SDimitry Andric // preserved by the reassociation. 5730b57cec5SDimitry Andric ClearSubclassDataAfterReassociation(I); 5740b57cec5SDimitry Andric if (IsNUW) 5750b57cec5SDimitry Andric I.setHasNoUnsignedWrap(true); 5760b57cec5SDimitry Andric 5770b57cec5SDimitry Andric Changed = true; 5780b57cec5SDimitry Andric continue; 5790b57cec5SDimitry Andric } 5800b57cec5SDimitry Andric } 5810b57cec5SDimitry Andric 5820b57cec5SDimitry Andric // No further simplifications. 5830b57cec5SDimitry Andric return Changed; 5840b57cec5SDimitry Andric } while (true); 5850b57cec5SDimitry Andric } 5860b57cec5SDimitry Andric 5870b57cec5SDimitry Andric /// Return whether "X LOp (Y ROp Z)" is always equal to 5880b57cec5SDimitry Andric /// "(X LOp Y) ROp (X LOp Z)". 5890b57cec5SDimitry Andric static bool leftDistributesOverRight(Instruction::BinaryOps LOp, 5900b57cec5SDimitry Andric Instruction::BinaryOps ROp) { 5910b57cec5SDimitry Andric // X & (Y | Z) <--> (X & Y) | (X & Z) 5920b57cec5SDimitry Andric // X & (Y ^ Z) <--> (X & Y) ^ (X & Z) 5930b57cec5SDimitry Andric if (LOp == Instruction::And) 5940b57cec5SDimitry Andric return ROp == Instruction::Or || ROp == Instruction::Xor; 5950b57cec5SDimitry Andric 5960b57cec5SDimitry Andric // X | (Y & Z) <--> (X | Y) & (X | Z) 5970b57cec5SDimitry Andric if (LOp == Instruction::Or) 5980b57cec5SDimitry Andric return ROp == Instruction::And; 5990b57cec5SDimitry Andric 6000b57cec5SDimitry Andric // X * (Y + Z) <--> (X * Y) + (X * Z) 6010b57cec5SDimitry Andric // X * (Y - Z) <--> (X * Y) - (X * Z) 6020b57cec5SDimitry Andric if (LOp == Instruction::Mul) 6030b57cec5SDimitry Andric return ROp == Instruction::Add || ROp == Instruction::Sub; 6040b57cec5SDimitry Andric 6050b57cec5SDimitry Andric return false; 6060b57cec5SDimitry Andric } 6070b57cec5SDimitry Andric 6080b57cec5SDimitry Andric /// Return whether "(X LOp Y) ROp Z" is always equal to 6090b57cec5SDimitry Andric /// "(X ROp Z) LOp (Y ROp Z)". 6100b57cec5SDimitry Andric static bool rightDistributesOverLeft(Instruction::BinaryOps LOp, 6110b57cec5SDimitry Andric Instruction::BinaryOps ROp) { 6120b57cec5SDimitry Andric if (Instruction::isCommutative(ROp)) 6130b57cec5SDimitry Andric return leftDistributesOverRight(ROp, LOp); 6140b57cec5SDimitry Andric 6150b57cec5SDimitry Andric // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts. 6160b57cec5SDimitry Andric return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp); 6170b57cec5SDimitry Andric 6180b57cec5SDimitry Andric // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", 6190b57cec5SDimitry Andric // but this requires knowing that the addition does not overflow and other 6200b57cec5SDimitry Andric // such subtleties. 6210b57cec5SDimitry Andric } 6220b57cec5SDimitry Andric 6230b57cec5SDimitry Andric /// This function returns identity value for given opcode, which can be used to 6240b57cec5SDimitry Andric /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). 6250b57cec5SDimitry Andric static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) { 6260b57cec5SDimitry Andric if (isa<Constant>(V)) 6270b57cec5SDimitry Andric return nullptr; 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric return ConstantExpr::getBinOpIdentity(Opcode, V->getType()); 6300b57cec5SDimitry Andric } 6310b57cec5SDimitry Andric 6320b57cec5SDimitry Andric /// This function predicates factorization using distributive laws. By default, 6330b57cec5SDimitry Andric /// it just returns the 'Op' inputs. But for special-cases like 6340b57cec5SDimitry Andric /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add 6350b57cec5SDimitry Andric /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to 6360b57cec5SDimitry Andric /// allow more factorization opportunities. 6370b57cec5SDimitry Andric static Instruction::BinaryOps 6380b57cec5SDimitry Andric getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op, 6395f757f3fSDimitry Andric Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) { 6400b57cec5SDimitry Andric assert(Op && "Expected a binary operator"); 6410b57cec5SDimitry Andric LHS = Op->getOperand(0); 6420b57cec5SDimitry Andric RHS = Op->getOperand(1); 6430b57cec5SDimitry Andric if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) { 6440b57cec5SDimitry Andric Constant *C; 645*0fca6ea1SDimitry Andric if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) { 6460b57cec5SDimitry Andric // X << C --> X * (1 << C) 647*0fca6ea1SDimitry Andric RHS = ConstantFoldBinaryInstruction( 648*0fca6ea1SDimitry Andric Instruction::Shl, ConstantInt::get(Op->getType(), 1), C); 649*0fca6ea1SDimitry Andric assert(RHS && "Constant folding of immediate constants failed"); 6500b57cec5SDimitry Andric return Instruction::Mul; 6510b57cec5SDimitry Andric } 6520b57cec5SDimitry Andric // TODO: We can add other conversions e.g. shr => div etc. 6530b57cec5SDimitry Andric } 6545f757f3fSDimitry Andric if (Instruction::isBitwiseLogicOp(TopOpcode)) { 6555f757f3fSDimitry Andric if (OtherOp && OtherOp->getOpcode() == Instruction::AShr && 6565f757f3fSDimitry Andric match(Op, m_LShr(m_NonNegative(), m_Value()))) { 6575f757f3fSDimitry Andric // lshr nneg C, X --> ashr nneg C, X 6585f757f3fSDimitry Andric return Instruction::AShr; 6595f757f3fSDimitry Andric } 6605f757f3fSDimitry Andric } 6610b57cec5SDimitry Andric return Op->getOpcode(); 6620b57cec5SDimitry Andric } 6630b57cec5SDimitry Andric 6640b57cec5SDimitry Andric /// This tries to simplify binary operations by factorizing out common terms 6650b57cec5SDimitry Andric /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). 666bdd1243dSDimitry Andric static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ, 667bdd1243dSDimitry Andric InstCombiner::BuilderTy &Builder, 668bdd1243dSDimitry Andric Instruction::BinaryOps InnerOpcode, Value *A, 669bdd1243dSDimitry Andric Value *B, Value *C, Value *D) { 6700b57cec5SDimitry Andric assert(A && B && C && D && "All values must be provided"); 6710b57cec5SDimitry Andric 6720b57cec5SDimitry Andric Value *V = nullptr; 673bdd1243dSDimitry Andric Value *RetVal = nullptr; 6740b57cec5SDimitry Andric Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 6750b57cec5SDimitry Andric Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 6760b57cec5SDimitry Andric 6770b57cec5SDimitry Andric // Does "X op' Y" always equal "Y op' X"? 6780b57cec5SDimitry Andric bool InnerCommutative = Instruction::isCommutative(InnerOpcode); 6790b57cec5SDimitry Andric 6800b57cec5SDimitry Andric // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? 681bdd1243dSDimitry Andric if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) { 6820b57cec5SDimitry Andric // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 6830b57cec5SDimitry Andric // commutative case, "(A op' B) op (C op' A)"? 6840b57cec5SDimitry Andric if (A == C || (InnerCommutative && A == D)) { 6850b57cec5SDimitry Andric if (A != C) 6860b57cec5SDimitry Andric std::swap(C, D); 6870b57cec5SDimitry Andric // Consider forming "A op' (B op D)". 6880b57cec5SDimitry Andric // If "B op D" simplifies then it can be formed with no cost. 68981ad6265SDimitry Andric V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I)); 690bdd1243dSDimitry Andric 691bdd1243dSDimitry Andric // If "B op D" doesn't simplify then only go on if one of the existing 6920b57cec5SDimitry Andric // operations "A op' B" and "C op' D" will be zapped as no longer used. 693bdd1243dSDimitry Andric if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 6940b57cec5SDimitry Andric V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); 695bdd1243dSDimitry Andric if (V) 696bdd1243dSDimitry Andric RetVal = Builder.CreateBinOp(InnerOpcode, A, V); 6970b57cec5SDimitry Andric } 6980b57cec5SDimitry Andric } 6990b57cec5SDimitry Andric 7000b57cec5SDimitry Andric // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? 701bdd1243dSDimitry Andric if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) { 7020b57cec5SDimitry Andric // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 7030b57cec5SDimitry Andric // commutative case, "(A op' B) op (B op' D)"? 7040b57cec5SDimitry Andric if (B == D || (InnerCommutative && B == C)) { 7050b57cec5SDimitry Andric if (B != D) 7060b57cec5SDimitry Andric std::swap(C, D); 7070b57cec5SDimitry Andric // Consider forming "(A op C) op' B". 7080b57cec5SDimitry Andric // If "A op C" simplifies then it can be formed with no cost. 70981ad6265SDimitry Andric V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I)); 7100b57cec5SDimitry Andric 711bdd1243dSDimitry Andric // If "A op C" doesn't simplify then only go on if one of the existing 7120b57cec5SDimitry Andric // operations "A op' B" and "C op' D" will be zapped as no longer used. 713bdd1243dSDimitry Andric if (!V && (LHS->hasOneUse() || RHS->hasOneUse())) 7140b57cec5SDimitry Andric V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); 715bdd1243dSDimitry Andric if (V) 716bdd1243dSDimitry Andric RetVal = Builder.CreateBinOp(InnerOpcode, V, B); 7170b57cec5SDimitry Andric } 7180b57cec5SDimitry Andric } 7190b57cec5SDimitry Andric 720bdd1243dSDimitry Andric if (!RetVal) 721bdd1243dSDimitry Andric return nullptr; 722bdd1243dSDimitry Andric 7230b57cec5SDimitry Andric ++NumFactor; 724bdd1243dSDimitry Andric RetVal->takeName(&I); 7250b57cec5SDimitry Andric 726bdd1243dSDimitry Andric // Try to add no-overflow flags to the final value. 727bdd1243dSDimitry Andric if (isa<OverflowingBinaryOperator>(RetVal)) { 7280b57cec5SDimitry Andric bool HasNSW = false; 7290b57cec5SDimitry Andric bool HasNUW = false; 7300b57cec5SDimitry Andric if (isa<OverflowingBinaryOperator>(&I)) { 7310b57cec5SDimitry Andric HasNSW = I.hasNoSignedWrap(); 7320b57cec5SDimitry Andric HasNUW = I.hasNoUnsignedWrap(); 7330b57cec5SDimitry Andric } 7340b57cec5SDimitry Andric if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) { 7350b57cec5SDimitry Andric HasNSW &= LOBO->hasNoSignedWrap(); 7360b57cec5SDimitry Andric HasNUW &= LOBO->hasNoUnsignedWrap(); 7370b57cec5SDimitry Andric } 7380b57cec5SDimitry Andric 7390b57cec5SDimitry Andric if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) { 7400b57cec5SDimitry Andric HasNSW &= ROBO->hasNoSignedWrap(); 7410b57cec5SDimitry Andric HasNUW &= ROBO->hasNoUnsignedWrap(); 7420b57cec5SDimitry Andric } 7430b57cec5SDimitry Andric 744bdd1243dSDimitry Andric if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) { 7450b57cec5SDimitry Andric // We can propagate 'nsw' if we know that 7460b57cec5SDimitry Andric // %Y = mul nsw i16 %X, C 7470b57cec5SDimitry Andric // %Z = add nsw i16 %Y, %X 7480b57cec5SDimitry Andric // => 7490b57cec5SDimitry Andric // %Z = mul nsw i16 %X, C+1 7500b57cec5SDimitry Andric // 7510b57cec5SDimitry Andric // iff C+1 isn't INT_MIN 7528bcb0991SDimitry Andric const APInt *CInt; 753bdd1243dSDimitry Andric if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) 754bdd1243dSDimitry Andric cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW); 7550b57cec5SDimitry Andric 7560b57cec5SDimitry Andric // nuw can be propagated with any constant or nuw value. 757bdd1243dSDimitry Andric cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW); 7580b57cec5SDimitry Andric } 7590b57cec5SDimitry Andric } 760bdd1243dSDimitry Andric return RetVal; 7610b57cec5SDimitry Andric } 7620b57cec5SDimitry Andric 7637a6dacacSDimitry Andric // If `I` has one Const operand and the other matches `(ctpop (not x))`, 7647a6dacacSDimitry Andric // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`. 7657a6dacacSDimitry Andric // This is only useful is the new subtract can fold so we only handle the 7667a6dacacSDimitry Andric // following cases: 7677a6dacacSDimitry Andric // 1) (add/sub/disjoint_or C, (ctpop (not x)) 7687a6dacacSDimitry Andric // -> (add/sub/disjoint_or C', (ctpop x)) 7697a6dacacSDimitry Andric // 1) (cmp pred C, (ctpop (not x)) 7707a6dacacSDimitry Andric // -> (cmp pred C', (ctpop x)) 7717a6dacacSDimitry Andric Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) { 7727a6dacacSDimitry Andric unsigned Opc = I->getOpcode(); 7737a6dacacSDimitry Andric unsigned ConstIdx = 1; 7747a6dacacSDimitry Andric switch (Opc) { 7757a6dacacSDimitry Andric default: 7767a6dacacSDimitry Andric return nullptr; 7777a6dacacSDimitry Andric // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x)) 7787a6dacacSDimitry Andric // We can fold the BitWidth(x) with add/sub/icmp as long the other operand 7797a6dacacSDimitry Andric // is constant. 7807a6dacacSDimitry Andric case Instruction::Sub: 7817a6dacacSDimitry Andric ConstIdx = 0; 7827a6dacacSDimitry Andric break; 7837a6dacacSDimitry Andric case Instruction::ICmp: 7847a6dacacSDimitry Andric // Signed predicates aren't correct in some edge cases like for i2 types, as 7857a6dacacSDimitry Andric // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed 7867a6dacacSDimitry Andric // comparisons against it are simplfied to unsigned. 7877a6dacacSDimitry Andric if (cast<ICmpInst>(I)->isSigned()) 7887a6dacacSDimitry Andric return nullptr; 7897a6dacacSDimitry Andric break; 7907a6dacacSDimitry Andric case Instruction::Or: 7917a6dacacSDimitry Andric if (!match(I, m_DisjointOr(m_Value(), m_Value()))) 7927a6dacacSDimitry Andric return nullptr; 7937a6dacacSDimitry Andric [[fallthrough]]; 7947a6dacacSDimitry Andric case Instruction::Add: 7957a6dacacSDimitry Andric break; 7967a6dacacSDimitry Andric } 7977a6dacacSDimitry Andric 7987a6dacacSDimitry Andric Value *Op; 7997a6dacacSDimitry Andric // Find ctpop. 8007a6dacacSDimitry Andric if (!match(I->getOperand(1 - ConstIdx), 8017a6dacacSDimitry Andric m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op))))) 8027a6dacacSDimitry Andric return nullptr; 8037a6dacacSDimitry Andric 8047a6dacacSDimitry Andric Constant *C; 8057a6dacacSDimitry Andric // Check other operand is ImmConstant. 8067a6dacacSDimitry Andric if (!match(I->getOperand(ConstIdx), m_ImmConstant(C))) 8077a6dacacSDimitry Andric return nullptr; 8087a6dacacSDimitry Andric 8097a6dacacSDimitry Andric Type *Ty = Op->getType(); 8107a6dacacSDimitry Andric Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits()); 8117a6dacacSDimitry Andric // Need extra check for icmp. Note if this check is true, it generally means 8127a6dacacSDimitry Andric // the icmp will simplify to true/false. 813*0fca6ea1SDimitry Andric if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) { 814*0fca6ea1SDimitry Andric Constant *Cmp = 815*0fca6ea1SDimitry Andric ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL); 816*0fca6ea1SDimitry Andric if (!Cmp || !Cmp->isZeroValue()) 8177a6dacacSDimitry Andric return nullptr; 818*0fca6ea1SDimitry Andric } 8197a6dacacSDimitry Andric 8207a6dacacSDimitry Andric // Check we can invert `(not x)` for free. 8217a6dacacSDimitry Andric bool Consumes = false; 8227a6dacacSDimitry Andric if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes) 8237a6dacacSDimitry Andric return nullptr; 8247a6dacacSDimitry Andric Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder); 8257a6dacacSDimitry Andric assert(NotOp != nullptr && 8267a6dacacSDimitry Andric "Desync between isFreeToInvert and getFreelyInverted"); 8277a6dacacSDimitry Andric 8287a6dacacSDimitry Andric Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp); 8297a6dacacSDimitry Andric 8307a6dacacSDimitry Andric Value *R = nullptr; 8317a6dacacSDimitry Andric 8327a6dacacSDimitry Andric // Do the transformation here to avoid potentially introducing an infinite 8337a6dacacSDimitry Andric // loop. 8347a6dacacSDimitry Andric switch (Opc) { 8357a6dacacSDimitry Andric case Instruction::Sub: 8367a6dacacSDimitry Andric R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC)); 8377a6dacacSDimitry Andric break; 8387a6dacacSDimitry Andric case Instruction::Or: 8397a6dacacSDimitry Andric case Instruction::Add: 8407a6dacacSDimitry Andric R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp); 8417a6dacacSDimitry Andric break; 8427a6dacacSDimitry Andric case Instruction::ICmp: 8437a6dacacSDimitry Andric R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(), 8447a6dacacSDimitry Andric CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C)); 8457a6dacacSDimitry Andric break; 8467a6dacacSDimitry Andric default: 8477a6dacacSDimitry Andric llvm_unreachable("Unhandled Opcode"); 8487a6dacacSDimitry Andric } 8497a6dacacSDimitry Andric assert(R != nullptr); 8507a6dacacSDimitry Andric return replaceInstUsesWith(*I, R); 8517a6dacacSDimitry Andric } 8527a6dacacSDimitry Andric 85306c3fb27SDimitry Andric // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C)) 85406c3fb27SDimitry Andric // IFF 85506c3fb27SDimitry Andric // 1) the logic_shifts match 85606c3fb27SDimitry Andric // 2) either both binops are binops and one is `and` or 85706c3fb27SDimitry Andric // BinOp1 is `and` 85806c3fb27SDimitry Andric // (logic_shift (inv_logic_shift C1, C), C) == C1 or 85906c3fb27SDimitry Andric // 86006c3fb27SDimitry Andric // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C) 86106c3fb27SDimitry Andric // 86206c3fb27SDimitry Andric // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt)) 86306c3fb27SDimitry Andric // IFF 86406c3fb27SDimitry Andric // 1) the logic_shifts match 86506c3fb27SDimitry Andric // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`). 86606c3fb27SDimitry Andric // 86706c3fb27SDimitry Andric // -> (BinOp (logic_shift (BinOp X, Y)), Mask) 8685f757f3fSDimitry Andric // 8695f757f3fSDimitry Andric // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt)) 8705f757f3fSDimitry Andric // IFF 8715f757f3fSDimitry Andric // 1) Binop1 is bitwise logical operator `and`, `or` or `xor` 8725f757f3fSDimitry Andric // 2) Binop2 is `not` 8735f757f3fSDimitry Andric // 8745f757f3fSDimitry Andric // -> (arithmetic_shift Binop1((not X), Y), Amt) 8755f757f3fSDimitry Andric 87606c3fb27SDimitry Andric Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) { 877*0fca6ea1SDimitry Andric const DataLayout &DL = I.getDataLayout(); 87806c3fb27SDimitry Andric auto IsValidBinOpc = [](unsigned Opc) { 87906c3fb27SDimitry Andric switch (Opc) { 88006c3fb27SDimitry Andric default: 88106c3fb27SDimitry Andric return false; 88206c3fb27SDimitry Andric case Instruction::And: 88306c3fb27SDimitry Andric case Instruction::Or: 88406c3fb27SDimitry Andric case Instruction::Xor: 88506c3fb27SDimitry Andric case Instruction::Add: 88606c3fb27SDimitry Andric // Skip Sub as we only match constant masks which will canonicalize to use 88706c3fb27SDimitry Andric // add. 88806c3fb27SDimitry Andric return true; 88906c3fb27SDimitry Andric } 89006c3fb27SDimitry Andric }; 89106c3fb27SDimitry Andric 89206c3fb27SDimitry Andric // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra 89306c3fb27SDimitry Andric // constraints. 89406c3fb27SDimitry Andric auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2, 89506c3fb27SDimitry Andric unsigned ShOpc) { 8965f757f3fSDimitry Andric assert(ShOpc != Instruction::AShr); 89706c3fb27SDimitry Andric return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) || 89806c3fb27SDimitry Andric ShOpc == Instruction::Shl; 89906c3fb27SDimitry Andric }; 90006c3fb27SDimitry Andric 90106c3fb27SDimitry Andric auto GetInvShift = [](unsigned ShOpc) { 9025f757f3fSDimitry Andric assert(ShOpc != Instruction::AShr); 90306c3fb27SDimitry Andric return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr; 90406c3fb27SDimitry Andric }; 90506c3fb27SDimitry Andric 90606c3fb27SDimitry Andric auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2, 90706c3fb27SDimitry Andric unsigned ShOpc, Constant *CMask, 90806c3fb27SDimitry Andric Constant *CShift) { 90906c3fb27SDimitry Andric // If the BinOp1 is `and` we don't need to check the mask. 91006c3fb27SDimitry Andric if (BinOpc1 == Instruction::And) 91106c3fb27SDimitry Andric return true; 91206c3fb27SDimitry Andric 91306c3fb27SDimitry Andric // For all other possible transfers we need complete distributable 91406c3fb27SDimitry Andric // binop/shift (anything but `add` + `lshr`). 91506c3fb27SDimitry Andric if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc)) 91606c3fb27SDimitry Andric return false; 91706c3fb27SDimitry Andric 91806c3fb27SDimitry Andric // If BinOp2 is `and`, any mask works (this only really helps for non-splat 91906c3fb27SDimitry Andric // vecs, otherwise the mask will be simplified and the following check will 92006c3fb27SDimitry Andric // handle it). 92106c3fb27SDimitry Andric if (BinOpc2 == Instruction::And) 92206c3fb27SDimitry Andric return true; 92306c3fb27SDimitry Andric 92406c3fb27SDimitry Andric // Otherwise, need mask that meets the below requirement. 92506c3fb27SDimitry Andric // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask 9265f757f3fSDimitry Andric Constant *MaskInvShift = 9275f757f3fSDimitry Andric ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 9285f757f3fSDimitry Andric return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) == 9295f757f3fSDimitry Andric CMask; 93006c3fb27SDimitry Andric }; 93106c3fb27SDimitry Andric 93206c3fb27SDimitry Andric auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * { 93306c3fb27SDimitry Andric Constant *CMask, *CShift; 93406c3fb27SDimitry Andric Value *X, *Y, *ShiftedX, *Mask, *Shift; 93506c3fb27SDimitry Andric if (!match(I.getOperand(ShOpnum), 9365f757f3fSDimitry Andric m_OneUse(m_Shift(m_Value(Y), m_Value(Shift))))) 93706c3fb27SDimitry Andric return nullptr; 93806c3fb27SDimitry Andric if (!match(I.getOperand(1 - ShOpnum), 93906c3fb27SDimitry Andric m_BinOp(m_Value(ShiftedX), m_Value(Mask)))) 94006c3fb27SDimitry Andric return nullptr; 94106c3fb27SDimitry Andric 9425f757f3fSDimitry Andric if (!match(ShiftedX, m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))))) 94306c3fb27SDimitry Andric return nullptr; 94406c3fb27SDimitry Andric 94506c3fb27SDimitry Andric // Make sure we are matching instruction shifts and not ConstantExpr 94606c3fb27SDimitry Andric auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum)); 94706c3fb27SDimitry Andric auto *IX = dyn_cast<Instruction>(ShiftedX); 94806c3fb27SDimitry Andric if (!IY || !IX) 94906c3fb27SDimitry Andric return nullptr; 95006c3fb27SDimitry Andric 95106c3fb27SDimitry Andric // LHS and RHS need same shift opcode 95206c3fb27SDimitry Andric unsigned ShOpc = IY->getOpcode(); 95306c3fb27SDimitry Andric if (ShOpc != IX->getOpcode()) 95406c3fb27SDimitry Andric return nullptr; 95506c3fb27SDimitry Andric 95606c3fb27SDimitry Andric // Make sure binop is real instruction and not ConstantExpr 95706c3fb27SDimitry Andric auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum)); 95806c3fb27SDimitry Andric if (!BO2) 95906c3fb27SDimitry Andric return nullptr; 96006c3fb27SDimitry Andric 96106c3fb27SDimitry Andric unsigned BinOpc = BO2->getOpcode(); 96206c3fb27SDimitry Andric // Make sure we have valid binops. 96306c3fb27SDimitry Andric if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc)) 96406c3fb27SDimitry Andric return nullptr; 96506c3fb27SDimitry Andric 9665f757f3fSDimitry Andric if (ShOpc == Instruction::AShr) { 9675f757f3fSDimitry Andric if (Instruction::isBitwiseLogicOp(I.getOpcode()) && 9685f757f3fSDimitry Andric BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) { 9695f757f3fSDimitry Andric Value *NotX = Builder.CreateNot(X); 9705f757f3fSDimitry Andric Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX); 9715f757f3fSDimitry Andric return BinaryOperator::Create( 9725f757f3fSDimitry Andric static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift); 9735f757f3fSDimitry Andric } 9745f757f3fSDimitry Andric 9755f757f3fSDimitry Andric return nullptr; 9765f757f3fSDimitry Andric } 9775f757f3fSDimitry Andric 97806c3fb27SDimitry Andric // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just 97906c3fb27SDimitry Andric // distribute to drop the shift irrelevant of constants. 98006c3fb27SDimitry Andric if (BinOpc == I.getOpcode() && 98106c3fb27SDimitry Andric IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) { 98206c3fb27SDimitry Andric Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y); 98306c3fb27SDimitry Andric Value *NewBinOp1 = Builder.CreateBinOp( 98406c3fb27SDimitry Andric static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift); 98506c3fb27SDimitry Andric return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask); 98606c3fb27SDimitry Andric } 98706c3fb27SDimitry Andric 98806c3fb27SDimitry Andric // Otherwise we can only distribute by constant shifting the mask, so 98906c3fb27SDimitry Andric // ensure we have constants. 99006c3fb27SDimitry Andric if (!match(Shift, m_ImmConstant(CShift))) 99106c3fb27SDimitry Andric return nullptr; 99206c3fb27SDimitry Andric if (!match(Mask, m_ImmConstant(CMask))) 99306c3fb27SDimitry Andric return nullptr; 99406c3fb27SDimitry Andric 99506c3fb27SDimitry Andric // Check if we can distribute the binops. 99606c3fb27SDimitry Andric if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift)) 99706c3fb27SDimitry Andric return nullptr; 99806c3fb27SDimitry Andric 9995f757f3fSDimitry Andric Constant *NewCMask = 10005f757f3fSDimitry Andric ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL); 100106c3fb27SDimitry Andric Value *NewBinOp2 = Builder.CreateBinOp( 100206c3fb27SDimitry Andric static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask); 100306c3fb27SDimitry Andric Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2); 100406c3fb27SDimitry Andric return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc), 100506c3fb27SDimitry Andric NewBinOp1, CShift); 100606c3fb27SDimitry Andric }; 100706c3fb27SDimitry Andric 100806c3fb27SDimitry Andric if (Instruction *R = MatchBinOp(0)) 100906c3fb27SDimitry Andric return R; 101006c3fb27SDimitry Andric return MatchBinOp(1); 101106c3fb27SDimitry Andric } 101206c3fb27SDimitry Andric 101306c3fb27SDimitry Andric // (Binop (zext C), (select C, T, F)) 101406c3fb27SDimitry Andric // -> (select C, (binop 1, T), (binop 0, F)) 101506c3fb27SDimitry Andric // 101606c3fb27SDimitry Andric // (Binop (sext C), (select C, T, F)) 101706c3fb27SDimitry Andric // -> (select C, (binop -1, T), (binop 0, F)) 101806c3fb27SDimitry Andric // 101906c3fb27SDimitry Andric // Attempt to simplify binary operations into a select with folded args, when 102006c3fb27SDimitry Andric // one operand of the binop is a select instruction and the other operand is a 102106c3fb27SDimitry Andric // zext/sext extension, whose value is the select condition. 102206c3fb27SDimitry Andric Instruction * 102306c3fb27SDimitry Andric InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) { 102406c3fb27SDimitry Andric // TODO: this simplification may be extended to any speculatable instruction, 102506c3fb27SDimitry Andric // not just binops, and would possibly be handled better in FoldOpIntoSelect. 102606c3fb27SDimitry Andric Instruction::BinaryOps Opc = I.getOpcode(); 102706c3fb27SDimitry Andric Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 102806c3fb27SDimitry Andric Value *A, *CondVal, *TrueVal, *FalseVal; 102906c3fb27SDimitry Andric Value *CastOp; 103006c3fb27SDimitry Andric 103106c3fb27SDimitry Andric auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) { 103206c3fb27SDimitry Andric return match(CastOp, m_ZExtOrSExt(m_Value(A))) && 103306c3fb27SDimitry Andric A->getType()->getScalarSizeInBits() == 1 && 103406c3fb27SDimitry Andric match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal), 103506c3fb27SDimitry Andric m_Value(FalseVal))); 103606c3fb27SDimitry Andric }; 103706c3fb27SDimitry Andric 103806c3fb27SDimitry Andric // Make sure one side of the binop is a select instruction, and the other is a 103906c3fb27SDimitry Andric // zero/sign extension operating on a i1. 104006c3fb27SDimitry Andric if (MatchSelectAndCast(LHS, RHS)) 104106c3fb27SDimitry Andric CastOp = LHS; 104206c3fb27SDimitry Andric else if (MatchSelectAndCast(RHS, LHS)) 104306c3fb27SDimitry Andric CastOp = RHS; 104406c3fb27SDimitry Andric else 104506c3fb27SDimitry Andric return nullptr; 104606c3fb27SDimitry Andric 104706c3fb27SDimitry Andric auto NewFoldedConst = [&](bool IsTrueArm, Value *V) { 104806c3fb27SDimitry Andric bool IsCastOpRHS = (CastOp == RHS); 10495f757f3fSDimitry Andric bool IsZExt = isa<ZExtInst>(CastOp); 105006c3fb27SDimitry Andric Constant *C; 105106c3fb27SDimitry Andric 105206c3fb27SDimitry Andric if (IsTrueArm) { 105306c3fb27SDimitry Andric C = Constant::getNullValue(V->getType()); 105406c3fb27SDimitry Andric } else if (IsZExt) { 105506c3fb27SDimitry Andric unsigned BitWidth = V->getType()->getScalarSizeInBits(); 105606c3fb27SDimitry Andric C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1)); 105706c3fb27SDimitry Andric } else { 105806c3fb27SDimitry Andric C = Constant::getAllOnesValue(V->getType()); 105906c3fb27SDimitry Andric } 106006c3fb27SDimitry Andric 106106c3fb27SDimitry Andric return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C) 106206c3fb27SDimitry Andric : Builder.CreateBinOp(Opc, C, V); 106306c3fb27SDimitry Andric }; 106406c3fb27SDimitry Andric 106506c3fb27SDimitry Andric // If the value used in the zext/sext is the select condition, or the negated 106606c3fb27SDimitry Andric // of the select condition, the binop can be simplified. 10675f757f3fSDimitry Andric if (CondVal == A) { 10685f757f3fSDimitry Andric Value *NewTrueVal = NewFoldedConst(false, TrueVal); 10695f757f3fSDimitry Andric return SelectInst::Create(CondVal, NewTrueVal, 107006c3fb27SDimitry Andric NewFoldedConst(true, FalseVal)); 10715f757f3fSDimitry Andric } 107206c3fb27SDimitry Andric 10735f757f3fSDimitry Andric if (match(A, m_Not(m_Specific(CondVal)))) { 10745f757f3fSDimitry Andric Value *NewTrueVal = NewFoldedConst(true, TrueVal); 10755f757f3fSDimitry Andric return SelectInst::Create(CondVal, NewTrueVal, 107606c3fb27SDimitry Andric NewFoldedConst(false, FalseVal)); 10775f757f3fSDimitry Andric } 107806c3fb27SDimitry Andric 107906c3fb27SDimitry Andric return nullptr; 108006c3fb27SDimitry Andric } 108106c3fb27SDimitry Andric 1082bdd1243dSDimitry Andric Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) { 10830b57cec5SDimitry Andric Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 10840b57cec5SDimitry Andric BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 10850b57cec5SDimitry Andric BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 10860b57cec5SDimitry Andric Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 10870b57cec5SDimitry Andric Value *A, *B, *C, *D; 10880b57cec5SDimitry Andric Instruction::BinaryOps LHSOpcode, RHSOpcode; 1089bdd1243dSDimitry Andric 10900b57cec5SDimitry Andric if (Op0) 10915f757f3fSDimitry Andric LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1); 10920b57cec5SDimitry Andric if (Op1) 10935f757f3fSDimitry Andric RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0); 10940b57cec5SDimitry Andric 10950b57cec5SDimitry Andric // The instruction has the form "(A op' B) op (C op' D)". Try to factorize 10960b57cec5SDimitry Andric // a common term. 10970b57cec5SDimitry Andric if (Op0 && Op1 && LHSOpcode == RHSOpcode) 1098bdd1243dSDimitry Andric if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D)) 10990b57cec5SDimitry Andric return V; 11000b57cec5SDimitry Andric 11010b57cec5SDimitry Andric // The instruction has the form "(A op' B) op (C)". Try to factorize common 11020b57cec5SDimitry Andric // term. 11030b57cec5SDimitry Andric if (Op0) 11040b57cec5SDimitry Andric if (Value *Ident = getIdentityValue(LHSOpcode, RHS)) 1105bdd1243dSDimitry Andric if (Value *V = 1106bdd1243dSDimitry Andric tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident)) 11070b57cec5SDimitry Andric return V; 11080b57cec5SDimitry Andric 11090b57cec5SDimitry Andric // The instruction has the form "(B) op (C op' D)". Try to factorize common 11100b57cec5SDimitry Andric // term. 11110b57cec5SDimitry Andric if (Op1) 11120b57cec5SDimitry Andric if (Value *Ident = getIdentityValue(RHSOpcode, LHS)) 1113bdd1243dSDimitry Andric if (Value *V = 1114bdd1243dSDimitry Andric tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D)) 11150b57cec5SDimitry Andric return V; 1116bdd1243dSDimitry Andric 1117bdd1243dSDimitry Andric return nullptr; 11180b57cec5SDimitry Andric } 11190b57cec5SDimitry Andric 1120bdd1243dSDimitry Andric /// This tries to simplify binary operations which some other binary operation 1121bdd1243dSDimitry Andric /// distributes over either by factorizing out common terms 1122bdd1243dSDimitry Andric /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in 1123bdd1243dSDimitry Andric /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). 1124bdd1243dSDimitry Andric /// Returns the simplified value, or null if it didn't simplify. 1125bdd1243dSDimitry Andric Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) { 1126bdd1243dSDimitry Andric Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 1127bdd1243dSDimitry Andric BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 1128bdd1243dSDimitry Andric BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 1129bdd1243dSDimitry Andric Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); 1130bdd1243dSDimitry Andric 1131bdd1243dSDimitry Andric // Factorization. 1132bdd1243dSDimitry Andric if (Value *R = tryFactorizationFolds(I)) 1133bdd1243dSDimitry Andric return R; 1134bdd1243dSDimitry Andric 11350b57cec5SDimitry Andric // Expansion. 11360b57cec5SDimitry Andric if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { 11370b57cec5SDimitry Andric // The instruction has the form "(A op' B) op C". See if expanding it out 11380b57cec5SDimitry Andric // to "(A op C) op' (B op C)" results in simplifications. 11390b57cec5SDimitry Andric Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 11400b57cec5SDimitry Andric Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' 11410b57cec5SDimitry Andric 1142e8d8bef9SDimitry Andric // Disable the use of undef because it's not safe to distribute undef. 1143e8d8bef9SDimitry Andric auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 114481ad6265SDimitry Andric Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 114581ad6265SDimitry Andric Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive); 11460b57cec5SDimitry Andric 11470b57cec5SDimitry Andric // Do "A op C" and "B op C" both simplify? 11480b57cec5SDimitry Andric if (L && R) { 11490b57cec5SDimitry Andric // They do! Return "L op' R". 11500b57cec5SDimitry Andric ++NumExpand; 11510b57cec5SDimitry Andric C = Builder.CreateBinOp(InnerOpcode, L, R); 11520b57cec5SDimitry Andric C->takeName(&I); 11530b57cec5SDimitry Andric return C; 11540b57cec5SDimitry Andric } 11550b57cec5SDimitry Andric 11560b57cec5SDimitry Andric // Does "A op C" simplify to the identity value for the inner opcode? 11570b57cec5SDimitry Andric if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 11580b57cec5SDimitry Andric // They do! Return "B op C". 11590b57cec5SDimitry Andric ++NumExpand; 11600b57cec5SDimitry Andric C = Builder.CreateBinOp(TopLevelOpcode, B, C); 11610b57cec5SDimitry Andric C->takeName(&I); 11620b57cec5SDimitry Andric return C; 11630b57cec5SDimitry Andric } 11640b57cec5SDimitry Andric 11650b57cec5SDimitry Andric // Does "B op C" simplify to the identity value for the inner opcode? 11660b57cec5SDimitry Andric if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 11670b57cec5SDimitry Andric // They do! Return "A op C". 11680b57cec5SDimitry Andric ++NumExpand; 11690b57cec5SDimitry Andric C = Builder.CreateBinOp(TopLevelOpcode, A, C); 11700b57cec5SDimitry Andric C->takeName(&I); 11710b57cec5SDimitry Andric return C; 11720b57cec5SDimitry Andric } 11730b57cec5SDimitry Andric } 11740b57cec5SDimitry Andric 11750b57cec5SDimitry Andric if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { 11760b57cec5SDimitry Andric // The instruction has the form "A op (B op' C)". See if expanding it out 11770b57cec5SDimitry Andric // to "(A op B) op' (A op C)" results in simplifications. 11780b57cec5SDimitry Andric Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 11790b57cec5SDimitry Andric Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' 11800b57cec5SDimitry Andric 1181e8d8bef9SDimitry Andric // Disable the use of undef because it's not safe to distribute undef. 1182e8d8bef9SDimitry Andric auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef(); 118381ad6265SDimitry Andric Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive); 118481ad6265SDimitry Andric Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive); 11850b57cec5SDimitry Andric 11860b57cec5SDimitry Andric // Do "A op B" and "A op C" both simplify? 11870b57cec5SDimitry Andric if (L && R) { 11880b57cec5SDimitry Andric // They do! Return "L op' R". 11890b57cec5SDimitry Andric ++NumExpand; 11900b57cec5SDimitry Andric A = Builder.CreateBinOp(InnerOpcode, L, R); 11910b57cec5SDimitry Andric A->takeName(&I); 11920b57cec5SDimitry Andric return A; 11930b57cec5SDimitry Andric } 11940b57cec5SDimitry Andric 11950b57cec5SDimitry Andric // Does "A op B" simplify to the identity value for the inner opcode? 11960b57cec5SDimitry Andric if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) { 11970b57cec5SDimitry Andric // They do! Return "A op C". 11980b57cec5SDimitry Andric ++NumExpand; 11990b57cec5SDimitry Andric A = Builder.CreateBinOp(TopLevelOpcode, A, C); 12000b57cec5SDimitry Andric A->takeName(&I); 12010b57cec5SDimitry Andric return A; 12020b57cec5SDimitry Andric } 12030b57cec5SDimitry Andric 12040b57cec5SDimitry Andric // Does "A op C" simplify to the identity value for the inner opcode? 12050b57cec5SDimitry Andric if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) { 12060b57cec5SDimitry Andric // They do! Return "A op B". 12070b57cec5SDimitry Andric ++NumExpand; 12080b57cec5SDimitry Andric A = Builder.CreateBinOp(TopLevelOpcode, A, B); 12090b57cec5SDimitry Andric A->takeName(&I); 12100b57cec5SDimitry Andric return A; 12110b57cec5SDimitry Andric } 12120b57cec5SDimitry Andric } 12130b57cec5SDimitry Andric 12140b57cec5SDimitry Andric return SimplifySelectsFeedingBinaryOp(I, LHS, RHS); 12150b57cec5SDimitry Andric } 12160b57cec5SDimitry Andric 12171db9f3b2SDimitry Andric static std::optional<std::pair<Value *, Value *>> 12181db9f3b2SDimitry Andric matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) { 1219cb14a3feSDimitry Andric if (LHS->getParent() != RHS->getParent()) 1220cb14a3feSDimitry Andric return std::nullopt; 1221cb14a3feSDimitry Andric 1222cb14a3feSDimitry Andric if (LHS->getNumIncomingValues() < 2) 1223cb14a3feSDimitry Andric return std::nullopt; 1224cb14a3feSDimitry Andric 1225cb14a3feSDimitry Andric if (!equal(LHS->blocks(), RHS->blocks())) 1226cb14a3feSDimitry Andric return std::nullopt; 1227cb14a3feSDimitry Andric 1228cb14a3feSDimitry Andric Value *L0 = LHS->getIncomingValue(0); 1229cb14a3feSDimitry Andric Value *R0 = RHS->getIncomingValue(0); 1230cb14a3feSDimitry Andric 1231cb14a3feSDimitry Andric for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) { 1232cb14a3feSDimitry Andric Value *L1 = LHS->getIncomingValue(I); 1233cb14a3feSDimitry Andric Value *R1 = RHS->getIncomingValue(I); 1234cb14a3feSDimitry Andric 1235cb14a3feSDimitry Andric if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1)) 1236cb14a3feSDimitry Andric continue; 1237cb14a3feSDimitry Andric 1238cb14a3feSDimitry Andric return std::nullopt; 1239cb14a3feSDimitry Andric } 1240cb14a3feSDimitry Andric 1241cb14a3feSDimitry Andric return std::optional(std::pair(L0, R0)); 1242cb14a3feSDimitry Andric } 1243cb14a3feSDimitry Andric 12441db9f3b2SDimitry Andric std::optional<std::pair<Value *, Value *>> 12451db9f3b2SDimitry Andric InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) { 12461db9f3b2SDimitry Andric Instruction *LHSInst = dyn_cast<Instruction>(LHS); 12471db9f3b2SDimitry Andric Instruction *RHSInst = dyn_cast<Instruction>(RHS); 12481db9f3b2SDimitry Andric if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode()) 12491db9f3b2SDimitry Andric return std::nullopt; 12501db9f3b2SDimitry Andric switch (LHSInst->getOpcode()) { 12511db9f3b2SDimitry Andric case Instruction::PHI: 12521db9f3b2SDimitry Andric return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS)); 12531db9f3b2SDimitry Andric case Instruction::Select: { 12541db9f3b2SDimitry Andric Value *Cond = LHSInst->getOperand(0); 12551db9f3b2SDimitry Andric Value *TrueVal = LHSInst->getOperand(1); 12561db9f3b2SDimitry Andric Value *FalseVal = LHSInst->getOperand(2); 12571db9f3b2SDimitry Andric if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) && 12581db9f3b2SDimitry Andric FalseVal == RHSInst->getOperand(1)) 12591db9f3b2SDimitry Andric return std::pair(TrueVal, FalseVal); 12601db9f3b2SDimitry Andric return std::nullopt; 1261cb14a3feSDimitry Andric } 12621db9f3b2SDimitry Andric case Instruction::Call: { 12631db9f3b2SDimitry Andric // Match min(a, b) and max(a, b) 12641db9f3b2SDimitry Andric MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst); 12651db9f3b2SDimitry Andric MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst); 12661db9f3b2SDimitry Andric if (LHSMinMax && RHSMinMax && 12671db9f3b2SDimitry Andric LHSMinMax->getPredicate() == 12681db9f3b2SDimitry Andric ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) && 12691db9f3b2SDimitry Andric ((LHSMinMax->getLHS() == RHSMinMax->getLHS() && 12701db9f3b2SDimitry Andric LHSMinMax->getRHS() == RHSMinMax->getRHS()) || 12711db9f3b2SDimitry Andric (LHSMinMax->getLHS() == RHSMinMax->getRHS() && 12721db9f3b2SDimitry Andric LHSMinMax->getRHS() == RHSMinMax->getLHS()))) 12731db9f3b2SDimitry Andric return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS()); 12741db9f3b2SDimitry Andric return std::nullopt; 12751db9f3b2SDimitry Andric } 12761db9f3b2SDimitry Andric default: 12771db9f3b2SDimitry Andric return std::nullopt; 12781db9f3b2SDimitry Andric } 1279cb14a3feSDimitry Andric } 1280cb14a3feSDimitry Andric 1281e8d8bef9SDimitry Andric Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I, 1282e8d8bef9SDimitry Andric Value *LHS, 1283e8d8bef9SDimitry Andric Value *RHS) { 1284480093f4SDimitry Andric Value *A, *B, *C, *D, *E, *F; 1285480093f4SDimitry Andric bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C))); 1286480093f4SDimitry Andric bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F))); 1287480093f4SDimitry Andric if (!LHSIsSelect && !RHSIsSelect) 1288480093f4SDimitry Andric return nullptr; 12890b57cec5SDimitry Andric 12908bcb0991SDimitry Andric FastMathFlags FMF; 12918bcb0991SDimitry Andric BuilderTy::FastMathFlagGuard Guard(Builder); 12928bcb0991SDimitry Andric if (isa<FPMathOperator>(&I)) { 12938bcb0991SDimitry Andric FMF = I.getFastMathFlags(); 12948bcb0991SDimitry Andric Builder.setFastMathFlags(FMF); 12958bcb0991SDimitry Andric } 12968bcb0991SDimitry Andric 1297480093f4SDimitry Andric Instruction::BinaryOps Opcode = I.getOpcode(); 1298480093f4SDimitry Andric SimplifyQuery Q = SQ.getWithInstruction(&I); 12990b57cec5SDimitry Andric 1300480093f4SDimitry Andric Value *Cond, *True = nullptr, *False = nullptr; 1301bdd1243dSDimitry Andric 1302bdd1243dSDimitry Andric // Special-case for add/negate combination. Replace the zero in the negation 1303bdd1243dSDimitry Andric // with the trailing add operand: 1304bdd1243dSDimitry Andric // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N) 1305bdd1243dSDimitry Andric // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False 1306bdd1243dSDimitry Andric auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * { 1307bdd1243dSDimitry Andric // We need an 'add' and exactly 1 arm of the select to have been simplified. 1308bdd1243dSDimitry Andric if (Opcode != Instruction::Add || (!True && !False) || (True && False)) 1309bdd1243dSDimitry Andric return nullptr; 1310bdd1243dSDimitry Andric 1311bdd1243dSDimitry Andric Value *N; 1312bdd1243dSDimitry Andric if (True && match(FVal, m_Neg(m_Value(N)))) { 1313bdd1243dSDimitry Andric Value *Sub = Builder.CreateSub(Z, N); 1314bdd1243dSDimitry Andric return Builder.CreateSelect(Cond, True, Sub, I.getName()); 1315bdd1243dSDimitry Andric } 1316bdd1243dSDimitry Andric if (False && match(TVal, m_Neg(m_Value(N)))) { 1317bdd1243dSDimitry Andric Value *Sub = Builder.CreateSub(Z, N); 1318bdd1243dSDimitry Andric return Builder.CreateSelect(Cond, Sub, False, I.getName()); 1319bdd1243dSDimitry Andric } 1320bdd1243dSDimitry Andric return nullptr; 1321bdd1243dSDimitry Andric }; 1322bdd1243dSDimitry Andric 1323480093f4SDimitry Andric if (LHSIsSelect && RHSIsSelect && A == D) { 1324480093f4SDimitry Andric // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F) 1325480093f4SDimitry Andric Cond = A; 132681ad6265SDimitry Andric True = simplifyBinOp(Opcode, B, E, FMF, Q); 132781ad6265SDimitry Andric False = simplifyBinOp(Opcode, C, F, FMF, Q); 1328480093f4SDimitry Andric 1329480093f4SDimitry Andric if (LHS->hasOneUse() && RHS->hasOneUse()) { 1330480093f4SDimitry Andric if (False && !True) 1331480093f4SDimitry Andric True = Builder.CreateBinOp(Opcode, B, E); 1332480093f4SDimitry Andric else if (True && !False) 1333480093f4SDimitry Andric False = Builder.CreateBinOp(Opcode, C, F); 1334480093f4SDimitry Andric } 1335480093f4SDimitry Andric } else if (LHSIsSelect && LHS->hasOneUse()) { 1336480093f4SDimitry Andric // (A ? B : C) op Y -> A ? (B op Y) : (C op Y) 1337480093f4SDimitry Andric Cond = A; 133881ad6265SDimitry Andric True = simplifyBinOp(Opcode, B, RHS, FMF, Q); 133981ad6265SDimitry Andric False = simplifyBinOp(Opcode, C, RHS, FMF, Q); 1340bdd1243dSDimitry Andric if (Value *NewSel = foldAddNegate(B, C, RHS)) 1341bdd1243dSDimitry Andric return NewSel; 1342480093f4SDimitry Andric } else if (RHSIsSelect && RHS->hasOneUse()) { 1343480093f4SDimitry Andric // X op (D ? E : F) -> D ? (X op E) : (X op F) 1344480093f4SDimitry Andric Cond = D; 134581ad6265SDimitry Andric True = simplifyBinOp(Opcode, LHS, E, FMF, Q); 134681ad6265SDimitry Andric False = simplifyBinOp(Opcode, LHS, F, FMF, Q); 1347bdd1243dSDimitry Andric if (Value *NewSel = foldAddNegate(E, F, LHS)) 1348bdd1243dSDimitry Andric return NewSel; 13490b57cec5SDimitry Andric } 13500b57cec5SDimitry Andric 1351480093f4SDimitry Andric if (!True || !False) 1352480093f4SDimitry Andric return nullptr; 1353480093f4SDimitry Andric 1354480093f4SDimitry Andric Value *SI = Builder.CreateSelect(Cond, True, False); 1355480093f4SDimitry Andric SI->takeName(&I); 13560b57cec5SDimitry Andric return SI; 13570b57cec5SDimitry Andric } 13580b57cec5SDimitry Andric 1359e8d8bef9SDimitry Andric /// Freely adapt every user of V as-if V was changed to !V. 1360e8d8bef9SDimitry Andric /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done. 1361bdd1243dSDimitry Andric void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) { 136206c3fb27SDimitry Andric assert(!isa<Constant>(I) && "Shouldn't invert users of constant"); 1363bdd1243dSDimitry Andric for (User *U : make_early_inc_range(I->users())) { 1364bdd1243dSDimitry Andric if (U == IgnoredUser) 1365bdd1243dSDimitry Andric continue; // Don't consider this user. 1366e8d8bef9SDimitry Andric switch (cast<Instruction>(U)->getOpcode()) { 1367e8d8bef9SDimitry Andric case Instruction::Select: { 1368e8d8bef9SDimitry Andric auto *SI = cast<SelectInst>(U); 1369e8d8bef9SDimitry Andric SI->swapValues(); 1370e8d8bef9SDimitry Andric SI->swapProfMetadata(); 1371e8d8bef9SDimitry Andric break; 1372e8d8bef9SDimitry Andric } 1373*0fca6ea1SDimitry Andric case Instruction::Br: { 1374*0fca6ea1SDimitry Andric BranchInst *BI = cast<BranchInst>(U); 1375*0fca6ea1SDimitry Andric BI->swapSuccessors(); // swaps prof metadata too 1376*0fca6ea1SDimitry Andric if (BPI) 1377*0fca6ea1SDimitry Andric BPI->swapSuccEdgesProbabilities(BI->getParent()); 1378e8d8bef9SDimitry Andric break; 1379*0fca6ea1SDimitry Andric } 1380e8d8bef9SDimitry Andric case Instruction::Xor: 1381e8d8bef9SDimitry Andric replaceInstUsesWith(cast<Instruction>(*U), I); 13825f757f3fSDimitry Andric // Add to worklist for DCE. 13835f757f3fSDimitry Andric addToWorklist(cast<Instruction>(U)); 1384e8d8bef9SDimitry Andric break; 1385e8d8bef9SDimitry Andric default: 1386e8d8bef9SDimitry Andric llvm_unreachable("Got unexpected user - out of sync with " 1387e8d8bef9SDimitry Andric "canFreelyInvertAllUsersOf() ?"); 1388e8d8bef9SDimitry Andric } 1389e8d8bef9SDimitry Andric } 1390e8d8bef9SDimitry Andric } 1391e8d8bef9SDimitry Andric 13920b57cec5SDimitry Andric /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a 13930b57cec5SDimitry Andric /// constant zero (which is the 'negate' form). 1394e8d8bef9SDimitry Andric Value *InstCombinerImpl::dyn_castNegVal(Value *V) const { 13950b57cec5SDimitry Andric Value *NegV; 13960b57cec5SDimitry Andric if (match(V, m_Neg(m_Value(NegV)))) 13970b57cec5SDimitry Andric return NegV; 13980b57cec5SDimitry Andric 13990b57cec5SDimitry Andric // Constants can be considered to be negated values if they can be folded. 14000b57cec5SDimitry Andric if (ConstantInt *C = dyn_cast<ConstantInt>(V)) 14010b57cec5SDimitry Andric return ConstantExpr::getNeg(C); 14020b57cec5SDimitry Andric 14030b57cec5SDimitry Andric if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) 14040b57cec5SDimitry Andric if (C->getType()->getElementType()->isIntegerTy()) 14050b57cec5SDimitry Andric return ConstantExpr::getNeg(C); 14060b57cec5SDimitry Andric 14070b57cec5SDimitry Andric if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 14080b57cec5SDimitry Andric for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 14090b57cec5SDimitry Andric Constant *Elt = CV->getAggregateElement(i); 14100b57cec5SDimitry Andric if (!Elt) 14110b57cec5SDimitry Andric return nullptr; 14120b57cec5SDimitry Andric 14130b57cec5SDimitry Andric if (isa<UndefValue>(Elt)) 14140b57cec5SDimitry Andric continue; 14150b57cec5SDimitry Andric 14160b57cec5SDimitry Andric if (!isa<ConstantInt>(Elt)) 14170b57cec5SDimitry Andric return nullptr; 14180b57cec5SDimitry Andric } 14190b57cec5SDimitry Andric return ConstantExpr::getNeg(CV); 14200b57cec5SDimitry Andric } 14210b57cec5SDimitry Andric 1422fe6060f1SDimitry Andric // Negate integer vector splats. 1423fe6060f1SDimitry Andric if (auto *CV = dyn_cast<Constant>(V)) 1424fe6060f1SDimitry Andric if (CV->getType()->isVectorTy() && 1425fe6060f1SDimitry Andric CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue()) 1426fe6060f1SDimitry Andric return ConstantExpr::getNeg(CV); 1427fe6060f1SDimitry Andric 14280b57cec5SDimitry Andric return nullptr; 14290b57cec5SDimitry Andric } 14300b57cec5SDimitry Andric 1431*0fca6ea1SDimitry Andric // Try to fold: 1432*0fca6ea1SDimitry Andric // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1433*0fca6ea1SDimitry Andric // -> ({s|u}itofp (int_binop x, y)) 1434*0fca6ea1SDimitry Andric // 2) (fp_binop ({s|u}itofp x), FpC) 1435*0fca6ea1SDimitry Andric // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1436*0fca6ea1SDimitry Andric // 1437*0fca6ea1SDimitry Andric // Assuming the sign of the cast for x/y is `OpsFromSigned`. 1438*0fca6ea1SDimitry Andric Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign( 1439*0fca6ea1SDimitry Andric BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps, 1440*0fca6ea1SDimitry Andric Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) { 1441*0fca6ea1SDimitry Andric 1442*0fca6ea1SDimitry Andric Type *FPTy = BO.getType(); 1443*0fca6ea1SDimitry Andric Type *IntTy = IntOps[0]->getType(); 1444*0fca6ea1SDimitry Andric 1445*0fca6ea1SDimitry Andric unsigned IntSz = IntTy->getScalarSizeInBits(); 1446*0fca6ea1SDimitry Andric // This is the maximum number of inuse bits by the integer where the int -> fp 1447*0fca6ea1SDimitry Andric // casts are exact. 1448*0fca6ea1SDimitry Andric unsigned MaxRepresentableBits = 1449*0fca6ea1SDimitry Andric APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics()); 1450*0fca6ea1SDimitry Andric 1451*0fca6ea1SDimitry Andric // Preserve known number of leading bits. This can allow us to trivial nsw/nuw 1452*0fca6ea1SDimitry Andric // checks later on. 1453*0fca6ea1SDimitry Andric unsigned NumUsedLeadingBits[2] = {IntSz, IntSz}; 1454*0fca6ea1SDimitry Andric 1455*0fca6ea1SDimitry Andric // NB: This only comes up if OpsFromSigned is true, so there is no need to 1456*0fca6ea1SDimitry Andric // cache if between calls to `foldFBinOpOfIntCastsFromSign`. 1457*0fca6ea1SDimitry Andric auto IsNonZero = [&](unsigned OpNo) -> bool { 1458*0fca6ea1SDimitry Andric if (OpsKnown[OpNo].hasKnownBits() && 1459*0fca6ea1SDimitry Andric OpsKnown[OpNo].getKnownBits(SQ).isNonZero()) 1460*0fca6ea1SDimitry Andric return true; 1461*0fca6ea1SDimitry Andric return isKnownNonZero(IntOps[OpNo], SQ); 1462*0fca6ea1SDimitry Andric }; 1463*0fca6ea1SDimitry Andric 1464*0fca6ea1SDimitry Andric auto IsNonNeg = [&](unsigned OpNo) -> bool { 1465*0fca6ea1SDimitry Andric // NB: This matches the impl in ValueTracking, we just try to use cached 1466*0fca6ea1SDimitry Andric // knownbits here. If we ever start supporting WithCache for 1467*0fca6ea1SDimitry Andric // `isKnownNonNegative`, change this to an explicit call. 1468*0fca6ea1SDimitry Andric return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative(); 1469*0fca6ea1SDimitry Andric }; 1470*0fca6ea1SDimitry Andric 1471*0fca6ea1SDimitry Andric // Check if we know for certain that ({s|u}itofp op) is exact. 1472*0fca6ea1SDimitry Andric auto IsValidPromotion = [&](unsigned OpNo) -> bool { 1473*0fca6ea1SDimitry Andric // Can we treat this operand as the desired sign? 1474*0fca6ea1SDimitry Andric if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) && 1475*0fca6ea1SDimitry Andric !IsNonNeg(OpNo)) 1476*0fca6ea1SDimitry Andric return false; 1477*0fca6ea1SDimitry Andric 1478*0fca6ea1SDimitry Andric // If fp precision >= bitwidth(op) then its exact. 1479*0fca6ea1SDimitry Andric // NB: This is slightly conservative for `sitofp`. For signed conversion, we 1480*0fca6ea1SDimitry Andric // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be 1481*0fca6ea1SDimitry Andric // handled specially. We can't, however, increase the bound arbitrarily for 1482*0fca6ea1SDimitry Andric // `sitofp` as for larger sizes, it won't sign extend. 1483*0fca6ea1SDimitry Andric if (MaxRepresentableBits < IntSz) { 1484*0fca6ea1SDimitry Andric // Otherwise if its signed cast check that fp precisions >= bitwidth(op) - 1485*0fca6ea1SDimitry Andric // numSignBits(op). 1486*0fca6ea1SDimitry Andric // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change 1487*0fca6ea1SDimitry Andric // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`. 1488*0fca6ea1SDimitry Andric if (OpsFromSigned) 1489*0fca6ea1SDimitry Andric NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]); 1490*0fca6ea1SDimitry Andric // Finally for unsigned check that fp precision >= bitwidth(op) - 1491*0fca6ea1SDimitry Andric // numLeadingZeros(op). 1492*0fca6ea1SDimitry Andric else { 1493*0fca6ea1SDimitry Andric NumUsedLeadingBits[OpNo] = 1494*0fca6ea1SDimitry Andric IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros(); 1495*0fca6ea1SDimitry Andric } 1496*0fca6ea1SDimitry Andric } 1497*0fca6ea1SDimitry Andric // NB: We could also check if op is known to be a power of 2 or zero (which 1498*0fca6ea1SDimitry Andric // will always be representable). Its unlikely, however, that is we are 1499*0fca6ea1SDimitry Andric // unable to bound op in any way we will be able to pass the overflow checks 1500*0fca6ea1SDimitry Andric // later on. 1501*0fca6ea1SDimitry Andric 1502*0fca6ea1SDimitry Andric if (MaxRepresentableBits < NumUsedLeadingBits[OpNo]) 1503*0fca6ea1SDimitry Andric return false; 1504*0fca6ea1SDimitry Andric // Signed + Mul also requires that op is non-zero to avoid -0 cases. 1505*0fca6ea1SDimitry Andric return !OpsFromSigned || BO.getOpcode() != Instruction::FMul || 1506*0fca6ea1SDimitry Andric IsNonZero(OpNo); 1507*0fca6ea1SDimitry Andric }; 1508*0fca6ea1SDimitry Andric 1509*0fca6ea1SDimitry Andric // If we have a constant rhs, see if we can losslessly convert it to an int. 1510*0fca6ea1SDimitry Andric if (Op1FpC != nullptr) { 1511*0fca6ea1SDimitry Andric // Signed + Mul req non-zero 1512*0fca6ea1SDimitry Andric if (OpsFromSigned && BO.getOpcode() == Instruction::FMul && 1513*0fca6ea1SDimitry Andric !match(Op1FpC, m_NonZeroFP())) 1514*0fca6ea1SDimitry Andric return nullptr; 1515*0fca6ea1SDimitry Andric 1516*0fca6ea1SDimitry Andric Constant *Op1IntC = ConstantFoldCastOperand( 1517*0fca6ea1SDimitry Andric OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC, 1518*0fca6ea1SDimitry Andric IntTy, DL); 1519*0fca6ea1SDimitry Andric if (Op1IntC == nullptr) 1520*0fca6ea1SDimitry Andric return nullptr; 1521*0fca6ea1SDimitry Andric if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP 1522*0fca6ea1SDimitry Andric : Instruction::UIToFP, 1523*0fca6ea1SDimitry Andric Op1IntC, FPTy, DL) != Op1FpC) 1524*0fca6ea1SDimitry Andric return nullptr; 1525*0fca6ea1SDimitry Andric 1526*0fca6ea1SDimitry Andric // First try to keep sign of cast the same. 1527*0fca6ea1SDimitry Andric IntOps[1] = Op1IntC; 1528*0fca6ea1SDimitry Andric } 1529*0fca6ea1SDimitry Andric 1530*0fca6ea1SDimitry Andric // Ensure lhs/rhs integer types match. 1531*0fca6ea1SDimitry Andric if (IntTy != IntOps[1]->getType()) 1532*0fca6ea1SDimitry Andric return nullptr; 1533*0fca6ea1SDimitry Andric 1534*0fca6ea1SDimitry Andric if (Op1FpC == nullptr) { 1535*0fca6ea1SDimitry Andric if (!IsValidPromotion(1)) 1536*0fca6ea1SDimitry Andric return nullptr; 1537*0fca6ea1SDimitry Andric } 1538*0fca6ea1SDimitry Andric if (!IsValidPromotion(0)) 1539*0fca6ea1SDimitry Andric return nullptr; 1540*0fca6ea1SDimitry Andric 1541*0fca6ea1SDimitry Andric // Final we check if the integer version of the binop will not overflow. 1542*0fca6ea1SDimitry Andric BinaryOperator::BinaryOps IntOpc; 1543*0fca6ea1SDimitry Andric // Because of the precision check, we can often rule out overflows. 1544*0fca6ea1SDimitry Andric bool NeedsOverflowCheck = true; 1545*0fca6ea1SDimitry Andric // Try to conservatively rule out overflow based on the already done precision 1546*0fca6ea1SDimitry Andric // checks. 1547*0fca6ea1SDimitry Andric unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1; 1548*0fca6ea1SDimitry Andric unsigned OverflowMaxCurBits = 1549*0fca6ea1SDimitry Andric std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]); 1550*0fca6ea1SDimitry Andric bool OutputSigned = OpsFromSigned; 1551*0fca6ea1SDimitry Andric switch (BO.getOpcode()) { 1552*0fca6ea1SDimitry Andric case Instruction::FAdd: 1553*0fca6ea1SDimitry Andric IntOpc = Instruction::Add; 1554*0fca6ea1SDimitry Andric OverflowMaxOutputBits += OverflowMaxCurBits; 1555*0fca6ea1SDimitry Andric break; 1556*0fca6ea1SDimitry Andric case Instruction::FSub: 1557*0fca6ea1SDimitry Andric IntOpc = Instruction::Sub; 1558*0fca6ea1SDimitry Andric OverflowMaxOutputBits += OverflowMaxCurBits; 1559*0fca6ea1SDimitry Andric break; 1560*0fca6ea1SDimitry Andric case Instruction::FMul: 1561*0fca6ea1SDimitry Andric IntOpc = Instruction::Mul; 1562*0fca6ea1SDimitry Andric OverflowMaxOutputBits += OverflowMaxCurBits * 2; 1563*0fca6ea1SDimitry Andric break; 1564*0fca6ea1SDimitry Andric default: 1565*0fca6ea1SDimitry Andric llvm_unreachable("Unsupported binop"); 1566*0fca6ea1SDimitry Andric } 1567*0fca6ea1SDimitry Andric // The precision check may have already ruled out overflow. 1568*0fca6ea1SDimitry Andric if (OverflowMaxOutputBits < IntSz) { 1569*0fca6ea1SDimitry Andric NeedsOverflowCheck = false; 1570*0fca6ea1SDimitry Andric // We can bound unsigned overflow from sub to in range signed value (this is 1571*0fca6ea1SDimitry Andric // what allows us to avoid the overflow check for sub). 1572*0fca6ea1SDimitry Andric if (IntOpc == Instruction::Sub) 1573*0fca6ea1SDimitry Andric OutputSigned = true; 1574*0fca6ea1SDimitry Andric } 1575*0fca6ea1SDimitry Andric 1576*0fca6ea1SDimitry Andric // Precision check did not rule out overflow, so need to check. 1577*0fca6ea1SDimitry Andric // TODO: If we add support for `WithCache` in `willNotOverflow`, change 1578*0fca6ea1SDimitry Andric // `IntOps[...]` arguments to `KnownOps[...]`. 1579*0fca6ea1SDimitry Andric if (NeedsOverflowCheck && 1580*0fca6ea1SDimitry Andric !willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned)) 1581*0fca6ea1SDimitry Andric return nullptr; 1582*0fca6ea1SDimitry Andric 1583*0fca6ea1SDimitry Andric Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]); 1584*0fca6ea1SDimitry Andric if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) { 1585*0fca6ea1SDimitry Andric IntBO->setHasNoSignedWrap(OutputSigned); 1586*0fca6ea1SDimitry Andric IntBO->setHasNoUnsignedWrap(!OutputSigned); 1587*0fca6ea1SDimitry Andric } 1588*0fca6ea1SDimitry Andric if (OutputSigned) 1589*0fca6ea1SDimitry Andric return new SIToFPInst(IntBinOp, FPTy); 1590*0fca6ea1SDimitry Andric return new UIToFPInst(IntBinOp, FPTy); 1591*0fca6ea1SDimitry Andric } 1592*0fca6ea1SDimitry Andric 1593*0fca6ea1SDimitry Andric // Try to fold: 1594*0fca6ea1SDimitry Andric // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y)) 1595*0fca6ea1SDimitry Andric // -> ({s|u}itofp (int_binop x, y)) 1596*0fca6ea1SDimitry Andric // 2) (fp_binop ({s|u}itofp x), FpC) 1597*0fca6ea1SDimitry Andric // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC))) 1598*0fca6ea1SDimitry Andric Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) { 1599*0fca6ea1SDimitry Andric std::array<Value *, 2> IntOps = {nullptr, nullptr}; 1600*0fca6ea1SDimitry Andric Constant *Op1FpC = nullptr; 1601*0fca6ea1SDimitry Andric // Check for: 1602*0fca6ea1SDimitry Andric // 1) (binop ({s|u}itofp x), ({s|u}itofp y)) 1603*0fca6ea1SDimitry Andric // 2) (binop ({s|u}itofp x), FpC) 1604*0fca6ea1SDimitry Andric if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) && 1605*0fca6ea1SDimitry Andric !match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0])))) 1606*0fca6ea1SDimitry Andric return nullptr; 1607*0fca6ea1SDimitry Andric 1608*0fca6ea1SDimitry Andric if (!match(BO.getOperand(1), m_Constant(Op1FpC)) && 1609*0fca6ea1SDimitry Andric !match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) && 1610*0fca6ea1SDimitry Andric !match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1])))) 1611*0fca6ea1SDimitry Andric return nullptr; 1612*0fca6ea1SDimitry Andric 1613*0fca6ea1SDimitry Andric // Cache KnownBits a bit to potentially save some analysis. 1614*0fca6ea1SDimitry Andric SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]}; 1615*0fca6ea1SDimitry Andric 1616*0fca6ea1SDimitry Andric // Try treating x/y as coming from both `uitofp` and `sitofp`. There are 1617*0fca6ea1SDimitry Andric // different constraints depending on the sign of the cast. 1618*0fca6ea1SDimitry Andric // NB: `(uitofp nneg X)` == `(sitofp nneg X)`. 1619*0fca6ea1SDimitry Andric if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false, 1620*0fca6ea1SDimitry Andric IntOps, Op1FpC, OpsKnown)) 1621*0fca6ea1SDimitry Andric return R; 1622*0fca6ea1SDimitry Andric return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps, 1623*0fca6ea1SDimitry Andric Op1FpC, OpsKnown); 1624*0fca6ea1SDimitry Andric } 1625*0fca6ea1SDimitry Andric 16264824e7fdSDimitry Andric /// A binop with a constant operand and a sign-extended boolean operand may be 16274824e7fdSDimitry Andric /// converted into a select of constants by applying the binary operation to 16284824e7fdSDimitry Andric /// the constant with the two possible values of the extended boolean (0 or -1). 16294824e7fdSDimitry Andric Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) { 16304824e7fdSDimitry Andric // TODO: Handle non-commutative binop (constant is operand 0). 16314824e7fdSDimitry Andric // TODO: Handle zext. 16324824e7fdSDimitry Andric // TODO: Peek through 'not' of cast. 16334824e7fdSDimitry Andric Value *BO0 = BO.getOperand(0); 16344824e7fdSDimitry Andric Value *BO1 = BO.getOperand(1); 16354824e7fdSDimitry Andric Value *X; 16364824e7fdSDimitry Andric Constant *C; 16374824e7fdSDimitry Andric if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) || 16384824e7fdSDimitry Andric !X->getType()->isIntOrIntVectorTy(1)) 16394824e7fdSDimitry Andric return nullptr; 16404824e7fdSDimitry Andric 16414824e7fdSDimitry Andric // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C) 16424824e7fdSDimitry Andric Constant *Ones = ConstantInt::getAllOnesValue(BO.getType()); 16434824e7fdSDimitry Andric Constant *Zero = ConstantInt::getNullValue(BO.getType()); 164481ad6265SDimitry Andric Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C); 164581ad6265SDimitry Andric Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C); 16464824e7fdSDimitry Andric return SelectInst::Create(X, TVal, FVal); 16474824e7fdSDimitry Andric } 16484824e7fdSDimitry Andric 164906c3fb27SDimitry Andric static Constant *constantFoldOperationIntoSelectOperand(Instruction &I, 165006c3fb27SDimitry Andric SelectInst *SI, 165106c3fb27SDimitry Andric bool IsTrueArm) { 1652fcaf7f86SDimitry Andric SmallVector<Constant *> ConstOps; 1653fcaf7f86SDimitry Andric for (Value *Op : I.operands()) { 165406c3fb27SDimitry Andric CmpInst::Predicate Pred; 165506c3fb27SDimitry Andric Constant *C = nullptr; 165606c3fb27SDimitry Andric if (Op == SI) { 165706c3fb27SDimitry Andric C = dyn_cast<Constant>(IsTrueArm ? SI->getTrueValue() 165806c3fb27SDimitry Andric : SI->getFalseValue()); 165906c3fb27SDimitry Andric } else if (match(SI->getCondition(), 166006c3fb27SDimitry Andric m_ICmp(Pred, m_Specific(Op), m_Constant(C))) && 166106c3fb27SDimitry Andric Pred == (IsTrueArm ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 166206c3fb27SDimitry Andric isGuaranteedNotToBeUndefOrPoison(C)) { 166306c3fb27SDimitry Andric // Pass 166406c3fb27SDimitry Andric } else { 166506c3fb27SDimitry Andric C = dyn_cast<Constant>(Op); 1666fcaf7f86SDimitry Andric } 166706c3fb27SDimitry Andric if (C == nullptr) 166806c3fb27SDimitry Andric return nullptr; 166906c3fb27SDimitry Andric 167006c3fb27SDimitry Andric ConstOps.push_back(C); 167106c3fb27SDimitry Andric } 167206c3fb27SDimitry Andric 1673*0fca6ea1SDimitry Andric return ConstantFoldInstOperands(&I, ConstOps, I.getDataLayout()); 1674fcaf7f86SDimitry Andric } 1675fcaf7f86SDimitry Andric 167606c3fb27SDimitry Andric static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI, 167706c3fb27SDimitry Andric Value *NewOp, InstCombiner &IC) { 167806c3fb27SDimitry Andric Instruction *Clone = I.clone(); 167906c3fb27SDimitry Andric Clone->replaceUsesOfWith(SI, NewOp); 1680439352acSDimitry Andric Clone->dropUBImplyingAttrsAndMetadata(); 16815f757f3fSDimitry Andric IC.InsertNewInstBefore(Clone, SI->getIterator()); 168206c3fb27SDimitry Andric return Clone; 16830b57cec5SDimitry Andric } 16840b57cec5SDimitry Andric 168581ad6265SDimitry Andric Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI, 168681ad6265SDimitry Andric bool FoldWithMultiUse) { 168781ad6265SDimitry Andric // Don't modify shared select instructions unless set FoldWithMultiUse 168881ad6265SDimitry Andric if (!SI->hasOneUse() && !FoldWithMultiUse) 16890b57cec5SDimitry Andric return nullptr; 16900b57cec5SDimitry Andric 16910b57cec5SDimitry Andric Value *TV = SI->getTrueValue(); 16920b57cec5SDimitry Andric Value *FV = SI->getFalseValue(); 16930b57cec5SDimitry Andric if (!(isa<Constant>(TV) || isa<Constant>(FV))) 16940b57cec5SDimitry Andric return nullptr; 16950b57cec5SDimitry Andric 16960b57cec5SDimitry Andric // Bool selects with constant operands can be folded to logical ops. 16970b57cec5SDimitry Andric if (SI->getType()->isIntOrIntVectorTy(1)) 16980b57cec5SDimitry Andric return nullptr; 16990b57cec5SDimitry Andric 17005f757f3fSDimitry Andric // Test if a FCmpInst instruction is used exclusively by a select as 17015f757f3fSDimitry Andric // part of a minimum or maximum operation. If so, refrain from doing 17025f757f3fSDimitry Andric // any other folding. This helps out other analyses which understand 17035f757f3fSDimitry Andric // non-obfuscated minimum and maximum idioms. And in this case, at 17045f757f3fSDimitry Andric // least one of the comparison operands has at least one user besides 17055f757f3fSDimitry Andric // the compare (the select), which would often largely negate the 17065f757f3fSDimitry Andric // benefit of folding anyway. 17075f757f3fSDimitry Andric if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) { 17085f757f3fSDimitry Andric if (CI->hasOneUse()) { 17095f757f3fSDimitry Andric Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); 17105f757f3fSDimitry Andric if ((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) 17115f757f3fSDimitry Andric return nullptr; 17125f757f3fSDimitry Andric } 17135f757f3fSDimitry Andric } 17145f757f3fSDimitry Andric 1715fcaf7f86SDimitry Andric // Make sure that one of the select arms constant folds successfully. 171606c3fb27SDimitry Andric Value *NewTV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ true); 171706c3fb27SDimitry Andric Value *NewFV = constantFoldOperationIntoSelectOperand(Op, SI, /*IsTrueArm*/ false); 1718fcaf7f86SDimitry Andric if (!NewTV && !NewFV) 1719fcaf7f86SDimitry Andric return nullptr; 1720fcaf7f86SDimitry Andric 1721fcaf7f86SDimitry Andric // Create an instruction for the arm that did not fold. 1722fcaf7f86SDimitry Andric if (!NewTV) 172306c3fb27SDimitry Andric NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this); 1724fcaf7f86SDimitry Andric if (!NewFV) 172506c3fb27SDimitry Andric NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this); 17260b57cec5SDimitry Andric return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI); 17270b57cec5SDimitry Andric } 17280b57cec5SDimitry Andric 17295f757f3fSDimitry Andric static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN, 17305f757f3fSDimitry Andric Value *InValue, BasicBlock *InBB, 17315f757f3fSDimitry Andric const DataLayout &DL, 17325f757f3fSDimitry Andric const SimplifyQuery SQ) { 17335f757f3fSDimitry Andric // NB: It is a precondition of this transform that the operands be 17345f757f3fSDimitry Andric // phi translatable! This is usually trivially satisfied by limiting it 17355f757f3fSDimitry Andric // to constant ops, and for selects we do a more sophisticated check. 17365f757f3fSDimitry Andric SmallVector<Value *> Ops; 17375f757f3fSDimitry Andric for (Value *Op : I.operands()) { 17385f757f3fSDimitry Andric if (Op == PN) 17395f757f3fSDimitry Andric Ops.push_back(InValue); 17405f757f3fSDimitry Andric else 17415f757f3fSDimitry Andric Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB)); 17425f757f3fSDimitry Andric } 17435f757f3fSDimitry Andric 17445f757f3fSDimitry Andric // Don't consider the simplification successful if we get back a constant 17455f757f3fSDimitry Andric // expression. That's just an instruction in hiding. 17465f757f3fSDimitry Andric // Also reject the case where we simplify back to the phi node. We wouldn't 17475f757f3fSDimitry Andric // be able to remove it in that case. 17485f757f3fSDimitry Andric Value *NewVal = simplifyInstructionWithOperands( 17495f757f3fSDimitry Andric &I, Ops, SQ.getWithInstruction(InBB->getTerminator())); 17505f757f3fSDimitry Andric if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr())) 17515f757f3fSDimitry Andric return NewVal; 17525f757f3fSDimitry Andric 17535f757f3fSDimitry Andric // Check if incoming PHI value can be replaced with constant 17545f757f3fSDimitry Andric // based on implied condition. 17555f757f3fSDimitry Andric BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator()); 17565f757f3fSDimitry Andric const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I); 17575f757f3fSDimitry Andric if (TerminatorBI && TerminatorBI->isConditional() && 17585f757f3fSDimitry Andric TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) { 17595f757f3fSDimitry Andric bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent(); 17605f757f3fSDimitry Andric std::optional<bool> ImpliedCond = 17615f757f3fSDimitry Andric isImpliedCondition(TerminatorBI->getCondition(), ICmp->getPredicate(), 17625f757f3fSDimitry Andric Ops[0], Ops[1], DL, LHSIsTrue); 17635f757f3fSDimitry Andric if (ImpliedCond) 17645f757f3fSDimitry Andric return ConstantInt::getBool(I.getType(), ImpliedCond.value()); 17655f757f3fSDimitry Andric } 17665f757f3fSDimitry Andric 17675f757f3fSDimitry Andric return nullptr; 17685f757f3fSDimitry Andric } 17695f757f3fSDimitry Andric 1770e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) { 17710b57cec5SDimitry Andric unsigned NumPHIValues = PN->getNumIncomingValues(); 17720b57cec5SDimitry Andric if (NumPHIValues == 0) 17730b57cec5SDimitry Andric return nullptr; 17740b57cec5SDimitry Andric 17750b57cec5SDimitry Andric // We normally only transform phis with a single use. However, if a PHI has 17760b57cec5SDimitry Andric // multiple uses and they are all the same operation, we can fold *all* of the 17770b57cec5SDimitry Andric // uses into the PHI. 17780b57cec5SDimitry Andric if (!PN->hasOneUse()) { 17790b57cec5SDimitry Andric // Walk the use list for the instruction, comparing them to I. 17800b57cec5SDimitry Andric for (User *U : PN->users()) { 17810b57cec5SDimitry Andric Instruction *UI = cast<Instruction>(U); 17820b57cec5SDimitry Andric if (UI != &I && !I.isIdenticalTo(UI)) 17830b57cec5SDimitry Andric return nullptr; 17840b57cec5SDimitry Andric } 17850b57cec5SDimitry Andric // Otherwise, we can replace *all* users with the new PHI we form. 17860b57cec5SDimitry Andric } 17870b57cec5SDimitry Andric 1788bdd1243dSDimitry Andric // Check to see whether the instruction can be folded into each phi operand. 1789bdd1243dSDimitry Andric // If there is one operand that does not fold, remember the BB it is in. 1790bdd1243dSDimitry Andric // If there is more than one or if *it* is a PHI, bail out. 1791bdd1243dSDimitry Andric SmallVector<Value *> NewPhiValues; 1792bdd1243dSDimitry Andric BasicBlock *NonSimplifiedBB = nullptr; 1793bdd1243dSDimitry Andric Value *NonSimplifiedInVal = nullptr; 17940b57cec5SDimitry Andric for (unsigned i = 0; i != NumPHIValues; ++i) { 17950b57cec5SDimitry Andric Value *InVal = PN->getIncomingValue(i); 1796bdd1243dSDimitry Andric BasicBlock *InBB = PN->getIncomingBlock(i); 1797bdd1243dSDimitry Andric 17985f757f3fSDimitry Andric if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) { 1799bdd1243dSDimitry Andric NewPhiValues.push_back(NewVal); 1800349cc55cSDimitry Andric continue; 1801bdd1243dSDimitry Andric } 18020b57cec5SDimitry Andric 1803bdd1243dSDimitry Andric if (NonSimplifiedBB) return nullptr; // More than one non-simplified value. 18040b57cec5SDimitry Andric 1805bdd1243dSDimitry Andric NonSimplifiedBB = InBB; 1806bdd1243dSDimitry Andric NonSimplifiedInVal = InVal; 1807bdd1243dSDimitry Andric NewPhiValues.push_back(nullptr); 18080b57cec5SDimitry Andric 18090b57cec5SDimitry Andric // If the InVal is an invoke at the end of the pred block, then we can't 18100b57cec5SDimitry Andric // insert a computation after it without breaking the edge. 18110b57cec5SDimitry Andric if (isa<InvokeInst>(InVal)) 1812bdd1243dSDimitry Andric if (cast<Instruction>(InVal)->getParent() == NonSimplifiedBB) 18130b57cec5SDimitry Andric return nullptr; 18140b57cec5SDimitry Andric 181581ad6265SDimitry Andric // If the incoming non-constant value is reachable from the phis block, 181681ad6265SDimitry Andric // we'll push the operation across a loop backedge. This could result in 181781ad6265SDimitry Andric // an infinite combine loop, and is generally non-profitable (especially 181881ad6265SDimitry Andric // if the operation was originally outside the loop). 1819bdd1243dSDimitry Andric if (isPotentiallyReachable(PN->getParent(), NonSimplifiedBB, nullptr, &DT, 1820bdd1243dSDimitry Andric LI)) 18210b57cec5SDimitry Andric return nullptr; 18220b57cec5SDimitry Andric } 18230b57cec5SDimitry Andric 1824bdd1243dSDimitry Andric // If there is exactly one non-simplified value, we can insert a copy of the 18250b57cec5SDimitry Andric // operation in that block. However, if this is a critical edge, we would be 18260b57cec5SDimitry Andric // inserting the computation on some other paths (e.g. inside a loop). Only 18270b57cec5SDimitry Andric // do this if the pred block is unconditionally branching into the phi block. 1828e8d8bef9SDimitry Andric // Also, make sure that the pred block is not dead code. 1829bdd1243dSDimitry Andric if (NonSimplifiedBB != nullptr) { 1830bdd1243dSDimitry Andric BranchInst *BI = dyn_cast<BranchInst>(NonSimplifiedBB->getTerminator()); 1831bdd1243dSDimitry Andric if (!BI || !BI->isUnconditional() || 1832bdd1243dSDimitry Andric !DT.isReachableFromEntry(NonSimplifiedBB)) 1833e8d8bef9SDimitry Andric return nullptr; 18340b57cec5SDimitry Andric } 18350b57cec5SDimitry Andric 18360b57cec5SDimitry Andric // Okay, we can do the transformation: create the new PHI node. 18370b57cec5SDimitry Andric PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); 18385f757f3fSDimitry Andric InsertNewInstBefore(NewPN, PN->getIterator()); 18390b57cec5SDimitry Andric NewPN->takeName(PN); 184006c3fb27SDimitry Andric NewPN->setDebugLoc(PN->getDebugLoc()); 18410b57cec5SDimitry Andric 18420b57cec5SDimitry Andric // If we are going to have to insert a new computation, do so right before the 18430b57cec5SDimitry Andric // predecessor's terminator. 1844bdd1243dSDimitry Andric Instruction *Clone = nullptr; 1845bdd1243dSDimitry Andric if (NonSimplifiedBB) { 1846bdd1243dSDimitry Andric Clone = I.clone(); 1847bdd1243dSDimitry Andric for (Use &U : Clone->operands()) { 1848bdd1243dSDimitry Andric if (U == PN) 1849bdd1243dSDimitry Andric U = NonSimplifiedInVal; 1850bdd1243dSDimitry Andric else 1851bdd1243dSDimitry Andric U = U->DoPHITranslation(PN->getParent(), NonSimplifiedBB); 1852bdd1243dSDimitry Andric } 18535f757f3fSDimitry Andric InsertNewInstBefore(Clone, NonSimplifiedBB->getTerminator()->getIterator()); 1854bdd1243dSDimitry Andric } 18550b57cec5SDimitry Andric 18560b57cec5SDimitry Andric for (unsigned i = 0; i != NumPHIValues; ++i) { 1857bdd1243dSDimitry Andric if (NewPhiValues[i]) 1858bdd1243dSDimitry Andric NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i)); 18590b57cec5SDimitry Andric else 1860bdd1243dSDimitry Andric NewPN->addIncoming(Clone, PN->getIncomingBlock(i)); 18610b57cec5SDimitry Andric } 18620b57cec5SDimitry Andric 1863e8d8bef9SDimitry Andric for (User *U : make_early_inc_range(PN->users())) { 1864e8d8bef9SDimitry Andric Instruction *User = cast<Instruction>(U); 18650b57cec5SDimitry Andric if (User == &I) continue; 18660b57cec5SDimitry Andric replaceInstUsesWith(*User, NewPN); 18670b57cec5SDimitry Andric eraseInstFromFunction(*User); 18680b57cec5SDimitry Andric } 186906c3fb27SDimitry Andric 187006c3fb27SDimitry Andric replaceAllDbgUsesWith(const_cast<PHINode &>(*PN), 187106c3fb27SDimitry Andric const_cast<PHINode &>(*NewPN), 187206c3fb27SDimitry Andric const_cast<PHINode &>(*PN), DT); 18730b57cec5SDimitry Andric return replaceInstUsesWith(I, NewPN); 18740b57cec5SDimitry Andric } 18750b57cec5SDimitry Andric 187604eeddc0SDimitry Andric Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) { 187704eeddc0SDimitry Andric // TODO: This should be similar to the incoming values check in foldOpIntoPhi: 187804eeddc0SDimitry Andric // we are guarding against replicating the binop in >1 predecessor. 187904eeddc0SDimitry Andric // This could miss matching a phi with 2 constant incoming values. 188004eeddc0SDimitry Andric auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0)); 188104eeddc0SDimitry Andric auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1)); 188204eeddc0SDimitry Andric if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() || 188306c3fb27SDimitry Andric Phi0->getNumOperands() != Phi1->getNumOperands()) 188404eeddc0SDimitry Andric return nullptr; 188504eeddc0SDimitry Andric 188604eeddc0SDimitry Andric // TODO: Remove the restriction for binop being in the same block as the phis. 188704eeddc0SDimitry Andric if (BO.getParent() != Phi0->getParent() || 188804eeddc0SDimitry Andric BO.getParent() != Phi1->getParent()) 188904eeddc0SDimitry Andric return nullptr; 189004eeddc0SDimitry Andric 189106c3fb27SDimitry Andric // Fold if there is at least one specific constant value in phi0 or phi1's 189206c3fb27SDimitry Andric // incoming values that comes from the same block and this specific constant 189306c3fb27SDimitry Andric // value can be used to do optimization for specific binary operator. 189406c3fb27SDimitry Andric // For example: 189506c3fb27SDimitry Andric // %phi0 = phi i32 [0, %bb0], [%i, %bb1] 189606c3fb27SDimitry Andric // %phi1 = phi i32 [%j, %bb0], [0, %bb1] 189706c3fb27SDimitry Andric // %add = add i32 %phi0, %phi1 189806c3fb27SDimitry Andric // ==> 189906c3fb27SDimitry Andric // %add = phi i32 [%j, %bb0], [%i, %bb1] 190006c3fb27SDimitry Andric Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(), 190106c3fb27SDimitry Andric /*AllowRHSConstant*/ false); 190206c3fb27SDimitry Andric if (C) { 190306c3fb27SDimitry Andric SmallVector<Value *, 4> NewIncomingValues; 190406c3fb27SDimitry Andric auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) { 190506c3fb27SDimitry Andric auto &Phi0Use = std::get<0>(T); 190606c3fb27SDimitry Andric auto &Phi1Use = std::get<1>(T); 190706c3fb27SDimitry Andric if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use)) 190806c3fb27SDimitry Andric return false; 190906c3fb27SDimitry Andric Value *Phi0UseV = Phi0Use.get(); 191006c3fb27SDimitry Andric Value *Phi1UseV = Phi1Use.get(); 191106c3fb27SDimitry Andric if (Phi0UseV == C) 191206c3fb27SDimitry Andric NewIncomingValues.push_back(Phi1UseV); 191306c3fb27SDimitry Andric else if (Phi1UseV == C) 191406c3fb27SDimitry Andric NewIncomingValues.push_back(Phi0UseV); 191506c3fb27SDimitry Andric else 191606c3fb27SDimitry Andric return false; 191706c3fb27SDimitry Andric return true; 191806c3fb27SDimitry Andric }; 191906c3fb27SDimitry Andric 192006c3fb27SDimitry Andric if (all_of(zip(Phi0->operands(), Phi1->operands()), 192106c3fb27SDimitry Andric CanFoldIncomingValuePair)) { 192206c3fb27SDimitry Andric PHINode *NewPhi = 192306c3fb27SDimitry Andric PHINode::Create(Phi0->getType(), Phi0->getNumOperands()); 192406c3fb27SDimitry Andric assert(NewIncomingValues.size() == Phi0->getNumOperands() && 192506c3fb27SDimitry Andric "The number of collected incoming values should equal the number " 192606c3fb27SDimitry Andric "of the original PHINode operands!"); 192706c3fb27SDimitry Andric for (unsigned I = 0; I < Phi0->getNumOperands(); I++) 192806c3fb27SDimitry Andric NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I)); 192906c3fb27SDimitry Andric return NewPhi; 193006c3fb27SDimitry Andric } 193106c3fb27SDimitry Andric } 193206c3fb27SDimitry Andric 193306c3fb27SDimitry Andric if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2) 193406c3fb27SDimitry Andric return nullptr; 193506c3fb27SDimitry Andric 193604eeddc0SDimitry Andric // Match a pair of incoming constants for one of the predecessor blocks. 193704eeddc0SDimitry Andric BasicBlock *ConstBB, *OtherBB; 193804eeddc0SDimitry Andric Constant *C0, *C1; 193904eeddc0SDimitry Andric if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) { 194004eeddc0SDimitry Andric ConstBB = Phi0->getIncomingBlock(0); 194104eeddc0SDimitry Andric OtherBB = Phi0->getIncomingBlock(1); 194204eeddc0SDimitry Andric } else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) { 194304eeddc0SDimitry Andric ConstBB = Phi0->getIncomingBlock(1); 194404eeddc0SDimitry Andric OtherBB = Phi0->getIncomingBlock(0); 194504eeddc0SDimitry Andric } else { 194604eeddc0SDimitry Andric return nullptr; 194704eeddc0SDimitry Andric } 194804eeddc0SDimitry Andric if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1))) 194904eeddc0SDimitry Andric return nullptr; 195004eeddc0SDimitry Andric 195104eeddc0SDimitry Andric // The block that we are hoisting to must reach here unconditionally. 195204eeddc0SDimitry Andric // Otherwise, we could be speculatively executing an expensive or 195304eeddc0SDimitry Andric // non-speculative op. 195404eeddc0SDimitry Andric auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator()); 195504eeddc0SDimitry Andric if (!PredBlockBranch || PredBlockBranch->isConditional() || 195604eeddc0SDimitry Andric !DT.isReachableFromEntry(OtherBB)) 195704eeddc0SDimitry Andric return nullptr; 195804eeddc0SDimitry Andric 195904eeddc0SDimitry Andric // TODO: This check could be tightened to only apply to binops (div/rem) that 196004eeddc0SDimitry Andric // are not safe to speculatively execute. But that could allow hoisting 196104eeddc0SDimitry Andric // potentially expensive instructions (fdiv for example). 196204eeddc0SDimitry Andric for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter) 196304eeddc0SDimitry Andric if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter)) 196404eeddc0SDimitry Andric return nullptr; 196504eeddc0SDimitry Andric 1966753f127fSDimitry Andric // Fold constants for the predecessor block with constant incoming values. 1967753f127fSDimitry Andric Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL); 1968753f127fSDimitry Andric if (!NewC) 1969753f127fSDimitry Andric return nullptr; 1970753f127fSDimitry Andric 197104eeddc0SDimitry Andric // Make a new binop in the predecessor block with the non-constant incoming 197204eeddc0SDimitry Andric // values. 197304eeddc0SDimitry Andric Builder.SetInsertPoint(PredBlockBranch); 197404eeddc0SDimitry Andric Value *NewBO = Builder.CreateBinOp(BO.getOpcode(), 197504eeddc0SDimitry Andric Phi0->getIncomingValueForBlock(OtherBB), 197604eeddc0SDimitry Andric Phi1->getIncomingValueForBlock(OtherBB)); 197704eeddc0SDimitry Andric if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO)) 197804eeddc0SDimitry Andric NotFoldedNewBO->copyIRFlags(&BO); 197904eeddc0SDimitry Andric 198004eeddc0SDimitry Andric // Replace the binop with a phi of the new values. The old phis are dead. 198104eeddc0SDimitry Andric PHINode *NewPhi = PHINode::Create(BO.getType(), 2); 198204eeddc0SDimitry Andric NewPhi->addIncoming(NewBO, OtherBB); 198304eeddc0SDimitry Andric NewPhi->addIncoming(NewC, ConstBB); 198404eeddc0SDimitry Andric return NewPhi; 198504eeddc0SDimitry Andric } 198604eeddc0SDimitry Andric 1987e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) { 19880b57cec5SDimitry Andric if (!isa<Constant>(I.getOperand(1))) 19890b57cec5SDimitry Andric return nullptr; 19900b57cec5SDimitry Andric 19910b57cec5SDimitry Andric if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) { 19920b57cec5SDimitry Andric if (Instruction *NewSel = FoldOpIntoSelect(I, Sel)) 19930b57cec5SDimitry Andric return NewSel; 19940b57cec5SDimitry Andric } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) { 19950b57cec5SDimitry Andric if (Instruction *NewPhi = foldOpIntoPhi(I, PN)) 19960b57cec5SDimitry Andric return NewPhi; 19970b57cec5SDimitry Andric } 19980b57cec5SDimitry Andric return nullptr; 19990b57cec5SDimitry Andric } 20000b57cec5SDimitry Andric 20010b57cec5SDimitry Andric static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { 20020b57cec5SDimitry Andric // If this GEP has only 0 indices, it is the same pointer as 20030b57cec5SDimitry Andric // Src. If Src is not a trivial GEP too, don't combine 20040b57cec5SDimitry Andric // the indices. 20050b57cec5SDimitry Andric if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && 20060b57cec5SDimitry Andric !Src.hasOneUse()) 20070b57cec5SDimitry Andric return false; 20080b57cec5SDimitry Andric return true; 20090b57cec5SDimitry Andric } 20100b57cec5SDimitry Andric 2011e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) { 2012e8d8bef9SDimitry Andric if (!isa<VectorType>(Inst.getType())) 20135ffd83dbSDimitry Andric return nullptr; 20140b57cec5SDimitry Andric 20150b57cec5SDimitry Andric BinaryOperator::BinaryOps Opcode = Inst.getOpcode(); 20160b57cec5SDimitry Andric Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); 20175ffd83dbSDimitry Andric assert(cast<VectorType>(LHS->getType())->getElementCount() == 20185ffd83dbSDimitry Andric cast<VectorType>(Inst.getType())->getElementCount()); 20195ffd83dbSDimitry Andric assert(cast<VectorType>(RHS->getType())->getElementCount() == 20205ffd83dbSDimitry Andric cast<VectorType>(Inst.getType())->getElementCount()); 20210b57cec5SDimitry Andric 20220b57cec5SDimitry Andric // If both operands of the binop are vector concatenations, then perform the 20230b57cec5SDimitry Andric // narrow binop on each pair of the source operands followed by concatenation 20240b57cec5SDimitry Andric // of the results. 20250b57cec5SDimitry Andric Value *L0, *L1, *R0, *R1; 20265ffd83dbSDimitry Andric ArrayRef<int> Mask; 20275ffd83dbSDimitry Andric if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) && 20285ffd83dbSDimitry Andric match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) && 20290b57cec5SDimitry Andric LHS->hasOneUse() && RHS->hasOneUse() && 20300b57cec5SDimitry Andric cast<ShuffleVectorInst>(LHS)->isConcat() && 20310b57cec5SDimitry Andric cast<ShuffleVectorInst>(RHS)->isConcat()) { 20320b57cec5SDimitry Andric // This transform does not have the speculative execution constraint as 20330b57cec5SDimitry Andric // below because the shuffle is a concatenation. The new binops are 20340b57cec5SDimitry Andric // operating on exactly the same elements as the existing binop. 20350b57cec5SDimitry Andric // TODO: We could ease the mask requirement to allow different undef lanes, 20360b57cec5SDimitry Andric // but that requires an analysis of the binop-with-undef output value. 20370b57cec5SDimitry Andric Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0); 20380b57cec5SDimitry Andric if (auto *BO = dyn_cast<BinaryOperator>(NewBO0)) 20390b57cec5SDimitry Andric BO->copyIRFlags(&Inst); 20400b57cec5SDimitry Andric Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1); 20410b57cec5SDimitry Andric if (auto *BO = dyn_cast<BinaryOperator>(NewBO1)) 20420b57cec5SDimitry Andric BO->copyIRFlags(&Inst); 20430b57cec5SDimitry Andric return new ShuffleVectorInst(NewBO0, NewBO1, Mask); 20440b57cec5SDimitry Andric } 20450b57cec5SDimitry Andric 2046bdd1243dSDimitry Andric auto createBinOpReverse = [&](Value *X, Value *Y) { 2047bdd1243dSDimitry Andric Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName()); 2048bdd1243dSDimitry Andric if (auto *BO = dyn_cast<BinaryOperator>(V)) 2049bdd1243dSDimitry Andric BO->copyIRFlags(&Inst); 2050bdd1243dSDimitry Andric Module *M = Inst.getModule(); 2051*0fca6ea1SDimitry Andric Function *F = 2052*0fca6ea1SDimitry Andric Intrinsic::getDeclaration(M, Intrinsic::vector_reverse, V->getType()); 2053bdd1243dSDimitry Andric return CallInst::Create(F, V); 2054bdd1243dSDimitry Andric }; 2055bdd1243dSDimitry Andric 2056bdd1243dSDimitry Andric // NOTE: Reverse shuffles don't require the speculative execution protection 2057bdd1243dSDimitry Andric // below because they don't affect which lanes take part in the computation. 2058bdd1243dSDimitry Andric 2059bdd1243dSDimitry Andric Value *V1, *V2; 2060bdd1243dSDimitry Andric if (match(LHS, m_VecReverse(m_Value(V1)))) { 2061bdd1243dSDimitry Andric // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2)) 2062bdd1243dSDimitry Andric if (match(RHS, m_VecReverse(m_Value(V2))) && 2063bdd1243dSDimitry Andric (LHS->hasOneUse() || RHS->hasOneUse() || 2064bdd1243dSDimitry Andric (LHS == RHS && LHS->hasNUses(2)))) 2065bdd1243dSDimitry Andric return createBinOpReverse(V1, V2); 2066bdd1243dSDimitry Andric 2067bdd1243dSDimitry Andric // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat)) 2068bdd1243dSDimitry Andric if (LHS->hasOneUse() && isSplatValue(RHS)) 2069bdd1243dSDimitry Andric return createBinOpReverse(V1, RHS); 2070bdd1243dSDimitry Andric } 2071bdd1243dSDimitry Andric // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2)) 2072bdd1243dSDimitry Andric else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2))))) 2073bdd1243dSDimitry Andric return createBinOpReverse(LHS, V2); 2074bdd1243dSDimitry Andric 20750b57cec5SDimitry Andric // It may not be safe to reorder shuffles and things like div, urem, etc. 20760b57cec5SDimitry Andric // because we may trap when executing those ops on unknown vector elements. 20770b57cec5SDimitry Andric // See PR20059. 20780b57cec5SDimitry Andric if (!isSafeToSpeculativelyExecute(&Inst)) 20790b57cec5SDimitry Andric return nullptr; 20800b57cec5SDimitry Andric 20815ffd83dbSDimitry Andric auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) { 20820b57cec5SDimitry Andric Value *XY = Builder.CreateBinOp(Opcode, X, Y); 20830b57cec5SDimitry Andric if (auto *BO = dyn_cast<BinaryOperator>(XY)) 20840b57cec5SDimitry Andric BO->copyIRFlags(&Inst); 2085349cc55cSDimitry Andric return new ShuffleVectorInst(XY, M); 20860b57cec5SDimitry Andric }; 20870b57cec5SDimitry Andric 20880b57cec5SDimitry Andric // If both arguments of the binary operation are shuffles that use the same 20890b57cec5SDimitry Andric // mask and shuffle within a single vector, move the shuffle after the binop. 2090cb14a3feSDimitry Andric if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) && 2091cb14a3feSDimitry Andric match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) && 20920b57cec5SDimitry Andric V1->getType() == V2->getType() && 20930b57cec5SDimitry Andric (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) { 20940b57cec5SDimitry Andric // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask) 20950b57cec5SDimitry Andric return createBinOpShuffle(V1, V2, Mask); 20960b57cec5SDimitry Andric } 20970b57cec5SDimitry Andric 20980b57cec5SDimitry Andric // If both arguments of a commutative binop are select-shuffles that use the 20990b57cec5SDimitry Andric // same mask with commuted operands, the shuffles are unnecessary. 21000b57cec5SDimitry Andric if (Inst.isCommutative() && 21015ffd83dbSDimitry Andric match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) && 21025ffd83dbSDimitry Andric match(RHS, 21035ffd83dbSDimitry Andric m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) { 21040b57cec5SDimitry Andric auto *LShuf = cast<ShuffleVectorInst>(LHS); 21050b57cec5SDimitry Andric auto *RShuf = cast<ShuffleVectorInst>(RHS); 21060b57cec5SDimitry Andric // TODO: Allow shuffles that contain undefs in the mask? 21070b57cec5SDimitry Andric // That is legal, but it reduces undef knowledge. 21080b57cec5SDimitry Andric // TODO: Allow arbitrary shuffles by shuffling after binop? 21090b57cec5SDimitry Andric // That might be legal, but we have to deal with poison. 21105ffd83dbSDimitry Andric if (LShuf->isSelect() && 211106c3fb27SDimitry Andric !is_contained(LShuf->getShuffleMask(), PoisonMaskElem) && 21125ffd83dbSDimitry Andric RShuf->isSelect() && 211306c3fb27SDimitry Andric !is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) { 21140b57cec5SDimitry Andric // Example: 21150b57cec5SDimitry Andric // LHS = shuffle V1, V2, <0, 5, 6, 3> 21160b57cec5SDimitry Andric // RHS = shuffle V2, V1, <0, 5, 6, 3> 21170b57cec5SDimitry Andric // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2 21180b57cec5SDimitry Andric Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2); 21190b57cec5SDimitry Andric NewBO->copyIRFlags(&Inst); 21200b57cec5SDimitry Andric return NewBO; 21210b57cec5SDimitry Andric } 21220b57cec5SDimitry Andric } 21230b57cec5SDimitry Andric 21240b57cec5SDimitry Andric // If one argument is a shuffle within one vector and the other is a constant, 21250b57cec5SDimitry Andric // try moving the shuffle after the binary operation. This canonicalization 21260b57cec5SDimitry Andric // intends to move shuffles closer to other shuffles and binops closer to 21270b57cec5SDimitry Andric // other binops, so they can be folded. It may also enable demanded elements 21280b57cec5SDimitry Andric // transforms. 21290b57cec5SDimitry Andric Constant *C; 2130e8d8bef9SDimitry Andric auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType()); 2131e8d8bef9SDimitry Andric if (InstVTy && 2132cb14a3feSDimitry Andric match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(), 2133cb14a3feSDimitry Andric m_Mask(Mask))), 2134e8d8bef9SDimitry Andric m_ImmConstant(C))) && 2135e8d8bef9SDimitry Andric cast<FixedVectorType>(V1->getType())->getNumElements() <= 2136e8d8bef9SDimitry Andric InstVTy->getNumElements()) { 2137e8d8bef9SDimitry Andric assert(InstVTy->getScalarType() == V1->getType()->getScalarType() && 21380b57cec5SDimitry Andric "Shuffle should not change scalar type"); 21390b57cec5SDimitry Andric 21400b57cec5SDimitry Andric // Find constant NewC that has property: 21410b57cec5SDimitry Andric // shuffle(NewC, ShMask) = C 21420b57cec5SDimitry Andric // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>) 21430b57cec5SDimitry Andric // reorder is not possible. A 1-to-1 mapping is not required. Example: 21440b57cec5SDimitry Andric // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef> 21450b57cec5SDimitry Andric bool ConstOp1 = isa<Constant>(RHS); 21465ffd83dbSDimitry Andric ArrayRef<int> ShMask = Mask; 21475ffd83dbSDimitry Andric unsigned SrcVecNumElts = 21485ffd83dbSDimitry Andric cast<FixedVectorType>(V1->getType())->getNumElements(); 2149cb14a3feSDimitry Andric PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType()); 2150cb14a3feSDimitry Andric SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, PoisonScalar); 21510b57cec5SDimitry Andric bool MayChange = true; 2152e8d8bef9SDimitry Andric unsigned NumElts = InstVTy->getNumElements(); 21530b57cec5SDimitry Andric for (unsigned I = 0; I < NumElts; ++I) { 21540b57cec5SDimitry Andric Constant *CElt = C->getAggregateElement(I); 21550b57cec5SDimitry Andric if (ShMask[I] >= 0) { 21560b57cec5SDimitry Andric assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle"); 21570b57cec5SDimitry Andric Constant *NewCElt = NewVecC[ShMask[I]]; 21580b57cec5SDimitry Andric // Bail out if: 21590b57cec5SDimitry Andric // 1. The constant vector contains a constant expression. 21600b57cec5SDimitry Andric // 2. The shuffle needs an element of the constant vector that can't 21610b57cec5SDimitry Andric // be mapped to a new constant vector. 21620b57cec5SDimitry Andric // 3. This is a widening shuffle that copies elements of V1 into the 2163cb14a3feSDimitry Andric // extended elements (extending with poison is allowed). 2164cb14a3feSDimitry Andric if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) || 21650b57cec5SDimitry Andric I >= SrcVecNumElts) { 21660b57cec5SDimitry Andric MayChange = false; 21670b57cec5SDimitry Andric break; 21680b57cec5SDimitry Andric } 21690b57cec5SDimitry Andric NewVecC[ShMask[I]] = CElt; 21700b57cec5SDimitry Andric } 2171cb14a3feSDimitry Andric // If this is a widening shuffle, we must be able to extend with poison 2172cb14a3feSDimitry Andric // elements. If the original binop does not produce a poison in the high 21730b57cec5SDimitry Andric // lanes, then this transform is not safe. 2174cb14a3feSDimitry Andric // Similarly for poison lanes due to the shuffle mask, we can only 2175cb14a3feSDimitry Andric // transform binops that preserve poison. 2176cb14a3feSDimitry Andric // TODO: We could shuffle those non-poison constant values into the 2177cb14a3feSDimitry Andric // result by using a constant vector (rather than an poison vector) 21780b57cec5SDimitry Andric // as operand 1 of the new binop, but that might be too aggressive 21790b57cec5SDimitry Andric // for target-independent shuffle creation. 2180480093f4SDimitry Andric if (I >= SrcVecNumElts || ShMask[I] < 0) { 2181cb14a3feSDimitry Andric Constant *MaybePoison = 2182753f127fSDimitry Andric ConstOp1 2183cb14a3feSDimitry Andric ? ConstantFoldBinaryOpOperands(Opcode, PoisonScalar, CElt, DL) 2184cb14a3feSDimitry Andric : ConstantFoldBinaryOpOperands(Opcode, CElt, PoisonScalar, DL); 2185cb14a3feSDimitry Andric if (!MaybePoison || !isa<PoisonValue>(MaybePoison)) { 21860b57cec5SDimitry Andric MayChange = false; 21870b57cec5SDimitry Andric break; 21880b57cec5SDimitry Andric } 21890b57cec5SDimitry Andric } 21900b57cec5SDimitry Andric } 21910b57cec5SDimitry Andric if (MayChange) { 21920b57cec5SDimitry Andric Constant *NewC = ConstantVector::get(NewVecC); 2193cb14a3feSDimitry Andric // It may not be safe to execute a binop on a vector with poison elements 21940b57cec5SDimitry Andric // because the entire instruction can be folded to undef or create poison 21950b57cec5SDimitry Andric // that did not exist in the original code. 2196cb14a3feSDimitry Andric // TODO: The shift case should not be necessary. 21970b57cec5SDimitry Andric if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1)) 21980b57cec5SDimitry Andric NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1); 21990b57cec5SDimitry Andric 22000b57cec5SDimitry Andric // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask) 22010b57cec5SDimitry Andric // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask) 22020b57cec5SDimitry Andric Value *NewLHS = ConstOp1 ? V1 : NewC; 22030b57cec5SDimitry Andric Value *NewRHS = ConstOp1 ? NewC : V1; 22040b57cec5SDimitry Andric return createBinOpShuffle(NewLHS, NewRHS, Mask); 22050b57cec5SDimitry Andric } 22060b57cec5SDimitry Andric } 22070b57cec5SDimitry Andric 22085ffd83dbSDimitry Andric // Try to reassociate to sink a splat shuffle after a binary operation. 22095ffd83dbSDimitry Andric if (Inst.isAssociative() && Inst.isCommutative()) { 22105ffd83dbSDimitry Andric // Canonicalize shuffle operand as LHS. 22115ffd83dbSDimitry Andric if (isa<ShuffleVectorInst>(RHS)) 22125ffd83dbSDimitry Andric std::swap(LHS, RHS); 22135ffd83dbSDimitry Andric 22145ffd83dbSDimitry Andric Value *X; 22155ffd83dbSDimitry Andric ArrayRef<int> MaskC; 22165ffd83dbSDimitry Andric int SplatIndex; 2217349cc55cSDimitry Andric Value *Y, *OtherOp; 22185ffd83dbSDimitry Andric if (!match(LHS, 22195ffd83dbSDimitry Andric m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) || 2220*0fca6ea1SDimitry Andric !match(MaskC, m_SplatOrPoisonMask(SplatIndex)) || 2221349cc55cSDimitry Andric X->getType() != Inst.getType() || 2222349cc55cSDimitry Andric !match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp))))) 22235ffd83dbSDimitry Andric return nullptr; 22245ffd83dbSDimitry Andric 22255ffd83dbSDimitry Andric // FIXME: This may not be safe if the analysis allows undef elements. By 22265ffd83dbSDimitry Andric // moving 'Y' before the splat shuffle, we are implicitly assuming 22275ffd83dbSDimitry Andric // that it is not undef/poison at the splat index. 2228349cc55cSDimitry Andric if (isSplatValue(OtherOp, SplatIndex)) { 2229349cc55cSDimitry Andric std::swap(Y, OtherOp); 2230349cc55cSDimitry Andric } else if (!isSplatValue(Y, SplatIndex)) { 22315ffd83dbSDimitry Andric return nullptr; 22325ffd83dbSDimitry Andric } 22335ffd83dbSDimitry Andric 22345ffd83dbSDimitry Andric // X and Y are splatted values, so perform the binary operation on those 22355ffd83dbSDimitry Andric // values followed by a splat followed by the 2nd binary operation: 22365ffd83dbSDimitry Andric // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp 22375ffd83dbSDimitry Andric Value *NewBO = Builder.CreateBinOp(Opcode, X, Y); 22385ffd83dbSDimitry Andric SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex); 2239e8d8bef9SDimitry Andric Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask); 22405ffd83dbSDimitry Andric Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp); 22415ffd83dbSDimitry Andric 22425ffd83dbSDimitry Andric // Intersect FMF on both new binops. Other (poison-generating) flags are 22435ffd83dbSDimitry Andric // dropped to be safe. 22445ffd83dbSDimitry Andric if (isa<FPMathOperator>(R)) { 22455ffd83dbSDimitry Andric R->copyFastMathFlags(&Inst); 2246349cc55cSDimitry Andric R->andIRFlags(RHS); 22475ffd83dbSDimitry Andric } 22485ffd83dbSDimitry Andric if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO)) 22495ffd83dbSDimitry Andric NewInstBO->copyIRFlags(R); 22505ffd83dbSDimitry Andric return R; 22515ffd83dbSDimitry Andric } 22525ffd83dbSDimitry Andric 22530b57cec5SDimitry Andric return nullptr; 22540b57cec5SDimitry Andric } 22550b57cec5SDimitry Andric 22560b57cec5SDimitry Andric /// Try to narrow the width of a binop if at least 1 operand is an extend of 22570b57cec5SDimitry Andric /// of a value. This requires a potentially expensive known bits check to make 22580b57cec5SDimitry Andric /// sure the narrow op does not overflow. 2259e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) { 22600b57cec5SDimitry Andric // We need at least one extended operand. 22610b57cec5SDimitry Andric Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1); 22620b57cec5SDimitry Andric 22630b57cec5SDimitry Andric // If this is a sub, we swap the operands since we always want an extension 22640b57cec5SDimitry Andric // on the RHS. The LHS can be an extension or a constant. 22650b57cec5SDimitry Andric if (BO.getOpcode() == Instruction::Sub) 22660b57cec5SDimitry Andric std::swap(Op0, Op1); 22670b57cec5SDimitry Andric 22680b57cec5SDimitry Andric Value *X; 22690b57cec5SDimitry Andric bool IsSext = match(Op0, m_SExt(m_Value(X))); 22700b57cec5SDimitry Andric if (!IsSext && !match(Op0, m_ZExt(m_Value(X)))) 22710b57cec5SDimitry Andric return nullptr; 22720b57cec5SDimitry Andric 22730b57cec5SDimitry Andric // If both operands are the same extension from the same source type and we 22740b57cec5SDimitry Andric // can eliminate at least one (hasOneUse), this might work. 22750b57cec5SDimitry Andric CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt; 22760b57cec5SDimitry Andric Value *Y; 22770b57cec5SDimitry Andric if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() && 22780b57cec5SDimitry Andric cast<Operator>(Op1)->getOpcode() == CastOpc && 22790b57cec5SDimitry Andric (Op0->hasOneUse() || Op1->hasOneUse()))) { 22800b57cec5SDimitry Andric // If that did not match, see if we have a suitable constant operand. 22810b57cec5SDimitry Andric // Truncating and extending must produce the same constant. 22820b57cec5SDimitry Andric Constant *WideC; 22830b57cec5SDimitry Andric if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC))) 22840b57cec5SDimitry Andric return nullptr; 22855f757f3fSDimitry Andric Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc); 22865f757f3fSDimitry Andric if (!NarrowC) 22870b57cec5SDimitry Andric return nullptr; 22880b57cec5SDimitry Andric Y = NarrowC; 22890b57cec5SDimitry Andric } 22900b57cec5SDimitry Andric 22910b57cec5SDimitry Andric // Swap back now that we found our operands. 22920b57cec5SDimitry Andric if (BO.getOpcode() == Instruction::Sub) 22930b57cec5SDimitry Andric std::swap(X, Y); 22940b57cec5SDimitry Andric 22950b57cec5SDimitry Andric // Both operands have narrow versions. Last step: the math must not overflow 22960b57cec5SDimitry Andric // in the narrow width. 22970b57cec5SDimitry Andric if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext)) 22980b57cec5SDimitry Andric return nullptr; 22990b57cec5SDimitry Andric 23000b57cec5SDimitry Andric // bo (ext X), (ext Y) --> ext (bo X, Y) 23010b57cec5SDimitry Andric // bo (ext X), C --> ext (bo X, C') 23020b57cec5SDimitry Andric Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow"); 23030b57cec5SDimitry Andric if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) { 23040b57cec5SDimitry Andric if (IsSext) 23050b57cec5SDimitry Andric NewBinOp->setHasNoSignedWrap(); 23060b57cec5SDimitry Andric else 23070b57cec5SDimitry Andric NewBinOp->setHasNoUnsignedWrap(); 23080b57cec5SDimitry Andric } 23090b57cec5SDimitry Andric return CastInst::Create(CastOpc, NarrowBO, BO.getType()); 23100b57cec5SDimitry Andric } 23110b57cec5SDimitry Andric 2312480093f4SDimitry Andric static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) { 2313*0fca6ea1SDimitry Andric return GEP1.isInBounds() && GEP2.isInBounds(); 2314480093f4SDimitry Andric } 2315480093f4SDimitry Andric 23165ffd83dbSDimitry Andric /// Thread a GEP operation with constant indices through the constant true/false 23175ffd83dbSDimitry Andric /// arms of a select. 23185ffd83dbSDimitry Andric static Instruction *foldSelectGEP(GetElementPtrInst &GEP, 23195ffd83dbSDimitry Andric InstCombiner::BuilderTy &Builder) { 23205ffd83dbSDimitry Andric if (!GEP.hasAllConstantIndices()) 23215ffd83dbSDimitry Andric return nullptr; 23225ffd83dbSDimitry Andric 23235ffd83dbSDimitry Andric Instruction *Sel; 23245ffd83dbSDimitry Andric Value *Cond; 23255ffd83dbSDimitry Andric Constant *TrueC, *FalseC; 23265ffd83dbSDimitry Andric if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) || 23275ffd83dbSDimitry Andric !match(Sel, 23285ffd83dbSDimitry Andric m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC)))) 23295ffd83dbSDimitry Andric return nullptr; 23305ffd83dbSDimitry Andric 23315ffd83dbSDimitry Andric // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC' 23325ffd83dbSDimitry Andric // Propagate 'inbounds' and metadata from existing instructions. 23335ffd83dbSDimitry Andric // Note: using IRBuilder to create the constants for efficiency. 2334e8d8bef9SDimitry Andric SmallVector<Value *, 4> IndexC(GEP.indices()); 2335*0fca6ea1SDimitry Andric GEPNoWrapFlags NW = GEP.getNoWrapFlags(); 2336fe6060f1SDimitry Andric Type *Ty = GEP.getSourceElementType(); 2337*0fca6ea1SDimitry Andric Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW); 2338*0fca6ea1SDimitry Andric Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW); 23395ffd83dbSDimitry Andric return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel); 23405ffd83dbSDimitry Andric } 23415ffd83dbSDimitry Andric 2342*0fca6ea1SDimitry Andric // Canonicalization: 2343*0fca6ea1SDimitry Andric // gep T, (gep i8, base, C1), (Index + C2) into 2344*0fca6ea1SDimitry Andric // gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index 2345*0fca6ea1SDimitry Andric static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP, 2346*0fca6ea1SDimitry Andric GEPOperator *Src, 2347*0fca6ea1SDimitry Andric InstCombinerImpl &IC) { 2348*0fca6ea1SDimitry Andric if (GEP.getNumIndices() != 1) 2349*0fca6ea1SDimitry Andric return nullptr; 2350*0fca6ea1SDimitry Andric auto &DL = IC.getDataLayout(); 2351*0fca6ea1SDimitry Andric Value *Base; 2352*0fca6ea1SDimitry Andric const APInt *C1; 2353*0fca6ea1SDimitry Andric if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1)))) 2354*0fca6ea1SDimitry Andric return nullptr; 2355*0fca6ea1SDimitry Andric Value *VarIndex; 2356*0fca6ea1SDimitry Andric const APInt *C2; 2357*0fca6ea1SDimitry Andric Type *PtrTy = Src->getType()->getScalarType(); 2358*0fca6ea1SDimitry Andric unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy); 2359*0fca6ea1SDimitry Andric if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2)))) 2360*0fca6ea1SDimitry Andric return nullptr; 2361*0fca6ea1SDimitry Andric if (C1->getBitWidth() != IndexSizeInBits || 2362*0fca6ea1SDimitry Andric C2->getBitWidth() != IndexSizeInBits) 2363*0fca6ea1SDimitry Andric return nullptr; 2364*0fca6ea1SDimitry Andric Type *BaseType = GEP.getSourceElementType(); 2365*0fca6ea1SDimitry Andric if (isa<ScalableVectorType>(BaseType)) 2366*0fca6ea1SDimitry Andric return nullptr; 2367*0fca6ea1SDimitry Andric APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType)); 2368*0fca6ea1SDimitry Andric APInt NewOffset = TypeSize * *C2 + *C1; 2369*0fca6ea1SDimitry Andric if (NewOffset.isZero() || 2370*0fca6ea1SDimitry Andric (Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) { 2371*0fca6ea1SDimitry Andric Value *GEPConst = 2372*0fca6ea1SDimitry Andric IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset)); 2373*0fca6ea1SDimitry Andric return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex); 2374*0fca6ea1SDimitry Andric } 2375*0fca6ea1SDimitry Andric 2376*0fca6ea1SDimitry Andric return nullptr; 2377*0fca6ea1SDimitry Andric } 2378*0fca6ea1SDimitry Andric 237904eeddc0SDimitry Andric Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP, 238004eeddc0SDimitry Andric GEPOperator *Src) { 238104eeddc0SDimitry Andric // Combine Indices - If the source pointer to this getelementptr instruction 238204eeddc0SDimitry Andric // is a getelementptr instruction with matching element type, combine the 238304eeddc0SDimitry Andric // indices of the two getelementptr instructions into a single instruction. 238404eeddc0SDimitry Andric if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) 238504eeddc0SDimitry Andric return nullptr; 238604eeddc0SDimitry Andric 2387*0fca6ea1SDimitry Andric if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this)) 2388*0fca6ea1SDimitry Andric return I; 2389*0fca6ea1SDimitry Andric 239081ad6265SDimitry Andric // For constant GEPs, use a more general offset-based folding approach. 239181ad6265SDimitry Andric Type *PtrTy = Src->getType()->getScalarType(); 239206c3fb27SDimitry Andric if (GEP.hasAllConstantIndices() && 239381ad6265SDimitry Andric (Src->hasOneUse() || Src->hasAllConstantIndices())) { 239481ad6265SDimitry Andric // Split Src into a variable part and a constant suffix. 239581ad6265SDimitry Andric gep_type_iterator GTI = gep_type_begin(*Src); 239681ad6265SDimitry Andric Type *BaseType = GTI.getIndexedType(); 239781ad6265SDimitry Andric bool IsFirstType = true; 239881ad6265SDimitry Andric unsigned NumVarIndices = 0; 239981ad6265SDimitry Andric for (auto Pair : enumerate(Src->indices())) { 240081ad6265SDimitry Andric if (!isa<ConstantInt>(Pair.value())) { 240181ad6265SDimitry Andric BaseType = GTI.getIndexedType(); 240281ad6265SDimitry Andric IsFirstType = false; 240381ad6265SDimitry Andric NumVarIndices = Pair.index() + 1; 240481ad6265SDimitry Andric } 240581ad6265SDimitry Andric ++GTI; 240681ad6265SDimitry Andric } 240781ad6265SDimitry Andric 240881ad6265SDimitry Andric // Determine the offset for the constant suffix of Src. 240981ad6265SDimitry Andric APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0); 241081ad6265SDimitry Andric if (NumVarIndices != Src->getNumIndices()) { 241181ad6265SDimitry Andric // FIXME: getIndexedOffsetInType() does not handled scalable vectors. 24125f757f3fSDimitry Andric if (BaseType->isScalableTy()) 241381ad6265SDimitry Andric return nullptr; 241481ad6265SDimitry Andric 241581ad6265SDimitry Andric SmallVector<Value *> ConstantIndices; 241681ad6265SDimitry Andric if (!IsFirstType) 241781ad6265SDimitry Andric ConstantIndices.push_back( 241881ad6265SDimitry Andric Constant::getNullValue(Type::getInt32Ty(GEP.getContext()))); 241981ad6265SDimitry Andric append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices)); 242081ad6265SDimitry Andric Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices); 242181ad6265SDimitry Andric } 242281ad6265SDimitry Andric 242381ad6265SDimitry Andric // Add the offset for GEP (which is fully constant). 242481ad6265SDimitry Andric if (!GEP.accumulateConstantOffset(DL, Offset)) 242581ad6265SDimitry Andric return nullptr; 242681ad6265SDimitry Andric 242781ad6265SDimitry Andric APInt OffsetOld = Offset; 242881ad6265SDimitry Andric // Convert the total offset back into indices. 242981ad6265SDimitry Andric SmallVector<APInt> ConstIndices = 243081ad6265SDimitry Andric DL.getGEPIndicesForOffset(BaseType, Offset); 243181ad6265SDimitry Andric if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero())) { 243281ad6265SDimitry Andric // If both GEP are constant-indexed, and cannot be merged in either way, 243381ad6265SDimitry Andric // convert them to a GEP of i8. 243481ad6265SDimitry Andric if (Src->hasAllConstantIndices()) 243506c3fb27SDimitry Andric return replaceInstUsesWith( 243606c3fb27SDimitry Andric GEP, Builder.CreateGEP( 243781ad6265SDimitry Andric Builder.getInt8Ty(), Src->getOperand(0), 243806c3fb27SDimitry Andric Builder.getInt(OffsetOld), "", 243906c3fb27SDimitry Andric isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 244081ad6265SDimitry Andric return nullptr; 244181ad6265SDimitry Andric } 244281ad6265SDimitry Andric 244381ad6265SDimitry Andric bool IsInBounds = isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)); 244481ad6265SDimitry Andric SmallVector<Value *> Indices; 244581ad6265SDimitry Andric append_range(Indices, drop_end(Src->indices(), 244681ad6265SDimitry Andric Src->getNumIndices() - NumVarIndices)); 244781ad6265SDimitry Andric for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) { 244881ad6265SDimitry Andric Indices.push_back(ConstantInt::get(GEP.getContext(), Idx)); 244981ad6265SDimitry Andric // Even if the total offset is inbounds, we may end up representing it 245081ad6265SDimitry Andric // by first performing a larger negative offset, and then a smaller 245181ad6265SDimitry Andric // positive one. The large negative offset might go out of bounds. Only 245281ad6265SDimitry Andric // preserve inbounds if all signs are the same. 245381ad6265SDimitry Andric IsInBounds &= Idx.isNonNegative() == ConstIndices[0].isNonNegative(); 245481ad6265SDimitry Andric } 245581ad6265SDimitry Andric 245606c3fb27SDimitry Andric return replaceInstUsesWith( 245706c3fb27SDimitry Andric GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0), 245806c3fb27SDimitry Andric Indices, "", IsInBounds)); 245981ad6265SDimitry Andric } 246081ad6265SDimitry Andric 246181ad6265SDimitry Andric if (Src->getResultElementType() != GEP.getSourceElementType()) 246281ad6265SDimitry Andric return nullptr; 246381ad6265SDimitry Andric 246404eeddc0SDimitry Andric SmallVector<Value*, 8> Indices; 246504eeddc0SDimitry Andric 246604eeddc0SDimitry Andric // Find out whether the last index in the source GEP is a sequential idx. 246704eeddc0SDimitry Andric bool EndsWithSequential = false; 246804eeddc0SDimitry Andric for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); 246904eeddc0SDimitry Andric I != E; ++I) 247004eeddc0SDimitry Andric EndsWithSequential = I.isSequential(); 247104eeddc0SDimitry Andric 247204eeddc0SDimitry Andric // Can we combine the two pointer arithmetics offsets? 247304eeddc0SDimitry Andric if (EndsWithSequential) { 247404eeddc0SDimitry Andric // Replace: gep (gep %P, long B), long A, ... 247504eeddc0SDimitry Andric // With: T = long A+B; gep %P, T, ... 247604eeddc0SDimitry Andric Value *SO1 = Src->getOperand(Src->getNumOperands()-1); 247704eeddc0SDimitry Andric Value *GO1 = GEP.getOperand(1); 247804eeddc0SDimitry Andric 247904eeddc0SDimitry Andric // If they aren't the same type, then the input hasn't been processed 248004eeddc0SDimitry Andric // by the loop above yet (which canonicalizes sequential index types to 248104eeddc0SDimitry Andric // intptr_t). Just avoid transforming this until the input has been 248204eeddc0SDimitry Andric // normalized. 248304eeddc0SDimitry Andric if (SO1->getType() != GO1->getType()) 248404eeddc0SDimitry Andric return nullptr; 248504eeddc0SDimitry Andric 248604eeddc0SDimitry Andric Value *Sum = 248781ad6265SDimitry Andric simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP)); 248804eeddc0SDimitry Andric // Only do the combine when we are sure the cost after the 248904eeddc0SDimitry Andric // merge is never more than that before the merge. 249004eeddc0SDimitry Andric if (Sum == nullptr) 249104eeddc0SDimitry Andric return nullptr; 249204eeddc0SDimitry Andric 249304eeddc0SDimitry Andric // Update the GEP in place if possible. 249404eeddc0SDimitry Andric if (Src->getNumOperands() == 2) { 249504eeddc0SDimitry Andric GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))); 249604eeddc0SDimitry Andric replaceOperand(GEP, 0, Src->getOperand(0)); 249704eeddc0SDimitry Andric replaceOperand(GEP, 1, Sum); 249804eeddc0SDimitry Andric return &GEP; 249904eeddc0SDimitry Andric } 250004eeddc0SDimitry Andric Indices.append(Src->op_begin()+1, Src->op_end()-1); 250104eeddc0SDimitry Andric Indices.push_back(Sum); 250204eeddc0SDimitry Andric Indices.append(GEP.op_begin()+2, GEP.op_end()); 250304eeddc0SDimitry Andric } else if (isa<Constant>(*GEP.idx_begin()) && 250404eeddc0SDimitry Andric cast<Constant>(*GEP.idx_begin())->isNullValue() && 250504eeddc0SDimitry Andric Src->getNumOperands() != 1) { 250604eeddc0SDimitry Andric // Otherwise we can do the fold if the first index of the GEP is a zero 250704eeddc0SDimitry Andric Indices.append(Src->op_begin()+1, Src->op_end()); 250804eeddc0SDimitry Andric Indices.append(GEP.idx_begin()+1, GEP.idx_end()); 250904eeddc0SDimitry Andric } 251004eeddc0SDimitry Andric 251104eeddc0SDimitry Andric if (!Indices.empty()) 251206c3fb27SDimitry Andric return replaceInstUsesWith( 251306c3fb27SDimitry Andric GEP, Builder.CreateGEP( 251406c3fb27SDimitry Andric Src->getSourceElementType(), Src->getOperand(0), Indices, "", 251506c3fb27SDimitry Andric isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)))); 251604eeddc0SDimitry Andric 251704eeddc0SDimitry Andric return nullptr; 251804eeddc0SDimitry Andric } 251904eeddc0SDimitry Andric 25205f757f3fSDimitry Andric Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses, 25215f757f3fSDimitry Andric BuilderTy *Builder, 25225f757f3fSDimitry Andric bool &DoesConsume, unsigned Depth) { 25235f757f3fSDimitry Andric static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1)); 25245f757f3fSDimitry Andric // ~(~(X)) -> X. 25255f757f3fSDimitry Andric Value *A, *B; 25265f757f3fSDimitry Andric if (match(V, m_Not(m_Value(A)))) { 25275f757f3fSDimitry Andric DoesConsume = true; 25285f757f3fSDimitry Andric return A; 25295f757f3fSDimitry Andric } 25305f757f3fSDimitry Andric 25315f757f3fSDimitry Andric Constant *C; 25325f757f3fSDimitry Andric // Constants can be considered to be not'ed values. 25335f757f3fSDimitry Andric if (match(V, m_ImmConstant(C))) 25345f757f3fSDimitry Andric return ConstantExpr::getNot(C); 25355f757f3fSDimitry Andric 25365f757f3fSDimitry Andric if (Depth++ >= MaxAnalysisRecursionDepth) 25375f757f3fSDimitry Andric return nullptr; 25385f757f3fSDimitry Andric 25395f757f3fSDimitry Andric // The rest of the cases require that we invert all uses so don't bother 25405f757f3fSDimitry Andric // doing the analysis if we know we can't use the result. 25415f757f3fSDimitry Andric if (!WillInvertAllUses) 25425f757f3fSDimitry Andric return nullptr; 25435f757f3fSDimitry Andric 25445f757f3fSDimitry Andric // Compares can be inverted if all of their uses are being modified to use 25455f757f3fSDimitry Andric // the ~V. 25465f757f3fSDimitry Andric if (auto *I = dyn_cast<CmpInst>(V)) { 25475f757f3fSDimitry Andric if (Builder != nullptr) 25485f757f3fSDimitry Andric return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0), 25495f757f3fSDimitry Andric I->getOperand(1)); 25505f757f3fSDimitry Andric return NonNull; 25515f757f3fSDimitry Andric } 25525f757f3fSDimitry Andric 25535f757f3fSDimitry Andric // If `V` is of the form `A + B` then `-1 - V` can be folded into 25545f757f3fSDimitry Andric // `(-1 - B) - A` if we are willing to invert all of the uses. 25555f757f3fSDimitry Andric if (match(V, m_Add(m_Value(A), m_Value(B)))) { 25565f757f3fSDimitry Andric if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 25575f757f3fSDimitry Andric DoesConsume, Depth)) 25585f757f3fSDimitry Andric return Builder ? Builder->CreateSub(BV, A) : NonNull; 25595f757f3fSDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 25605f757f3fSDimitry Andric DoesConsume, Depth)) 25615f757f3fSDimitry Andric return Builder ? Builder->CreateSub(AV, B) : NonNull; 25625f757f3fSDimitry Andric return nullptr; 25635f757f3fSDimitry Andric } 25645f757f3fSDimitry Andric 25655f757f3fSDimitry Andric // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded 25665f757f3fSDimitry Andric // into `A ^ B` if we are willing to invert all of the uses. 25675f757f3fSDimitry Andric if (match(V, m_Xor(m_Value(A), m_Value(B)))) { 25685f757f3fSDimitry Andric if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 25695f757f3fSDimitry Andric DoesConsume, Depth)) 25705f757f3fSDimitry Andric return Builder ? Builder->CreateXor(A, BV) : NonNull; 25715f757f3fSDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 25725f757f3fSDimitry Andric DoesConsume, Depth)) 25735f757f3fSDimitry Andric return Builder ? Builder->CreateXor(AV, B) : NonNull; 25745f757f3fSDimitry Andric return nullptr; 25755f757f3fSDimitry Andric } 25765f757f3fSDimitry Andric 25775f757f3fSDimitry Andric // If `V` is of the form `B - A` then `-1 - V` can be folded into 25785f757f3fSDimitry Andric // `A + (-1 - B)` if we are willing to invert all of the uses. 25795f757f3fSDimitry Andric if (match(V, m_Sub(m_Value(A), m_Value(B)))) { 25805f757f3fSDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 25815f757f3fSDimitry Andric DoesConsume, Depth)) 25825f757f3fSDimitry Andric return Builder ? Builder->CreateAdd(AV, B) : NonNull; 25835f757f3fSDimitry Andric return nullptr; 25845f757f3fSDimitry Andric } 25855f757f3fSDimitry Andric 25865f757f3fSDimitry Andric // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded 25875f757f3fSDimitry Andric // into `A s>> B` if we are willing to invert all of the uses. 25885f757f3fSDimitry Andric if (match(V, m_AShr(m_Value(A), m_Value(B)))) { 25895f757f3fSDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 25905f757f3fSDimitry Andric DoesConsume, Depth)) 25915f757f3fSDimitry Andric return Builder ? Builder->CreateAShr(AV, B) : NonNull; 25925f757f3fSDimitry Andric return nullptr; 25935f757f3fSDimitry Andric } 25945f757f3fSDimitry Andric 25955f757f3fSDimitry Andric Value *Cond; 25965f757f3fSDimitry Andric // LogicOps are special in that we canonicalize them at the cost of an 25975f757f3fSDimitry Andric // instruction. 25985f757f3fSDimitry Andric bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) && 25995f757f3fSDimitry Andric !shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V)); 26005f757f3fSDimitry Andric // Selects/min/max with invertible operands are freely invertible 26015f757f3fSDimitry Andric if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) { 2602*0fca6ea1SDimitry Andric bool LocalDoesConsume = DoesConsume; 26035f757f3fSDimitry Andric if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr, 2604*0fca6ea1SDimitry Andric LocalDoesConsume, Depth)) 26055f757f3fSDimitry Andric return nullptr; 26065f757f3fSDimitry Andric if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2607*0fca6ea1SDimitry Andric LocalDoesConsume, Depth)) { 2608*0fca6ea1SDimitry Andric DoesConsume = LocalDoesConsume; 26095f757f3fSDimitry Andric if (Builder != nullptr) { 26105f757f3fSDimitry Andric Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 26115f757f3fSDimitry Andric DoesConsume, Depth); 26125f757f3fSDimitry Andric assert(NotB != nullptr && 26135f757f3fSDimitry Andric "Unable to build inverted value for known freely invertable op"); 26145f757f3fSDimitry Andric if (auto *II = dyn_cast<IntrinsicInst>(V)) 26155f757f3fSDimitry Andric return Builder->CreateBinaryIntrinsic( 26165f757f3fSDimitry Andric getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB); 26175f757f3fSDimitry Andric return Builder->CreateSelect(Cond, NotA, NotB); 26185f757f3fSDimitry Andric } 26195f757f3fSDimitry Andric return NonNull; 26205f757f3fSDimitry Andric } 26215f757f3fSDimitry Andric } 26225f757f3fSDimitry Andric 2623*0fca6ea1SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(V)) { 2624*0fca6ea1SDimitry Andric bool LocalDoesConsume = DoesConsume; 2625*0fca6ea1SDimitry Andric SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues; 2626*0fca6ea1SDimitry Andric for (Use &U : PN->operands()) { 2627*0fca6ea1SDimitry Andric BasicBlock *IncomingBlock = PN->getIncomingBlock(U); 2628*0fca6ea1SDimitry Andric Value *NewIncomingVal = getFreelyInvertedImpl( 2629*0fca6ea1SDimitry Andric U.get(), /*WillInvertAllUses=*/false, 2630*0fca6ea1SDimitry Andric /*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1); 2631*0fca6ea1SDimitry Andric if (NewIncomingVal == nullptr) 2632*0fca6ea1SDimitry Andric return nullptr; 2633*0fca6ea1SDimitry Andric // Make sure that we can safely erase the original PHI node. 2634*0fca6ea1SDimitry Andric if (NewIncomingVal == V) 2635*0fca6ea1SDimitry Andric return nullptr; 2636*0fca6ea1SDimitry Andric if (Builder != nullptr) 2637*0fca6ea1SDimitry Andric IncomingValues.emplace_back(NewIncomingVal, IncomingBlock); 2638*0fca6ea1SDimitry Andric } 2639*0fca6ea1SDimitry Andric 2640*0fca6ea1SDimitry Andric DoesConsume = LocalDoesConsume; 2641*0fca6ea1SDimitry Andric if (Builder != nullptr) { 2642*0fca6ea1SDimitry Andric IRBuilderBase::InsertPointGuard Guard(*Builder); 2643*0fca6ea1SDimitry Andric Builder->SetInsertPoint(PN); 2644*0fca6ea1SDimitry Andric PHINode *NewPN = 2645*0fca6ea1SDimitry Andric Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues()); 2646*0fca6ea1SDimitry Andric for (auto [Val, Pred] : IncomingValues) 2647*0fca6ea1SDimitry Andric NewPN->addIncoming(Val, Pred); 2648*0fca6ea1SDimitry Andric return NewPN; 2649*0fca6ea1SDimitry Andric } 2650*0fca6ea1SDimitry Andric return NonNull; 2651*0fca6ea1SDimitry Andric } 2652*0fca6ea1SDimitry Andric 2653*0fca6ea1SDimitry Andric if (match(V, m_SExtLike(m_Value(A)))) { 2654*0fca6ea1SDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2655*0fca6ea1SDimitry Andric DoesConsume, Depth)) 2656*0fca6ea1SDimitry Andric return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull; 2657*0fca6ea1SDimitry Andric return nullptr; 2658*0fca6ea1SDimitry Andric } 2659*0fca6ea1SDimitry Andric 2660*0fca6ea1SDimitry Andric if (match(V, m_Trunc(m_Value(A)))) { 2661*0fca6ea1SDimitry Andric if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2662*0fca6ea1SDimitry Andric DoesConsume, Depth)) 2663*0fca6ea1SDimitry Andric return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull; 2664*0fca6ea1SDimitry Andric return nullptr; 2665*0fca6ea1SDimitry Andric } 2666*0fca6ea1SDimitry Andric 2667*0fca6ea1SDimitry Andric // De Morgan's Laws: 2668*0fca6ea1SDimitry Andric // (~(A | B)) -> (~A & ~B) 2669*0fca6ea1SDimitry Andric // (~(A & B)) -> (~A | ~B) 2670*0fca6ea1SDimitry Andric auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode, 2671*0fca6ea1SDimitry Andric bool IsLogical, Value *A, 2672*0fca6ea1SDimitry Andric Value *B) -> Value * { 2673*0fca6ea1SDimitry Andric bool LocalDoesConsume = DoesConsume; 2674*0fca6ea1SDimitry Andric if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr, 2675*0fca6ea1SDimitry Andric LocalDoesConsume, Depth)) 2676*0fca6ea1SDimitry Andric return nullptr; 2677*0fca6ea1SDimitry Andric if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder, 2678*0fca6ea1SDimitry Andric LocalDoesConsume, Depth)) { 2679*0fca6ea1SDimitry Andric auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder, 2680*0fca6ea1SDimitry Andric LocalDoesConsume, Depth); 2681*0fca6ea1SDimitry Andric DoesConsume = LocalDoesConsume; 2682*0fca6ea1SDimitry Andric if (IsLogical) 2683*0fca6ea1SDimitry Andric return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull; 2684*0fca6ea1SDimitry Andric return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull; 2685*0fca6ea1SDimitry Andric } 2686*0fca6ea1SDimitry Andric 2687*0fca6ea1SDimitry Andric return nullptr; 2688*0fca6ea1SDimitry Andric }; 2689*0fca6ea1SDimitry Andric 2690*0fca6ea1SDimitry Andric if (match(V, m_Or(m_Value(A), m_Value(B)))) 2691*0fca6ea1SDimitry Andric return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A, 2692*0fca6ea1SDimitry Andric B); 2693*0fca6ea1SDimitry Andric 2694*0fca6ea1SDimitry Andric if (match(V, m_And(m_Value(A), m_Value(B)))) 2695*0fca6ea1SDimitry Andric return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A, 2696*0fca6ea1SDimitry Andric B); 2697*0fca6ea1SDimitry Andric 2698*0fca6ea1SDimitry Andric if (match(V, m_LogicalOr(m_Value(A), m_Value(B)))) 2699*0fca6ea1SDimitry Andric return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A, 2700*0fca6ea1SDimitry Andric B); 2701*0fca6ea1SDimitry Andric 2702*0fca6ea1SDimitry Andric if (match(V, m_LogicalAnd(m_Value(A), m_Value(B)))) 2703*0fca6ea1SDimitry Andric return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A, 2704*0fca6ea1SDimitry Andric B); 2705*0fca6ea1SDimitry Andric 27065f757f3fSDimitry Andric return nullptr; 27075f757f3fSDimitry Andric } 27085f757f3fSDimitry Andric 2709e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) { 271004eeddc0SDimitry Andric Value *PtrOp = GEP.getOperand(0); 271104eeddc0SDimitry Andric SmallVector<Value *, 8> Indices(GEP.indices()); 27120b57cec5SDimitry Andric Type *GEPType = GEP.getType(); 27130b57cec5SDimitry Andric Type *GEPEltType = GEP.getSourceElementType(); 2714*0fca6ea1SDimitry Andric if (Value *V = 2715*0fca6ea1SDimitry Andric simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(), 2716349cc55cSDimitry Andric SQ.getWithInstruction(&GEP))) 27170b57cec5SDimitry Andric return replaceInstUsesWith(GEP, V); 27180b57cec5SDimitry Andric 27190b57cec5SDimitry Andric // For vector geps, use the generic demanded vector support. 27205ffd83dbSDimitry Andric // Skip if GEP return type is scalable. The number of elements is unknown at 27215ffd83dbSDimitry Andric // compile-time. 27225ffd83dbSDimitry Andric if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) { 27235ffd83dbSDimitry Andric auto VWidth = GEPFVTy->getNumElements(); 2724cb14a3feSDimitry Andric APInt PoisonElts(VWidth, 0); 2725349cc55cSDimitry Andric APInt AllOnesEltMask(APInt::getAllOnes(VWidth)); 27260b57cec5SDimitry Andric if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask, 2727cb14a3feSDimitry Andric PoisonElts)) { 27280b57cec5SDimitry Andric if (V != &GEP) 27290b57cec5SDimitry Andric return replaceInstUsesWith(GEP, V); 27300b57cec5SDimitry Andric return &GEP; 27310b57cec5SDimitry Andric } 27320b57cec5SDimitry Andric 27330b57cec5SDimitry Andric // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if 27340b57cec5SDimitry Andric // possible (decide on canonical form for pointer broadcast), 3) exploit 27350b57cec5SDimitry Andric // undef elements to decrease demanded bits 27360b57cec5SDimitry Andric } 27370b57cec5SDimitry Andric 27380b57cec5SDimitry Andric // Eliminate unneeded casts for indices, and replace indices which displace 27390b57cec5SDimitry Andric // by multiples of a zero size type with zero. 27400b57cec5SDimitry Andric bool MadeChange = false; 27410b57cec5SDimitry Andric 27420b57cec5SDimitry Andric // Index width may not be the same width as pointer width. 27430b57cec5SDimitry Andric // Data layout chooses the right type based on supported integer types. 27440b57cec5SDimitry Andric Type *NewScalarIndexTy = 27450b57cec5SDimitry Andric DL.getIndexType(GEP.getPointerOperandType()->getScalarType()); 27460b57cec5SDimitry Andric 27470b57cec5SDimitry Andric gep_type_iterator GTI = gep_type_begin(GEP); 27480b57cec5SDimitry Andric for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; 27490b57cec5SDimitry Andric ++I, ++GTI) { 27500b57cec5SDimitry Andric // Skip indices into struct types. 27510b57cec5SDimitry Andric if (GTI.isStruct()) 27520b57cec5SDimitry Andric continue; 27530b57cec5SDimitry Andric 27540b57cec5SDimitry Andric Type *IndexTy = (*I)->getType(); 27550b57cec5SDimitry Andric Type *NewIndexType = 27560b57cec5SDimitry Andric IndexTy->isVectorTy() 27575ffd83dbSDimitry Andric ? VectorType::get(NewScalarIndexTy, 27585ffd83dbSDimitry Andric cast<VectorType>(IndexTy)->getElementCount()) 27590b57cec5SDimitry Andric : NewScalarIndexTy; 27600b57cec5SDimitry Andric 27610b57cec5SDimitry Andric // If the element type has zero size then any index over it is equivalent 27620b57cec5SDimitry Andric // to an index of zero, so replace it with zero if it is not zero already. 27630b57cec5SDimitry Andric Type *EltTy = GTI.getIndexedType(); 27645ffd83dbSDimitry Andric if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero()) 27658bcb0991SDimitry Andric if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) { 27660b57cec5SDimitry Andric *I = Constant::getNullValue(NewIndexType); 27670b57cec5SDimitry Andric MadeChange = true; 27680b57cec5SDimitry Andric } 27690b57cec5SDimitry Andric 27700b57cec5SDimitry Andric if (IndexTy != NewIndexType) { 27710b57cec5SDimitry Andric // If we are using a wider index than needed for this platform, shrink 27720b57cec5SDimitry Andric // it to what we need. If narrower, sign-extend it to what we need. 27730b57cec5SDimitry Andric // This explicit cast can make subsequent optimizations more obvious. 27740b57cec5SDimitry Andric *I = Builder.CreateIntCast(*I, NewIndexType, true); 27750b57cec5SDimitry Andric MadeChange = true; 27760b57cec5SDimitry Andric } 27770b57cec5SDimitry Andric } 27780b57cec5SDimitry Andric if (MadeChange) 27790b57cec5SDimitry Andric return &GEP; 27800b57cec5SDimitry Andric 2781*0fca6ea1SDimitry Andric // Canonicalize constant GEPs to i8 type. 2782*0fca6ea1SDimitry Andric if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) { 2783*0fca6ea1SDimitry Andric APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0); 2784*0fca6ea1SDimitry Andric if (GEP.accumulateConstantOffset(DL, Offset)) 2785*0fca6ea1SDimitry Andric return replaceInstUsesWith( 2786*0fca6ea1SDimitry Andric GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "", 2787*0fca6ea1SDimitry Andric GEP.getNoWrapFlags())); 2788*0fca6ea1SDimitry Andric } 2789*0fca6ea1SDimitry Andric 2790*0fca6ea1SDimitry Andric // Canonicalize 2791*0fca6ea1SDimitry Andric // - scalable GEPs to an explicit offset using the llvm.vscale intrinsic. 2792*0fca6ea1SDimitry Andric // This has better support in BasicAA. 2793*0fca6ea1SDimitry Andric // - gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two 2794*0fca6ea1SDimitry Andric // multiplies together. 2795*0fca6ea1SDimitry Andric if (GEPEltType->isScalableTy() || 2796*0fca6ea1SDimitry Andric (!GEPEltType->isIntegerTy(8) && GEP.getNumIndices() == 1 && 2797*0fca6ea1SDimitry Andric match(GEP.getOperand(1), 2798*0fca6ea1SDimitry Andric m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()), 2799*0fca6ea1SDimitry Andric m_Shl(m_Value(), m_ConstantInt())))))) { 2800*0fca6ea1SDimitry Andric Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP)); 2801*0fca6ea1SDimitry Andric return replaceInstUsesWith( 2802*0fca6ea1SDimitry Andric GEP, Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags())); 2803*0fca6ea1SDimitry Andric } 2804*0fca6ea1SDimitry Andric 28050b57cec5SDimitry Andric // Check to see if the inputs to the PHI node are getelementptr instructions. 28060b57cec5SDimitry Andric if (auto *PN = dyn_cast<PHINode>(PtrOp)) { 28070b57cec5SDimitry Andric auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); 28080b57cec5SDimitry Andric if (!Op1) 28090b57cec5SDimitry Andric return nullptr; 28100b57cec5SDimitry Andric 28110b57cec5SDimitry Andric // Don't fold a GEP into itself through a PHI node. This can only happen 28120b57cec5SDimitry Andric // through the back-edge of a loop. Folding a GEP into itself means that 28130b57cec5SDimitry Andric // the value of the previous iteration needs to be stored in the meantime, 28140b57cec5SDimitry Andric // thus requiring an additional register variable to be live, but not 28150b57cec5SDimitry Andric // actually achieving anything (the GEP still needs to be executed once per 28160b57cec5SDimitry Andric // loop iteration). 28170b57cec5SDimitry Andric if (Op1 == &GEP) 28180b57cec5SDimitry Andric return nullptr; 28190b57cec5SDimitry Andric 28200b57cec5SDimitry Andric int DI = -1; 28210b57cec5SDimitry Andric 28220b57cec5SDimitry Andric for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { 28230b57cec5SDimitry Andric auto *Op2 = dyn_cast<GetElementPtrInst>(*I); 282481ad6265SDimitry Andric if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() || 282581ad6265SDimitry Andric Op1->getSourceElementType() != Op2->getSourceElementType()) 28260b57cec5SDimitry Andric return nullptr; 28270b57cec5SDimitry Andric 28280b57cec5SDimitry Andric // As for Op1 above, don't try to fold a GEP into itself. 28290b57cec5SDimitry Andric if (Op2 == &GEP) 28300b57cec5SDimitry Andric return nullptr; 28310b57cec5SDimitry Andric 28320b57cec5SDimitry Andric // Keep track of the type as we walk the GEP. 28330b57cec5SDimitry Andric Type *CurTy = nullptr; 28340b57cec5SDimitry Andric 28350b57cec5SDimitry Andric for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { 28360b57cec5SDimitry Andric if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) 28370b57cec5SDimitry Andric return nullptr; 28380b57cec5SDimitry Andric 28390b57cec5SDimitry Andric if (Op1->getOperand(J) != Op2->getOperand(J)) { 28400b57cec5SDimitry Andric if (DI == -1) { 28410b57cec5SDimitry Andric // We have not seen any differences yet in the GEPs feeding the 28420b57cec5SDimitry Andric // PHI yet, so we record this one if it is allowed to be a 28430b57cec5SDimitry Andric // variable. 28440b57cec5SDimitry Andric 28450b57cec5SDimitry Andric // The first two arguments can vary for any GEP, the rest have to be 28460b57cec5SDimitry Andric // static for struct slots 2847480093f4SDimitry Andric if (J > 1) { 2848480093f4SDimitry Andric assert(CurTy && "No current type?"); 2849480093f4SDimitry Andric if (CurTy->isStructTy()) 28500b57cec5SDimitry Andric return nullptr; 2851480093f4SDimitry Andric } 28520b57cec5SDimitry Andric 28530b57cec5SDimitry Andric DI = J; 28540b57cec5SDimitry Andric } else { 28550b57cec5SDimitry Andric // The GEP is different by more than one input. While this could be 28560b57cec5SDimitry Andric // extended to support GEPs that vary by more than one variable it 28570b57cec5SDimitry Andric // doesn't make sense since it greatly increases the complexity and 28580b57cec5SDimitry Andric // would result in an R+R+R addressing mode which no backend 28590b57cec5SDimitry Andric // directly supports and would need to be broken into several 28600b57cec5SDimitry Andric // simpler instructions anyway. 28610b57cec5SDimitry Andric return nullptr; 28620b57cec5SDimitry Andric } 28630b57cec5SDimitry Andric } 28640b57cec5SDimitry Andric 28650b57cec5SDimitry Andric // Sink down a layer of the type for the next iteration. 28660b57cec5SDimitry Andric if (J > 0) { 28670b57cec5SDimitry Andric if (J == 1) { 28680b57cec5SDimitry Andric CurTy = Op1->getSourceElementType(); 28690b57cec5SDimitry Andric } else { 28705ffd83dbSDimitry Andric CurTy = 28715ffd83dbSDimitry Andric GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J)); 28720b57cec5SDimitry Andric } 28730b57cec5SDimitry Andric } 28740b57cec5SDimitry Andric } 28750b57cec5SDimitry Andric } 28760b57cec5SDimitry Andric 28770b57cec5SDimitry Andric // If not all GEPs are identical we'll have to create a new PHI node. 28780b57cec5SDimitry Andric // Check that the old PHI node has only one use so that it will get 28790b57cec5SDimitry Andric // removed. 28800b57cec5SDimitry Andric if (DI != -1 && !PN->hasOneUse()) 28810b57cec5SDimitry Andric return nullptr; 28820b57cec5SDimitry Andric 28830b57cec5SDimitry Andric auto *NewGEP = cast<GetElementPtrInst>(Op1->clone()); 28840b57cec5SDimitry Andric if (DI == -1) { 28850b57cec5SDimitry Andric // All the GEPs feeding the PHI are identical. Clone one down into our 28860b57cec5SDimitry Andric // BB so that it can be merged with the current GEP. 28870b57cec5SDimitry Andric } else { 28880b57cec5SDimitry Andric // All the GEPs feeding the PHI differ at a single offset. Clone a GEP 28890b57cec5SDimitry Andric // into the current block so it can be merged, and create a new PHI to 28900b57cec5SDimitry Andric // set that index. 28910b57cec5SDimitry Andric PHINode *NewPN; 28920b57cec5SDimitry Andric { 28930b57cec5SDimitry Andric IRBuilderBase::InsertPointGuard Guard(Builder); 28940b57cec5SDimitry Andric Builder.SetInsertPoint(PN); 28950b57cec5SDimitry Andric NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(), 28960b57cec5SDimitry Andric PN->getNumOperands()); 28970b57cec5SDimitry Andric } 28980b57cec5SDimitry Andric 28990b57cec5SDimitry Andric for (auto &I : PN->operands()) 29000b57cec5SDimitry Andric NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), 29010b57cec5SDimitry Andric PN->getIncomingBlock(I)); 29020b57cec5SDimitry Andric 29030b57cec5SDimitry Andric NewGEP->setOperand(DI, NewPN); 29040b57cec5SDimitry Andric } 29050b57cec5SDimitry Andric 29065f757f3fSDimitry Andric NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt()); 2907bdd1243dSDimitry Andric return replaceOperand(GEP, 0, NewGEP); 29080b57cec5SDimitry Andric } 29090b57cec5SDimitry Andric 291004eeddc0SDimitry Andric if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) 291104eeddc0SDimitry Andric if (Instruction *I = visitGEPOfGEP(GEP, Src)) 291204eeddc0SDimitry Andric return I; 29130b57cec5SDimitry Andric 2914*0fca6ea1SDimitry Andric if (GEP.getNumIndices() == 1) { 29150b57cec5SDimitry Andric unsigned AS = GEP.getPointerAddressSpace(); 29160b57cec5SDimitry Andric if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == 29170b57cec5SDimitry Andric DL.getIndexSizeInBits(AS)) { 2918bdd1243dSDimitry Andric uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue(); 29190b57cec5SDimitry Andric 29200b57cec5SDimitry Andric if (TyAllocSize == 1) { 2921647cbc5dSDimitry Andric // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), 2922647cbc5dSDimitry Andric // but only if the result pointer is only used as if it were an integer, 2923647cbc5dSDimitry Andric // or both point to the same underlying object (otherwise provenance is 2924647cbc5dSDimitry Andric // not necessarily retained). 2925647cbc5dSDimitry Andric Value *X = GEP.getPointerOperand(); 29260b57cec5SDimitry Andric Value *Y; 2927647cbc5dSDimitry Andric if (match(GEP.getOperand(1), 2928647cbc5dSDimitry Andric m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) && 2929647cbc5dSDimitry Andric GEPType == Y->getType()) { 2930647cbc5dSDimitry Andric bool HasSameUnderlyingObject = 2931647cbc5dSDimitry Andric getUnderlyingObject(X) == getUnderlyingObject(Y); 2932647cbc5dSDimitry Andric bool Changed = false; 2933647cbc5dSDimitry Andric GEP.replaceUsesWithIf(Y, [&](Use &U) { 2934647cbc5dSDimitry Andric bool ShouldReplace = HasSameUnderlyingObject || 2935647cbc5dSDimitry Andric isa<ICmpInst>(U.getUser()) || 2936647cbc5dSDimitry Andric isa<PtrToIntInst>(U.getUser()); 2937647cbc5dSDimitry Andric Changed |= ShouldReplace; 2938647cbc5dSDimitry Andric return ShouldReplace; 2939647cbc5dSDimitry Andric }); 2940647cbc5dSDimitry Andric return Changed ? &GEP : nullptr; 2941647cbc5dSDimitry Andric } 2942*0fca6ea1SDimitry Andric } else if (auto *ExactIns = 2943*0fca6ea1SDimitry Andric dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) { 2944647cbc5dSDimitry Andric // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V) 2945647cbc5dSDimitry Andric Value *V; 2946*0fca6ea1SDimitry Andric if (ExactIns->isExact()) { 2947647cbc5dSDimitry Andric if ((has_single_bit(TyAllocSize) && 2948647cbc5dSDimitry Andric match(GEP.getOperand(1), 2949*0fca6ea1SDimitry Andric m_Shr(m_Value(V), 2950*0fca6ea1SDimitry Andric m_SpecificInt(countr_zero(TyAllocSize))))) || 2951647cbc5dSDimitry Andric match(GEP.getOperand(1), 2952*0fca6ea1SDimitry Andric m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) { 2953*0fca6ea1SDimitry Andric return GetElementPtrInst::Create(Builder.getInt8Ty(), 2954*0fca6ea1SDimitry Andric GEP.getPointerOperand(), V, 2955*0fca6ea1SDimitry Andric GEP.getNoWrapFlags()); 2956*0fca6ea1SDimitry Andric } 2957*0fca6ea1SDimitry Andric } 2958*0fca6ea1SDimitry Andric if (ExactIns->isExact() && ExactIns->hasOneUse()) { 2959*0fca6ea1SDimitry Andric // Try to canonicalize non-i8 element type to i8 if the index is an 2960*0fca6ea1SDimitry Andric // exact instruction. If the index is an exact instruction (div/shr) 2961*0fca6ea1SDimitry Andric // with a constant RHS, we can fold the non-i8 element scale into the 2962*0fca6ea1SDimitry Andric // div/shr (similiar to the mul case, just inverted). 2963*0fca6ea1SDimitry Andric const APInt *C; 2964*0fca6ea1SDimitry Andric std::optional<APInt> NewC; 2965*0fca6ea1SDimitry Andric if (has_single_bit(TyAllocSize) && 2966*0fca6ea1SDimitry Andric match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) && 2967*0fca6ea1SDimitry Andric C->uge(countr_zero(TyAllocSize))) 2968*0fca6ea1SDimitry Andric NewC = *C - countr_zero(TyAllocSize); 2969*0fca6ea1SDimitry Andric else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) { 2970*0fca6ea1SDimitry Andric APInt Quot; 2971*0fca6ea1SDimitry Andric uint64_t Rem; 2972*0fca6ea1SDimitry Andric APInt::udivrem(*C, TyAllocSize, Quot, Rem); 2973*0fca6ea1SDimitry Andric if (Rem == 0) 2974*0fca6ea1SDimitry Andric NewC = Quot; 2975*0fca6ea1SDimitry Andric } else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) { 2976*0fca6ea1SDimitry Andric APInt Quot; 2977*0fca6ea1SDimitry Andric int64_t Rem; 2978*0fca6ea1SDimitry Andric APInt::sdivrem(*C, TyAllocSize, Quot, Rem); 2979*0fca6ea1SDimitry Andric // For sdiv we need to make sure we arent creating INT_MIN / -1. 2980*0fca6ea1SDimitry Andric if (!Quot.isAllOnes() && Rem == 0) 2981*0fca6ea1SDimitry Andric NewC = Quot; 2982*0fca6ea1SDimitry Andric } 2983*0fca6ea1SDimitry Andric 2984*0fca6ea1SDimitry Andric if (NewC.has_value()) { 2985*0fca6ea1SDimitry Andric Value *NewOp = Builder.CreateBinOp( 2986*0fca6ea1SDimitry Andric static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V, 2987*0fca6ea1SDimitry Andric ConstantInt::get(V->getType(), *NewC)); 2988*0fca6ea1SDimitry Andric cast<BinaryOperator>(NewOp)->setIsExact(); 2989*0fca6ea1SDimitry Andric return GetElementPtrInst::Create(Builder.getInt8Ty(), 2990*0fca6ea1SDimitry Andric GEP.getPointerOperand(), NewOp, 2991*0fca6ea1SDimitry Andric GEP.getNoWrapFlags()); 2992*0fca6ea1SDimitry Andric } 2993647cbc5dSDimitry Andric } 2994647cbc5dSDimitry Andric } 29950b57cec5SDimitry Andric } 29960b57cec5SDimitry Andric } 29970b57cec5SDimitry Andric // We do not handle pointer-vector geps here. 29980b57cec5SDimitry Andric if (GEPType->isVectorTy()) 29990b57cec5SDimitry Andric return nullptr; 30000b57cec5SDimitry Andric 30015f757f3fSDimitry Andric if (GEP.getNumIndices() == 1) { 3002*0fca6ea1SDimitry Andric // We can only preserve inbounds if the original gep is inbounds, the add 3003*0fca6ea1SDimitry Andric // is nsw, and the add operands are non-negative. 3004*0fca6ea1SDimitry Andric auto CanPreserveInBounds = [&](bool AddIsNSW, Value *Idx1, Value *Idx2) { 3005*0fca6ea1SDimitry Andric SimplifyQuery Q = SQ.getWithInstruction(&GEP); 3006*0fca6ea1SDimitry Andric return GEP.isInBounds() && AddIsNSW && isKnownNonNegative(Idx1, Q) && 3007*0fca6ea1SDimitry Andric isKnownNonNegative(Idx2, Q); 3008*0fca6ea1SDimitry Andric }; 3009*0fca6ea1SDimitry Andric 30105f757f3fSDimitry Andric // Try to replace ADD + GEP with GEP + GEP. 30115f757f3fSDimitry Andric Value *Idx1, *Idx2; 30125f757f3fSDimitry Andric if (match(GEP.getOperand(1), 30135f757f3fSDimitry Andric m_OneUse(m_Add(m_Value(Idx1), m_Value(Idx2))))) { 30145f757f3fSDimitry Andric // %idx = add i64 %idx1, %idx2 30155f757f3fSDimitry Andric // %gep = getelementptr i32, ptr %ptr, i64 %idx 30165f757f3fSDimitry Andric // as: 30175f757f3fSDimitry Andric // %newptr = getelementptr i32, ptr %ptr, i64 %idx1 30185f757f3fSDimitry Andric // %newgep = getelementptr i32, ptr %newptr, i64 %idx2 3019*0fca6ea1SDimitry Andric bool IsInBounds = CanPreserveInBounds( 3020*0fca6ea1SDimitry Andric cast<OverflowingBinaryOperator>(GEP.getOperand(1))->hasNoSignedWrap(), 3021*0fca6ea1SDimitry Andric Idx1, Idx2); 3022*0fca6ea1SDimitry Andric auto *NewPtr = 3023*0fca6ea1SDimitry Andric Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(), 3024*0fca6ea1SDimitry Andric Idx1, "", IsInBounds); 3025*0fca6ea1SDimitry Andric return replaceInstUsesWith( 3026*0fca6ea1SDimitry Andric GEP, Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, Idx2, "", 3027*0fca6ea1SDimitry Andric IsInBounds)); 30285f757f3fSDimitry Andric } 30295f757f3fSDimitry Andric ConstantInt *C; 3030cb14a3feSDimitry Andric if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd( 30315f757f3fSDimitry Andric m_Value(Idx1), m_ConstantInt(C))))))) { 30325f757f3fSDimitry Andric // %add = add nsw i32 %idx1, idx2 30335f757f3fSDimitry Andric // %sidx = sext i32 %add to i64 30345f757f3fSDimitry Andric // %gep = getelementptr i32, ptr %ptr, i64 %sidx 30355f757f3fSDimitry Andric // as: 30365f757f3fSDimitry Andric // %newptr = getelementptr i32, ptr %ptr, i32 %idx1 30375f757f3fSDimitry Andric // %newgep = getelementptr i32, ptr %newptr, i32 idx2 3038*0fca6ea1SDimitry Andric bool IsInBounds = CanPreserveInBounds( 3039*0fca6ea1SDimitry Andric /*IsNSW=*/true, Idx1, C); 30405f757f3fSDimitry Andric auto *NewPtr = Builder.CreateGEP( 3041*0fca6ea1SDimitry Andric GEP.getSourceElementType(), GEP.getPointerOperand(), 3042*0fca6ea1SDimitry Andric Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", 3043*0fca6ea1SDimitry Andric IsInBounds); 3044*0fca6ea1SDimitry Andric return replaceInstUsesWith( 3045*0fca6ea1SDimitry Andric GEP, 3046*0fca6ea1SDimitry Andric Builder.CreateGEP(GEP.getSourceElementType(), NewPtr, 3047*0fca6ea1SDimitry Andric Builder.CreateSExt(C, GEP.getOperand(1)->getType()), 3048*0fca6ea1SDimitry Andric "", IsInBounds)); 30495f757f3fSDimitry Andric } 30505f757f3fSDimitry Andric } 30515f757f3fSDimitry Andric 30520b57cec5SDimitry Andric if (!GEP.isInBounds()) { 30530b57cec5SDimitry Andric unsigned IdxWidth = 30540b57cec5SDimitry Andric DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace()); 30550b57cec5SDimitry Andric APInt BasePtrOffset(IdxWidth, 0); 30560b57cec5SDimitry Andric Value *UnderlyingPtrOp = 30570b57cec5SDimitry Andric PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, 30580b57cec5SDimitry Andric BasePtrOffset); 305906c3fb27SDimitry Andric bool CanBeNull, CanBeFreed; 306006c3fb27SDimitry Andric uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes( 306106c3fb27SDimitry Andric DL, CanBeNull, CanBeFreed); 306206c3fb27SDimitry Andric if (!CanBeNull && !CanBeFreed && DerefBytes != 0) { 30630b57cec5SDimitry Andric if (GEP.accumulateConstantOffset(DL, BasePtrOffset) && 30640b57cec5SDimitry Andric BasePtrOffset.isNonNegative()) { 306506c3fb27SDimitry Andric APInt AllocSize(IdxWidth, DerefBytes); 30660b57cec5SDimitry Andric if (BasePtrOffset.ule(AllocSize)) { 30670b57cec5SDimitry Andric return GetElementPtrInst::CreateInBounds( 306804eeddc0SDimitry Andric GEP.getSourceElementType(), PtrOp, Indices, GEP.getName()); 30690b57cec5SDimitry Andric } 30700b57cec5SDimitry Andric } 30710b57cec5SDimitry Andric } 30720b57cec5SDimitry Andric } 30730b57cec5SDimitry Andric 30745ffd83dbSDimitry Andric if (Instruction *R = foldSelectGEP(GEP, Builder)) 30755ffd83dbSDimitry Andric return R; 30765ffd83dbSDimitry Andric 30770b57cec5SDimitry Andric return nullptr; 30780b57cec5SDimitry Andric } 30790b57cec5SDimitry Andric 30800eae32dcSDimitry Andric static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI, 30810b57cec5SDimitry Andric Instruction *AI) { 30820b57cec5SDimitry Andric if (isa<ConstantPointerNull>(V)) 30830b57cec5SDimitry Andric return true; 30840b57cec5SDimitry Andric if (auto *LI = dyn_cast<LoadInst>(V)) 30850b57cec5SDimitry Andric return isa<GlobalVariable>(LI->getPointerOperand()); 30860b57cec5SDimitry Andric // Two distinct allocations will never be equal. 30870eae32dcSDimitry Andric return isAllocLikeFn(V, &TLI) && V != AI; 30880eae32dcSDimitry Andric } 30890eae32dcSDimitry Andric 30900eae32dcSDimitry Andric /// Given a call CB which uses an address UsedV, return true if we can prove the 30910eae32dcSDimitry Andric /// call's only possible effect is storing to V. 30920eae32dcSDimitry Andric static bool isRemovableWrite(CallBase &CB, Value *UsedV, 30930eae32dcSDimitry Andric const TargetLibraryInfo &TLI) { 30940eae32dcSDimitry Andric if (!CB.use_empty()) 30950eae32dcSDimitry Andric // TODO: add recursion if returned attribute is present 30960eae32dcSDimitry Andric return false; 30970eae32dcSDimitry Andric 30980eae32dcSDimitry Andric if (CB.isTerminator()) 30990eae32dcSDimitry Andric // TODO: remove implementation restriction 31000eae32dcSDimitry Andric return false; 31010eae32dcSDimitry Andric 31020eae32dcSDimitry Andric if (!CB.willReturn() || !CB.doesNotThrow()) 31030eae32dcSDimitry Andric return false; 31040eae32dcSDimitry Andric 31050eae32dcSDimitry Andric // If the only possible side effect of the call is writing to the alloca, 31060eae32dcSDimitry Andric // and the result isn't used, we can safely remove any reads implied by the 31070eae32dcSDimitry Andric // call including those which might read the alloca itself. 3108bdd1243dSDimitry Andric std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI); 31090eae32dcSDimitry Andric return Dest && Dest->Ptr == UsedV; 31100b57cec5SDimitry Andric } 31110b57cec5SDimitry Andric 31120b57cec5SDimitry Andric static bool isAllocSiteRemovable(Instruction *AI, 31130b57cec5SDimitry Andric SmallVectorImpl<WeakTrackingVH> &Users, 31140eae32dcSDimitry Andric const TargetLibraryInfo &TLI) { 31150b57cec5SDimitry Andric SmallVector<Instruction*, 4> Worklist; 3116bdd1243dSDimitry Andric const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI); 31170b57cec5SDimitry Andric Worklist.push_back(AI); 31180b57cec5SDimitry Andric 31190b57cec5SDimitry Andric do { 31200b57cec5SDimitry Andric Instruction *PI = Worklist.pop_back_val(); 31210b57cec5SDimitry Andric for (User *U : PI->users()) { 31220b57cec5SDimitry Andric Instruction *I = cast<Instruction>(U); 31230b57cec5SDimitry Andric switch (I->getOpcode()) { 31240b57cec5SDimitry Andric default: 31250b57cec5SDimitry Andric // Give up the moment we see something we can't handle. 31260b57cec5SDimitry Andric return false; 31270b57cec5SDimitry Andric 31280b57cec5SDimitry Andric case Instruction::AddrSpaceCast: 31290b57cec5SDimitry Andric case Instruction::BitCast: 31300b57cec5SDimitry Andric case Instruction::GetElementPtr: 31310b57cec5SDimitry Andric Users.emplace_back(I); 31320b57cec5SDimitry Andric Worklist.push_back(I); 31330b57cec5SDimitry Andric continue; 31340b57cec5SDimitry Andric 31350b57cec5SDimitry Andric case Instruction::ICmp: { 31360b57cec5SDimitry Andric ICmpInst *ICI = cast<ICmpInst>(I); 31370b57cec5SDimitry Andric // We can fold eq/ne comparisons with null to false/true, respectively. 31380b57cec5SDimitry Andric // We also fold comparisons in some conditions provided the alloc has 31390b57cec5SDimitry Andric // not escaped (see isNeverEqualToUnescapedAlloc). 31400b57cec5SDimitry Andric if (!ICI->isEquality()) 31410b57cec5SDimitry Andric return false; 31420b57cec5SDimitry Andric unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; 31430b57cec5SDimitry Andric if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) 31440b57cec5SDimitry Andric return false; 31455f757f3fSDimitry Andric 31465f757f3fSDimitry Andric // Do not fold compares to aligned_alloc calls, as they may have to 31475f757f3fSDimitry Andric // return null in case the required alignment cannot be satisfied, 31485f757f3fSDimitry Andric // unless we can prove that both alignment and size are valid. 31495f757f3fSDimitry Andric auto AlignmentAndSizeKnownValid = [](CallBase *CB) { 31505f757f3fSDimitry Andric // Check if alignment and size of a call to aligned_alloc is valid, 31515f757f3fSDimitry Andric // that is alignment is a power-of-2 and the size is a multiple of the 31525f757f3fSDimitry Andric // alignment. 31535f757f3fSDimitry Andric const APInt *Alignment; 31545f757f3fSDimitry Andric const APInt *Size; 31555f757f3fSDimitry Andric return match(CB->getArgOperand(0), m_APInt(Alignment)) && 31565f757f3fSDimitry Andric match(CB->getArgOperand(1), m_APInt(Size)) && 31575f757f3fSDimitry Andric Alignment->isPowerOf2() && Size->urem(*Alignment).isZero(); 31585f757f3fSDimitry Andric }; 31595f757f3fSDimitry Andric auto *CB = dyn_cast<CallBase>(AI); 31605f757f3fSDimitry Andric LibFunc TheLibFunc; 31615f757f3fSDimitry Andric if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) && 31625f757f3fSDimitry Andric TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc && 31635f757f3fSDimitry Andric !AlignmentAndSizeKnownValid(CB)) 31645f757f3fSDimitry Andric return false; 31650b57cec5SDimitry Andric Users.emplace_back(I); 31660b57cec5SDimitry Andric continue; 31670b57cec5SDimitry Andric } 31680b57cec5SDimitry Andric 31690b57cec5SDimitry Andric case Instruction::Call: 31700b57cec5SDimitry Andric // Ignore no-op and store intrinsics. 31710b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 31720b57cec5SDimitry Andric switch (II->getIntrinsicID()) { 31730b57cec5SDimitry Andric default: 31740b57cec5SDimitry Andric return false; 31750b57cec5SDimitry Andric 31760b57cec5SDimitry Andric case Intrinsic::memmove: 31770b57cec5SDimitry Andric case Intrinsic::memcpy: 31780b57cec5SDimitry Andric case Intrinsic::memset: { 31790b57cec5SDimitry Andric MemIntrinsic *MI = cast<MemIntrinsic>(II); 31800b57cec5SDimitry Andric if (MI->isVolatile() || MI->getRawDest() != PI) 31810b57cec5SDimitry Andric return false; 3182bdd1243dSDimitry Andric [[fallthrough]]; 31830b57cec5SDimitry Andric } 31845ffd83dbSDimitry Andric case Intrinsic::assume: 31850b57cec5SDimitry Andric case Intrinsic::invariant_start: 31860b57cec5SDimitry Andric case Intrinsic::invariant_end: 31870b57cec5SDimitry Andric case Intrinsic::lifetime_start: 31880b57cec5SDimitry Andric case Intrinsic::lifetime_end: 31890b57cec5SDimitry Andric case Intrinsic::objectsize: 31900b57cec5SDimitry Andric Users.emplace_back(I); 31910b57cec5SDimitry Andric continue; 3192fe6060f1SDimitry Andric case Intrinsic::launder_invariant_group: 3193fe6060f1SDimitry Andric case Intrinsic::strip_invariant_group: 3194fe6060f1SDimitry Andric Users.emplace_back(I); 3195fe6060f1SDimitry Andric Worklist.push_back(I); 3196fe6060f1SDimitry Andric continue; 31970b57cec5SDimitry Andric } 31980b57cec5SDimitry Andric } 31990b57cec5SDimitry Andric 32000eae32dcSDimitry Andric if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) { 32010b57cec5SDimitry Andric Users.emplace_back(I); 32020b57cec5SDimitry Andric continue; 32030b57cec5SDimitry Andric } 3204349cc55cSDimitry Andric 3205fcaf7f86SDimitry Andric if (getFreedOperand(cast<CallBase>(I), &TLI) == PI && 3206fcaf7f86SDimitry Andric getAllocationFamily(I, &TLI) == Family) { 320781ad6265SDimitry Andric assert(Family); 32080eae32dcSDimitry Andric Users.emplace_back(I); 32090eae32dcSDimitry Andric continue; 32100eae32dcSDimitry Andric } 32110eae32dcSDimitry Andric 3212bdd1243dSDimitry Andric if (getReallocatedOperand(cast<CallBase>(I)) == PI && 321381ad6265SDimitry Andric getAllocationFamily(I, &TLI) == Family) { 321481ad6265SDimitry Andric assert(Family); 3215349cc55cSDimitry Andric Users.emplace_back(I); 3216349cc55cSDimitry Andric Worklist.push_back(I); 3217349cc55cSDimitry Andric continue; 3218349cc55cSDimitry Andric } 3219349cc55cSDimitry Andric 32200b57cec5SDimitry Andric return false; 32210b57cec5SDimitry Andric 32220b57cec5SDimitry Andric case Instruction::Store: { 32230b57cec5SDimitry Andric StoreInst *SI = cast<StoreInst>(I); 32240b57cec5SDimitry Andric if (SI->isVolatile() || SI->getPointerOperand() != PI) 32250b57cec5SDimitry Andric return false; 32260b57cec5SDimitry Andric Users.emplace_back(I); 32270b57cec5SDimitry Andric continue; 32280b57cec5SDimitry Andric } 32290b57cec5SDimitry Andric } 32300b57cec5SDimitry Andric llvm_unreachable("missing a return?"); 32310b57cec5SDimitry Andric } 32320b57cec5SDimitry Andric } while (!Worklist.empty()); 32330b57cec5SDimitry Andric return true; 32340b57cec5SDimitry Andric } 32350b57cec5SDimitry Andric 3236e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) { 3237fcaf7f86SDimitry Andric assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI)); 323804eeddc0SDimitry Andric 32390b57cec5SDimitry Andric // If we have a malloc call which is only used in any amount of comparisons to 32400b57cec5SDimitry Andric // null and free calls, delete the calls and replace the comparisons with true 32410b57cec5SDimitry Andric // or false as appropriate. 32420b57cec5SDimitry Andric 32430b57cec5SDimitry Andric // This is based on the principle that we can substitute our own allocation 32440b57cec5SDimitry Andric // function (which will never return null) rather than knowledge of the 32450b57cec5SDimitry Andric // specific function being called. In some sense this can change the permitted 32460b57cec5SDimitry Andric // outputs of a program (when we convert a malloc to an alloca, the fact that 32470b57cec5SDimitry Andric // the allocation is now on the stack is potentially visible, for example), 32480b57cec5SDimitry Andric // but we believe in a permissible manner. 32490b57cec5SDimitry Andric SmallVector<WeakTrackingVH, 64> Users; 32500b57cec5SDimitry Andric 32510b57cec5SDimitry Andric // If we are removing an alloca with a dbg.declare, insert dbg.value calls 32520b57cec5SDimitry Andric // before each store. 3253e8d8bef9SDimitry Andric SmallVector<DbgVariableIntrinsic *, 8> DVIs; 3254*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 8> DVRs; 32550b57cec5SDimitry Andric std::unique_ptr<DIBuilder> DIB; 32560b57cec5SDimitry Andric if (isa<AllocaInst>(MI)) { 3257*0fca6ea1SDimitry Andric findDbgUsers(DVIs, &MI, &DVRs); 32580b57cec5SDimitry Andric DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false)); 32590b57cec5SDimitry Andric } 32600b57cec5SDimitry Andric 32610eae32dcSDimitry Andric if (isAllocSiteRemovable(&MI, Users, TLI)) { 32620b57cec5SDimitry Andric for (unsigned i = 0, e = Users.size(); i != e; ++i) { 32630b57cec5SDimitry Andric // Lowering all @llvm.objectsize calls first because they may 32640b57cec5SDimitry Andric // use a bitcast/GEP of the alloca we are removing. 32650b57cec5SDimitry Andric if (!Users[i]) 32660b57cec5SDimitry Andric continue; 32670b57cec5SDimitry Andric 32680b57cec5SDimitry Andric Instruction *I = cast<Instruction>(&*Users[i]); 32690b57cec5SDimitry Andric 32700b57cec5SDimitry Andric if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 32710b57cec5SDimitry Andric if (II->getIntrinsicID() == Intrinsic::objectsize) { 327206c3fb27SDimitry Andric SmallVector<Instruction *> InsertedInstructions; 327306c3fb27SDimitry Andric Value *Result = lowerObjectSizeCall( 327406c3fb27SDimitry Andric II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions); 327506c3fb27SDimitry Andric for (Instruction *Inserted : InsertedInstructions) 327606c3fb27SDimitry Andric Worklist.add(Inserted); 32770b57cec5SDimitry Andric replaceInstUsesWith(*I, Result); 32780b57cec5SDimitry Andric eraseInstFromFunction(*I); 32790b57cec5SDimitry Andric Users[i] = nullptr; // Skip examining in the next loop. 32800b57cec5SDimitry Andric } 32810b57cec5SDimitry Andric } 32820b57cec5SDimitry Andric } 32830b57cec5SDimitry Andric for (unsigned i = 0, e = Users.size(); i != e; ++i) { 32840b57cec5SDimitry Andric if (!Users[i]) 32850b57cec5SDimitry Andric continue; 32860b57cec5SDimitry Andric 32870b57cec5SDimitry Andric Instruction *I = cast<Instruction>(&*Users[i]); 32880b57cec5SDimitry Andric 32890b57cec5SDimitry Andric if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { 32900b57cec5SDimitry Andric replaceInstUsesWith(*C, 32910b57cec5SDimitry Andric ConstantInt::get(Type::getInt1Ty(C->getContext()), 32920b57cec5SDimitry Andric C->isFalseWhenEqual())); 32930b57cec5SDimitry Andric } else if (auto *SI = dyn_cast<StoreInst>(I)) { 3294e8d8bef9SDimitry Andric for (auto *DVI : DVIs) 3295e8d8bef9SDimitry Andric if (DVI->isAddressOfVariable()) 3296e8d8bef9SDimitry Andric ConvertDebugDeclareToDebugValue(DVI, SI, *DIB); 3297*0fca6ea1SDimitry Andric for (auto *DVR : DVRs) 3298*0fca6ea1SDimitry Andric if (DVR->isAddressOfVariable()) 3299*0fca6ea1SDimitry Andric ConvertDebugDeclareToDebugValue(DVR, SI, *DIB); 3300480093f4SDimitry Andric } else { 3301480093f4SDimitry Andric // Casts, GEP, or anything else: we're about to delete this instruction, 3302480093f4SDimitry Andric // so it can not have any valid uses. 3303fe6060f1SDimitry Andric replaceInstUsesWith(*I, PoisonValue::get(I->getType())); 33040b57cec5SDimitry Andric } 33050b57cec5SDimitry Andric eraseInstFromFunction(*I); 33060b57cec5SDimitry Andric } 33070b57cec5SDimitry Andric 33080b57cec5SDimitry Andric if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { 33090b57cec5SDimitry Andric // Replace invoke with a NOP intrinsic to maintain the original CFG 33100b57cec5SDimitry Andric Module *M = II->getModule(); 33110b57cec5SDimitry Andric Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); 33120b57cec5SDimitry Andric InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), 3313bdd1243dSDimitry Andric std::nullopt, "", II->getParent()); 33140b57cec5SDimitry Andric } 33150b57cec5SDimitry Andric 3316e8d8bef9SDimitry Andric // Remove debug intrinsics which describe the value contained within the 3317e8d8bef9SDimitry Andric // alloca. In addition to removing dbg.{declare,addr} which simply point to 3318e8d8bef9SDimitry Andric // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.: 3319e8d8bef9SDimitry Andric // 3320e8d8bef9SDimitry Andric // ``` 3321e8d8bef9SDimitry Andric // define void @foo(i32 %0) { 3322e8d8bef9SDimitry Andric // %a = alloca i32 ; Deleted. 3323e8d8bef9SDimitry Andric // store i32 %0, i32* %a 3324e8d8bef9SDimitry Andric // dbg.value(i32 %0, "arg0") ; Not deleted. 3325e8d8bef9SDimitry Andric // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted. 3326e8d8bef9SDimitry Andric // call void @trivially_inlinable_no_op(i32* %a) 3327e8d8bef9SDimitry Andric // ret void 3328e8d8bef9SDimitry Andric // } 3329e8d8bef9SDimitry Andric // ``` 3330e8d8bef9SDimitry Andric // 3331e8d8bef9SDimitry Andric // This may not be required if we stop describing the contents of allocas 3332e8d8bef9SDimitry Andric // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in 3333e8d8bef9SDimitry Andric // the LowerDbgDeclare utility. 3334e8d8bef9SDimitry Andric // 3335e8d8bef9SDimitry Andric // If there is a dead store to `%a` in @trivially_inlinable_no_op, the 3336e8d8bef9SDimitry Andric // "arg0" dbg.value may be stale after the call. However, failing to remove 3337e8d8bef9SDimitry Andric // the DW_OP_deref dbg.value causes large gaps in location coverage. 33385f757f3fSDimitry Andric // 33395f757f3fSDimitry Andric // FIXME: the Assignment Tracking project has now likely made this 33405f757f3fSDimitry Andric // redundant (and it's sometimes harmful). 3341e8d8bef9SDimitry Andric for (auto *DVI : DVIs) 3342e8d8bef9SDimitry Andric if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref()) 3343e8d8bef9SDimitry Andric DVI->eraseFromParent(); 3344*0fca6ea1SDimitry Andric for (auto *DVR : DVRs) 3345*0fca6ea1SDimitry Andric if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref()) 3346*0fca6ea1SDimitry Andric DVR->eraseFromParent(); 33470b57cec5SDimitry Andric 33480b57cec5SDimitry Andric return eraseInstFromFunction(MI); 33490b57cec5SDimitry Andric } 33500b57cec5SDimitry Andric return nullptr; 33510b57cec5SDimitry Andric } 33520b57cec5SDimitry Andric 33530b57cec5SDimitry Andric /// Move the call to free before a NULL test. 33540b57cec5SDimitry Andric /// 33550b57cec5SDimitry Andric /// Check if this free is accessed after its argument has been test 33560b57cec5SDimitry Andric /// against NULL (property 0). 33570b57cec5SDimitry Andric /// If yes, it is legal to move this call in its predecessor block. 33580b57cec5SDimitry Andric /// 33590b57cec5SDimitry Andric /// The move is performed only if the block containing the call to free 33600b57cec5SDimitry Andric /// will be removed, i.e.: 33610b57cec5SDimitry Andric /// 1. it has only one predecessor P, and P has two successors 33620b57cec5SDimitry Andric /// 2. it contains the call, noops, and an unconditional branch 33630b57cec5SDimitry Andric /// 3. its successor is the same as its predecessor's successor 33640b57cec5SDimitry Andric /// 33650b57cec5SDimitry Andric /// The profitability is out-of concern here and this function should 33660b57cec5SDimitry Andric /// be called only if the caller knows this transformation would be 33670b57cec5SDimitry Andric /// profitable (e.g., for code size). 33680b57cec5SDimitry Andric static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI, 33690b57cec5SDimitry Andric const DataLayout &DL) { 33700b57cec5SDimitry Andric Value *Op = FI.getArgOperand(0); 33710b57cec5SDimitry Andric BasicBlock *FreeInstrBB = FI.getParent(); 33720b57cec5SDimitry Andric BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); 33730b57cec5SDimitry Andric 33740b57cec5SDimitry Andric // Validate part of constraint #1: Only one predecessor 33750b57cec5SDimitry Andric // FIXME: We can extend the number of predecessor, but in that case, we 33760b57cec5SDimitry Andric // would duplicate the call to free in each predecessor and it may 33770b57cec5SDimitry Andric // not be profitable even for code size. 33780b57cec5SDimitry Andric if (!PredBB) 33790b57cec5SDimitry Andric return nullptr; 33800b57cec5SDimitry Andric 33810b57cec5SDimitry Andric // Validate constraint #2: Does this block contains only the call to 33820b57cec5SDimitry Andric // free, noops, and an unconditional branch? 33830b57cec5SDimitry Andric BasicBlock *SuccBB; 33840b57cec5SDimitry Andric Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator(); 33850b57cec5SDimitry Andric if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB))) 33860b57cec5SDimitry Andric return nullptr; 33870b57cec5SDimitry Andric 33880b57cec5SDimitry Andric // If there are only 2 instructions in the block, at this point, 33890b57cec5SDimitry Andric // this is the call to free and unconditional. 33900b57cec5SDimitry Andric // If there are more than 2 instructions, check that they are noops 33910b57cec5SDimitry Andric // i.e., they won't hurt the performance of the generated code. 33920b57cec5SDimitry Andric if (FreeInstrBB->size() != 2) { 33935ffd83dbSDimitry Andric for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) { 33940b57cec5SDimitry Andric if (&Inst == &FI || &Inst == FreeInstrBBTerminator) 33950b57cec5SDimitry Andric continue; 33960b57cec5SDimitry Andric auto *Cast = dyn_cast<CastInst>(&Inst); 33970b57cec5SDimitry Andric if (!Cast || !Cast->isNoopCast(DL)) 33980b57cec5SDimitry Andric return nullptr; 33990b57cec5SDimitry Andric } 34000b57cec5SDimitry Andric } 34010b57cec5SDimitry Andric // Validate the rest of constraint #1 by matching on the pred branch. 34020b57cec5SDimitry Andric Instruction *TI = PredBB->getTerminator(); 34030b57cec5SDimitry Andric BasicBlock *TrueBB, *FalseBB; 34040b57cec5SDimitry Andric ICmpInst::Predicate Pred; 34050b57cec5SDimitry Andric if (!match(TI, m_Br(m_ICmp(Pred, 34060b57cec5SDimitry Andric m_CombineOr(m_Specific(Op), 34070b57cec5SDimitry Andric m_Specific(Op->stripPointerCasts())), 34080b57cec5SDimitry Andric m_Zero()), 34090b57cec5SDimitry Andric TrueBB, FalseBB))) 34100b57cec5SDimitry Andric return nullptr; 34110b57cec5SDimitry Andric if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) 34120b57cec5SDimitry Andric return nullptr; 34130b57cec5SDimitry Andric 34140b57cec5SDimitry Andric // Validate constraint #3: Ensure the null case just falls through. 34150b57cec5SDimitry Andric if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) 34160b57cec5SDimitry Andric return nullptr; 34170b57cec5SDimitry Andric assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && 34180b57cec5SDimitry Andric "Broken CFG: missing edge from predecessor to successor"); 34190b57cec5SDimitry Andric 34200b57cec5SDimitry Andric // At this point, we know that everything in FreeInstrBB can be moved 34210b57cec5SDimitry Andric // before TI. 3422349cc55cSDimitry Andric for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) { 34230b57cec5SDimitry Andric if (&Instr == FreeInstrBBTerminator) 34240b57cec5SDimitry Andric break; 34255f757f3fSDimitry Andric Instr.moveBeforePreserving(TI); 34260b57cec5SDimitry Andric } 34270b57cec5SDimitry Andric assert(FreeInstrBB->size() == 1 && 34280b57cec5SDimitry Andric "Only the branch instruction should remain"); 3429349cc55cSDimitry Andric 3430349cc55cSDimitry Andric // Now that we've moved the call to free before the NULL check, we have to 3431349cc55cSDimitry Andric // remove any attributes on its parameter that imply it's non-null, because 3432349cc55cSDimitry Andric // those attributes might have only been valid because of the NULL check, and 3433349cc55cSDimitry Andric // we can get miscompiles if we keep them. This is conservative if non-null is 3434349cc55cSDimitry Andric // also implied by something other than the NULL check, but it's guaranteed to 3435349cc55cSDimitry Andric // be correct, and the conservativeness won't matter in practice, since the 3436349cc55cSDimitry Andric // attributes are irrelevant for the call to free itself and the pointer 3437349cc55cSDimitry Andric // shouldn't be used after the call. 3438349cc55cSDimitry Andric AttributeList Attrs = FI.getAttributes(); 3439349cc55cSDimitry Andric Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull); 3440349cc55cSDimitry Andric Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable); 3441349cc55cSDimitry Andric if (Dereferenceable.isValid()) { 3442349cc55cSDimitry Andric uint64_t Bytes = Dereferenceable.getDereferenceableBytes(); 3443349cc55cSDimitry Andric Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, 3444349cc55cSDimitry Andric Attribute::Dereferenceable); 3445349cc55cSDimitry Andric Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes); 3446349cc55cSDimitry Andric } 3447349cc55cSDimitry Andric FI.setAttributes(Attrs); 3448349cc55cSDimitry Andric 34490b57cec5SDimitry Andric return &FI; 34500b57cec5SDimitry Andric } 34510b57cec5SDimitry Andric 3452fcaf7f86SDimitry Andric Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) { 34530b57cec5SDimitry Andric // free undef -> unreachable. 34540b57cec5SDimitry Andric if (isa<UndefValue>(Op)) { 34550b57cec5SDimitry Andric // Leave a marker since we can't modify the CFG here. 34560b57cec5SDimitry Andric CreateNonTerminatorUnreachable(&FI); 34570b57cec5SDimitry Andric return eraseInstFromFunction(FI); 34580b57cec5SDimitry Andric } 34590b57cec5SDimitry Andric 34600b57cec5SDimitry Andric // If we have 'free null' delete the instruction. This can happen in stl code 34610b57cec5SDimitry Andric // when lots of inlining happens. 34620b57cec5SDimitry Andric if (isa<ConstantPointerNull>(Op)) 34630b57cec5SDimitry Andric return eraseInstFromFunction(FI); 34640b57cec5SDimitry Andric 3465349cc55cSDimitry Andric // If we had free(realloc(...)) with no intervening uses, then eliminate the 3466349cc55cSDimitry Andric // realloc() entirely. 3467fcaf7f86SDimitry Andric CallInst *CI = dyn_cast<CallInst>(Op); 3468fcaf7f86SDimitry Andric if (CI && CI->hasOneUse()) 3469bdd1243dSDimitry Andric if (Value *ReallocatedOp = getReallocatedOperand(CI)) 3470fcaf7f86SDimitry Andric return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp)); 3471349cc55cSDimitry Andric 34720b57cec5SDimitry Andric // If we optimize for code size, try to move the call to free before the null 34730b57cec5SDimitry Andric // test so that simplify cfg can remove the empty block and dead code 34740b57cec5SDimitry Andric // elimination the branch. I.e., helps to turn something like: 34750b57cec5SDimitry Andric // if (foo) free(foo); 34760b57cec5SDimitry Andric // into 34770b57cec5SDimitry Andric // free(foo); 34785ffd83dbSDimitry Andric // 34795ffd83dbSDimitry Andric // Note that we can only do this for 'free' and not for any flavor of 34805ffd83dbSDimitry Andric // 'operator delete'; there is no 'operator delete' symbol for which we are 34815ffd83dbSDimitry Andric // permitted to invent a call, even if we're passing in a null pointer. 34825ffd83dbSDimitry Andric if (MinimizeSize) { 34835ffd83dbSDimitry Andric LibFunc Func; 34845ffd83dbSDimitry Andric if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free) 34850b57cec5SDimitry Andric if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL)) 34860b57cec5SDimitry Andric return I; 34875ffd83dbSDimitry Andric } 34880b57cec5SDimitry Andric 34890b57cec5SDimitry Andric return nullptr; 34900b57cec5SDimitry Andric } 34910b57cec5SDimitry Andric 3492e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) { 3493*0fca6ea1SDimitry Andric Value *RetVal = RI.getReturnValue(); 3494*0fca6ea1SDimitry Andric if (!RetVal || !AttributeFuncs::isNoFPClassCompatibleType(RetVal->getType())) 34955ffd83dbSDimitry Andric return nullptr; 3496*0fca6ea1SDimitry Andric 3497*0fca6ea1SDimitry Andric Function *F = RI.getFunction(); 3498*0fca6ea1SDimitry Andric FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass(); 3499*0fca6ea1SDimitry Andric if (ReturnClass == fcNone) 3500*0fca6ea1SDimitry Andric return nullptr; 3501*0fca6ea1SDimitry Andric 3502*0fca6ea1SDimitry Andric KnownFPClass KnownClass; 3503*0fca6ea1SDimitry Andric Value *Simplified = 3504*0fca6ea1SDimitry Andric SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, 0, &RI); 3505*0fca6ea1SDimitry Andric if (!Simplified) 3506*0fca6ea1SDimitry Andric return nullptr; 3507*0fca6ea1SDimitry Andric 3508*0fca6ea1SDimitry Andric return ReturnInst::Create(RI.getContext(), Simplified); 35095ffd83dbSDimitry Andric } 35105ffd83dbSDimitry Andric 3511fe6060f1SDimitry Andric // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()! 351206c3fb27SDimitry Andric bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) { 3513e8d8bef9SDimitry Andric // Try to remove the previous instruction if it must lead to unreachable. 3514e8d8bef9SDimitry Andric // This includes instructions like stores and "llvm.assume" that may not get 3515e8d8bef9SDimitry Andric // removed by simple dead code elimination. 351606c3fb27SDimitry Andric bool Changed = false; 3517fe6060f1SDimitry Andric while (Instruction *Prev = I.getPrevNonDebugInstruction()) { 3518fe6060f1SDimitry Andric // While we theoretically can erase EH, that would result in a block that 3519fe6060f1SDimitry Andric // used to start with an EH no longer starting with EH, which is invalid. 3520fe6060f1SDimitry Andric // To make it valid, we'd need to fixup predecessors to no longer refer to 3521fe6060f1SDimitry Andric // this block, but that changes CFG, which is not allowed in InstCombine. 3522fe6060f1SDimitry Andric if (Prev->isEHPad()) 352306c3fb27SDimitry Andric break; // Can not drop any more instructions. We're done here. 3524fe6060f1SDimitry Andric 3525fe6060f1SDimitry Andric if (!isGuaranteedToTransferExecutionToSuccessor(Prev)) 352606c3fb27SDimitry Andric break; // Can not drop any more instructions. We're done here. 3527fe6060f1SDimitry Andric // Otherwise, this instruction can be freely erased, 3528fe6060f1SDimitry Andric // even if it is not side-effect free. 3529e8d8bef9SDimitry Andric 3530e8d8bef9SDimitry Andric // A value may still have uses before we process it here (for example, in 3531fe6060f1SDimitry Andric // another unreachable block), so convert those to poison. 3532fe6060f1SDimitry Andric replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType())); 3533e8d8bef9SDimitry Andric eraseInstFromFunction(*Prev); 353406c3fb27SDimitry Andric Changed = true; 3535e8d8bef9SDimitry Andric } 353606c3fb27SDimitry Andric return Changed; 353706c3fb27SDimitry Andric } 353806c3fb27SDimitry Andric 353906c3fb27SDimitry Andric Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) { 354006c3fb27SDimitry Andric removeInstructionsBeforeUnreachable(I); 3541e8d8bef9SDimitry Andric return nullptr; 3542e8d8bef9SDimitry Andric } 3543e8d8bef9SDimitry Andric 3544e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) { 35455ffd83dbSDimitry Andric assert(BI.isUnconditional() && "Only for unconditional branches."); 35465ffd83dbSDimitry Andric 35475ffd83dbSDimitry Andric // If this store is the second-to-last instruction in the basic block 35485ffd83dbSDimitry Andric // (excluding debug info and bitcasts of pointers) and if the block ends with 35495ffd83dbSDimitry Andric // an unconditional branch, try to move the store to the successor block. 35505ffd83dbSDimitry Andric 35515ffd83dbSDimitry Andric auto GetLastSinkableStore = [](BasicBlock::iterator BBI) { 35525ffd83dbSDimitry Andric auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) { 3553349cc55cSDimitry Andric return BBI->isDebugOrPseudoInst() || 35545ffd83dbSDimitry Andric (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()); 35555ffd83dbSDimitry Andric }; 35565ffd83dbSDimitry Andric 35575ffd83dbSDimitry Andric BasicBlock::iterator FirstInstr = BBI->getParent()->begin(); 35585ffd83dbSDimitry Andric do { 35595ffd83dbSDimitry Andric if (BBI != FirstInstr) 35605ffd83dbSDimitry Andric --BBI; 35615ffd83dbSDimitry Andric } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI)); 35625ffd83dbSDimitry Andric 35635ffd83dbSDimitry Andric return dyn_cast<StoreInst>(BBI); 35645ffd83dbSDimitry Andric }; 35655ffd83dbSDimitry Andric 35665ffd83dbSDimitry Andric if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI))) 35675ffd83dbSDimitry Andric if (mergeStoreIntoSuccessor(*SI)) 35685ffd83dbSDimitry Andric return &BI; 35690b57cec5SDimitry Andric 35700b57cec5SDimitry Andric return nullptr; 35710b57cec5SDimitry Andric } 35720b57cec5SDimitry Andric 35735f757f3fSDimitry Andric void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To, 35745f757f3fSDimitry Andric SmallVectorImpl<BasicBlock *> &Worklist) { 35755f757f3fSDimitry Andric if (!DeadEdges.insert({From, To}).second) 35765f757f3fSDimitry Andric return; 35775f757f3fSDimitry Andric 35785f757f3fSDimitry Andric // Replace phi node operands in successor with poison. 35795f757f3fSDimitry Andric for (PHINode &PN : To->phis()) 35805f757f3fSDimitry Andric for (Use &U : PN.incoming_values()) 35815f757f3fSDimitry Andric if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) { 35825f757f3fSDimitry Andric replaceUse(U, PoisonValue::get(PN.getType())); 35835f757f3fSDimitry Andric addToWorklist(&PN); 35845f757f3fSDimitry Andric MadeIRChange = true; 35855f757f3fSDimitry Andric } 35865f757f3fSDimitry Andric 35875f757f3fSDimitry Andric Worklist.push_back(To); 35885f757f3fSDimitry Andric } 35895f757f3fSDimitry Andric 359006c3fb27SDimitry Andric // Under the assumption that I is unreachable, remove it and following 35915f757f3fSDimitry Andric // instructions. Changes are reported directly to MadeIRChange. 35925f757f3fSDimitry Andric void InstCombinerImpl::handleUnreachableFrom( 35935f757f3fSDimitry Andric Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) { 359406c3fb27SDimitry Andric BasicBlock *BB = I->getParent(); 359506c3fb27SDimitry Andric for (Instruction &Inst : make_early_inc_range( 359606c3fb27SDimitry Andric make_range(std::next(BB->getTerminator()->getReverseIterator()), 359706c3fb27SDimitry Andric std::next(I->getReverseIterator())))) { 359806c3fb27SDimitry Andric if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) { 359906c3fb27SDimitry Andric replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType())); 36005f757f3fSDimitry Andric MadeIRChange = true; 360106c3fb27SDimitry Andric } 360206c3fb27SDimitry Andric if (Inst.isEHPad() || Inst.getType()->isTokenTy()) 360306c3fb27SDimitry Andric continue; 36045f757f3fSDimitry Andric // RemoveDIs: erase debug-info on this instruction manually. 3605*0fca6ea1SDimitry Andric Inst.dropDbgRecords(); 360606c3fb27SDimitry Andric eraseInstFromFunction(Inst); 36075f757f3fSDimitry Andric MadeIRChange = true; 360806c3fb27SDimitry Andric } 360906c3fb27SDimitry Andric 3610*0fca6ea1SDimitry Andric SmallVector<Value *> Changed; 3611*0fca6ea1SDimitry Andric if (handleUnreachableTerminator(BB->getTerminator(), Changed)) { 3612*0fca6ea1SDimitry Andric MadeIRChange = true; 3613*0fca6ea1SDimitry Andric for (Value *V : Changed) 3614*0fca6ea1SDimitry Andric addToWorklist(cast<Instruction>(V)); 3615*0fca6ea1SDimitry Andric } 36165f757f3fSDimitry Andric 36175f757f3fSDimitry Andric // Handle potentially dead successors. 361806c3fb27SDimitry Andric for (BasicBlock *Succ : successors(BB)) 36195f757f3fSDimitry Andric addDeadEdge(BB, Succ, Worklist); 362006c3fb27SDimitry Andric } 362106c3fb27SDimitry Andric 36225f757f3fSDimitry Andric void InstCombinerImpl::handlePotentiallyDeadBlocks( 36235f757f3fSDimitry Andric SmallVectorImpl<BasicBlock *> &Worklist) { 36245f757f3fSDimitry Andric while (!Worklist.empty()) { 36255f757f3fSDimitry Andric BasicBlock *BB = Worklist.pop_back_val(); 36265f757f3fSDimitry Andric if (!all_of(predecessors(BB), [&](BasicBlock *Pred) { 36275f757f3fSDimitry Andric return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 36285f757f3fSDimitry Andric })) 36295f757f3fSDimitry Andric continue; 36305f757f3fSDimitry Andric 36315f757f3fSDimitry Andric handleUnreachableFrom(&BB->front(), Worklist); 36325f757f3fSDimitry Andric } 363306c3fb27SDimitry Andric } 363406c3fb27SDimitry Andric 36355f757f3fSDimitry Andric void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB, 363606c3fb27SDimitry Andric BasicBlock *LiveSucc) { 36375f757f3fSDimitry Andric SmallVector<BasicBlock *> Worklist; 363806c3fb27SDimitry Andric for (BasicBlock *Succ : successors(BB)) { 363906c3fb27SDimitry Andric // The live successor isn't dead. 364006c3fb27SDimitry Andric if (Succ == LiveSucc) 364106c3fb27SDimitry Andric continue; 364206c3fb27SDimitry Andric 36435f757f3fSDimitry Andric addDeadEdge(BB, Succ, Worklist); 364406c3fb27SDimitry Andric } 36455f757f3fSDimitry Andric 36465f757f3fSDimitry Andric handlePotentiallyDeadBlocks(Worklist); 364706c3fb27SDimitry Andric } 364806c3fb27SDimitry Andric 3649e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) { 36505ffd83dbSDimitry Andric if (BI.isUnconditional()) 36515ffd83dbSDimitry Andric return visitUnconditionalBranchInst(BI); 36525ffd83dbSDimitry Andric 36530b57cec5SDimitry Andric // Change br (not X), label True, label False to: br X, label False, True 3654bdd1243dSDimitry Andric Value *Cond = BI.getCondition(); 3655bdd1243dSDimitry Andric Value *X; 3656bdd1243dSDimitry Andric if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) { 36570b57cec5SDimitry Andric // Swap Destinations and condition... 36580b57cec5SDimitry Andric BI.swapSuccessors(); 3659*0fca6ea1SDimitry Andric if (BPI) 3660*0fca6ea1SDimitry Andric BPI->swapSuccEdgesProbabilities(BI.getParent()); 36615ffd83dbSDimitry Andric return replaceOperand(BI, 0, X); 36620b57cec5SDimitry Andric } 36630b57cec5SDimitry Andric 3664bdd1243dSDimitry Andric // Canonicalize logical-and-with-invert as logical-or-with-invert. 3665bdd1243dSDimitry Andric // This is done by inverting the condition and swapping successors: 3666bdd1243dSDimitry Andric // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T 3667bdd1243dSDimitry Andric Value *Y; 3668bdd1243dSDimitry Andric if (isa<SelectInst>(Cond) && 3669bdd1243dSDimitry Andric match(Cond, 3670bdd1243dSDimitry Andric m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) { 3671bdd1243dSDimitry Andric Value *NotX = Builder.CreateNot(X, "not." + X->getName()); 3672bdd1243dSDimitry Andric Value *Or = Builder.CreateLogicalOr(NotX, Y); 3673bdd1243dSDimitry Andric BI.swapSuccessors(); 3674*0fca6ea1SDimitry Andric if (BPI) 3675*0fca6ea1SDimitry Andric BPI->swapSuccEdgesProbabilities(BI.getParent()); 3676bdd1243dSDimitry Andric return replaceOperand(BI, 0, Or); 3677bdd1243dSDimitry Andric } 3678bdd1243dSDimitry Andric 36790b57cec5SDimitry Andric // If the condition is irrelevant, remove the use so that other 36800b57cec5SDimitry Andric // transforms on the condition become more effective. 3681bdd1243dSDimitry Andric if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1)) 3682bdd1243dSDimitry Andric return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType())); 36830b57cec5SDimitry Andric 36845ffd83dbSDimitry Andric // Canonicalize, for example, fcmp_one -> fcmp_oeq. 36850b57cec5SDimitry Andric CmpInst::Predicate Pred; 3686bdd1243dSDimitry Andric if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) && 36870b57cec5SDimitry Andric !isCanonicalPredicate(Pred)) { 36880b57cec5SDimitry Andric // Swap destinations and condition. 3689bdd1243dSDimitry Andric auto *Cmp = cast<CmpInst>(Cond); 3690bdd1243dSDimitry Andric Cmp->setPredicate(CmpInst::getInversePredicate(Pred)); 36910b57cec5SDimitry Andric BI.swapSuccessors(); 3692*0fca6ea1SDimitry Andric if (BPI) 3693*0fca6ea1SDimitry Andric BPI->swapSuccEdgesProbabilities(BI.getParent()); 3694bdd1243dSDimitry Andric Worklist.push(Cmp); 36950b57cec5SDimitry Andric return &BI; 36960b57cec5SDimitry Andric } 36970b57cec5SDimitry Andric 36985f757f3fSDimitry Andric if (isa<UndefValue>(Cond)) { 36995f757f3fSDimitry Andric handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr); 37005f757f3fSDimitry Andric return nullptr; 37015f757f3fSDimitry Andric } 37025f757f3fSDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 37035f757f3fSDimitry Andric handlePotentiallyDeadSuccessors(BI.getParent(), 37045f757f3fSDimitry Andric BI.getSuccessor(!CI->getZExtValue())); 37055f757f3fSDimitry Andric return nullptr; 37065f757f3fSDimitry Andric } 370706c3fb27SDimitry Andric 37085f757f3fSDimitry Andric DC.registerBranch(&BI); 37090b57cec5SDimitry Andric return nullptr; 37100b57cec5SDimitry Andric } 37110b57cec5SDimitry Andric 3712*0fca6ea1SDimitry Andric // Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if 3713*0fca6ea1SDimitry Andric // we can prove that both (switch C) and (switch X) go to the default when cond 3714*0fca6ea1SDimitry Andric // is false/true. 3715*0fca6ea1SDimitry Andric static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI, 3716*0fca6ea1SDimitry Andric SelectInst *Select, 3717*0fca6ea1SDimitry Andric bool IsTrueArm) { 3718*0fca6ea1SDimitry Andric unsigned CstOpIdx = IsTrueArm ? 1 : 2; 3719*0fca6ea1SDimitry Andric auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx)); 3720*0fca6ea1SDimitry Andric if (!C) 3721*0fca6ea1SDimitry Andric return nullptr; 3722*0fca6ea1SDimitry Andric 3723*0fca6ea1SDimitry Andric BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor(); 3724*0fca6ea1SDimitry Andric if (CstBB != SI.getDefaultDest()) 3725*0fca6ea1SDimitry Andric return nullptr; 3726*0fca6ea1SDimitry Andric Value *X = Select->getOperand(3 - CstOpIdx); 3727*0fca6ea1SDimitry Andric ICmpInst::Predicate Pred; 3728*0fca6ea1SDimitry Andric const APInt *RHSC; 3729*0fca6ea1SDimitry Andric if (!match(Select->getCondition(), 3730*0fca6ea1SDimitry Andric m_ICmp(Pred, m_Specific(X), m_APInt(RHSC)))) 3731*0fca6ea1SDimitry Andric return nullptr; 3732*0fca6ea1SDimitry Andric if (IsTrueArm) 3733*0fca6ea1SDimitry Andric Pred = ICmpInst::getInversePredicate(Pred); 3734*0fca6ea1SDimitry Andric 3735*0fca6ea1SDimitry Andric // See whether we can replace the select with X 3736*0fca6ea1SDimitry Andric ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC); 3737*0fca6ea1SDimitry Andric for (auto Case : SI.cases()) 3738*0fca6ea1SDimitry Andric if (!CR.contains(Case.getCaseValue()->getValue())) 3739*0fca6ea1SDimitry Andric return nullptr; 3740*0fca6ea1SDimitry Andric 3741*0fca6ea1SDimitry Andric return X; 3742*0fca6ea1SDimitry Andric } 3743*0fca6ea1SDimitry Andric 3744e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) { 37450b57cec5SDimitry Andric Value *Cond = SI.getCondition(); 37460b57cec5SDimitry Andric Value *Op0; 37470b57cec5SDimitry Andric ConstantInt *AddRHS; 37480b57cec5SDimitry Andric if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) { 37490b57cec5SDimitry Andric // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. 37500b57cec5SDimitry Andric for (auto Case : SI.cases()) { 37510b57cec5SDimitry Andric Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS); 37520b57cec5SDimitry Andric assert(isa<ConstantInt>(NewCase) && 37530b57cec5SDimitry Andric "Result of expression should be constant"); 37540b57cec5SDimitry Andric Case.setValue(cast<ConstantInt>(NewCase)); 37550b57cec5SDimitry Andric } 37565ffd83dbSDimitry Andric return replaceOperand(SI, 0, Op0); 37570b57cec5SDimitry Andric } 37580b57cec5SDimitry Andric 37591db9f3b2SDimitry Andric ConstantInt *SubLHS; 37601db9f3b2SDimitry Andric if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) { 37611db9f3b2SDimitry Andric // Change 'switch (1-X) case 1:' into 'switch (X) case 0'. 37621db9f3b2SDimitry Andric for (auto Case : SI.cases()) { 37631db9f3b2SDimitry Andric Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue()); 37641db9f3b2SDimitry Andric assert(isa<ConstantInt>(NewCase) && 37651db9f3b2SDimitry Andric "Result of expression should be constant"); 37661db9f3b2SDimitry Andric Case.setValue(cast<ConstantInt>(NewCase)); 37671db9f3b2SDimitry Andric } 37681db9f3b2SDimitry Andric return replaceOperand(SI, 0, Op0); 37691db9f3b2SDimitry Andric } 37701db9f3b2SDimitry Andric 37711db9f3b2SDimitry Andric uint64_t ShiftAmt; 37721db9f3b2SDimitry Andric if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) && 37731db9f3b2SDimitry Andric ShiftAmt < Op0->getType()->getScalarSizeInBits() && 37741db9f3b2SDimitry Andric all_of(SI.cases(), [&](const auto &Case) { 37751db9f3b2SDimitry Andric return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt; 37761db9f3b2SDimitry Andric })) { 37771db9f3b2SDimitry Andric // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'. 37781db9f3b2SDimitry Andric OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond); 37791db9f3b2SDimitry Andric if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() || 37801db9f3b2SDimitry Andric Shl->hasOneUse()) { 37811db9f3b2SDimitry Andric Value *NewCond = Op0; 37821db9f3b2SDimitry Andric if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) { 37831db9f3b2SDimitry Andric // If the shift may wrap, we need to mask off the shifted bits. 37841db9f3b2SDimitry Andric unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 37851db9f3b2SDimitry Andric NewCond = Builder.CreateAnd( 37861db9f3b2SDimitry Andric Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt)); 37871db9f3b2SDimitry Andric } 37881db9f3b2SDimitry Andric for (auto Case : SI.cases()) { 37891db9f3b2SDimitry Andric const APInt &CaseVal = Case.getCaseValue()->getValue(); 37901db9f3b2SDimitry Andric APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt) 37911db9f3b2SDimitry Andric : CaseVal.lshr(ShiftAmt); 37921db9f3b2SDimitry Andric Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase)); 37931db9f3b2SDimitry Andric } 37941db9f3b2SDimitry Andric return replaceOperand(SI, 0, NewCond); 37951db9f3b2SDimitry Andric } 37961db9f3b2SDimitry Andric } 37971db9f3b2SDimitry Andric 37981db9f3b2SDimitry Andric // Fold switch(zext/sext(X)) into switch(X) if possible. 37991db9f3b2SDimitry Andric if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) { 38001db9f3b2SDimitry Andric bool IsZExt = isa<ZExtInst>(Cond); 38011db9f3b2SDimitry Andric Type *SrcTy = Op0->getType(); 38021db9f3b2SDimitry Andric unsigned NewWidth = SrcTy->getScalarSizeInBits(); 38031db9f3b2SDimitry Andric 38041db9f3b2SDimitry Andric if (all_of(SI.cases(), [&](const auto &Case) { 38051db9f3b2SDimitry Andric const APInt &CaseVal = Case.getCaseValue()->getValue(); 38061db9f3b2SDimitry Andric return IsZExt ? CaseVal.isIntN(NewWidth) 38071db9f3b2SDimitry Andric : CaseVal.isSignedIntN(NewWidth); 38081db9f3b2SDimitry Andric })) { 38091db9f3b2SDimitry Andric for (auto &Case : SI.cases()) { 38101db9f3b2SDimitry Andric APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 38111db9f3b2SDimitry Andric Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 38121db9f3b2SDimitry Andric } 38131db9f3b2SDimitry Andric return replaceOperand(SI, 0, Op0); 38141db9f3b2SDimitry Andric } 38151db9f3b2SDimitry Andric } 38161db9f3b2SDimitry Andric 3817*0fca6ea1SDimitry Andric // Fold switch(select cond, X, Y) into switch(X/Y) if possible 3818*0fca6ea1SDimitry Andric if (auto *Select = dyn_cast<SelectInst>(Cond)) { 3819*0fca6ea1SDimitry Andric if (Value *V = 3820*0fca6ea1SDimitry Andric simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true)) 3821*0fca6ea1SDimitry Andric return replaceOperand(SI, 0, V); 3822*0fca6ea1SDimitry Andric if (Value *V = 3823*0fca6ea1SDimitry Andric simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false)) 3824*0fca6ea1SDimitry Andric return replaceOperand(SI, 0, V); 3825*0fca6ea1SDimitry Andric } 3826*0fca6ea1SDimitry Andric 38270b57cec5SDimitry Andric KnownBits Known = computeKnownBits(Cond, 0, &SI); 38280b57cec5SDimitry Andric unsigned LeadingKnownZeros = Known.countMinLeadingZeros(); 38290b57cec5SDimitry Andric unsigned LeadingKnownOnes = Known.countMinLeadingOnes(); 38300b57cec5SDimitry Andric 38310b57cec5SDimitry Andric // Compute the number of leading bits we can ignore. 38320b57cec5SDimitry Andric // TODO: A better way to determine this would use ComputeNumSignBits(). 3833bdd1243dSDimitry Andric for (const auto &C : SI.cases()) { 383406c3fb27SDimitry Andric LeadingKnownZeros = 383506c3fb27SDimitry Andric std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero()); 383606c3fb27SDimitry Andric LeadingKnownOnes = 383706c3fb27SDimitry Andric std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one()); 38380b57cec5SDimitry Andric } 38390b57cec5SDimitry Andric 38400b57cec5SDimitry Andric unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes); 38410b57cec5SDimitry Andric 38420b57cec5SDimitry Andric // Shrink the condition operand if the new type is smaller than the old type. 38430b57cec5SDimitry Andric // But do not shrink to a non-standard type, because backend can't generate 38440b57cec5SDimitry Andric // good code for that yet. 38450b57cec5SDimitry Andric // TODO: We can make it aggressive again after fixing PR39569. 38460b57cec5SDimitry Andric if (NewWidth > 0 && NewWidth < Known.getBitWidth() && 38470b57cec5SDimitry Andric shouldChangeType(Known.getBitWidth(), NewWidth)) { 38480b57cec5SDimitry Andric IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); 38490b57cec5SDimitry Andric Builder.SetInsertPoint(&SI); 38500b57cec5SDimitry Andric Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc"); 38510b57cec5SDimitry Andric 38520b57cec5SDimitry Andric for (auto Case : SI.cases()) { 38530b57cec5SDimitry Andric APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth); 38540b57cec5SDimitry Andric Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase)); 38550b57cec5SDimitry Andric } 38565ffd83dbSDimitry Andric return replaceOperand(SI, 0, NewCond); 38570b57cec5SDimitry Andric } 38580b57cec5SDimitry Andric 38595f757f3fSDimitry Andric if (isa<UndefValue>(Cond)) { 38605f757f3fSDimitry Andric handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr); 38615f757f3fSDimitry Andric return nullptr; 38625f757f3fSDimitry Andric } 38635f757f3fSDimitry Andric if (auto *CI = dyn_cast<ConstantInt>(Cond)) { 38645f757f3fSDimitry Andric handlePotentiallyDeadSuccessors(SI.getParent(), 38655f757f3fSDimitry Andric SI.findCaseValue(CI)->getCaseSuccessor()); 38665f757f3fSDimitry Andric return nullptr; 38675f757f3fSDimitry Andric } 38685f757f3fSDimitry Andric 38690b57cec5SDimitry Andric return nullptr; 38700b57cec5SDimitry Andric } 38710b57cec5SDimitry Andric 3872bdd1243dSDimitry Andric Instruction * 3873bdd1243dSDimitry Andric InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) { 3874bdd1243dSDimitry Andric auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand()); 3875bdd1243dSDimitry Andric if (!WO) 3876bdd1243dSDimitry Andric return nullptr; 3877bdd1243dSDimitry Andric 3878bdd1243dSDimitry Andric Intrinsic::ID OvID = WO->getIntrinsicID(); 3879bdd1243dSDimitry Andric const APInt *C = nullptr; 3880*0fca6ea1SDimitry Andric if (match(WO->getRHS(), m_APIntAllowPoison(C))) { 3881bdd1243dSDimitry Andric if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow || 3882bdd1243dSDimitry Andric OvID == Intrinsic::umul_with_overflow)) { 3883bdd1243dSDimitry Andric // extractvalue (any_mul_with_overflow X, -1), 0 --> -X 3884bdd1243dSDimitry Andric if (C->isAllOnes()) 3885bdd1243dSDimitry Andric return BinaryOperator::CreateNeg(WO->getLHS()); 3886bdd1243dSDimitry Andric // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n 3887bdd1243dSDimitry Andric if (C->isPowerOf2()) { 3888bdd1243dSDimitry Andric return BinaryOperator::CreateShl( 3889bdd1243dSDimitry Andric WO->getLHS(), 3890bdd1243dSDimitry Andric ConstantInt::get(WO->getLHS()->getType(), C->logBase2())); 3891bdd1243dSDimitry Andric } 3892bdd1243dSDimitry Andric } 3893bdd1243dSDimitry Andric } 3894bdd1243dSDimitry Andric 3895bdd1243dSDimitry Andric // We're extracting from an overflow intrinsic. See if we're the only user. 3896bdd1243dSDimitry Andric // That allows us to simplify multiple result intrinsics to simpler things 3897bdd1243dSDimitry Andric // that just get one value. 3898bdd1243dSDimitry Andric if (!WO->hasOneUse()) 3899bdd1243dSDimitry Andric return nullptr; 3900bdd1243dSDimitry Andric 3901bdd1243dSDimitry Andric // Check if we're grabbing only the result of a 'with overflow' intrinsic 3902bdd1243dSDimitry Andric // and replace it with a traditional binary instruction. 3903bdd1243dSDimitry Andric if (*EV.idx_begin() == 0) { 3904bdd1243dSDimitry Andric Instruction::BinaryOps BinOp = WO->getBinaryOp(); 3905bdd1243dSDimitry Andric Value *LHS = WO->getLHS(), *RHS = WO->getRHS(); 3906bdd1243dSDimitry Andric // Replace the old instruction's uses with poison. 3907bdd1243dSDimitry Andric replaceInstUsesWith(*WO, PoisonValue::get(WO->getType())); 3908bdd1243dSDimitry Andric eraseInstFromFunction(*WO); 3909bdd1243dSDimitry Andric return BinaryOperator::Create(BinOp, LHS, RHS); 3910bdd1243dSDimitry Andric } 3911bdd1243dSDimitry Andric 3912bdd1243dSDimitry Andric assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst"); 3913bdd1243dSDimitry Andric 3914bdd1243dSDimitry Andric // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS. 3915bdd1243dSDimitry Andric if (OvID == Intrinsic::usub_with_overflow) 3916bdd1243dSDimitry Andric return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS()); 3917bdd1243dSDimitry Andric 3918bdd1243dSDimitry Andric // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but 3919bdd1243dSDimitry Andric // +1 is not possible because we assume signed values. 3920bdd1243dSDimitry Andric if (OvID == Intrinsic::smul_with_overflow && 3921bdd1243dSDimitry Andric WO->getLHS()->getType()->isIntOrIntVectorTy(1)) 3922bdd1243dSDimitry Andric return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS()); 3923bdd1243dSDimitry Andric 3924*0fca6ea1SDimitry Andric // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1 3925*0fca6ea1SDimitry Andric if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) { 3926*0fca6ea1SDimitry Andric unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits(); 3927*0fca6ea1SDimitry Andric // Only handle even bitwidths for performance reasons. 3928*0fca6ea1SDimitry Andric if (BitWidth % 2 == 0) 3929*0fca6ea1SDimitry Andric return new ICmpInst( 3930*0fca6ea1SDimitry Andric ICmpInst::ICMP_UGT, WO->getLHS(), 3931*0fca6ea1SDimitry Andric ConstantInt::get(WO->getLHS()->getType(), 3932*0fca6ea1SDimitry Andric APInt::getLowBitsSet(BitWidth, BitWidth / 2))); 3933*0fca6ea1SDimitry Andric } 3934*0fca6ea1SDimitry Andric 3935bdd1243dSDimitry Andric // If only the overflow result is used, and the right hand side is a 3936bdd1243dSDimitry Andric // constant (or constant splat), we can remove the intrinsic by directly 3937bdd1243dSDimitry Andric // checking for overflow. 3938bdd1243dSDimitry Andric if (C) { 3939bdd1243dSDimitry Andric // Compute the no-wrap range for LHS given RHS=C, then construct an 3940bdd1243dSDimitry Andric // equivalent icmp, potentially using an offset. 3941bdd1243dSDimitry Andric ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( 3942bdd1243dSDimitry Andric WO->getBinaryOp(), *C, WO->getNoWrapKind()); 3943bdd1243dSDimitry Andric 3944bdd1243dSDimitry Andric CmpInst::Predicate Pred; 3945bdd1243dSDimitry Andric APInt NewRHSC, Offset; 3946bdd1243dSDimitry Andric NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 3947bdd1243dSDimitry Andric auto *OpTy = WO->getRHS()->getType(); 3948bdd1243dSDimitry Andric auto *NewLHS = WO->getLHS(); 3949bdd1243dSDimitry Andric if (Offset != 0) 3950bdd1243dSDimitry Andric NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset)); 3951bdd1243dSDimitry Andric return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS, 3952bdd1243dSDimitry Andric ConstantInt::get(OpTy, NewRHSC)); 3953bdd1243dSDimitry Andric } 3954bdd1243dSDimitry Andric 3955bdd1243dSDimitry Andric return nullptr; 3956bdd1243dSDimitry Andric } 3957bdd1243dSDimitry Andric 3958e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) { 39590b57cec5SDimitry Andric Value *Agg = EV.getAggregateOperand(); 39600b57cec5SDimitry Andric 39610b57cec5SDimitry Andric if (!EV.hasIndices()) 39620b57cec5SDimitry Andric return replaceInstUsesWith(EV, Agg); 39630b57cec5SDimitry Andric 396481ad6265SDimitry Andric if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(), 39650b57cec5SDimitry Andric SQ.getWithInstruction(&EV))) 39660b57cec5SDimitry Andric return replaceInstUsesWith(EV, V); 39670b57cec5SDimitry Andric 39680b57cec5SDimitry Andric if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { 39690b57cec5SDimitry Andric // We're extracting from an insertvalue instruction, compare the indices 39700b57cec5SDimitry Andric const unsigned *exti, *exte, *insi, *inse; 39710b57cec5SDimitry Andric for (exti = EV.idx_begin(), insi = IV->idx_begin(), 39720b57cec5SDimitry Andric exte = EV.idx_end(), inse = IV->idx_end(); 39730b57cec5SDimitry Andric exti != exte && insi != inse; 39740b57cec5SDimitry Andric ++exti, ++insi) { 39750b57cec5SDimitry Andric if (*insi != *exti) 39760b57cec5SDimitry Andric // The insert and extract both reference distinctly different elements. 39770b57cec5SDimitry Andric // This means the extract is not influenced by the insert, and we can 39780b57cec5SDimitry Andric // replace the aggregate operand of the extract with the aggregate 39790b57cec5SDimitry Andric // operand of the insert. i.e., replace 39800b57cec5SDimitry Andric // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 39810b57cec5SDimitry Andric // %E = extractvalue { i32, { i32 } } %I, 0 39820b57cec5SDimitry Andric // with 39830b57cec5SDimitry Andric // %E = extractvalue { i32, { i32 } } %A, 0 39840b57cec5SDimitry Andric return ExtractValueInst::Create(IV->getAggregateOperand(), 39850b57cec5SDimitry Andric EV.getIndices()); 39860b57cec5SDimitry Andric } 39870b57cec5SDimitry Andric if (exti == exte && insi == inse) 39880b57cec5SDimitry Andric // Both iterators are at the end: Index lists are identical. Replace 39890b57cec5SDimitry Andric // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 39900b57cec5SDimitry Andric // %C = extractvalue { i32, { i32 } } %B, 1, 0 39910b57cec5SDimitry Andric // with "i32 42" 39920b57cec5SDimitry Andric return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); 39930b57cec5SDimitry Andric if (exti == exte) { 39940b57cec5SDimitry Andric // The extract list is a prefix of the insert list. i.e. replace 39950b57cec5SDimitry Andric // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 39960b57cec5SDimitry Andric // %E = extractvalue { i32, { i32 } } %I, 1 39970b57cec5SDimitry Andric // with 39980b57cec5SDimitry Andric // %X = extractvalue { i32, { i32 } } %A, 1 39990b57cec5SDimitry Andric // %E = insertvalue { i32 } %X, i32 42, 0 40000b57cec5SDimitry Andric // by switching the order of the insert and extract (though the 40010b57cec5SDimitry Andric // insertvalue should be left in, since it may have other uses). 40020b57cec5SDimitry Andric Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(), 40030b57cec5SDimitry Andric EV.getIndices()); 40040b57cec5SDimitry Andric return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), 4005bdd1243dSDimitry Andric ArrayRef(insi, inse)); 40060b57cec5SDimitry Andric } 40070b57cec5SDimitry Andric if (insi == inse) 40080b57cec5SDimitry Andric // The insert list is a prefix of the extract list 40090b57cec5SDimitry Andric // We can simply remove the common indices from the extract and make it 40100b57cec5SDimitry Andric // operate on the inserted value instead of the insertvalue result. 40110b57cec5SDimitry Andric // i.e., replace 40120b57cec5SDimitry Andric // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 40130b57cec5SDimitry Andric // %E = extractvalue { i32, { i32 } } %I, 1, 0 40140b57cec5SDimitry Andric // with 40150b57cec5SDimitry Andric // %E extractvalue { i32 } { i32 42 }, 0 40160b57cec5SDimitry Andric return ExtractValueInst::Create(IV->getInsertedValueOperand(), 4017bdd1243dSDimitry Andric ArrayRef(exti, exte)); 401881ad6265SDimitry Andric } 401981ad6265SDimitry Andric 4020bdd1243dSDimitry Andric if (Instruction *R = foldExtractOfOverflowIntrinsic(EV)) 4021bdd1243dSDimitry Andric return R; 40220b57cec5SDimitry Andric 4023bdd1243dSDimitry Andric if (LoadInst *L = dyn_cast<LoadInst>(Agg)) { 402406c3fb27SDimitry Andric // Bail out if the aggregate contains scalable vector type 402506c3fb27SDimitry Andric if (auto *STy = dyn_cast<StructType>(Agg->getType()); 402606c3fb27SDimitry Andric STy && STy->containsScalableVectorType()) 402706c3fb27SDimitry Andric return nullptr; 402806c3fb27SDimitry Andric 40290b57cec5SDimitry Andric // If the (non-volatile) load only has one use, we can rewrite this to a 40300b57cec5SDimitry Andric // load from a GEP. This reduces the size of the load. If a load is used 40310b57cec5SDimitry Andric // only by extractvalue instructions then this either must have been 40320b57cec5SDimitry Andric // optimized before, or it is a struct with padding, in which case we 40330b57cec5SDimitry Andric // don't want to do the transformation as it loses padding knowledge. 40340b57cec5SDimitry Andric if (L->isSimple() && L->hasOneUse()) { 40350b57cec5SDimitry Andric // extractvalue has integer indices, getelementptr has Value*s. Convert. 40360b57cec5SDimitry Andric SmallVector<Value*, 4> Indices; 40370b57cec5SDimitry Andric // Prefix an i32 0 since we need the first element. 40380b57cec5SDimitry Andric Indices.push_back(Builder.getInt32(0)); 4039fe6060f1SDimitry Andric for (unsigned Idx : EV.indices()) 4040fe6060f1SDimitry Andric Indices.push_back(Builder.getInt32(Idx)); 40410b57cec5SDimitry Andric 40420b57cec5SDimitry Andric // We need to insert these at the location of the old load, not at that of 40430b57cec5SDimitry Andric // the extractvalue. 40440b57cec5SDimitry Andric Builder.SetInsertPoint(L); 40450b57cec5SDimitry Andric Value *GEP = Builder.CreateInBoundsGEP(L->getType(), 40460b57cec5SDimitry Andric L->getPointerOperand(), Indices); 40470b57cec5SDimitry Andric Instruction *NL = Builder.CreateLoad(EV.getType(), GEP); 40480b57cec5SDimitry Andric // Whatever aliasing information we had for the orignal load must also 40490b57cec5SDimitry Andric // hold for the smaller load, so propagate the annotations. 4050349cc55cSDimitry Andric NL->setAAMetadata(L->getAAMetadata()); 40510b57cec5SDimitry Andric // Returning the load directly will cause the main loop to insert it in 40520b57cec5SDimitry Andric // the wrong spot, so use replaceInstUsesWith(). 40530b57cec5SDimitry Andric return replaceInstUsesWith(EV, NL); 40540b57cec5SDimitry Andric } 4055bdd1243dSDimitry Andric } 4056bdd1243dSDimitry Andric 4057bdd1243dSDimitry Andric if (auto *PN = dyn_cast<PHINode>(Agg)) 4058bdd1243dSDimitry Andric if (Instruction *Res = foldOpIntoPhi(EV, PN)) 4059bdd1243dSDimitry Andric return Res; 4060bdd1243dSDimitry Andric 4061*0fca6ea1SDimitry Andric // Canonicalize extract (select Cond, TV, FV) 4062*0fca6ea1SDimitry Andric // -> select cond, (extract TV), (extract FV) 4063*0fca6ea1SDimitry Andric if (auto *SI = dyn_cast<SelectInst>(Agg)) 4064*0fca6ea1SDimitry Andric if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true)) 4065*0fca6ea1SDimitry Andric return R; 4066*0fca6ea1SDimitry Andric 40670b57cec5SDimitry Andric // We could simplify extracts from other values. Note that nested extracts may 40680b57cec5SDimitry Andric // already be simplified implicitly by the above: extract (extract (insert) ) 40690b57cec5SDimitry Andric // will be translated into extract ( insert ( extract ) ) first and then just 40700b57cec5SDimitry Andric // the value inserted, if appropriate. Similarly for extracts from single-use 40710b57cec5SDimitry Andric // loads: extract (extract (load)) will be translated to extract (load (gep)) 40720b57cec5SDimitry Andric // and if again single-use then via load (gep (gep)) to load (gep). 40730b57cec5SDimitry Andric // However, double extracts from e.g. function arguments or return values 40740b57cec5SDimitry Andric // aren't handled yet. 40750b57cec5SDimitry Andric return nullptr; 40760b57cec5SDimitry Andric } 40770b57cec5SDimitry Andric 40780b57cec5SDimitry Andric /// Return 'true' if the given typeinfo will match anything. 40790b57cec5SDimitry Andric static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { 40800b57cec5SDimitry Andric switch (Personality) { 40810b57cec5SDimitry Andric case EHPersonality::GNU_C: 40820b57cec5SDimitry Andric case EHPersonality::GNU_C_SjLj: 40830b57cec5SDimitry Andric case EHPersonality::Rust: 40840b57cec5SDimitry Andric // The GCC C EH and Rust personality only exists to support cleanups, so 40850b57cec5SDimitry Andric // it's not clear what the semantics of catch clauses are. 40860b57cec5SDimitry Andric return false; 40870b57cec5SDimitry Andric case EHPersonality::Unknown: 40880b57cec5SDimitry Andric return false; 40890b57cec5SDimitry Andric case EHPersonality::GNU_Ada: 40900b57cec5SDimitry Andric // While __gnat_all_others_value will match any Ada exception, it doesn't 40910b57cec5SDimitry Andric // match foreign exceptions (or didn't, before gcc-4.7). 40920b57cec5SDimitry Andric return false; 40930b57cec5SDimitry Andric case EHPersonality::GNU_CXX: 40940b57cec5SDimitry Andric case EHPersonality::GNU_CXX_SjLj: 40950b57cec5SDimitry Andric case EHPersonality::GNU_ObjC: 40960b57cec5SDimitry Andric case EHPersonality::MSVC_X86SEH: 4097e8d8bef9SDimitry Andric case EHPersonality::MSVC_TableSEH: 40980b57cec5SDimitry Andric case EHPersonality::MSVC_CXX: 40990b57cec5SDimitry Andric case EHPersonality::CoreCLR: 41000b57cec5SDimitry Andric case EHPersonality::Wasm_CXX: 4101e8d8bef9SDimitry Andric case EHPersonality::XL_CXX: 4102*0fca6ea1SDimitry Andric case EHPersonality::ZOS_CXX: 41030b57cec5SDimitry Andric return TypeInfo->isNullValue(); 41040b57cec5SDimitry Andric } 41050b57cec5SDimitry Andric llvm_unreachable("invalid enum"); 41060b57cec5SDimitry Andric } 41070b57cec5SDimitry Andric 41080b57cec5SDimitry Andric static bool shorter_filter(const Value *LHS, const Value *RHS) { 41090b57cec5SDimitry Andric return 41100b57cec5SDimitry Andric cast<ArrayType>(LHS->getType())->getNumElements() 41110b57cec5SDimitry Andric < 41120b57cec5SDimitry Andric cast<ArrayType>(RHS->getType())->getNumElements(); 41130b57cec5SDimitry Andric } 41140b57cec5SDimitry Andric 4115e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) { 41160b57cec5SDimitry Andric // The logic here should be correct for any real-world personality function. 41170b57cec5SDimitry Andric // However if that turns out not to be true, the offending logic can always 41180b57cec5SDimitry Andric // be conditioned on the personality function, like the catch-all logic is. 41190b57cec5SDimitry Andric EHPersonality Personality = 41200b57cec5SDimitry Andric classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); 41210b57cec5SDimitry Andric 41220b57cec5SDimitry Andric // Simplify the list of clauses, eg by removing repeated catch clauses 41230b57cec5SDimitry Andric // (these are often created by inlining). 41240b57cec5SDimitry Andric bool MakeNewInstruction = false; // If true, recreate using the following: 41250b57cec5SDimitry Andric SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; 41260b57cec5SDimitry Andric bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. 41270b57cec5SDimitry Andric 41280b57cec5SDimitry Andric SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. 41290b57cec5SDimitry Andric for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { 41300b57cec5SDimitry Andric bool isLastClause = i + 1 == e; 41310b57cec5SDimitry Andric if (LI.isCatch(i)) { 41320b57cec5SDimitry Andric // A catch clause. 41330b57cec5SDimitry Andric Constant *CatchClause = LI.getClause(i); 41340b57cec5SDimitry Andric Constant *TypeInfo = CatchClause->stripPointerCasts(); 41350b57cec5SDimitry Andric 41360b57cec5SDimitry Andric // If we already saw this clause, there is no point in having a second 41370b57cec5SDimitry Andric // copy of it. 41380b57cec5SDimitry Andric if (AlreadyCaught.insert(TypeInfo).second) { 41390b57cec5SDimitry Andric // This catch clause was not already seen. 41400b57cec5SDimitry Andric NewClauses.push_back(CatchClause); 41410b57cec5SDimitry Andric } else { 41420b57cec5SDimitry Andric // Repeated catch clause - drop the redundant copy. 41430b57cec5SDimitry Andric MakeNewInstruction = true; 41440b57cec5SDimitry Andric } 41450b57cec5SDimitry Andric 41460b57cec5SDimitry Andric // If this is a catch-all then there is no point in keeping any following 41470b57cec5SDimitry Andric // clauses or marking the landingpad as having a cleanup. 41480b57cec5SDimitry Andric if (isCatchAll(Personality, TypeInfo)) { 41490b57cec5SDimitry Andric if (!isLastClause) 41500b57cec5SDimitry Andric MakeNewInstruction = true; 41510b57cec5SDimitry Andric CleanupFlag = false; 41520b57cec5SDimitry Andric break; 41530b57cec5SDimitry Andric } 41540b57cec5SDimitry Andric } else { 41550b57cec5SDimitry Andric // A filter clause. If any of the filter elements were already caught 41560b57cec5SDimitry Andric // then they can be dropped from the filter. It is tempting to try to 41570b57cec5SDimitry Andric // exploit the filter further by saying that any typeinfo that does not 41580b57cec5SDimitry Andric // occur in the filter can't be caught later (and thus can be dropped). 41590b57cec5SDimitry Andric // However this would be wrong, since typeinfos can match without being 41600b57cec5SDimitry Andric // equal (for example if one represents a C++ class, and the other some 41610b57cec5SDimitry Andric // class derived from it). 41620b57cec5SDimitry Andric assert(LI.isFilter(i) && "Unsupported landingpad clause!"); 41630b57cec5SDimitry Andric Constant *FilterClause = LI.getClause(i); 41640b57cec5SDimitry Andric ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); 41650b57cec5SDimitry Andric unsigned NumTypeInfos = FilterType->getNumElements(); 41660b57cec5SDimitry Andric 41670b57cec5SDimitry Andric // An empty filter catches everything, so there is no point in keeping any 41680b57cec5SDimitry Andric // following clauses or marking the landingpad as having a cleanup. By 41690b57cec5SDimitry Andric // dealing with this case here the following code is made a bit simpler. 41700b57cec5SDimitry Andric if (!NumTypeInfos) { 41710b57cec5SDimitry Andric NewClauses.push_back(FilterClause); 41720b57cec5SDimitry Andric if (!isLastClause) 41730b57cec5SDimitry Andric MakeNewInstruction = true; 41740b57cec5SDimitry Andric CleanupFlag = false; 41750b57cec5SDimitry Andric break; 41760b57cec5SDimitry Andric } 41770b57cec5SDimitry Andric 41780b57cec5SDimitry Andric bool MakeNewFilter = false; // If true, make a new filter. 41790b57cec5SDimitry Andric SmallVector<Constant *, 16> NewFilterElts; // New elements. 41800b57cec5SDimitry Andric if (isa<ConstantAggregateZero>(FilterClause)) { 41810b57cec5SDimitry Andric // Not an empty filter - it contains at least one null typeinfo. 41820b57cec5SDimitry Andric assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); 41830b57cec5SDimitry Andric Constant *TypeInfo = 41840b57cec5SDimitry Andric Constant::getNullValue(FilterType->getElementType()); 41850b57cec5SDimitry Andric // If this typeinfo is a catch-all then the filter can never match. 41860b57cec5SDimitry Andric if (isCatchAll(Personality, TypeInfo)) { 41870b57cec5SDimitry Andric // Throw the filter away. 41880b57cec5SDimitry Andric MakeNewInstruction = true; 41890b57cec5SDimitry Andric continue; 41900b57cec5SDimitry Andric } 41910b57cec5SDimitry Andric 41920b57cec5SDimitry Andric // There is no point in having multiple copies of this typeinfo, so 41930b57cec5SDimitry Andric // discard all but the first copy if there is more than one. 41940b57cec5SDimitry Andric NewFilterElts.push_back(TypeInfo); 41950b57cec5SDimitry Andric if (NumTypeInfos > 1) 41960b57cec5SDimitry Andric MakeNewFilter = true; 41970b57cec5SDimitry Andric } else { 41980b57cec5SDimitry Andric ConstantArray *Filter = cast<ConstantArray>(FilterClause); 41990b57cec5SDimitry Andric SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. 42000b57cec5SDimitry Andric NewFilterElts.reserve(NumTypeInfos); 42010b57cec5SDimitry Andric 42020b57cec5SDimitry Andric // Remove any filter elements that were already caught or that already 42030b57cec5SDimitry Andric // occurred in the filter. While there, see if any of the elements are 42040b57cec5SDimitry Andric // catch-alls. If so, the filter can be discarded. 42050b57cec5SDimitry Andric bool SawCatchAll = false; 42060b57cec5SDimitry Andric for (unsigned j = 0; j != NumTypeInfos; ++j) { 42070b57cec5SDimitry Andric Constant *Elt = Filter->getOperand(j); 42080b57cec5SDimitry Andric Constant *TypeInfo = Elt->stripPointerCasts(); 42090b57cec5SDimitry Andric if (isCatchAll(Personality, TypeInfo)) { 42100b57cec5SDimitry Andric // This element is a catch-all. Bail out, noting this fact. 42110b57cec5SDimitry Andric SawCatchAll = true; 42120b57cec5SDimitry Andric break; 42130b57cec5SDimitry Andric } 42140b57cec5SDimitry Andric 42150b57cec5SDimitry Andric // Even if we've seen a type in a catch clause, we don't want to 42160b57cec5SDimitry Andric // remove it from the filter. An unexpected type handler may be 42170b57cec5SDimitry Andric // set up for a call site which throws an exception of the same 42180b57cec5SDimitry Andric // type caught. In order for the exception thrown by the unexpected 42190b57cec5SDimitry Andric // handler to propagate correctly, the filter must be correctly 42200b57cec5SDimitry Andric // described for the call site. 42210b57cec5SDimitry Andric // 42220b57cec5SDimitry Andric // Example: 42230b57cec5SDimitry Andric // 42240b57cec5SDimitry Andric // void unexpected() { throw 1;} 42250b57cec5SDimitry Andric // void foo() throw (int) { 42260b57cec5SDimitry Andric // std::set_unexpected(unexpected); 42270b57cec5SDimitry Andric // try { 42280b57cec5SDimitry Andric // throw 2.0; 42290b57cec5SDimitry Andric // } catch (int i) {} 42300b57cec5SDimitry Andric // } 42310b57cec5SDimitry Andric 42320b57cec5SDimitry Andric // There is no point in having multiple copies of the same typeinfo in 42330b57cec5SDimitry Andric // a filter, so only add it if we didn't already. 42340b57cec5SDimitry Andric if (SeenInFilter.insert(TypeInfo).second) 42350b57cec5SDimitry Andric NewFilterElts.push_back(cast<Constant>(Elt)); 42360b57cec5SDimitry Andric } 42370b57cec5SDimitry Andric // A filter containing a catch-all cannot match anything by definition. 42380b57cec5SDimitry Andric if (SawCatchAll) { 42390b57cec5SDimitry Andric // Throw the filter away. 42400b57cec5SDimitry Andric MakeNewInstruction = true; 42410b57cec5SDimitry Andric continue; 42420b57cec5SDimitry Andric } 42430b57cec5SDimitry Andric 42440b57cec5SDimitry Andric // If we dropped something from the filter, make a new one. 42450b57cec5SDimitry Andric if (NewFilterElts.size() < NumTypeInfos) 42460b57cec5SDimitry Andric MakeNewFilter = true; 42470b57cec5SDimitry Andric } 42480b57cec5SDimitry Andric if (MakeNewFilter) { 42490b57cec5SDimitry Andric FilterType = ArrayType::get(FilterType->getElementType(), 42500b57cec5SDimitry Andric NewFilterElts.size()); 42510b57cec5SDimitry Andric FilterClause = ConstantArray::get(FilterType, NewFilterElts); 42520b57cec5SDimitry Andric MakeNewInstruction = true; 42530b57cec5SDimitry Andric } 42540b57cec5SDimitry Andric 42550b57cec5SDimitry Andric NewClauses.push_back(FilterClause); 42560b57cec5SDimitry Andric 42570b57cec5SDimitry Andric // If the new filter is empty then it will catch everything so there is 42580b57cec5SDimitry Andric // no point in keeping any following clauses or marking the landingpad 42590b57cec5SDimitry Andric // as having a cleanup. The case of the original filter being empty was 42600b57cec5SDimitry Andric // already handled above. 42610b57cec5SDimitry Andric if (MakeNewFilter && !NewFilterElts.size()) { 42620b57cec5SDimitry Andric assert(MakeNewInstruction && "New filter but not a new instruction!"); 42630b57cec5SDimitry Andric CleanupFlag = false; 42640b57cec5SDimitry Andric break; 42650b57cec5SDimitry Andric } 42660b57cec5SDimitry Andric } 42670b57cec5SDimitry Andric } 42680b57cec5SDimitry Andric 42690b57cec5SDimitry Andric // If several filters occur in a row then reorder them so that the shortest 42700b57cec5SDimitry Andric // filters come first (those with the smallest number of elements). This is 42710b57cec5SDimitry Andric // advantageous because shorter filters are more likely to match, speeding up 42720b57cec5SDimitry Andric // unwinding, but mostly because it increases the effectiveness of the other 42730b57cec5SDimitry Andric // filter optimizations below. 42740b57cec5SDimitry Andric for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { 42750b57cec5SDimitry Andric unsigned j; 42760b57cec5SDimitry Andric // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. 42770b57cec5SDimitry Andric for (j = i; j != e; ++j) 42780b57cec5SDimitry Andric if (!isa<ArrayType>(NewClauses[j]->getType())) 42790b57cec5SDimitry Andric break; 42800b57cec5SDimitry Andric 42810b57cec5SDimitry Andric // Check whether the filters are already sorted by length. We need to know 42820b57cec5SDimitry Andric // if sorting them is actually going to do anything so that we only make a 42830b57cec5SDimitry Andric // new landingpad instruction if it does. 42840b57cec5SDimitry Andric for (unsigned k = i; k + 1 < j; ++k) 42850b57cec5SDimitry Andric if (shorter_filter(NewClauses[k+1], NewClauses[k])) { 42860b57cec5SDimitry Andric // Not sorted, so sort the filters now. Doing an unstable sort would be 42870b57cec5SDimitry Andric // correct too but reordering filters pointlessly might confuse users. 42880b57cec5SDimitry Andric std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, 42890b57cec5SDimitry Andric shorter_filter); 42900b57cec5SDimitry Andric MakeNewInstruction = true; 42910b57cec5SDimitry Andric break; 42920b57cec5SDimitry Andric } 42930b57cec5SDimitry Andric 42940b57cec5SDimitry Andric // Look for the next batch of filters. 42950b57cec5SDimitry Andric i = j + 1; 42960b57cec5SDimitry Andric } 42970b57cec5SDimitry Andric 42980b57cec5SDimitry Andric // If typeinfos matched if and only if equal, then the elements of a filter L 42990b57cec5SDimitry Andric // that occurs later than a filter F could be replaced by the intersection of 43000b57cec5SDimitry Andric // the elements of F and L. In reality two typeinfos can match without being 43010b57cec5SDimitry Andric // equal (for example if one represents a C++ class, and the other some class 43020b57cec5SDimitry Andric // derived from it) so it would be wrong to perform this transform in general. 43030b57cec5SDimitry Andric // However the transform is correct and useful if F is a subset of L. In that 43040b57cec5SDimitry Andric // case L can be replaced by F, and thus removed altogether since repeating a 43050b57cec5SDimitry Andric // filter is pointless. So here we look at all pairs of filters F and L where 43060b57cec5SDimitry Andric // L follows F in the list of clauses, and remove L if every element of F is 43070b57cec5SDimitry Andric // an element of L. This can occur when inlining C++ functions with exception 43080b57cec5SDimitry Andric // specifications. 43090b57cec5SDimitry Andric for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { 43100b57cec5SDimitry Andric // Examine each filter in turn. 43110b57cec5SDimitry Andric Value *Filter = NewClauses[i]; 43120b57cec5SDimitry Andric ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); 43130b57cec5SDimitry Andric if (!FTy) 43140b57cec5SDimitry Andric // Not a filter - skip it. 43150b57cec5SDimitry Andric continue; 43160b57cec5SDimitry Andric unsigned FElts = FTy->getNumElements(); 43170b57cec5SDimitry Andric // Examine each filter following this one. Doing this backwards means that 43180b57cec5SDimitry Andric // we don't have to worry about filters disappearing under us when removed. 43190b57cec5SDimitry Andric for (unsigned j = NewClauses.size() - 1; j != i; --j) { 43200b57cec5SDimitry Andric Value *LFilter = NewClauses[j]; 43210b57cec5SDimitry Andric ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); 43220b57cec5SDimitry Andric if (!LTy) 43230b57cec5SDimitry Andric // Not a filter - skip it. 43240b57cec5SDimitry Andric continue; 43250b57cec5SDimitry Andric // If Filter is a subset of LFilter, i.e. every element of Filter is also 43260b57cec5SDimitry Andric // an element of LFilter, then discard LFilter. 43270b57cec5SDimitry Andric SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; 43280b57cec5SDimitry Andric // If Filter is empty then it is a subset of LFilter. 43290b57cec5SDimitry Andric if (!FElts) { 43300b57cec5SDimitry Andric // Discard LFilter. 43310b57cec5SDimitry Andric NewClauses.erase(J); 43320b57cec5SDimitry Andric MakeNewInstruction = true; 43330b57cec5SDimitry Andric // Move on to the next filter. 43340b57cec5SDimitry Andric continue; 43350b57cec5SDimitry Andric } 43360b57cec5SDimitry Andric unsigned LElts = LTy->getNumElements(); 43370b57cec5SDimitry Andric // If Filter is longer than LFilter then it cannot be a subset of it. 43380b57cec5SDimitry Andric if (FElts > LElts) 43390b57cec5SDimitry Andric // Move on to the next filter. 43400b57cec5SDimitry Andric continue; 43410b57cec5SDimitry Andric // At this point we know that LFilter has at least one element. 43420b57cec5SDimitry Andric if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. 43430b57cec5SDimitry Andric // Filter is a subset of LFilter iff Filter contains only zeros (as we 43440b57cec5SDimitry Andric // already know that Filter is not longer than LFilter). 43450b57cec5SDimitry Andric if (isa<ConstantAggregateZero>(Filter)) { 43460b57cec5SDimitry Andric assert(FElts <= LElts && "Should have handled this case earlier!"); 43470b57cec5SDimitry Andric // Discard LFilter. 43480b57cec5SDimitry Andric NewClauses.erase(J); 43490b57cec5SDimitry Andric MakeNewInstruction = true; 43500b57cec5SDimitry Andric } 43510b57cec5SDimitry Andric // Move on to the next filter. 43520b57cec5SDimitry Andric continue; 43530b57cec5SDimitry Andric } 43540b57cec5SDimitry Andric ConstantArray *LArray = cast<ConstantArray>(LFilter); 43550b57cec5SDimitry Andric if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. 43560b57cec5SDimitry Andric // Since Filter is non-empty and contains only zeros, it is a subset of 43570b57cec5SDimitry Andric // LFilter iff LFilter contains a zero. 43580b57cec5SDimitry Andric assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); 43590b57cec5SDimitry Andric for (unsigned l = 0; l != LElts; ++l) 43600b57cec5SDimitry Andric if (LArray->getOperand(l)->isNullValue()) { 43610b57cec5SDimitry Andric // LFilter contains a zero - discard it. 43620b57cec5SDimitry Andric NewClauses.erase(J); 43630b57cec5SDimitry Andric MakeNewInstruction = true; 43640b57cec5SDimitry Andric break; 43650b57cec5SDimitry Andric } 43660b57cec5SDimitry Andric // Move on to the next filter. 43670b57cec5SDimitry Andric continue; 43680b57cec5SDimitry Andric } 43690b57cec5SDimitry Andric // At this point we know that both filters are ConstantArrays. Loop over 43700b57cec5SDimitry Andric // operands to see whether every element of Filter is also an element of 43710b57cec5SDimitry Andric // LFilter. Since filters tend to be short this is probably faster than 43720b57cec5SDimitry Andric // using a method that scales nicely. 43730b57cec5SDimitry Andric ConstantArray *FArray = cast<ConstantArray>(Filter); 43740b57cec5SDimitry Andric bool AllFound = true; 43750b57cec5SDimitry Andric for (unsigned f = 0; f != FElts; ++f) { 43760b57cec5SDimitry Andric Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); 43770b57cec5SDimitry Andric AllFound = false; 43780b57cec5SDimitry Andric for (unsigned l = 0; l != LElts; ++l) { 43790b57cec5SDimitry Andric Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); 43800b57cec5SDimitry Andric if (LTypeInfo == FTypeInfo) { 43810b57cec5SDimitry Andric AllFound = true; 43820b57cec5SDimitry Andric break; 43830b57cec5SDimitry Andric } 43840b57cec5SDimitry Andric } 43850b57cec5SDimitry Andric if (!AllFound) 43860b57cec5SDimitry Andric break; 43870b57cec5SDimitry Andric } 43880b57cec5SDimitry Andric if (AllFound) { 43890b57cec5SDimitry Andric // Discard LFilter. 43900b57cec5SDimitry Andric NewClauses.erase(J); 43910b57cec5SDimitry Andric MakeNewInstruction = true; 43920b57cec5SDimitry Andric } 43930b57cec5SDimitry Andric // Move on to the next filter. 43940b57cec5SDimitry Andric } 43950b57cec5SDimitry Andric } 43960b57cec5SDimitry Andric 43970b57cec5SDimitry Andric // If we changed any of the clauses, replace the old landingpad instruction 43980b57cec5SDimitry Andric // with a new one. 43990b57cec5SDimitry Andric if (MakeNewInstruction) { 44000b57cec5SDimitry Andric LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), 44010b57cec5SDimitry Andric NewClauses.size()); 4402*0fca6ea1SDimitry Andric for (Constant *C : NewClauses) 4403*0fca6ea1SDimitry Andric NLI->addClause(C); 44040b57cec5SDimitry Andric // A landing pad with no clauses must have the cleanup flag set. It is 44050b57cec5SDimitry Andric // theoretically possible, though highly unlikely, that we eliminated all 44060b57cec5SDimitry Andric // clauses. If so, force the cleanup flag to true. 44070b57cec5SDimitry Andric if (NewClauses.empty()) 44080b57cec5SDimitry Andric CleanupFlag = true; 44090b57cec5SDimitry Andric NLI->setCleanup(CleanupFlag); 44100b57cec5SDimitry Andric return NLI; 44110b57cec5SDimitry Andric } 44120b57cec5SDimitry Andric 44130b57cec5SDimitry Andric // Even if none of the clauses changed, we may nonetheless have understood 44140b57cec5SDimitry Andric // that the cleanup flag is pointless. Clear it if so. 44150b57cec5SDimitry Andric if (LI.isCleanup() != CleanupFlag) { 44160b57cec5SDimitry Andric assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); 44170b57cec5SDimitry Andric LI.setCleanup(CleanupFlag); 44180b57cec5SDimitry Andric return &LI; 44190b57cec5SDimitry Andric } 44200b57cec5SDimitry Andric 44210b57cec5SDimitry Andric return nullptr; 44220b57cec5SDimitry Andric } 44230b57cec5SDimitry Andric 4424fe6060f1SDimitry Andric Value * 4425fe6060f1SDimitry Andric InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) { 4426fe6060f1SDimitry Andric // Try to push freeze through instructions that propagate but don't produce 4427fe6060f1SDimitry Andric // poison as far as possible. If an operand of freeze follows three 4428fe6060f1SDimitry Andric // conditions 1) one-use, 2) does not produce poison, and 3) has all but one 4429fe6060f1SDimitry Andric // guaranteed-non-poison operands then push the freeze through to the one 4430fe6060f1SDimitry Andric // operand that is not guaranteed non-poison. The actual transform is as 4431fe6060f1SDimitry Andric // follows. 4432fe6060f1SDimitry Andric // Op1 = ... ; Op1 can be posion 4433fe6060f1SDimitry Andric // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have 4434fe6060f1SDimitry Andric // ; single guaranteed-non-poison operands 4435fe6060f1SDimitry Andric // ... = Freeze(Op0) 4436fe6060f1SDimitry Andric // => 4437fe6060f1SDimitry Andric // Op1 = ... 4438fe6060f1SDimitry Andric // Op1.fr = Freeze(Op1) 4439fe6060f1SDimitry Andric // ... = Inst(Op1.fr, NonPoisonOps...) 4440fe6060f1SDimitry Andric auto *OrigOp = OrigFI.getOperand(0); 4441fe6060f1SDimitry Andric auto *OrigOpInst = dyn_cast<Instruction>(OrigOp); 4442fe6060f1SDimitry Andric 4443fe6060f1SDimitry Andric // While we could change the other users of OrigOp to use freeze(OrigOp), that 4444fe6060f1SDimitry Andric // potentially reduces their optimization potential, so let's only do this iff 4445fe6060f1SDimitry Andric // the OrigOp is only used by the freeze. 4446349cc55cSDimitry Andric if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp)) 4447349cc55cSDimitry Andric return nullptr; 4448349cc55cSDimitry Andric 4449349cc55cSDimitry Andric // We can't push the freeze through an instruction which can itself create 4450349cc55cSDimitry Andric // poison. If the only source of new poison is flags, we can simply 4451349cc55cSDimitry Andric // strip them (since we know the only use is the freeze and nothing can 4452349cc55cSDimitry Andric // benefit from them.) 4453bdd1243dSDimitry Andric if (canCreateUndefOrPoison(cast<Operator>(OrigOp), 4454bdd1243dSDimitry Andric /*ConsiderFlagsAndMetadata*/ false)) 4455fe6060f1SDimitry Andric return nullptr; 4456fe6060f1SDimitry Andric 4457fe6060f1SDimitry Andric // If operand is guaranteed not to be poison, there is no need to add freeze 4458fe6060f1SDimitry Andric // to the operand. So we first find the operand that is not guaranteed to be 4459fe6060f1SDimitry Andric // poison. 4460fe6060f1SDimitry Andric Use *MaybePoisonOperand = nullptr; 4461fe6060f1SDimitry Andric for (Use &U : OrigOpInst->operands()) { 4462bdd1243dSDimitry Andric if (isa<MetadataAsValue>(U.get()) || 4463bdd1243dSDimitry Andric isGuaranteedNotToBeUndefOrPoison(U.get())) 4464fe6060f1SDimitry Andric continue; 4465fe6060f1SDimitry Andric if (!MaybePoisonOperand) 4466fe6060f1SDimitry Andric MaybePoisonOperand = &U; 4467fe6060f1SDimitry Andric else 4468fe6060f1SDimitry Andric return nullptr; 4469fe6060f1SDimitry Andric } 4470fe6060f1SDimitry Andric 4471*0fca6ea1SDimitry Andric OrigOpInst->dropPoisonGeneratingAnnotations(); 4472349cc55cSDimitry Andric 4473fe6060f1SDimitry Andric // If all operands are guaranteed to be non-poison, we can drop freeze. 4474fe6060f1SDimitry Andric if (!MaybePoisonOperand) 4475fe6060f1SDimitry Andric return OrigOp; 4476fe6060f1SDimitry Andric 447781ad6265SDimitry Andric Builder.SetInsertPoint(OrigOpInst); 447881ad6265SDimitry Andric auto *FrozenMaybePoisonOperand = Builder.CreateFreeze( 4479fe6060f1SDimitry Andric MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr"); 4480fe6060f1SDimitry Andric 4481fe6060f1SDimitry Andric replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand); 4482fe6060f1SDimitry Andric return OrigOp; 4483fe6060f1SDimitry Andric } 4484fe6060f1SDimitry Andric 448581ad6265SDimitry Andric Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI, 448681ad6265SDimitry Andric PHINode *PN) { 448781ad6265SDimitry Andric // Detect whether this is a recurrence with a start value and some number of 448881ad6265SDimitry Andric // backedge values. We'll check whether we can push the freeze through the 448981ad6265SDimitry Andric // backedge values (possibly dropping poison flags along the way) until we 449081ad6265SDimitry Andric // reach the phi again. In that case, we can move the freeze to the start 449181ad6265SDimitry Andric // value. 449281ad6265SDimitry Andric Use *StartU = nullptr; 449381ad6265SDimitry Andric SmallVector<Value *> Worklist; 449481ad6265SDimitry Andric for (Use &U : PN->incoming_values()) { 449581ad6265SDimitry Andric if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) { 449681ad6265SDimitry Andric // Add backedge value to worklist. 449781ad6265SDimitry Andric Worklist.push_back(U.get()); 449881ad6265SDimitry Andric continue; 449981ad6265SDimitry Andric } 450081ad6265SDimitry Andric 450181ad6265SDimitry Andric // Don't bother handling multiple start values. 450281ad6265SDimitry Andric if (StartU) 450381ad6265SDimitry Andric return nullptr; 450481ad6265SDimitry Andric StartU = &U; 450581ad6265SDimitry Andric } 450681ad6265SDimitry Andric 450781ad6265SDimitry Andric if (!StartU || Worklist.empty()) 450881ad6265SDimitry Andric return nullptr; // Not a recurrence. 450981ad6265SDimitry Andric 451081ad6265SDimitry Andric Value *StartV = StartU->get(); 451181ad6265SDimitry Andric BasicBlock *StartBB = PN->getIncomingBlock(*StartU); 451281ad6265SDimitry Andric bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV); 45135f757f3fSDimitry Andric // We can't insert freeze if the start value is the result of the 451481ad6265SDimitry Andric // terminator (e.g. an invoke). 451581ad6265SDimitry Andric if (StartNeedsFreeze && StartBB->getTerminator() == StartV) 451681ad6265SDimitry Andric return nullptr; 451781ad6265SDimitry Andric 451881ad6265SDimitry Andric SmallPtrSet<Value *, 32> Visited; 451981ad6265SDimitry Andric SmallVector<Instruction *> DropFlags; 452081ad6265SDimitry Andric while (!Worklist.empty()) { 452181ad6265SDimitry Andric Value *V = Worklist.pop_back_val(); 452281ad6265SDimitry Andric if (!Visited.insert(V).second) 452381ad6265SDimitry Andric continue; 452481ad6265SDimitry Andric 452581ad6265SDimitry Andric if (Visited.size() > 32) 452681ad6265SDimitry Andric return nullptr; // Limit the total number of values we inspect. 452781ad6265SDimitry Andric 452881ad6265SDimitry Andric // Assume that PN is non-poison, because it will be after the transform. 452981ad6265SDimitry Andric if (V == PN || isGuaranteedNotToBeUndefOrPoison(V)) 453081ad6265SDimitry Andric continue; 453181ad6265SDimitry Andric 453281ad6265SDimitry Andric Instruction *I = dyn_cast<Instruction>(V); 453381ad6265SDimitry Andric if (!I || canCreateUndefOrPoison(cast<Operator>(I), 4534bdd1243dSDimitry Andric /*ConsiderFlagsAndMetadata*/ false)) 453581ad6265SDimitry Andric return nullptr; 453681ad6265SDimitry Andric 453781ad6265SDimitry Andric DropFlags.push_back(I); 453881ad6265SDimitry Andric append_range(Worklist, I->operands()); 453981ad6265SDimitry Andric } 454081ad6265SDimitry Andric 454181ad6265SDimitry Andric for (Instruction *I : DropFlags) 4542*0fca6ea1SDimitry Andric I->dropPoisonGeneratingAnnotations(); 454381ad6265SDimitry Andric 454481ad6265SDimitry Andric if (StartNeedsFreeze) { 454581ad6265SDimitry Andric Builder.SetInsertPoint(StartBB->getTerminator()); 454681ad6265SDimitry Andric Value *FrozenStartV = Builder.CreateFreeze(StartV, 454781ad6265SDimitry Andric StartV->getName() + ".fr"); 454881ad6265SDimitry Andric replaceUse(*StartU, FrozenStartV); 454981ad6265SDimitry Andric } 455081ad6265SDimitry Andric return replaceInstUsesWith(FI, PN); 455181ad6265SDimitry Andric } 455281ad6265SDimitry Andric 455381ad6265SDimitry Andric bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) { 4554fe6060f1SDimitry Andric Value *Op = FI.getOperand(0); 4555fe6060f1SDimitry Andric 455681ad6265SDimitry Andric if (isa<Constant>(Op) || Op->hasOneUse()) 4557fe6060f1SDimitry Andric return false; 4558fe6060f1SDimitry Andric 455981ad6265SDimitry Andric // Move the freeze directly after the definition of its operand, so that 456081ad6265SDimitry Andric // it dominates the maximum number of uses. Note that it may not dominate 456181ad6265SDimitry Andric // *all* uses if the operand is an invoke/callbr and the use is in a phi on 456281ad6265SDimitry Andric // the normal/default destination. This is why the domination check in the 456381ad6265SDimitry Andric // replacement below is still necessary. 45645f757f3fSDimitry Andric BasicBlock::iterator MoveBefore; 456581ad6265SDimitry Andric if (isa<Argument>(Op)) { 4566bdd1243dSDimitry Andric MoveBefore = 45675f757f3fSDimitry Andric FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); 456881ad6265SDimitry Andric } else { 45695f757f3fSDimitry Andric auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef(); 45705f757f3fSDimitry Andric if (!MoveBeforeOpt) 4571bdd1243dSDimitry Andric return false; 45725f757f3fSDimitry Andric MoveBefore = *MoveBeforeOpt; 457381ad6265SDimitry Andric } 457481ad6265SDimitry Andric 45755f757f3fSDimitry Andric // Don't move to the position of a debug intrinsic. 45765f757f3fSDimitry Andric if (isa<DbgInfoIntrinsic>(MoveBefore)) 45775f757f3fSDimitry Andric MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator(); 45785f757f3fSDimitry Andric // Re-point iterator to come after any debug-info records, if we're 45795f757f3fSDimitry Andric // running in "RemoveDIs" mode 45805f757f3fSDimitry Andric MoveBefore.setHeadBit(false); 45815f757f3fSDimitry Andric 4582fe6060f1SDimitry Andric bool Changed = false; 45835f757f3fSDimitry Andric if (&FI != &*MoveBefore) { 45845f757f3fSDimitry Andric FI.moveBefore(*MoveBefore->getParent(), MoveBefore); 458581ad6265SDimitry Andric Changed = true; 458681ad6265SDimitry Andric } 458781ad6265SDimitry Andric 4588fe6060f1SDimitry Andric Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool { 4589fe6060f1SDimitry Andric bool Dominates = DT.dominates(&FI, U); 4590fe6060f1SDimitry Andric Changed |= Dominates; 4591fe6060f1SDimitry Andric return Dominates; 4592fe6060f1SDimitry Andric }); 4593fe6060f1SDimitry Andric 4594fe6060f1SDimitry Andric return Changed; 4595fe6060f1SDimitry Andric } 4596fe6060f1SDimitry Andric 459706c3fb27SDimitry Andric // Check if any direct or bitcast user of this value is a shuffle instruction. 459806c3fb27SDimitry Andric static bool isUsedWithinShuffleVector(Value *V) { 459906c3fb27SDimitry Andric for (auto *U : V->users()) { 460006c3fb27SDimitry Andric if (isa<ShuffleVectorInst>(U)) 460106c3fb27SDimitry Andric return true; 460206c3fb27SDimitry Andric else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U)) 460306c3fb27SDimitry Andric return true; 460406c3fb27SDimitry Andric } 460506c3fb27SDimitry Andric return false; 460606c3fb27SDimitry Andric } 460706c3fb27SDimitry Andric 4608e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) { 4609480093f4SDimitry Andric Value *Op0 = I.getOperand(0); 4610480093f4SDimitry Andric 461181ad6265SDimitry Andric if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I))) 4612480093f4SDimitry Andric return replaceInstUsesWith(I, V); 4613480093f4SDimitry Andric 4614e8d8bef9SDimitry Andric // freeze (phi const, x) --> phi const, (freeze x) 4615e8d8bef9SDimitry Andric if (auto *PN = dyn_cast<PHINode>(Op0)) { 4616e8d8bef9SDimitry Andric if (Instruction *NV = foldOpIntoPhi(I, PN)) 4617e8d8bef9SDimitry Andric return NV; 461881ad6265SDimitry Andric if (Instruction *NV = foldFreezeIntoRecurrence(I, PN)) 461981ad6265SDimitry Andric return NV; 4620e8d8bef9SDimitry Andric } 4621e8d8bef9SDimitry Andric 4622fe6060f1SDimitry Andric if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I)) 4623fe6060f1SDimitry Andric return replaceInstUsesWith(I, NI); 4624fe6060f1SDimitry Andric 462581ad6265SDimitry Andric // If I is freeze(undef), check its uses and fold it to a fixed constant. 4626e8d8bef9SDimitry Andric // - or: pick -1 462781ad6265SDimitry Andric // - select's condition: if the true value is constant, choose it by making 462881ad6265SDimitry Andric // the condition true. 462981ad6265SDimitry Andric // - default: pick 0 463081ad6265SDimitry Andric // 463181ad6265SDimitry Andric // Note that this transform is intentionally done here rather than 463281ad6265SDimitry Andric // via an analysis in InstSimplify or at individual user sites. That is 463381ad6265SDimitry Andric // because we must produce the same value for all uses of the freeze - 463481ad6265SDimitry Andric // it's the reason "freeze" exists! 463581ad6265SDimitry Andric // 463681ad6265SDimitry Andric // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid 463781ad6265SDimitry Andric // duplicating logic for binops at least. 463881ad6265SDimitry Andric auto getUndefReplacement = [&I](Type *Ty) { 4639e8d8bef9SDimitry Andric Constant *BestValue = nullptr; 464081ad6265SDimitry Andric Constant *NullValue = Constant::getNullValue(Ty); 4641e8d8bef9SDimitry Andric for (const auto *U : I.users()) { 4642e8d8bef9SDimitry Andric Constant *C = NullValue; 4643e8d8bef9SDimitry Andric if (match(U, m_Or(m_Value(), m_Value()))) 464481ad6265SDimitry Andric C = ConstantInt::getAllOnesValue(Ty); 464581ad6265SDimitry Andric else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value()))) 464681ad6265SDimitry Andric C = ConstantInt::getTrue(Ty); 4647e8d8bef9SDimitry Andric 4648e8d8bef9SDimitry Andric if (!BestValue) 4649e8d8bef9SDimitry Andric BestValue = C; 4650e8d8bef9SDimitry Andric else if (BestValue != C) 4651e8d8bef9SDimitry Andric BestValue = NullValue; 4652e8d8bef9SDimitry Andric } 465381ad6265SDimitry Andric assert(BestValue && "Must have at least one use"); 465481ad6265SDimitry Andric return BestValue; 465581ad6265SDimitry Andric }; 4656e8d8bef9SDimitry Andric 465706c3fb27SDimitry Andric if (match(Op0, m_Undef())) { 465806c3fb27SDimitry Andric // Don't fold freeze(undef/poison) if it's used as a vector operand in 465906c3fb27SDimitry Andric // a shuffle. This may improve codegen for shuffles that allow 466006c3fb27SDimitry Andric // unspecified inputs. 466106c3fb27SDimitry Andric if (isUsedWithinShuffleVector(&I)) 466206c3fb27SDimitry Andric return nullptr; 466381ad6265SDimitry Andric return replaceInstUsesWith(I, getUndefReplacement(I.getType())); 466406c3fb27SDimitry Andric } 466581ad6265SDimitry Andric 466681ad6265SDimitry Andric Constant *C; 466781ad6265SDimitry Andric if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement()) { 466881ad6265SDimitry Andric Constant *ReplaceC = getUndefReplacement(I.getType()->getScalarType()); 466981ad6265SDimitry Andric return replaceInstUsesWith(I, Constant::replaceUndefsWith(C, ReplaceC)); 4670e8d8bef9SDimitry Andric } 4671e8d8bef9SDimitry Andric 467281ad6265SDimitry Andric // Replace uses of Op with freeze(Op). 467381ad6265SDimitry Andric if (freezeOtherUses(I)) 4674fe6060f1SDimitry Andric return &I; 4675fe6060f1SDimitry Andric 4676480093f4SDimitry Andric return nullptr; 4677480093f4SDimitry Andric } 4678480093f4SDimitry Andric 467904eeddc0SDimitry Andric /// Check for case where the call writes to an otherwise dead alloca. This 468004eeddc0SDimitry Andric /// shows up for unused out-params in idiomatic C/C++ code. Note that this 468104eeddc0SDimitry Andric /// helper *only* analyzes the write; doesn't check any other legality aspect. 468204eeddc0SDimitry Andric static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) { 468304eeddc0SDimitry Andric auto *CB = dyn_cast<CallBase>(I); 468404eeddc0SDimitry Andric if (!CB) 468504eeddc0SDimitry Andric // TODO: handle e.g. store to alloca here - only worth doing if we extend 468604eeddc0SDimitry Andric // to allow reload along used path as described below. Otherwise, this 468704eeddc0SDimitry Andric // is simply a store to a dead allocation which will be removed. 468804eeddc0SDimitry Andric return false; 4689bdd1243dSDimitry Andric std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI); 469004eeddc0SDimitry Andric if (!Dest) 469104eeddc0SDimitry Andric return false; 469204eeddc0SDimitry Andric auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr)); 469304eeddc0SDimitry Andric if (!AI) 469404eeddc0SDimitry Andric // TODO: allow malloc? 469504eeddc0SDimitry Andric return false; 469604eeddc0SDimitry Andric // TODO: allow memory access dominated by move point? Note that since AI 469704eeddc0SDimitry Andric // could have a reference to itself captured by the call, we would need to 469804eeddc0SDimitry Andric // account for cycles in doing so. 469904eeddc0SDimitry Andric SmallVector<const User *> AllocaUsers; 470004eeddc0SDimitry Andric SmallPtrSet<const User *, 4> Visited; 470104eeddc0SDimitry Andric auto pushUsers = [&](const Instruction &I) { 470204eeddc0SDimitry Andric for (const User *U : I.users()) { 470304eeddc0SDimitry Andric if (Visited.insert(U).second) 470404eeddc0SDimitry Andric AllocaUsers.push_back(U); 470504eeddc0SDimitry Andric } 470604eeddc0SDimitry Andric }; 470704eeddc0SDimitry Andric pushUsers(*AI); 470804eeddc0SDimitry Andric while (!AllocaUsers.empty()) { 470904eeddc0SDimitry Andric auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val()); 471004eeddc0SDimitry Andric if (isa<BitCastInst>(UserI) || isa<GetElementPtrInst>(UserI) || 471104eeddc0SDimitry Andric isa<AddrSpaceCastInst>(UserI)) { 471204eeddc0SDimitry Andric pushUsers(*UserI); 471304eeddc0SDimitry Andric continue; 471404eeddc0SDimitry Andric } 471504eeddc0SDimitry Andric if (UserI == CB) 471604eeddc0SDimitry Andric continue; 471704eeddc0SDimitry Andric // TODO: support lifetime.start/end here 471804eeddc0SDimitry Andric return false; 471904eeddc0SDimitry Andric } 472004eeddc0SDimitry Andric return true; 472104eeddc0SDimitry Andric } 472204eeddc0SDimitry Andric 47230b57cec5SDimitry Andric /// Try to move the specified instruction from its current block into the 47240b57cec5SDimitry Andric /// beginning of DestBlock, which can only happen if it's safe to move the 47250b57cec5SDimitry Andric /// instruction past all of the instructions between it and the end of its 47260b57cec5SDimitry Andric /// block. 472706c3fb27SDimitry Andric bool InstCombinerImpl::tryToSinkInstruction(Instruction *I, 472806c3fb27SDimitry Andric BasicBlock *DestBlock) { 47290b57cec5SDimitry Andric BasicBlock *SrcBlock = I->getParent(); 47300b57cec5SDimitry Andric 47310b57cec5SDimitry Andric // Cannot move control-flow-involving, volatile loads, vaarg, etc. 473204eeddc0SDimitry Andric if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() || 47330b57cec5SDimitry Andric I->isTerminator()) 47340b57cec5SDimitry Andric return false; 47350b57cec5SDimitry Andric 47360b57cec5SDimitry Andric // Do not sink static or dynamic alloca instructions. Static allocas must 47370b57cec5SDimitry Andric // remain in the entry block, and dynamic allocas must not be sunk in between 47380b57cec5SDimitry Andric // a stacksave / stackrestore pair, which would incorrectly shorten its 47390b57cec5SDimitry Andric // lifetime. 47400b57cec5SDimitry Andric if (isa<AllocaInst>(I)) 47410b57cec5SDimitry Andric return false; 47420b57cec5SDimitry Andric 47430b57cec5SDimitry Andric // Do not sink into catchswitch blocks. 47440b57cec5SDimitry Andric if (isa<CatchSwitchInst>(DestBlock->getTerminator())) 47450b57cec5SDimitry Andric return false; 47460b57cec5SDimitry Andric 47470b57cec5SDimitry Andric // Do not sink convergent call instructions. 47480b57cec5SDimitry Andric if (auto *CI = dyn_cast<CallInst>(I)) { 47490b57cec5SDimitry Andric if (CI->isConvergent()) 47500b57cec5SDimitry Andric return false; 47510b57cec5SDimitry Andric } 475204eeddc0SDimitry Andric 475304eeddc0SDimitry Andric // Unless we can prove that the memory write isn't visibile except on the 475404eeddc0SDimitry Andric // path we're sinking to, we must bail. 475504eeddc0SDimitry Andric if (I->mayWriteToMemory()) { 475604eeddc0SDimitry Andric if (!SoleWriteToDeadLocal(I, TLI)) 475704eeddc0SDimitry Andric return false; 475804eeddc0SDimitry Andric } 475904eeddc0SDimitry Andric 47600b57cec5SDimitry Andric // We can only sink load instructions if there is nothing between the load and 47610b57cec5SDimitry Andric // the end of block that could change the value. 47620b57cec5SDimitry Andric if (I->mayReadFromMemory()) { 47635ffd83dbSDimitry Andric // We don't want to do any sophisticated alias analysis, so we only check 47645ffd83dbSDimitry Andric // the instructions after I in I's parent block if we try to sink to its 47655ffd83dbSDimitry Andric // successor block. 47665ffd83dbSDimitry Andric if (DestBlock->getUniquePredecessor() != I->getParent()) 47675ffd83dbSDimitry Andric return false; 476804eeddc0SDimitry Andric for (BasicBlock::iterator Scan = std::next(I->getIterator()), 47690b57cec5SDimitry Andric E = I->getParent()->end(); 47700b57cec5SDimitry Andric Scan != E; ++Scan) 47710b57cec5SDimitry Andric if (Scan->mayWriteToMemory()) 47720b57cec5SDimitry Andric return false; 47730b57cec5SDimitry Andric } 47745ffd83dbSDimitry Andric 477506c3fb27SDimitry Andric I->dropDroppableUses([&](const Use *U) { 477606c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(U->getUser()); 477706c3fb27SDimitry Andric if (I && I->getParent() != DestBlock) { 477806c3fb27SDimitry Andric Worklist.add(I); 47795ffd83dbSDimitry Andric return true; 478006c3fb27SDimitry Andric } 478106c3fb27SDimitry Andric return false; 47825ffd83dbSDimitry Andric }); 47835ffd83dbSDimitry Andric /// FIXME: We could remove droppable uses that are not dominated by 47845ffd83dbSDimitry Andric /// the new position. 47855ffd83dbSDimitry Andric 47860b57cec5SDimitry Andric BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); 47875f757f3fSDimitry Andric I->moveBefore(*DestBlock, InsertPos); 47880b57cec5SDimitry Andric ++NumSunkInst; 47890b57cec5SDimitry Andric 47900b57cec5SDimitry Andric // Also sink all related debug uses from the source basic block. Otherwise we 47910b57cec5SDimitry Andric // get debug use before the def. Attempt to salvage debug uses first, to 47920b57cec5SDimitry Andric // maximise the range variables have location for. If we cannot salvage, then 47930b57cec5SDimitry Andric // mark the location undef: we know it was supposed to receive a new location 47940b57cec5SDimitry Andric // here, but that computation has been sunk. 47950b57cec5SDimitry Andric SmallVector<DbgVariableIntrinsic *, 2> DbgUsers; 4796*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 2> DbgVariableRecords; 4797*0fca6ea1SDimitry Andric findDbgUsers(DbgUsers, I, &DbgVariableRecords); 4798*0fca6ea1SDimitry Andric if (!DbgUsers.empty()) 4799*0fca6ea1SDimitry Andric tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers); 4800*0fca6ea1SDimitry Andric if (!DbgVariableRecords.empty()) 4801*0fca6ea1SDimitry Andric tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock, 4802*0fca6ea1SDimitry Andric DbgVariableRecords); 48035f757f3fSDimitry Andric 4804*0fca6ea1SDimitry Andric // PS: there are numerous flaws with this behaviour, not least that right now 4805*0fca6ea1SDimitry Andric // assignments can be re-ordered past other assignments to the same variable 4806*0fca6ea1SDimitry Andric // if they use different Values. Creating more undef assignements can never be 4807*0fca6ea1SDimitry Andric // undone. And salvaging all users outside of this block can un-necessarily 4808*0fca6ea1SDimitry Andric // alter the lifetime of the live-value that the variable refers to. 4809*0fca6ea1SDimitry Andric // Some of these things can be resolved by tolerating debug use-before-defs in 4810*0fca6ea1SDimitry Andric // LLVM-IR, however it depends on the instruction-referencing CodeGen backend 4811*0fca6ea1SDimitry Andric // being used for more architectures. 4812*0fca6ea1SDimitry Andric 4813*0fca6ea1SDimitry Andric return true; 4814*0fca6ea1SDimitry Andric } 4815*0fca6ea1SDimitry Andric 4816*0fca6ea1SDimitry Andric void InstCombinerImpl::tryToSinkInstructionDbgValues( 4817*0fca6ea1SDimitry Andric Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4818*0fca6ea1SDimitry Andric BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) { 48195f757f3fSDimitry Andric // For all debug values in the destination block, the sunk instruction 48205f757f3fSDimitry Andric // will still be available, so they do not need to be dropped. 48215f757f3fSDimitry Andric SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage; 48225f757f3fSDimitry Andric for (auto &DbgUser : DbgUsers) 48235f757f3fSDimitry Andric if (DbgUser->getParent() != DestBlock) 48245f757f3fSDimitry Andric DbgUsersToSalvage.push_back(DbgUser); 48255f757f3fSDimitry Andric 48265f757f3fSDimitry Andric // Process the sinking DbgUsersToSalvage in reverse order, as we only want 48275f757f3fSDimitry Andric // to clone the last appearing debug intrinsic for each given variable. 4828fe6060f1SDimitry Andric SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink; 48295f757f3fSDimitry Andric for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage) 4830fe6060f1SDimitry Andric if (DVI->getParent() == SrcBlock) 4831fe6060f1SDimitry Andric DbgUsersToSink.push_back(DVI); 4832fe6060f1SDimitry Andric llvm::sort(DbgUsersToSink, 4833fe6060f1SDimitry Andric [](auto *A, auto *B) { return B->comesBefore(A); }); 48345ffd83dbSDimitry Andric 48355ffd83dbSDimitry Andric SmallVector<DbgVariableIntrinsic *, 2> DIIClones; 4836fe6060f1SDimitry Andric SmallSet<DebugVariable, 4> SunkVariables; 4837bdd1243dSDimitry Andric for (auto *User : DbgUsersToSink) { 48385ffd83dbSDimitry Andric // A dbg.declare instruction should not be cloned, since there can only be 48395ffd83dbSDimitry Andric // one per variable fragment. It should be left in the original place 48405ffd83dbSDimitry Andric // because the sunk instruction is not an alloca (otherwise we could not be 48415ffd83dbSDimitry Andric // here). 4842fe6060f1SDimitry Andric if (isa<DbgDeclareInst>(User)) 4843fe6060f1SDimitry Andric continue; 4844fe6060f1SDimitry Andric 4845fe6060f1SDimitry Andric DebugVariable DbgUserVariable = 4846fe6060f1SDimitry Andric DebugVariable(User->getVariable(), User->getExpression(), 4847fe6060f1SDimitry Andric User->getDebugLoc()->getInlinedAt()); 4848fe6060f1SDimitry Andric 4849fe6060f1SDimitry Andric if (!SunkVariables.insert(DbgUserVariable).second) 48508bcb0991SDimitry Andric continue; 48515ffd83dbSDimitry Andric 4852bdd1243dSDimitry Andric // Leave dbg.assign intrinsics in their original positions and there should 4853bdd1243dSDimitry Andric // be no need to insert a clone. 4854bdd1243dSDimitry Andric if (isa<DbgAssignIntrinsic>(User)) 4855bdd1243dSDimitry Andric continue; 4856bdd1243dSDimitry Andric 48575ffd83dbSDimitry Andric DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone())); 4858fe6060f1SDimitry Andric if (isa<DbgDeclareInst>(User) && isa<CastInst>(I)) 4859fe6060f1SDimitry Andric DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0)); 48605ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n'); 48618bcb0991SDimitry Andric } 48628bcb0991SDimitry Andric 48635ffd83dbSDimitry Andric // Perform salvaging without the clones, then sink the clones. 48645ffd83dbSDimitry Andric if (!DIIClones.empty()) { 4865*0fca6ea1SDimitry Andric salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {}); 4866fe6060f1SDimitry Andric // The clones are in reverse order of original appearance, reverse again to 4867fe6060f1SDimitry Andric // maintain the original order. 4868fe6060f1SDimitry Andric for (auto &DIIClone : llvm::reverse(DIIClones)) { 48695ffd83dbSDimitry Andric DIIClone->insertBefore(&*InsertPos); 48705ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n'); 48715ffd83dbSDimitry Andric } 48725ffd83dbSDimitry Andric } 4873*0fca6ea1SDimitry Andric } 48740b57cec5SDimitry Andric 4875*0fca6ea1SDimitry Andric void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords( 4876*0fca6ea1SDimitry Andric Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock, 4877*0fca6ea1SDimitry Andric BasicBlock *DestBlock, 4878*0fca6ea1SDimitry Andric SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) { 4879*0fca6ea1SDimitry Andric // Implementation of tryToSinkInstructionDbgValues, but for the 4880*0fca6ea1SDimitry Andric // DbgVariableRecord of variable assignments rather than dbg.values. 4881*0fca6ea1SDimitry Andric 4882*0fca6ea1SDimitry Andric // Fetch all DbgVariableRecords not already in the destination. 4883*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage; 4884*0fca6ea1SDimitry Andric for (auto &DVR : DbgVariableRecords) 4885*0fca6ea1SDimitry Andric if (DVR->getParent() != DestBlock) 4886*0fca6ea1SDimitry Andric DbgVariableRecordsToSalvage.push_back(DVR); 4887*0fca6ea1SDimitry Andric 4888*0fca6ea1SDimitry Andric // Fetch a second collection, of DbgVariableRecords in the source block that 4889*0fca6ea1SDimitry Andric // we're going to sink. 4890*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink; 4891*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage) 4892*0fca6ea1SDimitry Andric if (DVR->getParent() == SrcBlock) 4893*0fca6ea1SDimitry Andric DbgVariableRecordsToSink.push_back(DVR); 4894*0fca6ea1SDimitry Andric 4895*0fca6ea1SDimitry Andric // Sort DbgVariableRecords according to their position in the block. This is a 4896*0fca6ea1SDimitry Andric // partial order: DbgVariableRecords attached to different instructions will 4897*0fca6ea1SDimitry Andric // be ordered by the instruction order, but DbgVariableRecords attached to the 4898*0fca6ea1SDimitry Andric // same instruction won't have an order. 4899*0fca6ea1SDimitry Andric auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool { 4900*0fca6ea1SDimitry Andric return B->getInstruction()->comesBefore(A->getInstruction()); 4901*0fca6ea1SDimitry Andric }; 4902*0fca6ea1SDimitry Andric llvm::stable_sort(DbgVariableRecordsToSink, Order); 4903*0fca6ea1SDimitry Andric 4904*0fca6ea1SDimitry Andric // If there are two assignments to the same variable attached to the same 4905*0fca6ea1SDimitry Andric // instruction, the ordering between the two assignments is important. Scan 4906*0fca6ea1SDimitry Andric // for this (rare) case and establish which is the last assignment. 4907*0fca6ea1SDimitry Andric using InstVarPair = std::pair<const Instruction *, DebugVariable>; 4908*0fca6ea1SDimitry Andric SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap; 4909*0fca6ea1SDimitry Andric if (DbgVariableRecordsToSink.size() > 1) { 4910*0fca6ea1SDimitry Andric SmallDenseMap<InstVarPair, unsigned> CountMap; 4911*0fca6ea1SDimitry Andric // Count how many assignments to each variable there is per instruction. 4912*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 4913*0fca6ea1SDimitry Andric DebugVariable DbgUserVariable = 4914*0fca6ea1SDimitry Andric DebugVariable(DVR->getVariable(), DVR->getExpression(), 4915*0fca6ea1SDimitry Andric DVR->getDebugLoc()->getInlinedAt()); 4916*0fca6ea1SDimitry Andric CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1; 4917*0fca6ea1SDimitry Andric } 4918*0fca6ea1SDimitry Andric 4919*0fca6ea1SDimitry Andric // If there are any instructions with two assignments, add them to the 4920*0fca6ea1SDimitry Andric // FilterOutMap to record that they need extra filtering. 4921*0fca6ea1SDimitry Andric SmallPtrSet<const Instruction *, 4> DupSet; 4922*0fca6ea1SDimitry Andric for (auto It : CountMap) { 4923*0fca6ea1SDimitry Andric if (It.second > 1) { 4924*0fca6ea1SDimitry Andric FilterOutMap[It.first] = nullptr; 4925*0fca6ea1SDimitry Andric DupSet.insert(It.first.first); 4926*0fca6ea1SDimitry Andric } 4927*0fca6ea1SDimitry Andric } 4928*0fca6ea1SDimitry Andric 4929*0fca6ea1SDimitry Andric // For all instruction/variable pairs needing extra filtering, find the 4930*0fca6ea1SDimitry Andric // latest assignment. 4931*0fca6ea1SDimitry Andric for (const Instruction *Inst : DupSet) { 4932*0fca6ea1SDimitry Andric for (DbgVariableRecord &DVR : 4933*0fca6ea1SDimitry Andric llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) { 4934*0fca6ea1SDimitry Andric DebugVariable DbgUserVariable = 4935*0fca6ea1SDimitry Andric DebugVariable(DVR.getVariable(), DVR.getExpression(), 4936*0fca6ea1SDimitry Andric DVR.getDebugLoc()->getInlinedAt()); 4937*0fca6ea1SDimitry Andric auto FilterIt = 4938*0fca6ea1SDimitry Andric FilterOutMap.find(std::make_pair(Inst, DbgUserVariable)); 4939*0fca6ea1SDimitry Andric if (FilterIt == FilterOutMap.end()) 4940*0fca6ea1SDimitry Andric continue; 4941*0fca6ea1SDimitry Andric if (FilterIt->second != nullptr) 4942*0fca6ea1SDimitry Andric continue; 4943*0fca6ea1SDimitry Andric FilterIt->second = &DVR; 4944*0fca6ea1SDimitry Andric } 4945*0fca6ea1SDimitry Andric } 4946*0fca6ea1SDimitry Andric } 4947*0fca6ea1SDimitry Andric 4948*0fca6ea1SDimitry Andric // Perform cloning of the DbgVariableRecords that we plan on sinking, filter 4949*0fca6ea1SDimitry Andric // out any duplicate assignments identified above. 4950*0fca6ea1SDimitry Andric SmallVector<DbgVariableRecord *, 2> DVRClones; 4951*0fca6ea1SDimitry Andric SmallSet<DebugVariable, 4> SunkVariables; 4952*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) { 4953*0fca6ea1SDimitry Andric if (DVR->Type == DbgVariableRecord::LocationType::Declare) 4954*0fca6ea1SDimitry Andric continue; 4955*0fca6ea1SDimitry Andric 4956*0fca6ea1SDimitry Andric DebugVariable DbgUserVariable = 4957*0fca6ea1SDimitry Andric DebugVariable(DVR->getVariable(), DVR->getExpression(), 4958*0fca6ea1SDimitry Andric DVR->getDebugLoc()->getInlinedAt()); 4959*0fca6ea1SDimitry Andric 4960*0fca6ea1SDimitry Andric // For any variable where there were multiple assignments in the same place, 4961*0fca6ea1SDimitry Andric // ignore all but the last assignment. 4962*0fca6ea1SDimitry Andric if (!FilterOutMap.empty()) { 4963*0fca6ea1SDimitry Andric InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable); 4964*0fca6ea1SDimitry Andric auto It = FilterOutMap.find(IVP); 4965*0fca6ea1SDimitry Andric 4966*0fca6ea1SDimitry Andric // Filter out. 4967*0fca6ea1SDimitry Andric if (It != FilterOutMap.end() && It->second != DVR) 4968*0fca6ea1SDimitry Andric continue; 4969*0fca6ea1SDimitry Andric } 4970*0fca6ea1SDimitry Andric 4971*0fca6ea1SDimitry Andric if (!SunkVariables.insert(DbgUserVariable).second) 4972*0fca6ea1SDimitry Andric continue; 4973*0fca6ea1SDimitry Andric 4974*0fca6ea1SDimitry Andric if (DVR->isDbgAssign()) 4975*0fca6ea1SDimitry Andric continue; 4976*0fca6ea1SDimitry Andric 4977*0fca6ea1SDimitry Andric DVRClones.emplace_back(DVR->clone()); 4978*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n'); 4979*0fca6ea1SDimitry Andric } 4980*0fca6ea1SDimitry Andric 4981*0fca6ea1SDimitry Andric // Perform salvaging without the clones, then sink the clones. 4982*0fca6ea1SDimitry Andric if (DVRClones.empty()) 4983*0fca6ea1SDimitry Andric return; 4984*0fca6ea1SDimitry Andric 4985*0fca6ea1SDimitry Andric salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage); 4986*0fca6ea1SDimitry Andric 4987*0fca6ea1SDimitry Andric // The clones are in reverse order of original appearance. Assert that the 4988*0fca6ea1SDimitry Andric // head bit is set on the iterator as we _should_ have received it via 4989*0fca6ea1SDimitry Andric // getFirstInsertionPt. Inserting like this will reverse the clone order as 4990*0fca6ea1SDimitry Andric // we'll repeatedly insert at the head, such as: 4991*0fca6ea1SDimitry Andric // DVR-3 (third insertion goes here) 4992*0fca6ea1SDimitry Andric // DVR-2 (second insertion goes here) 4993*0fca6ea1SDimitry Andric // DVR-1 (first insertion goes here) 4994*0fca6ea1SDimitry Andric // Any-Prior-DVRs 4995*0fca6ea1SDimitry Andric // InsertPtInst 4996*0fca6ea1SDimitry Andric assert(InsertPos.getHeadBit()); 4997*0fca6ea1SDimitry Andric for (DbgVariableRecord *DVRClone : DVRClones) { 4998*0fca6ea1SDimitry Andric InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos); 4999*0fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n'); 5000*0fca6ea1SDimitry Andric } 50010b57cec5SDimitry Andric } 50020b57cec5SDimitry Andric 5003e8d8bef9SDimitry Andric bool InstCombinerImpl::run() { 50040b57cec5SDimitry Andric while (!Worklist.isEmpty()) { 50055ffd83dbSDimitry Andric // Walk deferred instructions in reverse order, and push them to the 50065ffd83dbSDimitry Andric // worklist, which means they'll end up popped from the worklist in-order. 50075ffd83dbSDimitry Andric while (Instruction *I = Worklist.popDeferred()) { 50085ffd83dbSDimitry Andric // Check to see if we can DCE the instruction. We do this already here to 50095ffd83dbSDimitry Andric // reduce the number of uses and thus allow other folds to trigger. 50105ffd83dbSDimitry Andric // Note that eraseInstFromFunction() may push additional instructions on 50115ffd83dbSDimitry Andric // the deferred worklist, so this will DCE whole instruction chains. 50125ffd83dbSDimitry Andric if (isInstructionTriviallyDead(I, &TLI)) { 50135ffd83dbSDimitry Andric eraseInstFromFunction(*I); 50145ffd83dbSDimitry Andric ++NumDeadInst; 50155ffd83dbSDimitry Andric continue; 50165ffd83dbSDimitry Andric } 50175ffd83dbSDimitry Andric 50185ffd83dbSDimitry Andric Worklist.push(I); 50195ffd83dbSDimitry Andric } 50205ffd83dbSDimitry Andric 50215ffd83dbSDimitry Andric Instruction *I = Worklist.removeOne(); 50220b57cec5SDimitry Andric if (I == nullptr) continue; // skip null values. 50230b57cec5SDimitry Andric 50240b57cec5SDimitry Andric // Check to see if we can DCE the instruction. 50250b57cec5SDimitry Andric if (isInstructionTriviallyDead(I, &TLI)) { 50260b57cec5SDimitry Andric eraseInstFromFunction(*I); 50270b57cec5SDimitry Andric ++NumDeadInst; 50280b57cec5SDimitry Andric continue; 50290b57cec5SDimitry Andric } 50300b57cec5SDimitry Andric 50310b57cec5SDimitry Andric if (!DebugCounter::shouldExecute(VisitCounter)) 50320b57cec5SDimitry Andric continue; 50330b57cec5SDimitry Andric 50345ffd83dbSDimitry Andric // See if we can trivially sink this instruction to its user if we can 50355ffd83dbSDimitry Andric // prove that the successor is not executed more frequently than our block. 5036349cc55cSDimitry Andric // Return the UserBlock if successful. 5037349cc55cSDimitry Andric auto getOptionalSinkBlockForInst = 5038bdd1243dSDimitry Andric [this](Instruction *I) -> std::optional<BasicBlock *> { 5039349cc55cSDimitry Andric if (!EnableCodeSinking) 5040bdd1243dSDimitry Andric return std::nullopt; 50410b57cec5SDimitry Andric 5042349cc55cSDimitry Andric BasicBlock *BB = I->getParent(); 5043349cc55cSDimitry Andric BasicBlock *UserParent = nullptr; 504481ad6265SDimitry Andric unsigned NumUsers = 0; 5045349cc55cSDimitry Andric 5046*0fca6ea1SDimitry Andric for (Use &U : I->uses()) { 5047*0fca6ea1SDimitry Andric User *User = U.getUser(); 5048*0fca6ea1SDimitry Andric if (User->isDroppable()) 504981ad6265SDimitry Andric continue; 505081ad6265SDimitry Andric if (NumUsers > MaxSinkNumUsers) 5051bdd1243dSDimitry Andric return std::nullopt; 505281ad6265SDimitry Andric 5053*0fca6ea1SDimitry Andric Instruction *UserInst = cast<Instruction>(User); 5054349cc55cSDimitry Andric // Special handling for Phi nodes - get the block the use occurs in. 5055*0fca6ea1SDimitry Andric BasicBlock *UserBB = UserInst->getParent(); 5056*0fca6ea1SDimitry Andric if (PHINode *PN = dyn_cast<PHINode>(UserInst)) 5057*0fca6ea1SDimitry Andric UserBB = PN->getIncomingBlock(U); 5058349cc55cSDimitry Andric // Bail out if we have uses in different blocks. We don't do any 5059*0fca6ea1SDimitry Andric // sophisticated analysis (i.e finding NearestCommonDominator of these 5060*0fca6ea1SDimitry Andric // use blocks). 5061*0fca6ea1SDimitry Andric if (UserParent && UserParent != UserBB) 5062bdd1243dSDimitry Andric return std::nullopt; 5063*0fca6ea1SDimitry Andric UserParent = UserBB; 50640b57cec5SDimitry Andric 506581ad6265SDimitry Andric // Make sure these checks are done only once, naturally we do the checks 506681ad6265SDimitry Andric // the first time we get the userparent, this will save compile time. 506781ad6265SDimitry Andric if (NumUsers == 0) { 5068e8d8bef9SDimitry Andric // Try sinking to another block. If that block is unreachable, then do 5069e8d8bef9SDimitry Andric // not bother. SimplifyCFG should handle it. 5070349cc55cSDimitry Andric if (UserParent == BB || !DT.isReachableFromEntry(UserParent)) 5071bdd1243dSDimitry Andric return std::nullopt; 5072349cc55cSDimitry Andric 5073349cc55cSDimitry Andric auto *Term = UserParent->getTerminator(); 50745ffd83dbSDimitry Andric // See if the user is one of our successors that has only one 50755ffd83dbSDimitry Andric // predecessor, so that we don't have to split the critical edge. 50765ffd83dbSDimitry Andric // Another option where we can sink is a block that ends with a 50775ffd83dbSDimitry Andric // terminator that does not pass control to other block (such as 507804eeddc0SDimitry Andric // return or unreachable or resume). In this case: 50795ffd83dbSDimitry Andric // - I dominates the User (by SSA form); 50805ffd83dbSDimitry Andric // - the User will be executed at most once. 50815ffd83dbSDimitry Andric // So sinking I down to User is always profitable or neutral. 508281ad6265SDimitry Andric if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term)) 5083bdd1243dSDimitry Andric return std::nullopt; 508481ad6265SDimitry Andric 508581ad6265SDimitry Andric assert(DT.dominates(BB, UserParent) && "Dominance relation broken?"); 508681ad6265SDimitry Andric } 508781ad6265SDimitry Andric 508881ad6265SDimitry Andric NumUsers++; 508981ad6265SDimitry Andric } 509081ad6265SDimitry Andric 509181ad6265SDimitry Andric // No user or only has droppable users. 509281ad6265SDimitry Andric if (!UserParent) 5093bdd1243dSDimitry Andric return std::nullopt; 509481ad6265SDimitry Andric 509581ad6265SDimitry Andric return UserParent; 5096349cc55cSDimitry Andric }; 5097349cc55cSDimitry Andric 5098349cc55cSDimitry Andric auto OptBB = getOptionalSinkBlockForInst(I); 5099349cc55cSDimitry Andric if (OptBB) { 5100349cc55cSDimitry Andric auto *UserParent = *OptBB; 51010b57cec5SDimitry Andric // Okay, the CFG is simple enough, try to sink this instruction. 510206c3fb27SDimitry Andric if (tryToSinkInstruction(I, UserParent)) { 51030b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); 51040b57cec5SDimitry Andric MadeIRChange = true; 5105349cc55cSDimitry Andric // We'll add uses of the sunk instruction below, but since 5106349cc55cSDimitry Andric // sinking can expose opportunities for it's *operands* add 5107349cc55cSDimitry Andric // them to the worklist 51080b57cec5SDimitry Andric for (Use &U : I->operands()) 51090b57cec5SDimitry Andric if (Instruction *OpI = dyn_cast<Instruction>(U.get())) 51105ffd83dbSDimitry Andric Worklist.push(OpI); 51110b57cec5SDimitry Andric } 51120b57cec5SDimitry Andric } 51130b57cec5SDimitry Andric 51140b57cec5SDimitry Andric // Now that we have an instruction, try combining it to simplify it. 51150b57cec5SDimitry Andric Builder.SetInsertPoint(I); 5116e8d8bef9SDimitry Andric Builder.CollectMetadataToCopy( 5117e8d8bef9SDimitry Andric I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 51180b57cec5SDimitry Andric 51190b57cec5SDimitry Andric #ifndef NDEBUG 51200b57cec5SDimitry Andric std::string OrigI; 51210b57cec5SDimitry Andric #endif 5122*0fca6ea1SDimitry Andric LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS);); 51230b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); 51240b57cec5SDimitry Andric 51250b57cec5SDimitry Andric if (Instruction *Result = visit(*I)) { 51260b57cec5SDimitry Andric ++NumCombined; 51270b57cec5SDimitry Andric // Should we replace the old instruction with a new one? 51280b57cec5SDimitry Andric if (Result != I) { 51290b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n' 51300b57cec5SDimitry Andric << " New = " << *Result << '\n'); 51310b57cec5SDimitry Andric 5132e8d8bef9SDimitry Andric Result->copyMetadata(*I, 5133e8d8bef9SDimitry Andric {LLVMContext::MD_dbg, LLVMContext::MD_annotation}); 51340b57cec5SDimitry Andric // Everything uses the new instruction now. 51350b57cec5SDimitry Andric I->replaceAllUsesWith(Result); 51360b57cec5SDimitry Andric 51370b57cec5SDimitry Andric // Move the name to the new instruction first. 51380b57cec5SDimitry Andric Result->takeName(I); 51390b57cec5SDimitry Andric 51400b57cec5SDimitry Andric // Insert the new instruction into the basic block... 51410b57cec5SDimitry Andric BasicBlock *InstParent = I->getParent(); 51420b57cec5SDimitry Andric BasicBlock::iterator InsertPos = I->getIterator(); 51430b57cec5SDimitry Andric 5144e8d8bef9SDimitry Andric // Are we replace a PHI with something that isn't a PHI, or vice versa? 5145e8d8bef9SDimitry Andric if (isa<PHINode>(Result) != isa<PHINode>(I)) { 5146e8d8bef9SDimitry Andric // We need to fix up the insertion point. 5147e8d8bef9SDimitry Andric if (isa<PHINode>(I)) // PHI -> Non-PHI 51480b57cec5SDimitry Andric InsertPos = InstParent->getFirstInsertionPt(); 5149e8d8bef9SDimitry Andric else // Non-PHI -> PHI 51507a6dacacSDimitry Andric InsertPos = InstParent->getFirstNonPHIIt(); 5151e8d8bef9SDimitry Andric } 51520b57cec5SDimitry Andric 5153bdd1243dSDimitry Andric Result->insertInto(InstParent, InsertPos); 51540b57cec5SDimitry Andric 5155480093f4SDimitry Andric // Push the new instruction and any users onto the worklist. 51565ffd83dbSDimitry Andric Worklist.pushUsersToWorkList(*Result); 51575ffd83dbSDimitry Andric Worklist.push(Result); 5158480093f4SDimitry Andric 51590b57cec5SDimitry Andric eraseInstFromFunction(*I); 51600b57cec5SDimitry Andric } else { 51610b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' 51620b57cec5SDimitry Andric << " New = " << *I << '\n'); 51630b57cec5SDimitry Andric 51640b57cec5SDimitry Andric // If the instruction was modified, it's possible that it is now dead. 51650b57cec5SDimitry Andric // if so, remove it. 51660b57cec5SDimitry Andric if (isInstructionTriviallyDead(I, &TLI)) { 51670b57cec5SDimitry Andric eraseInstFromFunction(*I); 51680b57cec5SDimitry Andric } else { 51695ffd83dbSDimitry Andric Worklist.pushUsersToWorkList(*I); 51705ffd83dbSDimitry Andric Worklist.push(I); 51710b57cec5SDimitry Andric } 51720b57cec5SDimitry Andric } 51730b57cec5SDimitry Andric MadeIRChange = true; 51740b57cec5SDimitry Andric } 51750b57cec5SDimitry Andric } 51760b57cec5SDimitry Andric 51775ffd83dbSDimitry Andric Worklist.zap(); 51780b57cec5SDimitry Andric return MadeIRChange; 51790b57cec5SDimitry Andric } 51800b57cec5SDimitry Andric 5181e8d8bef9SDimitry Andric // Track the scopes used by !alias.scope and !noalias. In a function, a 5182e8d8bef9SDimitry Andric // @llvm.experimental.noalias.scope.decl is only useful if that scope is used 5183e8d8bef9SDimitry Andric // by both sets. If not, the declaration of the scope can be safely omitted. 5184e8d8bef9SDimitry Andric // The MDNode of the scope can be omitted as well for the instructions that are 5185e8d8bef9SDimitry Andric // part of this function. We do not do that at this point, as this might become 5186e8d8bef9SDimitry Andric // too time consuming to do. 5187e8d8bef9SDimitry Andric class AliasScopeTracker { 5188e8d8bef9SDimitry Andric SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists; 5189e8d8bef9SDimitry Andric SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists; 5190e8d8bef9SDimitry Andric 5191e8d8bef9SDimitry Andric public: 5192e8d8bef9SDimitry Andric void analyse(Instruction *I) { 5193e8d8bef9SDimitry Andric // This seems to be faster than checking 'mayReadOrWriteMemory()'. 5194e8d8bef9SDimitry Andric if (!I->hasMetadataOtherThanDebugLoc()) 5195e8d8bef9SDimitry Andric return; 5196e8d8bef9SDimitry Andric 5197e8d8bef9SDimitry Andric auto Track = [](Metadata *ScopeList, auto &Container) { 5198e8d8bef9SDimitry Andric const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList); 5199e8d8bef9SDimitry Andric if (!MDScopeList || !Container.insert(MDScopeList).second) 5200e8d8bef9SDimitry Andric return; 5201bdd1243dSDimitry Andric for (const auto &MDOperand : MDScopeList->operands()) 5202e8d8bef9SDimitry Andric if (auto *MDScope = dyn_cast<MDNode>(MDOperand)) 5203e8d8bef9SDimitry Andric Container.insert(MDScope); 5204e8d8bef9SDimitry Andric }; 5205e8d8bef9SDimitry Andric 5206e8d8bef9SDimitry Andric Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists); 5207e8d8bef9SDimitry Andric Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists); 5208e8d8bef9SDimitry Andric } 5209e8d8bef9SDimitry Andric 5210e8d8bef9SDimitry Andric bool isNoAliasScopeDeclDead(Instruction *Inst) { 5211e8d8bef9SDimitry Andric NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst); 5212e8d8bef9SDimitry Andric if (!Decl) 5213e8d8bef9SDimitry Andric return false; 5214e8d8bef9SDimitry Andric 5215e8d8bef9SDimitry Andric assert(Decl->use_empty() && 5216e8d8bef9SDimitry Andric "llvm.experimental.noalias.scope.decl in use ?"); 5217e8d8bef9SDimitry Andric const MDNode *MDSL = Decl->getScopeList(); 5218e8d8bef9SDimitry Andric assert(MDSL->getNumOperands() == 1 && 5219e8d8bef9SDimitry Andric "llvm.experimental.noalias.scope should refer to a single scope"); 5220e8d8bef9SDimitry Andric auto &MDOperand = MDSL->getOperand(0); 5221e8d8bef9SDimitry Andric if (auto *MD = dyn_cast<MDNode>(MDOperand)) 5222e8d8bef9SDimitry Andric return !UsedAliasScopesAndLists.contains(MD) || 5223e8d8bef9SDimitry Andric !UsedNoAliasScopesAndLists.contains(MD); 5224e8d8bef9SDimitry Andric 5225e8d8bef9SDimitry Andric // Not an MDNode ? throw away. 5226e8d8bef9SDimitry Andric return true; 5227e8d8bef9SDimitry Andric } 5228e8d8bef9SDimitry Andric }; 5229e8d8bef9SDimitry Andric 52305f757f3fSDimitry Andric /// Populate the IC worklist from a function, by walking it in reverse 52315f757f3fSDimitry Andric /// post-order and adding all reachable code to the worklist. 52320b57cec5SDimitry Andric /// 52330b57cec5SDimitry Andric /// This has a couple of tricks to make the code faster and more powerful. In 52340b57cec5SDimitry Andric /// particular, we constant fold and DCE instructions as we go, to avoid adding 52350b57cec5SDimitry Andric /// them to the worklist (this significantly speeds up instcombine on code where 52360b57cec5SDimitry Andric /// many instructions are dead or constant). Additionally, if we find a branch 52370b57cec5SDimitry Andric /// whose condition is a known constant, we only visit the reachable successors. 52385f757f3fSDimitry Andric bool InstCombinerImpl::prepareWorklist( 52395f757f3fSDimitry Andric Function &F, ReversePostOrderTraversal<BasicBlock *> &RPOT) { 52400b57cec5SDimitry Andric bool MadeIRChange = false; 52415f757f3fSDimitry Andric SmallPtrSet<BasicBlock *, 32> LiveBlocks; 5242349cc55cSDimitry Andric SmallVector<Instruction *, 128> InstrsForInstructionWorklist; 52430b57cec5SDimitry Andric DenseMap<Constant *, Constant *> FoldedConstants; 5244e8d8bef9SDimitry Andric AliasScopeTracker SeenAliasScopes; 52450b57cec5SDimitry Andric 52465f757f3fSDimitry Andric auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) { 52475f757f3fSDimitry Andric for (BasicBlock *Succ : successors(BB)) 52485f757f3fSDimitry Andric if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second) 52495f757f3fSDimitry Andric for (PHINode &PN : Succ->phis()) 52505f757f3fSDimitry Andric for (Use &U : PN.incoming_values()) 52515f757f3fSDimitry Andric if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) { 52525f757f3fSDimitry Andric U.set(PoisonValue::get(PN.getType())); 52535f757f3fSDimitry Andric MadeIRChange = true; 52545f757f3fSDimitry Andric } 52555f757f3fSDimitry Andric }; 52560b57cec5SDimitry Andric 52575f757f3fSDimitry Andric for (BasicBlock *BB : RPOT) { 52585f757f3fSDimitry Andric if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) { 52595f757f3fSDimitry Andric return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred); 52605f757f3fSDimitry Andric })) { 52615f757f3fSDimitry Andric HandleOnlyLiveSuccessor(BB, nullptr); 52620b57cec5SDimitry Andric continue; 52635f757f3fSDimitry Andric } 52645f757f3fSDimitry Andric LiveBlocks.insert(BB); 52650b57cec5SDimitry Andric 5266349cc55cSDimitry Andric for (Instruction &Inst : llvm::make_early_inc_range(*BB)) { 52670b57cec5SDimitry Andric // ConstantProp instruction if trivially constant. 5268349cc55cSDimitry Andric if (!Inst.use_empty() && 5269349cc55cSDimitry Andric (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0)))) 52705f757f3fSDimitry Andric if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) { 5271349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst 52720b57cec5SDimitry Andric << '\n'); 5273349cc55cSDimitry Andric Inst.replaceAllUsesWith(C); 52740b57cec5SDimitry Andric ++NumConstProp; 52755f757f3fSDimitry Andric if (isInstructionTriviallyDead(&Inst, &TLI)) 5276349cc55cSDimitry Andric Inst.eraseFromParent(); 52770b57cec5SDimitry Andric MadeIRChange = true; 52780b57cec5SDimitry Andric continue; 52790b57cec5SDimitry Andric } 52800b57cec5SDimitry Andric 52810b57cec5SDimitry Andric // See if we can constant fold its operands. 5282349cc55cSDimitry Andric for (Use &U : Inst.operands()) { 52830b57cec5SDimitry Andric if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U)) 52840b57cec5SDimitry Andric continue; 52850b57cec5SDimitry Andric 52860b57cec5SDimitry Andric auto *C = cast<Constant>(U); 52870b57cec5SDimitry Andric Constant *&FoldRes = FoldedConstants[C]; 52880b57cec5SDimitry Andric if (!FoldRes) 52895f757f3fSDimitry Andric FoldRes = ConstantFoldConstant(C, DL, &TLI); 52900b57cec5SDimitry Andric 52910b57cec5SDimitry Andric if (FoldRes != C) { 5292349cc55cSDimitry Andric LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst 52930b57cec5SDimitry Andric << "\n Old = " << *C 52940b57cec5SDimitry Andric << "\n New = " << *FoldRes << '\n'); 52950b57cec5SDimitry Andric U = FoldRes; 52960b57cec5SDimitry Andric MadeIRChange = true; 52970b57cec5SDimitry Andric } 52980b57cec5SDimitry Andric } 52990b57cec5SDimitry Andric 5300d409305fSDimitry Andric // Skip processing debug and pseudo intrinsics in InstCombine. Processing 5301d409305fSDimitry Andric // these call instructions consumes non-trivial amount of time and 5302d409305fSDimitry Andric // provides no value for the optimization. 5303349cc55cSDimitry Andric if (!Inst.isDebugOrPseudoInst()) { 5304349cc55cSDimitry Andric InstrsForInstructionWorklist.push_back(&Inst); 5305349cc55cSDimitry Andric SeenAliasScopes.analyse(&Inst); 5306e8d8bef9SDimitry Andric } 53070b57cec5SDimitry Andric } 53080b57cec5SDimitry Andric 53095f757f3fSDimitry Andric // If this is a branch or switch on a constant, mark only the single 53105f757f3fSDimitry Andric // live successor. Otherwise assume all successors are live. 53110b57cec5SDimitry Andric Instruction *TI = BB->getTerminator(); 531206c3fb27SDimitry Andric if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) { 53135f757f3fSDimitry Andric if (isa<UndefValue>(BI->getCondition())) { 531406c3fb27SDimitry Andric // Branch on undef is UB. 53155f757f3fSDimitry Andric HandleOnlyLiveSuccessor(BB, nullptr); 531606c3fb27SDimitry Andric continue; 53175f757f3fSDimitry Andric } 531806c3fb27SDimitry Andric if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { 531906c3fb27SDimitry Andric bool CondVal = Cond->getZExtValue(); 53205f757f3fSDimitry Andric HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal)); 53210b57cec5SDimitry Andric continue; 53220b57cec5SDimitry Andric } 53230b57cec5SDimitry Andric } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { 53245f757f3fSDimitry Andric if (isa<UndefValue>(SI->getCondition())) { 532506c3fb27SDimitry Andric // Switch on undef is UB. 53265f757f3fSDimitry Andric HandleOnlyLiveSuccessor(BB, nullptr); 532706c3fb27SDimitry Andric continue; 53285f757f3fSDimitry Andric } 532906c3fb27SDimitry Andric if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { 53305f757f3fSDimitry Andric HandleOnlyLiveSuccessor(BB, 53315f757f3fSDimitry Andric SI->findCaseValue(Cond)->getCaseSuccessor()); 53320b57cec5SDimitry Andric continue; 53330b57cec5SDimitry Andric } 53340b57cec5SDimitry Andric } 53355f757f3fSDimitry Andric } 53360b57cec5SDimitry Andric 53375ffd83dbSDimitry Andric // Remove instructions inside unreachable blocks. This prevents the 53385ffd83dbSDimitry Andric // instcombine code from having to deal with some bad special cases, and 53395ffd83dbSDimitry Andric // reduces use counts of instructions. 53400b57cec5SDimitry Andric for (BasicBlock &BB : F) { 53415f757f3fSDimitry Andric if (LiveBlocks.count(&BB)) 53420b57cec5SDimitry Andric continue; 53430b57cec5SDimitry Andric 5344e8d8bef9SDimitry Andric unsigned NumDeadInstInBB; 5345e8d8bef9SDimitry Andric unsigned NumDeadDbgInstInBB; 5346e8d8bef9SDimitry Andric std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) = 5347e8d8bef9SDimitry Andric removeAllNonTerminatorAndEHPadInstructions(&BB); 5348e8d8bef9SDimitry Andric 5349e8d8bef9SDimitry Andric MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0; 53500b57cec5SDimitry Andric NumDeadInst += NumDeadInstInBB; 53510b57cec5SDimitry Andric } 53520b57cec5SDimitry Andric 53535ffd83dbSDimitry Andric // Once we've found all of the instructions to add to instcombine's worklist, 53545ffd83dbSDimitry Andric // add them in reverse order. This way instcombine will visit from the top 53555ffd83dbSDimitry Andric // of the function down. This jives well with the way that it adds all uses 53565ffd83dbSDimitry Andric // of instructions to the worklist after doing a transformation, thus avoiding 53575ffd83dbSDimitry Andric // some N^2 behavior in pathological cases. 53585f757f3fSDimitry Andric Worklist.reserve(InstrsForInstructionWorklist.size()); 5359349cc55cSDimitry Andric for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) { 53605ffd83dbSDimitry Andric // DCE instruction if trivially dead. As we iterate in reverse program 53615ffd83dbSDimitry Andric // order here, we will clean up whole chains of dead instructions. 53625f757f3fSDimitry Andric if (isInstructionTriviallyDead(Inst, &TLI) || 5363e8d8bef9SDimitry Andric SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) { 53645ffd83dbSDimitry Andric ++NumDeadInst; 53655ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); 53665ffd83dbSDimitry Andric salvageDebugInfo(*Inst); 53675ffd83dbSDimitry Andric Inst->eraseFromParent(); 53685ffd83dbSDimitry Andric MadeIRChange = true; 53695ffd83dbSDimitry Andric continue; 53705ffd83dbSDimitry Andric } 53715ffd83dbSDimitry Andric 53725f757f3fSDimitry Andric Worklist.push(Inst); 53735ffd83dbSDimitry Andric } 53745ffd83dbSDimitry Andric 53750b57cec5SDimitry Andric return MadeIRChange; 53760b57cec5SDimitry Andric } 53770b57cec5SDimitry Andric 53780b57cec5SDimitry Andric static bool combineInstructionsOverFunction( 5379349cc55cSDimitry Andric Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA, 5380e8d8bef9SDimitry Andric AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, 5381e8d8bef9SDimitry Andric DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI, 5382*0fca6ea1SDimitry Andric BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI, LoopInfo *LI, 5383*0fca6ea1SDimitry Andric const InstCombineOptions &Opts) { 5384*0fca6ea1SDimitry Andric auto &DL = F.getDataLayout(); 53850b57cec5SDimitry Andric 53860b57cec5SDimitry Andric /// Builder - This is an IRBuilder that automatically inserts new 53870b57cec5SDimitry Andric /// instructions into the worklist when they are created. 53880b57cec5SDimitry Andric IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 53890b57cec5SDimitry Andric F.getContext(), TargetFolder(DL), 53900b57cec5SDimitry Andric IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) { 53915ffd83dbSDimitry Andric Worklist.add(I); 5392fe6060f1SDimitry Andric if (auto *Assume = dyn_cast<AssumeInst>(I)) 5393fe6060f1SDimitry Andric AC.registerAssumption(Assume); 53940b57cec5SDimitry Andric })); 53950b57cec5SDimitry Andric 53965f757f3fSDimitry Andric ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front()); 53975f757f3fSDimitry Andric 53980b57cec5SDimitry Andric // Lower dbg.declare intrinsics otherwise their value may be clobbered 53990b57cec5SDimitry Andric // by instcombiner. 54000b57cec5SDimitry Andric bool MadeIRChange = false; 54010b57cec5SDimitry Andric if (ShouldLowerDbgDeclare) 54020b57cec5SDimitry Andric MadeIRChange = LowerDbgDeclare(F); 54030b57cec5SDimitry Andric 54040b57cec5SDimitry Andric // Iterate while there is work to do. 5405480093f4SDimitry Andric unsigned Iteration = 0; 54060b57cec5SDimitry Andric while (true) { 54070b57cec5SDimitry Andric ++Iteration; 5408480093f4SDimitry Andric 54095f757f3fSDimitry Andric if (Iteration > Opts.MaxIterations && !Opts.VerifyFixpoint) { 54105f757f3fSDimitry Andric LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations 5411480093f4SDimitry Andric << " on " << F.getName() 54125f757f3fSDimitry Andric << " reached; stopping without verifying fixpoint\n"); 5413480093f4SDimitry Andric break; 5414480093f4SDimitry Andric } 5415480093f4SDimitry Andric 54165f757f3fSDimitry Andric ++NumWorklistIterations; 54170b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " 54180b57cec5SDimitry Andric << F.getName() << "\n"); 54190b57cec5SDimitry Andric 5420e8d8bef9SDimitry Andric InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT, 5421*0fca6ea1SDimitry Andric ORE, BFI, BPI, PSI, DL, LI); 54220b57cec5SDimitry Andric IC.MaxArraySizeForCombine = MaxArraySize; 54235f757f3fSDimitry Andric bool MadeChangeInThisIteration = IC.prepareWorklist(F, RPOT); 54245f757f3fSDimitry Andric MadeChangeInThisIteration |= IC.run(); 54255f757f3fSDimitry Andric if (!MadeChangeInThisIteration) 54260b57cec5SDimitry Andric break; 5427480093f4SDimitry Andric 5428480093f4SDimitry Andric MadeIRChange = true; 54295f757f3fSDimitry Andric if (Iteration > Opts.MaxIterations) { 54305f757f3fSDimitry Andric report_fatal_error( 54315f757f3fSDimitry Andric "Instruction Combining did not reach a fixpoint after " + 5432*0fca6ea1SDimitry Andric Twine(Opts.MaxIterations) + " iterations", 5433*0fca6ea1SDimitry Andric /*GenCrashDiag=*/false); 54345f757f3fSDimitry Andric } 54350b57cec5SDimitry Andric } 54360b57cec5SDimitry Andric 543706c3fb27SDimitry Andric if (Iteration == 1) 543806c3fb27SDimitry Andric ++NumOneIteration; 543906c3fb27SDimitry Andric else if (Iteration == 2) 544006c3fb27SDimitry Andric ++NumTwoIterations; 544106c3fb27SDimitry Andric else if (Iteration == 3) 544206c3fb27SDimitry Andric ++NumThreeIterations; 544306c3fb27SDimitry Andric else 544406c3fb27SDimitry Andric ++NumFourOrMoreIterations; 544506c3fb27SDimitry Andric 5446480093f4SDimitry Andric return MadeIRChange; 54470b57cec5SDimitry Andric } 54480b57cec5SDimitry Andric 544906c3fb27SDimitry Andric InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {} 5450480093f4SDimitry Andric 545106c3fb27SDimitry Andric void InstCombinePass::printPipeline( 545206c3fb27SDimitry Andric raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 545306c3fb27SDimitry Andric static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline( 545406c3fb27SDimitry Andric OS, MapClassName2PassName); 545506c3fb27SDimitry Andric OS << '<'; 545606c3fb27SDimitry Andric OS << "max-iterations=" << Options.MaxIterations << ";"; 54575f757f3fSDimitry Andric OS << (Options.UseLoopInfo ? "" : "no-") << "use-loop-info;"; 54585f757f3fSDimitry Andric OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint"; 545906c3fb27SDimitry Andric OS << '>'; 546006c3fb27SDimitry Andric } 5461480093f4SDimitry Andric 54620b57cec5SDimitry Andric PreservedAnalyses InstCombinePass::run(Function &F, 54630b57cec5SDimitry Andric FunctionAnalysisManager &AM) { 54640b57cec5SDimitry Andric auto &AC = AM.getResult<AssumptionAnalysis>(F); 54650b57cec5SDimitry Andric auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 54660b57cec5SDimitry Andric auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 54670b57cec5SDimitry Andric auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 5468e8d8bef9SDimitry Andric auto &TTI = AM.getResult<TargetIRAnalysis>(F); 54690b57cec5SDimitry Andric 547006c3fb27SDimitry Andric // TODO: Only use LoopInfo when the option is set. This requires that the 547106c3fb27SDimitry Andric // callers in the pass pipeline explicitly set the option. 54720b57cec5SDimitry Andric auto *LI = AM.getCachedResult<LoopAnalysis>(F); 547306c3fb27SDimitry Andric if (!LI && Options.UseLoopInfo) 547406c3fb27SDimitry Andric LI = &AM.getResult<LoopAnalysis>(F); 54750b57cec5SDimitry Andric 54760b57cec5SDimitry Andric auto *AA = &AM.getResult<AAManager>(F); 54775ffd83dbSDimitry Andric auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 54780b57cec5SDimitry Andric ProfileSummaryInfo *PSI = 54795ffd83dbSDimitry Andric MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 54800b57cec5SDimitry Andric auto *BFI = (PSI && PSI->hasProfileSummary()) ? 54810b57cec5SDimitry Andric &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr; 5482*0fca6ea1SDimitry Andric auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F); 54830b57cec5SDimitry Andric 5484e8d8bef9SDimitry Andric if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5485*0fca6ea1SDimitry Andric BFI, BPI, PSI, LI, Options)) 54860b57cec5SDimitry Andric // No changes, all analyses are preserved. 54870b57cec5SDimitry Andric return PreservedAnalyses::all(); 54880b57cec5SDimitry Andric 54890b57cec5SDimitry Andric // Mark all the analyses that instcombine updates as preserved. 54900b57cec5SDimitry Andric PreservedAnalyses PA; 54910b57cec5SDimitry Andric PA.preserveSet<CFGAnalyses>(); 54920b57cec5SDimitry Andric return PA; 54930b57cec5SDimitry Andric } 54940b57cec5SDimitry Andric 54950b57cec5SDimitry Andric void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { 54960b57cec5SDimitry Andric AU.setPreservesCFG(); 54970b57cec5SDimitry Andric AU.addRequired<AAResultsWrapperPass>(); 54980b57cec5SDimitry Andric AU.addRequired<AssumptionCacheTracker>(); 54990b57cec5SDimitry Andric AU.addRequired<TargetLibraryInfoWrapperPass>(); 5500e8d8bef9SDimitry Andric AU.addRequired<TargetTransformInfoWrapperPass>(); 55010b57cec5SDimitry Andric AU.addRequired<DominatorTreeWrapperPass>(); 55020b57cec5SDimitry Andric AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 55030b57cec5SDimitry Andric AU.addPreserved<DominatorTreeWrapperPass>(); 55040b57cec5SDimitry Andric AU.addPreserved<AAResultsWrapperPass>(); 55050b57cec5SDimitry Andric AU.addPreserved<BasicAAWrapperPass>(); 55060b57cec5SDimitry Andric AU.addPreserved<GlobalsAAWrapperPass>(); 55070b57cec5SDimitry Andric AU.addRequired<ProfileSummaryInfoWrapperPass>(); 55080b57cec5SDimitry Andric LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 55090b57cec5SDimitry Andric } 55100b57cec5SDimitry Andric 55110b57cec5SDimitry Andric bool InstructionCombiningPass::runOnFunction(Function &F) { 55120b57cec5SDimitry Andric if (skipFunction(F)) 55130b57cec5SDimitry Andric return false; 55140b57cec5SDimitry Andric 55150b57cec5SDimitry Andric // Required analyses. 55160b57cec5SDimitry Andric auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 55170b57cec5SDimitry Andric auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 55188bcb0991SDimitry Andric auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 5519e8d8bef9SDimitry Andric auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 55200b57cec5SDimitry Andric auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 55210b57cec5SDimitry Andric auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 55220b57cec5SDimitry Andric 55230b57cec5SDimitry Andric // Optional analyses. 55240b57cec5SDimitry Andric auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 55250b57cec5SDimitry Andric auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 55260b57cec5SDimitry Andric ProfileSummaryInfo *PSI = 55270b57cec5SDimitry Andric &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 55280b57cec5SDimitry Andric BlockFrequencyInfo *BFI = 55290b57cec5SDimitry Andric (PSI && PSI->hasProfileSummary()) ? 55300b57cec5SDimitry Andric &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() : 55310b57cec5SDimitry Andric nullptr; 5532*0fca6ea1SDimitry Andric BranchProbabilityInfo *BPI = nullptr; 5533*0fca6ea1SDimitry Andric if (auto *WrapperPass = 5534*0fca6ea1SDimitry Andric getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>()) 5535*0fca6ea1SDimitry Andric BPI = &WrapperPass->getBPI(); 55360b57cec5SDimitry Andric 5537e8d8bef9SDimitry Andric return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE, 5538*0fca6ea1SDimitry Andric BFI, BPI, PSI, LI, 5539*0fca6ea1SDimitry Andric InstCombineOptions()); 55400b57cec5SDimitry Andric } 55410b57cec5SDimitry Andric 55420b57cec5SDimitry Andric char InstructionCombiningPass::ID = 0; 55430b57cec5SDimitry Andric 554406c3fb27SDimitry Andric InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) { 5545480093f4SDimitry Andric initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); 5546480093f4SDimitry Andric } 5547480093f4SDimitry Andric 55480b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", 55490b57cec5SDimitry Andric "Combine redundant instructions", false, false) 55500b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 55510b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 5552e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 55530b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 55540b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 55550b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 55560b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 55570b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass) 55580b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 55590b57cec5SDimitry Andric INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", 55600b57cec5SDimitry Andric "Combine redundant instructions", false, false) 55610b57cec5SDimitry Andric 55620b57cec5SDimitry Andric // Initialization Routines 55630b57cec5SDimitry Andric void llvm::initializeInstCombine(PassRegistry &Registry) { 55640b57cec5SDimitry Andric initializeInstructionCombiningPassPass(Registry); 55650b57cec5SDimitry Andric } 55660b57cec5SDimitry Andric 55675ffd83dbSDimitry Andric FunctionPass *llvm::createInstructionCombiningPass() { 55685ffd83dbSDimitry Andric return new InstructionCombiningPass(); 55690b57cec5SDimitry Andric } 5570