10b57cec5SDimitry Andric //===- InstCombinePHI.cpp -------------------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements the visitPHINode function. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "InstCombineInternal.h" 140b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 150b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h" 16e8d8bef9SDimitry Andric #include "llvm/ADT/Statistic.h" 170b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 180b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 190b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 20480093f4SDimitry Andric #include "llvm/Support/CommandLine.h" 21e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 22480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 23bdd1243dSDimitry Andric #include <optional> 24e8d8bef9SDimitry Andric 250b57cec5SDimitry Andric using namespace llvm; 260b57cec5SDimitry Andric using namespace llvm::PatternMatch; 270b57cec5SDimitry Andric 280b57cec5SDimitry Andric #define DEBUG_TYPE "instcombine" 290b57cec5SDimitry Andric 300b57cec5SDimitry Andric static cl::opt<unsigned> 310b57cec5SDimitry Andric MaxNumPhis("instcombine-max-num-phis", cl::init(512), 320b57cec5SDimitry Andric cl::desc("Maximum number phis to handle in intptr/ptrint folding")); 330b57cec5SDimitry Andric 34e8d8bef9SDimitry Andric STATISTIC(NumPHIsOfInsertValues, 35e8d8bef9SDimitry Andric "Number of phi-of-insertvalue turned into insertvalue-of-phis"); 36e8d8bef9SDimitry Andric STATISTIC(NumPHIsOfExtractValues, 37e8d8bef9SDimitry Andric "Number of phi-of-extractvalue turned into extractvalue-of-phi"); 38e8d8bef9SDimitry Andric STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); 39e8d8bef9SDimitry Andric 400b57cec5SDimitry Andric /// The PHI arguments will be folded into a single operation with a PHI node 410b57cec5SDimitry Andric /// as input. The debug location of the single operation will be the merged 420b57cec5SDimitry Andric /// locations of the original PHI node arguments. 43e8d8bef9SDimitry Andric void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { 440b57cec5SDimitry Andric auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 450b57cec5SDimitry Andric Inst->setDebugLoc(FirstInst->getDebugLoc()); 460b57cec5SDimitry Andric // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc 470b57cec5SDimitry Andric // will be inefficient. 480b57cec5SDimitry Andric assert(!isa<CallInst>(Inst)); 490b57cec5SDimitry Andric 501fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 511fd87a68SDimitry Andric auto *I = cast<Instruction>(V); 520b57cec5SDimitry Andric Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); 530b57cec5SDimitry Andric } 540b57cec5SDimitry Andric } 550b57cec5SDimitry Andric 560b57cec5SDimitry Andric // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. 570b57cec5SDimitry Andric // If there is an existing pointer typed PHI that produces the same value as PN, 580b57cec5SDimitry Andric // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new 590b57cec5SDimitry Andric // PHI node: 600b57cec5SDimitry Andric // 610b57cec5SDimitry Andric // Case-1: 620b57cec5SDimitry Andric // bb1: 630b57cec5SDimitry Andric // int_init = PtrToInt(ptr_init) 640b57cec5SDimitry Andric // br label %bb2 650b57cec5SDimitry Andric // bb2: 660b57cec5SDimitry Andric // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 670b57cec5SDimitry Andric // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 680b57cec5SDimitry Andric // ptr_val2 = IntToPtr(int_val) 690b57cec5SDimitry Andric // ... 700b57cec5SDimitry Andric // use(ptr_val2) 710b57cec5SDimitry Andric // ptr_val_inc = ... 720b57cec5SDimitry Andric // inc_val_inc = PtrToInt(ptr_val_inc) 730b57cec5SDimitry Andric // 740b57cec5SDimitry Andric // ==> 750b57cec5SDimitry Andric // bb1: 760b57cec5SDimitry Andric // br label %bb2 770b57cec5SDimitry Andric // bb2: 780b57cec5SDimitry Andric // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 790b57cec5SDimitry Andric // ... 800b57cec5SDimitry Andric // use(ptr_val) 810b57cec5SDimitry Andric // ptr_val_inc = ... 820b57cec5SDimitry Andric // 830b57cec5SDimitry Andric // Case-2: 840b57cec5SDimitry Andric // bb1: 850b57cec5SDimitry Andric // int_ptr = BitCast(ptr_ptr) 860b57cec5SDimitry Andric // int_init = Load(int_ptr) 870b57cec5SDimitry Andric // br label %bb2 880b57cec5SDimitry Andric // bb2: 890b57cec5SDimitry Andric // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] 900b57cec5SDimitry Andric // ptr_val2 = IntToPtr(int_val) 910b57cec5SDimitry Andric // ... 920b57cec5SDimitry Andric // use(ptr_val2) 930b57cec5SDimitry Andric // ptr_val_inc = ... 940b57cec5SDimitry Andric // inc_val_inc = PtrToInt(ptr_val_inc) 950b57cec5SDimitry Andric // ==> 960b57cec5SDimitry Andric // bb1: 970b57cec5SDimitry Andric // ptr_init = Load(ptr_ptr) 980b57cec5SDimitry Andric // br label %bb2 990b57cec5SDimitry Andric // bb2: 1000b57cec5SDimitry Andric // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] 1010b57cec5SDimitry Andric // ... 1020b57cec5SDimitry Andric // use(ptr_val) 1030b57cec5SDimitry Andric // ptr_val_inc = ... 1040b57cec5SDimitry Andric // ... 1050b57cec5SDimitry Andric // 106bdd1243dSDimitry Andric bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) { 1070b57cec5SDimitry Andric if (!PN.getType()->isIntegerTy()) 108bdd1243dSDimitry Andric return false; 1090b57cec5SDimitry Andric if (!PN.hasOneUse()) 110bdd1243dSDimitry Andric return false; 1110b57cec5SDimitry Andric 1120b57cec5SDimitry Andric auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); 1130b57cec5SDimitry Andric if (!IntToPtr) 114bdd1243dSDimitry Andric return false; 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric // Check if the pointer is actually used as pointer: 1170b57cec5SDimitry Andric auto HasPointerUse = [](Instruction *IIP) { 1180b57cec5SDimitry Andric for (User *U : IIP->users()) { 1190b57cec5SDimitry Andric Value *Ptr = nullptr; 1200b57cec5SDimitry Andric if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { 1210b57cec5SDimitry Andric Ptr = LoadI->getPointerOperand(); 1220b57cec5SDimitry Andric } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 1230b57cec5SDimitry Andric Ptr = SI->getPointerOperand(); 1240b57cec5SDimitry Andric } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { 1250b57cec5SDimitry Andric Ptr = GI->getPointerOperand(); 1260b57cec5SDimitry Andric } 1270b57cec5SDimitry Andric 1280b57cec5SDimitry Andric if (Ptr && Ptr == IIP) 1290b57cec5SDimitry Andric return true; 1300b57cec5SDimitry Andric } 1310b57cec5SDimitry Andric return false; 1320b57cec5SDimitry Andric }; 1330b57cec5SDimitry Andric 1340b57cec5SDimitry Andric if (!HasPointerUse(IntToPtr)) 135bdd1243dSDimitry Andric return false; 1360b57cec5SDimitry Andric 1370b57cec5SDimitry Andric if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != 1380b57cec5SDimitry Andric DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) 139bdd1243dSDimitry Andric return false; 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric SmallVector<Value *, 4> AvailablePtrVals; 1421fd87a68SDimitry Andric for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) { 1431fd87a68SDimitry Andric BasicBlock *BB = std::get<0>(Incoming); 1441fd87a68SDimitry Andric Value *Arg = std::get<1>(Incoming); 1450b57cec5SDimitry Andric 1460b57cec5SDimitry Andric // First look backward: 1470b57cec5SDimitry Andric if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { 1480b57cec5SDimitry Andric AvailablePtrVals.emplace_back(PI->getOperand(0)); 1490b57cec5SDimitry Andric continue; 1500b57cec5SDimitry Andric } 1510b57cec5SDimitry Andric 1520b57cec5SDimitry Andric // Next look forward: 1530b57cec5SDimitry Andric Value *ArgIntToPtr = nullptr; 1540b57cec5SDimitry Andric for (User *U : Arg->users()) { 1550b57cec5SDimitry Andric if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && 1561fd87a68SDimitry Andric (DT.dominates(cast<Instruction>(U), BB) || 1571fd87a68SDimitry Andric cast<Instruction>(U)->getParent() == BB)) { 1580b57cec5SDimitry Andric ArgIntToPtr = U; 1590b57cec5SDimitry Andric break; 1600b57cec5SDimitry Andric } 1610b57cec5SDimitry Andric } 1620b57cec5SDimitry Andric 1630b57cec5SDimitry Andric if (ArgIntToPtr) { 1640b57cec5SDimitry Andric AvailablePtrVals.emplace_back(ArgIntToPtr); 1650b57cec5SDimitry Andric continue; 1660b57cec5SDimitry Andric } 1670b57cec5SDimitry Andric 1680b57cec5SDimitry Andric // If Arg is defined by a PHI, allow it. This will also create 1690b57cec5SDimitry Andric // more opportunities iteratively. 1700b57cec5SDimitry Andric if (isa<PHINode>(Arg)) { 1710b57cec5SDimitry Andric AvailablePtrVals.emplace_back(Arg); 1720b57cec5SDimitry Andric continue; 1730b57cec5SDimitry Andric } 1740b57cec5SDimitry Andric 1750b57cec5SDimitry Andric // For a single use integer load: 1760b57cec5SDimitry Andric auto *LoadI = dyn_cast<LoadInst>(Arg); 1770b57cec5SDimitry Andric if (!LoadI) 178bdd1243dSDimitry Andric return false; 1790b57cec5SDimitry Andric 1800b57cec5SDimitry Andric if (!LoadI->hasOneUse()) 181bdd1243dSDimitry Andric return false; 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric // Push the integer typed Load instruction into the available 1840b57cec5SDimitry Andric // value set, and fix it up later when the pointer typed PHI 1850b57cec5SDimitry Andric // is synthesized. 1860b57cec5SDimitry Andric AvailablePtrVals.emplace_back(LoadI); 1870b57cec5SDimitry Andric } 1880b57cec5SDimitry Andric 1890b57cec5SDimitry Andric // Now search for a matching PHI 1900b57cec5SDimitry Andric auto *BB = PN.getParent(); 1910b57cec5SDimitry Andric assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && 1920b57cec5SDimitry Andric "Not enough available ptr typed incoming values"); 1930b57cec5SDimitry Andric PHINode *MatchingPtrPHI = nullptr; 1940b57cec5SDimitry Andric unsigned NumPhis = 0; 1951fd87a68SDimitry Andric for (PHINode &PtrPHI : BB->phis()) { 1960b57cec5SDimitry Andric // FIXME: consider handling this in AggressiveInstCombine 1971fd87a68SDimitry Andric if (NumPhis++ > MaxNumPhis) 198bdd1243dSDimitry Andric return false; 1991fd87a68SDimitry Andric if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType()) 2000b57cec5SDimitry Andric continue; 2011fd87a68SDimitry Andric if (any_of(zip(PN.blocks(), AvailablePtrVals), 2021fd87a68SDimitry Andric [&](const auto &BlockAndValue) { 2031fd87a68SDimitry Andric BasicBlock *BB = std::get<0>(BlockAndValue); 2041fd87a68SDimitry Andric Value *V = std::get<1>(BlockAndValue); 2051fd87a68SDimitry Andric return PtrPHI.getIncomingValueForBlock(BB) != V; 2061fd87a68SDimitry Andric })) 2071fd87a68SDimitry Andric continue; 2081fd87a68SDimitry Andric MatchingPtrPHI = &PtrPHI; 2090b57cec5SDimitry Andric break; 2100b57cec5SDimitry Andric } 2110b57cec5SDimitry Andric 2120b57cec5SDimitry Andric if (MatchingPtrPHI) { 2130b57cec5SDimitry Andric assert(MatchingPtrPHI->getType() == IntToPtr->getType() && 2140b57cec5SDimitry Andric "Phi's Type does not match with IntToPtr"); 215bdd1243dSDimitry Andric // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, 216bdd1243dSDimitry Andric // to make sure another transform can't undo it in the meantime. 217bdd1243dSDimitry Andric replaceInstUsesWith(*IntToPtr, MatchingPtrPHI); 218bdd1243dSDimitry Andric eraseInstFromFunction(*IntToPtr); 219bdd1243dSDimitry Andric eraseInstFromFunction(PN); 220bdd1243dSDimitry Andric return true; 2210b57cec5SDimitry Andric } 2220b57cec5SDimitry Andric 2230b57cec5SDimitry Andric // If it requires a conversion for every PHI operand, do not do it. 2240b57cec5SDimitry Andric if (all_of(AvailablePtrVals, [&](Value *V) { 2250b57cec5SDimitry Andric return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); 2260b57cec5SDimitry Andric })) 227bdd1243dSDimitry Andric return false; 2280b57cec5SDimitry Andric 2290b57cec5SDimitry Andric // If any of the operand that requires casting is a terminator 2308c27c554SDimitry Andric // instruction, do not do it. Similarly, do not do the transform if the value 2318c27c554SDimitry Andric // is PHI in a block with no insertion point, for example, a catchswitch 2328c27c554SDimitry Andric // block, since we will not be able to insert a cast after the PHI. 2330b57cec5SDimitry Andric if (any_of(AvailablePtrVals, [&](Value *V) { 2340b57cec5SDimitry Andric if (V->getType() == IntToPtr->getType()) 2350b57cec5SDimitry Andric return false; 2360b57cec5SDimitry Andric auto *Inst = dyn_cast<Instruction>(V); 2378c27c554SDimitry Andric if (!Inst) 2388c27c554SDimitry Andric return false; 2398c27c554SDimitry Andric if (Inst->isTerminator()) 2408c27c554SDimitry Andric return true; 2418c27c554SDimitry Andric auto *BB = Inst->getParent(); 2428c27c554SDimitry Andric if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end()) 2438c27c554SDimitry Andric return true; 2448c27c554SDimitry Andric return false; 2450b57cec5SDimitry Andric })) 246bdd1243dSDimitry Andric return false; 2470b57cec5SDimitry Andric 2480b57cec5SDimitry Andric PHINode *NewPtrPHI = PHINode::Create( 2490b57cec5SDimitry Andric IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); 2500b57cec5SDimitry Andric 2515f757f3fSDimitry Andric InsertNewInstBefore(NewPtrPHI, PN.getIterator()); 2520b57cec5SDimitry Andric SmallDenseMap<Value *, Instruction *> Casts; 2531fd87a68SDimitry Andric for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) { 2541fd87a68SDimitry Andric auto *IncomingBB = std::get<0>(Incoming); 2551fd87a68SDimitry Andric auto *IncomingVal = std::get<1>(Incoming); 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric if (IncomingVal->getType() == IntToPtr->getType()) { 2580b57cec5SDimitry Andric NewPtrPHI->addIncoming(IncomingVal, IncomingBB); 2590b57cec5SDimitry Andric continue; 2600b57cec5SDimitry Andric } 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric #ifndef NDEBUG 2630b57cec5SDimitry Andric LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); 2640b57cec5SDimitry Andric assert((isa<PHINode>(IncomingVal) || 2650b57cec5SDimitry Andric IncomingVal->getType()->isPointerTy() || 2660b57cec5SDimitry Andric (LoadI && LoadI->hasOneUse())) && 2670b57cec5SDimitry Andric "Can not replace LoadInst with multiple uses"); 2680b57cec5SDimitry Andric #endif 2690b57cec5SDimitry Andric // Need to insert a BitCast. 2700b57cec5SDimitry Andric // For an integer Load instruction with a single use, the load + IntToPtr 2710b57cec5SDimitry Andric // cast will be simplified into a pointer load: 2720b57cec5SDimitry Andric // %v = load i64, i64* %a.ip, align 8 2730b57cec5SDimitry Andric // %v.cast = inttoptr i64 %v to float ** 2740b57cec5SDimitry Andric // ==> 2750b57cec5SDimitry Andric // %v.ptrp = bitcast i64 * %a.ip to float ** 2760b57cec5SDimitry Andric // %v.cast = load float *, float ** %v.ptrp, align 8 2770b57cec5SDimitry Andric Instruction *&CI = Casts[IncomingVal]; 2780b57cec5SDimitry Andric if (!CI) { 2790b57cec5SDimitry Andric CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), 2800b57cec5SDimitry Andric IncomingVal->getName() + ".ptr"); 2810b57cec5SDimitry Andric if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { 2820b57cec5SDimitry Andric BasicBlock::iterator InsertPos(IncomingI); 2830b57cec5SDimitry Andric InsertPos++; 2848c27c554SDimitry Andric BasicBlock *BB = IncomingI->getParent(); 2850b57cec5SDimitry Andric if (isa<PHINode>(IncomingI)) 2868c27c554SDimitry Andric InsertPos = BB->getFirstInsertionPt(); 2878c27c554SDimitry Andric assert(InsertPos != BB->end() && "should have checked above"); 2885f757f3fSDimitry Andric InsertNewInstBefore(CI, InsertPos); 2890b57cec5SDimitry Andric } else { 2900b57cec5SDimitry Andric auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); 2915f757f3fSDimitry Andric InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt()); 2920b57cec5SDimitry Andric } 2930b57cec5SDimitry Andric } 2940b57cec5SDimitry Andric NewPtrPHI->addIncoming(CI, IncomingBB); 2950b57cec5SDimitry Andric } 2960b57cec5SDimitry Andric 297bdd1243dSDimitry Andric // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, 298bdd1243dSDimitry Andric // to make sure another transform can't undo it in the meantime. 299bdd1243dSDimitry Andric replaceInstUsesWith(*IntToPtr, NewPtrPHI); 300bdd1243dSDimitry Andric eraseInstFromFunction(*IntToPtr); 301bdd1243dSDimitry Andric eraseInstFromFunction(PN); 302bdd1243dSDimitry Andric return true; 3030b57cec5SDimitry Andric } 3040b57cec5SDimitry Andric 305349cc55cSDimitry Andric // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and 306349cc55cSDimitry Andric // fold Phi-operand to bitcast. 307349cc55cSDimitry Andric Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) { 308349cc55cSDimitry Andric // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] ) 309349cc55cSDimitry Andric // Make sure all uses of phi are ptr2int. 310349cc55cSDimitry Andric if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); })) 311349cc55cSDimitry Andric return nullptr; 312349cc55cSDimitry Andric 313349cc55cSDimitry Andric // Iterating over all operands to check presence of target pointers for 314349cc55cSDimitry Andric // optimization. 315349cc55cSDimitry Andric bool OperandWithRoundTripCast = false; 316349cc55cSDimitry Andric for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) { 317349cc55cSDimitry Andric if (auto *NewOp = 318349cc55cSDimitry Andric simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) { 31906c3fb27SDimitry Andric replaceOperand(PN, OpNum, NewOp); 320349cc55cSDimitry Andric OperandWithRoundTripCast = true; 321349cc55cSDimitry Andric } 322349cc55cSDimitry Andric } 323349cc55cSDimitry Andric if (!OperandWithRoundTripCast) 324349cc55cSDimitry Andric return nullptr; 325349cc55cSDimitry Andric return &PN; 326349cc55cSDimitry Andric } 327349cc55cSDimitry Andric 328e8d8bef9SDimitry Andric /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], 329e8d8bef9SDimitry Andric /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue. 330e8d8bef9SDimitry Andric Instruction * 331e8d8bef9SDimitry Andric InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) { 332e8d8bef9SDimitry Andric auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0)); 333e8d8bef9SDimitry Andric 3340fca6ea1SDimitry Andric // Scan to see if all operands are `insertvalue`'s with the same indices, 335e8d8bef9SDimitry Andric // and all have a single use. 3361fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 3371fd87a68SDimitry Andric auto *I = dyn_cast<InsertValueInst>(V); 338e8d8bef9SDimitry Andric if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices()) 339e8d8bef9SDimitry Andric return nullptr; 340e8d8bef9SDimitry Andric } 341e8d8bef9SDimitry Andric 342e8d8bef9SDimitry Andric // For each operand of an `insertvalue` 343e8d8bef9SDimitry Andric std::array<PHINode *, 2> NewOperands; 344e8d8bef9SDimitry Andric for (int OpIdx : {0, 1}) { 345e8d8bef9SDimitry Andric auto *&NewOperand = NewOperands[OpIdx]; 346e8d8bef9SDimitry Andric // Create a new PHI node to receive the values the operand has in each 347e8d8bef9SDimitry Andric // incoming basic block. 348e8d8bef9SDimitry Andric NewOperand = PHINode::Create( 349e8d8bef9SDimitry Andric FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(), 350e8d8bef9SDimitry Andric FirstIVI->getOperand(OpIdx)->getName() + ".pn"); 351e8d8bef9SDimitry Andric // And populate each operand's PHI with said values. 352e8d8bef9SDimitry Andric for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) 353e8d8bef9SDimitry Andric NewOperand->addIncoming( 354e8d8bef9SDimitry Andric cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx), 355e8d8bef9SDimitry Andric std::get<0>(Incoming)); 3565f757f3fSDimitry Andric InsertNewInstBefore(NewOperand, PN.getIterator()); 357e8d8bef9SDimitry Andric } 358e8d8bef9SDimitry Andric 359e8d8bef9SDimitry Andric // And finally, create `insertvalue` over the newly-formed PHI nodes. 360e8d8bef9SDimitry Andric auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1], 361e8d8bef9SDimitry Andric FirstIVI->getIndices(), PN.getName()); 362e8d8bef9SDimitry Andric 363e8d8bef9SDimitry Andric PHIArgMergedDebugLoc(NewIVI, PN); 364e8d8bef9SDimitry Andric ++NumPHIsOfInsertValues; 365e8d8bef9SDimitry Andric return NewIVI; 366e8d8bef9SDimitry Andric } 367e8d8bef9SDimitry Andric 368e8d8bef9SDimitry Andric /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)], 369e8d8bef9SDimitry Andric /// turn this into a phi[a,b] and a single extractvalue. 370e8d8bef9SDimitry Andric Instruction * 371e8d8bef9SDimitry Andric InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) { 372e8d8bef9SDimitry Andric auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0)); 373e8d8bef9SDimitry Andric 3740fca6ea1SDimitry Andric // Scan to see if all operands are `extractvalue`'s with the same indices, 375e8d8bef9SDimitry Andric // and all have a single use. 3761fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 3771fd87a68SDimitry Andric auto *I = dyn_cast<ExtractValueInst>(V); 378e8d8bef9SDimitry Andric if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() || 379e8d8bef9SDimitry Andric I->getAggregateOperand()->getType() != 380e8d8bef9SDimitry Andric FirstEVI->getAggregateOperand()->getType()) 381e8d8bef9SDimitry Andric return nullptr; 382e8d8bef9SDimitry Andric } 383e8d8bef9SDimitry Andric 384e8d8bef9SDimitry Andric // Create a new PHI node to receive the values the aggregate operand has 385e8d8bef9SDimitry Andric // in each incoming basic block. 386e8d8bef9SDimitry Andric auto *NewAggregateOperand = PHINode::Create( 387e8d8bef9SDimitry Andric FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(), 388e8d8bef9SDimitry Andric FirstEVI->getAggregateOperand()->getName() + ".pn"); 389e8d8bef9SDimitry Andric // And populate the PHI with said values. 390e8d8bef9SDimitry Andric for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) 391e8d8bef9SDimitry Andric NewAggregateOperand->addIncoming( 392e8d8bef9SDimitry Andric cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(), 393e8d8bef9SDimitry Andric std::get<0>(Incoming)); 3945f757f3fSDimitry Andric InsertNewInstBefore(NewAggregateOperand, PN.getIterator()); 395e8d8bef9SDimitry Andric 396e8d8bef9SDimitry Andric // And finally, create `extractvalue` over the newly-formed PHI nodes. 397e8d8bef9SDimitry Andric auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand, 398e8d8bef9SDimitry Andric FirstEVI->getIndices(), PN.getName()); 399e8d8bef9SDimitry Andric 400e8d8bef9SDimitry Andric PHIArgMergedDebugLoc(NewEVI, PN); 401e8d8bef9SDimitry Andric ++NumPHIsOfExtractValues; 402e8d8bef9SDimitry Andric return NewEVI; 403e8d8bef9SDimitry Andric } 404e8d8bef9SDimitry Andric 4050b57cec5SDimitry Andric /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the 406e8d8bef9SDimitry Andric /// adds all have a single user, turn this into a phi and a single binop. 407e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) { 4080b57cec5SDimitry Andric Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 4090b57cec5SDimitry Andric assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 4100b57cec5SDimitry Andric unsigned Opc = FirstInst->getOpcode(); 4110b57cec5SDimitry Andric Value *LHSVal = FirstInst->getOperand(0); 4120b57cec5SDimitry Andric Value *RHSVal = FirstInst->getOperand(1); 4130b57cec5SDimitry Andric 4140b57cec5SDimitry Andric Type *LHSType = LHSVal->getType(); 4150b57cec5SDimitry Andric Type *RHSType = RHSVal->getType(); 4160b57cec5SDimitry Andric 417e8d8bef9SDimitry Andric // Scan to see if all operands are the same opcode, and all have one user. 4181fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 4191fd87a68SDimitry Andric Instruction *I = dyn_cast<Instruction>(V); 420e8d8bef9SDimitry Andric if (!I || I->getOpcode() != Opc || !I->hasOneUser() || 4210b57cec5SDimitry Andric // Verify type of the LHS matches so we don't fold cmp's of different 4220b57cec5SDimitry Andric // types. 4230b57cec5SDimitry Andric I->getOperand(0)->getType() != LHSType || 4240b57cec5SDimitry Andric I->getOperand(1)->getType() != RHSType) 4250b57cec5SDimitry Andric return nullptr; 4260b57cec5SDimitry Andric 4270b57cec5SDimitry Andric // If they are CmpInst instructions, check their predicates 4280b57cec5SDimitry Andric if (CmpInst *CI = dyn_cast<CmpInst>(I)) 4290b57cec5SDimitry Andric if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 4300b57cec5SDimitry Andric return nullptr; 4310b57cec5SDimitry Andric 4320b57cec5SDimitry Andric // Keep track of which operand needs a phi node. 4330b57cec5SDimitry Andric if (I->getOperand(0) != LHSVal) LHSVal = nullptr; 4340b57cec5SDimitry Andric if (I->getOperand(1) != RHSVal) RHSVal = nullptr; 4350b57cec5SDimitry Andric } 4360b57cec5SDimitry Andric 4370b57cec5SDimitry Andric // If both LHS and RHS would need a PHI, don't do this transformation, 4380b57cec5SDimitry Andric // because it would increase the number of PHIs entering the block, 4390b57cec5SDimitry Andric // which leads to higher register pressure. This is especially 4400b57cec5SDimitry Andric // bad when the PHIs are in the header of a loop. 4410b57cec5SDimitry Andric if (!LHSVal && !RHSVal) 4420b57cec5SDimitry Andric return nullptr; 4430b57cec5SDimitry Andric 4440b57cec5SDimitry Andric // Otherwise, this is safe to transform! 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric Value *InLHS = FirstInst->getOperand(0); 4470b57cec5SDimitry Andric Value *InRHS = FirstInst->getOperand(1); 4480b57cec5SDimitry Andric PHINode *NewLHS = nullptr, *NewRHS = nullptr; 4490b57cec5SDimitry Andric if (!LHSVal) { 4500b57cec5SDimitry Andric NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 4510b57cec5SDimitry Andric FirstInst->getOperand(0)->getName() + ".pn"); 4520b57cec5SDimitry Andric NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 4535f757f3fSDimitry Andric InsertNewInstBefore(NewLHS, PN.getIterator()); 4540b57cec5SDimitry Andric LHSVal = NewLHS; 4550b57cec5SDimitry Andric } 4560b57cec5SDimitry Andric 4570b57cec5SDimitry Andric if (!RHSVal) { 4580b57cec5SDimitry Andric NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 4590b57cec5SDimitry Andric FirstInst->getOperand(1)->getName() + ".pn"); 4600b57cec5SDimitry Andric NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 4615f757f3fSDimitry Andric InsertNewInstBefore(NewRHS, PN.getIterator()); 4620b57cec5SDimitry Andric RHSVal = NewRHS; 4630b57cec5SDimitry Andric } 4640b57cec5SDimitry Andric 4650b57cec5SDimitry Andric // Add all operands to the new PHIs. 4660b57cec5SDimitry Andric if (NewLHS || NewRHS) { 4671fd87a68SDimitry Andric for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 4681fd87a68SDimitry Andric BasicBlock *InBB = std::get<0>(Incoming); 4691fd87a68SDimitry Andric Value *InVal = std::get<1>(Incoming); 4701fd87a68SDimitry Andric Instruction *InInst = cast<Instruction>(InVal); 4710b57cec5SDimitry Andric if (NewLHS) { 4720b57cec5SDimitry Andric Value *NewInLHS = InInst->getOperand(0); 4731fd87a68SDimitry Andric NewLHS->addIncoming(NewInLHS, InBB); 4740b57cec5SDimitry Andric } 4750b57cec5SDimitry Andric if (NewRHS) { 4760b57cec5SDimitry Andric Value *NewInRHS = InInst->getOperand(1); 4771fd87a68SDimitry Andric NewRHS->addIncoming(NewInRHS, InBB); 4780b57cec5SDimitry Andric } 4790b57cec5SDimitry Andric } 4800b57cec5SDimitry Andric } 4810b57cec5SDimitry Andric 4820b57cec5SDimitry Andric if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 4830b57cec5SDimitry Andric CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 4840b57cec5SDimitry Andric LHSVal, RHSVal); 4850b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewCI, PN); 4860b57cec5SDimitry Andric return NewCI; 4870b57cec5SDimitry Andric } 4880b57cec5SDimitry Andric 4890b57cec5SDimitry Andric BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 4900b57cec5SDimitry Andric BinaryOperator *NewBinOp = 4910b57cec5SDimitry Andric BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 4920b57cec5SDimitry Andric 4930b57cec5SDimitry Andric NewBinOp->copyIRFlags(PN.getIncomingValue(0)); 4940b57cec5SDimitry Andric 4951fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) 4961fd87a68SDimitry Andric NewBinOp->andIRFlags(V); 4970b57cec5SDimitry Andric 4980b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewBinOp, PN); 4990b57cec5SDimitry Andric return NewBinOp; 5000b57cec5SDimitry Andric } 5010b57cec5SDimitry Andric 502e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) { 5030b57cec5SDimitry Andric GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 5040b57cec5SDimitry Andric 5050b57cec5SDimitry Andric SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 5060b57cec5SDimitry Andric FirstInst->op_end()); 5070b57cec5SDimitry Andric // This is true if all GEP bases are allocas and if all indices into them are 5080b57cec5SDimitry Andric // constants. 5090b57cec5SDimitry Andric bool AllBasePointersAreAllocas = true; 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric // We don't want to replace this phi if the replacement would require 5120b57cec5SDimitry Andric // more than one phi, which leads to higher register pressure. This is 5130b57cec5SDimitry Andric // especially bad when the PHIs are in the header of a loop. 5140b57cec5SDimitry Andric bool NeededPhi = false; 5150b57cec5SDimitry Andric 516*415efcecSDimitry Andric // Remember flags of the first phi-operand getelementptr. 517*415efcecSDimitry Andric GEPNoWrapFlags NW = FirstInst->getNoWrapFlags(); 5180b57cec5SDimitry Andric 519e8d8bef9SDimitry Andric // Scan to see if all operands are the same opcode, and all have one user. 5201fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 5211fd87a68SDimitry Andric GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V); 52281ad6265SDimitry Andric if (!GEP || !GEP->hasOneUser() || 52381ad6265SDimitry Andric GEP->getSourceElementType() != FirstInst->getSourceElementType() || 5240b57cec5SDimitry Andric GEP->getNumOperands() != FirstInst->getNumOperands()) 5250b57cec5SDimitry Andric return nullptr; 5260b57cec5SDimitry Andric 5270fca6ea1SDimitry Andric NW &= GEP->getNoWrapFlags(); 5280b57cec5SDimitry Andric 5290b57cec5SDimitry Andric // Keep track of whether or not all GEPs are of alloca pointers. 5300b57cec5SDimitry Andric if (AllBasePointersAreAllocas && 5310b57cec5SDimitry Andric (!isa<AllocaInst>(GEP->getOperand(0)) || 5320b57cec5SDimitry Andric !GEP->hasAllConstantIndices())) 5330b57cec5SDimitry Andric AllBasePointersAreAllocas = false; 5340b57cec5SDimitry Andric 5350b57cec5SDimitry Andric // Compare the operand lists. 5361fd87a68SDimitry Andric for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) { 5371fd87a68SDimitry Andric if (FirstInst->getOperand(Op) == GEP->getOperand(Op)) 5380b57cec5SDimitry Andric continue; 5390b57cec5SDimitry Andric 5400b57cec5SDimitry Andric // Don't merge two GEPs when two operands differ (introducing phi nodes) 5410b57cec5SDimitry Andric // if one of the PHIs has a constant for the index. The index may be 5420b57cec5SDimitry Andric // substantially cheaper to compute for the constants, so making it a 5430b57cec5SDimitry Andric // variable index could pessimize the path. This also handles the case 5440b57cec5SDimitry Andric // for struct indices, which must always be constant. 5451fd87a68SDimitry Andric if (isa<ConstantInt>(FirstInst->getOperand(Op)) || 5461fd87a68SDimitry Andric isa<ConstantInt>(GEP->getOperand(Op))) 5470b57cec5SDimitry Andric return nullptr; 5480b57cec5SDimitry Andric 5491fd87a68SDimitry Andric if (FirstInst->getOperand(Op)->getType() != 5501fd87a68SDimitry Andric GEP->getOperand(Op)->getType()) 5510b57cec5SDimitry Andric return nullptr; 5520b57cec5SDimitry Andric 5530b57cec5SDimitry Andric // If we already needed a PHI for an earlier operand, and another operand 5540b57cec5SDimitry Andric // also requires a PHI, we'd be introducing more PHIs than we're 5550b57cec5SDimitry Andric // eliminating, which increases register pressure on entry to the PHI's 5560b57cec5SDimitry Andric // block. 5570b57cec5SDimitry Andric if (NeededPhi) 5580b57cec5SDimitry Andric return nullptr; 5590b57cec5SDimitry Andric 5601fd87a68SDimitry Andric FixedOperands[Op] = nullptr; // Needs a PHI. 5610b57cec5SDimitry Andric NeededPhi = true; 5620b57cec5SDimitry Andric } 5630b57cec5SDimitry Andric } 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric // If all of the base pointers of the PHI'd GEPs are from allocas, don't 5660b57cec5SDimitry Andric // bother doing this transformation. At best, this will just save a bit of 5670b57cec5SDimitry Andric // offset calculation, but all the predecessors will have to materialize the 5680b57cec5SDimitry Andric // stack address into a register anyway. We'd actually rather *clone* the 5690b57cec5SDimitry Andric // load up into the predecessors so that we have a load of a gep of an alloca, 5700b57cec5SDimitry Andric // which can usually all be folded into the load. 5710b57cec5SDimitry Andric if (AllBasePointersAreAllocas) 5720b57cec5SDimitry Andric return nullptr; 5730b57cec5SDimitry Andric 5740b57cec5SDimitry Andric // Otherwise, this is safe to transform. Insert PHI nodes for each operand 5750b57cec5SDimitry Andric // that is variable. 5760b57cec5SDimitry Andric SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 5770b57cec5SDimitry Andric 5780b57cec5SDimitry Andric bool HasAnyPHIs = false; 5791fd87a68SDimitry Andric for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) { 5801fd87a68SDimitry Andric if (FixedOperands[I]) 5811fd87a68SDimitry Andric continue; // operand doesn't need a phi. 5821fd87a68SDimitry Andric Value *FirstOp = FirstInst->getOperand(I); 5831fd87a68SDimitry Andric PHINode *NewPN = 5841fd87a68SDimitry Andric PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn"); 5855f757f3fSDimitry Andric InsertNewInstBefore(NewPN, PN.getIterator()); 5860b57cec5SDimitry Andric 5870b57cec5SDimitry Andric NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 5881fd87a68SDimitry Andric OperandPhis[I] = NewPN; 5891fd87a68SDimitry Andric FixedOperands[I] = NewPN; 5900b57cec5SDimitry Andric HasAnyPHIs = true; 5910b57cec5SDimitry Andric } 5920b57cec5SDimitry Andric 5930b57cec5SDimitry Andric // Add all operands to the new PHIs. 5940b57cec5SDimitry Andric if (HasAnyPHIs) { 5951fd87a68SDimitry Andric for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 5961fd87a68SDimitry Andric BasicBlock *InBB = std::get<0>(Incoming); 5971fd87a68SDimitry Andric Value *InVal = std::get<1>(Incoming); 5981fd87a68SDimitry Andric GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal); 5990b57cec5SDimitry Andric 6001fd87a68SDimitry Andric for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op) 6011fd87a68SDimitry Andric if (PHINode *OpPhi = OperandPhis[Op]) 6021fd87a68SDimitry Andric OpPhi->addIncoming(InGEP->getOperand(Op), InBB); 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric } 6050b57cec5SDimitry Andric 6060b57cec5SDimitry Andric Value *Base = FixedOperands[0]; 6070b57cec5SDimitry Andric GetElementPtrInst *NewGEP = 6080b57cec5SDimitry Andric GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, 6090fca6ea1SDimitry Andric ArrayRef(FixedOperands).slice(1), NW); 6100b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewGEP, PN); 6110b57cec5SDimitry Andric return NewGEP; 6120b57cec5SDimitry Andric } 6130b57cec5SDimitry Andric 6140b57cec5SDimitry Andric /// Return true if we know that it is safe to sink the load out of the block 6150b57cec5SDimitry Andric /// that defines it. This means that it must be obvious the value of the load is 6160b57cec5SDimitry Andric /// not changed from the point of the load to the end of the block it is in. 6170b57cec5SDimitry Andric /// 6180b57cec5SDimitry Andric /// Finally, it is safe, but not profitable, to sink a load targeting a 6190b57cec5SDimitry Andric /// non-address-taken alloca. Doing so will cause us to not promote the alloca 6200b57cec5SDimitry Andric /// to a register. 6210b57cec5SDimitry Andric static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 6220b57cec5SDimitry Andric BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); 6230b57cec5SDimitry Andric 6240b57cec5SDimitry Andric for (++BBI; BBI != E; ++BBI) 625d409305fSDimitry Andric if (BBI->mayWriteToMemory()) { 626d409305fSDimitry Andric // Calls that only access inaccessible memory do not block sinking the 627d409305fSDimitry Andric // load. 628d409305fSDimitry Andric if (auto *CB = dyn_cast<CallBase>(BBI)) 629d409305fSDimitry Andric if (CB->onlyAccessesInaccessibleMemory()) 630d409305fSDimitry Andric continue; 6310b57cec5SDimitry Andric return false; 632d409305fSDimitry Andric } 6330b57cec5SDimitry Andric 6340b57cec5SDimitry Andric // Check for non-address taken alloca. If not address-taken already, it isn't 6350b57cec5SDimitry Andric // profitable to do this xform. 6360b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 6371fd87a68SDimitry Andric bool IsAddressTaken = false; 6380b57cec5SDimitry Andric for (User *U : AI->users()) { 6390b57cec5SDimitry Andric if (isa<LoadInst>(U)) continue; 6400b57cec5SDimitry Andric if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 6410b57cec5SDimitry Andric // If storing TO the alloca, then the address isn't taken. 6420b57cec5SDimitry Andric if (SI->getOperand(1) == AI) continue; 6430b57cec5SDimitry Andric } 6441fd87a68SDimitry Andric IsAddressTaken = true; 6450b57cec5SDimitry Andric break; 6460b57cec5SDimitry Andric } 6470b57cec5SDimitry Andric 6481fd87a68SDimitry Andric if (!IsAddressTaken && AI->isStaticAlloca()) 6490b57cec5SDimitry Andric return false; 6500b57cec5SDimitry Andric } 6510b57cec5SDimitry Andric 6520b57cec5SDimitry Andric // If this load is a load from a GEP with a constant offset from an alloca, 6530b57cec5SDimitry Andric // then we don't want to sink it. In its present form, it will be 6540b57cec5SDimitry Andric // load [constant stack offset]. Sinking it will cause us to have to 6550b57cec5SDimitry Andric // materialize the stack addresses in each predecessor in a register only to 6560b57cec5SDimitry Andric // do a shared load from register in the successor. 6570b57cec5SDimitry Andric if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 6580b57cec5SDimitry Andric if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 6590b57cec5SDimitry Andric if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 6600b57cec5SDimitry Andric return false; 6610b57cec5SDimitry Andric 6620b57cec5SDimitry Andric return true; 6630b57cec5SDimitry Andric } 6640b57cec5SDimitry Andric 665e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) { 6660b57cec5SDimitry Andric LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 6670b57cec5SDimitry Andric 66881ad6265SDimitry Andric // Can't forward swifterror through a phi. 66981ad6265SDimitry Andric if (FirstLI->getOperand(0)->isSwiftError()) 67081ad6265SDimitry Andric return nullptr; 67181ad6265SDimitry Andric 6720b57cec5SDimitry Andric // FIXME: This is overconservative; this transform is allowed in some cases 6730b57cec5SDimitry Andric // for atomic operations. 6740b57cec5SDimitry Andric if (FirstLI->isAtomic()) 6750b57cec5SDimitry Andric return nullptr; 6760b57cec5SDimitry Andric 6770b57cec5SDimitry Andric // When processing loads, we need to propagate two bits of information to the 6780eae32dcSDimitry Andric // sunk load: whether it is volatile, and what its alignment is. 6791fd87a68SDimitry Andric bool IsVolatile = FirstLI->isVolatile(); 6805ffd83dbSDimitry Andric Align LoadAlignment = FirstLI->getAlign(); 6811fd87a68SDimitry Andric const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 6820b57cec5SDimitry Andric 6830b57cec5SDimitry Andric // We can't sink the load if the loaded value could be modified between the 6840b57cec5SDimitry Andric // load and the PHI. 6850b57cec5SDimitry Andric if (FirstLI->getParent() != PN.getIncomingBlock(0) || 6860b57cec5SDimitry Andric !isSafeAndProfitableToSinkLoad(FirstLI)) 6870b57cec5SDimitry Andric return nullptr; 6880b57cec5SDimitry Andric 6890b57cec5SDimitry Andric // If the PHI is of volatile loads and the load block has multiple 6900b57cec5SDimitry Andric // successors, sinking it would remove a load of the volatile value from 6910b57cec5SDimitry Andric // the path through the other successor. 6921fd87a68SDimitry Andric if (IsVolatile && 6930b57cec5SDimitry Andric FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 6940b57cec5SDimitry Andric return nullptr; 6950b57cec5SDimitry Andric 6961fd87a68SDimitry Andric for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 6971fd87a68SDimitry Andric BasicBlock *InBB = std::get<0>(Incoming); 6981fd87a68SDimitry Andric Value *InVal = std::get<1>(Incoming); 6991fd87a68SDimitry Andric LoadInst *LI = dyn_cast<LoadInst>(InVal); 7001fd87a68SDimitry Andric if (!LI || !LI->hasOneUser() || LI->isAtomic()) 7011fd87a68SDimitry Andric return nullptr; 7021fd87a68SDimitry Andric 7031fd87a68SDimitry Andric // Make sure all arguments are the same type of operation. 7041fd87a68SDimitry Andric if (LI->isVolatile() != IsVolatile || 7051fd87a68SDimitry Andric LI->getPointerAddressSpace() != LoadAddrSpace) 7060b57cec5SDimitry Andric return nullptr; 7070b57cec5SDimitry Andric 70881ad6265SDimitry Andric // Can't forward swifterror through a phi. 70981ad6265SDimitry Andric if (LI->getOperand(0)->isSwiftError()) 71081ad6265SDimitry Andric return nullptr; 71181ad6265SDimitry Andric 7120b57cec5SDimitry Andric // We can't sink the load if the loaded value could be modified between 7130b57cec5SDimitry Andric // the load and the PHI. 7141fd87a68SDimitry Andric if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI)) 7150b57cec5SDimitry Andric return nullptr; 7160b57cec5SDimitry Andric 7170eae32dcSDimitry Andric LoadAlignment = std::min(LoadAlignment, LI->getAlign()); 7180b57cec5SDimitry Andric 7190b57cec5SDimitry Andric // If the PHI is of volatile loads and the load block has multiple 7200b57cec5SDimitry Andric // successors, sinking it would remove a load of the volatile value from 7210b57cec5SDimitry Andric // the path through the other successor. 7221fd87a68SDimitry Andric if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) 7230b57cec5SDimitry Andric return nullptr; 7240b57cec5SDimitry Andric } 7250b57cec5SDimitry Andric 7260b57cec5SDimitry Andric // Okay, they are all the same operation. Create a new PHI node of the 7270b57cec5SDimitry Andric // correct type, and PHI together all of the LHS's of the instructions. 7280b57cec5SDimitry Andric PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 7290b57cec5SDimitry Andric PN.getNumIncomingValues(), 7300b57cec5SDimitry Andric PN.getName()+".in"); 7310b57cec5SDimitry Andric 7320b57cec5SDimitry Andric Value *InVal = FirstLI->getOperand(0); 7330b57cec5SDimitry Andric NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 7340b57cec5SDimitry Andric LoadInst *NewLI = 7351fd87a68SDimitry Andric new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment); 7360b57cec5SDimitry Andric 7370b57cec5SDimitry Andric unsigned KnownIDs[] = { 7380b57cec5SDimitry Andric LLVMContext::MD_tbaa, 7390b57cec5SDimitry Andric LLVMContext::MD_range, 7400b57cec5SDimitry Andric LLVMContext::MD_invariant_load, 7410b57cec5SDimitry Andric LLVMContext::MD_alias_scope, 7420b57cec5SDimitry Andric LLVMContext::MD_noalias, 7430b57cec5SDimitry Andric LLVMContext::MD_nonnull, 7440b57cec5SDimitry Andric LLVMContext::MD_align, 7450b57cec5SDimitry Andric LLVMContext::MD_dereferenceable, 7460b57cec5SDimitry Andric LLVMContext::MD_dereferenceable_or_null, 7470b57cec5SDimitry Andric LLVMContext::MD_access_group, 74806c3fb27SDimitry Andric LLVMContext::MD_noundef, 7490b57cec5SDimitry Andric }; 7500b57cec5SDimitry Andric 7510b57cec5SDimitry Andric for (unsigned ID : KnownIDs) 7520b57cec5SDimitry Andric NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); 7530b57cec5SDimitry Andric 7540b57cec5SDimitry Andric // Add all operands to the new PHI and combine TBAA metadata. 7551fd87a68SDimitry Andric for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 7561fd87a68SDimitry Andric BasicBlock *BB = std::get<0>(Incoming); 7571fd87a68SDimitry Andric Value *V = std::get<1>(Incoming); 7581fd87a68SDimitry Andric LoadInst *LI = cast<LoadInst>(V); 7590b57cec5SDimitry Andric combineMetadata(NewLI, LI, KnownIDs, true); 7600b57cec5SDimitry Andric Value *NewInVal = LI->getOperand(0); 7610b57cec5SDimitry Andric if (NewInVal != InVal) 7620b57cec5SDimitry Andric InVal = nullptr; 7631fd87a68SDimitry Andric NewPN->addIncoming(NewInVal, BB); 7640b57cec5SDimitry Andric } 7650b57cec5SDimitry Andric 7660b57cec5SDimitry Andric if (InVal) { 7670b57cec5SDimitry Andric // The new PHI unions all of the same values together. This is really 7680b57cec5SDimitry Andric // common, so we handle it intelligently here for compile-time speed. 7690b57cec5SDimitry Andric NewLI->setOperand(0, InVal); 7700b57cec5SDimitry Andric delete NewPN; 7710b57cec5SDimitry Andric } else { 7725f757f3fSDimitry Andric InsertNewInstBefore(NewPN, PN.getIterator()); 7730b57cec5SDimitry Andric } 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric // If this was a volatile load that we are merging, make sure to loop through 7760b57cec5SDimitry Andric // and mark all the input loads as non-volatile. If we don't do this, we will 7770b57cec5SDimitry Andric // insert a new volatile load and the old ones will not be deletable. 7781fd87a68SDimitry Andric if (IsVolatile) 7790b57cec5SDimitry Andric for (Value *IncValue : PN.incoming_values()) 7800b57cec5SDimitry Andric cast<LoadInst>(IncValue)->setVolatile(false); 7810b57cec5SDimitry Andric 7820b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewLI, PN); 7830b57cec5SDimitry Andric return NewLI; 7840b57cec5SDimitry Andric } 7850b57cec5SDimitry Andric 7860b57cec5SDimitry Andric /// TODO: This function could handle other cast types, but then it might 7870b57cec5SDimitry Andric /// require special-casing a cast from the 'i1' type. See the comment in 7880b57cec5SDimitry Andric /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. 789e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) { 7900b57cec5SDimitry Andric // We cannot create a new instruction after the PHI if the terminator is an 7910b57cec5SDimitry Andric // EHPad because there is no valid insertion point. 7920b57cec5SDimitry Andric if (Instruction *TI = Phi.getParent()->getTerminator()) 7930b57cec5SDimitry Andric if (TI->isEHPad()) 7940b57cec5SDimitry Andric return nullptr; 7950b57cec5SDimitry Andric 7960b57cec5SDimitry Andric // Early exit for the common case of a phi with two operands. These are 7970b57cec5SDimitry Andric // handled elsewhere. See the comment below where we check the count of zexts 7980b57cec5SDimitry Andric // and constants for more details. 7990b57cec5SDimitry Andric unsigned NumIncomingValues = Phi.getNumIncomingValues(); 8000b57cec5SDimitry Andric if (NumIncomingValues < 3) 8010b57cec5SDimitry Andric return nullptr; 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric // Find the narrower type specified by the first zext. 8040b57cec5SDimitry Andric Type *NarrowType = nullptr; 8050b57cec5SDimitry Andric for (Value *V : Phi.incoming_values()) { 8060b57cec5SDimitry Andric if (auto *Zext = dyn_cast<ZExtInst>(V)) { 8070b57cec5SDimitry Andric NarrowType = Zext->getSrcTy(); 8080b57cec5SDimitry Andric break; 8090b57cec5SDimitry Andric } 8100b57cec5SDimitry Andric } 8110b57cec5SDimitry Andric if (!NarrowType) 8120b57cec5SDimitry Andric return nullptr; 8130b57cec5SDimitry Andric 8140b57cec5SDimitry Andric // Walk the phi operands checking that we only have zexts or constants that 8150b57cec5SDimitry Andric // we can shrink for free. Store the new operands for the new phi. 8160b57cec5SDimitry Andric SmallVector<Value *, 4> NewIncoming; 8170b57cec5SDimitry Andric unsigned NumZexts = 0; 8180b57cec5SDimitry Andric unsigned NumConsts = 0; 8190b57cec5SDimitry Andric for (Value *V : Phi.incoming_values()) { 8200b57cec5SDimitry Andric if (auto *Zext = dyn_cast<ZExtInst>(V)) { 821e8d8bef9SDimitry Andric // All zexts must be identical and have one user. 822e8d8bef9SDimitry Andric if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser()) 8230b57cec5SDimitry Andric return nullptr; 8240b57cec5SDimitry Andric NewIncoming.push_back(Zext->getOperand(0)); 8250b57cec5SDimitry Andric NumZexts++; 8260b57cec5SDimitry Andric } else if (auto *C = dyn_cast<Constant>(V)) { 8270b57cec5SDimitry Andric // Make sure that constants can fit in the new type. 8285f757f3fSDimitry Andric Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType); 8295f757f3fSDimitry Andric if (!Trunc) 8300b57cec5SDimitry Andric return nullptr; 8310b57cec5SDimitry Andric NewIncoming.push_back(Trunc); 8320b57cec5SDimitry Andric NumConsts++; 8330b57cec5SDimitry Andric } else { 8340b57cec5SDimitry Andric // If it's not a cast or a constant, bail out. 8350b57cec5SDimitry Andric return nullptr; 8360b57cec5SDimitry Andric } 8370b57cec5SDimitry Andric } 8380b57cec5SDimitry Andric 8390b57cec5SDimitry Andric // The more common cases of a phi with no constant operands or just one 8400b57cec5SDimitry Andric // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() 8410b57cec5SDimitry Andric // respectively. foldOpIntoPhi() wants to do the opposite transform that is 8420b57cec5SDimitry Andric // performed here. It tries to replicate a cast in the phi operand's basic 8430b57cec5SDimitry Andric // block to expose other folding opportunities. Thus, InstCombine will 8440b57cec5SDimitry Andric // infinite loop without this check. 8450b57cec5SDimitry Andric if (NumConsts == 0 || NumZexts < 2) 8460b57cec5SDimitry Andric return nullptr; 8470b57cec5SDimitry Andric 8480b57cec5SDimitry Andric // All incoming values are zexts or constants that are safe to truncate. 8490b57cec5SDimitry Andric // Create a new phi node of the narrow type, phi together all of the new 8500b57cec5SDimitry Andric // operands, and zext the result back to the original type. 8510b57cec5SDimitry Andric PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, 8520b57cec5SDimitry Andric Phi.getName() + ".shrunk"); 8531fd87a68SDimitry Andric for (unsigned I = 0; I != NumIncomingValues; ++I) 8541fd87a68SDimitry Andric NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I)); 8550b57cec5SDimitry Andric 8565f757f3fSDimitry Andric InsertNewInstBefore(NewPhi, Phi.getIterator()); 8570b57cec5SDimitry Andric return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); 8580b57cec5SDimitry Andric } 8590b57cec5SDimitry Andric 8600b57cec5SDimitry Andric /// If all operands to a PHI node are the same "unary" operator and they all are 8610b57cec5SDimitry Andric /// only used by the PHI, PHI together their inputs, and do the operation once, 8620b57cec5SDimitry Andric /// to the result of the PHI. 863e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) { 8640b57cec5SDimitry Andric // We cannot create a new instruction after the PHI if the terminator is an 8650b57cec5SDimitry Andric // EHPad because there is no valid insertion point. 8660b57cec5SDimitry Andric if (Instruction *TI = PN.getParent()->getTerminator()) 8670b57cec5SDimitry Andric if (TI->isEHPad()) 8680b57cec5SDimitry Andric return nullptr; 8690b57cec5SDimitry Andric 8700b57cec5SDimitry Andric Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 8710b57cec5SDimitry Andric 8720b57cec5SDimitry Andric if (isa<GetElementPtrInst>(FirstInst)) 873e8d8bef9SDimitry Andric return foldPHIArgGEPIntoPHI(PN); 8740b57cec5SDimitry Andric if (isa<LoadInst>(FirstInst)) 875e8d8bef9SDimitry Andric return foldPHIArgLoadIntoPHI(PN); 876e8d8bef9SDimitry Andric if (isa<InsertValueInst>(FirstInst)) 877e8d8bef9SDimitry Andric return foldPHIArgInsertValueInstructionIntoPHI(PN); 878e8d8bef9SDimitry Andric if (isa<ExtractValueInst>(FirstInst)) 879e8d8bef9SDimitry Andric return foldPHIArgExtractValueInstructionIntoPHI(PN); 8800b57cec5SDimitry Andric 8810b57cec5SDimitry Andric // Scan the instruction, looking for input operations that can be folded away. 8820b57cec5SDimitry Andric // If all input operands to the phi are the same instruction (e.g. a cast from 8830b57cec5SDimitry Andric // the same type or "+42") we can pull the operation through the PHI, reducing 8840b57cec5SDimitry Andric // code size and simplifying code. 8850b57cec5SDimitry Andric Constant *ConstantOp = nullptr; 8860b57cec5SDimitry Andric Type *CastSrcTy = nullptr; 8870b57cec5SDimitry Andric 8880b57cec5SDimitry Andric if (isa<CastInst>(FirstInst)) { 8890b57cec5SDimitry Andric CastSrcTy = FirstInst->getOperand(0)->getType(); 8900b57cec5SDimitry Andric 8910b57cec5SDimitry Andric // Be careful about transforming integer PHIs. We don't want to pessimize 8920b57cec5SDimitry Andric // the code by turning an i32 into an i1293. 8930b57cec5SDimitry Andric if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 8940b57cec5SDimitry Andric if (!shouldChangeType(PN.getType(), CastSrcTy)) 8950b57cec5SDimitry Andric return nullptr; 8960b57cec5SDimitry Andric } 8970b57cec5SDimitry Andric } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 8980b57cec5SDimitry Andric // Can fold binop, compare or shift here if the RHS is a constant, 8990b57cec5SDimitry Andric // otherwise call FoldPHIArgBinOpIntoPHI. 9000b57cec5SDimitry Andric ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 9010b57cec5SDimitry Andric if (!ConstantOp) 902e8d8bef9SDimitry Andric return foldPHIArgBinOpIntoPHI(PN); 9030b57cec5SDimitry Andric } else { 9040b57cec5SDimitry Andric return nullptr; // Cannot fold this operation. 9050b57cec5SDimitry Andric } 9060b57cec5SDimitry Andric 9070b57cec5SDimitry Andric // Check to see if all arguments are the same operation. 9081fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) { 9091fd87a68SDimitry Andric Instruction *I = dyn_cast<Instruction>(V); 910e8d8bef9SDimitry Andric if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst)) 9110b57cec5SDimitry Andric return nullptr; 9120b57cec5SDimitry Andric if (CastSrcTy) { 9130b57cec5SDimitry Andric if (I->getOperand(0)->getType() != CastSrcTy) 9140b57cec5SDimitry Andric return nullptr; // Cast operation must match. 9150b57cec5SDimitry Andric } else if (I->getOperand(1) != ConstantOp) { 9160b57cec5SDimitry Andric return nullptr; 9170b57cec5SDimitry Andric } 9180b57cec5SDimitry Andric } 9190b57cec5SDimitry Andric 9200b57cec5SDimitry Andric // Okay, they are all the same operation. Create a new PHI node of the 9210b57cec5SDimitry Andric // correct type, and PHI together all of the LHS's of the instructions. 9220b57cec5SDimitry Andric PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 9230b57cec5SDimitry Andric PN.getNumIncomingValues(), 9240b57cec5SDimitry Andric PN.getName()+".in"); 9250b57cec5SDimitry Andric 9260b57cec5SDimitry Andric Value *InVal = FirstInst->getOperand(0); 9270b57cec5SDimitry Andric NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 9280b57cec5SDimitry Andric 9290b57cec5SDimitry Andric // Add all operands to the new PHI. 9301fd87a68SDimitry Andric for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { 9311fd87a68SDimitry Andric BasicBlock *BB = std::get<0>(Incoming); 9321fd87a68SDimitry Andric Value *V = std::get<1>(Incoming); 9331fd87a68SDimitry Andric Value *NewInVal = cast<Instruction>(V)->getOperand(0); 9340b57cec5SDimitry Andric if (NewInVal != InVal) 9350b57cec5SDimitry Andric InVal = nullptr; 9361fd87a68SDimitry Andric NewPN->addIncoming(NewInVal, BB); 9370b57cec5SDimitry Andric } 9380b57cec5SDimitry Andric 9390b57cec5SDimitry Andric Value *PhiVal; 9400b57cec5SDimitry Andric if (InVal) { 9410b57cec5SDimitry Andric // The new PHI unions all of the same values together. This is really 9420b57cec5SDimitry Andric // common, so we handle it intelligently here for compile-time speed. 9430b57cec5SDimitry Andric PhiVal = InVal; 9440b57cec5SDimitry Andric delete NewPN; 9450b57cec5SDimitry Andric } else { 9465f757f3fSDimitry Andric InsertNewInstBefore(NewPN, PN.getIterator()); 9470b57cec5SDimitry Andric PhiVal = NewPN; 9480b57cec5SDimitry Andric } 9490b57cec5SDimitry Andric 9500b57cec5SDimitry Andric // Insert and return the new operation. 9510b57cec5SDimitry Andric if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 9520b57cec5SDimitry Andric CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 9530b57cec5SDimitry Andric PN.getType()); 9540b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewCI, PN); 9550b57cec5SDimitry Andric return NewCI; 9560b57cec5SDimitry Andric } 9570b57cec5SDimitry Andric 9580b57cec5SDimitry Andric if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 9590b57cec5SDimitry Andric BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 9600b57cec5SDimitry Andric BinOp->copyIRFlags(PN.getIncomingValue(0)); 9610b57cec5SDimitry Andric 9621fd87a68SDimitry Andric for (Value *V : drop_begin(PN.incoming_values())) 9631fd87a68SDimitry Andric BinOp->andIRFlags(V); 9640b57cec5SDimitry Andric 9650b57cec5SDimitry Andric PHIArgMergedDebugLoc(BinOp, PN); 9660b57cec5SDimitry Andric return BinOp; 9670b57cec5SDimitry Andric } 9680b57cec5SDimitry Andric 9690b57cec5SDimitry Andric CmpInst *CIOp = cast<CmpInst>(FirstInst); 9700b57cec5SDimitry Andric CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 9710b57cec5SDimitry Andric PhiVal, ConstantOp); 9720b57cec5SDimitry Andric PHIArgMergedDebugLoc(NewCI, PN); 9730b57cec5SDimitry Andric return NewCI; 9740b57cec5SDimitry Andric } 9750b57cec5SDimitry Andric 9760b57cec5SDimitry Andric /// Return true if this PHI node is only used by a PHI node cycle that is dead. 9771fd87a68SDimitry Andric static bool isDeadPHICycle(PHINode *PN, 9780b57cec5SDimitry Andric SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) { 9790b57cec5SDimitry Andric if (PN->use_empty()) return true; 9800b57cec5SDimitry Andric if (!PN->hasOneUse()) return false; 9810b57cec5SDimitry Andric 9820b57cec5SDimitry Andric // Remember this node, and if we find the cycle, return. 9830b57cec5SDimitry Andric if (!PotentiallyDeadPHIs.insert(PN).second) 9840b57cec5SDimitry Andric return true; 9850b57cec5SDimitry Andric 9860b57cec5SDimitry Andric // Don't scan crazily complex things. 9870b57cec5SDimitry Andric if (PotentiallyDeadPHIs.size() == 16) 9880b57cec5SDimitry Andric return false; 9890b57cec5SDimitry Andric 9900b57cec5SDimitry Andric if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) 9911fd87a68SDimitry Andric return isDeadPHICycle(PU, PotentiallyDeadPHIs); 9920b57cec5SDimitry Andric 9930b57cec5SDimitry Andric return false; 9940b57cec5SDimitry Andric } 9950b57cec5SDimitry Andric 9960b57cec5SDimitry Andric /// Return true if this phi node is always equal to NonPhiInVal. 9970b57cec5SDimitry Andric /// This happens with mutually cyclic phi nodes like: 9980b57cec5SDimitry Andric /// z = some value; x = phi (y, z); y = phi (x, z) 9995f757f3fSDimitry Andric static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal, 10000b57cec5SDimitry Andric SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) { 10010b57cec5SDimitry Andric // See if we already saw this PHI node. 10020b57cec5SDimitry Andric if (!ValueEqualPHIs.insert(PN).second) 10030b57cec5SDimitry Andric return true; 10040b57cec5SDimitry Andric 10050b57cec5SDimitry Andric // Don't scan crazily complex things. 10060b57cec5SDimitry Andric if (ValueEqualPHIs.size() == 16) 10070b57cec5SDimitry Andric return false; 10080b57cec5SDimitry Andric 10090b57cec5SDimitry Andric // Scan the operands to see if they are either phi nodes or are equal to 10100b57cec5SDimitry Andric // the value. 10110b57cec5SDimitry Andric for (Value *Op : PN->incoming_values()) { 10120b57cec5SDimitry Andric if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 10135f757f3fSDimitry Andric if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) { 10145f757f3fSDimitry Andric if (NonPhiInVal) 10150b57cec5SDimitry Andric return false; 10165f757f3fSDimitry Andric NonPhiInVal = OpPN; 10175f757f3fSDimitry Andric } 10180b57cec5SDimitry Andric } else if (Op != NonPhiInVal) 10190b57cec5SDimitry Andric return false; 10200b57cec5SDimitry Andric } 10210b57cec5SDimitry Andric 10220b57cec5SDimitry Andric return true; 10230b57cec5SDimitry Andric } 10240b57cec5SDimitry Andric 10250b57cec5SDimitry Andric /// Return an existing non-zero constant if this phi node has one, otherwise 10260b57cec5SDimitry Andric /// return constant 1. 10271fd87a68SDimitry Andric static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) { 10280b57cec5SDimitry Andric assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); 10290b57cec5SDimitry Andric for (Value *V : PN.operands()) 10300b57cec5SDimitry Andric if (auto *ConstVA = dyn_cast<ConstantInt>(V)) 10310b57cec5SDimitry Andric if (!ConstVA->isZero()) 10320b57cec5SDimitry Andric return ConstVA; 10330b57cec5SDimitry Andric return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); 10340b57cec5SDimitry Andric } 10350b57cec5SDimitry Andric 10360b57cec5SDimitry Andric namespace { 10370b57cec5SDimitry Andric struct PHIUsageRecord { 10380b57cec5SDimitry Andric unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 10390b57cec5SDimitry Andric unsigned Shift; // The amount shifted. 10400b57cec5SDimitry Andric Instruction *Inst; // The trunc instruction. 10410b57cec5SDimitry Andric 10421fd87a68SDimitry Andric PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User) 10431fd87a68SDimitry Andric : PHIId(Pn), Shift(Sh), Inst(User) {} 10440b57cec5SDimitry Andric 10450b57cec5SDimitry Andric bool operator<(const PHIUsageRecord &RHS) const { 10460b57cec5SDimitry Andric if (PHIId < RHS.PHIId) return true; 10470b57cec5SDimitry Andric if (PHIId > RHS.PHIId) return false; 10480b57cec5SDimitry Andric if (Shift < RHS.Shift) return true; 10490b57cec5SDimitry Andric if (Shift > RHS.Shift) return false; 10500b57cec5SDimitry Andric return Inst->getType()->getPrimitiveSizeInBits() < 10510b57cec5SDimitry Andric RHS.Inst->getType()->getPrimitiveSizeInBits(); 10520b57cec5SDimitry Andric } 10530b57cec5SDimitry Andric }; 10540b57cec5SDimitry Andric 10550b57cec5SDimitry Andric struct LoweredPHIRecord { 10560b57cec5SDimitry Andric PHINode *PN; // The PHI that was lowered. 10570b57cec5SDimitry Andric unsigned Shift; // The amount shifted. 10580b57cec5SDimitry Andric unsigned Width; // The width extracted. 10590b57cec5SDimitry Andric 10601fd87a68SDimitry Andric LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty) 10611fd87a68SDimitry Andric : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 10620b57cec5SDimitry Andric 10630b57cec5SDimitry Andric // Ctor form used by DenseMap. 10641fd87a68SDimitry Andric LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {} 10650b57cec5SDimitry Andric }; 1066e8d8bef9SDimitry Andric } // namespace 10670b57cec5SDimitry Andric 10680b57cec5SDimitry Andric namespace llvm { 10690b57cec5SDimitry Andric template<> 10700b57cec5SDimitry Andric struct DenseMapInfo<LoweredPHIRecord> { 10710b57cec5SDimitry Andric static inline LoweredPHIRecord getEmptyKey() { 10720b57cec5SDimitry Andric return LoweredPHIRecord(nullptr, 0); 10730b57cec5SDimitry Andric } 10740b57cec5SDimitry Andric static inline LoweredPHIRecord getTombstoneKey() { 10750b57cec5SDimitry Andric return LoweredPHIRecord(nullptr, 1); 10760b57cec5SDimitry Andric } 10770b57cec5SDimitry Andric static unsigned getHashValue(const LoweredPHIRecord &Val) { 10780b57cec5SDimitry Andric return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 10790b57cec5SDimitry Andric (Val.Width>>3); 10800b57cec5SDimitry Andric } 10810b57cec5SDimitry Andric static bool isEqual(const LoweredPHIRecord &LHS, 10820b57cec5SDimitry Andric const LoweredPHIRecord &RHS) { 10830b57cec5SDimitry Andric return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 10840b57cec5SDimitry Andric LHS.Width == RHS.Width; 10850b57cec5SDimitry Andric } 10860b57cec5SDimitry Andric }; 1087e8d8bef9SDimitry Andric } // namespace llvm 10880b57cec5SDimitry Andric 10890b57cec5SDimitry Andric 10900b57cec5SDimitry Andric /// This is an integer PHI and we know that it has an illegal type: see if it is 10910b57cec5SDimitry Andric /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into 10920b57cec5SDimitry Andric /// the various pieces being extracted. This sort of thing is introduced when 10930b57cec5SDimitry Andric /// SROA promotes an aggregate to large integer values. 10940b57cec5SDimitry Andric /// 10950b57cec5SDimitry Andric /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 10960b57cec5SDimitry Andric /// inttoptr. We should produce new PHIs in the right type. 10970b57cec5SDimitry Andric /// 1098e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 10990b57cec5SDimitry Andric // PHIUsers - Keep track of all of the truncated values extracted from a set 11000b57cec5SDimitry Andric // of PHIs, along with their offset. These are the things we want to rewrite. 11010b57cec5SDimitry Andric SmallVector<PHIUsageRecord, 16> PHIUsers; 11020b57cec5SDimitry Andric 11030b57cec5SDimitry Andric // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 11040b57cec5SDimitry Andric // nodes which are extracted from. PHIsToSlice is a set we use to avoid 11050b57cec5SDimitry Andric // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 11060b57cec5SDimitry Andric // check the uses of (to ensure they are all extracts). 11070b57cec5SDimitry Andric SmallVector<PHINode*, 8> PHIsToSlice; 11080b57cec5SDimitry Andric SmallPtrSet<PHINode*, 8> PHIsInspected; 11090b57cec5SDimitry Andric 11100b57cec5SDimitry Andric PHIsToSlice.push_back(&FirstPhi); 11110b57cec5SDimitry Andric PHIsInspected.insert(&FirstPhi); 11120b57cec5SDimitry Andric 11130b57cec5SDimitry Andric for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 11140b57cec5SDimitry Andric PHINode *PN = PHIsToSlice[PHIId]; 11150b57cec5SDimitry Andric 11160b57cec5SDimitry Andric // Scan the input list of the PHI. If any input is an invoke, and if the 11170b57cec5SDimitry Andric // input is defined in the predecessor, then we won't be split the critical 11180b57cec5SDimitry Andric // edge which is required to insert a truncate. Because of this, we have to 11190b57cec5SDimitry Andric // bail out. 11201fd87a68SDimitry Andric for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { 11211fd87a68SDimitry Andric BasicBlock *BB = std::get<0>(Incoming); 11221fd87a68SDimitry Andric Value *V = std::get<1>(Incoming); 11231fd87a68SDimitry Andric InvokeInst *II = dyn_cast<InvokeInst>(V); 11241fd87a68SDimitry Andric if (!II) 11251fd87a68SDimitry Andric continue; 11261fd87a68SDimitry Andric if (II->getParent() != BB) 11270b57cec5SDimitry Andric continue; 11280b57cec5SDimitry Andric 11290b57cec5SDimitry Andric // If we have a phi, and if it's directly in the predecessor, then we have 11300b57cec5SDimitry Andric // a critical edge where we need to put the truncate. Since we can't 11310b57cec5SDimitry Andric // split the edge in instcombine, we have to bail out. 11320b57cec5SDimitry Andric return nullptr; 11330b57cec5SDimitry Andric } 11340b57cec5SDimitry Andric 113581ad6265SDimitry Andric // If the incoming value is a PHI node before a catchswitch, we cannot 113681ad6265SDimitry Andric // extract the value within that BB because we cannot insert any non-PHI 113781ad6265SDimitry Andric // instructions in the BB. 113881ad6265SDimitry Andric for (auto *Pred : PN->blocks()) 113981ad6265SDimitry Andric if (Pred->getFirstInsertionPt() == Pred->end()) 114081ad6265SDimitry Andric return nullptr; 114181ad6265SDimitry Andric 11420b57cec5SDimitry Andric for (User *U : PN->users()) { 11430b57cec5SDimitry Andric Instruction *UserI = cast<Instruction>(U); 11440b57cec5SDimitry Andric 11450b57cec5SDimitry Andric // If the user is a PHI, inspect its uses recursively. 11460b57cec5SDimitry Andric if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { 11470b57cec5SDimitry Andric if (PHIsInspected.insert(UserPN).second) 11480b57cec5SDimitry Andric PHIsToSlice.push_back(UserPN); 11490b57cec5SDimitry Andric continue; 11500b57cec5SDimitry Andric } 11510b57cec5SDimitry Andric 11520b57cec5SDimitry Andric // Truncates are always ok. 11530b57cec5SDimitry Andric if (isa<TruncInst>(UserI)) { 11540b57cec5SDimitry Andric PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); 11550b57cec5SDimitry Andric continue; 11560b57cec5SDimitry Andric } 11570b57cec5SDimitry Andric 11580b57cec5SDimitry Andric // Otherwise it must be a lshr which can only be used by one trunc. 11590b57cec5SDimitry Andric if (UserI->getOpcode() != Instruction::LShr || 11600b57cec5SDimitry Andric !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || 11610b57cec5SDimitry Andric !isa<ConstantInt>(UserI->getOperand(1))) 11620b57cec5SDimitry Andric return nullptr; 11630b57cec5SDimitry Andric 11640b57cec5SDimitry Andric // Bail on out of range shifts. 11650b57cec5SDimitry Andric unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); 11660b57cec5SDimitry Andric if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) 11670b57cec5SDimitry Andric return nullptr; 11680b57cec5SDimitry Andric 11690b57cec5SDimitry Andric unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); 11700b57cec5SDimitry Andric PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); 11710b57cec5SDimitry Andric } 11720b57cec5SDimitry Andric } 11730b57cec5SDimitry Andric 11740b57cec5SDimitry Andric // If we have no users, they must be all self uses, just nuke the PHI. 11750b57cec5SDimitry Andric if (PHIUsers.empty()) 1176fe6060f1SDimitry Andric return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType())); 11770b57cec5SDimitry Andric 11780b57cec5SDimitry Andric // If this phi node is transformable, create new PHIs for all the pieces 11790b57cec5SDimitry Andric // extracted out of it. First, sort the users by their offset and size. 11800b57cec5SDimitry Andric array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 11810b57cec5SDimitry Andric 11820b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; 11831fd87a68SDimitry Andric for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs() 11841fd87a68SDimitry Andric << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n'); 11850b57cec5SDimitry Andric 11860b57cec5SDimitry Andric // PredValues - This is a temporary used when rewriting PHI nodes. It is 11870b57cec5SDimitry Andric // hoisted out here to avoid construction/destruction thrashing. 11880b57cec5SDimitry Andric DenseMap<BasicBlock*, Value*> PredValues; 11890b57cec5SDimitry Andric 11900b57cec5SDimitry Andric // ExtractedVals - Each new PHI we introduce is saved here so we don't 11910b57cec5SDimitry Andric // introduce redundant PHIs. 11920b57cec5SDimitry Andric DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 11930b57cec5SDimitry Andric 11940b57cec5SDimitry Andric for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 11950b57cec5SDimitry Andric unsigned PHIId = PHIUsers[UserI].PHIId; 11960b57cec5SDimitry Andric PHINode *PN = PHIsToSlice[PHIId]; 11970b57cec5SDimitry Andric unsigned Offset = PHIUsers[UserI].Shift; 11980b57cec5SDimitry Andric Type *Ty = PHIUsers[UserI].Inst->getType(); 11990b57cec5SDimitry Andric 12000b57cec5SDimitry Andric PHINode *EltPHI; 12010b57cec5SDimitry Andric 12020b57cec5SDimitry Andric // If we've already lowered a user like this, reuse the previously lowered 12030b57cec5SDimitry Andric // value. 12040b57cec5SDimitry Andric if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { 12050b57cec5SDimitry Andric 12060b57cec5SDimitry Andric // Otherwise, Create the new PHI node for this user. 12070b57cec5SDimitry Andric EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 12080fca6ea1SDimitry Andric PN->getName() + ".off" + Twine(Offset), 12090fca6ea1SDimitry Andric PN->getIterator()); 12100b57cec5SDimitry Andric assert(EltPHI->getType() != PN->getType() && 12110b57cec5SDimitry Andric "Truncate didn't shrink phi?"); 12120b57cec5SDimitry Andric 12131fd87a68SDimitry Andric for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { 12141fd87a68SDimitry Andric BasicBlock *Pred = std::get<0>(Incoming); 12151fd87a68SDimitry Andric Value *InVal = std::get<1>(Incoming); 12160b57cec5SDimitry Andric Value *&PredVal = PredValues[Pred]; 12170b57cec5SDimitry Andric 12180b57cec5SDimitry Andric // If we already have a value for this predecessor, reuse it. 12190b57cec5SDimitry Andric if (PredVal) { 12200b57cec5SDimitry Andric EltPHI->addIncoming(PredVal, Pred); 12210b57cec5SDimitry Andric continue; 12220b57cec5SDimitry Andric } 12230b57cec5SDimitry Andric 12240b57cec5SDimitry Andric // Handle the PHI self-reuse case. 12250b57cec5SDimitry Andric if (InVal == PN) { 12260b57cec5SDimitry Andric PredVal = EltPHI; 12270b57cec5SDimitry Andric EltPHI->addIncoming(PredVal, Pred); 12280b57cec5SDimitry Andric continue; 12290b57cec5SDimitry Andric } 12300b57cec5SDimitry Andric 12310b57cec5SDimitry Andric if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 12320b57cec5SDimitry Andric // If the incoming value was a PHI, and if it was one of the PHIs we 12330b57cec5SDimitry Andric // already rewrote it, just use the lowered value. 12340b57cec5SDimitry Andric if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 12350b57cec5SDimitry Andric PredVal = Res; 12360b57cec5SDimitry Andric EltPHI->addIncoming(PredVal, Pred); 12370b57cec5SDimitry Andric continue; 12380b57cec5SDimitry Andric } 12390b57cec5SDimitry Andric } 12400b57cec5SDimitry Andric 12410b57cec5SDimitry Andric // Otherwise, do an extract in the predecessor. 12420b57cec5SDimitry Andric Builder.SetInsertPoint(Pred->getTerminator()); 12430b57cec5SDimitry Andric Value *Res = InVal; 12440b57cec5SDimitry Andric if (Offset) 12451fd87a68SDimitry Andric Res = Builder.CreateLShr( 12461fd87a68SDimitry Andric Res, ConstantInt::get(InVal->getType(), Offset), "extract"); 12470b57cec5SDimitry Andric Res = Builder.CreateTrunc(Res, Ty, "extract.t"); 12480b57cec5SDimitry Andric PredVal = Res; 12490b57cec5SDimitry Andric EltPHI->addIncoming(Res, Pred); 12500b57cec5SDimitry Andric 12510b57cec5SDimitry Andric // If the incoming value was a PHI, and if it was one of the PHIs we are 12520b57cec5SDimitry Andric // rewriting, we will ultimately delete the code we inserted. This 12530b57cec5SDimitry Andric // means we need to revisit that PHI to make sure we extract out the 12540b57cec5SDimitry Andric // needed piece. 12551fd87a68SDimitry Andric if (PHINode *OldInVal = dyn_cast<PHINode>(InVal)) 12560b57cec5SDimitry Andric if (PHIsInspected.count(OldInVal)) { 12570b57cec5SDimitry Andric unsigned RefPHIId = 12580b57cec5SDimitry Andric find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); 12591fd87a68SDimitry Andric PHIUsers.push_back( 12601fd87a68SDimitry Andric PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res))); 12610b57cec5SDimitry Andric ++UserE; 12620b57cec5SDimitry Andric } 12630b57cec5SDimitry Andric } 12640b57cec5SDimitry Andric PredValues.clear(); 12650b57cec5SDimitry Andric 12660b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " 12670b57cec5SDimitry Andric << *EltPHI << '\n'); 12680b57cec5SDimitry Andric ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 12690b57cec5SDimitry Andric } 12700b57cec5SDimitry Andric 12710b57cec5SDimitry Andric // Replace the use of this piece with the PHI node. 12720b57cec5SDimitry Andric replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 12730b57cec5SDimitry Andric } 12740b57cec5SDimitry Andric 12750b57cec5SDimitry Andric // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 1276fe6060f1SDimitry Andric // with poison. 1277fe6060f1SDimitry Andric Value *Poison = PoisonValue::get(FirstPhi.getType()); 12781fd87a68SDimitry Andric for (PHINode *PHI : drop_begin(PHIsToSlice)) 12791fd87a68SDimitry Andric replaceInstUsesWith(*PHI, Poison); 1280fe6060f1SDimitry Andric return replaceInstUsesWith(FirstPhi, Poison); 12810b57cec5SDimitry Andric } 12820b57cec5SDimitry Andric 12831fd87a68SDimitry Andric static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, 1284e8d8bef9SDimitry Andric const DominatorTree &DT) { 1285e8d8bef9SDimitry Andric // Simplify the following patterns: 1286e8d8bef9SDimitry Andric // if (cond) 1287e8d8bef9SDimitry Andric // / \ 1288e8d8bef9SDimitry Andric // ... ... 1289e8d8bef9SDimitry Andric // \ / 1290e8d8bef9SDimitry Andric // phi [true] [false] 129181ad6265SDimitry Andric // and 129281ad6265SDimitry Andric // switch (cond) 129381ad6265SDimitry Andric // case v1: / \ case v2: 129481ad6265SDimitry Andric // ... ... 129581ad6265SDimitry Andric // \ / 129681ad6265SDimitry Andric // phi [v1] [v2] 1297e8d8bef9SDimitry Andric // Make sure all inputs are constants. 1298e8d8bef9SDimitry Andric if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); })) 1299e8d8bef9SDimitry Andric return nullptr; 1300e8d8bef9SDimitry Andric 1301e8d8bef9SDimitry Andric BasicBlock *BB = PN.getParent(); 1302e8d8bef9SDimitry Andric // Do not bother with unreachable instructions. 1303e8d8bef9SDimitry Andric if (!DT.isReachableFromEntry(BB)) 1304e8d8bef9SDimitry Andric return nullptr; 1305e8d8bef9SDimitry Andric 130681ad6265SDimitry Andric // Determine which value the condition of the idom has for which successor. 130781ad6265SDimitry Andric LLVMContext &Context = PN.getContext(); 1308e8d8bef9SDimitry Andric auto *IDom = DT.getNode(BB)->getIDom()->getBlock(); 130981ad6265SDimitry Andric Value *Cond; 131081ad6265SDimitry Andric SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue; 131181ad6265SDimitry Andric SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount; 131281ad6265SDimitry Andric auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) { 131381ad6265SDimitry Andric SuccForValue[C] = Succ; 131481ad6265SDimitry Andric ++SuccCount[Succ]; 131581ad6265SDimitry Andric }; 131681ad6265SDimitry Andric if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) { 131781ad6265SDimitry Andric if (BI->isUnconditional()) 131881ad6265SDimitry Andric return nullptr; 131981ad6265SDimitry Andric 132081ad6265SDimitry Andric Cond = BI->getCondition(); 132181ad6265SDimitry Andric AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0)); 132281ad6265SDimitry Andric AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1)); 132381ad6265SDimitry Andric } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) { 132481ad6265SDimitry Andric Cond = SI->getCondition(); 132581ad6265SDimitry Andric ++SuccCount[SI->getDefaultDest()]; 132681ad6265SDimitry Andric for (auto Case : SI->cases()) 132781ad6265SDimitry Andric AddSucc(Case.getCaseValue(), Case.getCaseSuccessor()); 132881ad6265SDimitry Andric } else { 132981ad6265SDimitry Andric return nullptr; 133081ad6265SDimitry Andric } 133181ad6265SDimitry Andric 133281ad6265SDimitry Andric if (Cond->getType() != PN.getType()) 1333e8d8bef9SDimitry Andric return nullptr; 1334e8d8bef9SDimitry Andric 1335e8d8bef9SDimitry Andric // Check that edges outgoing from the idom's terminators dominate respective 1336e8d8bef9SDimitry Andric // inputs of the Phi. 1337bdd1243dSDimitry Andric std::optional<bool> Invert; 133881ad6265SDimitry Andric for (auto Pair : zip(PN.incoming_values(), PN.blocks())) { 133981ad6265SDimitry Andric auto *Input = cast<ConstantInt>(std::get<0>(Pair)); 134081ad6265SDimitry Andric BasicBlock *Pred = std::get<1>(Pair); 134181ad6265SDimitry Andric auto IsCorrectInput = [&](ConstantInt *Input) { 134281ad6265SDimitry Andric // The input needs to be dominated by the corresponding edge of the idom. 134381ad6265SDimitry Andric // This edge cannot be a multi-edge, as that would imply that multiple 134481ad6265SDimitry Andric // different condition values follow the same edge. 134581ad6265SDimitry Andric auto It = SuccForValue.find(Input); 134681ad6265SDimitry Andric return It != SuccForValue.end() && SuccCount[It->second] == 1 && 134781ad6265SDimitry Andric DT.dominates(BasicBlockEdge(IDom, It->second), 134881ad6265SDimitry Andric BasicBlockEdge(Pred, BB)); 134981ad6265SDimitry Andric }; 1350e8d8bef9SDimitry Andric 135181ad6265SDimitry Andric // Depending on the constant, the condition may need to be inverted. 135281ad6265SDimitry Andric bool NeedsInvert; 135381ad6265SDimitry Andric if (IsCorrectInput(Input)) 135481ad6265SDimitry Andric NeedsInvert = false; 135581ad6265SDimitry Andric else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input)))) 135681ad6265SDimitry Andric NeedsInvert = true; 135781ad6265SDimitry Andric else 135881ad6265SDimitry Andric return nullptr; 1359e8d8bef9SDimitry Andric 136081ad6265SDimitry Andric // Make sure the inversion requirement is always the same. 136181ad6265SDimitry Andric if (Invert && *Invert != NeedsInvert) 136281ad6265SDimitry Andric return nullptr; 136381ad6265SDimitry Andric 136481ad6265SDimitry Andric Invert = NeedsInvert; 136581ad6265SDimitry Andric } 136681ad6265SDimitry Andric 136781ad6265SDimitry Andric if (!*Invert) 1368e8d8bef9SDimitry Andric return Cond; 136981ad6265SDimitry Andric 1370e8d8bef9SDimitry Andric // This Phi is actually opposite to branching condition of IDom. We invert 1371e8d8bef9SDimitry Andric // the condition that will potentially open up some opportunities for 1372e8d8bef9SDimitry Andric // sinking. 1373e8d8bef9SDimitry Andric auto InsertPt = BB->getFirstInsertionPt(); 1374e8d8bef9SDimitry Andric if (InsertPt != BB->end()) { 13755f757f3fSDimitry Andric Self.Builder.SetInsertPoint(&*BB, InsertPt); 1376e8d8bef9SDimitry Andric return Self.Builder.CreateNot(Cond); 1377e8d8bef9SDimitry Andric } 1378e8d8bef9SDimitry Andric 1379e8d8bef9SDimitry Andric return nullptr; 1380e8d8bef9SDimitry Andric } 1381e8d8bef9SDimitry Andric 13820fca6ea1SDimitry Andric // Fold iv = phi(start, iv.next = iv2.next op start) 13830fca6ea1SDimitry Andric // where iv2 = phi(iv2.start, iv2.next = iv2 + iv2.step) 13840fca6ea1SDimitry Andric // and iv2.start op start = start 13850fca6ea1SDimitry Andric // to iv = iv2 op start 13860fca6ea1SDimitry Andric static Value *foldDependentIVs(PHINode &PN, IRBuilderBase &Builder) { 13870fca6ea1SDimitry Andric BasicBlock *BB = PN.getParent(); 13880fca6ea1SDimitry Andric if (PN.getNumIncomingValues() != 2) 13890fca6ea1SDimitry Andric return nullptr; 13900fca6ea1SDimitry Andric 13910fca6ea1SDimitry Andric Value *Start; 13920fca6ea1SDimitry Andric Instruction *IvNext; 13930fca6ea1SDimitry Andric BinaryOperator *Iv2Next; 13940fca6ea1SDimitry Andric auto MatchOuterIV = [&](Value *V1, Value *V2) { 13950fca6ea1SDimitry Andric if (match(V2, m_c_BinOp(m_Specific(V1), m_BinOp(Iv2Next))) || 13960fca6ea1SDimitry Andric match(V2, m_GEP(m_Specific(V1), m_BinOp(Iv2Next)))) { 13970fca6ea1SDimitry Andric Start = V1; 13980fca6ea1SDimitry Andric IvNext = cast<Instruction>(V2); 13990fca6ea1SDimitry Andric return true; 14000fca6ea1SDimitry Andric } 14010fca6ea1SDimitry Andric return false; 14020fca6ea1SDimitry Andric }; 14030fca6ea1SDimitry Andric 14040fca6ea1SDimitry Andric if (!MatchOuterIV(PN.getIncomingValue(0), PN.getIncomingValue(1)) && 14050fca6ea1SDimitry Andric !MatchOuterIV(PN.getIncomingValue(1), PN.getIncomingValue(0))) 14060fca6ea1SDimitry Andric return nullptr; 14070fca6ea1SDimitry Andric 14080fca6ea1SDimitry Andric PHINode *Iv2; 14090fca6ea1SDimitry Andric Value *Iv2Start, *Iv2Step; 14100fca6ea1SDimitry Andric if (!matchSimpleRecurrence(Iv2Next, Iv2, Iv2Start, Iv2Step) || 14110fca6ea1SDimitry Andric Iv2->getParent() != BB) 14120fca6ea1SDimitry Andric return nullptr; 14130fca6ea1SDimitry Andric 14140fca6ea1SDimitry Andric auto *BO = dyn_cast<BinaryOperator>(IvNext); 14150fca6ea1SDimitry Andric Constant *Identity = 14160fca6ea1SDimitry Andric BO ? ConstantExpr::getBinOpIdentity(BO->getOpcode(), Iv2Start->getType()) 14170fca6ea1SDimitry Andric : Constant::getNullValue(Iv2Start->getType()); 14180fca6ea1SDimitry Andric if (Iv2Start != Identity) 14190fca6ea1SDimitry Andric return nullptr; 14200fca6ea1SDimitry Andric 14210fca6ea1SDimitry Andric Builder.SetInsertPoint(&*BB, BB->getFirstInsertionPt()); 14220fca6ea1SDimitry Andric if (!BO) { 14230fca6ea1SDimitry Andric auto *GEP = cast<GEPOperator>(IvNext); 14240fca6ea1SDimitry Andric return Builder.CreateGEP(GEP->getSourceElementType(), Start, Iv2, "", 14250fca6ea1SDimitry Andric cast<GEPOperator>(IvNext)->getNoWrapFlags()); 14260fca6ea1SDimitry Andric } 14270fca6ea1SDimitry Andric 14280fca6ea1SDimitry Andric assert(BO->isCommutative() && "Must be commutative"); 14290fca6ea1SDimitry Andric Value *Res = Builder.CreateBinOp(BO->getOpcode(), Iv2, Start); 14300fca6ea1SDimitry Andric cast<Instruction>(Res)->copyIRFlags(BO); 14310fca6ea1SDimitry Andric return Res; 14320fca6ea1SDimitry Andric } 14330fca6ea1SDimitry Andric 14340b57cec5SDimitry Andric // PHINode simplification 14350b57cec5SDimitry Andric // 1436e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) { 143781ad6265SDimitry Andric if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN))) 14380b57cec5SDimitry Andric return replaceInstUsesWith(PN, V); 14390b57cec5SDimitry Andric 1440e8d8bef9SDimitry Andric if (Instruction *Result = foldPHIArgZextsIntoPHI(PN)) 14410b57cec5SDimitry Andric return Result; 14420b57cec5SDimitry Andric 1443349cc55cSDimitry Andric if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN)) 1444349cc55cSDimitry Andric return Result; 1445349cc55cSDimitry Andric 14460b57cec5SDimitry Andric // If all PHI operands are the same operation, pull them through the PHI, 14470b57cec5SDimitry Andric // reducing code size. 144806c3fb27SDimitry Andric auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0)); 144906c3fb27SDimitry Andric auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1)); 145006c3fb27SDimitry Andric if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() && 145106c3fb27SDimitry Andric Inst0->hasOneUser()) 1452e8d8bef9SDimitry Andric if (Instruction *Result = foldPHIArgOpIntoPHI(PN)) 14530b57cec5SDimitry Andric return Result; 14540b57cec5SDimitry Andric 1455fe6060f1SDimitry Andric // If the incoming values are pointer casts of the same original value, 1456fe6060f1SDimitry Andric // replace the phi with a single cast iff we can insert a non-PHI instruction. 1457fe6060f1SDimitry Andric if (PN.getType()->isPointerTy() && 1458fe6060f1SDimitry Andric PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) { 1459fe6060f1SDimitry Andric Value *IV0 = PN.getIncomingValue(0); 1460fe6060f1SDimitry Andric Value *IV0Stripped = IV0->stripPointerCasts(); 1461fe6060f1SDimitry Andric // Set to keep track of values known to be equal to IV0Stripped after 1462fe6060f1SDimitry Andric // stripping pointer casts. 1463fe6060f1SDimitry Andric SmallPtrSet<Value *, 4> CheckedIVs; 1464fe6060f1SDimitry Andric CheckedIVs.insert(IV0); 1465fe6060f1SDimitry Andric if (IV0 != IV0Stripped && 1466fe6060f1SDimitry Andric all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) { 1467fe6060f1SDimitry Andric return !CheckedIVs.insert(IV).second || 1468fe6060f1SDimitry Andric IV0Stripped == IV->stripPointerCasts(); 1469fe6060f1SDimitry Andric })) { 1470fe6060f1SDimitry Andric return CastInst::CreatePointerCast(IV0Stripped, PN.getType()); 1471fe6060f1SDimitry Andric } 1472fe6060f1SDimitry Andric } 1473fe6060f1SDimitry Andric 14740b57cec5SDimitry Andric // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 14750b57cec5SDimitry Andric // this PHI only has a single use (a PHI), and if that PHI only has one use (a 14760b57cec5SDimitry Andric // PHI)... break the cycle. 14770b57cec5SDimitry Andric if (PN.hasOneUse()) { 1478bdd1243dSDimitry Andric if (foldIntegerTypedPHI(PN)) 1479bdd1243dSDimitry Andric return nullptr; 14800b57cec5SDimitry Andric 14810b57cec5SDimitry Andric Instruction *PHIUser = cast<Instruction>(PN.user_back()); 14820b57cec5SDimitry Andric if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 14830b57cec5SDimitry Andric SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 14840b57cec5SDimitry Andric PotentiallyDeadPHIs.insert(&PN); 14851fd87a68SDimitry Andric if (isDeadPHICycle(PU, PotentiallyDeadPHIs)) 1486fe6060f1SDimitry Andric return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); 14870b57cec5SDimitry Andric } 14880b57cec5SDimitry Andric 14890b57cec5SDimitry Andric // If this phi has a single use, and if that use just computes a value for 14900b57cec5SDimitry Andric // the next iteration of a loop, delete the phi. This occurs with unused 14910b57cec5SDimitry Andric // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 14920b57cec5SDimitry Andric // common case here is good because the only other things that catch this 14930b57cec5SDimitry Andric // are induction variable analysis (sometimes) and ADCE, which is only run 14940b57cec5SDimitry Andric // late. 14950b57cec5SDimitry Andric if (PHIUser->hasOneUse() && 14965f757f3fSDimitry Andric (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) || 14975f757f3fSDimitry Andric isa<GetElementPtrInst>(PHIUser)) && 14980b57cec5SDimitry Andric PHIUser->user_back() == &PN) { 1499fe6060f1SDimitry Andric return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); 15000b57cec5SDimitry Andric } 15015f757f3fSDimitry Andric } 15025f757f3fSDimitry Andric 15030b57cec5SDimitry Andric // When a PHI is used only to be compared with zero, it is safe to replace 15040b57cec5SDimitry Andric // an incoming value proved as known nonzero with any non-zero constant. 15050b57cec5SDimitry Andric // For example, in the code below, the incoming value %v can be replaced 15060b57cec5SDimitry Andric // with any non-zero constant based on the fact that the PHI is only used to 15070b57cec5SDimitry Andric // be compared with zero and %v is a known non-zero value: 15080b57cec5SDimitry Andric // %v = select %cond, 1, 2 15090b57cec5SDimitry Andric // %p = phi [%v, BB] ... 15100b57cec5SDimitry Andric // icmp eq, %p, 0 15110b57cec5SDimitry Andric // FIXME: To be simple, handle only integer type for now. 15125f757f3fSDimitry Andric // This handles a small number of uses to keep the complexity down, and an 15135f757f3fSDimitry Andric // icmp(or(phi)) can equally be replaced with any non-zero constant as the 15145f757f3fSDimitry Andric // "or" will only add bits. 15155f757f3fSDimitry Andric if (!PN.hasNUsesOrMore(3)) { 15165f757f3fSDimitry Andric SmallVector<Instruction *> DropPoisonFlags; 15175f757f3fSDimitry Andric bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) { 15185f757f3fSDimitry Andric auto *CmpInst = dyn_cast<ICmpInst>(U); 15195f757f3fSDimitry Andric if (!CmpInst) { 15205f757f3fSDimitry Andric // This is always correct as OR only add bits and we are checking 15215f757f3fSDimitry Andric // against 0. 15225f757f3fSDimitry Andric if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) { 15235f757f3fSDimitry Andric DropPoisonFlags.push_back(cast<Instruction>(U)); 15245f757f3fSDimitry Andric CmpInst = dyn_cast<ICmpInst>(U->user_back()); 15255f757f3fSDimitry Andric } 15265f757f3fSDimitry Andric } 15275f757f3fSDimitry Andric if (!CmpInst || !isa<IntegerType>(PN.getType()) || 15285f757f3fSDimitry Andric !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) { 15295f757f3fSDimitry Andric return false; 15305f757f3fSDimitry Andric } 15315f757f3fSDimitry Andric return true; 15325f757f3fSDimitry Andric }); 15335f757f3fSDimitry Andric // All uses of PHI results in a compare with zero. 15345f757f3fSDimitry Andric if (AllUsesOfPhiEndsInCmp) { 15350b57cec5SDimitry Andric ConstantInt *NonZeroConst = nullptr; 15365ffd83dbSDimitry Andric bool MadeChange = false; 15371fd87a68SDimitry Andric for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { 15381fd87a68SDimitry Andric Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator(); 15391fd87a68SDimitry Andric Value *VA = PN.getIncomingValue(I); 15400fca6ea1SDimitry Andric if (isKnownNonZero(VA, getSimplifyQuery().getWithInstruction(CtxI))) { 15410b57cec5SDimitry Andric if (!NonZeroConst) 15421fd87a68SDimitry Andric NonZeroConst = getAnyNonZeroConstInt(PN); 15435ffd83dbSDimitry Andric if (NonZeroConst != VA) { 15441fd87a68SDimitry Andric replaceOperand(PN, I, NonZeroConst); 15455f757f3fSDimitry Andric // The "disjoint" flag may no longer hold after the transform. 15465f757f3fSDimitry Andric for (Instruction *I : DropPoisonFlags) 15475f757f3fSDimitry Andric I->dropPoisonGeneratingFlags(); 15485ffd83dbSDimitry Andric MadeChange = true; 15490b57cec5SDimitry Andric } 15500b57cec5SDimitry Andric } 15510b57cec5SDimitry Andric } 15525ffd83dbSDimitry Andric if (MadeChange) 15535ffd83dbSDimitry Andric return &PN; 15545ffd83dbSDimitry Andric } 15550b57cec5SDimitry Andric } 15560b57cec5SDimitry Andric 15570b57cec5SDimitry Andric // We sometimes end up with phi cycles that non-obviously end up being the 15580b57cec5SDimitry Andric // same value, for example: 15590b57cec5SDimitry Andric // z = some value; x = phi (y, z); y = phi (x, z) 15600b57cec5SDimitry Andric // where the phi nodes don't necessarily need to be in the same block. Do a 15610b57cec5SDimitry Andric // quick check to see if the PHI node only contains a single non-phi value, if 15625f757f3fSDimitry Andric // so, scan to see if the phi cycle is actually equal to that value. If the 15635f757f3fSDimitry Andric // phi has no non-phi values then allow the "NonPhiInVal" to be set later if 15645f757f3fSDimitry Andric // one of the phis itself does not have a single input. 15650b57cec5SDimitry Andric { 15660b57cec5SDimitry Andric unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 15670b57cec5SDimitry Andric // Scan for the first non-phi operand. 15680b57cec5SDimitry Andric while (InValNo != NumIncomingVals && 15690b57cec5SDimitry Andric isa<PHINode>(PN.getIncomingValue(InValNo))) 15700b57cec5SDimitry Andric ++InValNo; 15710b57cec5SDimitry Andric 15725f757f3fSDimitry Andric Value *NonPhiInVal = 15735f757f3fSDimitry Andric InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr; 15740b57cec5SDimitry Andric 15750b57cec5SDimitry Andric // Scan the rest of the operands to see if there are any conflicts, if so 15760b57cec5SDimitry Andric // there is no need to recursively scan other phis. 15775f757f3fSDimitry Andric if (NonPhiInVal) 15780b57cec5SDimitry Andric for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 15790b57cec5SDimitry Andric Value *OpVal = PN.getIncomingValue(InValNo); 15800b57cec5SDimitry Andric if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 15810b57cec5SDimitry Andric break; 15820b57cec5SDimitry Andric } 15830b57cec5SDimitry Andric 15840b57cec5SDimitry Andric // If we scanned over all operands, then we have one unique value plus 15850b57cec5SDimitry Andric // phi values. Scan PHI nodes to see if they all merge in each other or 15860b57cec5SDimitry Andric // the value. 15870b57cec5SDimitry Andric if (InValNo == NumIncomingVals) { 15880b57cec5SDimitry Andric SmallPtrSet<PHINode *, 16> ValueEqualPHIs; 15890b57cec5SDimitry Andric if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 15900b57cec5SDimitry Andric return replaceInstUsesWith(PN, NonPhiInVal); 15910b57cec5SDimitry Andric } 15920b57cec5SDimitry Andric } 15930b57cec5SDimitry Andric 15940b57cec5SDimitry Andric // If there are multiple PHIs, sort their operands so that they all list 15950b57cec5SDimitry Andric // the blocks in the same order. This will help identical PHIs be eliminated 15960b57cec5SDimitry Andric // by other passes. Other passes shouldn't depend on this for correctness 15970b57cec5SDimitry Andric // however. 15985f757f3fSDimitry Andric auto Res = PredOrder.try_emplace(PN.getParent()); 15995f757f3fSDimitry Andric if (!Res.second) { 16005f757f3fSDimitry Andric const auto &Preds = Res.first->second; 16015f757f3fSDimitry Andric for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { 16021fd87a68SDimitry Andric BasicBlock *BBA = PN.getIncomingBlock(I); 16035f757f3fSDimitry Andric BasicBlock *BBB = Preds[I]; 16040b57cec5SDimitry Andric if (BBA != BBB) { 16051fd87a68SDimitry Andric Value *VA = PN.getIncomingValue(I); 16061fd87a68SDimitry Andric unsigned J = PN.getBasicBlockIndex(BBB); 16071fd87a68SDimitry Andric Value *VB = PN.getIncomingValue(J); 16081fd87a68SDimitry Andric PN.setIncomingBlock(I, BBB); 16091fd87a68SDimitry Andric PN.setIncomingValue(I, VB); 16101fd87a68SDimitry Andric PN.setIncomingBlock(J, BBA); 16111fd87a68SDimitry Andric PN.setIncomingValue(J, VA); 16120b57cec5SDimitry Andric // NOTE: Instcombine normally would want us to "return &PN" if we 16130b57cec5SDimitry Andric // modified any of the operands of an instruction. However, since we 16140b57cec5SDimitry Andric // aren't adding or removing uses (just rearranging them) we don't do 16150b57cec5SDimitry Andric // this in this case. 16160b57cec5SDimitry Andric } 16170b57cec5SDimitry Andric } 16185f757f3fSDimitry Andric } else { 16195f757f3fSDimitry Andric // Remember the block order of the first encountered phi node. 16205f757f3fSDimitry Andric append_range(Res.first->second, PN.blocks()); 16215f757f3fSDimitry Andric } 16220b57cec5SDimitry Andric 1623e8d8bef9SDimitry Andric // Is there an identical PHI node in this basic block? 1624e8d8bef9SDimitry Andric for (PHINode &IdenticalPN : PN.getParent()->phis()) { 1625e8d8bef9SDimitry Andric // Ignore the PHI node itself. 1626e8d8bef9SDimitry Andric if (&IdenticalPN == &PN) 1627e8d8bef9SDimitry Andric continue; 1628e8d8bef9SDimitry Andric // Note that even though we've just canonicalized this PHI, due to the 1629e8d8bef9SDimitry Andric // worklist visitation order, there are no guarantess that *every* PHI 1630e8d8bef9SDimitry Andric // has been canonicalized, so we can't just compare operands ranges. 1631e8d8bef9SDimitry Andric if (!PN.isIdenticalToWhenDefined(&IdenticalPN)) 1632e8d8bef9SDimitry Andric continue; 1633e8d8bef9SDimitry Andric // Just use that PHI instead then. 1634e8d8bef9SDimitry Andric ++NumPHICSEs; 1635e8d8bef9SDimitry Andric return replaceInstUsesWith(PN, &IdenticalPN); 1636e8d8bef9SDimitry Andric } 1637e8d8bef9SDimitry Andric 16380b57cec5SDimitry Andric // If this is an integer PHI and we know that it has an illegal type, see if 16390b57cec5SDimitry Andric // it is only used by trunc or trunc(lshr) operations. If so, we split the 16400b57cec5SDimitry Andric // PHI into the various pieces being extracted. This sort of thing is 16410b57cec5SDimitry Andric // introduced when SROA promotes an aggregate to a single large integer type. 16420b57cec5SDimitry Andric if (PN.getType()->isIntegerTy() && 16430b57cec5SDimitry Andric !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 16440b57cec5SDimitry Andric if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 16450b57cec5SDimitry Andric return Res; 16460b57cec5SDimitry Andric 1647e8d8bef9SDimitry Andric // Ultimately, try to replace this Phi with a dominating condition. 16481fd87a68SDimitry Andric if (auto *V = simplifyUsingControlFlow(*this, PN, DT)) 1649e8d8bef9SDimitry Andric return replaceInstUsesWith(PN, V); 1650e8d8bef9SDimitry Andric 16510fca6ea1SDimitry Andric if (Value *Res = foldDependentIVs(PN, Builder)) 16520fca6ea1SDimitry Andric return replaceInstUsesWith(PN, Res); 16530fca6ea1SDimitry Andric 16540b57cec5SDimitry Andric return nullptr; 16550b57cec5SDimitry Andric } 1656