xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineVectorOps.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- InstCombineVectorOps.cpp -------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements instcombine for ExtractElement, InsertElement and
10 // ShuffleVector.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/VectorUtils.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/IR/Type.h"
32 #include "llvm/IR/User.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
37 #include <cassert>
38 #include <cstdint>
39 #include <iterator>
40 #include <utility>
41 
42 using namespace llvm;
43 using namespace PatternMatch;
44 
45 #define DEBUG_TYPE "instcombine"
46 
47 /// Return true if the value is cheaper to scalarize than it is to leave as a
48 /// vector operation. IsConstantExtractIndex indicates whether we are extracting
49 /// one known element from a vector constant.
50 ///
51 /// FIXME: It's possible to create more instructions than previously existed.
52 static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
53   // If we can pick a scalar constant value out of a vector, that is free.
54   if (auto *C = dyn_cast<Constant>(V))
55     return IsConstantExtractIndex || C->getSplatValue();
56 
57   // An insertelement to the same constant index as our extract will simplify
58   // to the scalar inserted element. An insertelement to a different constant
59   // index is irrelevant to our extract.
60   if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
61     return IsConstantExtractIndex;
62 
63   if (match(V, m_OneUse(m_Load(m_Value()))))
64     return true;
65 
66   Value *V0, *V1;
67   if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
68     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
69         cheapToScalarize(V1, IsConstantExtractIndex))
70       return true;
71 
72   CmpInst::Predicate UnusedPred;
73   if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
74     if (cheapToScalarize(V0, IsConstantExtractIndex) ||
75         cheapToScalarize(V1, IsConstantExtractIndex))
76       return true;
77 
78   return false;
79 }
80 
81 // If we have a PHI node with a vector type that is only used to feed
82 // itself and be an operand of extractelement at a constant location,
83 // try to replace the PHI of the vector type with a PHI of a scalar type.
84 Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
85   SmallVector<Instruction *, 2> Extracts;
86   // The users we want the PHI to have are:
87   // 1) The EI ExtractElement (we already know this)
88   // 2) Possibly more ExtractElements with the same index.
89   // 3) Another operand, which will feed back into the PHI.
90   Instruction *PHIUser = nullptr;
91   for (auto U : PN->users()) {
92     if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
93       if (EI.getIndexOperand() == EU->getIndexOperand())
94         Extracts.push_back(EU);
95       else
96         return nullptr;
97     } else if (!PHIUser) {
98       PHIUser = cast<Instruction>(U);
99     } else {
100       return nullptr;
101     }
102   }
103 
104   if (!PHIUser)
105     return nullptr;
106 
107   // Verify that this PHI user has one use, which is the PHI itself,
108   // and that it is a binary operation which is cheap to scalarize.
109   // otherwise return nullptr.
110   if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
111       !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
112     return nullptr;
113 
114   // Create a scalar PHI node that will replace the vector PHI node
115   // just before the current PHI node.
116   PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
117       PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
118   // Scalarize each PHI operand.
119   for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
120     Value *PHIInVal = PN->getIncomingValue(i);
121     BasicBlock *inBB = PN->getIncomingBlock(i);
122     Value *Elt = EI.getIndexOperand();
123     // If the operand is the PHI induction variable:
124     if (PHIInVal == PHIUser) {
125       // Scalarize the binary operation. Its first operand is the
126       // scalar PHI, and the second operand is extracted from the other
127       // vector operand.
128       BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
129       unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
130       Value *Op = InsertNewInstWith(
131           ExtractElementInst::Create(B0->getOperand(opId), Elt,
132                                      B0->getOperand(opId)->getName() + ".Elt"),
133           *B0);
134       Value *newPHIUser = InsertNewInstWith(
135           BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
136                                                 scalarPHI, Op, B0), *B0);
137       scalarPHI->addIncoming(newPHIUser, inBB);
138     } else {
139       // Scalarize PHI input:
140       Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
141       // Insert the new instruction into the predecessor basic block.
142       Instruction *pos = dyn_cast<Instruction>(PHIInVal);
143       BasicBlock::iterator InsertPos;
144       if (pos && !isa<PHINode>(pos)) {
145         InsertPos = ++pos->getIterator();
146       } else {
147         InsertPos = inBB->getFirstInsertionPt();
148       }
149 
150       InsertNewInstWith(newEI, *InsertPos);
151 
152       scalarPHI->addIncoming(newEI, inBB);
153     }
154   }
155 
156   for (auto E : Extracts)
157     replaceInstUsesWith(*E, scalarPHI);
158 
159   return &EI;
160 }
161 
162 static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
163                                       InstCombiner::BuilderTy &Builder,
164                                       bool IsBigEndian) {
165   Value *X;
166   uint64_t ExtIndexC;
167   if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
168       !X->getType()->isVectorTy() ||
169       !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
170     return nullptr;
171 
172   // If this extractelement is using a bitcast from a vector of the same number
173   // of elements, see if we can find the source element from the source vector:
174   // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
175   Type *SrcTy = X->getType();
176   Type *DestTy = Ext.getType();
177   unsigned NumSrcElts = SrcTy->getVectorNumElements();
178   unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
179   if (NumSrcElts == NumElts)
180     if (Value *Elt = findScalarElement(X, ExtIndexC))
181       return new BitCastInst(Elt, DestTy);
182 
183   // If the source elements are wider than the destination, try to shift and
184   // truncate a subset of scalar bits of an insert op.
185   if (NumSrcElts < NumElts) {
186     Value *Scalar;
187     uint64_t InsIndexC;
188     if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
189                                   m_ConstantInt(InsIndexC))))
190       return nullptr;
191 
192     // The extract must be from the subset of vector elements that we inserted
193     // into. Example: if we inserted element 1 of a <2 x i64> and we are
194     // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
195     // of elements 4-7 of the bitcasted vector.
196     unsigned NarrowingRatio = NumElts / NumSrcElts;
197     if (ExtIndexC / NarrowingRatio != InsIndexC)
198       return nullptr;
199 
200     // We are extracting part of the original scalar. How that scalar is
201     // inserted into the vector depends on the endian-ness. Example:
202     //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
203     //                                       +--+--+--+--+--+--+--+--+
204     // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
205     // extelt <4 x i16> V', 3:               |                 |S2|S3|
206     //                                       +--+--+--+--+--+--+--+--+
207     // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
208     // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
209     // In this example, we must right-shift little-endian. Big-endian is just a
210     // truncate.
211     unsigned Chunk = ExtIndexC % NarrowingRatio;
212     if (IsBigEndian)
213       Chunk = NarrowingRatio - 1 - Chunk;
214 
215     // Bail out if this is an FP vector to FP vector sequence. That would take
216     // more instructions than we started with unless there is no shift, and it
217     // may not be handled as well in the backend.
218     bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
219     bool NeedDestBitcast = DestTy->isFloatingPointTy();
220     if (NeedSrcBitcast && NeedDestBitcast)
221       return nullptr;
222 
223     unsigned SrcWidth = SrcTy->getScalarSizeInBits();
224     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
225     unsigned ShAmt = Chunk * DestWidth;
226 
227     // TODO: This limitation is more strict than necessary. We could sum the
228     // number of new instructions and subtract the number eliminated to know if
229     // we can proceed.
230     if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
231       if (NeedSrcBitcast || NeedDestBitcast)
232         return nullptr;
233 
234     if (NeedSrcBitcast) {
235       Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
236       Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
237     }
238 
239     if (ShAmt) {
240       // Bail out if we could end with more instructions than we started with.
241       if (!Ext.getVectorOperand()->hasOneUse())
242         return nullptr;
243       Scalar = Builder.CreateLShr(Scalar, ShAmt);
244     }
245 
246     if (NeedDestBitcast) {
247       Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
248       return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
249     }
250     return new TruncInst(Scalar, DestTy);
251   }
252 
253   return nullptr;
254 }
255 
256 /// Find elements of V demanded by UserInstr.
257 static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
258   unsigned VWidth = V->getType()->getVectorNumElements();
259 
260   // Conservatively assume that all elements are needed.
261   APInt UsedElts(APInt::getAllOnesValue(VWidth));
262 
263   switch (UserInstr->getOpcode()) {
264   case Instruction::ExtractElement: {
265     ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
266     assert(EEI->getVectorOperand() == V);
267     ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
268     if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
269       UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
270     }
271     break;
272   }
273   case Instruction::ShuffleVector: {
274     ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
275     unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();
276 
277     UsedElts = APInt(VWidth, 0);
278     for (unsigned i = 0; i < MaskNumElts; i++) {
279       unsigned MaskVal = Shuffle->getMaskValue(i);
280       if (MaskVal == -1u || MaskVal >= 2 * VWidth)
281         continue;
282       if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
283         UsedElts.setBit(MaskVal);
284       if (Shuffle->getOperand(1) == V &&
285           ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
286         UsedElts.setBit(MaskVal - VWidth);
287     }
288     break;
289   }
290   default:
291     break;
292   }
293   return UsedElts;
294 }
295 
296 /// Find union of elements of V demanded by all its users.
297 /// If it is known by querying findDemandedEltsBySingleUser that
298 /// no user demands an element of V, then the corresponding bit
299 /// remains unset in the returned value.
300 static APInt findDemandedEltsByAllUsers(Value *V) {
301   unsigned VWidth = V->getType()->getVectorNumElements();
302 
303   APInt UnionUsedElts(VWidth, 0);
304   for (const Use &U : V->uses()) {
305     if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
306       UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
307     } else {
308       UnionUsedElts = APInt::getAllOnesValue(VWidth);
309       break;
310     }
311 
312     if (UnionUsedElts.isAllOnesValue())
313       break;
314   }
315 
316   return UnionUsedElts;
317 }
318 
319 Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
320   Value *SrcVec = EI.getVectorOperand();
321   Value *Index = EI.getIndexOperand();
322   if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
323                                             SQ.getWithInstruction(&EI)))
324     return replaceInstUsesWith(EI, V);
325 
326   // If extracting a specified index from the vector, see if we can recursively
327   // find a previously computed scalar that was inserted into the vector.
328   auto *IndexC = dyn_cast<ConstantInt>(Index);
329   if (IndexC) {
330     unsigned NumElts = EI.getVectorOperandType()->getNumElements();
331 
332     // InstSimplify should handle cases where the index is invalid.
333     if (!IndexC->getValue().ule(NumElts))
334       return nullptr;
335 
336     // This instruction only demands the single element from the input vector.
337     if (NumElts != 1) {
338       // If the input vector has a single use, simplify it based on this use
339       // property.
340       if (SrcVec->hasOneUse()) {
341         APInt UndefElts(NumElts, 0);
342         APInt DemandedElts(NumElts, 0);
343         DemandedElts.setBit(IndexC->getZExtValue());
344         if (Value *V =
345                 SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
346           EI.setOperand(0, V);
347           return &EI;
348         }
349       } else {
350         // If the input vector has multiple uses, simplify it based on a union
351         // of all elements used.
352         APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
353         if (!DemandedElts.isAllOnesValue()) {
354           APInt UndefElts(NumElts, 0);
355           if (Value *V = SimplifyDemandedVectorElts(
356                   SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
357                   true /* AllowMultipleUsers */)) {
358             if (V != SrcVec) {
359               SrcVec->replaceAllUsesWith(V);
360               return &EI;
361             }
362           }
363         }
364       }
365     }
366     if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
367       return I;
368 
369     // If there's a vector PHI feeding a scalar use through this extractelement
370     // instruction, try to scalarize the PHI.
371     if (auto *Phi = dyn_cast<PHINode>(SrcVec))
372       if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
373         return ScalarPHI;
374   }
375 
376   BinaryOperator *BO;
377   if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
378     // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
379     Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
380     Value *E0 = Builder.CreateExtractElement(X, Index);
381     Value *E1 = Builder.CreateExtractElement(Y, Index);
382     return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
383   }
384 
385   Value *X, *Y;
386   CmpInst::Predicate Pred;
387   if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
388       cheapToScalarize(SrcVec, IndexC)) {
389     // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
390     Value *E0 = Builder.CreateExtractElement(X, Index);
391     Value *E1 = Builder.CreateExtractElement(Y, Index);
392     return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
393   }
394 
395   if (auto *I = dyn_cast<Instruction>(SrcVec)) {
396     if (auto *IE = dyn_cast<InsertElementInst>(I)) {
397       // Extracting the inserted element?
398       if (IE->getOperand(2) == Index)
399         return replaceInstUsesWith(EI, IE->getOperand(1));
400       // If the inserted and extracted elements are constants, they must not
401       // be the same value, extract from the pre-inserted value instead.
402       if (isa<Constant>(IE->getOperand(2)) && IndexC) {
403         Worklist.AddValue(SrcVec);
404         EI.setOperand(0, IE->getOperand(0));
405         return &EI;
406       }
407     } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
408       // If this is extracting an element from a shufflevector, figure out where
409       // it came from and extract from the appropriate input element instead.
410       if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
411         int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
412         Value *Src;
413         unsigned LHSWidth =
414           SVI->getOperand(0)->getType()->getVectorNumElements();
415 
416         if (SrcIdx < 0)
417           return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
418         if (SrcIdx < (int)LHSWidth)
419           Src = SVI->getOperand(0);
420         else {
421           SrcIdx -= LHSWidth;
422           Src = SVI->getOperand(1);
423         }
424         Type *Int32Ty = Type::getInt32Ty(EI.getContext());
425         return ExtractElementInst::Create(Src,
426                                           ConstantInt::get(Int32Ty,
427                                                            SrcIdx, false));
428       }
429     } else if (auto *CI = dyn_cast<CastInst>(I)) {
430       // Canonicalize extractelement(cast) -> cast(extractelement).
431       // Bitcasts can change the number of vector elements, and they cost
432       // nothing.
433       if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
434         Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
435         Worklist.AddValue(EE);
436         return CastInst::Create(CI->getOpcode(), EE, EI.getType());
437       }
438     }
439   }
440   return nullptr;
441 }
442 
443 /// If V is a shuffle of values that ONLY returns elements from either LHS or
444 /// RHS, return the shuffle mask and true. Otherwise, return false.
445 static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
446                                          SmallVectorImpl<Constant*> &Mask) {
447   assert(LHS->getType() == RHS->getType() &&
448          "Invalid CollectSingleShuffleElements");
449   unsigned NumElts = V->getType()->getVectorNumElements();
450 
451   if (isa<UndefValue>(V)) {
452     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
453     return true;
454   }
455 
456   if (V == LHS) {
457     for (unsigned i = 0; i != NumElts; ++i)
458       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
459     return true;
460   }
461 
462   if (V == RHS) {
463     for (unsigned i = 0; i != NumElts; ++i)
464       Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
465                                       i+NumElts));
466     return true;
467   }
468 
469   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
470     // If this is an insert of an extract from some other vector, include it.
471     Value *VecOp    = IEI->getOperand(0);
472     Value *ScalarOp = IEI->getOperand(1);
473     Value *IdxOp    = IEI->getOperand(2);
474 
475     if (!isa<ConstantInt>(IdxOp))
476       return false;
477     unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
478 
479     if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
480       // We can handle this if the vector we are inserting into is
481       // transitively ok.
482       if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
483         // If so, update the mask to reflect the inserted undef.
484         Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
485         return true;
486       }
487     } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
488       if (isa<ConstantInt>(EI->getOperand(1))) {
489         unsigned ExtractedIdx =
490         cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
491         unsigned NumLHSElts = LHS->getType()->getVectorNumElements();
492 
493         // This must be extracting from either LHS or RHS.
494         if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
495           // We can handle this if the vector we are inserting into is
496           // transitively ok.
497           if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
498             // If so, update the mask to reflect the inserted value.
499             if (EI->getOperand(0) == LHS) {
500               Mask[InsertedIdx % NumElts] =
501               ConstantInt::get(Type::getInt32Ty(V->getContext()),
502                                ExtractedIdx);
503             } else {
504               assert(EI->getOperand(0) == RHS);
505               Mask[InsertedIdx % NumElts] =
506               ConstantInt::get(Type::getInt32Ty(V->getContext()),
507                                ExtractedIdx + NumLHSElts);
508             }
509             return true;
510           }
511         }
512       }
513     }
514   }
515 
516   return false;
517 }
518 
519 /// If we have insertion into a vector that is wider than the vector that we
520 /// are extracting from, try to widen the source vector to allow a single
521 /// shufflevector to replace one or more insert/extract pairs.
522 static void replaceExtractElements(InsertElementInst *InsElt,
523                                    ExtractElementInst *ExtElt,
524                                    InstCombiner &IC) {
525   VectorType *InsVecType = InsElt->getType();
526   VectorType *ExtVecType = ExtElt->getVectorOperandType();
527   unsigned NumInsElts = InsVecType->getVectorNumElements();
528   unsigned NumExtElts = ExtVecType->getVectorNumElements();
529 
530   // The inserted-to vector must be wider than the extracted-from vector.
531   if (InsVecType->getElementType() != ExtVecType->getElementType() ||
532       NumExtElts >= NumInsElts)
533     return;
534 
535   // Create a shuffle mask to widen the extended-from vector using undefined
536   // values. The mask selects all of the values of the original vector followed
537   // by as many undefined values as needed to create a vector of the same length
538   // as the inserted-to vector.
539   SmallVector<Constant *, 16> ExtendMask;
540   IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
541   for (unsigned i = 0; i < NumExtElts; ++i)
542     ExtendMask.push_back(ConstantInt::get(IntType, i));
543   for (unsigned i = NumExtElts; i < NumInsElts; ++i)
544     ExtendMask.push_back(UndefValue::get(IntType));
545 
546   Value *ExtVecOp = ExtElt->getVectorOperand();
547   auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
548   BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
549                                    ? ExtVecOpInst->getParent()
550                                    : ExtElt->getParent();
551 
552   // TODO: This restriction matches the basic block check below when creating
553   // new extractelement instructions. If that limitation is removed, this one
554   // could also be removed. But for now, we just bail out to ensure that we
555   // will replace the extractelement instruction that is feeding our
556   // insertelement instruction. This allows the insertelement to then be
557   // replaced by a shufflevector. If the insertelement is not replaced, we can
558   // induce infinite looping because there's an optimization for extractelement
559   // that will delete our widening shuffle. This would trigger another attempt
560   // here to create that shuffle, and we spin forever.
561   if (InsertionBlock != InsElt->getParent())
562     return;
563 
564   // TODO: This restriction matches the check in visitInsertElementInst() and
565   // prevents an infinite loop caused by not turning the extract/insert pair
566   // into a shuffle. We really should not need either check, but we're lacking
567   // folds for shufflevectors because we're afraid to generate shuffle masks
568   // that the backend can't handle.
569   if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
570     return;
571 
572   auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
573                                         ConstantVector::get(ExtendMask));
574 
575   // Insert the new shuffle after the vector operand of the extract is defined
576   // (as long as it's not a PHI) or at the start of the basic block of the
577   // extract, so any subsequent extracts in the same basic block can use it.
578   // TODO: Insert before the earliest ExtractElementInst that is replaced.
579   if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
580     WideVec->insertAfter(ExtVecOpInst);
581   else
582     IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());
583 
584   // Replace extracts from the original narrow vector with extracts from the new
585   // wide vector.
586   for (User *U : ExtVecOp->users()) {
587     ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
588     if (!OldExt || OldExt->getParent() != WideVec->getParent())
589       continue;
590     auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
591     NewExt->insertAfter(OldExt);
592     IC.replaceInstUsesWith(*OldExt, NewExt);
593   }
594 }
595 
596 /// We are building a shuffle to create V, which is a sequence of insertelement,
597 /// extractelement pairs. If PermittedRHS is set, then we must either use it or
598 /// not rely on the second vector source. Return a std::pair containing the
599 /// left and right vectors of the proposed shuffle (or 0), and set the Mask
600 /// parameter as required.
601 ///
602 /// Note: we intentionally don't try to fold earlier shuffles since they have
603 /// often been chosen carefully to be efficiently implementable on the target.
604 using ShuffleOps = std::pair<Value *, Value *>;
605 
606 static ShuffleOps collectShuffleElements(Value *V,
607                                          SmallVectorImpl<Constant *> &Mask,
608                                          Value *PermittedRHS,
609                                          InstCombiner &IC) {
610   assert(V->getType()->isVectorTy() && "Invalid shuffle!");
611   unsigned NumElts = V->getType()->getVectorNumElements();
612 
613   if (isa<UndefValue>(V)) {
614     Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
615     return std::make_pair(
616         PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
617   }
618 
619   if (isa<ConstantAggregateZero>(V)) {
620     Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
621     return std::make_pair(V, nullptr);
622   }
623 
624   if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
625     // If this is an insert of an extract from some other vector, include it.
626     Value *VecOp    = IEI->getOperand(0);
627     Value *ScalarOp = IEI->getOperand(1);
628     Value *IdxOp    = IEI->getOperand(2);
629 
630     if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
631       if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
632         unsigned ExtractedIdx =
633           cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
634         unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
635 
636         // Either the extracted from or inserted into vector must be RHSVec,
637         // otherwise we'd end up with a shuffle of three inputs.
638         if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
639           Value *RHS = EI->getOperand(0);
640           ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
641           assert(LR.second == nullptr || LR.second == RHS);
642 
643           if (LR.first->getType() != RHS->getType()) {
644             // Although we are giving up for now, see if we can create extracts
645             // that match the inserts for another round of combining.
646             replaceExtractElements(IEI, EI, IC);
647 
648             // We tried our best, but we can't find anything compatible with RHS
649             // further up the chain. Return a trivial shuffle.
650             for (unsigned i = 0; i < NumElts; ++i)
651               Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
652             return std::make_pair(V, nullptr);
653           }
654 
655           unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
656           Mask[InsertedIdx % NumElts] =
657             ConstantInt::get(Type::getInt32Ty(V->getContext()),
658                              NumLHSElts+ExtractedIdx);
659           return std::make_pair(LR.first, RHS);
660         }
661 
662         if (VecOp == PermittedRHS) {
663           // We've gone as far as we can: anything on the other side of the
664           // extractelement will already have been converted into a shuffle.
665           unsigned NumLHSElts =
666               EI->getOperand(0)->getType()->getVectorNumElements();
667           for (unsigned i = 0; i != NumElts; ++i)
668             Mask.push_back(ConstantInt::get(
669                 Type::getInt32Ty(V->getContext()),
670                 i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
671           return std::make_pair(EI->getOperand(0), PermittedRHS);
672         }
673 
674         // If this insertelement is a chain that comes from exactly these two
675         // vectors, return the vector and the effective shuffle.
676         if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
677             collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
678                                          Mask))
679           return std::make_pair(EI->getOperand(0), PermittedRHS);
680       }
681     }
682   }
683 
684   // Otherwise, we can't do anything fancy. Return an identity vector.
685   for (unsigned i = 0; i != NumElts; ++i)
686     Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
687   return std::make_pair(V, nullptr);
688 }
689 
690 /// Try to find redundant insertvalue instructions, like the following ones:
691 ///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
692 ///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
693 /// Here the second instruction inserts values at the same indices, as the
694 /// first one, making the first one redundant.
695 /// It should be transformed to:
696 ///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
697 Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
698   bool IsRedundant = false;
699   ArrayRef<unsigned int> FirstIndices = I.getIndices();
700 
701   // If there is a chain of insertvalue instructions (each of them except the
702   // last one has only one use and it's another insertvalue insn from this
703   // chain), check if any of the 'children' uses the same indices as the first
704   // instruction. In this case, the first one is redundant.
705   Value *V = &I;
706   unsigned Depth = 0;
707   while (V->hasOneUse() && Depth < 10) {
708     User *U = V->user_back();
709     auto UserInsInst = dyn_cast<InsertValueInst>(U);
710     if (!UserInsInst || U->getOperand(0) != V)
711       break;
712     if (UserInsInst->getIndices() == FirstIndices) {
713       IsRedundant = true;
714       break;
715     }
716     V = UserInsInst;
717     Depth++;
718   }
719 
720   if (IsRedundant)
721     return replaceInstUsesWith(I, I.getOperand(0));
722   return nullptr;
723 }
724 
725 static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
726   int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
727   int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();
728 
729   // A vector select does not change the size of the operands.
730   if (MaskSize != VecSize)
731     return false;
732 
733   // Each mask element must be undefined or choose a vector element from one of
734   // the source operands without crossing vector lanes.
735   for (int i = 0; i != MaskSize; ++i) {
736     int Elt = Shuf.getMaskValue(i);
737     if (Elt != -1 && Elt != i && Elt != i + VecSize)
738       return false;
739   }
740 
741   return true;
742 }
743 
744 /// Turn a chain of inserts that splats a value into an insert + shuffle:
745 /// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
746 /// shufflevector(insertelt(X, %k, 0), undef, zero)
747 static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
748   // We are interested in the last insert in a chain. So if this insert has a
749   // single user and that user is an insert, bail.
750   if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
751     return nullptr;
752 
753   auto *VecTy = cast<VectorType>(InsElt.getType());
754   unsigned NumElements = VecTy->getNumElements();
755 
756   // Do not try to do this for a one-element vector, since that's a nop,
757   // and will cause an inf-loop.
758   if (NumElements == 1)
759     return nullptr;
760 
761   Value *SplatVal = InsElt.getOperand(1);
762   InsertElementInst *CurrIE = &InsElt;
763   SmallVector<bool, 16> ElementPresent(NumElements, false);
764   InsertElementInst *FirstIE = nullptr;
765 
766   // Walk the chain backwards, keeping track of which indices we inserted into,
767   // until we hit something that isn't an insert of the splatted value.
768   while (CurrIE) {
769     auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
770     if (!Idx || CurrIE->getOperand(1) != SplatVal)
771       return nullptr;
772 
773     auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
774     // Check none of the intermediate steps have any additional uses, except
775     // for the root insertelement instruction, which can be re-used, if it
776     // inserts at position 0.
777     if (CurrIE != &InsElt &&
778         (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
779       return nullptr;
780 
781     ElementPresent[Idx->getZExtValue()] = true;
782     FirstIE = CurrIE;
783     CurrIE = NextIE;
784   }
785 
786   // If this is just a single insertelement (not a sequence), we are done.
787   if (FirstIE == &InsElt)
788     return nullptr;
789 
790   // If we are not inserting into an undef vector, make sure we've seen an
791   // insert into every element.
792   // TODO: If the base vector is not undef, it might be better to create a splat
793   //       and then a select-shuffle (blend) with the base vector.
794   if (!isa<UndefValue>(FirstIE->getOperand(0)))
795     if (any_of(ElementPresent, [](bool Present) { return !Present; }))
796       return nullptr;
797 
798   // Create the insert + shuffle.
799   Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
800   UndefValue *UndefVec = UndefValue::get(VecTy);
801   Constant *Zero = ConstantInt::get(Int32Ty, 0);
802   if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
803     FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);
804 
805   // Splat from element 0, but replace absent elements with undef in the mask.
806   SmallVector<Constant *, 16> Mask(NumElements, Zero);
807   for (unsigned i = 0; i != NumElements; ++i)
808     if (!ElementPresent[i])
809       Mask[i] = UndefValue::get(Int32Ty);
810 
811   return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
812 }
813 
814 /// Try to fold an insert element into an existing splat shuffle by changing
815 /// the shuffle's mask to include the index of this insert element.
816 static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
817   // Check if the vector operand of this insert is a canonical splat shuffle.
818   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
819   if (!Shuf || !Shuf->isZeroEltSplat())
820     return nullptr;
821 
822   // Check for a constant insertion index.
823   uint64_t IdxC;
824   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
825     return nullptr;
826 
827   // Check if the splat shuffle's input is the same as this insert's scalar op.
828   Value *X = InsElt.getOperand(1);
829   Value *Op0 = Shuf->getOperand(0);
830   if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
831     return nullptr;
832 
833   // Replace the shuffle mask element at the index of this insert with a zero.
834   // For example:
835   // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
836   //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
837   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
838   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
839   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
840   Constant *Zero = ConstantInt::getNullValue(I32Ty);
841   for (unsigned i = 0; i != NumMaskElts; ++i)
842     NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);
843 
844   Constant *NewMask = ConstantVector::get(NewMaskVec);
845   return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
846 }
847 
848 /// Try to fold an extract+insert element into an existing identity shuffle by
849 /// changing the shuffle's mask to include the index of this insert element.
850 static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
851   // Check if the vector operand of this insert is an identity shuffle.
852   auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
853   if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
854       !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
855     return nullptr;
856 
857   // Check for a constant insertion index.
858   uint64_t IdxC;
859   if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
860     return nullptr;
861 
862   // Check if this insert's scalar op is extracted from the identity shuffle's
863   // input vector.
864   Value *Scalar = InsElt.getOperand(1);
865   Value *X = Shuf->getOperand(0);
866   if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
867     return nullptr;
868 
869   // Replace the shuffle mask element at the index of this extract+insert with
870   // that same index value.
871   // For example:
872   // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
873   unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
874   SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
875   Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
876   Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
877   Constant *OldMask = Shuf->getMask();
878   for (unsigned i = 0; i != NumMaskElts; ++i) {
879     if (i != IdxC) {
880       // All mask elements besides the inserted element remain the same.
881       NewMaskVec[i] = OldMask->getAggregateElement(i);
882     } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
883       // If the mask element was already set, there's nothing to do
884       // (demanded elements analysis may unset it later).
885       return nullptr;
886     } else {
887       assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
888              "Unexpected shuffle mask element for identity shuffle");
889       NewMaskVec[i] = NewMaskEltC;
890     }
891   }
892 
893   Constant *NewMask = ConstantVector::get(NewMaskVec);
894   return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
895 }
896 
897 /// If we have an insertelement instruction feeding into another insertelement
898 /// and the 2nd is inserting a constant into the vector, canonicalize that
899 /// constant insertion before the insertion of a variable:
900 ///
901 /// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
902 /// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
903 ///
904 /// This has the potential of eliminating the 2nd insertelement instruction
905 /// via constant folding of the scalar constant into a vector constant.
906 static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
907                                      InstCombiner::BuilderTy &Builder) {
908   auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
909   if (!InsElt1 || !InsElt1->hasOneUse())
910     return nullptr;
911 
912   Value *X, *Y;
913   Constant *ScalarC;
914   ConstantInt *IdxC1, *IdxC2;
915   if (match(InsElt1->getOperand(0), m_Value(X)) &&
916       match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
917       match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
918       match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
919       match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
920     Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
921     return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
922   }
923 
924   return nullptr;
925 }
926 
927 /// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
928 /// --> shufflevector X, CVec', Mask'
929 static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
930   auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
931   // Bail out if the parent has more than one use. In that case, we'd be
932   // replacing the insertelt with a shuffle, and that's not a clear win.
933   if (!Inst || !Inst->hasOneUse())
934     return nullptr;
935   if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
936     // The shuffle must have a constant vector operand. The insertelt must have
937     // a constant scalar being inserted at a constant position in the vector.
938     Constant *ShufConstVec, *InsEltScalar;
939     uint64_t InsEltIndex;
940     if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
941         !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
942         !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
943       return nullptr;
944 
945     // Adding an element to an arbitrary shuffle could be expensive, but a
946     // shuffle that selects elements from vectors without crossing lanes is
947     // assumed cheap.
948     // If we're just adding a constant into that shuffle, it will still be
949     // cheap.
950     if (!isShuffleEquivalentToSelect(*Shuf))
951       return nullptr;
952 
953     // From the above 'select' check, we know that the mask has the same number
954     // of elements as the vector input operands. We also know that each constant
955     // input element is used in its lane and can not be used more than once by
956     // the shuffle. Therefore, replace the constant in the shuffle's constant
957     // vector with the insertelt constant. Replace the constant in the shuffle's
958     // mask vector with the insertelt index plus the length of the vector
959     // (because the constant vector operand of a shuffle is always the 2nd
960     // operand).
961     Constant *Mask = Shuf->getMask();
962     unsigned NumElts = Mask->getType()->getVectorNumElements();
963     SmallVector<Constant *, 16> NewShufElts(NumElts);
964     SmallVector<Constant *, 16> NewMaskElts(NumElts);
965     for (unsigned I = 0; I != NumElts; ++I) {
966       if (I == InsEltIndex) {
967         NewShufElts[I] = InsEltScalar;
968         Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
969         NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
970       } else {
971         // Copy over the existing values.
972         NewShufElts[I] = ShufConstVec->getAggregateElement(I);
973         NewMaskElts[I] = Mask->getAggregateElement(I);
974       }
975     }
976 
977     // Create new operands for a shuffle that includes the constant of the
978     // original insertelt. The old shuffle will be dead now.
979     return new ShuffleVectorInst(Shuf->getOperand(0),
980                                  ConstantVector::get(NewShufElts),
981                                  ConstantVector::get(NewMaskElts));
982   } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
983     // Transform sequences of insertelements ops with constant data/indexes into
984     // a single shuffle op.
985     unsigned NumElts = InsElt.getType()->getNumElements();
986 
987     uint64_t InsertIdx[2];
988     Constant *Val[2];
989     if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
990         !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
991         !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
992         !match(IEI->getOperand(1), m_Constant(Val[1])))
993       return nullptr;
994     SmallVector<Constant *, 16> Values(NumElts);
995     SmallVector<Constant *, 16> Mask(NumElts);
996     auto ValI = std::begin(Val);
997     // Generate new constant vector and mask.
998     // We have 2 values/masks from the insertelements instructions. Insert them
999     // into new value/mask vectors.
1000     for (uint64_t I : InsertIdx) {
1001       if (!Values[I]) {
1002         assert(!Mask[I]);
1003         Values[I] = *ValI;
1004         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
1005                                    NumElts + I);
1006       }
1007       ++ValI;
1008     }
1009     // Remaining values are filled with 'undef' values.
1010     for (unsigned I = 0; I < NumElts; ++I) {
1011       if (!Values[I]) {
1012         assert(!Mask[I]);
1013         Values[I] = UndefValue::get(InsElt.getType()->getElementType());
1014         Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
1015       }
1016     }
1017     // Create new operands for a shuffle that includes the constant of the
1018     // original insertelt.
1019     return new ShuffleVectorInst(IEI->getOperand(0),
1020                                  ConstantVector::get(Values),
1021                                  ConstantVector::get(Mask));
1022   }
1023   return nullptr;
1024 }
1025 
1026 Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
1027   Value *VecOp    = IE.getOperand(0);
1028   Value *ScalarOp = IE.getOperand(1);
1029   Value *IdxOp    = IE.getOperand(2);
1030 
1031   if (auto *V = SimplifyInsertElementInst(
1032           VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
1033     return replaceInstUsesWith(IE, V);
1034 
1035   // If the vector and scalar are both bitcast from the same element type, do
1036   // the insert in that source type followed by bitcast.
1037   Value *VecSrc, *ScalarSrc;
1038   if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
1039       match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
1040       (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
1041       VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
1042       VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
1043     // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
1044     //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
1045     Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
1046     return new BitCastInst(NewInsElt, IE.getType());
1047   }
1048 
1049   // If the inserted element was extracted from some other vector and both
1050   // indexes are valid constants, try to turn this into a shuffle.
1051   uint64_t InsertedIdx, ExtractedIdx;
1052   Value *ExtVecOp;
1053   if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
1054       match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
1055                                        m_ConstantInt(ExtractedIdx))) &&
1056       ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
1057     // TODO: Looking at the user(s) to determine if this insert is a
1058     // fold-to-shuffle opportunity does not match the usual instcombine
1059     // constraints. We should decide if the transform is worthy based only
1060     // on this instruction and its operands, but that may not work currently.
1061     //
1062     // Here, we are trying to avoid creating shuffles before reaching
1063     // the end of a chain of extract-insert pairs. This is complicated because
1064     // we do not generally form arbitrary shuffle masks in instcombine
1065     // (because those may codegen poorly), but collectShuffleElements() does
1066     // exactly that.
1067     //
1068     // The rules for determining what is an acceptable target-independent
1069     // shuffle mask are fuzzy because they evolve based on the backend's
1070     // capabilities and real-world impact.
1071     auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
1072       if (!Insert.hasOneUse())
1073         return true;
1074       auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
1075       if (!InsertUser)
1076         return true;
1077       return false;
1078     };
1079 
1080     // Try to form a shuffle from a chain of extract-insert ops.
1081     if (isShuffleRootCandidate(IE)) {
1082       SmallVector<Constant*, 16> Mask;
1083       ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);
1084 
1085       // The proposed shuffle may be trivial, in which case we shouldn't
1086       // perform the combine.
1087       if (LR.first != &IE && LR.second != &IE) {
1088         // We now have a shuffle of LHS, RHS, Mask.
1089         if (LR.second == nullptr)
1090           LR.second = UndefValue::get(LR.first->getType());
1091         return new ShuffleVectorInst(LR.first, LR.second,
1092                                      ConstantVector::get(Mask));
1093       }
1094     }
1095   }
1096 
1097   unsigned VWidth = VecOp->getType()->getVectorNumElements();
1098   APInt UndefElts(VWidth, 0);
1099   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1100   if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
1101     if (V != &IE)
1102       return replaceInstUsesWith(IE, V);
1103     return &IE;
1104   }
1105 
1106   if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
1107     return Shuf;
1108 
1109   if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
1110     return NewInsElt;
1111 
1112   if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
1113     return Broadcast;
1114 
1115   if (Instruction *Splat = foldInsEltIntoSplat(IE))
1116     return Splat;
1117 
1118   if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
1119     return IdentityShuf;
1120 
1121   return nullptr;
1122 }
1123 
1124 /// Return true if we can evaluate the specified expression tree if the vector
1125 /// elements were shuffled in a different order.
1126 static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
1127                                 unsigned Depth = 5) {
1128   // We can always reorder the elements of a constant.
1129   if (isa<Constant>(V))
1130     return true;
1131 
1132   // We won't reorder vector arguments. No IPO here.
1133   Instruction *I = dyn_cast<Instruction>(V);
1134   if (!I) return false;
1135 
1136   // Two users may expect different orders of the elements. Don't try it.
1137   if (!I->hasOneUse())
1138     return false;
1139 
1140   if (Depth == 0) return false;
1141 
1142   switch (I->getOpcode()) {
1143     case Instruction::UDiv:
1144     case Instruction::SDiv:
1145     case Instruction::URem:
1146     case Instruction::SRem:
1147       // Propagating an undefined shuffle mask element to integer div/rem is not
1148       // allowed because those opcodes can create immediate undefined behavior
1149       // from an undefined element in an operand.
1150       if (llvm::any_of(Mask, [](int M){ return M == -1; }))
1151         return false;
1152       LLVM_FALLTHROUGH;
1153     case Instruction::Add:
1154     case Instruction::FAdd:
1155     case Instruction::Sub:
1156     case Instruction::FSub:
1157     case Instruction::Mul:
1158     case Instruction::FMul:
1159     case Instruction::FDiv:
1160     case Instruction::FRem:
1161     case Instruction::Shl:
1162     case Instruction::LShr:
1163     case Instruction::AShr:
1164     case Instruction::And:
1165     case Instruction::Or:
1166     case Instruction::Xor:
1167     case Instruction::ICmp:
1168     case Instruction::FCmp:
1169     case Instruction::Trunc:
1170     case Instruction::ZExt:
1171     case Instruction::SExt:
1172     case Instruction::FPToUI:
1173     case Instruction::FPToSI:
1174     case Instruction::UIToFP:
1175     case Instruction::SIToFP:
1176     case Instruction::FPTrunc:
1177     case Instruction::FPExt:
1178     case Instruction::GetElementPtr: {
1179       // Bail out if we would create longer vector ops. We could allow creating
1180       // longer vector ops, but that may result in more expensive codegen.
1181       Type *ITy = I->getType();
1182       if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
1183         return false;
1184       for (Value *Operand : I->operands()) {
1185         if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
1186           return false;
1187       }
1188       return true;
1189     }
1190     case Instruction::InsertElement: {
1191       ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
1192       if (!CI) return false;
1193       int ElementNumber = CI->getLimitedValue();
1194 
1195       // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
1196       // can't put an element into multiple indices.
1197       bool SeenOnce = false;
1198       for (int i = 0, e = Mask.size(); i != e; ++i) {
1199         if (Mask[i] == ElementNumber) {
1200           if (SeenOnce)
1201             return false;
1202           SeenOnce = true;
1203         }
1204       }
1205       return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
1206     }
1207   }
1208   return false;
1209 }
1210 
1211 /// Rebuild a new instruction just like 'I' but with the new operands given.
1212 /// In the event of type mismatch, the type of the operands is correct.
1213 static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
1214   // We don't want to use the IRBuilder here because we want the replacement
1215   // instructions to appear next to 'I', not the builder's insertion point.
1216   switch (I->getOpcode()) {
1217     case Instruction::Add:
1218     case Instruction::FAdd:
1219     case Instruction::Sub:
1220     case Instruction::FSub:
1221     case Instruction::Mul:
1222     case Instruction::FMul:
1223     case Instruction::UDiv:
1224     case Instruction::SDiv:
1225     case Instruction::FDiv:
1226     case Instruction::URem:
1227     case Instruction::SRem:
1228     case Instruction::FRem:
1229     case Instruction::Shl:
1230     case Instruction::LShr:
1231     case Instruction::AShr:
1232     case Instruction::And:
1233     case Instruction::Or:
1234     case Instruction::Xor: {
1235       BinaryOperator *BO = cast<BinaryOperator>(I);
1236       assert(NewOps.size() == 2 && "binary operator with #ops != 2");
1237       BinaryOperator *New =
1238           BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
1239                                  NewOps[0], NewOps[1], "", BO);
1240       if (isa<OverflowingBinaryOperator>(BO)) {
1241         New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
1242         New->setHasNoSignedWrap(BO->hasNoSignedWrap());
1243       }
1244       if (isa<PossiblyExactOperator>(BO)) {
1245         New->setIsExact(BO->isExact());
1246       }
1247       if (isa<FPMathOperator>(BO))
1248         New->copyFastMathFlags(I);
1249       return New;
1250     }
1251     case Instruction::ICmp:
1252       assert(NewOps.size() == 2 && "icmp with #ops != 2");
1253       return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
1254                           NewOps[0], NewOps[1]);
1255     case Instruction::FCmp:
1256       assert(NewOps.size() == 2 && "fcmp with #ops != 2");
1257       return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
1258                           NewOps[0], NewOps[1]);
1259     case Instruction::Trunc:
1260     case Instruction::ZExt:
1261     case Instruction::SExt:
1262     case Instruction::FPToUI:
1263     case Instruction::FPToSI:
1264     case Instruction::UIToFP:
1265     case Instruction::SIToFP:
1266     case Instruction::FPTrunc:
1267     case Instruction::FPExt: {
1268       // It's possible that the mask has a different number of elements from
1269       // the original cast. We recompute the destination type to match the mask.
1270       Type *DestTy =
1271           VectorType::get(I->getType()->getScalarType(),
1272                           NewOps[0]->getType()->getVectorNumElements());
1273       assert(NewOps.size() == 1 && "cast with #ops != 1");
1274       return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
1275                               "", I);
1276     }
1277     case Instruction::GetElementPtr: {
1278       Value *Ptr = NewOps[0];
1279       ArrayRef<Value*> Idx = NewOps.slice(1);
1280       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1281           cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
1282       GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
1283       return GEP;
1284     }
1285   }
1286   llvm_unreachable("failed to rebuild vector instructions");
1287 }
1288 
1289 static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
1290   // Mask.size() does not need to be equal to the number of vector elements.
1291 
1292   assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
1293   Type *EltTy = V->getType()->getScalarType();
1294   Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
1295   if (isa<UndefValue>(V))
1296     return UndefValue::get(VectorType::get(EltTy, Mask.size()));
1297 
1298   if (isa<ConstantAggregateZero>(V))
1299     return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));
1300 
1301   if (Constant *C = dyn_cast<Constant>(V)) {
1302     SmallVector<Constant *, 16> MaskValues;
1303     for (int i = 0, e = Mask.size(); i != e; ++i) {
1304       if (Mask[i] == -1)
1305         MaskValues.push_back(UndefValue::get(I32Ty));
1306       else
1307         MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
1308     }
1309     return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
1310                                           ConstantVector::get(MaskValues));
1311   }
1312 
1313   Instruction *I = cast<Instruction>(V);
1314   switch (I->getOpcode()) {
1315     case Instruction::Add:
1316     case Instruction::FAdd:
1317     case Instruction::Sub:
1318     case Instruction::FSub:
1319     case Instruction::Mul:
1320     case Instruction::FMul:
1321     case Instruction::UDiv:
1322     case Instruction::SDiv:
1323     case Instruction::FDiv:
1324     case Instruction::URem:
1325     case Instruction::SRem:
1326     case Instruction::FRem:
1327     case Instruction::Shl:
1328     case Instruction::LShr:
1329     case Instruction::AShr:
1330     case Instruction::And:
1331     case Instruction::Or:
1332     case Instruction::Xor:
1333     case Instruction::ICmp:
1334     case Instruction::FCmp:
1335     case Instruction::Trunc:
1336     case Instruction::ZExt:
1337     case Instruction::SExt:
1338     case Instruction::FPToUI:
1339     case Instruction::FPToSI:
1340     case Instruction::UIToFP:
1341     case Instruction::SIToFP:
1342     case Instruction::FPTrunc:
1343     case Instruction::FPExt:
1344     case Instruction::Select:
1345     case Instruction::GetElementPtr: {
1346       SmallVector<Value*, 8> NewOps;
1347       bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
1348       for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
1349         Value *V;
1350         // Recursively call evaluateInDifferentElementOrder on vector arguments
1351         // as well. E.g. GetElementPtr may have scalar operands even if the
1352         // return value is a vector, so we need to examine the operand type.
1353         if (I->getOperand(i)->getType()->isVectorTy())
1354           V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
1355         else
1356           V = I->getOperand(i);
1357         NewOps.push_back(V);
1358         NeedsRebuild |= (V != I->getOperand(i));
1359       }
1360       if (NeedsRebuild) {
1361         return buildNew(I, NewOps);
1362       }
1363       return I;
1364     }
1365     case Instruction::InsertElement: {
1366       int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();
1367 
1368       // The insertelement was inserting at Element. Figure out which element
1369       // that becomes after shuffling. The answer is guaranteed to be unique
1370       // by CanEvaluateShuffled.
1371       bool Found = false;
1372       int Index = 0;
1373       for (int e = Mask.size(); Index != e; ++Index) {
1374         if (Mask[Index] == Element) {
1375           Found = true;
1376           break;
1377         }
1378       }
1379 
1380       // If element is not in Mask, no need to handle the operand 1 (element to
1381       // be inserted). Just evaluate values in operand 0 according to Mask.
1382       if (!Found)
1383         return evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1384 
1385       Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
1386       return InsertElementInst::Create(V, I->getOperand(1),
1387                                        ConstantInt::get(I32Ty, Index), "", I);
1388     }
1389   }
1390   llvm_unreachable("failed to reorder elements of vector instruction!");
1391 }
1392 
1393 static void recognizeIdentityMask(const SmallVectorImpl<int> &Mask,
1394                                   bool &isLHSID, bool &isRHSID) {
1395   isLHSID = isRHSID = true;
1396 
1397   for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
1398     if (Mask[i] < 0) continue;  // Ignore undef values.
1399     // Is this an identity shuffle of the LHS value?
1400     isLHSID &= (Mask[i] == (int)i);
1401 
1402     // Is this an identity shuffle of the RHS value?
1403     isRHSID &= (Mask[i]-e == i);
1404   }
1405 }
1406 
1407 // Returns true if the shuffle is extracting a contiguous range of values from
1408 // LHS, for example:
1409 //                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1410 //   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
1411 //   Shuffles to:  |EE|FF|GG|HH|
1412 //                 +--+--+--+--+
1413 static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
1414                                        SmallVector<int, 16> &Mask) {
1415   unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
1416   unsigned MaskElems = Mask.size();
1417   unsigned BegIdx = Mask.front();
1418   unsigned EndIdx = Mask.back();
1419   if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
1420     return false;
1421   for (unsigned I = 0; I != MaskElems; ++I)
1422     if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
1423       return false;
1424   return true;
1425 }
1426 
1427 /// These are the ingredients in an alternate form binary operator as described
1428 /// below.
1429 struct BinopElts {
1430   BinaryOperator::BinaryOps Opcode;
1431   Value *Op0;
1432   Value *Op1;
1433   BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
1434             Value *V0 = nullptr, Value *V1 = nullptr) :
1435       Opcode(Opc), Op0(V0), Op1(V1) {}
1436   operator bool() const { return Opcode != 0; }
1437 };
1438 
1439 /// Binops may be transformed into binops with different opcodes and operands.
1440 /// Reverse the usual canonicalization to enable folds with the non-canonical
1441 /// form of the binop. If a transform is possible, return the elements of the
1442 /// new binop. If not, return invalid elements.
1443 static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
1444   Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
1445   Type *Ty = BO->getType();
1446   switch (BO->getOpcode()) {
1447     case Instruction::Shl: {
1448       // shl X, C --> mul X, (1 << C)
1449       Constant *C;
1450       if (match(BO1, m_Constant(C))) {
1451         Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
1452         return { Instruction::Mul, BO0, ShlOne };
1453       }
1454       break;
1455     }
1456     case Instruction::Or: {
1457       // or X, C --> add X, C (when X and C have no common bits set)
1458       const APInt *C;
1459       if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
1460         return { Instruction::Add, BO0, BO1 };
1461       break;
1462     }
1463     default:
1464       break;
1465   }
1466   return {};
1467 }
1468 
1469 static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
1470   assert(Shuf.isSelect() && "Must have select-equivalent shuffle");
1471 
1472   // Are we shuffling together some value and that same value after it has been
1473   // modified by a binop with a constant?
1474   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1475   Constant *C;
1476   bool Op0IsBinop;
1477   if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
1478     Op0IsBinop = true;
1479   else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
1480     Op0IsBinop = false;
1481   else
1482     return nullptr;
1483 
1484   // The identity constant for a binop leaves a variable operand unchanged. For
1485   // a vector, this is a splat of something like 0, -1, or 1.
1486   // If there's no identity constant for this binop, we're done.
1487   auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
1488   BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
1489   Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
1490   if (!IdC)
1491     return nullptr;
1492 
1493   // Shuffle identity constants into the lanes that return the original value.
1494   // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
1495   // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
1496   // The existing binop constant vector remains in the same operand position.
1497   Constant *Mask = Shuf.getMask();
1498   Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
1499                                 ConstantExpr::getShuffleVector(IdC, C, Mask);
1500 
1501   bool MightCreatePoisonOrUB =
1502       Mask->containsUndefElement() &&
1503       (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
1504   if (MightCreatePoisonOrUB)
1505     NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);
1506 
1507   // shuf (bop X, C), X, M --> bop X, C'
1508   // shuf X, (bop X, C), M --> bop X, C'
1509   Value *X = Op0IsBinop ? Op1 : Op0;
1510   Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
1511   NewBO->copyIRFlags(BO);
1512 
1513   // An undef shuffle mask element may propagate as an undef constant element in
1514   // the new binop. That would produce poison where the original code might not.
1515   // If we already made a safe constant, then there's no danger.
1516   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1517     NewBO->dropPoisonGeneratingFlags();
1518   return NewBO;
1519 }
1520 
1521 /// If we have an insert of a scalar to a non-zero element of an undefined
1522 /// vector and then shuffle that value, that's the same as inserting to the zero
1523 /// element and shuffling. Splatting from the zero element is recognized as the
1524 /// canonical form of splat.
1525 static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
1526                                             InstCombiner::BuilderTy &Builder) {
1527   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1528   Constant *Mask = Shuf.getMask();
1529   Value *X;
1530   uint64_t IndexC;
1531 
1532   // Match a shuffle that is a splat to a non-zero element.
1533   if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
1534                                            m_ConstantInt(IndexC)))) ||
1535       !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
1536     return nullptr;
1537 
1538   // Insert into element 0 of an undef vector.
1539   UndefValue *UndefVec = UndefValue::get(Shuf.getType());
1540   Constant *Zero = Builder.getInt32(0);
1541   Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);
1542 
1543   // Splat from element 0. Any mask element that is undefined remains undefined.
1544   // For example:
1545   // shuf (inselt undef, X, 2), undef, <2,2,undef>
1546   //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
1547   unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
1548   SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
1549   for (unsigned i = 0; i != NumMaskElts; ++i)
1550     if (isa<UndefValue>(Mask->getAggregateElement(i)))
1551       NewMask[i] = Mask->getAggregateElement(i);
1552 
1553   return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
1554 }
1555 
1556 /// Try to fold shuffles that are the equivalent of a vector select.
1557 static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
1558                                       InstCombiner::BuilderTy &Builder,
1559                                       const DataLayout &DL) {
1560   if (!Shuf.isSelect())
1561     return nullptr;
1562 
1563   // Canonicalize to choose from operand 0 first.
1564   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1565   if (Shuf.getMaskValue(0) >= (int)NumElts) {
1566     // TODO: Can we assert that both operands of a shuffle-select are not undef
1567     // (otherwise, it would have been folded by instsimplify?
1568     Shuf.commute();
1569     return &Shuf;
1570   }
1571 
1572   if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
1573     return I;
1574 
1575   BinaryOperator *B0, *B1;
1576   if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
1577       !match(Shuf.getOperand(1), m_BinOp(B1)))
1578     return nullptr;
1579 
1580   Value *X, *Y;
1581   Constant *C0, *C1;
1582   bool ConstantsAreOp1;
1583   if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
1584       match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
1585     ConstantsAreOp1 = true;
1586   else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
1587            match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
1588     ConstantsAreOp1 = false;
1589   else
1590     return nullptr;
1591 
1592   // We need matching binops to fold the lanes together.
1593   BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
1594   BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
1595   bool DropNSW = false;
1596   if (ConstantsAreOp1 && Opc0 != Opc1) {
1597     // TODO: We drop "nsw" if shift is converted into multiply because it may
1598     // not be correct when the shift amount is BitWidth - 1. We could examine
1599     // each vector element to determine if it is safe to keep that flag.
1600     if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
1601       DropNSW = true;
1602     if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
1603       assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
1604       Opc0 = AltB0.Opcode;
1605       C0 = cast<Constant>(AltB0.Op1);
1606     } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
1607       assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
1608       Opc1 = AltB1.Opcode;
1609       C1 = cast<Constant>(AltB1.Op1);
1610     }
1611   }
1612 
1613   if (Opc0 != Opc1)
1614     return nullptr;
1615 
1616   // The opcodes must be the same. Use a new name to make that clear.
1617   BinaryOperator::BinaryOps BOpc = Opc0;
1618 
1619   // Select the constant elements needed for the single binop.
1620   Constant *Mask = Shuf.getMask();
1621   Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);
1622 
1623   // We are moving a binop after a shuffle. When a shuffle has an undefined
1624   // mask element, the result is undefined, but it is not poison or undefined
1625   // behavior. That is not necessarily true for div/rem/shift.
1626   bool MightCreatePoisonOrUB =
1627       Mask->containsUndefElement() &&
1628       (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
1629   if (MightCreatePoisonOrUB)
1630     NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);
1631 
1632   Value *V;
1633   if (X == Y) {
1634     // Remove a binop and the shuffle by rearranging the constant:
1635     // shuffle (op V, C0), (op V, C1), M --> op V, C'
1636     // shuffle (op C0, V), (op C1, V), M --> op C', V
1637     V = X;
1638   } else {
1639     // If there are 2 different variable operands, we must create a new shuffle
1640     // (select) first, so check uses to ensure that we don't end up with more
1641     // instructions than we started with.
1642     if (!B0->hasOneUse() && !B1->hasOneUse())
1643       return nullptr;
1644 
1645     // If we use the original shuffle mask and op1 is *variable*, we would be
1646     // putting an undef into operand 1 of div/rem/shift. This is either UB or
1647     // poison. We do not have to guard against UB when *constants* are op1
1648     // because safe constants guarantee that we do not overflow sdiv/srem (and
1649     // there's no danger for other opcodes).
1650     // TODO: To allow this case, create a new shuffle mask with no undefs.
1651     if (MightCreatePoisonOrUB && !ConstantsAreOp1)
1652       return nullptr;
1653 
1654     // Note: In general, we do not create new shuffles in InstCombine because we
1655     // do not know if a target can lower an arbitrary shuffle optimally. In this
1656     // case, the shuffle uses the existing mask, so there is no additional risk.
1657 
1658     // Select the variable vectors first, then perform the binop:
1659     // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
1660     // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
1661     V = Builder.CreateShuffleVector(X, Y, Mask);
1662   }
1663 
1664   Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
1665                                          BinaryOperator::Create(BOpc, NewC, V);
1666 
1667   // Flags are intersected from the 2 source binops. But there are 2 exceptions:
1668   // 1. If we changed an opcode, poison conditions might have changed.
1669   // 2. If the shuffle had undef mask elements, the new binop might have undefs
1670   //    where the original code did not. But if we already made a safe constant,
1671   //    then there's no danger.
1672   NewBO->copyIRFlags(B0);
1673   NewBO->andIRFlags(B1);
1674   if (DropNSW)
1675     NewBO->setHasNoSignedWrap(false);
1676   if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
1677     NewBO->dropPoisonGeneratingFlags();
1678   return NewBO;
1679 }
1680 
1681 /// Match a shuffle-select-shuffle pattern where the shuffles are widening and
1682 /// narrowing (concatenating with undef and extracting back to the original
1683 /// length). This allows replacing the wide select with a narrow select.
1684 static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
1685                                        InstCombiner::BuilderTy &Builder) {
1686   // This must be a narrowing identity shuffle. It extracts the 1st N elements
1687   // of the 1st vector operand of a shuffle.
1688   if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
1689     return nullptr;
1690 
1691   // The vector being shuffled must be a vector select that we can eliminate.
1692   // TODO: The one-use requirement could be eased if X and/or Y are constants.
1693   Value *Cond, *X, *Y;
1694   if (!match(Shuf.getOperand(0),
1695              m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
1696     return nullptr;
1697 
1698   // We need a narrow condition value. It must be extended with undef elements
1699   // and have the same number of elements as this shuffle.
1700   unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
1701   Value *NarrowCond;
1702   if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
1703                                             m_Constant()))) ||
1704       NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
1705       !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
1706     return nullptr;
1707 
1708   // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
1709   // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
1710   Value *Undef = UndefValue::get(X->getType());
1711   Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
1712   Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
1713   return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
1714 }
1715 
1716 /// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
1717 static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
1718   Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
1719   if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
1720     return nullptr;
1721 
1722   Value *X, *Y;
1723   Constant *Mask;
1724   if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
1725     return nullptr;
1726 
1727   // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
1728   // then combining may result in worse codegen.
1729   if (!Op0->hasOneUse())
1730     return nullptr;
1731 
1732   // We are extracting a subvector from a shuffle. Remove excess elements from
1733   // the 1st shuffle mask to eliminate the extract.
1734   //
1735   // This transform is conservatively limited to identity extracts because we do
1736   // not allow arbitrary shuffle mask creation as a target-independent transform
1737   // (because we can't guarantee that will lower efficiently).
1738   //
1739   // If the extracting shuffle has an undef mask element, it transfers to the
1740   // new shuffle mask. Otherwise, copy the original mask element. Example:
1741   //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
1742   //   shuf X, Y, <C0, undef, C2, undef>
1743   unsigned NumElts = Shuf.getType()->getVectorNumElements();
1744   SmallVector<Constant *, 16> NewMask(NumElts);
1745   assert(NumElts < Mask->getType()->getVectorNumElements() &&
1746          "Identity with extract must have less elements than its inputs");
1747 
1748   for (unsigned i = 0; i != NumElts; ++i) {
1749     Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
1750     Constant *MaskElt = Mask->getAggregateElement(i);
1751     NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
1752   }
1753   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1754 }
1755 
1756 /// Try to replace a shuffle with an insertelement.
1757 static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
1758   Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
1759   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1760 
1761   // The shuffle must not change vector sizes.
1762   // TODO: This restriction could be removed if the insert has only one use
1763   //       (because the transform would require a new length-changing shuffle).
1764   int NumElts = Mask.size();
1765   if (NumElts != (int)(V0->getType()->getVectorNumElements()))
1766     return nullptr;
1767 
1768   // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
1769   auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
1770     // We need an insertelement with a constant index.
1771     if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
1772                                    m_ConstantInt(IndexC))))
1773       return false;
1774 
1775     // Test the shuffle mask to see if it splices the inserted scalar into the
1776     // operand 1 vector of the shuffle.
1777     int NewInsIndex = -1;
1778     for (int i = 0; i != NumElts; ++i) {
1779       // Ignore undef mask elements.
1780       if (Mask[i] == -1)
1781         continue;
1782 
1783       // The shuffle takes elements of operand 1 without lane changes.
1784       if (Mask[i] == NumElts + i)
1785         continue;
1786 
1787       // The shuffle must choose the inserted scalar exactly once.
1788       if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
1789         return false;
1790 
1791       // The shuffle is placing the inserted scalar into element i.
1792       NewInsIndex = i;
1793     }
1794 
1795     assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");
1796 
1797     // Index is updated to the potentially translated insertion lane.
1798     IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
1799     return true;
1800   };
1801 
1802   // If the shuffle is unnecessary, insert the scalar operand directly into
1803   // operand 1 of the shuffle. Example:
1804   // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
1805   Value *Scalar;
1806   ConstantInt *IndexC;
1807   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1808     return InsertElementInst::Create(V1, Scalar, IndexC);
1809 
1810   // Try again after commuting shuffle. Example:
1811   // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
1812   // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
1813   std::swap(V0, V1);
1814   ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
1815   if (isShufflingScalarIntoOp1(Scalar, IndexC))
1816     return InsertElementInst::Create(V1, Scalar, IndexC);
1817 
1818   return nullptr;
1819 }
1820 
1821 static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
1822   // Match the operands as identity with padding (also known as concatenation
1823   // with undef) shuffles of the same source type. The backend is expected to
1824   // recreate these concatenations from a shuffle of narrow operands.
1825   auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
1826   auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
1827   if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
1828       !Shuffle1 || !Shuffle1->isIdentityWithPadding())
1829     return nullptr;
1830 
1831   // We limit this transform to power-of-2 types because we expect that the
1832   // backend can convert the simplified IR patterns to identical nodes as the
1833   // original IR.
1834   // TODO: If we can verify the same behavior for arbitrary types, the
1835   //       power-of-2 checks can be removed.
1836   Value *X = Shuffle0->getOperand(0);
1837   Value *Y = Shuffle1->getOperand(0);
1838   if (X->getType() != Y->getType() ||
1839       !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
1840       !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
1841       !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
1842       isa<UndefValue>(X) || isa<UndefValue>(Y))
1843     return nullptr;
1844   assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
1845          isa<UndefValue>(Shuffle1->getOperand(1)) &&
1846          "Unexpected operand for identity shuffle");
1847 
1848   // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
1849   // operands directly by adjusting the shuffle mask to account for the narrower
1850   // types:
1851   // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
1852   int NarrowElts = X->getType()->getVectorNumElements();
1853   int WideElts = Shuffle0->getType()->getVectorNumElements();
1854   assert(WideElts > NarrowElts && "Unexpected types for identity with padding");
1855 
1856   Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
1857   SmallVector<int, 16> Mask = Shuf.getShuffleMask();
1858   SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
1859   for (int i = 0, e = Mask.size(); i != e; ++i) {
1860     if (Mask[i] == -1)
1861       continue;
1862 
1863     // If this shuffle is choosing an undef element from 1 of the sources, that
1864     // element is undef.
1865     if (Mask[i] < WideElts) {
1866       if (Shuffle0->getMaskValue(Mask[i]) == -1)
1867         continue;
1868     } else {
1869       if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
1870         continue;
1871     }
1872 
1873     // If this shuffle is choosing from the 1st narrow op, the mask element is
1874     // the same. If this shuffle is choosing from the 2nd narrow op, the mask
1875     // element is offset down to adjust for the narrow vector widths.
1876     if (Mask[i] < WideElts) {
1877       assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
1878       NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
1879     } else {
1880       assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
1881       NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
1882     }
1883   }
1884   return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
1885 }
1886 
1887 Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
1888   Value *LHS = SVI.getOperand(0);
1889   Value *RHS = SVI.getOperand(1);
1890   if (auto *V = SimplifyShuffleVectorInst(
1891           LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
1892     return replaceInstUsesWith(SVI, V);
1893 
1894   // Canonicalize shuffle(x    ,x,mask) -> shuffle(x, undef,mask')
1895   // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
1896   unsigned VWidth = SVI.getType()->getVectorNumElements();
1897   unsigned LHSWidth = LHS->getType()->getVectorNumElements();
1898   SmallVector<int, 16> Mask = SVI.getShuffleMask();
1899   Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
1900   if (LHS == RHS || isa<UndefValue>(LHS)) {
1901     // Remap any references to RHS to use LHS.
1902     SmallVector<Constant*, 16> Elts;
1903     for (unsigned i = 0, e = LHSWidth; i != VWidth; ++i) {
1904       if (Mask[i] < 0) {
1905         Elts.push_back(UndefValue::get(Int32Ty));
1906         continue;
1907       }
1908 
1909       if ((Mask[i] >= (int)e && isa<UndefValue>(RHS)) ||
1910           (Mask[i] <  (int)e && isa<UndefValue>(LHS))) {
1911         Mask[i] = -1;     // Turn into undef.
1912         Elts.push_back(UndefValue::get(Int32Ty));
1913       } else {
1914         Mask[i] = Mask[i] % e;  // Force to LHS.
1915         Elts.push_back(ConstantInt::get(Int32Ty, Mask[i]));
1916       }
1917     }
1918     SVI.setOperand(0, SVI.getOperand(1));
1919     SVI.setOperand(1, UndefValue::get(RHS->getType()));
1920     SVI.setOperand(2, ConstantVector::get(Elts));
1921     return &SVI;
1922   }
1923 
1924   if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
1925     return I;
1926 
1927   if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
1928     return I;
1929 
1930   if (Instruction *I = narrowVectorSelect(SVI, Builder))
1931     return I;
1932 
1933   APInt UndefElts(VWidth, 0);
1934   APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1935   if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
1936     if (V != &SVI)
1937       return replaceInstUsesWith(SVI, V);
1938     return &SVI;
1939   }
1940 
1941   if (Instruction *I = foldIdentityExtractShuffle(SVI))
1942     return I;
1943 
1944   // These transforms have the potential to lose undef knowledge, so they are
1945   // intentionally placed after SimplifyDemandedVectorElts().
1946   if (Instruction *I = foldShuffleWithInsert(SVI))
1947     return I;
1948   if (Instruction *I = foldIdentityPaddedShuffles(SVI))
1949     return I;
1950 
1951   if (VWidth == LHSWidth) {
1952     // Analyze the shuffle, are the LHS or RHS and identity shuffles?
1953     bool isLHSID, isRHSID;
1954     recognizeIdentityMask(Mask, isLHSID, isRHSID);
1955 
1956     // Eliminate identity shuffles.
1957     if (isLHSID) return replaceInstUsesWith(SVI, LHS);
1958     if (isRHSID) return replaceInstUsesWith(SVI, RHS);
1959   }
1960 
1961   if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
1962     Value *V = evaluateInDifferentElementOrder(LHS, Mask);
1963     return replaceInstUsesWith(SVI, V);
1964   }
1965 
1966   // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
1967   // a non-vector type. We can instead bitcast the original vector followed by
1968   // an extract of the desired element:
1969   //
1970   //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
1971   //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
1972   //   %1 = bitcast <4 x i8> %sroa to i32
1973   // Becomes:
1974   //   %bc = bitcast <16 x i8> %in to <4 x i32>
1975   //   %ext = extractelement <4 x i32> %bc, i32 0
1976   //
1977   // If the shuffle is extracting a contiguous range of values from the input
1978   // vector then each use which is a bitcast of the extracted size can be
1979   // replaced. This will work if the vector types are compatible, and the begin
1980   // index is aligned to a value in the casted vector type. If the begin index
1981   // isn't aligned then we can shuffle the original vector (keeping the same
1982   // vector type) before extracting.
1983   //
1984   // This code will bail out if the target type is fundamentally incompatible
1985   // with vectors of the source type.
1986   //
1987   // Example of <16 x i8>, target type i32:
1988   // Index range [4,8):         v-----------v Will work.
1989   //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
1990   //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
1991   //     <4 x i32>: |           |           |           |           |
1992   //                +-----------+-----------+-----------+-----------+
1993   // Index range [6,10):              ^-----------^ Needs an extra shuffle.
1994   // Target type i40:           ^--------------^ Won't work, bail.
1995   bool MadeChange = false;
1996   if (isShuffleExtractingFromLHS(SVI, Mask)) {
1997     Value *V = LHS;
1998     unsigned MaskElems = Mask.size();
1999     VectorType *SrcTy = cast<VectorType>(V->getType());
2000     unsigned VecBitWidth = SrcTy->getBitWidth();
2001     unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
2002     assert(SrcElemBitWidth && "vector elements must have a bitwidth");
2003     unsigned SrcNumElems = SrcTy->getNumElements();
2004     SmallVector<BitCastInst *, 8> BCs;
2005     DenseMap<Type *, Value *> NewBCs;
2006     for (User *U : SVI.users())
2007       if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
2008         if (!BC->use_empty())
2009           // Only visit bitcasts that weren't previously handled.
2010           BCs.push_back(BC);
2011     for (BitCastInst *BC : BCs) {
2012       unsigned BegIdx = Mask.front();
2013       Type *TgtTy = BC->getDestTy();
2014       unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
2015       if (!TgtElemBitWidth)
2016         continue;
2017       unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
2018       bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
2019       bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
2020       if (!VecBitWidthsEqual)
2021         continue;
2022       if (!VectorType::isValidElementType(TgtTy))
2023         continue;
2024       VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
2025       if (!BegIsAligned) {
2026         // Shuffle the input so [0,NumElements) contains the output, and
2027         // [NumElems,SrcNumElems) is undef.
2028         SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
2029                                                 UndefValue::get(Int32Ty));
2030         for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
2031           ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
2032         V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
2033                                         ConstantVector::get(ShuffleMask),
2034                                         SVI.getName() + ".extract");
2035         BegIdx = 0;
2036       }
2037       unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
2038       assert(SrcElemsPerTgtElem);
2039       BegIdx /= SrcElemsPerTgtElem;
2040       bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
2041       auto *NewBC =
2042           BCAlreadyExists
2043               ? NewBCs[CastSrcTy]
2044               : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
2045       if (!BCAlreadyExists)
2046         NewBCs[CastSrcTy] = NewBC;
2047       auto *Ext = Builder.CreateExtractElement(
2048           NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
2049       // The shufflevector isn't being replaced: the bitcast that used it
2050       // is. InstCombine will visit the newly-created instructions.
2051       replaceInstUsesWith(*BC, Ext);
2052       MadeChange = true;
2053     }
2054   }
2055 
2056   // If the LHS is a shufflevector itself, see if we can combine it with this
2057   // one without producing an unusual shuffle.
2058   // Cases that might be simplified:
2059   // 1.
2060   // x1=shuffle(v1,v2,mask1)
2061   //  x=shuffle(x1,undef,mask)
2062   //        ==>
2063   //  x=shuffle(v1,undef,newMask)
2064   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
2065   // 2.
2066   // x1=shuffle(v1,undef,mask1)
2067   //  x=shuffle(x1,x2,mask)
2068   // where v1.size() == mask1.size()
2069   //        ==>
2070   //  x=shuffle(v1,x2,newMask)
2071   // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
2072   // 3.
2073   // x2=shuffle(v2,undef,mask2)
2074   //  x=shuffle(x1,x2,mask)
2075   // where v2.size() == mask2.size()
2076   //        ==>
2077   //  x=shuffle(x1,v2,newMask)
2078   // newMask[i] = (mask[i] < x1.size())
2079   //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
2080   // 4.
2081   // x1=shuffle(v1,undef,mask1)
2082   // x2=shuffle(v2,undef,mask2)
2083   //  x=shuffle(x1,x2,mask)
2084   // where v1.size() == v2.size()
2085   //        ==>
2086   //  x=shuffle(v1,v2,newMask)
2087   // newMask[i] = (mask[i] < x1.size())
2088   //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
2089   //
2090   // Here we are really conservative:
2091   // we are absolutely afraid of producing a shuffle mask not in the input
2092   // program, because the code gen may not be smart enough to turn a merged
2093   // shuffle into two specific shuffles: it may produce worse code.  As such,
2094   // we only merge two shuffles if the result is either a splat or one of the
2095   // input shuffle masks.  In this case, merging the shuffles just removes
2096   // one instruction, which we know is safe.  This is good for things like
2097   // turning: (splat(splat)) -> splat, or
2098   // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
2099   ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
2100   ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
2101   if (LHSShuffle)
2102     if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
2103       LHSShuffle = nullptr;
2104   if (RHSShuffle)
2105     if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
2106       RHSShuffle = nullptr;
2107   if (!LHSShuffle && !RHSShuffle)
2108     return MadeChange ? &SVI : nullptr;
2109 
2110   Value* LHSOp0 = nullptr;
2111   Value* LHSOp1 = nullptr;
2112   Value* RHSOp0 = nullptr;
2113   unsigned LHSOp0Width = 0;
2114   unsigned RHSOp0Width = 0;
2115   if (LHSShuffle) {
2116     LHSOp0 = LHSShuffle->getOperand(0);
2117     LHSOp1 = LHSShuffle->getOperand(1);
2118     LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
2119   }
2120   if (RHSShuffle) {
2121     RHSOp0 = RHSShuffle->getOperand(0);
2122     RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
2123   }
2124   Value* newLHS = LHS;
2125   Value* newRHS = RHS;
2126   if (LHSShuffle) {
2127     // case 1
2128     if (isa<UndefValue>(RHS)) {
2129       newLHS = LHSOp0;
2130       newRHS = LHSOp1;
2131     }
2132     // case 2 or 4
2133     else if (LHSOp0Width == LHSWidth) {
2134       newLHS = LHSOp0;
2135     }
2136   }
2137   // case 3 or 4
2138   if (RHSShuffle && RHSOp0Width == LHSWidth) {
2139     newRHS = RHSOp0;
2140   }
2141   // case 4
2142   if (LHSOp0 == RHSOp0) {
2143     newLHS = LHSOp0;
2144     newRHS = nullptr;
2145   }
2146 
2147   if (newLHS == LHS && newRHS == RHS)
2148     return MadeChange ? &SVI : nullptr;
2149 
2150   SmallVector<int, 16> LHSMask;
2151   SmallVector<int, 16> RHSMask;
2152   if (newLHS != LHS)
2153     LHSMask = LHSShuffle->getShuffleMask();
2154   if (RHSShuffle && newRHS != RHS)
2155     RHSMask = RHSShuffle->getShuffleMask();
2156 
2157   unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
2158   SmallVector<int, 16> newMask;
2159   bool isSplat = true;
2160   int SplatElt = -1;
2161   // Create a new mask for the new ShuffleVectorInst so that the new
2162   // ShuffleVectorInst is equivalent to the original one.
2163   for (unsigned i = 0; i < VWidth; ++i) {
2164     int eltMask;
2165     if (Mask[i] < 0) {
2166       // This element is an undef value.
2167       eltMask = -1;
2168     } else if (Mask[i] < (int)LHSWidth) {
2169       // This element is from left hand side vector operand.
2170       //
2171       // If LHS is going to be replaced (case 1, 2, or 4), calculate the
2172       // new mask value for the element.
2173       if (newLHS != LHS) {
2174         eltMask = LHSMask[Mask[i]];
2175         // If the value selected is an undef value, explicitly specify it
2176         // with a -1 mask value.
2177         if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
2178           eltMask = -1;
2179       } else
2180         eltMask = Mask[i];
2181     } else {
2182       // This element is from right hand side vector operand
2183       //
2184       // If the value selected is an undef value, explicitly specify it
2185       // with a -1 mask value. (case 1)
2186       if (isa<UndefValue>(RHS))
2187         eltMask = -1;
2188       // If RHS is going to be replaced (case 3 or 4), calculate the
2189       // new mask value for the element.
2190       else if (newRHS != RHS) {
2191         eltMask = RHSMask[Mask[i]-LHSWidth];
2192         // If the value selected is an undef value, explicitly specify it
2193         // with a -1 mask value.
2194         if (eltMask >= (int)RHSOp0Width) {
2195           assert(isa<UndefValue>(RHSShuffle->getOperand(1))
2196                  && "should have been check above");
2197           eltMask = -1;
2198         }
2199       } else
2200         eltMask = Mask[i]-LHSWidth;
2201 
2202       // If LHS's width is changed, shift the mask value accordingly.
2203       // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
2204       // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
2205       // If newRHS == newLHS, we want to remap any references from newRHS to
2206       // newLHS so that we can properly identify splats that may occur due to
2207       // obfuscation across the two vectors.
2208       if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
2209         eltMask += newLHSWidth;
2210     }
2211 
2212     // Check if this could still be a splat.
2213     if (eltMask >= 0) {
2214       if (SplatElt >= 0 && SplatElt != eltMask)
2215         isSplat = false;
2216       SplatElt = eltMask;
2217     }
2218 
2219     newMask.push_back(eltMask);
2220   }
2221 
2222   // If the result mask is equal to one of the original shuffle masks,
2223   // or is a splat, do the replacement.
2224   if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
2225     SmallVector<Constant*, 16> Elts;
2226     for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
2227       if (newMask[i] < 0) {
2228         Elts.push_back(UndefValue::get(Int32Ty));
2229       } else {
2230         Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
2231       }
2232     }
2233     if (!newRHS)
2234       newRHS = UndefValue::get(newLHS->getType());
2235     return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
2236   }
2237 
2238   // If the result mask is an identity, replace uses of this instruction with
2239   // corresponding argument.
2240   bool isLHSID, isRHSID;
2241   recognizeIdentityMask(newMask, isLHSID, isRHSID);
2242   if (isLHSID && VWidth == LHSOp0Width) return replaceInstUsesWith(SVI, newLHS);
2243   if (isRHSID && VWidth == RHSOp0Width) return replaceInstUsesWith(SVI, newRHS);
2244 
2245   return MadeChange ? &SVI : nullptr;
2246 }
2247