10b57cec5SDimitry Andric //===- InstCombineAndOrXor.cpp --------------------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements the visitAnd, visitOr, and visitXor functions. 100b57cec5SDimitry Andric // 110b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 120b57cec5SDimitry Andric 130b57cec5SDimitry Andric #include "InstCombineInternal.h" 140b57cec5SDimitry Andric #include "llvm/Analysis/CmpInstAnalysis.h" 150b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h" 160b57cec5SDimitry Andric #include "llvm/IR/ConstantRange.h" 170b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h" 180b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 19e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h" 20e8d8bef9SDimitry Andric #include "llvm/Transforms/Utils/Local.h" 21e8d8bef9SDimitry Andric 220b57cec5SDimitry Andric using namespace llvm; 230b57cec5SDimitry Andric using namespace PatternMatch; 240b57cec5SDimitry Andric 250b57cec5SDimitry Andric #define DEBUG_TYPE "instcombine" 260b57cec5SDimitry Andric 270b57cec5SDimitry Andric /// This is the complement of getICmpCode, which turns an opcode and two 280b57cec5SDimitry Andric /// operands into either a constant true or false, or a brand new ICmp 290b57cec5SDimitry Andric /// instruction. The sign is passed in to determine which kind of predicate to 300b57cec5SDimitry Andric /// use in the new icmp instruction. 310b57cec5SDimitry Andric static Value *getNewICmpValue(unsigned Code, bool Sign, Value *LHS, Value *RHS, 320b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 330b57cec5SDimitry Andric ICmpInst::Predicate NewPred; 340b57cec5SDimitry Andric if (Constant *TorF = getPredForICmpCode(Code, Sign, LHS->getType(), NewPred)) 350b57cec5SDimitry Andric return TorF; 360b57cec5SDimitry Andric return Builder.CreateICmp(NewPred, LHS, RHS); 370b57cec5SDimitry Andric } 380b57cec5SDimitry Andric 390b57cec5SDimitry Andric /// This is the complement of getFCmpCode, which turns an opcode and two 400b57cec5SDimitry Andric /// operands into either a FCmp instruction, or a true/false constant. 410b57cec5SDimitry Andric static Value *getFCmpValue(unsigned Code, Value *LHS, Value *RHS, 420b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 4381ad6265SDimitry Andric FCmpInst::Predicate NewPred; 4481ad6265SDimitry Andric if (Constant *TorF = getPredForFCmpCode(Code, LHS->getType(), NewPred)) 4581ad6265SDimitry Andric return TorF; 4681ad6265SDimitry Andric return Builder.CreateFCmp(NewPred, LHS, RHS); 470b57cec5SDimitry Andric } 480b57cec5SDimitry Andric 490b57cec5SDimitry Andric /// Emit a computation of: (V >= Lo && V < Hi) if Inside is true, otherwise 508bcb0991SDimitry Andric /// (V < Lo || V >= Hi). This method expects that Lo < Hi. IsSigned indicates 510b57cec5SDimitry Andric /// whether to treat V, Lo, and Hi as signed or not. 52e8d8bef9SDimitry Andric Value *InstCombinerImpl::insertRangeTest(Value *V, const APInt &Lo, 53e8d8bef9SDimitry Andric const APInt &Hi, bool isSigned, 54e8d8bef9SDimitry Andric bool Inside) { 558bcb0991SDimitry Andric assert((isSigned ? Lo.slt(Hi) : Lo.ult(Hi)) && 568bcb0991SDimitry Andric "Lo is not < Hi in range emission code!"); 570b57cec5SDimitry Andric 580b57cec5SDimitry Andric Type *Ty = V->getType(); 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric // V >= Min && V < Hi --> V < Hi 610b57cec5SDimitry Andric // V < Min || V >= Hi --> V >= Hi 620b57cec5SDimitry Andric ICmpInst::Predicate Pred = Inside ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE; 630b57cec5SDimitry Andric if (isSigned ? Lo.isMinSignedValue() : Lo.isMinValue()) { 640b57cec5SDimitry Andric Pred = isSigned ? ICmpInst::getSignedPredicate(Pred) : Pred; 650b57cec5SDimitry Andric return Builder.CreateICmp(Pred, V, ConstantInt::get(Ty, Hi)); 660b57cec5SDimitry Andric } 670b57cec5SDimitry Andric 680b57cec5SDimitry Andric // V >= Lo && V < Hi --> V - Lo u< Hi - Lo 690b57cec5SDimitry Andric // V < Lo || V >= Hi --> V - Lo u>= Hi - Lo 700b57cec5SDimitry Andric Value *VMinusLo = 710b57cec5SDimitry Andric Builder.CreateSub(V, ConstantInt::get(Ty, Lo), V->getName() + ".off"); 720b57cec5SDimitry Andric Constant *HiMinusLo = ConstantInt::get(Ty, Hi - Lo); 730b57cec5SDimitry Andric return Builder.CreateICmp(Pred, VMinusLo, HiMinusLo); 740b57cec5SDimitry Andric } 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric /// Classify (icmp eq (A & B), C) and (icmp ne (A & B), C) as matching patterns 770b57cec5SDimitry Andric /// that can be simplified. 780b57cec5SDimitry Andric /// One of A and B is considered the mask. The other is the value. This is 790b57cec5SDimitry Andric /// described as the "AMask" or "BMask" part of the enum. If the enum contains 800b57cec5SDimitry Andric /// only "Mask", then both A and B can be considered masks. If A is the mask, 810b57cec5SDimitry Andric /// then it was proven that (A & C) == C. This is trivial if C == A or C == 0. 820b57cec5SDimitry Andric /// If both A and C are constants, this proof is also easy. 830b57cec5SDimitry Andric /// For the following explanations, we assume that A is the mask. 840b57cec5SDimitry Andric /// 850b57cec5SDimitry Andric /// "AllOnes" declares that the comparison is true only if (A & B) == A or all 860b57cec5SDimitry Andric /// bits of A are set in B. 870b57cec5SDimitry Andric /// Example: (icmp eq (A & 3), 3) -> AMask_AllOnes 880b57cec5SDimitry Andric /// 890b57cec5SDimitry Andric /// "AllZeros" declares that the comparison is true only if (A & B) == 0 or all 900b57cec5SDimitry Andric /// bits of A are cleared in B. 910b57cec5SDimitry Andric /// Example: (icmp eq (A & 3), 0) -> Mask_AllZeroes 920b57cec5SDimitry Andric /// 930b57cec5SDimitry Andric /// "Mixed" declares that (A & B) == C and C might or might not contain any 940b57cec5SDimitry Andric /// number of one bits and zero bits. 950b57cec5SDimitry Andric /// Example: (icmp eq (A & 3), 1) -> AMask_Mixed 960b57cec5SDimitry Andric /// 970b57cec5SDimitry Andric /// "Not" means that in above descriptions "==" should be replaced by "!=". 980b57cec5SDimitry Andric /// Example: (icmp ne (A & 3), 3) -> AMask_NotAllOnes 990b57cec5SDimitry Andric /// 1000b57cec5SDimitry Andric /// If the mask A contains a single bit, then the following is equivalent: 1010b57cec5SDimitry Andric /// (icmp eq (A & B), A) equals (icmp ne (A & B), 0) 1020b57cec5SDimitry Andric /// (icmp ne (A & B), A) equals (icmp eq (A & B), 0) 1030b57cec5SDimitry Andric enum MaskedICmpType { 1040b57cec5SDimitry Andric AMask_AllOnes = 1, 1050b57cec5SDimitry Andric AMask_NotAllOnes = 2, 1060b57cec5SDimitry Andric BMask_AllOnes = 4, 1070b57cec5SDimitry Andric BMask_NotAllOnes = 8, 1080b57cec5SDimitry Andric Mask_AllZeros = 16, 1090b57cec5SDimitry Andric Mask_NotAllZeros = 32, 1100b57cec5SDimitry Andric AMask_Mixed = 64, 1110b57cec5SDimitry Andric AMask_NotMixed = 128, 1120b57cec5SDimitry Andric BMask_Mixed = 256, 1130b57cec5SDimitry Andric BMask_NotMixed = 512 1140b57cec5SDimitry Andric }; 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric /// Return the set of patterns (from MaskedICmpType) that (icmp SCC (A & B), C) 1170b57cec5SDimitry Andric /// satisfies. 1180b57cec5SDimitry Andric static unsigned getMaskedICmpType(Value *A, Value *B, Value *C, 1190b57cec5SDimitry Andric ICmpInst::Predicate Pred) { 120349cc55cSDimitry Andric const APInt *ConstA = nullptr, *ConstB = nullptr, *ConstC = nullptr; 121349cc55cSDimitry Andric match(A, m_APInt(ConstA)); 122349cc55cSDimitry Andric match(B, m_APInt(ConstB)); 123349cc55cSDimitry Andric match(C, m_APInt(ConstC)); 1240b57cec5SDimitry Andric bool IsEq = (Pred == ICmpInst::ICMP_EQ); 125349cc55cSDimitry Andric bool IsAPow2 = ConstA && ConstA->isPowerOf2(); 126349cc55cSDimitry Andric bool IsBPow2 = ConstB && ConstB->isPowerOf2(); 1270b57cec5SDimitry Andric unsigned MaskVal = 0; 128349cc55cSDimitry Andric if (ConstC && ConstC->isZero()) { 1290b57cec5SDimitry Andric // if C is zero, then both A and B qualify as mask 1300b57cec5SDimitry Andric MaskVal |= (IsEq ? (Mask_AllZeros | AMask_Mixed | BMask_Mixed) 1310b57cec5SDimitry Andric : (Mask_NotAllZeros | AMask_NotMixed | BMask_NotMixed)); 1320b57cec5SDimitry Andric if (IsAPow2) 1330b57cec5SDimitry Andric MaskVal |= (IsEq ? (AMask_NotAllOnes | AMask_NotMixed) 1340b57cec5SDimitry Andric : (AMask_AllOnes | AMask_Mixed)); 1350b57cec5SDimitry Andric if (IsBPow2) 1360b57cec5SDimitry Andric MaskVal |= (IsEq ? (BMask_NotAllOnes | BMask_NotMixed) 1370b57cec5SDimitry Andric : (BMask_AllOnes | BMask_Mixed)); 1380b57cec5SDimitry Andric return MaskVal; 1390b57cec5SDimitry Andric } 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric if (A == C) { 1420b57cec5SDimitry Andric MaskVal |= (IsEq ? (AMask_AllOnes | AMask_Mixed) 1430b57cec5SDimitry Andric : (AMask_NotAllOnes | AMask_NotMixed)); 1440b57cec5SDimitry Andric if (IsAPow2) 1450b57cec5SDimitry Andric MaskVal |= (IsEq ? (Mask_NotAllZeros | AMask_NotMixed) 1460b57cec5SDimitry Andric : (Mask_AllZeros | AMask_Mixed)); 147349cc55cSDimitry Andric } else if (ConstA && ConstC && ConstC->isSubsetOf(*ConstA)) { 1480b57cec5SDimitry Andric MaskVal |= (IsEq ? AMask_Mixed : AMask_NotMixed); 1490b57cec5SDimitry Andric } 1500b57cec5SDimitry Andric 1510b57cec5SDimitry Andric if (B == C) { 1520b57cec5SDimitry Andric MaskVal |= (IsEq ? (BMask_AllOnes | BMask_Mixed) 1530b57cec5SDimitry Andric : (BMask_NotAllOnes | BMask_NotMixed)); 1540b57cec5SDimitry Andric if (IsBPow2) 1550b57cec5SDimitry Andric MaskVal |= (IsEq ? (Mask_NotAllZeros | BMask_NotMixed) 1560b57cec5SDimitry Andric : (Mask_AllZeros | BMask_Mixed)); 157349cc55cSDimitry Andric } else if (ConstB && ConstC && ConstC->isSubsetOf(*ConstB)) { 1580b57cec5SDimitry Andric MaskVal |= (IsEq ? BMask_Mixed : BMask_NotMixed); 1590b57cec5SDimitry Andric } 1600b57cec5SDimitry Andric 1610b57cec5SDimitry Andric return MaskVal; 1620b57cec5SDimitry Andric } 1630b57cec5SDimitry Andric 1640b57cec5SDimitry Andric /// Convert an analysis of a masked ICmp into its equivalent if all boolean 1650b57cec5SDimitry Andric /// operations had the opposite sense. Since each "NotXXX" flag (recording !=) 1660b57cec5SDimitry Andric /// is adjacent to the corresponding normal flag (recording ==), this just 1670b57cec5SDimitry Andric /// involves swapping those bits over. 1680b57cec5SDimitry Andric static unsigned conjugateICmpMask(unsigned Mask) { 1690b57cec5SDimitry Andric unsigned NewMask; 1700b57cec5SDimitry Andric NewMask = (Mask & (AMask_AllOnes | BMask_AllOnes | Mask_AllZeros | 1710b57cec5SDimitry Andric AMask_Mixed | BMask_Mixed)) 1720b57cec5SDimitry Andric << 1; 1730b57cec5SDimitry Andric 1740b57cec5SDimitry Andric NewMask |= (Mask & (AMask_NotAllOnes | BMask_NotAllOnes | Mask_NotAllZeros | 1750b57cec5SDimitry Andric AMask_NotMixed | BMask_NotMixed)) 1760b57cec5SDimitry Andric >> 1; 1770b57cec5SDimitry Andric 1780b57cec5SDimitry Andric return NewMask; 1790b57cec5SDimitry Andric } 1800b57cec5SDimitry Andric 1810b57cec5SDimitry Andric // Adapts the external decomposeBitTestICmp for local use. 1820b57cec5SDimitry Andric static bool decomposeBitTestICmp(Value *LHS, Value *RHS, CmpInst::Predicate &Pred, 1830b57cec5SDimitry Andric Value *&X, Value *&Y, Value *&Z) { 1840b57cec5SDimitry Andric APInt Mask; 1850b57cec5SDimitry Andric if (!llvm::decomposeBitTestICmp(LHS, RHS, Pred, X, Mask)) 1860b57cec5SDimitry Andric return false; 1870b57cec5SDimitry Andric 1880b57cec5SDimitry Andric Y = ConstantInt::get(X->getType(), Mask); 1890b57cec5SDimitry Andric Z = ConstantInt::get(X->getType(), 0); 1900b57cec5SDimitry Andric return true; 1910b57cec5SDimitry Andric } 1920b57cec5SDimitry Andric 1930b57cec5SDimitry Andric /// Handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E). 1940b57cec5SDimitry Andric /// Return the pattern classes (from MaskedICmpType) for the left hand side and 1950b57cec5SDimitry Andric /// the right hand side as a pair. 1960b57cec5SDimitry Andric /// LHS and RHS are the left hand side and the right hand side ICmps and PredL 1970b57cec5SDimitry Andric /// and PredR are their predicates, respectively. 198bdd1243dSDimitry Andric static std::optional<std::pair<unsigned, unsigned>> getMaskedTypeForICmpPair( 199bdd1243dSDimitry Andric Value *&A, Value *&B, Value *&C, Value *&D, Value *&E, ICmpInst *LHS, 200bdd1243dSDimitry Andric ICmpInst *RHS, ICmpInst::Predicate &PredL, ICmpInst::Predicate &PredR) { 201349cc55cSDimitry Andric // Don't allow pointers. Splat vectors are fine. 202349cc55cSDimitry Andric if (!LHS->getOperand(0)->getType()->isIntOrIntVectorTy() || 203349cc55cSDimitry Andric !RHS->getOperand(0)->getType()->isIntOrIntVectorTy()) 204bdd1243dSDimitry Andric return std::nullopt; 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric // Here comes the tricky part: 2070b57cec5SDimitry Andric // LHS might be of the form L11 & L12 == X, X == L21 & L22, 2080b57cec5SDimitry Andric // and L11 & L12 == L21 & L22. The same goes for RHS. 2090b57cec5SDimitry Andric // Now we must find those components L** and R**, that are equal, so 2100b57cec5SDimitry Andric // that we can extract the parameters A, B, C, D, and E for the canonical 2110b57cec5SDimitry Andric // above. 2120b57cec5SDimitry Andric Value *L1 = LHS->getOperand(0); 2130b57cec5SDimitry Andric Value *L2 = LHS->getOperand(1); 2140b57cec5SDimitry Andric Value *L11, *L12, *L21, *L22; 2150b57cec5SDimitry Andric // Check whether the icmp can be decomposed into a bit test. 2160b57cec5SDimitry Andric if (decomposeBitTestICmp(L1, L2, PredL, L11, L12, L2)) { 2170b57cec5SDimitry Andric L21 = L22 = L1 = nullptr; 2180b57cec5SDimitry Andric } else { 2190b57cec5SDimitry Andric // Look for ANDs in the LHS icmp. 2200b57cec5SDimitry Andric if (!match(L1, m_And(m_Value(L11), m_Value(L12)))) { 2210b57cec5SDimitry Andric // Any icmp can be viewed as being trivially masked; if it allows us to 2220b57cec5SDimitry Andric // remove one, it's worth it. 2230b57cec5SDimitry Andric L11 = L1; 2240b57cec5SDimitry Andric L12 = Constant::getAllOnesValue(L1->getType()); 2250b57cec5SDimitry Andric } 2260b57cec5SDimitry Andric 2270b57cec5SDimitry Andric if (!match(L2, m_And(m_Value(L21), m_Value(L22)))) { 2280b57cec5SDimitry Andric L21 = L2; 2290b57cec5SDimitry Andric L22 = Constant::getAllOnesValue(L2->getType()); 2300b57cec5SDimitry Andric } 2310b57cec5SDimitry Andric } 2320b57cec5SDimitry Andric 2330b57cec5SDimitry Andric // Bail if LHS was a icmp that can't be decomposed into an equality. 2340b57cec5SDimitry Andric if (!ICmpInst::isEquality(PredL)) 235bdd1243dSDimitry Andric return std::nullopt; 2360b57cec5SDimitry Andric 2370b57cec5SDimitry Andric Value *R1 = RHS->getOperand(0); 2380b57cec5SDimitry Andric Value *R2 = RHS->getOperand(1); 2390b57cec5SDimitry Andric Value *R11, *R12; 2400b57cec5SDimitry Andric bool Ok = false; 2410b57cec5SDimitry Andric if (decomposeBitTestICmp(R1, R2, PredR, R11, R12, R2)) { 2420b57cec5SDimitry Andric if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 2430b57cec5SDimitry Andric A = R11; 2440b57cec5SDimitry Andric D = R12; 2450b57cec5SDimitry Andric } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 2460b57cec5SDimitry Andric A = R12; 2470b57cec5SDimitry Andric D = R11; 2480b57cec5SDimitry Andric } else { 249bdd1243dSDimitry Andric return std::nullopt; 2500b57cec5SDimitry Andric } 2510b57cec5SDimitry Andric E = R2; 2520b57cec5SDimitry Andric R1 = nullptr; 2530b57cec5SDimitry Andric Ok = true; 2540b57cec5SDimitry Andric } else { 2550b57cec5SDimitry Andric if (!match(R1, m_And(m_Value(R11), m_Value(R12)))) { 2560b57cec5SDimitry Andric // As before, model no mask as a trivial mask if it'll let us do an 2570b57cec5SDimitry Andric // optimization. 2580b57cec5SDimitry Andric R11 = R1; 2590b57cec5SDimitry Andric R12 = Constant::getAllOnesValue(R1->getType()); 2600b57cec5SDimitry Andric } 2610b57cec5SDimitry Andric 2620b57cec5SDimitry Andric if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 2630b57cec5SDimitry Andric A = R11; 2640b57cec5SDimitry Andric D = R12; 2650b57cec5SDimitry Andric E = R2; 2660b57cec5SDimitry Andric Ok = true; 2670b57cec5SDimitry Andric } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 2680b57cec5SDimitry Andric A = R12; 2690b57cec5SDimitry Andric D = R11; 2700b57cec5SDimitry Andric E = R2; 2710b57cec5SDimitry Andric Ok = true; 2720b57cec5SDimitry Andric } 2730b57cec5SDimitry Andric } 2740b57cec5SDimitry Andric 2750b57cec5SDimitry Andric // Bail if RHS was a icmp that can't be decomposed into an equality. 2760b57cec5SDimitry Andric if (!ICmpInst::isEquality(PredR)) 277bdd1243dSDimitry Andric return std::nullopt; 2780b57cec5SDimitry Andric 2790b57cec5SDimitry Andric // Look for ANDs on the right side of the RHS icmp. 2800b57cec5SDimitry Andric if (!Ok) { 2810b57cec5SDimitry Andric if (!match(R2, m_And(m_Value(R11), m_Value(R12)))) { 2820b57cec5SDimitry Andric R11 = R2; 2830b57cec5SDimitry Andric R12 = Constant::getAllOnesValue(R2->getType()); 2840b57cec5SDimitry Andric } 2850b57cec5SDimitry Andric 2860b57cec5SDimitry Andric if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) { 2870b57cec5SDimitry Andric A = R11; 2880b57cec5SDimitry Andric D = R12; 2890b57cec5SDimitry Andric E = R1; 2900b57cec5SDimitry Andric Ok = true; 2910b57cec5SDimitry Andric } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) { 2920b57cec5SDimitry Andric A = R12; 2930b57cec5SDimitry Andric D = R11; 2940b57cec5SDimitry Andric E = R1; 2950b57cec5SDimitry Andric Ok = true; 2960b57cec5SDimitry Andric } else { 297bdd1243dSDimitry Andric return std::nullopt; 2980b57cec5SDimitry Andric } 299349cc55cSDimitry Andric 300349cc55cSDimitry Andric assert(Ok && "Failed to find AND on the right side of the RHS icmp."); 3010b57cec5SDimitry Andric } 3020b57cec5SDimitry Andric 3030b57cec5SDimitry Andric if (L11 == A) { 3040b57cec5SDimitry Andric B = L12; 3050b57cec5SDimitry Andric C = L2; 3060b57cec5SDimitry Andric } else if (L12 == A) { 3070b57cec5SDimitry Andric B = L11; 3080b57cec5SDimitry Andric C = L2; 3090b57cec5SDimitry Andric } else if (L21 == A) { 3100b57cec5SDimitry Andric B = L22; 3110b57cec5SDimitry Andric C = L1; 3120b57cec5SDimitry Andric } else if (L22 == A) { 3130b57cec5SDimitry Andric B = L21; 3140b57cec5SDimitry Andric C = L1; 3150b57cec5SDimitry Andric } 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric unsigned LeftType = getMaskedICmpType(A, B, C, PredL); 3180b57cec5SDimitry Andric unsigned RightType = getMaskedICmpType(A, D, E, PredR); 319bdd1243dSDimitry Andric return std::optional<std::pair<unsigned, unsigned>>( 320bdd1243dSDimitry Andric std::make_pair(LeftType, RightType)); 3210b57cec5SDimitry Andric } 3220b57cec5SDimitry Andric 3230b57cec5SDimitry Andric /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) into a single 3240b57cec5SDimitry Andric /// (icmp(A & X) ==/!= Y), where the left-hand side is of type Mask_NotAllZeros 3250b57cec5SDimitry Andric /// and the right hand side is of type BMask_Mixed. For example, 3260b57cec5SDimitry Andric /// (icmp (A & 12) != 0) & (icmp (A & 15) == 8) -> (icmp (A & 15) == 8). 32781ad6265SDimitry Andric /// Also used for logical and/or, must be poison safe. 3280b57cec5SDimitry Andric static Value *foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 329e8d8bef9SDimitry Andric ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 330e8d8bef9SDimitry Andric Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 331e8d8bef9SDimitry Andric InstCombiner::BuilderTy &Builder) { 3320b57cec5SDimitry Andric // We are given the canonical form: 3330b57cec5SDimitry Andric // (icmp ne (A & B), 0) & (icmp eq (A & D), E). 3340b57cec5SDimitry Andric // where D & E == E. 3350b57cec5SDimitry Andric // 3360b57cec5SDimitry Andric // If IsAnd is false, we get it in negated form: 3370b57cec5SDimitry Andric // (icmp eq (A & B), 0) | (icmp ne (A & D), E) -> 3380b57cec5SDimitry Andric // !((icmp ne (A & B), 0) & (icmp eq (A & D), E)). 3390b57cec5SDimitry Andric // 3400b57cec5SDimitry Andric // We currently handle the case of B, C, D, E are constant. 3410b57cec5SDimitry Andric // 34281ad6265SDimitry Andric const APInt *BCst, *CCst, *DCst, *OrigECst; 34381ad6265SDimitry Andric if (!match(B, m_APInt(BCst)) || !match(C, m_APInt(CCst)) || 34481ad6265SDimitry Andric !match(D, m_APInt(DCst)) || !match(E, m_APInt(OrigECst))) 3450b57cec5SDimitry Andric return nullptr; 3460b57cec5SDimitry Andric 3470b57cec5SDimitry Andric ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 3480b57cec5SDimitry Andric 3490b57cec5SDimitry Andric // Update E to the canonical form when D is a power of two and RHS is 3500b57cec5SDimitry Andric // canonicalized as, 3510b57cec5SDimitry Andric // (icmp ne (A & D), 0) -> (icmp eq (A & D), D) or 3520b57cec5SDimitry Andric // (icmp ne (A & D), D) -> (icmp eq (A & D), 0). 35381ad6265SDimitry Andric APInt ECst = *OrigECst; 3540b57cec5SDimitry Andric if (PredR != NewCC) 35581ad6265SDimitry Andric ECst ^= *DCst; 3560b57cec5SDimitry Andric 3570b57cec5SDimitry Andric // If B or D is zero, skip because if LHS or RHS can be trivially folded by 3580b57cec5SDimitry Andric // other folding rules and this pattern won't apply any more. 35981ad6265SDimitry Andric if (*BCst == 0 || *DCst == 0) 3600b57cec5SDimitry Andric return nullptr; 3610b57cec5SDimitry Andric 3620b57cec5SDimitry Andric // If B and D don't intersect, ie. (B & D) == 0, no folding because we can't 3630b57cec5SDimitry Andric // deduce anything from it. 3640b57cec5SDimitry Andric // For example, 3650b57cec5SDimitry Andric // (icmp ne (A & 12), 0) & (icmp eq (A & 3), 1) -> no folding. 36681ad6265SDimitry Andric if ((*BCst & *DCst) == 0) 3670b57cec5SDimitry Andric return nullptr; 3680b57cec5SDimitry Andric 3690b57cec5SDimitry Andric // If the following two conditions are met: 3700b57cec5SDimitry Andric // 3710b57cec5SDimitry Andric // 1. mask B covers only a single bit that's not covered by mask D, that is, 3720b57cec5SDimitry Andric // (B & (B ^ D)) is a power of 2 (in other words, B minus the intersection of 3730b57cec5SDimitry Andric // B and D has only one bit set) and, 3740b57cec5SDimitry Andric // 3750b57cec5SDimitry Andric // 2. RHS (and E) indicates that the rest of B's bits are zero (in other 3760b57cec5SDimitry Andric // words, the intersection of B and D is zero), that is, ((B & D) & E) == 0 3770b57cec5SDimitry Andric // 3780b57cec5SDimitry Andric // then that single bit in B must be one and thus the whole expression can be 3790b57cec5SDimitry Andric // folded to 3800b57cec5SDimitry Andric // (A & (B | D)) == (B & (B ^ D)) | E. 3810b57cec5SDimitry Andric // 3820b57cec5SDimitry Andric // For example, 3830b57cec5SDimitry Andric // (icmp ne (A & 12), 0) & (icmp eq (A & 7), 1) -> (icmp eq (A & 15), 9) 3840b57cec5SDimitry Andric // (icmp ne (A & 15), 0) & (icmp eq (A & 7), 0) -> (icmp eq (A & 15), 8) 38581ad6265SDimitry Andric if ((((*BCst & *DCst) & ECst) == 0) && 38681ad6265SDimitry Andric (*BCst & (*BCst ^ *DCst)).isPowerOf2()) { 38781ad6265SDimitry Andric APInt BorD = *BCst | *DCst; 38881ad6265SDimitry Andric APInt BandBxorDorE = (*BCst & (*BCst ^ *DCst)) | ECst; 38981ad6265SDimitry Andric Value *NewMask = ConstantInt::get(A->getType(), BorD); 39081ad6265SDimitry Andric Value *NewMaskedValue = ConstantInt::get(A->getType(), BandBxorDorE); 3910b57cec5SDimitry Andric Value *NewAnd = Builder.CreateAnd(A, NewMask); 3920b57cec5SDimitry Andric return Builder.CreateICmp(NewCC, NewAnd, NewMaskedValue); 3930b57cec5SDimitry Andric } 3940b57cec5SDimitry Andric 39581ad6265SDimitry Andric auto IsSubSetOrEqual = [](const APInt *C1, const APInt *C2) { 39681ad6265SDimitry Andric return (*C1 & *C2) == *C1; 3970b57cec5SDimitry Andric }; 39881ad6265SDimitry Andric auto IsSuperSetOrEqual = [](const APInt *C1, const APInt *C2) { 39981ad6265SDimitry Andric return (*C1 & *C2) == *C2; 4000b57cec5SDimitry Andric }; 4010b57cec5SDimitry Andric 4020b57cec5SDimitry Andric // In the following, we consider only the cases where B is a superset of D, B 4030b57cec5SDimitry Andric // is a subset of D, or B == D because otherwise there's at least one bit 4040b57cec5SDimitry Andric // covered by B but not D, in which case we can't deduce much from it, so 4050b57cec5SDimitry Andric // no folding (aside from the single must-be-one bit case right above.) 4060b57cec5SDimitry Andric // For example, 4070b57cec5SDimitry Andric // (icmp ne (A & 14), 0) & (icmp eq (A & 3), 1) -> no folding. 4080b57cec5SDimitry Andric if (!IsSubSetOrEqual(BCst, DCst) && !IsSuperSetOrEqual(BCst, DCst)) 4090b57cec5SDimitry Andric return nullptr; 4100b57cec5SDimitry Andric 4110b57cec5SDimitry Andric // At this point, either B is a superset of D, B is a subset of D or B == D. 4120b57cec5SDimitry Andric 4130b57cec5SDimitry Andric // If E is zero, if B is a subset of (or equal to) D, LHS and RHS contradict 4140b57cec5SDimitry Andric // and the whole expression becomes false (or true if negated), otherwise, no 4150b57cec5SDimitry Andric // folding. 4160b57cec5SDimitry Andric // For example, 4170b57cec5SDimitry Andric // (icmp ne (A & 3), 0) & (icmp eq (A & 7), 0) -> false. 4180b57cec5SDimitry Andric // (icmp ne (A & 15), 0) & (icmp eq (A & 3), 0) -> no folding. 41981ad6265SDimitry Andric if (ECst.isZero()) { 4200b57cec5SDimitry Andric if (IsSubSetOrEqual(BCst, DCst)) 4210b57cec5SDimitry Andric return ConstantInt::get(LHS->getType(), !IsAnd); 4220b57cec5SDimitry Andric return nullptr; 4230b57cec5SDimitry Andric } 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric // At this point, B, D, E aren't zero and (B & D) == B, (B & D) == D or B == 4260b57cec5SDimitry Andric // D. If B is a superset of (or equal to) D, since E is not zero, LHS is 4270b57cec5SDimitry Andric // subsumed by RHS (RHS implies LHS.) So the whole expression becomes 4280b57cec5SDimitry Andric // RHS. For example, 4290b57cec5SDimitry Andric // (icmp ne (A & 255), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 4300b57cec5SDimitry Andric // (icmp ne (A & 15), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 4310b57cec5SDimitry Andric if (IsSuperSetOrEqual(BCst, DCst)) 4320b57cec5SDimitry Andric return RHS; 4330b57cec5SDimitry Andric // Otherwise, B is a subset of D. If B and E have a common bit set, 4340b57cec5SDimitry Andric // ie. (B & E) != 0, then LHS is subsumed by RHS. For example. 4350b57cec5SDimitry Andric // (icmp ne (A & 12), 0) & (icmp eq (A & 15), 8) -> (icmp eq (A & 15), 8). 4360b57cec5SDimitry Andric assert(IsSubSetOrEqual(BCst, DCst) && "Precondition due to above code"); 43781ad6265SDimitry Andric if ((*BCst & ECst) != 0) 4380b57cec5SDimitry Andric return RHS; 4390b57cec5SDimitry Andric // Otherwise, LHS and RHS contradict and the whole expression becomes false 4400b57cec5SDimitry Andric // (or true if negated.) For example, 4410b57cec5SDimitry Andric // (icmp ne (A & 7), 0) & (icmp eq (A & 15), 8) -> false. 4420b57cec5SDimitry Andric // (icmp ne (A & 6), 0) & (icmp eq (A & 15), 8) -> false. 4430b57cec5SDimitry Andric return ConstantInt::get(LHS->getType(), !IsAnd); 4440b57cec5SDimitry Andric } 4450b57cec5SDimitry Andric 4460b57cec5SDimitry Andric /// Try to fold (icmp(A & B) ==/!= 0) &/| (icmp(A & D) ==/!= E) into a single 4470b57cec5SDimitry Andric /// (icmp(A & X) ==/!= Y), where the left-hand side and the right hand side 4480b57cec5SDimitry Andric /// aren't of the common mask pattern type. 44981ad6265SDimitry Andric /// Also used for logical and/or, must be poison safe. 4500b57cec5SDimitry Andric static Value *foldLogOpOfMaskedICmpsAsymmetric( 451e8d8bef9SDimitry Andric ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, Value *A, Value *B, Value *C, 452e8d8bef9SDimitry Andric Value *D, Value *E, ICmpInst::Predicate PredL, ICmpInst::Predicate PredR, 453e8d8bef9SDimitry Andric unsigned LHSMask, unsigned RHSMask, InstCombiner::BuilderTy &Builder) { 4540b57cec5SDimitry Andric assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 4550b57cec5SDimitry Andric "Expected equality predicates for masked type of icmps."); 4560b57cec5SDimitry Andric // Handle Mask_NotAllZeros-BMask_Mixed cases. 4570b57cec5SDimitry Andric // (icmp ne/eq (A & B), C) &/| (icmp eq/ne (A & D), E), or 4580b57cec5SDimitry Andric // (icmp eq/ne (A & B), C) &/| (icmp ne/eq (A & D), E) 4590b57cec5SDimitry Andric // which gets swapped to 4600b57cec5SDimitry Andric // (icmp ne/eq (A & D), E) &/| (icmp eq/ne (A & B), C). 4610b57cec5SDimitry Andric if (!IsAnd) { 4620b57cec5SDimitry Andric LHSMask = conjugateICmpMask(LHSMask); 4630b57cec5SDimitry Andric RHSMask = conjugateICmpMask(RHSMask); 4640b57cec5SDimitry Andric } 4650b57cec5SDimitry Andric if ((LHSMask & Mask_NotAllZeros) && (RHSMask & BMask_Mixed)) { 4660b57cec5SDimitry Andric if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 4670b57cec5SDimitry Andric LHS, RHS, IsAnd, A, B, C, D, E, 4680b57cec5SDimitry Andric PredL, PredR, Builder)) { 4690b57cec5SDimitry Andric return V; 4700b57cec5SDimitry Andric } 4710b57cec5SDimitry Andric } else if ((LHSMask & BMask_Mixed) && (RHSMask & Mask_NotAllZeros)) { 4720b57cec5SDimitry Andric if (Value *V = foldLogOpOfMaskedICmps_NotAllZeros_BMask_Mixed( 4730b57cec5SDimitry Andric RHS, LHS, IsAnd, A, D, E, B, C, 4740b57cec5SDimitry Andric PredR, PredL, Builder)) { 4750b57cec5SDimitry Andric return V; 4760b57cec5SDimitry Andric } 4770b57cec5SDimitry Andric } 4780b57cec5SDimitry Andric return nullptr; 4790b57cec5SDimitry Andric } 4800b57cec5SDimitry Andric 4810b57cec5SDimitry Andric /// Try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E) 4820b57cec5SDimitry Andric /// into a single (icmp(A & X) ==/!= Y). 4830b57cec5SDimitry Andric static Value *foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 48481ad6265SDimitry Andric bool IsLogical, 485e8d8bef9SDimitry Andric InstCombiner::BuilderTy &Builder) { 4860b57cec5SDimitry Andric Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 4870b57cec5SDimitry Andric ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 488bdd1243dSDimitry Andric std::optional<std::pair<unsigned, unsigned>> MaskPair = 4890b57cec5SDimitry Andric getMaskedTypeForICmpPair(A, B, C, D, E, LHS, RHS, PredL, PredR); 4900b57cec5SDimitry Andric if (!MaskPair) 4910b57cec5SDimitry Andric return nullptr; 4920b57cec5SDimitry Andric assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 4930b57cec5SDimitry Andric "Expected equality predicates for masked type of icmps."); 4940b57cec5SDimitry Andric unsigned LHSMask = MaskPair->first; 4950b57cec5SDimitry Andric unsigned RHSMask = MaskPair->second; 4960b57cec5SDimitry Andric unsigned Mask = LHSMask & RHSMask; 4970b57cec5SDimitry Andric if (Mask == 0) { 4980b57cec5SDimitry Andric // Even if the two sides don't share a common pattern, check if folding can 4990b57cec5SDimitry Andric // still happen. 5000b57cec5SDimitry Andric if (Value *V = foldLogOpOfMaskedICmpsAsymmetric( 5010b57cec5SDimitry Andric LHS, RHS, IsAnd, A, B, C, D, E, PredL, PredR, LHSMask, RHSMask, 5020b57cec5SDimitry Andric Builder)) 5030b57cec5SDimitry Andric return V; 5040b57cec5SDimitry Andric return nullptr; 5050b57cec5SDimitry Andric } 5060b57cec5SDimitry Andric 5070b57cec5SDimitry Andric // In full generality: 5080b57cec5SDimitry Andric // (icmp (A & B) Op C) | (icmp (A & D) Op E) 5090b57cec5SDimitry Andric // == ![ (icmp (A & B) !Op C) & (icmp (A & D) !Op E) ] 5100b57cec5SDimitry Andric // 5110b57cec5SDimitry Andric // If the latter can be converted into (icmp (A & X) Op Y) then the former is 5120b57cec5SDimitry Andric // equivalent to (icmp (A & X) !Op Y). 5130b57cec5SDimitry Andric // 5140b57cec5SDimitry Andric // Therefore, we can pretend for the rest of this function that we're dealing 5150b57cec5SDimitry Andric // with the conjunction, provided we flip the sense of any comparisons (both 5160b57cec5SDimitry Andric // input and output). 5170b57cec5SDimitry Andric 5180b57cec5SDimitry Andric // In most cases we're going to produce an EQ for the "&&" case. 5190b57cec5SDimitry Andric ICmpInst::Predicate NewCC = IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 5200b57cec5SDimitry Andric if (!IsAnd) { 5210b57cec5SDimitry Andric // Convert the masking analysis into its equivalent with negated 5220b57cec5SDimitry Andric // comparisons. 5230b57cec5SDimitry Andric Mask = conjugateICmpMask(Mask); 5240b57cec5SDimitry Andric } 5250b57cec5SDimitry Andric 5260b57cec5SDimitry Andric if (Mask & Mask_AllZeros) { 5270b57cec5SDimitry Andric // (icmp eq (A & B), 0) & (icmp eq (A & D), 0) 5280b57cec5SDimitry Andric // -> (icmp eq (A & (B|D)), 0) 52981ad6265SDimitry Andric if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 53081ad6265SDimitry Andric return nullptr; // TODO: Use freeze? 5310b57cec5SDimitry Andric Value *NewOr = Builder.CreateOr(B, D); 5320b57cec5SDimitry Andric Value *NewAnd = Builder.CreateAnd(A, NewOr); 5330b57cec5SDimitry Andric // We can't use C as zero because we might actually handle 5340b57cec5SDimitry Andric // (icmp ne (A & B), B) & (icmp ne (A & D), D) 5350b57cec5SDimitry Andric // with B and D, having a single bit set. 5360b57cec5SDimitry Andric Value *Zero = Constant::getNullValue(A->getType()); 5370b57cec5SDimitry Andric return Builder.CreateICmp(NewCC, NewAnd, Zero); 5380b57cec5SDimitry Andric } 5390b57cec5SDimitry Andric if (Mask & BMask_AllOnes) { 5400b57cec5SDimitry Andric // (icmp eq (A & B), B) & (icmp eq (A & D), D) 5410b57cec5SDimitry Andric // -> (icmp eq (A & (B|D)), (B|D)) 54281ad6265SDimitry Andric if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 54381ad6265SDimitry Andric return nullptr; // TODO: Use freeze? 5440b57cec5SDimitry Andric Value *NewOr = Builder.CreateOr(B, D); 5450b57cec5SDimitry Andric Value *NewAnd = Builder.CreateAnd(A, NewOr); 5460b57cec5SDimitry Andric return Builder.CreateICmp(NewCC, NewAnd, NewOr); 5470b57cec5SDimitry Andric } 5480b57cec5SDimitry Andric if (Mask & AMask_AllOnes) { 5490b57cec5SDimitry Andric // (icmp eq (A & B), A) & (icmp eq (A & D), A) 5500b57cec5SDimitry Andric // -> (icmp eq (A & (B&D)), A) 55181ad6265SDimitry Andric if (IsLogical && !isGuaranteedNotToBeUndefOrPoison(D)) 55281ad6265SDimitry Andric return nullptr; // TODO: Use freeze? 5530b57cec5SDimitry Andric Value *NewAnd1 = Builder.CreateAnd(B, D); 5540b57cec5SDimitry Andric Value *NewAnd2 = Builder.CreateAnd(A, NewAnd1); 5550b57cec5SDimitry Andric return Builder.CreateICmp(NewCC, NewAnd2, A); 5560b57cec5SDimitry Andric } 5570b57cec5SDimitry Andric 5580b57cec5SDimitry Andric // Remaining cases assume at least that B and D are constant, and depend on 5590b57cec5SDimitry Andric // their actual values. This isn't strictly necessary, just a "handle the 5600b57cec5SDimitry Andric // easy cases for now" decision. 561349cc55cSDimitry Andric const APInt *ConstB, *ConstD; 562349cc55cSDimitry Andric if (!match(B, m_APInt(ConstB)) || !match(D, m_APInt(ConstD))) 5630b57cec5SDimitry Andric return nullptr; 5640b57cec5SDimitry Andric 5650b57cec5SDimitry Andric if (Mask & (Mask_NotAllZeros | BMask_NotAllOnes)) { 5660b57cec5SDimitry Andric // (icmp ne (A & B), 0) & (icmp ne (A & D), 0) and 5670b57cec5SDimitry Andric // (icmp ne (A & B), B) & (icmp ne (A & D), D) 5680b57cec5SDimitry Andric // -> (icmp ne (A & B), 0) or (icmp ne (A & D), 0) 5690b57cec5SDimitry Andric // Only valid if one of the masks is a superset of the other (check "B&D" is 5700b57cec5SDimitry Andric // the same as either B or D). 571349cc55cSDimitry Andric APInt NewMask = *ConstB & *ConstD; 572349cc55cSDimitry Andric if (NewMask == *ConstB) 5730b57cec5SDimitry Andric return LHS; 574349cc55cSDimitry Andric else if (NewMask == *ConstD) 5750b57cec5SDimitry Andric return RHS; 5760b57cec5SDimitry Andric } 5770b57cec5SDimitry Andric 5780b57cec5SDimitry Andric if (Mask & AMask_NotAllOnes) { 5790b57cec5SDimitry Andric // (icmp ne (A & B), B) & (icmp ne (A & D), D) 5800b57cec5SDimitry Andric // -> (icmp ne (A & B), A) or (icmp ne (A & D), A) 5810b57cec5SDimitry Andric // Only valid if one of the masks is a superset of the other (check "B|D" is 5820b57cec5SDimitry Andric // the same as either B or D). 583349cc55cSDimitry Andric APInt NewMask = *ConstB | *ConstD; 584349cc55cSDimitry Andric if (NewMask == *ConstB) 5850b57cec5SDimitry Andric return LHS; 586349cc55cSDimitry Andric else if (NewMask == *ConstD) 5870b57cec5SDimitry Andric return RHS; 5880b57cec5SDimitry Andric } 5890b57cec5SDimitry Andric 59006c3fb27SDimitry Andric if (Mask & (BMask_Mixed | BMask_NotMixed)) { 59106c3fb27SDimitry Andric // Mixed: 5920b57cec5SDimitry Andric // (icmp eq (A & B), C) & (icmp eq (A & D), E) 5930b57cec5SDimitry Andric // We already know that B & C == C && D & E == E. 5940b57cec5SDimitry Andric // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of 5950b57cec5SDimitry Andric // C and E, which are shared by both the mask B and the mask D, don't 5960b57cec5SDimitry Andric // contradict, then we can transform to 5970b57cec5SDimitry Andric // -> (icmp eq (A & (B|D)), (C|E)) 5980b57cec5SDimitry Andric // Currently, we only handle the case of B, C, D, and E being constant. 5990b57cec5SDimitry Andric // We can't simply use C and E because we might actually handle 6000b57cec5SDimitry Andric // (icmp ne (A & B), B) & (icmp eq (A & D), D) 6010b57cec5SDimitry Andric // with B and D, having a single bit set. 60206c3fb27SDimitry Andric 60306c3fb27SDimitry Andric // NotMixed: 60406c3fb27SDimitry Andric // (icmp ne (A & B), C) & (icmp ne (A & D), E) 60506c3fb27SDimitry Andric // -> (icmp ne (A & (B & D)), (C & E)) 60606c3fb27SDimitry Andric // Check the intersection (B & D) for inequality. 60706c3fb27SDimitry Andric // Assume that (B & D) == B || (B & D) == D, i.e B/D is a subset of D/B 60806c3fb27SDimitry Andric // and (B & D) & (C ^ E) == 0, bits of C and E, which are shared by both the 60906c3fb27SDimitry Andric // B and the D, don't contradict. 61006c3fb27SDimitry Andric // Note that we can assume (~B & C) == 0 && (~D & E) == 0, previous 61106c3fb27SDimitry Andric // operation should delete these icmps if it hadn't been met. 61206c3fb27SDimitry Andric 613349cc55cSDimitry Andric const APInt *OldConstC, *OldConstE; 614349cc55cSDimitry Andric if (!match(C, m_APInt(OldConstC)) || !match(E, m_APInt(OldConstE))) 6150b57cec5SDimitry Andric return nullptr; 616349cc55cSDimitry Andric 61706c3fb27SDimitry Andric auto FoldBMixed = [&](ICmpInst::Predicate CC, bool IsNot) -> Value * { 61806c3fb27SDimitry Andric CC = IsNot ? CmpInst::getInversePredicate(CC) : CC; 61906c3fb27SDimitry Andric const APInt ConstC = PredL != CC ? *ConstB ^ *OldConstC : *OldConstC; 62006c3fb27SDimitry Andric const APInt ConstE = PredR != CC ? *ConstD ^ *OldConstE : *OldConstE; 6210b57cec5SDimitry Andric 622349cc55cSDimitry Andric if (((*ConstB & *ConstD) & (ConstC ^ ConstE)).getBoolValue()) 62306c3fb27SDimitry Andric return IsNot ? nullptr : ConstantInt::get(LHS->getType(), !IsAnd); 6240b57cec5SDimitry Andric 62506c3fb27SDimitry Andric if (IsNot && !ConstB->isSubsetOf(*ConstD) && !ConstD->isSubsetOf(*ConstB)) 62606c3fb27SDimitry Andric return nullptr; 62706c3fb27SDimitry Andric 62806c3fb27SDimitry Andric APInt BD, CE; 62906c3fb27SDimitry Andric if (IsNot) { 63006c3fb27SDimitry Andric BD = *ConstB & *ConstD; 63106c3fb27SDimitry Andric CE = ConstC & ConstE; 63206c3fb27SDimitry Andric } else { 63306c3fb27SDimitry Andric BD = *ConstB | *ConstD; 63406c3fb27SDimitry Andric CE = ConstC | ConstE; 6350b57cec5SDimitry Andric } 63606c3fb27SDimitry Andric Value *NewAnd = Builder.CreateAnd(A, BD); 63706c3fb27SDimitry Andric Value *CEVal = ConstantInt::get(A->getType(), CE); 63806c3fb27SDimitry Andric return Builder.CreateICmp(CC, CEVal, NewAnd); 63906c3fb27SDimitry Andric }; 6400b57cec5SDimitry Andric 64106c3fb27SDimitry Andric if (Mask & BMask_Mixed) 64206c3fb27SDimitry Andric return FoldBMixed(NewCC, false); 64306c3fb27SDimitry Andric if (Mask & BMask_NotMixed) // can be else also 64406c3fb27SDimitry Andric return FoldBMixed(NewCC, true); 64506c3fb27SDimitry Andric } 6460b57cec5SDimitry Andric return nullptr; 6470b57cec5SDimitry Andric } 6480b57cec5SDimitry Andric 6490b57cec5SDimitry Andric /// Try to fold a signed range checked with lower bound 0 to an unsigned icmp. 6500b57cec5SDimitry Andric /// Example: (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 6510b57cec5SDimitry Andric /// If \p Inverted is true then the check is for the inverted range, e.g. 6520b57cec5SDimitry Andric /// (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 653e8d8bef9SDimitry Andric Value *InstCombinerImpl::simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, 6540b57cec5SDimitry Andric bool Inverted) { 6550b57cec5SDimitry Andric // Check the lower range comparison, e.g. x >= 0 6560b57cec5SDimitry Andric // InstCombine already ensured that if there is a constant it's on the RHS. 6570b57cec5SDimitry Andric ConstantInt *RangeStart = dyn_cast<ConstantInt>(Cmp0->getOperand(1)); 6580b57cec5SDimitry Andric if (!RangeStart) 6590b57cec5SDimitry Andric return nullptr; 6600b57cec5SDimitry Andric 6610b57cec5SDimitry Andric ICmpInst::Predicate Pred0 = (Inverted ? Cmp0->getInversePredicate() : 6620b57cec5SDimitry Andric Cmp0->getPredicate()); 6630b57cec5SDimitry Andric 6640b57cec5SDimitry Andric // Accept x > -1 or x >= 0 (after potentially inverting the predicate). 6650b57cec5SDimitry Andric if (!((Pred0 == ICmpInst::ICMP_SGT && RangeStart->isMinusOne()) || 6660b57cec5SDimitry Andric (Pred0 == ICmpInst::ICMP_SGE && RangeStart->isZero()))) 6670b57cec5SDimitry Andric return nullptr; 6680b57cec5SDimitry Andric 6690b57cec5SDimitry Andric ICmpInst::Predicate Pred1 = (Inverted ? Cmp1->getInversePredicate() : 6700b57cec5SDimitry Andric Cmp1->getPredicate()); 6710b57cec5SDimitry Andric 6720b57cec5SDimitry Andric Value *Input = Cmp0->getOperand(0); 6730b57cec5SDimitry Andric Value *RangeEnd; 6740b57cec5SDimitry Andric if (Cmp1->getOperand(0) == Input) { 6750b57cec5SDimitry Andric // For the upper range compare we have: icmp x, n 6760b57cec5SDimitry Andric RangeEnd = Cmp1->getOperand(1); 6770b57cec5SDimitry Andric } else if (Cmp1->getOperand(1) == Input) { 6780b57cec5SDimitry Andric // For the upper range compare we have: icmp n, x 6790b57cec5SDimitry Andric RangeEnd = Cmp1->getOperand(0); 6800b57cec5SDimitry Andric Pred1 = ICmpInst::getSwappedPredicate(Pred1); 6810b57cec5SDimitry Andric } else { 6820b57cec5SDimitry Andric return nullptr; 6830b57cec5SDimitry Andric } 6840b57cec5SDimitry Andric 6850b57cec5SDimitry Andric // Check the upper range comparison, e.g. x < n 6860b57cec5SDimitry Andric ICmpInst::Predicate NewPred; 6870b57cec5SDimitry Andric switch (Pred1) { 6880b57cec5SDimitry Andric case ICmpInst::ICMP_SLT: NewPred = ICmpInst::ICMP_ULT; break; 6890b57cec5SDimitry Andric case ICmpInst::ICMP_SLE: NewPred = ICmpInst::ICMP_ULE; break; 6900b57cec5SDimitry Andric default: return nullptr; 6910b57cec5SDimitry Andric } 6920b57cec5SDimitry Andric 6930b57cec5SDimitry Andric // This simplification is only valid if the upper range is not negative. 6940b57cec5SDimitry Andric KnownBits Known = computeKnownBits(RangeEnd, /*Depth=*/0, Cmp1); 6950b57cec5SDimitry Andric if (!Known.isNonNegative()) 6960b57cec5SDimitry Andric return nullptr; 6970b57cec5SDimitry Andric 6980b57cec5SDimitry Andric if (Inverted) 6990b57cec5SDimitry Andric NewPred = ICmpInst::getInversePredicate(NewPred); 7000b57cec5SDimitry Andric 7010b57cec5SDimitry Andric return Builder.CreateICmp(NewPred, Input, RangeEnd); 7020b57cec5SDimitry Andric } 7030b57cec5SDimitry Andric 7040fca6ea1SDimitry Andric // (or (icmp eq X, 0), (icmp eq X, Pow2OrZero)) 7050fca6ea1SDimitry Andric // -> (icmp eq (and X, Pow2OrZero), X) 7060fca6ea1SDimitry Andric // (and (icmp ne X, 0), (icmp ne X, Pow2OrZero)) 7070fca6ea1SDimitry Andric // -> (icmp ne (and X, Pow2OrZero), X) 7080fca6ea1SDimitry Andric static Value * 7090fca6ea1SDimitry Andric foldAndOrOfICmpsWithPow2AndWithZero(InstCombiner::BuilderTy &Builder, 7100fca6ea1SDimitry Andric ICmpInst *LHS, ICmpInst *RHS, bool IsAnd, 7110fca6ea1SDimitry Andric const SimplifyQuery &Q) { 7120fca6ea1SDimitry Andric CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 7130fca6ea1SDimitry Andric // Make sure we have right compares for our op. 7140fca6ea1SDimitry Andric if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 7150fca6ea1SDimitry Andric return nullptr; 7160fca6ea1SDimitry Andric 7170fca6ea1SDimitry Andric // Make it so we can match LHS against the (icmp eq/ne X, 0) just for 7180fca6ea1SDimitry Andric // simplicity. 7190fca6ea1SDimitry Andric if (match(RHS->getOperand(1), m_Zero())) 7200fca6ea1SDimitry Andric std::swap(LHS, RHS); 7210fca6ea1SDimitry Andric 7220fca6ea1SDimitry Andric Value *Pow2, *Op; 7230fca6ea1SDimitry Andric // Match the desired pattern: 7240fca6ea1SDimitry Andric // LHS: (icmp eq/ne X, 0) 7250fca6ea1SDimitry Andric // RHS: (icmp eq/ne X, Pow2OrZero) 7260fca6ea1SDimitry Andric // Skip if Pow2OrZero is 1. Either way it gets folded to (icmp ugt X, 1) but 7270fca6ea1SDimitry Andric // this form ends up slightly less canonical. 7280fca6ea1SDimitry Andric // We could potentially be more sophisticated than requiring LHS/RHS 7290fca6ea1SDimitry Andric // be one-use. We don't create additional instructions if only one 7300fca6ea1SDimitry Andric // of them is one-use. So cases where one is one-use and the other 7310fca6ea1SDimitry Andric // is two-use might be profitable. 7320fca6ea1SDimitry Andric if (!match(LHS, m_OneUse(m_ICmp(Pred, m_Value(Op), m_Zero()))) || 7330fca6ea1SDimitry Andric !match(RHS, m_OneUse(m_c_ICmp(Pred, m_Specific(Op), m_Value(Pow2)))) || 7340fca6ea1SDimitry Andric match(Pow2, m_One()) || 7350fca6ea1SDimitry Andric !isKnownToBeAPowerOfTwo(Pow2, Q.DL, /*OrZero=*/true, /*Depth=*/0, Q.AC, 7360fca6ea1SDimitry Andric Q.CxtI, Q.DT)) 7370fca6ea1SDimitry Andric return nullptr; 7380fca6ea1SDimitry Andric 7390fca6ea1SDimitry Andric Value *And = Builder.CreateAnd(Op, Pow2); 7400fca6ea1SDimitry Andric return Builder.CreateICmp(Pred, And, Op); 7410fca6ea1SDimitry Andric } 7420fca6ea1SDimitry Andric 7430b57cec5SDimitry Andric // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 7440b57cec5SDimitry Andric // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 745e8d8bef9SDimitry Andric Value *InstCombinerImpl::foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, 746e8d8bef9SDimitry Andric ICmpInst *RHS, 747fe6060f1SDimitry Andric Instruction *CxtI, 748fe6060f1SDimitry Andric bool IsAnd, 749fe6060f1SDimitry Andric bool IsLogical) { 750fe6060f1SDimitry Andric CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; 751fe6060f1SDimitry Andric if (LHS->getPredicate() != Pred || RHS->getPredicate() != Pred) 7520b57cec5SDimitry Andric return nullptr; 7530b57cec5SDimitry Andric 754e8d8bef9SDimitry Andric if (!match(LHS->getOperand(1), m_Zero()) || 755e8d8bef9SDimitry Andric !match(RHS->getOperand(1), m_Zero())) 7560b57cec5SDimitry Andric return nullptr; 7570b57cec5SDimitry Andric 758fe6060f1SDimitry Andric Value *L1, *L2, *R1, *R2; 759fe6060f1SDimitry Andric if (match(LHS->getOperand(0), m_And(m_Value(L1), m_Value(L2))) && 760fe6060f1SDimitry Andric match(RHS->getOperand(0), m_And(m_Value(R1), m_Value(R2)))) { 761fe6060f1SDimitry Andric if (L1 == R2 || L2 == R2) 762fe6060f1SDimitry Andric std::swap(R1, R2); 763fe6060f1SDimitry Andric if (L2 == R1) 764fe6060f1SDimitry Andric std::swap(L1, L2); 7650b57cec5SDimitry Andric 766fe6060f1SDimitry Andric if (L1 == R1 && 767fe6060f1SDimitry Andric isKnownToBeAPowerOfTwo(L2, false, 0, CxtI) && 768fe6060f1SDimitry Andric isKnownToBeAPowerOfTwo(R2, false, 0, CxtI)) { 769fe6060f1SDimitry Andric // If this is a logical and/or, then we must prevent propagation of a 770fe6060f1SDimitry Andric // poison value from the RHS by inserting freeze. 771fe6060f1SDimitry Andric if (IsLogical) 772fe6060f1SDimitry Andric R2 = Builder.CreateFreeze(R2); 773fe6060f1SDimitry Andric Value *Mask = Builder.CreateOr(L2, R2); 774fe6060f1SDimitry Andric Value *Masked = Builder.CreateAnd(L1, Mask); 775fe6060f1SDimitry Andric auto NewPred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 7760b57cec5SDimitry Andric return Builder.CreateICmp(NewPred, Masked, Mask); 7770b57cec5SDimitry Andric } 7780b57cec5SDimitry Andric } 7790b57cec5SDimitry Andric 7800b57cec5SDimitry Andric return nullptr; 7810b57cec5SDimitry Andric } 7820b57cec5SDimitry Andric 7830b57cec5SDimitry Andric /// General pattern: 7840b57cec5SDimitry Andric /// X & Y 7850b57cec5SDimitry Andric /// 7860b57cec5SDimitry Andric /// Where Y is checking that all the high bits (covered by a mask 4294967168) 7870b57cec5SDimitry Andric /// are uniform, i.e. %arg & 4294967168 can be either 4294967168 or 0 7880b57cec5SDimitry Andric /// Pattern can be one of: 7890b57cec5SDimitry Andric /// %t = add i32 %arg, 128 7900b57cec5SDimitry Andric /// %r = icmp ult i32 %t, 256 7910b57cec5SDimitry Andric /// Or 7920b57cec5SDimitry Andric /// %t0 = shl i32 %arg, 24 7930b57cec5SDimitry Andric /// %t1 = ashr i32 %t0, 24 7940b57cec5SDimitry Andric /// %r = icmp eq i32 %t1, %arg 7950b57cec5SDimitry Andric /// Or 7960b57cec5SDimitry Andric /// %t0 = trunc i32 %arg to i8 7970b57cec5SDimitry Andric /// %t1 = sext i8 %t0 to i32 7980b57cec5SDimitry Andric /// %r = icmp eq i32 %t1, %arg 7990b57cec5SDimitry Andric /// This pattern is a signed truncation check. 8000b57cec5SDimitry Andric /// 8010b57cec5SDimitry Andric /// And X is checking that some bit in that same mask is zero. 8020b57cec5SDimitry Andric /// I.e. can be one of: 8030b57cec5SDimitry Andric /// %r = icmp sgt i32 %arg, -1 8040b57cec5SDimitry Andric /// Or 8050b57cec5SDimitry Andric /// %t = and i32 %arg, 2147483648 8060b57cec5SDimitry Andric /// %r = icmp eq i32 %t, 0 8070b57cec5SDimitry Andric /// 8080b57cec5SDimitry Andric /// Since we are checking that all the bits in that mask are the same, 8090b57cec5SDimitry Andric /// and a particular bit is zero, what we are really checking is that all the 8100b57cec5SDimitry Andric /// masked bits are zero. 8110b57cec5SDimitry Andric /// So this should be transformed to: 8120b57cec5SDimitry Andric /// %r = icmp ult i32 %arg, 128 8130b57cec5SDimitry Andric static Value *foldSignedTruncationCheck(ICmpInst *ICmp0, ICmpInst *ICmp1, 8140b57cec5SDimitry Andric Instruction &CxtI, 8150b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 8160b57cec5SDimitry Andric assert(CxtI.getOpcode() == Instruction::And); 8170b57cec5SDimitry Andric 8180b57cec5SDimitry Andric // Match icmp ult (add %arg, C01), C1 (C1 == C01 << 1; powers of two) 8190b57cec5SDimitry Andric auto tryToMatchSignedTruncationCheck = [](ICmpInst *ICmp, Value *&X, 8200b57cec5SDimitry Andric APInt &SignBitMask) -> bool { 8210b57cec5SDimitry Andric CmpInst::Predicate Pred; 8220b57cec5SDimitry Andric const APInt *I01, *I1; // powers of two; I1 == I01 << 1 8230b57cec5SDimitry Andric if (!(match(ICmp, 8240b57cec5SDimitry Andric m_ICmp(Pred, m_Add(m_Value(X), m_Power2(I01)), m_Power2(I1))) && 8250b57cec5SDimitry Andric Pred == ICmpInst::ICMP_ULT && I1->ugt(*I01) && I01->shl(1) == *I1)) 8260b57cec5SDimitry Andric return false; 8270b57cec5SDimitry Andric // Which bit is the new sign bit as per the 'signed truncation' pattern? 8280b57cec5SDimitry Andric SignBitMask = *I01; 8290b57cec5SDimitry Andric return true; 8300b57cec5SDimitry Andric }; 8310b57cec5SDimitry Andric 8320b57cec5SDimitry Andric // One icmp needs to be 'signed truncation check'. 8330b57cec5SDimitry Andric // We need to match this first, else we will mismatch commutative cases. 8340b57cec5SDimitry Andric Value *X1; 8350b57cec5SDimitry Andric APInt HighestBit; 8360b57cec5SDimitry Andric ICmpInst *OtherICmp; 8370b57cec5SDimitry Andric if (tryToMatchSignedTruncationCheck(ICmp1, X1, HighestBit)) 8380b57cec5SDimitry Andric OtherICmp = ICmp0; 8390b57cec5SDimitry Andric else if (tryToMatchSignedTruncationCheck(ICmp0, X1, HighestBit)) 8400b57cec5SDimitry Andric OtherICmp = ICmp1; 8410b57cec5SDimitry Andric else 8420b57cec5SDimitry Andric return nullptr; 8430b57cec5SDimitry Andric 8440b57cec5SDimitry Andric assert(HighestBit.isPowerOf2() && "expected to be power of two (non-zero)"); 8450b57cec5SDimitry Andric 8460b57cec5SDimitry Andric // Try to match/decompose into: icmp eq (X & Mask), 0 8470b57cec5SDimitry Andric auto tryToDecompose = [](ICmpInst *ICmp, Value *&X, 8480b57cec5SDimitry Andric APInt &UnsetBitsMask) -> bool { 8490b57cec5SDimitry Andric CmpInst::Predicate Pred = ICmp->getPredicate(); 8500b57cec5SDimitry Andric // Can it be decomposed into icmp eq (X & Mask), 0 ? 8510b57cec5SDimitry Andric if (llvm::decomposeBitTestICmp(ICmp->getOperand(0), ICmp->getOperand(1), 8520b57cec5SDimitry Andric Pred, X, UnsetBitsMask, 8530b57cec5SDimitry Andric /*LookThroughTrunc=*/false) && 8540b57cec5SDimitry Andric Pred == ICmpInst::ICMP_EQ) 8550b57cec5SDimitry Andric return true; 8560b57cec5SDimitry Andric // Is it icmp eq (X & Mask), 0 already? 8570b57cec5SDimitry Andric const APInt *Mask; 8580b57cec5SDimitry Andric if (match(ICmp, m_ICmp(Pred, m_And(m_Value(X), m_APInt(Mask)), m_Zero())) && 8590b57cec5SDimitry Andric Pred == ICmpInst::ICMP_EQ) { 8600b57cec5SDimitry Andric UnsetBitsMask = *Mask; 8610b57cec5SDimitry Andric return true; 8620b57cec5SDimitry Andric } 8630b57cec5SDimitry Andric return false; 8640b57cec5SDimitry Andric }; 8650b57cec5SDimitry Andric 8660b57cec5SDimitry Andric // And the other icmp needs to be decomposable into a bit test. 8670b57cec5SDimitry Andric Value *X0; 8680b57cec5SDimitry Andric APInt UnsetBitsMask; 8690b57cec5SDimitry Andric if (!tryToDecompose(OtherICmp, X0, UnsetBitsMask)) 8700b57cec5SDimitry Andric return nullptr; 8710b57cec5SDimitry Andric 872349cc55cSDimitry Andric assert(!UnsetBitsMask.isZero() && "empty mask makes no sense."); 8730b57cec5SDimitry Andric 8740b57cec5SDimitry Andric // Are they working on the same value? 8750b57cec5SDimitry Andric Value *X; 8760b57cec5SDimitry Andric if (X1 == X0) { 8770b57cec5SDimitry Andric // Ok as is. 8780b57cec5SDimitry Andric X = X1; 8790b57cec5SDimitry Andric } else if (match(X0, m_Trunc(m_Specific(X1)))) { 8800b57cec5SDimitry Andric UnsetBitsMask = UnsetBitsMask.zext(X1->getType()->getScalarSizeInBits()); 8810b57cec5SDimitry Andric X = X1; 8820b57cec5SDimitry Andric } else 8830b57cec5SDimitry Andric return nullptr; 8840b57cec5SDimitry Andric 8850b57cec5SDimitry Andric // So which bits should be uniform as per the 'signed truncation check'? 8860b57cec5SDimitry Andric // (all the bits starting with (i.e. including) HighestBit) 8870b57cec5SDimitry Andric APInt SignBitsMask = ~(HighestBit - 1U); 8880b57cec5SDimitry Andric 8890b57cec5SDimitry Andric // UnsetBitsMask must have some common bits with SignBitsMask, 8900b57cec5SDimitry Andric if (!UnsetBitsMask.intersects(SignBitsMask)) 8910b57cec5SDimitry Andric return nullptr; 8920b57cec5SDimitry Andric 8930b57cec5SDimitry Andric // Does UnsetBitsMask contain any bits outside of SignBitsMask? 8940b57cec5SDimitry Andric if (!UnsetBitsMask.isSubsetOf(SignBitsMask)) { 8950b57cec5SDimitry Andric APInt OtherHighestBit = (~UnsetBitsMask) + 1U; 8960b57cec5SDimitry Andric if (!OtherHighestBit.isPowerOf2()) 8970b57cec5SDimitry Andric return nullptr; 8980b57cec5SDimitry Andric HighestBit = APIntOps::umin(HighestBit, OtherHighestBit); 8990b57cec5SDimitry Andric } 9000b57cec5SDimitry Andric // Else, if it does not, then all is ok as-is. 9010b57cec5SDimitry Andric 9020b57cec5SDimitry Andric // %r = icmp ult %X, SignBit 9030b57cec5SDimitry Andric return Builder.CreateICmpULT(X, ConstantInt::get(X->getType(), HighestBit), 9040b57cec5SDimitry Andric CxtI.getName() + ".simplified"); 9050b57cec5SDimitry Andric } 9060b57cec5SDimitry Andric 90781ad6265SDimitry Andric /// Fold (icmp eq ctpop(X) 1) | (icmp eq X 0) into (icmp ult ctpop(X) 2) and 90881ad6265SDimitry Andric /// fold (icmp ne ctpop(X) 1) & (icmp ne X 0) into (icmp ugt ctpop(X) 1). 90981ad6265SDimitry Andric /// Also used for logical and/or, must be poison safe. 91081ad6265SDimitry Andric static Value *foldIsPowerOf2OrZero(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd, 91181ad6265SDimitry Andric InstCombiner::BuilderTy &Builder) { 91281ad6265SDimitry Andric CmpInst::Predicate Pred0, Pred1; 91381ad6265SDimitry Andric Value *X; 91481ad6265SDimitry Andric if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 91581ad6265SDimitry Andric m_SpecificInt(1))) || 91681ad6265SDimitry Andric !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt()))) 91781ad6265SDimitry Andric return nullptr; 91881ad6265SDimitry Andric 91981ad6265SDimitry Andric Value *CtPop = Cmp0->getOperand(0); 92081ad6265SDimitry Andric if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_NE) 92181ad6265SDimitry Andric return Builder.CreateICmpUGT(CtPop, ConstantInt::get(CtPop->getType(), 1)); 92281ad6265SDimitry Andric if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_EQ) 92381ad6265SDimitry Andric return Builder.CreateICmpULT(CtPop, ConstantInt::get(CtPop->getType(), 2)); 92481ad6265SDimitry Andric 92581ad6265SDimitry Andric return nullptr; 92681ad6265SDimitry Andric } 92781ad6265SDimitry Andric 9280b57cec5SDimitry Andric /// Reduce a pair of compares that check if a value has exactly 1 bit set. 929*5deeebd8SDimitry Andric /// Also used for logical and/or, must be poison safe if range attributes are 930*5deeebd8SDimitry Andric /// dropped. 9310b57cec5SDimitry Andric static Value *foldIsPowerOf2(ICmpInst *Cmp0, ICmpInst *Cmp1, bool JoinedByAnd, 932*5deeebd8SDimitry Andric InstCombiner::BuilderTy &Builder, 933*5deeebd8SDimitry Andric InstCombinerImpl &IC) { 9340b57cec5SDimitry Andric // Handle 'and' / 'or' commutation: make the equality check the first operand. 9350b57cec5SDimitry Andric if (JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_NE) 9360b57cec5SDimitry Andric std::swap(Cmp0, Cmp1); 9370b57cec5SDimitry Andric else if (!JoinedByAnd && Cmp1->getPredicate() == ICmpInst::ICMP_EQ) 9380b57cec5SDimitry Andric std::swap(Cmp0, Cmp1); 9390b57cec5SDimitry Andric 9400b57cec5SDimitry Andric // (X != 0) && (ctpop(X) u< 2) --> ctpop(X) == 1 9410b57cec5SDimitry Andric CmpInst::Predicate Pred0, Pred1; 9420b57cec5SDimitry Andric Value *X; 9430b57cec5SDimitry Andric if (JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 9440b57cec5SDimitry Andric match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 9450b57cec5SDimitry Andric m_SpecificInt(2))) && 9460b57cec5SDimitry Andric Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) { 947*5deeebd8SDimitry Andric auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); 948*5deeebd8SDimitry Andric // Drop range attributes and re-infer them in the next iteration. 949*5deeebd8SDimitry Andric CtPop->dropPoisonGeneratingAnnotations(); 950*5deeebd8SDimitry Andric IC.addToWorklist(CtPop); 9510b57cec5SDimitry Andric return Builder.CreateICmpEQ(CtPop, ConstantInt::get(CtPop->getType(), 1)); 9520b57cec5SDimitry Andric } 9530b57cec5SDimitry Andric // (X == 0) || (ctpop(X) u> 1) --> ctpop(X) != 1 9540b57cec5SDimitry Andric if (!JoinedByAnd && match(Cmp0, m_ICmp(Pred0, m_Value(X), m_ZeroInt())) && 9550b57cec5SDimitry Andric match(Cmp1, m_ICmp(Pred1, m_Intrinsic<Intrinsic::ctpop>(m_Specific(X)), 9560b57cec5SDimitry Andric m_SpecificInt(1))) && 9570b57cec5SDimitry Andric Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_UGT) { 958*5deeebd8SDimitry Andric auto *CtPop = cast<Instruction>(Cmp1->getOperand(0)); 959*5deeebd8SDimitry Andric // Drop range attributes and re-infer them in the next iteration. 960*5deeebd8SDimitry Andric CtPop->dropPoisonGeneratingAnnotations(); 961*5deeebd8SDimitry Andric IC.addToWorklist(CtPop); 9620b57cec5SDimitry Andric return Builder.CreateICmpNE(CtPop, ConstantInt::get(CtPop->getType(), 1)); 9630b57cec5SDimitry Andric } 9640b57cec5SDimitry Andric return nullptr; 9650b57cec5SDimitry Andric } 9660b57cec5SDimitry Andric 96706c3fb27SDimitry Andric /// Try to fold (icmp(A & B) == 0) & (icmp(A & D) != E) into (icmp A u< D) iff 96806c3fb27SDimitry Andric /// B is a contiguous set of ones starting from the most significant bit 96906c3fb27SDimitry Andric /// (negative power of 2), D and E are equal, and D is a contiguous set of ones 97006c3fb27SDimitry Andric /// starting at the most significant zero bit in B. Parameter B supports masking 97106c3fb27SDimitry Andric /// using undef/poison in either scalar or vector values. 97206c3fb27SDimitry Andric static Value *foldNegativePower2AndShiftedMask( 97306c3fb27SDimitry Andric Value *A, Value *B, Value *D, Value *E, ICmpInst::Predicate PredL, 97406c3fb27SDimitry Andric ICmpInst::Predicate PredR, InstCombiner::BuilderTy &Builder) { 97506c3fb27SDimitry Andric assert(ICmpInst::isEquality(PredL) && ICmpInst::isEquality(PredR) && 97606c3fb27SDimitry Andric "Expected equality predicates for masked type of icmps."); 97706c3fb27SDimitry Andric if (PredL != ICmpInst::ICMP_EQ || PredR != ICmpInst::ICMP_NE) 97806c3fb27SDimitry Andric return nullptr; 97906c3fb27SDimitry Andric 98006c3fb27SDimitry Andric if (!match(B, m_NegatedPower2()) || !match(D, m_ShiftedMask()) || 98106c3fb27SDimitry Andric !match(E, m_ShiftedMask())) 98206c3fb27SDimitry Andric return nullptr; 98306c3fb27SDimitry Andric 98406c3fb27SDimitry Andric // Test scalar arguments for conversion. B has been validated earlier to be a 98506c3fb27SDimitry Andric // negative power of two and thus is guaranteed to have one or more contiguous 98606c3fb27SDimitry Andric // ones starting from the MSB followed by zero or more contiguous zeros. D has 98706c3fb27SDimitry Andric // been validated earlier to be a shifted set of one or more contiguous ones. 98806c3fb27SDimitry Andric // In order to match, B leading ones and D leading zeros should be equal. The 98906c3fb27SDimitry Andric // predicate that B be a negative power of 2 prevents the condition of there 99006c3fb27SDimitry Andric // ever being zero leading ones. Thus 0 == 0 cannot occur. The predicate that 99106c3fb27SDimitry Andric // D always be a shifted mask prevents the condition of D equaling 0. This 99206c3fb27SDimitry Andric // prevents matching the condition where B contains the maximum number of 99306c3fb27SDimitry Andric // leading one bits (-1) and D contains the maximum number of leading zero 99406c3fb27SDimitry Andric // bits (0). 99506c3fb27SDimitry Andric auto isReducible = [](const Value *B, const Value *D, const Value *E) { 99606c3fb27SDimitry Andric const APInt *BCst, *DCst, *ECst; 9970fca6ea1SDimitry Andric return match(B, m_APIntAllowPoison(BCst)) && match(D, m_APInt(DCst)) && 99806c3fb27SDimitry Andric match(E, m_APInt(ECst)) && *DCst == *ECst && 9990fca6ea1SDimitry Andric (isa<PoisonValue>(B) || 100006c3fb27SDimitry Andric (BCst->countLeadingOnes() == DCst->countLeadingZeros())); 100106c3fb27SDimitry Andric }; 100206c3fb27SDimitry Andric 100306c3fb27SDimitry Andric // Test vector type arguments for conversion. 100406c3fb27SDimitry Andric if (const auto *BVTy = dyn_cast<VectorType>(B->getType())) { 100506c3fb27SDimitry Andric const auto *BFVTy = dyn_cast<FixedVectorType>(BVTy); 100606c3fb27SDimitry Andric const auto *BConst = dyn_cast<Constant>(B); 100706c3fb27SDimitry Andric const auto *DConst = dyn_cast<Constant>(D); 100806c3fb27SDimitry Andric const auto *EConst = dyn_cast<Constant>(E); 100906c3fb27SDimitry Andric 101006c3fb27SDimitry Andric if (!BFVTy || !BConst || !DConst || !EConst) 101106c3fb27SDimitry Andric return nullptr; 101206c3fb27SDimitry Andric 101306c3fb27SDimitry Andric for (unsigned I = 0; I != BFVTy->getNumElements(); ++I) { 101406c3fb27SDimitry Andric const auto *BElt = BConst->getAggregateElement(I); 101506c3fb27SDimitry Andric const auto *DElt = DConst->getAggregateElement(I); 101606c3fb27SDimitry Andric const auto *EElt = EConst->getAggregateElement(I); 101706c3fb27SDimitry Andric 101806c3fb27SDimitry Andric if (!BElt || !DElt || !EElt) 101906c3fb27SDimitry Andric return nullptr; 102006c3fb27SDimitry Andric if (!isReducible(BElt, DElt, EElt)) 102106c3fb27SDimitry Andric return nullptr; 102206c3fb27SDimitry Andric } 102306c3fb27SDimitry Andric } else { 102406c3fb27SDimitry Andric // Test scalar type arguments for conversion. 102506c3fb27SDimitry Andric if (!isReducible(B, D, E)) 102606c3fb27SDimitry Andric return nullptr; 102706c3fb27SDimitry Andric } 102806c3fb27SDimitry Andric return Builder.CreateICmp(ICmpInst::ICMP_ULT, A, D); 102906c3fb27SDimitry Andric } 103006c3fb27SDimitry Andric 103106c3fb27SDimitry Andric /// Try to fold ((icmp X u< P) & (icmp(X & M) != M)) or ((icmp X s> -1) & 103206c3fb27SDimitry Andric /// (icmp(X & M) != M)) into (icmp X u< M). Where P is a power of 2, M < P, and 103306c3fb27SDimitry Andric /// M is a contiguous shifted mask starting at the right most significant zero 103406c3fb27SDimitry Andric /// bit in P. SGT is supported as when P is the largest representable power of 103506c3fb27SDimitry Andric /// 2, an earlier optimization converts the expression into (icmp X s> -1). 103606c3fb27SDimitry Andric /// Parameter P supports masking using undef/poison in either scalar or vector 103706c3fb27SDimitry Andric /// values. 103806c3fb27SDimitry Andric static Value *foldPowerOf2AndShiftedMask(ICmpInst *Cmp0, ICmpInst *Cmp1, 103906c3fb27SDimitry Andric bool JoinedByAnd, 104006c3fb27SDimitry Andric InstCombiner::BuilderTy &Builder) { 104106c3fb27SDimitry Andric if (!JoinedByAnd) 104206c3fb27SDimitry Andric return nullptr; 104306c3fb27SDimitry Andric Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr, *E = nullptr; 104406c3fb27SDimitry Andric ICmpInst::Predicate CmpPred0 = Cmp0->getPredicate(), 104506c3fb27SDimitry Andric CmpPred1 = Cmp1->getPredicate(); 104606c3fb27SDimitry Andric // Assuming P is a 2^n, getMaskedTypeForICmpPair will normalize (icmp X u< 104706c3fb27SDimitry Andric // 2^n) into (icmp (X & ~(2^n-1)) == 0) and (icmp X s> -1) into (icmp (X & 104806c3fb27SDimitry Andric // SignMask) == 0). 104906c3fb27SDimitry Andric std::optional<std::pair<unsigned, unsigned>> MaskPair = 105006c3fb27SDimitry Andric getMaskedTypeForICmpPair(A, B, C, D, E, Cmp0, Cmp1, CmpPred0, CmpPred1); 105106c3fb27SDimitry Andric if (!MaskPair) 105206c3fb27SDimitry Andric return nullptr; 105306c3fb27SDimitry Andric 105406c3fb27SDimitry Andric const auto compareBMask = BMask_NotMixed | BMask_NotAllOnes; 105506c3fb27SDimitry Andric unsigned CmpMask0 = MaskPair->first; 105606c3fb27SDimitry Andric unsigned CmpMask1 = MaskPair->second; 105706c3fb27SDimitry Andric if ((CmpMask0 & Mask_AllZeros) && (CmpMask1 == compareBMask)) { 105806c3fb27SDimitry Andric if (Value *V = foldNegativePower2AndShiftedMask(A, B, D, E, CmpPred0, 105906c3fb27SDimitry Andric CmpPred1, Builder)) 106006c3fb27SDimitry Andric return V; 106106c3fb27SDimitry Andric } else if ((CmpMask0 == compareBMask) && (CmpMask1 & Mask_AllZeros)) { 106206c3fb27SDimitry Andric if (Value *V = foldNegativePower2AndShiftedMask(A, D, B, C, CmpPred1, 106306c3fb27SDimitry Andric CmpPred0, Builder)) 106406c3fb27SDimitry Andric return V; 106506c3fb27SDimitry Andric } 106606c3fb27SDimitry Andric return nullptr; 106706c3fb27SDimitry Andric } 106806c3fb27SDimitry Andric 10698bcb0991SDimitry Andric /// Commuted variants are assumed to be handled by calling this function again 10708bcb0991SDimitry Andric /// with the parameters swapped. 10718bcb0991SDimitry Andric static Value *foldUnsignedUnderflowCheck(ICmpInst *ZeroICmp, 10728bcb0991SDimitry Andric ICmpInst *UnsignedICmp, bool IsAnd, 10738bcb0991SDimitry Andric const SimplifyQuery &Q, 10748bcb0991SDimitry Andric InstCombiner::BuilderTy &Builder) { 10758bcb0991SDimitry Andric Value *ZeroCmpOp; 10768bcb0991SDimitry Andric ICmpInst::Predicate EqPred; 10778bcb0991SDimitry Andric if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(ZeroCmpOp), m_Zero())) || 10788bcb0991SDimitry Andric !ICmpInst::isEquality(EqPred)) 10798bcb0991SDimitry Andric return nullptr; 10808bcb0991SDimitry Andric 10818bcb0991SDimitry Andric ICmpInst::Predicate UnsignedPred; 10828bcb0991SDimitry Andric 10838bcb0991SDimitry Andric Value *A, *B; 10848bcb0991SDimitry Andric if (match(UnsignedICmp, 10858bcb0991SDimitry Andric m_c_ICmp(UnsignedPred, m_Specific(ZeroCmpOp), m_Value(A))) && 10868bcb0991SDimitry Andric match(ZeroCmpOp, m_c_Add(m_Specific(A), m_Value(B))) && 10878bcb0991SDimitry Andric (ZeroICmp->hasOneUse() || UnsignedICmp->hasOneUse())) { 10888bcb0991SDimitry Andric auto GetKnownNonZeroAndOther = [&](Value *&NonZero, Value *&Other) { 10890fca6ea1SDimitry Andric if (!isKnownNonZero(NonZero, Q)) 10908bcb0991SDimitry Andric std::swap(NonZero, Other); 10910fca6ea1SDimitry Andric return isKnownNonZero(NonZero, Q); 10928bcb0991SDimitry Andric }; 10938bcb0991SDimitry Andric 10948bcb0991SDimitry Andric // Given ZeroCmpOp = (A + B) 10958bcb0991SDimitry Andric // ZeroCmpOp < A && ZeroCmpOp != 0 --> (0-X) < Y iff 10968bcb0991SDimitry Andric // ZeroCmpOp >= A || ZeroCmpOp == 0 --> (0-X) >= Y iff 10978bcb0991SDimitry Andric // with X being the value (A/B) that is known to be non-zero, 10988bcb0991SDimitry Andric // and Y being remaining value. 10998bcb0991SDimitry Andric if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE && 11008bcb0991SDimitry Andric IsAnd && GetKnownNonZeroAndOther(B, A)) 11018bcb0991SDimitry Andric return Builder.CreateICmpULT(Builder.CreateNeg(B), A); 11028bcb0991SDimitry Andric if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ && 11038bcb0991SDimitry Andric !IsAnd && GetKnownNonZeroAndOther(B, A)) 11048bcb0991SDimitry Andric return Builder.CreateICmpUGE(Builder.CreateNeg(B), A); 11058bcb0991SDimitry Andric } 11068bcb0991SDimitry Andric 11078bcb0991SDimitry Andric return nullptr; 11088bcb0991SDimitry Andric } 11098bcb0991SDimitry Andric 1110fe6060f1SDimitry Andric struct IntPart { 1111fe6060f1SDimitry Andric Value *From; 1112fe6060f1SDimitry Andric unsigned StartBit; 1113fe6060f1SDimitry Andric unsigned NumBits; 1114fe6060f1SDimitry Andric }; 1115fe6060f1SDimitry Andric 1116fe6060f1SDimitry Andric /// Match an extraction of bits from an integer. 1117bdd1243dSDimitry Andric static std::optional<IntPart> matchIntPart(Value *V) { 1118fe6060f1SDimitry Andric Value *X; 1119fe6060f1SDimitry Andric if (!match(V, m_OneUse(m_Trunc(m_Value(X))))) 1120bdd1243dSDimitry Andric return std::nullopt; 1121fe6060f1SDimitry Andric 1122fe6060f1SDimitry Andric unsigned NumOriginalBits = X->getType()->getScalarSizeInBits(); 1123fe6060f1SDimitry Andric unsigned NumExtractedBits = V->getType()->getScalarSizeInBits(); 1124fe6060f1SDimitry Andric Value *Y; 1125fe6060f1SDimitry Andric const APInt *Shift; 1126fe6060f1SDimitry Andric // For a trunc(lshr Y, Shift) pattern, make sure we're only extracting bits 1127fe6060f1SDimitry Andric // from Y, not any shifted-in zeroes. 1128fe6060f1SDimitry Andric if (match(X, m_OneUse(m_LShr(m_Value(Y), m_APInt(Shift)))) && 1129fe6060f1SDimitry Andric Shift->ule(NumOriginalBits - NumExtractedBits)) 1130fe6060f1SDimitry Andric return {{Y, (unsigned)Shift->getZExtValue(), NumExtractedBits}}; 1131fe6060f1SDimitry Andric return {{X, 0, NumExtractedBits}}; 1132fe6060f1SDimitry Andric } 1133fe6060f1SDimitry Andric 1134fe6060f1SDimitry Andric /// Materialize an extraction of bits from an integer in IR. 1135fe6060f1SDimitry Andric static Value *extractIntPart(const IntPart &P, IRBuilderBase &Builder) { 1136fe6060f1SDimitry Andric Value *V = P.From; 1137fe6060f1SDimitry Andric if (P.StartBit) 1138fe6060f1SDimitry Andric V = Builder.CreateLShr(V, P.StartBit); 1139fe6060f1SDimitry Andric Type *TruncTy = V->getType()->getWithNewBitWidth(P.NumBits); 1140fe6060f1SDimitry Andric if (TruncTy != V->getType()) 1141fe6060f1SDimitry Andric V = Builder.CreateTrunc(V, TruncTy); 1142fe6060f1SDimitry Andric return V; 1143fe6060f1SDimitry Andric } 1144fe6060f1SDimitry Andric 1145fe6060f1SDimitry Andric /// (icmp eq X0, Y0) & (icmp eq X1, Y1) -> icmp eq X01, Y01 1146fe6060f1SDimitry Andric /// (icmp ne X0, Y0) | (icmp ne X1, Y1) -> icmp ne X01, Y01 1147fe6060f1SDimitry Andric /// where X0, X1 and Y0, Y1 are adjacent parts extracted from an integer. 1148349cc55cSDimitry Andric Value *InstCombinerImpl::foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, 1149349cc55cSDimitry Andric bool IsAnd) { 1150fe6060f1SDimitry Andric if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) 1151fe6060f1SDimitry Andric return nullptr; 1152fe6060f1SDimitry Andric 1153fe6060f1SDimitry Andric CmpInst::Predicate Pred = IsAnd ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE; 11545f757f3fSDimitry Andric auto GetMatchPart = [&](ICmpInst *Cmp, 11555f757f3fSDimitry Andric unsigned OpNo) -> std::optional<IntPart> { 11565f757f3fSDimitry Andric if (Pred == Cmp->getPredicate()) 11575f757f3fSDimitry Andric return matchIntPart(Cmp->getOperand(OpNo)); 1158fe6060f1SDimitry Andric 11595f757f3fSDimitry Andric const APInt *C; 11605f757f3fSDimitry Andric // (icmp eq (lshr x, C), (lshr y, C)) gets optimized to: 11615f757f3fSDimitry Andric // (icmp ult (xor x, y), 1 << C) so also look for that. 11625f757f3fSDimitry Andric if (Pred == CmpInst::ICMP_EQ && Cmp->getPredicate() == CmpInst::ICMP_ULT) { 11635f757f3fSDimitry Andric if (!match(Cmp->getOperand(1), m_Power2(C)) || 11645f757f3fSDimitry Andric !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) 11655f757f3fSDimitry Andric return std::nullopt; 11665f757f3fSDimitry Andric } 11675f757f3fSDimitry Andric 11685f757f3fSDimitry Andric // (icmp ne (lshr x, C), (lshr y, C)) gets optimized to: 11695f757f3fSDimitry Andric // (icmp ugt (xor x, y), (1 << C) - 1) so also look for that. 11705f757f3fSDimitry Andric else if (Pred == CmpInst::ICMP_NE && 11715f757f3fSDimitry Andric Cmp->getPredicate() == CmpInst::ICMP_UGT) { 11725f757f3fSDimitry Andric if (!match(Cmp->getOperand(1), m_LowBitMask(C)) || 11735f757f3fSDimitry Andric !match(Cmp->getOperand(0), m_Xor(m_Value(), m_Value()))) 11745f757f3fSDimitry Andric return std::nullopt; 11755f757f3fSDimitry Andric } else { 11765f757f3fSDimitry Andric return std::nullopt; 11775f757f3fSDimitry Andric } 11785f757f3fSDimitry Andric 11795f757f3fSDimitry Andric unsigned From = Pred == CmpInst::ICMP_NE ? C->popcount() : C->countr_zero(); 11805f757f3fSDimitry Andric Instruction *I = cast<Instruction>(Cmp->getOperand(0)); 11815f757f3fSDimitry Andric return {{I->getOperand(OpNo), From, C->getBitWidth() - From}}; 11825f757f3fSDimitry Andric }; 11835f757f3fSDimitry Andric 11845f757f3fSDimitry Andric std::optional<IntPart> L0 = GetMatchPart(Cmp0, 0); 11855f757f3fSDimitry Andric std::optional<IntPart> R0 = GetMatchPart(Cmp0, 1); 11865f757f3fSDimitry Andric std::optional<IntPart> L1 = GetMatchPart(Cmp1, 0); 11875f757f3fSDimitry Andric std::optional<IntPart> R1 = GetMatchPart(Cmp1, 1); 1188fe6060f1SDimitry Andric if (!L0 || !R0 || !L1 || !R1) 1189fe6060f1SDimitry Andric return nullptr; 1190fe6060f1SDimitry Andric 1191fe6060f1SDimitry Andric // Make sure the LHS/RHS compare a part of the same value, possibly after 1192fe6060f1SDimitry Andric // an operand swap. 1193fe6060f1SDimitry Andric if (L0->From != L1->From || R0->From != R1->From) { 1194fe6060f1SDimitry Andric if (L0->From != R1->From || R0->From != L1->From) 1195fe6060f1SDimitry Andric return nullptr; 1196fe6060f1SDimitry Andric std::swap(L1, R1); 1197fe6060f1SDimitry Andric } 1198fe6060f1SDimitry Andric 1199fe6060f1SDimitry Andric // Make sure the extracted parts are adjacent, canonicalizing to L0/R0 being 1200fe6060f1SDimitry Andric // the low part and L1/R1 being the high part. 1201fe6060f1SDimitry Andric if (L0->StartBit + L0->NumBits != L1->StartBit || 1202fe6060f1SDimitry Andric R0->StartBit + R0->NumBits != R1->StartBit) { 1203fe6060f1SDimitry Andric if (L1->StartBit + L1->NumBits != L0->StartBit || 1204fe6060f1SDimitry Andric R1->StartBit + R1->NumBits != R0->StartBit) 1205fe6060f1SDimitry Andric return nullptr; 1206fe6060f1SDimitry Andric std::swap(L0, L1); 1207fe6060f1SDimitry Andric std::swap(R0, R1); 1208fe6060f1SDimitry Andric } 1209fe6060f1SDimitry Andric 1210fe6060f1SDimitry Andric // We can simplify to a comparison of these larger parts of the integers. 1211fe6060f1SDimitry Andric IntPart L = {L0->From, L0->StartBit, L0->NumBits + L1->NumBits}; 1212fe6060f1SDimitry Andric IntPart R = {R0->From, R0->StartBit, R0->NumBits + R1->NumBits}; 1213fe6060f1SDimitry Andric Value *LValue = extractIntPart(L, Builder); 1214fe6060f1SDimitry Andric Value *RValue = extractIntPart(R, Builder); 1215fe6060f1SDimitry Andric return Builder.CreateICmp(Pred, LValue, RValue); 1216fe6060f1SDimitry Andric } 1217fe6060f1SDimitry Andric 12185ffd83dbSDimitry Andric /// Reduce logic-of-compares with equality to a constant by substituting a 12195ffd83dbSDimitry Andric /// common operand with the constant. Callers are expected to call this with 12205ffd83dbSDimitry Andric /// Cmp0/Cmp1 switched to handle logic op commutativity. 12215ffd83dbSDimitry Andric static Value *foldAndOrOfICmpsWithConstEq(ICmpInst *Cmp0, ICmpInst *Cmp1, 1222bdd1243dSDimitry Andric bool IsAnd, bool IsLogical, 12235ffd83dbSDimitry Andric InstCombiner::BuilderTy &Builder, 12245ffd83dbSDimitry Andric const SimplifyQuery &Q) { 12255ffd83dbSDimitry Andric // Match an equality compare with a non-poison constant as Cmp0. 1226590d96feSDimitry Andric // Also, give up if the compare can be constant-folded to avoid looping. 12275ffd83dbSDimitry Andric ICmpInst::Predicate Pred0; 12285ffd83dbSDimitry Andric Value *X; 12295ffd83dbSDimitry Andric Constant *C; 12305ffd83dbSDimitry Andric if (!match(Cmp0, m_ICmp(Pred0, m_Value(X), m_Constant(C))) || 1231590d96feSDimitry Andric !isGuaranteedNotToBeUndefOrPoison(C) || isa<Constant>(X)) 12325ffd83dbSDimitry Andric return nullptr; 12335ffd83dbSDimitry Andric if ((IsAnd && Pred0 != ICmpInst::ICMP_EQ) || 12345ffd83dbSDimitry Andric (!IsAnd && Pred0 != ICmpInst::ICMP_NE)) 12355ffd83dbSDimitry Andric return nullptr; 12365ffd83dbSDimitry Andric 12375ffd83dbSDimitry Andric // The other compare must include a common operand (X). Canonicalize the 12385ffd83dbSDimitry Andric // common operand as operand 1 (Pred1 is swapped if the common operand was 12395ffd83dbSDimitry Andric // operand 0). 12405ffd83dbSDimitry Andric Value *Y; 12415ffd83dbSDimitry Andric ICmpInst::Predicate Pred1; 12420fca6ea1SDimitry Andric if (!match(Cmp1, m_c_ICmp(Pred1, m_Value(Y), m_Specific(X)))) 12435ffd83dbSDimitry Andric return nullptr; 12445ffd83dbSDimitry Andric 12455ffd83dbSDimitry Andric // Replace variable with constant value equivalence to remove a variable use: 12465ffd83dbSDimitry Andric // (X == C) && (Y Pred1 X) --> (X == C) && (Y Pred1 C) 12475ffd83dbSDimitry Andric // (X != C) || (Y Pred1 X) --> (X != C) || (Y Pred1 C) 12485ffd83dbSDimitry Andric // Can think of the 'or' substitution with the 'and' bool equivalent: 12495ffd83dbSDimitry Andric // A || B --> A || (!A && B) 125081ad6265SDimitry Andric Value *SubstituteCmp = simplifyICmpInst(Pred1, Y, C, Q); 12515ffd83dbSDimitry Andric if (!SubstituteCmp) { 12525ffd83dbSDimitry Andric // If we need to create a new instruction, require that the old compare can 12535ffd83dbSDimitry Andric // be removed. 12545ffd83dbSDimitry Andric if (!Cmp1->hasOneUse()) 12555ffd83dbSDimitry Andric return nullptr; 12565ffd83dbSDimitry Andric SubstituteCmp = Builder.CreateICmp(Pred1, Y, C); 12575ffd83dbSDimitry Andric } 1258bdd1243dSDimitry Andric if (IsLogical) 1259bdd1243dSDimitry Andric return IsAnd ? Builder.CreateLogicalAnd(Cmp0, SubstituteCmp) 1260bdd1243dSDimitry Andric : Builder.CreateLogicalOr(Cmp0, SubstituteCmp); 126181ad6265SDimitry Andric return Builder.CreateBinOp(IsAnd ? Instruction::And : Instruction::Or, Cmp0, 126281ad6265SDimitry Andric SubstituteCmp); 12635ffd83dbSDimitry Andric } 12645ffd83dbSDimitry Andric 1265349cc55cSDimitry Andric /// Fold (icmp Pred1 V1, C1) & (icmp Pred2 V2, C2) 1266349cc55cSDimitry Andric /// or (icmp Pred1 V1, C1) | (icmp Pred2 V2, C2) 1267349cc55cSDimitry Andric /// into a single comparison using range-based reasoning. 126881ad6265SDimitry Andric /// NOTE: This is also used for logical and/or, must be poison-safe! 126981ad6265SDimitry Andric Value *InstCombinerImpl::foldAndOrOfICmpsUsingRanges(ICmpInst *ICmp1, 127081ad6265SDimitry Andric ICmpInst *ICmp2, 127181ad6265SDimitry Andric bool IsAnd) { 127281ad6265SDimitry Andric ICmpInst::Predicate Pred1, Pred2; 127381ad6265SDimitry Andric Value *V1, *V2; 127481ad6265SDimitry Andric const APInt *C1, *C2; 127581ad6265SDimitry Andric if (!match(ICmp1, m_ICmp(Pred1, m_Value(V1), m_APInt(C1))) || 127681ad6265SDimitry Andric !match(ICmp2, m_ICmp(Pred2, m_Value(V2), m_APInt(C2)))) 127781ad6265SDimitry Andric return nullptr; 127881ad6265SDimitry Andric 1279349cc55cSDimitry Andric // Look through add of a constant offset on V1, V2, or both operands. This 1280349cc55cSDimitry Andric // allows us to interpret the V + C' < C'' range idiom into a proper range. 1281349cc55cSDimitry Andric const APInt *Offset1 = nullptr, *Offset2 = nullptr; 1282349cc55cSDimitry Andric if (V1 != V2) { 1283349cc55cSDimitry Andric Value *X; 1284349cc55cSDimitry Andric if (match(V1, m_Add(m_Value(X), m_APInt(Offset1)))) 1285349cc55cSDimitry Andric V1 = X; 1286349cc55cSDimitry Andric if (match(V2, m_Add(m_Value(X), m_APInt(Offset2)))) 1287349cc55cSDimitry Andric V2 = X; 1288349cc55cSDimitry Andric } 1289349cc55cSDimitry Andric 1290349cc55cSDimitry Andric if (V1 != V2) 1291349cc55cSDimitry Andric return nullptr; 1292349cc55cSDimitry Andric 129381ad6265SDimitry Andric ConstantRange CR1 = ConstantRange::makeExactICmpRegion( 129481ad6265SDimitry Andric IsAnd ? ICmpInst::getInversePredicate(Pred1) : Pred1, *C1); 1295349cc55cSDimitry Andric if (Offset1) 1296349cc55cSDimitry Andric CR1 = CR1.subtract(*Offset1); 1297349cc55cSDimitry Andric 129881ad6265SDimitry Andric ConstantRange CR2 = ConstantRange::makeExactICmpRegion( 129981ad6265SDimitry Andric IsAnd ? ICmpInst::getInversePredicate(Pred2) : Pred2, *C2); 1300349cc55cSDimitry Andric if (Offset2) 1301349cc55cSDimitry Andric CR2 = CR2.subtract(*Offset2); 1302349cc55cSDimitry Andric 130381ad6265SDimitry Andric Type *Ty = V1->getType(); 130481ad6265SDimitry Andric Value *NewV = V1; 1305bdd1243dSDimitry Andric std::optional<ConstantRange> CR = CR1.exactUnionWith(CR2); 130681ad6265SDimitry Andric if (!CR) { 130781ad6265SDimitry Andric if (!(ICmp1->hasOneUse() && ICmp2->hasOneUse()) || CR1.isWrappedSet() || 130881ad6265SDimitry Andric CR2.isWrappedSet()) 1309349cc55cSDimitry Andric return nullptr; 1310349cc55cSDimitry Andric 131181ad6265SDimitry Andric // Check whether we have equal-size ranges that only differ by one bit. 131281ad6265SDimitry Andric // In that case we can apply a mask to map one range onto the other. 131381ad6265SDimitry Andric APInt LowerDiff = CR1.getLower() ^ CR2.getLower(); 131481ad6265SDimitry Andric APInt UpperDiff = (CR1.getUpper() - 1) ^ (CR2.getUpper() - 1); 131581ad6265SDimitry Andric APInt CR1Size = CR1.getUpper() - CR1.getLower(); 131681ad6265SDimitry Andric if (!LowerDiff.isPowerOf2() || LowerDiff != UpperDiff || 131781ad6265SDimitry Andric CR1Size != CR2.getUpper() - CR2.getLower()) 131881ad6265SDimitry Andric return nullptr; 131981ad6265SDimitry Andric 132081ad6265SDimitry Andric CR = CR1.getLower().ult(CR2.getLower()) ? CR1 : CR2; 132181ad6265SDimitry Andric NewV = Builder.CreateAnd(NewV, ConstantInt::get(Ty, ~LowerDiff)); 132281ad6265SDimitry Andric } 132381ad6265SDimitry Andric 132481ad6265SDimitry Andric if (IsAnd) 132581ad6265SDimitry Andric CR = CR->inverse(); 132681ad6265SDimitry Andric 1327349cc55cSDimitry Andric CmpInst::Predicate NewPred; 1328349cc55cSDimitry Andric APInt NewC, Offset; 1329349cc55cSDimitry Andric CR->getEquivalentICmp(NewPred, NewC, Offset); 1330349cc55cSDimitry Andric 1331349cc55cSDimitry Andric if (Offset != 0) 1332349cc55cSDimitry Andric NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); 1333349cc55cSDimitry Andric return Builder.CreateICmp(NewPred, NewV, ConstantInt::get(Ty, NewC)); 1334349cc55cSDimitry Andric } 1335349cc55cSDimitry Andric 1336bdd1243dSDimitry Andric /// Ignore all operations which only change the sign of a value, returning the 1337bdd1243dSDimitry Andric /// underlying magnitude value. 1338bdd1243dSDimitry Andric static Value *stripSignOnlyFPOps(Value *Val) { 1339bdd1243dSDimitry Andric match(Val, m_FNeg(m_Value(Val))); 1340bdd1243dSDimitry Andric match(Val, m_FAbs(m_Value(Val))); 1341bdd1243dSDimitry Andric match(Val, m_CopySign(m_Value(Val), m_Value())); 1342bdd1243dSDimitry Andric return Val; 1343bdd1243dSDimitry Andric } 1344bdd1243dSDimitry Andric 1345bdd1243dSDimitry Andric /// Matches canonical form of isnan, fcmp ord x, 0 1346bdd1243dSDimitry Andric static bool matchIsNotNaN(FCmpInst::Predicate P, Value *LHS, Value *RHS) { 1347bdd1243dSDimitry Andric return P == FCmpInst::FCMP_ORD && match(RHS, m_AnyZeroFP()); 1348bdd1243dSDimitry Andric } 1349bdd1243dSDimitry Andric 1350bdd1243dSDimitry Andric /// Matches fcmp u__ x, +/-inf 1351bdd1243dSDimitry Andric static bool matchUnorderedInfCompare(FCmpInst::Predicate P, Value *LHS, 1352bdd1243dSDimitry Andric Value *RHS) { 1353bdd1243dSDimitry Andric return FCmpInst::isUnordered(P) && match(RHS, m_Inf()); 1354bdd1243dSDimitry Andric } 1355bdd1243dSDimitry Andric 1356bdd1243dSDimitry Andric /// and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1357bdd1243dSDimitry Andric /// 1358bdd1243dSDimitry Andric /// Clang emits this pattern for doing an isfinite check in __builtin_isnormal. 1359bdd1243dSDimitry Andric static Value *matchIsFiniteTest(InstCombiner::BuilderTy &Builder, FCmpInst *LHS, 1360bdd1243dSDimitry Andric FCmpInst *RHS) { 1361bdd1243dSDimitry Andric Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1362bdd1243dSDimitry Andric Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1363bdd1243dSDimitry Andric FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1364bdd1243dSDimitry Andric 1365bdd1243dSDimitry Andric if (!matchIsNotNaN(PredL, LHS0, LHS1) || 1366bdd1243dSDimitry Andric !matchUnorderedInfCompare(PredR, RHS0, RHS1)) 1367bdd1243dSDimitry Andric return nullptr; 1368bdd1243dSDimitry Andric 1369bdd1243dSDimitry Andric IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1370bdd1243dSDimitry Andric FastMathFlags FMF = LHS->getFastMathFlags(); 1371bdd1243dSDimitry Andric FMF &= RHS->getFastMathFlags(); 1372bdd1243dSDimitry Andric Builder.setFastMathFlags(FMF); 1373bdd1243dSDimitry Andric 1374bdd1243dSDimitry Andric return Builder.CreateFCmp(FCmpInst::getOrderedPredicate(PredR), RHS0, RHS1); 1375bdd1243dSDimitry Andric } 1376bdd1243dSDimitry Andric 1377e8d8bef9SDimitry Andric Value *InstCombinerImpl::foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, 137881ad6265SDimitry Andric bool IsAnd, bool IsLogicalSelect) { 13790b57cec5SDimitry Andric Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 13800b57cec5SDimitry Andric Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 13810b57cec5SDimitry Andric FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 13820b57cec5SDimitry Andric 13830b57cec5SDimitry Andric if (LHS0 == RHS1 && RHS0 == LHS1) { 13840b57cec5SDimitry Andric // Swap RHS operands to match LHS. 13850b57cec5SDimitry Andric PredR = FCmpInst::getSwappedPredicate(PredR); 13860b57cec5SDimitry Andric std::swap(RHS0, RHS1); 13870b57cec5SDimitry Andric } 13880b57cec5SDimitry Andric 13890b57cec5SDimitry Andric // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y). 13900b57cec5SDimitry Andric // Suppose the relation between x and y is R, where R is one of 13910b57cec5SDimitry Andric // U(1000), L(0100), G(0010) or E(0001), and CC0 and CC1 are the bitmasks for 13920b57cec5SDimitry Andric // testing the desired relations. 13930b57cec5SDimitry Andric // 13940b57cec5SDimitry Andric // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 13950b57cec5SDimitry Andric // bool(R & CC0) && bool(R & CC1) 13960b57cec5SDimitry Andric // = bool((R & CC0) & (R & CC1)) 13970b57cec5SDimitry Andric // = bool(R & (CC0 & CC1)) <= by re-association, commutation, and idempotency 13980b57cec5SDimitry Andric // 13990b57cec5SDimitry Andric // Since (R & CC0) and (R & CC1) are either R or 0, we actually have this: 14000b57cec5SDimitry Andric // bool(R & CC0) || bool(R & CC1) 14010b57cec5SDimitry Andric // = bool((R & CC0) | (R & CC1)) 14020b57cec5SDimitry Andric // = bool(R & (CC0 | CC1)) <= by reversed distribution (contribution? ;) 14030b57cec5SDimitry Andric if (LHS0 == RHS0 && LHS1 == RHS1) { 14040b57cec5SDimitry Andric unsigned FCmpCodeL = getFCmpCode(PredL); 14050b57cec5SDimitry Andric unsigned FCmpCodeR = getFCmpCode(PredR); 14060b57cec5SDimitry Andric unsigned NewPred = IsAnd ? FCmpCodeL & FCmpCodeR : FCmpCodeL | FCmpCodeR; 140781ad6265SDimitry Andric 140881ad6265SDimitry Andric // Intersect the fast math flags. 140981ad6265SDimitry Andric // TODO: We can union the fast math flags unless this is a logical select. 141081ad6265SDimitry Andric IRBuilder<>::FastMathFlagGuard FMFG(Builder); 141181ad6265SDimitry Andric FastMathFlags FMF = LHS->getFastMathFlags(); 141281ad6265SDimitry Andric FMF &= RHS->getFastMathFlags(); 141381ad6265SDimitry Andric Builder.setFastMathFlags(FMF); 141481ad6265SDimitry Andric 14150b57cec5SDimitry Andric return getFCmpValue(NewPred, LHS0, LHS1, Builder); 14160b57cec5SDimitry Andric } 14170b57cec5SDimitry Andric 141881ad6265SDimitry Andric // This transform is not valid for a logical select. 141981ad6265SDimitry Andric if (!IsLogicalSelect && 142081ad6265SDimitry Andric ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 142181ad6265SDimitry Andric (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && 142281ad6265SDimitry Andric !IsAnd))) { 14230b57cec5SDimitry Andric if (LHS0->getType() != RHS0->getType()) 14240b57cec5SDimitry Andric return nullptr; 14250b57cec5SDimitry Andric 14260b57cec5SDimitry Andric // FCmp canonicalization ensures that (fcmp ord/uno X, X) and 14270b57cec5SDimitry Andric // (fcmp ord/uno X, C) will be transformed to (fcmp X, +0.0). 14280b57cec5SDimitry Andric if (match(LHS1, m_PosZeroFP()) && match(RHS1, m_PosZeroFP())) 14290b57cec5SDimitry Andric // Ignore the constants because they are obviously not NANs: 14300b57cec5SDimitry Andric // (fcmp ord x, 0.0) & (fcmp ord y, 0.0) -> (fcmp ord x, y) 14310b57cec5SDimitry Andric // (fcmp uno x, 0.0) | (fcmp uno y, 0.0) -> (fcmp uno x, y) 14320b57cec5SDimitry Andric return Builder.CreateFCmp(PredL, LHS0, RHS0); 14330b57cec5SDimitry Andric } 14340b57cec5SDimitry Andric 1435bdd1243dSDimitry Andric if (IsAnd && stripSignOnlyFPOps(LHS0) == stripSignOnlyFPOps(RHS0)) { 1436bdd1243dSDimitry Andric // and (fcmp ord x, 0), (fcmp u* x, inf) -> fcmp o* x, inf 1437bdd1243dSDimitry Andric // and (fcmp ord x, 0), (fcmp u* fabs(x), inf) -> fcmp o* x, inf 1438bdd1243dSDimitry Andric if (Value *Left = matchIsFiniteTest(Builder, LHS, RHS)) 1439bdd1243dSDimitry Andric return Left; 1440bdd1243dSDimitry Andric if (Value *Right = matchIsFiniteTest(Builder, RHS, LHS)) 1441bdd1243dSDimitry Andric return Right; 1442bdd1243dSDimitry Andric } 1443bdd1243dSDimitry Andric 144406c3fb27SDimitry Andric // Turn at least two fcmps with constants into llvm.is.fpclass. 144506c3fb27SDimitry Andric // 144606c3fb27SDimitry Andric // If we can represent a combined value test with one class call, we can 144706c3fb27SDimitry Andric // potentially eliminate 4-6 instructions. If we can represent a test with a 144806c3fb27SDimitry Andric // single fcmp with fneg and fabs, that's likely a better canonical form. 144906c3fb27SDimitry Andric if (LHS->hasOneUse() && RHS->hasOneUse()) { 145006c3fb27SDimitry Andric auto [ClassValRHS, ClassMaskRHS] = 145106c3fb27SDimitry Andric fcmpToClassTest(PredR, *RHS->getFunction(), RHS0, RHS1); 145206c3fb27SDimitry Andric if (ClassValRHS) { 145306c3fb27SDimitry Andric auto [ClassValLHS, ClassMaskLHS] = 145406c3fb27SDimitry Andric fcmpToClassTest(PredL, *LHS->getFunction(), LHS0, LHS1); 145506c3fb27SDimitry Andric if (ClassValLHS == ClassValRHS) { 145606c3fb27SDimitry Andric unsigned CombinedMask = IsAnd ? (ClassMaskLHS & ClassMaskRHS) 145706c3fb27SDimitry Andric : (ClassMaskLHS | ClassMaskRHS); 145806c3fb27SDimitry Andric return Builder.CreateIntrinsic( 145906c3fb27SDimitry Andric Intrinsic::is_fpclass, {ClassValLHS->getType()}, 146006c3fb27SDimitry Andric {ClassValLHS, Builder.getInt32(CombinedMask)}); 146106c3fb27SDimitry Andric } 146206c3fb27SDimitry Andric } 146306c3fb27SDimitry Andric } 146406c3fb27SDimitry Andric 14650fca6ea1SDimitry Andric // Canonicalize the range check idiom: 14660fca6ea1SDimitry Andric // and (fcmp olt/ole/ult/ule x, C), (fcmp ogt/oge/ugt/uge x, -C) 14670fca6ea1SDimitry Andric // --> fabs(x) olt/ole/ult/ule C 14680fca6ea1SDimitry Andric // or (fcmp ogt/oge/ugt/uge x, C), (fcmp olt/ole/ult/ule x, -C) 14690fca6ea1SDimitry Andric // --> fabs(x) ogt/oge/ugt/uge C 14700fca6ea1SDimitry Andric // TODO: Generalize to handle a negated variable operand? 14710fca6ea1SDimitry Andric const APFloat *LHSC, *RHSC; 14720fca6ea1SDimitry Andric if (LHS0 == RHS0 && LHS->hasOneUse() && RHS->hasOneUse() && 14730fca6ea1SDimitry Andric FCmpInst::getSwappedPredicate(PredL) == PredR && 14740fca6ea1SDimitry Andric match(LHS1, m_APFloatAllowPoison(LHSC)) && 14750fca6ea1SDimitry Andric match(RHS1, m_APFloatAllowPoison(RHSC)) && 14760fca6ea1SDimitry Andric LHSC->bitwiseIsEqual(neg(*RHSC))) { 14770fca6ea1SDimitry Andric auto IsLessThanOrLessEqual = [](FCmpInst::Predicate Pred) { 14780fca6ea1SDimitry Andric switch (Pred) { 14790fca6ea1SDimitry Andric case FCmpInst::FCMP_OLT: 14800fca6ea1SDimitry Andric case FCmpInst::FCMP_OLE: 14810fca6ea1SDimitry Andric case FCmpInst::FCMP_ULT: 14820fca6ea1SDimitry Andric case FCmpInst::FCMP_ULE: 14830fca6ea1SDimitry Andric return true; 14840fca6ea1SDimitry Andric default: 14850fca6ea1SDimitry Andric return false; 14860fca6ea1SDimitry Andric } 14870fca6ea1SDimitry Andric }; 14880fca6ea1SDimitry Andric if (IsLessThanOrLessEqual(IsAnd ? PredR : PredL)) { 14890fca6ea1SDimitry Andric std::swap(LHSC, RHSC); 14900fca6ea1SDimitry Andric std::swap(PredL, PredR); 14910fca6ea1SDimitry Andric } 14920fca6ea1SDimitry Andric if (IsLessThanOrLessEqual(IsAnd ? PredL : PredR)) { 14930fca6ea1SDimitry Andric BuilderTy::FastMathFlagGuard Guard(Builder); 14940fca6ea1SDimitry Andric Builder.setFastMathFlags(LHS->getFastMathFlags() | 14950fca6ea1SDimitry Andric RHS->getFastMathFlags()); 14960fca6ea1SDimitry Andric 14970fca6ea1SDimitry Andric Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, LHS0); 14980fca6ea1SDimitry Andric return Builder.CreateFCmp(PredL, FAbs, 14990fca6ea1SDimitry Andric ConstantFP::get(LHS0->getType(), *LHSC)); 15000fca6ea1SDimitry Andric } 15010fca6ea1SDimitry Andric } 15020fca6ea1SDimitry Andric 15030b57cec5SDimitry Andric return nullptr; 15040b57cec5SDimitry Andric } 15050b57cec5SDimitry Andric 150606c3fb27SDimitry Andric /// Match an fcmp against a special value that performs a test possible by 150706c3fb27SDimitry Andric /// llvm.is.fpclass. 150806c3fb27SDimitry Andric static bool matchIsFPClassLikeFCmp(Value *Op, Value *&ClassVal, 150906c3fb27SDimitry Andric uint64_t &ClassMask) { 151006c3fb27SDimitry Andric auto *FCmp = dyn_cast<FCmpInst>(Op); 151106c3fb27SDimitry Andric if (!FCmp || !FCmp->hasOneUse()) 151206c3fb27SDimitry Andric return false; 151306c3fb27SDimitry Andric 151406c3fb27SDimitry Andric std::tie(ClassVal, ClassMask) = 151506c3fb27SDimitry Andric fcmpToClassTest(FCmp->getPredicate(), *FCmp->getParent()->getParent(), 151606c3fb27SDimitry Andric FCmp->getOperand(0), FCmp->getOperand(1)); 151706c3fb27SDimitry Andric return ClassVal != nullptr; 151806c3fb27SDimitry Andric } 151906c3fb27SDimitry Andric 1520bdd1243dSDimitry Andric /// or (is_fpclass x, mask0), (is_fpclass x, mask1) 1521bdd1243dSDimitry Andric /// -> is_fpclass x, (mask0 | mask1) 1522bdd1243dSDimitry Andric /// and (is_fpclass x, mask0), (is_fpclass x, mask1) 1523bdd1243dSDimitry Andric /// -> is_fpclass x, (mask0 & mask1) 1524bdd1243dSDimitry Andric /// xor (is_fpclass x, mask0), (is_fpclass x, mask1) 1525bdd1243dSDimitry Andric /// -> is_fpclass x, (mask0 ^ mask1) 1526bdd1243dSDimitry Andric Instruction *InstCombinerImpl::foldLogicOfIsFPClass(BinaryOperator &BO, 1527bdd1243dSDimitry Andric Value *Op0, Value *Op1) { 152806c3fb27SDimitry Andric Value *ClassVal0 = nullptr; 152906c3fb27SDimitry Andric Value *ClassVal1 = nullptr; 1530bdd1243dSDimitry Andric uint64_t ClassMask0, ClassMask1; 1531bdd1243dSDimitry Andric 153206c3fb27SDimitry Andric // Restrict to folding one fcmp into one is.fpclass for now, don't introduce a 153306c3fb27SDimitry Andric // new class. 153406c3fb27SDimitry Andric // 153506c3fb27SDimitry Andric // TODO: Support forming is.fpclass out of 2 separate fcmps when codegen is 153606c3fb27SDimitry Andric // better. 153706c3fb27SDimitry Andric 153806c3fb27SDimitry Andric bool IsLHSClass = 153906c3fb27SDimitry Andric match(Op0, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 154006c3fb27SDimitry Andric m_Value(ClassVal0), m_ConstantInt(ClassMask0)))); 154106c3fb27SDimitry Andric bool IsRHSClass = 1542bdd1243dSDimitry Andric match(Op1, m_OneUse(m_Intrinsic<Intrinsic::is_fpclass>( 154306c3fb27SDimitry Andric m_Value(ClassVal1), m_ConstantInt(ClassMask1)))); 154406c3fb27SDimitry Andric if ((((IsLHSClass || matchIsFPClassLikeFCmp(Op0, ClassVal0, ClassMask0)) && 154506c3fb27SDimitry Andric (IsRHSClass || matchIsFPClassLikeFCmp(Op1, ClassVal1, ClassMask1)))) && 154606c3fb27SDimitry Andric ClassVal0 == ClassVal1) { 1547bdd1243dSDimitry Andric unsigned NewClassMask; 1548bdd1243dSDimitry Andric switch (BO.getOpcode()) { 1549bdd1243dSDimitry Andric case Instruction::And: 1550bdd1243dSDimitry Andric NewClassMask = ClassMask0 & ClassMask1; 1551bdd1243dSDimitry Andric break; 1552bdd1243dSDimitry Andric case Instruction::Or: 1553bdd1243dSDimitry Andric NewClassMask = ClassMask0 | ClassMask1; 1554bdd1243dSDimitry Andric break; 1555bdd1243dSDimitry Andric case Instruction::Xor: 1556bdd1243dSDimitry Andric NewClassMask = ClassMask0 ^ ClassMask1; 1557bdd1243dSDimitry Andric break; 1558bdd1243dSDimitry Andric default: 1559bdd1243dSDimitry Andric llvm_unreachable("not a binary logic operator"); 1560bdd1243dSDimitry Andric } 1561bdd1243dSDimitry Andric 156206c3fb27SDimitry Andric if (IsLHSClass) { 1563bdd1243dSDimitry Andric auto *II = cast<IntrinsicInst>(Op0); 1564bdd1243dSDimitry Andric II->setArgOperand( 1565bdd1243dSDimitry Andric 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 1566bdd1243dSDimitry Andric return replaceInstUsesWith(BO, II); 1567bdd1243dSDimitry Andric } 1568bdd1243dSDimitry Andric 156906c3fb27SDimitry Andric if (IsRHSClass) { 157006c3fb27SDimitry Andric auto *II = cast<IntrinsicInst>(Op1); 157106c3fb27SDimitry Andric II->setArgOperand( 157206c3fb27SDimitry Andric 1, ConstantInt::get(II->getArgOperand(1)->getType(), NewClassMask)); 157306c3fb27SDimitry Andric return replaceInstUsesWith(BO, II); 157406c3fb27SDimitry Andric } 157506c3fb27SDimitry Andric 157606c3fb27SDimitry Andric CallInst *NewClass = 157706c3fb27SDimitry Andric Builder.CreateIntrinsic(Intrinsic::is_fpclass, {ClassVal0->getType()}, 157806c3fb27SDimitry Andric {ClassVal0, Builder.getInt32(NewClassMask)}); 157906c3fb27SDimitry Andric return replaceInstUsesWith(BO, NewClass); 158006c3fb27SDimitry Andric } 158106c3fb27SDimitry Andric 1582bdd1243dSDimitry Andric return nullptr; 1583bdd1243dSDimitry Andric } 1584bdd1243dSDimitry Andric 1585bdd1243dSDimitry Andric /// Look for the pattern that conditionally negates a value via math operations: 1586bdd1243dSDimitry Andric /// cond.splat = sext i1 cond 1587bdd1243dSDimitry Andric /// sub = add cond.splat, x 1588bdd1243dSDimitry Andric /// xor = xor sub, cond.splat 1589bdd1243dSDimitry Andric /// and rewrite it to do the same, but via logical operations: 1590bdd1243dSDimitry Andric /// value.neg = sub 0, value 1591bdd1243dSDimitry Andric /// cond = select i1 neg, value.neg, value 1592bdd1243dSDimitry Andric Instruction *InstCombinerImpl::canonicalizeConditionalNegationViaMathToSelect( 1593bdd1243dSDimitry Andric BinaryOperator &I) { 1594bdd1243dSDimitry Andric assert(I.getOpcode() == BinaryOperator::Xor && "Only for xor!"); 1595bdd1243dSDimitry Andric Value *Cond, *X; 1596bdd1243dSDimitry Andric // As per complexity ordering, `xor` is not commutative here. 1597bdd1243dSDimitry Andric if (!match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())) || 1598bdd1243dSDimitry Andric !match(I.getOperand(1), m_SExt(m_Value(Cond))) || 1599bdd1243dSDimitry Andric !Cond->getType()->isIntOrIntVectorTy(1) || 16000fca6ea1SDimitry Andric !match(I.getOperand(0), m_c_Add(m_SExt(m_Specific(Cond)), m_Value(X)))) 1601bdd1243dSDimitry Andric return nullptr; 1602bdd1243dSDimitry Andric return SelectInst::Create(Cond, Builder.CreateNeg(X, X->getName() + ".neg"), 1603bdd1243dSDimitry Andric X); 1604bdd1243dSDimitry Andric } 1605bdd1243dSDimitry Andric 16060b57cec5SDimitry Andric /// This a limited reassociation for a special case (see above) where we are 16070b57cec5SDimitry Andric /// checking if two values are either both NAN (unordered) or not-NAN (ordered). 16080b57cec5SDimitry Andric /// This could be handled more generally in '-reassociation', but it seems like 16090b57cec5SDimitry Andric /// an unlikely pattern for a large number of logic ops and fcmps. 16100b57cec5SDimitry Andric static Instruction *reassociateFCmps(BinaryOperator &BO, 16110b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 16120b57cec5SDimitry Andric Instruction::BinaryOps Opcode = BO.getOpcode(); 16130b57cec5SDimitry Andric assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 16140b57cec5SDimitry Andric "Expecting and/or op for fcmp transform"); 16150b57cec5SDimitry Andric 16160b57cec5SDimitry Andric // There are 4 commuted variants of the pattern. Canonicalize operands of this 16170b57cec5SDimitry Andric // logic op so an fcmp is operand 0 and a matching logic op is operand 1. 16180b57cec5SDimitry Andric Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1), *X; 16190b57cec5SDimitry Andric FCmpInst::Predicate Pred; 16200b57cec5SDimitry Andric if (match(Op1, m_FCmp(Pred, m_Value(), m_AnyZeroFP()))) 16210b57cec5SDimitry Andric std::swap(Op0, Op1); 16220b57cec5SDimitry Andric 16230b57cec5SDimitry Andric // Match inner binop and the predicate for combining 2 NAN checks into 1. 1624349cc55cSDimitry Andric Value *BO10, *BO11; 16250b57cec5SDimitry Andric FCmpInst::Predicate NanPred = Opcode == Instruction::And ? FCmpInst::FCMP_ORD 16260b57cec5SDimitry Andric : FCmpInst::FCMP_UNO; 16270b57cec5SDimitry Andric if (!match(Op0, m_FCmp(Pred, m_Value(X), m_AnyZeroFP())) || Pred != NanPred || 1628349cc55cSDimitry Andric !match(Op1, m_BinOp(Opcode, m_Value(BO10), m_Value(BO11)))) 16290b57cec5SDimitry Andric return nullptr; 16300b57cec5SDimitry Andric 16310b57cec5SDimitry Andric // The inner logic op must have a matching fcmp operand. 1632349cc55cSDimitry Andric Value *Y; 16330b57cec5SDimitry Andric if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 16340b57cec5SDimitry Andric Pred != NanPred || X->getType() != Y->getType()) 16350b57cec5SDimitry Andric std::swap(BO10, BO11); 16360b57cec5SDimitry Andric 16370b57cec5SDimitry Andric if (!match(BO10, m_FCmp(Pred, m_Value(Y), m_AnyZeroFP())) || 16380b57cec5SDimitry Andric Pred != NanPred || X->getType() != Y->getType()) 16390b57cec5SDimitry Andric return nullptr; 16400b57cec5SDimitry Andric 16410b57cec5SDimitry Andric // and (fcmp ord X, 0), (and (fcmp ord Y, 0), Z) --> and (fcmp ord X, Y), Z 16420b57cec5SDimitry Andric // or (fcmp uno X, 0), (or (fcmp uno Y, 0), Z) --> or (fcmp uno X, Y), Z 16430b57cec5SDimitry Andric Value *NewFCmp = Builder.CreateFCmp(Pred, X, Y); 16440b57cec5SDimitry Andric if (auto *NewFCmpInst = dyn_cast<FCmpInst>(NewFCmp)) { 16450b57cec5SDimitry Andric // Intersect FMF from the 2 source fcmps. 16460b57cec5SDimitry Andric NewFCmpInst->copyIRFlags(Op0); 16470b57cec5SDimitry Andric NewFCmpInst->andIRFlags(BO10); 16480b57cec5SDimitry Andric } 16490b57cec5SDimitry Andric return BinaryOperator::Create(Opcode, NewFCmp, BO11); 16500b57cec5SDimitry Andric } 16510b57cec5SDimitry Andric 1652349cc55cSDimitry Andric /// Match variations of De Morgan's Laws: 16530b57cec5SDimitry Andric /// (~A & ~B) == (~(A | B)) 16540b57cec5SDimitry Andric /// (~A | ~B) == (~(A & B)) 16550b57cec5SDimitry Andric static Instruction *matchDeMorgansLaws(BinaryOperator &I, 16565f757f3fSDimitry Andric InstCombiner &IC) { 1657349cc55cSDimitry Andric const Instruction::BinaryOps Opcode = I.getOpcode(); 16580b57cec5SDimitry Andric assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 16590b57cec5SDimitry Andric "Trying to match De Morgan's Laws with something other than and/or"); 16600b57cec5SDimitry Andric 16610b57cec5SDimitry Andric // Flip the logic operation. 1662349cc55cSDimitry Andric const Instruction::BinaryOps FlippedOpcode = 1663349cc55cSDimitry Andric (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 16640b57cec5SDimitry Andric 1665349cc55cSDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 16660b57cec5SDimitry Andric Value *A, *B; 1667349cc55cSDimitry Andric if (match(Op0, m_OneUse(m_Not(m_Value(A)))) && 1668349cc55cSDimitry Andric match(Op1, m_OneUse(m_Not(m_Value(B)))) && 16695f757f3fSDimitry Andric !IC.isFreeToInvert(A, A->hasOneUse()) && 16705f757f3fSDimitry Andric !IC.isFreeToInvert(B, B->hasOneUse())) { 1671349cc55cSDimitry Andric Value *AndOr = 16725f757f3fSDimitry Andric IC.Builder.CreateBinOp(FlippedOpcode, A, B, I.getName() + ".demorgan"); 16730b57cec5SDimitry Andric return BinaryOperator::CreateNot(AndOr); 16740b57cec5SDimitry Andric } 16750b57cec5SDimitry Andric 1676349cc55cSDimitry Andric // The 'not' ops may require reassociation. 1677349cc55cSDimitry Andric // (A & ~B) & ~C --> A & ~(B | C) 1678349cc55cSDimitry Andric // (~B & A) & ~C --> A & ~(B | C) 1679349cc55cSDimitry Andric // (A | ~B) | ~C --> A | ~(B & C) 1680349cc55cSDimitry Andric // (~B | A) | ~C --> A | ~(B & C) 1681349cc55cSDimitry Andric Value *C; 1682349cc55cSDimitry Andric if (match(Op0, m_OneUse(m_c_BinOp(Opcode, m_Value(A), m_Not(m_Value(B))))) && 1683349cc55cSDimitry Andric match(Op1, m_Not(m_Value(C)))) { 16845f757f3fSDimitry Andric Value *FlippedBO = IC.Builder.CreateBinOp(FlippedOpcode, B, C); 16855f757f3fSDimitry Andric return BinaryOperator::Create(Opcode, A, IC.Builder.CreateNot(FlippedBO)); 1686349cc55cSDimitry Andric } 1687349cc55cSDimitry Andric 16880b57cec5SDimitry Andric return nullptr; 16890b57cec5SDimitry Andric } 16900b57cec5SDimitry Andric 1691e8d8bef9SDimitry Andric bool InstCombinerImpl::shouldOptimizeCast(CastInst *CI) { 16920b57cec5SDimitry Andric Value *CastSrc = CI->getOperand(0); 16930b57cec5SDimitry Andric 16940b57cec5SDimitry Andric // Noop casts and casts of constants should be eliminated trivially. 16950b57cec5SDimitry Andric if (CI->getSrcTy() == CI->getDestTy() || isa<Constant>(CastSrc)) 16960b57cec5SDimitry Andric return false; 16970b57cec5SDimitry Andric 16980b57cec5SDimitry Andric // If this cast is paired with another cast that can be eliminated, we prefer 16990b57cec5SDimitry Andric // to have it eliminated. 17000b57cec5SDimitry Andric if (const auto *PrecedingCI = dyn_cast<CastInst>(CastSrc)) 17010b57cec5SDimitry Andric if (isEliminableCastPair(PrecedingCI, CI)) 17020b57cec5SDimitry Andric return false; 17030b57cec5SDimitry Andric 17040b57cec5SDimitry Andric return true; 17050b57cec5SDimitry Andric } 17060b57cec5SDimitry Andric 17070b57cec5SDimitry Andric /// Fold {and,or,xor} (cast X), C. 17080b57cec5SDimitry Andric static Instruction *foldLogicCastConstant(BinaryOperator &Logic, CastInst *Cast, 17095f757f3fSDimitry Andric InstCombinerImpl &IC) { 17100b57cec5SDimitry Andric Constant *C = dyn_cast<Constant>(Logic.getOperand(1)); 17110b57cec5SDimitry Andric if (!C) 17120b57cec5SDimitry Andric return nullptr; 17130b57cec5SDimitry Andric 17140b57cec5SDimitry Andric auto LogicOpc = Logic.getOpcode(); 17150b57cec5SDimitry Andric Type *DestTy = Logic.getType(); 17160b57cec5SDimitry Andric Type *SrcTy = Cast->getSrcTy(); 17170b57cec5SDimitry Andric 17180b57cec5SDimitry Andric // Move the logic operation ahead of a zext or sext if the constant is 17190b57cec5SDimitry Andric // unchanged in the smaller source type. Performing the logic in a smaller 17200b57cec5SDimitry Andric // type may provide more information to later folds, and the smaller logic 17210b57cec5SDimitry Andric // instruction may be cheaper (particularly in the case of vectors). 17220b57cec5SDimitry Andric Value *X; 17230b57cec5SDimitry Andric if (match(Cast, m_OneUse(m_ZExt(m_Value(X))))) { 17245f757f3fSDimitry Andric if (Constant *TruncC = IC.getLosslessUnsignedTrunc(C, SrcTy)) { 17250b57cec5SDimitry Andric // LogicOpc (zext X), C --> zext (LogicOpc X, C) 17265f757f3fSDimitry Andric Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); 17270b57cec5SDimitry Andric return new ZExtInst(NewOp, DestTy); 17280b57cec5SDimitry Andric } 17290b57cec5SDimitry Andric } 17300b57cec5SDimitry Andric 17310fca6ea1SDimitry Andric if (match(Cast, m_OneUse(m_SExtLike(m_Value(X))))) { 17325f757f3fSDimitry Andric if (Constant *TruncC = IC.getLosslessSignedTrunc(C, SrcTy)) { 17330b57cec5SDimitry Andric // LogicOpc (sext X), C --> sext (LogicOpc X, C) 17345f757f3fSDimitry Andric Value *NewOp = IC.Builder.CreateBinOp(LogicOpc, X, TruncC); 17350b57cec5SDimitry Andric return new SExtInst(NewOp, DestTy); 17360b57cec5SDimitry Andric } 17370b57cec5SDimitry Andric } 17380b57cec5SDimitry Andric 17390b57cec5SDimitry Andric return nullptr; 17400b57cec5SDimitry Andric } 17410b57cec5SDimitry Andric 17420b57cec5SDimitry Andric /// Fold {and,or,xor} (cast X), Y. 1743e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldCastedBitwiseLogic(BinaryOperator &I) { 17440b57cec5SDimitry Andric auto LogicOpc = I.getOpcode(); 17450b57cec5SDimitry Andric assert(I.isBitwiseLogicOp() && "Unexpected opcode for bitwise logic folding"); 17460b57cec5SDimitry Andric 17470b57cec5SDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 174806c3fb27SDimitry Andric 174906c3fb27SDimitry Andric // fold bitwise(A >> BW - 1, zext(icmp)) (BW is the scalar bits of the 175006c3fb27SDimitry Andric // type of A) 175106c3fb27SDimitry Andric // -> bitwise(zext(A < 0), zext(icmp)) 175206c3fb27SDimitry Andric // -> zext(bitwise(A < 0, icmp)) 175306c3fb27SDimitry Andric auto FoldBitwiseICmpZeroWithICmp = [&](Value *Op0, 175406c3fb27SDimitry Andric Value *Op1) -> Instruction * { 175506c3fb27SDimitry Andric ICmpInst::Predicate Pred; 175606c3fb27SDimitry Andric Value *A; 175706c3fb27SDimitry Andric bool IsMatched = 175806c3fb27SDimitry Andric match(Op0, 175906c3fb27SDimitry Andric m_OneUse(m_LShr( 176006c3fb27SDimitry Andric m_Value(A), 176106c3fb27SDimitry Andric m_SpecificInt(Op0->getType()->getScalarSizeInBits() - 1)))) && 176206c3fb27SDimitry Andric match(Op1, m_OneUse(m_ZExt(m_ICmp(Pred, m_Value(), m_Value())))); 176306c3fb27SDimitry Andric 176406c3fb27SDimitry Andric if (!IsMatched) 176506c3fb27SDimitry Andric return nullptr; 176606c3fb27SDimitry Andric 176706c3fb27SDimitry Andric auto *ICmpL = 176806c3fb27SDimitry Andric Builder.CreateICmpSLT(A, Constant::getNullValue(A->getType())); 176906c3fb27SDimitry Andric auto *ICmpR = cast<ZExtInst>(Op1)->getOperand(0); 177006c3fb27SDimitry Andric auto *BitwiseOp = Builder.CreateBinOp(LogicOpc, ICmpL, ICmpR); 177106c3fb27SDimitry Andric 177206c3fb27SDimitry Andric return new ZExtInst(BitwiseOp, Op0->getType()); 177306c3fb27SDimitry Andric }; 177406c3fb27SDimitry Andric 177506c3fb27SDimitry Andric if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op0, Op1)) 177606c3fb27SDimitry Andric return Ret; 177706c3fb27SDimitry Andric 177806c3fb27SDimitry Andric if (auto *Ret = FoldBitwiseICmpZeroWithICmp(Op1, Op0)) 177906c3fb27SDimitry Andric return Ret; 178006c3fb27SDimitry Andric 17810b57cec5SDimitry Andric CastInst *Cast0 = dyn_cast<CastInst>(Op0); 17820b57cec5SDimitry Andric if (!Cast0) 17830b57cec5SDimitry Andric return nullptr; 17840b57cec5SDimitry Andric 17850b57cec5SDimitry Andric // This must be a cast from an integer or integer vector source type to allow 17860b57cec5SDimitry Andric // transformation of the logic operation to the source type. 17870b57cec5SDimitry Andric Type *DestTy = I.getType(); 17880b57cec5SDimitry Andric Type *SrcTy = Cast0->getSrcTy(); 17890b57cec5SDimitry Andric if (!SrcTy->isIntOrIntVectorTy()) 17900b57cec5SDimitry Andric return nullptr; 17910b57cec5SDimitry Andric 17925f757f3fSDimitry Andric if (Instruction *Ret = foldLogicCastConstant(I, Cast0, *this)) 17930b57cec5SDimitry Andric return Ret; 17940b57cec5SDimitry Andric 17950b57cec5SDimitry Andric CastInst *Cast1 = dyn_cast<CastInst>(Op1); 17960b57cec5SDimitry Andric if (!Cast1) 17970b57cec5SDimitry Andric return nullptr; 17980b57cec5SDimitry Andric 1799bdd1243dSDimitry Andric // Both operands of the logic operation are casts. The casts must be the 1800bdd1243dSDimitry Andric // same kind for reduction. 1801bdd1243dSDimitry Andric Instruction::CastOps CastOpcode = Cast0->getOpcode(); 1802bdd1243dSDimitry Andric if (CastOpcode != Cast1->getOpcode()) 18030b57cec5SDimitry Andric return nullptr; 18040b57cec5SDimitry Andric 1805bdd1243dSDimitry Andric // If the source types do not match, but the casts are matching extends, we 1806bdd1243dSDimitry Andric // can still narrow the logic op. 1807bdd1243dSDimitry Andric if (SrcTy != Cast1->getSrcTy()) { 1808bdd1243dSDimitry Andric Value *X, *Y; 1809bdd1243dSDimitry Andric if (match(Cast0, m_OneUse(m_ZExtOrSExt(m_Value(X)))) && 1810bdd1243dSDimitry Andric match(Cast1, m_OneUse(m_ZExtOrSExt(m_Value(Y))))) { 1811bdd1243dSDimitry Andric // Cast the narrower source to the wider source type. 1812bdd1243dSDimitry Andric unsigned XNumBits = X->getType()->getScalarSizeInBits(); 1813bdd1243dSDimitry Andric unsigned YNumBits = Y->getType()->getScalarSizeInBits(); 1814bdd1243dSDimitry Andric if (XNumBits < YNumBits) 1815bdd1243dSDimitry Andric X = Builder.CreateCast(CastOpcode, X, Y->getType()); 1816bdd1243dSDimitry Andric else 1817bdd1243dSDimitry Andric Y = Builder.CreateCast(CastOpcode, Y, X->getType()); 1818bdd1243dSDimitry Andric // Do the logic op in the intermediate width, then widen more. 1819bdd1243dSDimitry Andric Value *NarrowLogic = Builder.CreateBinOp(LogicOpc, X, Y); 1820bdd1243dSDimitry Andric return CastInst::Create(CastOpcode, NarrowLogic, DestTy); 1821bdd1243dSDimitry Andric } 1822bdd1243dSDimitry Andric 1823bdd1243dSDimitry Andric // Give up for other cast opcodes. 1824bdd1243dSDimitry Andric return nullptr; 1825bdd1243dSDimitry Andric } 1826bdd1243dSDimitry Andric 18270b57cec5SDimitry Andric Value *Cast0Src = Cast0->getOperand(0); 18280b57cec5SDimitry Andric Value *Cast1Src = Cast1->getOperand(0); 18290b57cec5SDimitry Andric 18300b57cec5SDimitry Andric // fold logic(cast(A), cast(B)) -> cast(logic(A, B)) 183181ad6265SDimitry Andric if ((Cast0->hasOneUse() || Cast1->hasOneUse()) && 183281ad6265SDimitry Andric shouldOptimizeCast(Cast0) && shouldOptimizeCast(Cast1)) { 18330b57cec5SDimitry Andric Value *NewOp = Builder.CreateBinOp(LogicOpc, Cast0Src, Cast1Src, 18340b57cec5SDimitry Andric I.getName()); 18350b57cec5SDimitry Andric return CastInst::Create(CastOpcode, NewOp, DestTy); 18360b57cec5SDimitry Andric } 18370b57cec5SDimitry Andric 18380b57cec5SDimitry Andric return nullptr; 18390b57cec5SDimitry Andric } 18400b57cec5SDimitry Andric 18410b57cec5SDimitry Andric static Instruction *foldAndToXor(BinaryOperator &I, 18420b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 18430b57cec5SDimitry Andric assert(I.getOpcode() == Instruction::And); 18440b57cec5SDimitry Andric Value *Op0 = I.getOperand(0); 18450b57cec5SDimitry Andric Value *Op1 = I.getOperand(1); 18460b57cec5SDimitry Andric Value *A, *B; 18470b57cec5SDimitry Andric 18480b57cec5SDimitry Andric // Operand complexity canonicalization guarantees that the 'or' is Op0. 18490b57cec5SDimitry Andric // (A | B) & ~(A & B) --> A ^ B 18500b57cec5SDimitry Andric // (A | B) & ~(B & A) --> A ^ B 18510b57cec5SDimitry Andric if (match(&I, m_BinOp(m_Or(m_Value(A), m_Value(B)), 18520b57cec5SDimitry Andric m_Not(m_c_And(m_Deferred(A), m_Deferred(B)))))) 18530b57cec5SDimitry Andric return BinaryOperator::CreateXor(A, B); 18540b57cec5SDimitry Andric 18550b57cec5SDimitry Andric // (A | ~B) & (~A | B) --> ~(A ^ B) 18560b57cec5SDimitry Andric // (A | ~B) & (B | ~A) --> ~(A ^ B) 18570b57cec5SDimitry Andric // (~B | A) & (~A | B) --> ~(A ^ B) 18580b57cec5SDimitry Andric // (~B | A) & (B | ~A) --> ~(A ^ B) 18590b57cec5SDimitry Andric if (Op0->hasOneUse() || Op1->hasOneUse()) 18600b57cec5SDimitry Andric if (match(&I, m_BinOp(m_c_Or(m_Value(A), m_Not(m_Value(B))), 18610b57cec5SDimitry Andric m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 18620b57cec5SDimitry Andric return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 18630b57cec5SDimitry Andric 18640b57cec5SDimitry Andric return nullptr; 18650b57cec5SDimitry Andric } 18660b57cec5SDimitry Andric 18670b57cec5SDimitry Andric static Instruction *foldOrToXor(BinaryOperator &I, 18680b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 18690b57cec5SDimitry Andric assert(I.getOpcode() == Instruction::Or); 18700b57cec5SDimitry Andric Value *Op0 = I.getOperand(0); 18710b57cec5SDimitry Andric Value *Op1 = I.getOperand(1); 18720b57cec5SDimitry Andric Value *A, *B; 18730b57cec5SDimitry Andric 18740b57cec5SDimitry Andric // Operand complexity canonicalization guarantees that the 'and' is Op0. 18750b57cec5SDimitry Andric // (A & B) | ~(A | B) --> ~(A ^ B) 18760b57cec5SDimitry Andric // (A & B) | ~(B | A) --> ~(A ^ B) 18770b57cec5SDimitry Andric if (Op0->hasOneUse() || Op1->hasOneUse()) 18780b57cec5SDimitry Andric if (match(Op0, m_And(m_Value(A), m_Value(B))) && 18790b57cec5SDimitry Andric match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 18800b57cec5SDimitry Andric return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 18810b57cec5SDimitry Andric 1882e8d8bef9SDimitry Andric // Operand complexity canonicalization guarantees that the 'xor' is Op0. 1883e8d8bef9SDimitry Andric // (A ^ B) | ~(A | B) --> ~(A & B) 1884e8d8bef9SDimitry Andric // (A ^ B) | ~(B | A) --> ~(A & B) 1885e8d8bef9SDimitry Andric if (Op0->hasOneUse() || Op1->hasOneUse()) 1886e8d8bef9SDimitry Andric if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1887e8d8bef9SDimitry Andric match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 1888e8d8bef9SDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 1889e8d8bef9SDimitry Andric 18900b57cec5SDimitry Andric // (A & ~B) | (~A & B) --> A ^ B 18910b57cec5SDimitry Andric // (A & ~B) | (B & ~A) --> A ^ B 18920b57cec5SDimitry Andric // (~B & A) | (~A & B) --> A ^ B 18930b57cec5SDimitry Andric // (~B & A) | (B & ~A) --> A ^ B 18940b57cec5SDimitry Andric if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 18950b57cec5SDimitry Andric match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))) 18960b57cec5SDimitry Andric return BinaryOperator::CreateXor(A, B); 18970b57cec5SDimitry Andric 18980b57cec5SDimitry Andric return nullptr; 18990b57cec5SDimitry Andric } 19000b57cec5SDimitry Andric 19010b57cec5SDimitry Andric /// Return true if a constant shift amount is always less than the specified 19020b57cec5SDimitry Andric /// bit-width. If not, the shift could create poison in the narrower type. 19030b57cec5SDimitry Andric static bool canNarrowShiftAmt(Constant *C, unsigned BitWidth) { 1904e8d8bef9SDimitry Andric APInt Threshold(C->getType()->getScalarSizeInBits(), BitWidth); 1905e8d8bef9SDimitry Andric return match(C, m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold)); 19060b57cec5SDimitry Andric } 19070b57cec5SDimitry Andric 19080b57cec5SDimitry Andric /// Try to use narrower ops (sink zext ops) for an 'and' with binop operand and 19090b57cec5SDimitry Andric /// a common zext operand: and (binop (zext X), C), (zext X). 1910e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::narrowMaskedBinOp(BinaryOperator &And) { 19110b57cec5SDimitry Andric // This transform could also apply to {or, and, xor}, but there are better 19120b57cec5SDimitry Andric // folds for those cases, so we don't expect those patterns here. AShr is not 19130b57cec5SDimitry Andric // handled because it should always be transformed to LShr in this sequence. 19140b57cec5SDimitry Andric // The subtract transform is different because it has a constant on the left. 19150b57cec5SDimitry Andric // Add/mul commute the constant to RHS; sub with constant RHS becomes add. 19160b57cec5SDimitry Andric Value *Op0 = And.getOperand(0), *Op1 = And.getOperand(1); 19170b57cec5SDimitry Andric Constant *C; 19180b57cec5SDimitry Andric if (!match(Op0, m_OneUse(m_Add(m_Specific(Op1), m_Constant(C)))) && 19190b57cec5SDimitry Andric !match(Op0, m_OneUse(m_Mul(m_Specific(Op1), m_Constant(C)))) && 19200b57cec5SDimitry Andric !match(Op0, m_OneUse(m_LShr(m_Specific(Op1), m_Constant(C)))) && 19210b57cec5SDimitry Andric !match(Op0, m_OneUse(m_Shl(m_Specific(Op1), m_Constant(C)))) && 19220b57cec5SDimitry Andric !match(Op0, m_OneUse(m_Sub(m_Constant(C), m_Specific(Op1))))) 19230b57cec5SDimitry Andric return nullptr; 19240b57cec5SDimitry Andric 19250b57cec5SDimitry Andric Value *X; 19260b57cec5SDimitry Andric if (!match(Op1, m_ZExt(m_Value(X))) || Op1->hasNUsesOrMore(3)) 19270b57cec5SDimitry Andric return nullptr; 19280b57cec5SDimitry Andric 19290b57cec5SDimitry Andric Type *Ty = And.getType(); 19300b57cec5SDimitry Andric if (!isa<VectorType>(Ty) && !shouldChangeType(Ty, X->getType())) 19310b57cec5SDimitry Andric return nullptr; 19320b57cec5SDimitry Andric 19330b57cec5SDimitry Andric // If we're narrowing a shift, the shift amount must be safe (less than the 19340b57cec5SDimitry Andric // width) in the narrower type. If the shift amount is greater, instsimplify 19350b57cec5SDimitry Andric // usually handles that case, but we can't guarantee/assert it. 19360b57cec5SDimitry Andric Instruction::BinaryOps Opc = cast<BinaryOperator>(Op0)->getOpcode(); 19370b57cec5SDimitry Andric if (Opc == Instruction::LShr || Opc == Instruction::Shl) 19380b57cec5SDimitry Andric if (!canNarrowShiftAmt(C, X->getType()->getScalarSizeInBits())) 19390b57cec5SDimitry Andric return nullptr; 19400b57cec5SDimitry Andric 19410b57cec5SDimitry Andric // and (sub C, (zext X)), (zext X) --> zext (and (sub C', X), X) 19420b57cec5SDimitry Andric // and (binop (zext X), C), (zext X) --> zext (and (binop X, C'), X) 19430b57cec5SDimitry Andric Value *NewC = ConstantExpr::getTrunc(C, X->getType()); 19440b57cec5SDimitry Andric Value *NewBO = Opc == Instruction::Sub ? Builder.CreateBinOp(Opc, NewC, X) 19450b57cec5SDimitry Andric : Builder.CreateBinOp(Opc, X, NewC); 19460b57cec5SDimitry Andric return new ZExtInst(Builder.CreateAnd(NewBO, X), Ty); 19470b57cec5SDimitry Andric } 19480b57cec5SDimitry Andric 1949349cc55cSDimitry Andric /// Try folding relatively complex patterns for both And and Or operations 1950349cc55cSDimitry Andric /// with all And and Or swapped. 1951349cc55cSDimitry Andric static Instruction *foldComplexAndOrPatterns(BinaryOperator &I, 1952349cc55cSDimitry Andric InstCombiner::BuilderTy &Builder) { 1953349cc55cSDimitry Andric const Instruction::BinaryOps Opcode = I.getOpcode(); 1954349cc55cSDimitry Andric assert(Opcode == Instruction::And || Opcode == Instruction::Or); 1955349cc55cSDimitry Andric 1956349cc55cSDimitry Andric // Flip the logic operation. 1957349cc55cSDimitry Andric const Instruction::BinaryOps FlippedOpcode = 1958349cc55cSDimitry Andric (Opcode == Instruction::And) ? Instruction::Or : Instruction::And; 1959349cc55cSDimitry Andric 1960349cc55cSDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 196104eeddc0SDimitry Andric Value *A, *B, *C, *X, *Y, *Dummy; 196204eeddc0SDimitry Andric 196304eeddc0SDimitry Andric // Match following expressions: 196404eeddc0SDimitry Andric // (~(A | B) & C) 196504eeddc0SDimitry Andric // (~(A & B) | C) 196604eeddc0SDimitry Andric // Captures X = ~(A | B) or ~(A & B) 196704eeddc0SDimitry Andric const auto matchNotOrAnd = 196804eeddc0SDimitry Andric [Opcode, FlippedOpcode](Value *Op, auto m_A, auto m_B, auto m_C, 196904eeddc0SDimitry Andric Value *&X, bool CountUses = false) -> bool { 197004eeddc0SDimitry Andric if (CountUses && !Op->hasOneUse()) 197104eeddc0SDimitry Andric return false; 197204eeddc0SDimitry Andric 197304eeddc0SDimitry Andric if (match(Op, m_c_BinOp(FlippedOpcode, 197404eeddc0SDimitry Andric m_CombineAnd(m_Value(X), 197504eeddc0SDimitry Andric m_Not(m_c_BinOp(Opcode, m_A, m_B))), 197604eeddc0SDimitry Andric m_C))) 197704eeddc0SDimitry Andric return !CountUses || X->hasOneUse(); 197804eeddc0SDimitry Andric 197904eeddc0SDimitry Andric return false; 198004eeddc0SDimitry Andric }; 1981349cc55cSDimitry Andric 1982349cc55cSDimitry Andric // (~(A | B) & C) | ... --> ... 1983349cc55cSDimitry Andric // (~(A & B) | C) & ... --> ... 1984349cc55cSDimitry Andric // TODO: One use checks are conservative. We just need to check that a total 1985349cc55cSDimitry Andric // number of multiple used values does not exceed reduction 1986349cc55cSDimitry Andric // in operations. 198704eeddc0SDimitry Andric if (matchNotOrAnd(Op0, m_Value(A), m_Value(B), m_Value(C), X)) { 1988349cc55cSDimitry Andric // (~(A | B) & C) | (~(A | C) & B) --> (B ^ C) & ~A 1989349cc55cSDimitry Andric // (~(A & B) | C) & (~(A & C) | B) --> ~((B ^ C) & A) 199004eeddc0SDimitry Andric if (matchNotOrAnd(Op1, m_Specific(A), m_Specific(C), m_Specific(B), Dummy, 199104eeddc0SDimitry Andric true)) { 1992349cc55cSDimitry Andric Value *Xor = Builder.CreateXor(B, C); 1993349cc55cSDimitry Andric return (Opcode == Instruction::Or) 1994349cc55cSDimitry Andric ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(A)) 1995349cc55cSDimitry Andric : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, A)); 1996349cc55cSDimitry Andric } 1997349cc55cSDimitry Andric 1998349cc55cSDimitry Andric // (~(A | B) & C) | (~(B | C) & A) --> (A ^ C) & ~B 1999349cc55cSDimitry Andric // (~(A & B) | C) & (~(B & C) | A) --> ~((A ^ C) & B) 200004eeddc0SDimitry Andric if (matchNotOrAnd(Op1, m_Specific(B), m_Specific(C), m_Specific(A), Dummy, 200104eeddc0SDimitry Andric true)) { 2002349cc55cSDimitry Andric Value *Xor = Builder.CreateXor(A, C); 2003349cc55cSDimitry Andric return (Opcode == Instruction::Or) 2004349cc55cSDimitry Andric ? BinaryOperator::CreateAnd(Xor, Builder.CreateNot(B)) 2005349cc55cSDimitry Andric : BinaryOperator::CreateNot(Builder.CreateAnd(Xor, B)); 2006349cc55cSDimitry Andric } 2007349cc55cSDimitry Andric 2008349cc55cSDimitry Andric // (~(A | B) & C) | ~(A | C) --> ~((B & C) | A) 2009349cc55cSDimitry Andric // (~(A & B) | C) & ~(A & C) --> ~((B | C) & A) 2010349cc55cSDimitry Andric if (match(Op1, m_OneUse(m_Not(m_OneUse( 2011349cc55cSDimitry Andric m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 2012349cc55cSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateBinOp( 2013349cc55cSDimitry Andric Opcode, Builder.CreateBinOp(FlippedOpcode, B, C), A)); 2014349cc55cSDimitry Andric 2015349cc55cSDimitry Andric // (~(A | B) & C) | ~(B | C) --> ~((A & C) | B) 2016349cc55cSDimitry Andric // (~(A & B) | C) & ~(B & C) --> ~((A | C) & B) 2017349cc55cSDimitry Andric if (match(Op1, m_OneUse(m_Not(m_OneUse( 2018349cc55cSDimitry Andric m_c_BinOp(Opcode, m_Specific(B), m_Specific(C))))))) 2019349cc55cSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateBinOp( 2020349cc55cSDimitry Andric Opcode, Builder.CreateBinOp(FlippedOpcode, A, C), B)); 20214824e7fdSDimitry Andric 20224824e7fdSDimitry Andric // (~(A | B) & C) | ~(C | (A ^ B)) --> ~((A | B) & (C | (A ^ B))) 20234824e7fdSDimitry Andric // Note, the pattern with swapped and/or is not handled because the 20244824e7fdSDimitry Andric // result is more undefined than a source: 20254824e7fdSDimitry Andric // (~(A & B) | C) & ~(C & (A ^ B)) --> (A ^ B ^ C) | ~(A | C) is invalid. 20264824e7fdSDimitry Andric if (Opcode == Instruction::Or && Op0->hasOneUse() && 20274824e7fdSDimitry Andric match(Op1, m_OneUse(m_Not(m_CombineAnd( 20284824e7fdSDimitry Andric m_Value(Y), 20294824e7fdSDimitry Andric m_c_BinOp(Opcode, m_Specific(C), 20304824e7fdSDimitry Andric m_c_Xor(m_Specific(A), m_Specific(B)))))))) { 20314824e7fdSDimitry Andric // X = ~(A | B) 20324824e7fdSDimitry Andric // Y = (C | (A ^ B) 20334824e7fdSDimitry Andric Value *Or = cast<BinaryOperator>(X)->getOperand(0); 20344824e7fdSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(Or, Y)); 20354824e7fdSDimitry Andric } 2036349cc55cSDimitry Andric } 2037349cc55cSDimitry Andric 20380eae32dcSDimitry Andric // (~A & B & C) | ... --> ... 20390eae32dcSDimitry Andric // (~A | B | C) | ... --> ... 20400eae32dcSDimitry Andric // TODO: One use checks are conservative. We just need to check that a total 20410eae32dcSDimitry Andric // number of multiple used values does not exceed reduction 20420eae32dcSDimitry Andric // in operations. 20430eae32dcSDimitry Andric if (match(Op0, 20440eae32dcSDimitry Andric m_OneUse(m_c_BinOp(FlippedOpcode, 20450eae32dcSDimitry Andric m_BinOp(FlippedOpcode, m_Value(B), m_Value(C)), 20460eae32dcSDimitry Andric m_CombineAnd(m_Value(X), m_Not(m_Value(A)))))) || 20470eae32dcSDimitry Andric match(Op0, m_OneUse(m_c_BinOp( 20480eae32dcSDimitry Andric FlippedOpcode, 20490eae32dcSDimitry Andric m_c_BinOp(FlippedOpcode, m_Value(C), 20500eae32dcSDimitry Andric m_CombineAnd(m_Value(X), m_Not(m_Value(A)))), 20510eae32dcSDimitry Andric m_Value(B))))) { 20520eae32dcSDimitry Andric // X = ~A 20530eae32dcSDimitry Andric // (~A & B & C) | ~(A | B | C) --> ~(A | (B ^ C)) 20540eae32dcSDimitry Andric // (~A | B | C) & ~(A & B & C) --> (~A | (B ^ C)) 20550eae32dcSDimitry Andric if (match(Op1, m_OneUse(m_Not(m_c_BinOp( 20560eae32dcSDimitry Andric Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(B)), 20570eae32dcSDimitry Andric m_Specific(C))))) || 20580eae32dcSDimitry Andric match(Op1, m_OneUse(m_Not(m_c_BinOp( 20590eae32dcSDimitry Andric Opcode, m_c_BinOp(Opcode, m_Specific(B), m_Specific(C)), 20600eae32dcSDimitry Andric m_Specific(A))))) || 20610eae32dcSDimitry Andric match(Op1, m_OneUse(m_Not(m_c_BinOp( 20620eae32dcSDimitry Andric Opcode, m_c_BinOp(Opcode, m_Specific(A), m_Specific(C)), 20630eae32dcSDimitry Andric m_Specific(B)))))) { 20640eae32dcSDimitry Andric Value *Xor = Builder.CreateXor(B, C); 20650eae32dcSDimitry Andric return (Opcode == Instruction::Or) 20660eae32dcSDimitry Andric ? BinaryOperator::CreateNot(Builder.CreateOr(Xor, A)) 20670eae32dcSDimitry Andric : BinaryOperator::CreateOr(Xor, X); 20680eae32dcSDimitry Andric } 20690eae32dcSDimitry Andric 20700eae32dcSDimitry Andric // (~A & B & C) | ~(A | B) --> (C | ~B) & ~A 20710eae32dcSDimitry Andric // (~A | B | C) & ~(A & B) --> (C & ~B) | ~A 20720eae32dcSDimitry Andric if (match(Op1, m_OneUse(m_Not(m_OneUse( 20730eae32dcSDimitry Andric m_c_BinOp(Opcode, m_Specific(A), m_Specific(B))))))) 20740eae32dcSDimitry Andric return BinaryOperator::Create( 20750eae32dcSDimitry Andric FlippedOpcode, Builder.CreateBinOp(Opcode, C, Builder.CreateNot(B)), 20760eae32dcSDimitry Andric X); 20770eae32dcSDimitry Andric 20780eae32dcSDimitry Andric // (~A & B & C) | ~(A | C) --> (B | ~C) & ~A 20790eae32dcSDimitry Andric // (~A | B | C) & ~(A & C) --> (B & ~C) | ~A 20800eae32dcSDimitry Andric if (match(Op1, m_OneUse(m_Not(m_OneUse( 20810eae32dcSDimitry Andric m_c_BinOp(Opcode, m_Specific(A), m_Specific(C))))))) 20820eae32dcSDimitry Andric return BinaryOperator::Create( 20830eae32dcSDimitry Andric FlippedOpcode, Builder.CreateBinOp(Opcode, B, Builder.CreateNot(C)), 20840eae32dcSDimitry Andric X); 20850eae32dcSDimitry Andric } 20860eae32dcSDimitry Andric 2087349cc55cSDimitry Andric return nullptr; 2088349cc55cSDimitry Andric } 2089349cc55cSDimitry Andric 2090bdd1243dSDimitry Andric /// Try to reassociate a pair of binops so that values with one use only are 2091bdd1243dSDimitry Andric /// part of the same instruction. This may enable folds that are limited with 2092bdd1243dSDimitry Andric /// multi-use restrictions and makes it more likely to match other patterns that 2093bdd1243dSDimitry Andric /// are looking for a common operand. 2094bdd1243dSDimitry Andric static Instruction *reassociateForUses(BinaryOperator &BO, 2095bdd1243dSDimitry Andric InstCombinerImpl::BuilderTy &Builder) { 2096bdd1243dSDimitry Andric Instruction::BinaryOps Opcode = BO.getOpcode(); 2097bdd1243dSDimitry Andric Value *X, *Y, *Z; 2098bdd1243dSDimitry Andric if (match(&BO, 2099bdd1243dSDimitry Andric m_c_BinOp(Opcode, m_OneUse(m_BinOp(Opcode, m_Value(X), m_Value(Y))), 2100bdd1243dSDimitry Andric m_OneUse(m_Value(Z))))) { 2101bdd1243dSDimitry Andric if (!isa<Constant>(X) && !isa<Constant>(Y) && !isa<Constant>(Z)) { 2102bdd1243dSDimitry Andric // (X op Y) op Z --> (Y op Z) op X 2103bdd1243dSDimitry Andric if (!X->hasOneUse()) { 2104bdd1243dSDimitry Andric Value *YZ = Builder.CreateBinOp(Opcode, Y, Z); 2105bdd1243dSDimitry Andric return BinaryOperator::Create(Opcode, YZ, X); 2106bdd1243dSDimitry Andric } 2107bdd1243dSDimitry Andric // (X op Y) op Z --> (X op Z) op Y 2108bdd1243dSDimitry Andric if (!Y->hasOneUse()) { 2109bdd1243dSDimitry Andric Value *XZ = Builder.CreateBinOp(Opcode, X, Z); 2110bdd1243dSDimitry Andric return BinaryOperator::Create(Opcode, XZ, Y); 2111bdd1243dSDimitry Andric } 2112bdd1243dSDimitry Andric } 2113bdd1243dSDimitry Andric } 2114bdd1243dSDimitry Andric 2115bdd1243dSDimitry Andric return nullptr; 2116bdd1243dSDimitry Andric } 2117bdd1243dSDimitry Andric 2118bdd1243dSDimitry Andric // Match 2119bdd1243dSDimitry Andric // (X + C2) | C 2120bdd1243dSDimitry Andric // (X + C2) ^ C 2121bdd1243dSDimitry Andric // (X + C2) & C 2122bdd1243dSDimitry Andric // and convert to do the bitwise logic first: 2123bdd1243dSDimitry Andric // (X | C) + C2 2124bdd1243dSDimitry Andric // (X ^ C) + C2 2125bdd1243dSDimitry Andric // (X & C) + C2 2126bdd1243dSDimitry Andric // iff bits affected by logic op are lower than last bit affected by math op 2127bdd1243dSDimitry Andric static Instruction *canonicalizeLogicFirst(BinaryOperator &I, 2128bdd1243dSDimitry Andric InstCombiner::BuilderTy &Builder) { 2129bdd1243dSDimitry Andric Type *Ty = I.getType(); 2130bdd1243dSDimitry Andric Instruction::BinaryOps OpC = I.getOpcode(); 2131bdd1243dSDimitry Andric Value *Op0 = I.getOperand(0); 2132bdd1243dSDimitry Andric Value *Op1 = I.getOperand(1); 2133bdd1243dSDimitry Andric Value *X; 2134bdd1243dSDimitry Andric const APInt *C, *C2; 2135bdd1243dSDimitry Andric 2136bdd1243dSDimitry Andric if (!(match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C2)))) && 2137bdd1243dSDimitry Andric match(Op1, m_APInt(C)))) 2138bdd1243dSDimitry Andric return nullptr; 2139bdd1243dSDimitry Andric 2140bdd1243dSDimitry Andric unsigned Width = Ty->getScalarSizeInBits(); 214106c3fb27SDimitry Andric unsigned LastOneMath = Width - C2->countr_zero(); 2142bdd1243dSDimitry Andric 2143bdd1243dSDimitry Andric switch (OpC) { 2144bdd1243dSDimitry Andric case Instruction::And: 214506c3fb27SDimitry Andric if (C->countl_one() < LastOneMath) 2146bdd1243dSDimitry Andric return nullptr; 2147bdd1243dSDimitry Andric break; 2148bdd1243dSDimitry Andric case Instruction::Xor: 2149bdd1243dSDimitry Andric case Instruction::Or: 215006c3fb27SDimitry Andric if (C->countl_zero() < LastOneMath) 2151bdd1243dSDimitry Andric return nullptr; 2152bdd1243dSDimitry Andric break; 2153bdd1243dSDimitry Andric default: 2154bdd1243dSDimitry Andric llvm_unreachable("Unexpected BinaryOp!"); 2155bdd1243dSDimitry Andric } 2156bdd1243dSDimitry Andric 2157bdd1243dSDimitry Andric Value *NewBinOp = Builder.CreateBinOp(OpC, X, ConstantInt::get(Ty, *C)); 215806c3fb27SDimitry Andric return BinaryOperator::CreateWithCopiedFlags(Instruction::Add, NewBinOp, 215906c3fb27SDimitry Andric ConstantInt::get(Ty, *C2), Op0); 216006c3fb27SDimitry Andric } 216106c3fb27SDimitry Andric 216206c3fb27SDimitry Andric // binop(shift(ShiftedC1, ShAmt), shift(ShiftedC2, add(ShAmt, AddC))) -> 216306c3fb27SDimitry Andric // shift(binop(ShiftedC1, shift(ShiftedC2, AddC)), ShAmt) 216406c3fb27SDimitry Andric // where both shifts are the same and AddC is a valid shift amount. 216506c3fb27SDimitry Andric Instruction *InstCombinerImpl::foldBinOpOfDisplacedShifts(BinaryOperator &I) { 216606c3fb27SDimitry Andric assert((I.isBitwiseLogicOp() || I.getOpcode() == Instruction::Add) && 216706c3fb27SDimitry Andric "Unexpected opcode"); 216806c3fb27SDimitry Andric 216906c3fb27SDimitry Andric Value *ShAmt; 217006c3fb27SDimitry Andric Constant *ShiftedC1, *ShiftedC2, *AddC; 217106c3fb27SDimitry Andric Type *Ty = I.getType(); 217206c3fb27SDimitry Andric unsigned BitWidth = Ty->getScalarSizeInBits(); 21735f757f3fSDimitry Andric if (!match(&I, m_c_BinOp(m_Shift(m_ImmConstant(ShiftedC1), m_Value(ShAmt)), 217406c3fb27SDimitry Andric m_Shift(m_ImmConstant(ShiftedC2), 21755f757f3fSDimitry Andric m_AddLike(m_Deferred(ShAmt), 21765f757f3fSDimitry Andric m_ImmConstant(AddC)))))) 217706c3fb27SDimitry Andric return nullptr; 217806c3fb27SDimitry Andric 217906c3fb27SDimitry Andric // Make sure the add constant is a valid shift amount. 218006c3fb27SDimitry Andric if (!match(AddC, 218106c3fb27SDimitry Andric m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(BitWidth, BitWidth)))) 218206c3fb27SDimitry Andric return nullptr; 218306c3fb27SDimitry Andric 218406c3fb27SDimitry Andric // Avoid constant expressions. 218506c3fb27SDimitry Andric auto *Op0Inst = dyn_cast<Instruction>(I.getOperand(0)); 218606c3fb27SDimitry Andric auto *Op1Inst = dyn_cast<Instruction>(I.getOperand(1)); 218706c3fb27SDimitry Andric if (!Op0Inst || !Op1Inst) 218806c3fb27SDimitry Andric return nullptr; 218906c3fb27SDimitry Andric 219006c3fb27SDimitry Andric // Both shifts must be the same. 219106c3fb27SDimitry Andric Instruction::BinaryOps ShiftOp = 219206c3fb27SDimitry Andric static_cast<Instruction::BinaryOps>(Op0Inst->getOpcode()); 219306c3fb27SDimitry Andric if (ShiftOp != Op1Inst->getOpcode()) 219406c3fb27SDimitry Andric return nullptr; 219506c3fb27SDimitry Andric 219606c3fb27SDimitry Andric // For adds, only left shifts are supported. 219706c3fb27SDimitry Andric if (I.getOpcode() == Instruction::Add && ShiftOp != Instruction::Shl) 219806c3fb27SDimitry Andric return nullptr; 219906c3fb27SDimitry Andric 220006c3fb27SDimitry Andric Value *NewC = Builder.CreateBinOp( 220106c3fb27SDimitry Andric I.getOpcode(), ShiftedC1, Builder.CreateBinOp(ShiftOp, ShiftedC2, AddC)); 220206c3fb27SDimitry Andric return BinaryOperator::Create(ShiftOp, NewC, ShAmt); 2203bdd1243dSDimitry Andric } 2204bdd1243dSDimitry Andric 2205297eecfbSDimitry Andric // Fold and/or/xor with two equal intrinsic IDs: 2206297eecfbSDimitry Andric // bitwise(fshl (A, B, ShAmt), fshl(C, D, ShAmt)) 2207297eecfbSDimitry Andric // -> fshl(bitwise(A, C), bitwise(B, D), ShAmt) 2208297eecfbSDimitry Andric // bitwise(fshr (A, B, ShAmt), fshr(C, D, ShAmt)) 2209297eecfbSDimitry Andric // -> fshr(bitwise(A, C), bitwise(B, D), ShAmt) 2210297eecfbSDimitry Andric // bitwise(bswap(A), bswap(B)) -> bswap(bitwise(A, B)) 2211297eecfbSDimitry Andric // bitwise(bswap(A), C) -> bswap(bitwise(A, bswap(C))) 2212297eecfbSDimitry Andric // bitwise(bitreverse(A), bitreverse(B)) -> bitreverse(bitwise(A, B)) 2213297eecfbSDimitry Andric // bitwise(bitreverse(A), C) -> bitreverse(bitwise(A, bitreverse(C))) 2214297eecfbSDimitry Andric static Instruction * 2215297eecfbSDimitry Andric foldBitwiseLogicWithIntrinsics(BinaryOperator &I, 2216297eecfbSDimitry Andric InstCombiner::BuilderTy &Builder) { 2217297eecfbSDimitry Andric assert(I.isBitwiseLogicOp() && "Should and/or/xor"); 2218297eecfbSDimitry Andric if (!I.getOperand(0)->hasOneUse()) 2219297eecfbSDimitry Andric return nullptr; 2220297eecfbSDimitry Andric IntrinsicInst *X = dyn_cast<IntrinsicInst>(I.getOperand(0)); 2221297eecfbSDimitry Andric if (!X) 2222297eecfbSDimitry Andric return nullptr; 2223297eecfbSDimitry Andric 2224297eecfbSDimitry Andric IntrinsicInst *Y = dyn_cast<IntrinsicInst>(I.getOperand(1)); 2225297eecfbSDimitry Andric if (Y && (!Y->hasOneUse() || X->getIntrinsicID() != Y->getIntrinsicID())) 2226297eecfbSDimitry Andric return nullptr; 2227297eecfbSDimitry Andric 2228297eecfbSDimitry Andric Intrinsic::ID IID = X->getIntrinsicID(); 2229297eecfbSDimitry Andric const APInt *RHSC; 2230297eecfbSDimitry Andric // Try to match constant RHS. 2231297eecfbSDimitry Andric if (!Y && (!(IID == Intrinsic::bswap || IID == Intrinsic::bitreverse) || 2232297eecfbSDimitry Andric !match(I.getOperand(1), m_APInt(RHSC)))) 2233297eecfbSDimitry Andric return nullptr; 2234297eecfbSDimitry Andric 2235297eecfbSDimitry Andric switch (IID) { 2236297eecfbSDimitry Andric case Intrinsic::fshl: 2237297eecfbSDimitry Andric case Intrinsic::fshr: { 2238297eecfbSDimitry Andric if (X->getOperand(2) != Y->getOperand(2)) 2239297eecfbSDimitry Andric return nullptr; 2240297eecfbSDimitry Andric Value *NewOp0 = 2241297eecfbSDimitry Andric Builder.CreateBinOp(I.getOpcode(), X->getOperand(0), Y->getOperand(0)); 2242297eecfbSDimitry Andric Value *NewOp1 = 2243297eecfbSDimitry Andric Builder.CreateBinOp(I.getOpcode(), X->getOperand(1), Y->getOperand(1)); 2244297eecfbSDimitry Andric Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType()); 2245297eecfbSDimitry Andric return CallInst::Create(F, {NewOp0, NewOp1, X->getOperand(2)}); 2246297eecfbSDimitry Andric } 2247297eecfbSDimitry Andric case Intrinsic::bswap: 2248297eecfbSDimitry Andric case Intrinsic::bitreverse: { 2249297eecfbSDimitry Andric Value *NewOp0 = Builder.CreateBinOp( 2250297eecfbSDimitry Andric I.getOpcode(), X->getOperand(0), 2251297eecfbSDimitry Andric Y ? Y->getOperand(0) 2252297eecfbSDimitry Andric : ConstantInt::get(I.getType(), IID == Intrinsic::bswap 2253297eecfbSDimitry Andric ? RHSC->byteSwap() 2254297eecfbSDimitry Andric : RHSC->reverseBits())); 2255297eecfbSDimitry Andric Function *F = Intrinsic::getDeclaration(I.getModule(), IID, I.getType()); 2256297eecfbSDimitry Andric return CallInst::Create(F, {NewOp0}); 2257297eecfbSDimitry Andric } 2258297eecfbSDimitry Andric default: 2259297eecfbSDimitry Andric return nullptr; 2260297eecfbSDimitry Andric } 2261297eecfbSDimitry Andric } 2262297eecfbSDimitry Andric 22630fca6ea1SDimitry Andric // Try to simplify V by replacing occurrences of Op with RepOp, but only look 22640fca6ea1SDimitry Andric // through bitwise operations. In particular, for X | Y we try to replace Y with 22650fca6ea1SDimitry Andric // 0 inside X and for X & Y we try to replace Y with -1 inside X. 22660fca6ea1SDimitry Andric // Return the simplified result of X if successful, and nullptr otherwise. 22670fca6ea1SDimitry Andric // If SimplifyOnly is true, no new instructions will be created. 22680fca6ea1SDimitry Andric static Value *simplifyAndOrWithOpReplaced(Value *V, Value *Op, Value *RepOp, 22690fca6ea1SDimitry Andric bool SimplifyOnly, 22700fca6ea1SDimitry Andric InstCombinerImpl &IC, 22710fca6ea1SDimitry Andric unsigned Depth = 0) { 22720fca6ea1SDimitry Andric if (Op == RepOp) 22730fca6ea1SDimitry Andric return nullptr; 22740fca6ea1SDimitry Andric 22750fca6ea1SDimitry Andric if (V == Op) 22760fca6ea1SDimitry Andric return RepOp; 22770fca6ea1SDimitry Andric 22780fca6ea1SDimitry Andric auto *I = dyn_cast<BinaryOperator>(V); 22790fca6ea1SDimitry Andric if (!I || !I->isBitwiseLogicOp() || Depth >= 3) 22800fca6ea1SDimitry Andric return nullptr; 22810fca6ea1SDimitry Andric 22820fca6ea1SDimitry Andric if (!I->hasOneUse()) 22830fca6ea1SDimitry Andric SimplifyOnly = true; 22840fca6ea1SDimitry Andric 22850fca6ea1SDimitry Andric Value *NewOp0 = simplifyAndOrWithOpReplaced(I->getOperand(0), Op, RepOp, 22860fca6ea1SDimitry Andric SimplifyOnly, IC, Depth + 1); 22870fca6ea1SDimitry Andric Value *NewOp1 = simplifyAndOrWithOpReplaced(I->getOperand(1), Op, RepOp, 22880fca6ea1SDimitry Andric SimplifyOnly, IC, Depth + 1); 22890fca6ea1SDimitry Andric if (!NewOp0 && !NewOp1) 22900fca6ea1SDimitry Andric return nullptr; 22910fca6ea1SDimitry Andric 22920fca6ea1SDimitry Andric if (!NewOp0) 22930fca6ea1SDimitry Andric NewOp0 = I->getOperand(0); 22940fca6ea1SDimitry Andric if (!NewOp1) 22950fca6ea1SDimitry Andric NewOp1 = I->getOperand(1); 22960fca6ea1SDimitry Andric 22970fca6ea1SDimitry Andric if (Value *Res = simplifyBinOp(I->getOpcode(), NewOp0, NewOp1, 22980fca6ea1SDimitry Andric IC.getSimplifyQuery().getWithInstruction(I))) 22990fca6ea1SDimitry Andric return Res; 23000fca6ea1SDimitry Andric 23010fca6ea1SDimitry Andric if (SimplifyOnly) 23020fca6ea1SDimitry Andric return nullptr; 23030fca6ea1SDimitry Andric return IC.Builder.CreateBinOp(I->getOpcode(), NewOp0, NewOp1); 23040fca6ea1SDimitry Andric } 23050fca6ea1SDimitry Andric 23060b57cec5SDimitry Andric // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 23070b57cec5SDimitry Andric // here. We should standardize that construct where it is needed or choose some 23080b57cec5SDimitry Andric // other way to ensure that commutated variants of patterns are not missed. 2309e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitAnd(BinaryOperator &I) { 2310e8d8bef9SDimitry Andric Type *Ty = I.getType(); 2311e8d8bef9SDimitry Andric 231281ad6265SDimitry Andric if (Value *V = simplifyAndInst(I.getOperand(0), I.getOperand(1), 23130b57cec5SDimitry Andric SQ.getWithInstruction(&I))) 23140b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 23150b57cec5SDimitry Andric 23160b57cec5SDimitry Andric if (SimplifyAssociativeOrCommutative(I)) 23170b57cec5SDimitry Andric return &I; 23180b57cec5SDimitry Andric 23190b57cec5SDimitry Andric if (Instruction *X = foldVectorBinop(I)) 23200b57cec5SDimitry Andric return X; 23210b57cec5SDimitry Andric 232204eeddc0SDimitry Andric if (Instruction *Phi = foldBinopWithPhiOperands(I)) 232304eeddc0SDimitry Andric return Phi; 232404eeddc0SDimitry Andric 23250b57cec5SDimitry Andric // See if we can simplify any instructions used by the instruction whose sole 23260b57cec5SDimitry Andric // purpose is to compute bits we don't care about. 23270b57cec5SDimitry Andric if (SimplifyDemandedInstructionBits(I)) 23280b57cec5SDimitry Andric return &I; 23290b57cec5SDimitry Andric 23300b57cec5SDimitry Andric // Do this before using distributive laws to catch simple and/or/not patterns. 23310b57cec5SDimitry Andric if (Instruction *Xor = foldAndToXor(I, Builder)) 23320b57cec5SDimitry Andric return Xor; 23330b57cec5SDimitry Andric 2334349cc55cSDimitry Andric if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 2335349cc55cSDimitry Andric return X; 2336349cc55cSDimitry Andric 23370b57cec5SDimitry Andric // (A|B)&(A|C) -> A|(B&C) etc 2338bdd1243dSDimitry Andric if (Value *V = foldUsingDistributiveLaws(I)) 23390b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 23400b57cec5SDimitry Andric 234106c3fb27SDimitry Andric if (Instruction *R = foldBinOpShiftWithShift(I)) 234206c3fb27SDimitry Andric return R; 234306c3fb27SDimitry Andric 23440b57cec5SDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 2345e8d8bef9SDimitry Andric 23460b57cec5SDimitry Andric Value *X, *Y; 23470fca6ea1SDimitry Andric const APInt *C; 23480fca6ea1SDimitry Andric if ((match(Op0, m_OneUse(m_LogicalShift(m_One(), m_Value(X)))) || 23490fca6ea1SDimitry Andric (match(Op0, m_OneUse(m_Shl(m_APInt(C), m_Value(X)))) && (*C)[0])) && 2350e8d8bef9SDimitry Andric match(Op1, m_One())) { 23510b57cec5SDimitry Andric // (1 >> X) & 1 --> zext(X == 0) 23520fca6ea1SDimitry Andric // (C << X) & 1 --> zext(X == 0), when C is odd 2353e8d8bef9SDimitry Andric Value *IsZero = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, 0)); 2354e8d8bef9SDimitry Andric return new ZExtInst(IsZero, Ty); 23550b57cec5SDimitry Andric } 23560b57cec5SDimitry Andric 2357753f127fSDimitry Andric // (-(X & 1)) & Y --> (X & 1) == 0 ? 0 : Y 2358753f127fSDimitry Andric Value *Neg; 2359753f127fSDimitry Andric if (match(&I, 2360753f127fSDimitry Andric m_c_And(m_CombineAnd(m_Value(Neg), 2361753f127fSDimitry Andric m_OneUse(m_Neg(m_And(m_Value(), m_One())))), 2362753f127fSDimitry Andric m_Value(Y)))) { 2363753f127fSDimitry Andric Value *Cmp = Builder.CreateIsNull(Neg); 2364753f127fSDimitry Andric return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Y); 2365753f127fSDimitry Andric } 2366753f127fSDimitry Andric 23675f757f3fSDimitry Andric // Canonicalize: 23685f757f3fSDimitry Andric // (X +/- Y) & Y --> ~X & Y when Y is a power of 2. 23695f757f3fSDimitry Andric if (match(&I, m_c_And(m_Value(Y), m_OneUse(m_CombineOr( 23705f757f3fSDimitry Andric m_c_Add(m_Value(X), m_Deferred(Y)), 23715f757f3fSDimitry Andric m_Sub(m_Value(X), m_Deferred(Y)))))) && 23725f757f3fSDimitry Andric isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, /*Depth*/ 0, &I)) 23735f757f3fSDimitry Andric return BinaryOperator::CreateAnd(Builder.CreateNot(X), Y); 23745f757f3fSDimitry Andric 2375e8d8bef9SDimitry Andric if (match(Op1, m_APInt(C))) { 23760b57cec5SDimitry Andric const APInt *XorC; 23770b57cec5SDimitry Andric if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_APInt(XorC))))) { 23780b57cec5SDimitry Andric // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2) 2379e8d8bef9SDimitry Andric Constant *NewC = ConstantInt::get(Ty, *C & *XorC); 23800b57cec5SDimitry Andric Value *And = Builder.CreateAnd(X, Op1); 23810b57cec5SDimitry Andric And->takeName(Op0); 23820b57cec5SDimitry Andric return BinaryOperator::CreateXor(And, NewC); 23830b57cec5SDimitry Andric } 23840b57cec5SDimitry Andric 23850b57cec5SDimitry Andric const APInt *OrC; 23860b57cec5SDimitry Andric if (match(Op0, m_OneUse(m_Or(m_Value(X), m_APInt(OrC))))) { 23870b57cec5SDimitry Andric // (X | C1) & C2 --> (X & C2^(C1&C2)) | (C1&C2) 23880b57cec5SDimitry Andric // NOTE: This reduces the number of bits set in the & mask, which 23890b57cec5SDimitry Andric // can expose opportunities for store narrowing for scalars. 23900b57cec5SDimitry Andric // NOTE: SimplifyDemandedBits should have already removed bits from C1 23910b57cec5SDimitry Andric // that aren't set in C2. Meaning we can replace (C1&C2) with C1 in 23920b57cec5SDimitry Andric // above, but this feels safer. 23930b57cec5SDimitry Andric APInt Together = *C & *OrC; 2394e8d8bef9SDimitry Andric Value *And = Builder.CreateAnd(X, ConstantInt::get(Ty, Together ^ *C)); 23950b57cec5SDimitry Andric And->takeName(Op0); 2396e8d8bef9SDimitry Andric return BinaryOperator::CreateOr(And, ConstantInt::get(Ty, Together)); 23970b57cec5SDimitry Andric } 23980b57cec5SDimitry Andric 2399e8d8bef9SDimitry Andric unsigned Width = Ty->getScalarSizeInBits(); 24005ffd83dbSDimitry Andric const APInt *ShiftC; 2401753f127fSDimitry Andric if (match(Op0, m_OneUse(m_SExt(m_AShr(m_Value(X), m_APInt(ShiftC))))) && 2402753f127fSDimitry Andric ShiftC->ult(Width)) { 24035ffd83dbSDimitry Andric if (*C == APInt::getLowBitsSet(Width, Width - ShiftC->getZExtValue())) { 24045ffd83dbSDimitry Andric // We are clearing high bits that were potentially set by sext+ashr: 24055ffd83dbSDimitry Andric // and (sext (ashr X, ShiftC)), C --> lshr (sext X), ShiftC 2406e8d8bef9SDimitry Andric Value *Sext = Builder.CreateSExt(X, Ty); 2407e8d8bef9SDimitry Andric Constant *ShAmtC = ConstantInt::get(Ty, ShiftC->zext(Width)); 24085ffd83dbSDimitry Andric return BinaryOperator::CreateLShr(Sext, ShAmtC); 24095ffd83dbSDimitry Andric } 24105ffd83dbSDimitry Andric } 2411e8d8bef9SDimitry Andric 24123a9a9c0cSDimitry Andric // If this 'and' clears the sign-bits added by ashr, replace with lshr: 24133a9a9c0cSDimitry Andric // and (ashr X, ShiftC), C --> lshr X, ShiftC 24143a9a9c0cSDimitry Andric if (match(Op0, m_AShr(m_Value(X), m_APInt(ShiftC))) && ShiftC->ult(Width) && 24153a9a9c0cSDimitry Andric C->isMask(Width - ShiftC->getZExtValue())) 24163a9a9c0cSDimitry Andric return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, *ShiftC)); 24173a9a9c0cSDimitry Andric 2418e8d8bef9SDimitry Andric const APInt *AddC; 2419e8d8bef9SDimitry Andric if (match(Op0, m_Add(m_Value(X), m_APInt(AddC)))) { 2420e8d8bef9SDimitry Andric // If we are masking the result of the add down to exactly one bit and 2421e8d8bef9SDimitry Andric // the constant we are adding has no bits set below that bit, then the 2422e8d8bef9SDimitry Andric // add is flipping a single bit. Example: 2423e8d8bef9SDimitry Andric // (X + 4) & 4 --> (X & 4) ^ 4 2424e8d8bef9SDimitry Andric if (Op0->hasOneUse() && C->isPowerOf2() && (*AddC & (*C - 1)) == 0) { 2425e8d8bef9SDimitry Andric assert((*C & *AddC) != 0 && "Expected common bit"); 2426e8d8bef9SDimitry Andric Value *NewAnd = Builder.CreateAnd(X, Op1); 2427e8d8bef9SDimitry Andric return BinaryOperator::CreateXor(NewAnd, Op1); 2428e8d8bef9SDimitry Andric } 2429e8d8bef9SDimitry Andric } 24300b57cec5SDimitry Andric 2431349cc55cSDimitry Andric // ((C1 OP zext(X)) & C2) -> zext((C1 OP X) & C2) if C2 fits in the 2432349cc55cSDimitry Andric // bitwidth of X and OP behaves well when given trunc(C1) and X. 243381ad6265SDimitry Andric auto isNarrowableBinOpcode = [](BinaryOperator *B) { 2434349cc55cSDimitry Andric switch (B->getOpcode()) { 24350b57cec5SDimitry Andric case Instruction::Xor: 24360b57cec5SDimitry Andric case Instruction::Or: 24370b57cec5SDimitry Andric case Instruction::Mul: 24380b57cec5SDimitry Andric case Instruction::Add: 24390b57cec5SDimitry Andric case Instruction::Sub: 2440349cc55cSDimitry Andric return true; 2441349cc55cSDimitry Andric default: 2442349cc55cSDimitry Andric return false; 2443349cc55cSDimitry Andric } 2444349cc55cSDimitry Andric }; 2445349cc55cSDimitry Andric BinaryOperator *BO; 244681ad6265SDimitry Andric if (match(Op0, m_OneUse(m_BinOp(BO))) && isNarrowableBinOpcode(BO)) { 244781ad6265SDimitry Andric Instruction::BinaryOps BOpcode = BO->getOpcode(); 24480b57cec5SDimitry Andric Value *X; 2449349cc55cSDimitry Andric const APInt *C1; 2450349cc55cSDimitry Andric // TODO: The one-use restrictions could be relaxed a little if the AND 24510b57cec5SDimitry Andric // is going to be removed. 245281ad6265SDimitry Andric // Try to narrow the 'and' and a binop with constant operand: 245381ad6265SDimitry Andric // and (bo (zext X), C1), C --> zext (and (bo X, TruncC1), TruncC) 2454349cc55cSDimitry Andric if (match(BO, m_c_BinOp(m_OneUse(m_ZExt(m_Value(X))), m_APInt(C1))) && 2455349cc55cSDimitry Andric C->isIntN(X->getType()->getScalarSizeInBits())) { 2456349cc55cSDimitry Andric unsigned XWidth = X->getType()->getScalarSizeInBits(); 2457349cc55cSDimitry Andric Constant *TruncC1 = ConstantInt::get(X->getType(), C1->trunc(XWidth)); 2458349cc55cSDimitry Andric Value *BinOp = isa<ZExtInst>(BO->getOperand(0)) 245981ad6265SDimitry Andric ? Builder.CreateBinOp(BOpcode, X, TruncC1) 246081ad6265SDimitry Andric : Builder.CreateBinOp(BOpcode, TruncC1, X); 2461349cc55cSDimitry Andric Constant *TruncC = ConstantInt::get(X->getType(), C->trunc(XWidth)); 2462349cc55cSDimitry Andric Value *And = Builder.CreateAnd(BinOp, TruncC); 2463e8d8bef9SDimitry Andric return new ZExtInst(And, Ty); 2464e8d8bef9SDimitry Andric } 246581ad6265SDimitry Andric 246681ad6265SDimitry Andric // Similar to above: if the mask matches the zext input width, then the 246781ad6265SDimitry Andric // 'and' can be eliminated, so we can truncate the other variable op: 246881ad6265SDimitry Andric // and (bo (zext X), Y), C --> zext (bo X, (trunc Y)) 246981ad6265SDimitry Andric if (isa<Instruction>(BO->getOperand(0)) && 247081ad6265SDimitry Andric match(BO->getOperand(0), m_OneUse(m_ZExt(m_Value(X)))) && 247181ad6265SDimitry Andric C->isMask(X->getType()->getScalarSizeInBits())) { 247281ad6265SDimitry Andric Y = BO->getOperand(1); 247381ad6265SDimitry Andric Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 247481ad6265SDimitry Andric Value *NewBO = 247581ad6265SDimitry Andric Builder.CreateBinOp(BOpcode, X, TrY, BO->getName() + ".narrow"); 247681ad6265SDimitry Andric return new ZExtInst(NewBO, Ty); 247781ad6265SDimitry Andric } 247881ad6265SDimitry Andric // and (bo Y, (zext X)), C --> zext (bo (trunc Y), X) 247981ad6265SDimitry Andric if (isa<Instruction>(BO->getOperand(1)) && 248081ad6265SDimitry Andric match(BO->getOperand(1), m_OneUse(m_ZExt(m_Value(X)))) && 248181ad6265SDimitry Andric C->isMask(X->getType()->getScalarSizeInBits())) { 248281ad6265SDimitry Andric Y = BO->getOperand(0); 248381ad6265SDimitry Andric Value *TrY = Builder.CreateTrunc(Y, X->getType(), Y->getName() + ".tr"); 248481ad6265SDimitry Andric Value *NewBO = 248581ad6265SDimitry Andric Builder.CreateBinOp(BOpcode, TrY, X, BO->getName() + ".narrow"); 248681ad6265SDimitry Andric return new ZExtInst(NewBO, Ty); 248781ad6265SDimitry Andric } 248881ad6265SDimitry Andric } 248981ad6265SDimitry Andric 249081ad6265SDimitry Andric // This is intentionally placed after the narrowing transforms for 249181ad6265SDimitry Andric // efficiency (transform directly to the narrow logic op if possible). 249281ad6265SDimitry Andric // If the mask is only needed on one incoming arm, push the 'and' op up. 249381ad6265SDimitry Andric if (match(Op0, m_OneUse(m_Xor(m_Value(X), m_Value(Y)))) || 249481ad6265SDimitry Andric match(Op0, m_OneUse(m_Or(m_Value(X), m_Value(Y))))) { 249581ad6265SDimitry Andric APInt NotAndMask(~(*C)); 249681ad6265SDimitry Andric BinaryOperator::BinaryOps BinOp = cast<BinaryOperator>(Op0)->getOpcode(); 249781ad6265SDimitry Andric if (MaskedValueIsZero(X, NotAndMask, 0, &I)) { 249881ad6265SDimitry Andric // Not masking anything out for the LHS, move mask to RHS. 249981ad6265SDimitry Andric // and ({x}or X, Y), C --> {x}or X, (and Y, C) 250081ad6265SDimitry Andric Value *NewRHS = Builder.CreateAnd(Y, Op1, Y->getName() + ".masked"); 250181ad6265SDimitry Andric return BinaryOperator::Create(BinOp, X, NewRHS); 250281ad6265SDimitry Andric } 250381ad6265SDimitry Andric if (!isa<Constant>(Y) && MaskedValueIsZero(Y, NotAndMask, 0, &I)) { 250481ad6265SDimitry Andric // Not masking anything out for the RHS, move mask to LHS. 250581ad6265SDimitry Andric // and ({x}or X, Y), C --> {x}or (and X, C), Y 250681ad6265SDimitry Andric Value *NewLHS = Builder.CreateAnd(X, Op1, X->getName() + ".masked"); 250781ad6265SDimitry Andric return BinaryOperator::Create(BinOp, NewLHS, Y); 250881ad6265SDimitry Andric } 250981ad6265SDimitry Andric } 251081ad6265SDimitry Andric 251181ad6265SDimitry Andric // When the mask is a power-of-2 constant and op0 is a shifted-power-of-2 251281ad6265SDimitry Andric // constant, test if the shift amount equals the offset bit index: 251381ad6265SDimitry Andric // (ShiftC << X) & C --> X == (log2(C) - log2(ShiftC)) ? C : 0 251481ad6265SDimitry Andric // (ShiftC >> X) & C --> X == (log2(ShiftC) - log2(C)) ? C : 0 251581ad6265SDimitry Andric if (C->isPowerOf2() && 251681ad6265SDimitry Andric match(Op0, m_OneUse(m_LogicalShift(m_Power2(ShiftC), m_Value(X))))) { 251781ad6265SDimitry Andric int Log2ShiftC = ShiftC->exactLogBase2(); 251881ad6265SDimitry Andric int Log2C = C->exactLogBase2(); 251981ad6265SDimitry Andric bool IsShiftLeft = 252081ad6265SDimitry Andric cast<BinaryOperator>(Op0)->getOpcode() == Instruction::Shl; 252181ad6265SDimitry Andric int BitNum = IsShiftLeft ? Log2C - Log2ShiftC : Log2ShiftC - Log2C; 252281ad6265SDimitry Andric assert(BitNum >= 0 && "Expected demanded bits to handle impossible mask"); 252381ad6265SDimitry Andric Value *Cmp = Builder.CreateICmpEQ(X, ConstantInt::get(Ty, BitNum)); 252481ad6265SDimitry Andric return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C), 252581ad6265SDimitry Andric ConstantInt::getNullValue(Ty)); 252681ad6265SDimitry Andric } 252781ad6265SDimitry Andric 252881ad6265SDimitry Andric Constant *C1, *C2; 252981ad6265SDimitry Andric const APInt *C3 = C; 253081ad6265SDimitry Andric Value *X; 253181ad6265SDimitry Andric if (C3->isPowerOf2()) { 253206c3fb27SDimitry Andric Constant *Log2C3 = ConstantInt::get(Ty, C3->countr_zero()); 253381ad6265SDimitry Andric if (match(Op0, m_OneUse(m_LShr(m_Shl(m_ImmConstant(C1), m_Value(X)), 253481ad6265SDimitry Andric m_ImmConstant(C2)))) && 253581ad6265SDimitry Andric match(C1, m_Power2())) { 253681ad6265SDimitry Andric Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 253781ad6265SDimitry Andric Constant *LshrC = ConstantExpr::getAdd(C2, Log2C3); 253881ad6265SDimitry Andric KnownBits KnownLShrc = computeKnownBits(LshrC, 0, nullptr); 253981ad6265SDimitry Andric if (KnownLShrc.getMaxValue().ult(Width)) { 254081ad6265SDimitry Andric // iff C1,C3 is pow2 and C2 + cttz(C3) < BitWidth: 254181ad6265SDimitry Andric // ((C1 << X) >> C2) & C3 -> X == (cttz(C3)+C2-cttz(C1)) ? C3 : 0 254281ad6265SDimitry Andric Constant *CmpC = ConstantExpr::getSub(LshrC, Log2C1); 254381ad6265SDimitry Andric Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 254481ad6265SDimitry Andric return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 254581ad6265SDimitry Andric ConstantInt::getNullValue(Ty)); 254681ad6265SDimitry Andric } 254781ad6265SDimitry Andric } 254881ad6265SDimitry Andric 254981ad6265SDimitry Andric if (match(Op0, m_OneUse(m_Shl(m_LShr(m_ImmConstant(C1), m_Value(X)), 255081ad6265SDimitry Andric m_ImmConstant(C2)))) && 255181ad6265SDimitry Andric match(C1, m_Power2())) { 255281ad6265SDimitry Andric Constant *Log2C1 = ConstantExpr::getExactLogBase2(C1); 255381ad6265SDimitry Andric Constant *Cmp = 25540fca6ea1SDimitry Andric ConstantFoldCompareInstOperands(ICmpInst::ICMP_ULT, Log2C3, C2, DL); 25550fca6ea1SDimitry Andric if (Cmp && Cmp->isZeroValue()) { 255681ad6265SDimitry Andric // iff C1,C3 is pow2 and Log2(C3) >= C2: 255781ad6265SDimitry Andric // ((C1 >> X) << C2) & C3 -> X == (cttz(C1)+C2-cttz(C3)) ? C3 : 0 255881ad6265SDimitry Andric Constant *ShlC = ConstantExpr::getAdd(C2, Log2C1); 255981ad6265SDimitry Andric Constant *CmpC = ConstantExpr::getSub(ShlC, Log2C3); 256081ad6265SDimitry Andric Value *Cmp = Builder.CreateICmpEQ(X, CmpC); 256181ad6265SDimitry Andric return SelectInst::Create(Cmp, ConstantInt::get(Ty, *C3), 256281ad6265SDimitry Andric ConstantInt::getNullValue(Ty)); 256381ad6265SDimitry Andric } 256481ad6265SDimitry Andric } 2565e8d8bef9SDimitry Andric } 25660b57cec5SDimitry Andric } 25670b57cec5SDimitry Andric 25685f757f3fSDimitry Andric // If we are clearing the sign bit of a floating-point value, convert this to 25695f757f3fSDimitry Andric // fabs, then cast back to integer. 25705f757f3fSDimitry Andric // 25715f757f3fSDimitry Andric // This is a generous interpretation for noimplicitfloat, this is not a true 25725f757f3fSDimitry Andric // floating-point operation. 25735f757f3fSDimitry Andric // 25745f757f3fSDimitry Andric // Assumes any IEEE-represented type has the sign bit in the high bit. 25755f757f3fSDimitry Andric // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt 25765f757f3fSDimitry Andric Value *CastOp; 25770fca6ea1SDimitry Andric if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 25785f757f3fSDimitry Andric match(Op1, m_MaxSignedValue()) && 25795f757f3fSDimitry Andric !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 25805f757f3fSDimitry Andric Attribute::NoImplicitFloat)) { 25815f757f3fSDimitry Andric Type *EltTy = CastOp->getType()->getScalarType(); 25820fca6ea1SDimitry Andric if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 25835f757f3fSDimitry Andric Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); 25845f757f3fSDimitry Andric return new BitCastInst(FAbs, I.getType()); 25855f757f3fSDimitry Andric } 25865f757f3fSDimitry Andric } 25875f757f3fSDimitry Andric 25880fca6ea1SDimitry Andric // and(shl(zext(X), Y), SignMask) -> and(sext(X), SignMask) 25890fca6ea1SDimitry Andric // where Y is a valid shift amount. 2590e8d8bef9SDimitry Andric if (match(&I, m_And(m_OneUse(m_Shl(m_ZExt(m_Value(X)), m_Value(Y))), 2591e8d8bef9SDimitry Andric m_SignMask())) && 2592e8d8bef9SDimitry Andric match(Y, m_SpecificInt_ICMP( 2593e8d8bef9SDimitry Andric ICmpInst::Predicate::ICMP_EQ, 2594e8d8bef9SDimitry Andric APInt(Ty->getScalarSizeInBits(), 2595e8d8bef9SDimitry Andric Ty->getScalarSizeInBits() - 2596e8d8bef9SDimitry Andric X->getType()->getScalarSizeInBits())))) { 2597e8d8bef9SDimitry Andric auto *SExt = Builder.CreateSExt(X, Ty, X->getName() + ".signext"); 25980fca6ea1SDimitry Andric return BinaryOperator::CreateAnd(SExt, Op1); 25990b57cec5SDimitry Andric } 26000b57cec5SDimitry Andric 26010b57cec5SDimitry Andric if (Instruction *Z = narrowMaskedBinOp(I)) 26020b57cec5SDimitry Andric return Z; 26030b57cec5SDimitry Andric 2604fe6060f1SDimitry Andric if (I.getType()->isIntOrIntVectorTy(1)) { 2605fe6060f1SDimitry Andric if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 26065f757f3fSDimitry Andric if (auto *R = 2607fe6060f1SDimitry Andric foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ true)) 26085f757f3fSDimitry Andric return R; 2609fe6060f1SDimitry Andric } 2610fe6060f1SDimitry Andric if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 26115f757f3fSDimitry Andric if (auto *R = 2612fe6060f1SDimitry Andric foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ true)) 26135f757f3fSDimitry Andric return R; 2614fe6060f1SDimitry Andric } 2615fe6060f1SDimitry Andric } 2616fe6060f1SDimitry Andric 26170b57cec5SDimitry Andric if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 26180b57cec5SDimitry Andric return FoldedLogic; 26190b57cec5SDimitry Andric 26205f757f3fSDimitry Andric if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) 26210b57cec5SDimitry Andric return DeMorgan; 26220b57cec5SDimitry Andric 26230b57cec5SDimitry Andric { 26240b57cec5SDimitry Andric Value *A, *B, *C; 2625e8d8bef9SDimitry Andric // A & ~(A ^ B) --> A & B 2626e8d8bef9SDimitry Andric if (match(Op1, m_Not(m_c_Xor(m_Specific(Op0), m_Value(B))))) 2627e8d8bef9SDimitry Andric return BinaryOperator::CreateAnd(Op0, B); 2628e8d8bef9SDimitry Andric // ~(A ^ B) & A --> A & B 2629e8d8bef9SDimitry Andric if (match(Op0, m_Not(m_c_Xor(m_Specific(Op1), m_Value(B))))) 2630e8d8bef9SDimitry Andric return BinaryOperator::CreateAnd(Op1, B); 2631e8d8bef9SDimitry Andric 26320b57cec5SDimitry Andric // (A ^ B) & ((B ^ C) ^ A) -> (A ^ B) & ~C 26335f757f3fSDimitry Andric if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 26345f757f3fSDimitry Andric match(Op1, m_Xor(m_Xor(m_Specific(B), m_Value(C)), m_Specific(A)))) { 26355f757f3fSDimitry Andric Value *NotC = Op1->hasOneUse() 26365f757f3fSDimitry Andric ? Builder.CreateNot(C) 26375f757f3fSDimitry Andric : getFreelyInverted(C, C->hasOneUse(), &Builder); 26385f757f3fSDimitry Andric if (NotC != nullptr) 26395f757f3fSDimitry Andric return BinaryOperator::CreateAnd(Op0, NotC); 26405f757f3fSDimitry Andric } 26410b57cec5SDimitry Andric 26420b57cec5SDimitry Andric // ((A ^ C) ^ B) & (B ^ A) -> (B ^ A) & ~C 26435f757f3fSDimitry Andric if (match(Op0, m_Xor(m_Xor(m_Value(A), m_Value(C)), m_Value(B))) && 26445f757f3fSDimitry Andric match(Op1, m_Xor(m_Specific(B), m_Specific(A)))) { 26455f757f3fSDimitry Andric Value *NotC = Op0->hasOneUse() 26465f757f3fSDimitry Andric ? Builder.CreateNot(C) 26475f757f3fSDimitry Andric : getFreelyInverted(C, C->hasOneUse(), &Builder); 26485f757f3fSDimitry Andric if (NotC != nullptr) 26490b57cec5SDimitry Andric return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(C)); 26505f757f3fSDimitry Andric } 26510b57cec5SDimitry Andric 265204eeddc0SDimitry Andric // (A | B) & (~A ^ B) -> A & B 265304eeddc0SDimitry Andric // (A | B) & (B ^ ~A) -> A & B 265404eeddc0SDimitry Andric // (B | A) & (~A ^ B) -> A & B 265504eeddc0SDimitry Andric // (B | A) & (B ^ ~A) -> A & B 26560b57cec5SDimitry Andric if (match(Op1, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 26570b57cec5SDimitry Andric match(Op0, m_c_Or(m_Specific(A), m_Specific(B)))) 26580b57cec5SDimitry Andric return BinaryOperator::CreateAnd(A, B); 26590b57cec5SDimitry Andric 266004eeddc0SDimitry Andric // (~A ^ B) & (A | B) -> A & B 266104eeddc0SDimitry Andric // (~A ^ B) & (B | A) -> A & B 266204eeddc0SDimitry Andric // (B ^ ~A) & (A | B) -> A & B 266304eeddc0SDimitry Andric // (B ^ ~A) & (B | A) -> A & B 26640b57cec5SDimitry Andric if (match(Op0, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 26650b57cec5SDimitry Andric match(Op1, m_c_Or(m_Specific(A), m_Specific(B)))) 26660b57cec5SDimitry Andric return BinaryOperator::CreateAnd(A, B); 266704eeddc0SDimitry Andric 266804eeddc0SDimitry Andric // (~A | B) & (A ^ B) -> ~A & B 266904eeddc0SDimitry Andric // (~A | B) & (B ^ A) -> ~A & B 267004eeddc0SDimitry Andric // (B | ~A) & (A ^ B) -> ~A & B 267104eeddc0SDimitry Andric // (B | ~A) & (B ^ A) -> ~A & B 267204eeddc0SDimitry Andric if (match(Op0, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 267304eeddc0SDimitry Andric match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 267404eeddc0SDimitry Andric return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 267504eeddc0SDimitry Andric 267604eeddc0SDimitry Andric // (A ^ B) & (~A | B) -> ~A & B 267704eeddc0SDimitry Andric // (B ^ A) & (~A | B) -> ~A & B 267804eeddc0SDimitry Andric // (A ^ B) & (B | ~A) -> ~A & B 267904eeddc0SDimitry Andric // (B ^ A) & (B | ~A) -> ~A & B 268004eeddc0SDimitry Andric if (match(Op1, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 268104eeddc0SDimitry Andric match(Op0, m_c_Xor(m_Specific(A), m_Specific(B)))) 268204eeddc0SDimitry Andric return BinaryOperator::CreateAnd(Builder.CreateNot(A), B); 26830b57cec5SDimitry Andric } 26840b57cec5SDimitry Andric 26850b57cec5SDimitry Andric { 26860b57cec5SDimitry Andric ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 26870b57cec5SDimitry Andric ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 26880b57cec5SDimitry Andric if (LHS && RHS) 268981ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ true)) 26900b57cec5SDimitry Andric return replaceInstUsesWith(I, Res); 26910b57cec5SDimitry Andric 26920b57cec5SDimitry Andric // TODO: Make this recursive; it's a little tricky because an arbitrary 26930b57cec5SDimitry Andric // number of 'and' instructions might have to be created. 269481ad6265SDimitry Andric if (LHS && match(Op1, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 269581ad6265SDimitry Andric bool IsLogical = isa<SelectInst>(Op1); 269681ad6265SDimitry Andric // LHS & (X && Y) --> (LHS && X) && Y 26970b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(X)) 269881ad6265SDimitry Andric if (Value *Res = 269981ad6265SDimitry Andric foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, IsLogical)) 270081ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 270181ad6265SDimitry Andric ? Builder.CreateLogicalAnd(Res, Y) 270281ad6265SDimitry Andric : Builder.CreateAnd(Res, Y)); 270381ad6265SDimitry Andric // LHS & (X && Y) --> X && (LHS & Y) 27040b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 270581ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ true, 270681ad6265SDimitry Andric /* IsLogical */ false)) 270781ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 270881ad6265SDimitry Andric ? Builder.CreateLogicalAnd(X, Res) 270981ad6265SDimitry Andric : Builder.CreateAnd(X, Res)); 27100b57cec5SDimitry Andric } 271181ad6265SDimitry Andric if (RHS && match(Op0, m_OneUse(m_LogicalAnd(m_Value(X), m_Value(Y))))) { 271281ad6265SDimitry Andric bool IsLogical = isa<SelectInst>(Op0); 271381ad6265SDimitry Andric // (X && Y) & RHS --> (X && RHS) && Y 27140b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(X)) 271581ad6265SDimitry Andric if (Value *Res = 271681ad6265SDimitry Andric foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, IsLogical)) 271781ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 271881ad6265SDimitry Andric ? Builder.CreateLogicalAnd(Res, Y) 271981ad6265SDimitry Andric : Builder.CreateAnd(Res, Y)); 272081ad6265SDimitry Andric // (X && Y) & RHS --> X && (Y & RHS) 27210b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 272281ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ true, 272381ad6265SDimitry Andric /* IsLogical */ false)) 272481ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 272581ad6265SDimitry Andric ? Builder.CreateLogicalAnd(X, Res) 272681ad6265SDimitry Andric : Builder.CreateAnd(X, Res)); 27270b57cec5SDimitry Andric } 27280b57cec5SDimitry Andric } 27290b57cec5SDimitry Andric 27300b57cec5SDimitry Andric if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 27310b57cec5SDimitry Andric if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 273281ad6265SDimitry Andric if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true)) 27330b57cec5SDimitry Andric return replaceInstUsesWith(I, Res); 27340b57cec5SDimitry Andric 27350b57cec5SDimitry Andric if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 27360b57cec5SDimitry Andric return FoldedFCmps; 27370b57cec5SDimitry Andric 27380b57cec5SDimitry Andric if (Instruction *CastedAnd = foldCastedBitwiseLogic(I)) 27390b57cec5SDimitry Andric return CastedAnd; 27400b57cec5SDimitry Andric 27414824e7fdSDimitry Andric if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 27424824e7fdSDimitry Andric return Sel; 27434824e7fdSDimitry Andric 27440b57cec5SDimitry Andric // and(sext(A), B) / and(B, sext(A)) --> A ? B : 0, where A is i1 or <N x i1>. 27454824e7fdSDimitry Andric // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 27464824e7fdSDimitry Andric // with binop identity constant. But creating a select with non-constant 27474824e7fdSDimitry Andric // arm may not be reversible due to poison semantics. Is that a good 27484824e7fdSDimitry Andric // canonicalization? 27495f757f3fSDimitry Andric Value *A, *B; 27500fca6ea1SDimitry Andric if (match(&I, m_c_And(m_SExt(m_Value(A)), m_Value(B))) && 27510b57cec5SDimitry Andric A->getType()->isIntOrIntVectorTy(1)) 27525f757f3fSDimitry Andric return SelectInst::Create(A, B, Constant::getNullValue(Ty)); 27530b57cec5SDimitry Andric 2754bdd1243dSDimitry Andric // Similarly, a 'not' of the bool translates to a swap of the select arms: 27555f757f3fSDimitry Andric // ~sext(A) & B / B & ~sext(A) --> A ? 0 : B 27565f757f3fSDimitry Andric if (match(&I, m_c_And(m_Not(m_SExt(m_Value(A))), m_Value(B))) && 2757bdd1243dSDimitry Andric A->getType()->isIntOrIntVectorTy(1)) 27585f757f3fSDimitry Andric return SelectInst::Create(A, Constant::getNullValue(Ty), B); 27595f757f3fSDimitry Andric 27605f757f3fSDimitry Andric // and(zext(A), B) -> A ? (B & 1) : 0 27615f757f3fSDimitry Andric if (match(&I, m_c_And(m_OneUse(m_ZExt(m_Value(A))), m_Value(B))) && 2762bdd1243dSDimitry Andric A->getType()->isIntOrIntVectorTy(1)) 27635f757f3fSDimitry Andric return SelectInst::Create(A, Builder.CreateAnd(B, ConstantInt::get(Ty, 1)), 27645f757f3fSDimitry Andric Constant::getNullValue(Ty)); 27655f757f3fSDimitry Andric 27665f757f3fSDimitry Andric // (-1 + A) & B --> A ? 0 : B where A is 0/1. 27675f757f3fSDimitry Andric if (match(&I, m_c_And(m_OneUse(m_Add(m_ZExtOrSelf(m_Value(A)), m_AllOnes())), 27685f757f3fSDimitry Andric m_Value(B)))) { 27695f757f3fSDimitry Andric if (A->getType()->isIntOrIntVectorTy(1)) 27705f757f3fSDimitry Andric return SelectInst::Create(A, Constant::getNullValue(Ty), B); 27715f757f3fSDimitry Andric if (computeKnownBits(A, /* Depth */ 0, &I).countMaxActiveBits() <= 1) { 27725f757f3fSDimitry Andric return SelectInst::Create( 27735f757f3fSDimitry Andric Builder.CreateICmpEQ(A, Constant::getNullValue(A->getType())), B, 27745f757f3fSDimitry Andric Constant::getNullValue(Ty)); 27755f757f3fSDimitry Andric } 27765f757f3fSDimitry Andric } 2777bdd1243dSDimitry Andric 2778bdd1243dSDimitry Andric // (iN X s>> (N-1)) & Y --> (X s< 0) ? Y : 0 -- with optional sext 2779bdd1243dSDimitry Andric if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 27800fca6ea1SDimitry Andric m_AShr(m_Value(X), m_APIntAllowPoison(C)))), 2781bdd1243dSDimitry Andric m_Value(Y))) && 2782bdd1243dSDimitry Andric *C == X->getType()->getScalarSizeInBits() - 1) { 278381ad6265SDimitry Andric Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 278481ad6265SDimitry Andric return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty)); 27858bcb0991SDimitry Andric } 27860eae32dcSDimitry Andric // If there's a 'not' of the shifted value, swap the select operands: 2787bdd1243dSDimitry Andric // ~(iN X s>> (N-1)) & Y --> (X s< 0) ? 0 : Y -- with optional sext 2788bdd1243dSDimitry Andric if (match(&I, m_c_And(m_OneUse(m_SExtOrSelf( 27890fca6ea1SDimitry Andric m_Not(m_AShr(m_Value(X), m_APIntAllowPoison(C))))), 2790bdd1243dSDimitry Andric m_Value(Y))) && 2791bdd1243dSDimitry Andric *C == X->getType()->getScalarSizeInBits() - 1) { 279281ad6265SDimitry Andric Value *IsNeg = Builder.CreateIsNeg(X, "isneg"); 279381ad6265SDimitry Andric return SelectInst::Create(IsNeg, ConstantInt::getNullValue(Ty), Y); 27940eae32dcSDimitry Andric } 2795e8d8bef9SDimitry Andric 2796e8d8bef9SDimitry Andric // (~x) & y --> ~(x | (~y)) iff that gets rid of inversions 2797bdd1243dSDimitry Andric if (sinkNotIntoOtherHandOfLogicalOp(I)) 2798e8d8bef9SDimitry Andric return &I; 27998bcb0991SDimitry Andric 2800fe6060f1SDimitry Andric // An and recurrence w/loop invariant step is equivelent to (and start, step) 2801fe6060f1SDimitry Andric PHINode *PN = nullptr; 2802fe6060f1SDimitry Andric Value *Start = nullptr, *Step = nullptr; 2803fe6060f1SDimitry Andric if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 2804fe6060f1SDimitry Andric return replaceInstUsesWith(I, Builder.CreateAnd(Start, Step)); 2805fe6060f1SDimitry Andric 2806bdd1243dSDimitry Andric if (Instruction *R = reassociateForUses(I, Builder)) 2807bdd1243dSDimitry Andric return R; 2808bdd1243dSDimitry Andric 2809bdd1243dSDimitry Andric if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 2810bdd1243dSDimitry Andric return Canonicalized; 2811bdd1243dSDimitry Andric 2812bdd1243dSDimitry Andric if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 2813bdd1243dSDimitry Andric return Folded; 2814bdd1243dSDimitry Andric 281506c3fb27SDimitry Andric if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 281606c3fb27SDimitry Andric return Res; 281706c3fb27SDimitry Andric 2818297eecfbSDimitry Andric if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 2819297eecfbSDimitry Andric return Res; 2820297eecfbSDimitry Andric 28210fca6ea1SDimitry Andric if (Value *V = 28220fca6ea1SDimitry Andric simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getAllOnesValue(Ty), 28230fca6ea1SDimitry Andric /*SimplifyOnly*/ false, *this)) 28240fca6ea1SDimitry Andric return BinaryOperator::CreateAnd(V, Op1); 28250fca6ea1SDimitry Andric if (Value *V = 28260fca6ea1SDimitry Andric simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getAllOnesValue(Ty), 28270fca6ea1SDimitry Andric /*SimplifyOnly*/ false, *this)) 28280fca6ea1SDimitry Andric return BinaryOperator::CreateAnd(Op0, V); 28290fca6ea1SDimitry Andric 28300b57cec5SDimitry Andric return nullptr; 28310b57cec5SDimitry Andric } 28320b57cec5SDimitry Andric 2833fe6060f1SDimitry Andric Instruction *InstCombinerImpl::matchBSwapOrBitReverse(Instruction &I, 2834e8d8bef9SDimitry Andric bool MatchBSwaps, 2835e8d8bef9SDimitry Andric bool MatchBitReversals) { 28360b57cec5SDimitry Andric SmallVector<Instruction *, 4> Insts; 2837fe6060f1SDimitry Andric if (!recognizeBSwapOrBitReverseIdiom(&I, MatchBSwaps, MatchBitReversals, 2838e8d8bef9SDimitry Andric Insts)) 28390b57cec5SDimitry Andric return nullptr; 28400b57cec5SDimitry Andric Instruction *LastInst = Insts.pop_back_val(); 28410b57cec5SDimitry Andric LastInst->removeFromParent(); 28420b57cec5SDimitry Andric 28430b57cec5SDimitry Andric for (auto *Inst : Insts) 28445ffd83dbSDimitry Andric Worklist.push(Inst); 28450b57cec5SDimitry Andric return LastInst; 28460b57cec5SDimitry Andric } 28470b57cec5SDimitry Andric 28480fca6ea1SDimitry Andric std::optional<std::pair<Intrinsic::ID, SmallVector<Value *, 3>>> 28490fca6ea1SDimitry Andric InstCombinerImpl::convertOrOfShiftsToFunnelShift(Instruction &Or) { 28500b57cec5SDimitry Andric // TODO: Can we reduce the code duplication between this and the related 28510b57cec5SDimitry Andric // rotate matching code under visitSelect and visitTrunc? 28520fca6ea1SDimitry Andric assert(Or.getOpcode() == BinaryOperator::Or && "Expecting or instruction"); 28530fca6ea1SDimitry Andric 28540b57cec5SDimitry Andric unsigned Width = Or.getType()->getScalarSizeInBits(); 28550b57cec5SDimitry Andric 28565f757f3fSDimitry Andric Instruction *Or0, *Or1; 28575f757f3fSDimitry Andric if (!match(Or.getOperand(0), m_Instruction(Or0)) || 28585f757f3fSDimitry Andric !match(Or.getOperand(1), m_Instruction(Or1))) 28590fca6ea1SDimitry Andric return std::nullopt; 28600b57cec5SDimitry Andric 28615f757f3fSDimitry Andric bool IsFshl = true; // Sub on LSHR. 28625f757f3fSDimitry Andric SmallVector<Value *, 3> FShiftArgs; 28635f757f3fSDimitry Andric 28645f757f3fSDimitry Andric // First, find an or'd pair of opposite shifts: 28655f757f3fSDimitry Andric // or (lshr ShVal0, ShAmt0), (shl ShVal1, ShAmt1) 28665f757f3fSDimitry Andric if (isa<BinaryOperator>(Or0) && isa<BinaryOperator>(Or1)) { 2867e8d8bef9SDimitry Andric Value *ShVal0, *ShVal1, *ShAmt0, *ShAmt1; 28685f757f3fSDimitry Andric if (!match(Or0, 28695f757f3fSDimitry Andric m_OneUse(m_LogicalShift(m_Value(ShVal0), m_Value(ShAmt0)))) || 28705f757f3fSDimitry Andric !match(Or1, 28715f757f3fSDimitry Andric m_OneUse(m_LogicalShift(m_Value(ShVal1), m_Value(ShAmt1)))) || 2872e8d8bef9SDimitry Andric Or0->getOpcode() == Or1->getOpcode()) 28730fca6ea1SDimitry Andric return std::nullopt; 28740b57cec5SDimitry Andric 2875e8d8bef9SDimitry Andric // Canonicalize to or(shl(ShVal0, ShAmt0), lshr(ShVal1, ShAmt1)). 2876e8d8bef9SDimitry Andric if (Or0->getOpcode() == BinaryOperator::LShr) { 2877e8d8bef9SDimitry Andric std::swap(Or0, Or1); 2878e8d8bef9SDimitry Andric std::swap(ShVal0, ShVal1); 2879e8d8bef9SDimitry Andric std::swap(ShAmt0, ShAmt1); 2880e8d8bef9SDimitry Andric } 2881e8d8bef9SDimitry Andric assert(Or0->getOpcode() == BinaryOperator::Shl && 2882e8d8bef9SDimitry Andric Or1->getOpcode() == BinaryOperator::LShr && 2883e8d8bef9SDimitry Andric "Illegal or(shift,shift) pair"); 2884e8d8bef9SDimitry Andric 2885e8d8bef9SDimitry Andric // Match the shift amount operands for a funnel shift pattern. This always 2886e8d8bef9SDimitry Andric // matches a subtraction on the R operand. 2887e8d8bef9SDimitry Andric auto matchShiftAmount = [&](Value *L, Value *R, unsigned Width) -> Value * { 2888e8d8bef9SDimitry Andric // Check for constant shift amounts that sum to the bitwidth. 2889e8d8bef9SDimitry Andric const APInt *LI, *RI; 28900fca6ea1SDimitry Andric if (match(L, m_APIntAllowPoison(LI)) && match(R, m_APIntAllowPoison(RI))) 2891e8d8bef9SDimitry Andric if (LI->ult(Width) && RI->ult(Width) && (*LI + *RI) == Width) 2892e8d8bef9SDimitry Andric return ConstantInt::get(L->getType(), *LI); 2893e8d8bef9SDimitry Andric 2894e8d8bef9SDimitry Andric Constant *LC, *RC; 2895e8d8bef9SDimitry Andric if (match(L, m_Constant(LC)) && match(R, m_Constant(RC)) && 28965f757f3fSDimitry Andric match(L, 28975f757f3fSDimitry Andric m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 28985f757f3fSDimitry Andric match(R, 28995f757f3fSDimitry Andric m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, APInt(Width, Width))) && 29000fca6ea1SDimitry Andric match(ConstantExpr::getAdd(LC, RC), m_SpecificIntAllowPoison(Width))) 2901e8d8bef9SDimitry Andric return ConstantExpr::mergeUndefsWith(LC, RC); 2902e8d8bef9SDimitry Andric 2903e8d8bef9SDimitry Andric // (shl ShVal, X) | (lshr ShVal, (Width - x)) iff X < Width. 29045f757f3fSDimitry Andric // We limit this to X < Width in case the backend re-expands the 29055f757f3fSDimitry Andric // intrinsic, and has to reintroduce a shift modulo operation (InstCombine 29065f757f3fSDimitry Andric // might remove it after this fold). This still doesn't guarantee that the 29075f757f3fSDimitry Andric // final codegen will match this original pattern. 2908e8d8bef9SDimitry Andric if (match(R, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(L))))) { 29090fca6ea1SDimitry Andric KnownBits KnownL = computeKnownBits(L, /*Depth*/ 0, &Or); 2910e8d8bef9SDimitry Andric return KnownL.getMaxValue().ult(Width) ? L : nullptr; 2911e8d8bef9SDimitry Andric } 2912e8d8bef9SDimitry Andric 2913e8d8bef9SDimitry Andric // For non-constant cases, the following patterns currently only work for 2914e8d8bef9SDimitry Andric // rotation patterns. 2915e8d8bef9SDimitry Andric // TODO: Add general funnel-shift compatible patterns. 2916e8d8bef9SDimitry Andric if (ShVal0 != ShVal1) 29170b57cec5SDimitry Andric return nullptr; 29180b57cec5SDimitry Andric 2919e8d8bef9SDimitry Andric // For non-constant cases we don't support non-pow2 shift masks. 2920e8d8bef9SDimitry Andric // TODO: Is it worth matching urem as well? 2921e8d8bef9SDimitry Andric if (!isPowerOf2_32(Width)) 2922e8d8bef9SDimitry Andric return nullptr; 2923e8d8bef9SDimitry Andric 29240b57cec5SDimitry Andric // The shift amount may be masked with negation: 29250b57cec5SDimitry Andric // (shl ShVal, (X & (Width - 1))) | (lshr ShVal, ((-X) & (Width - 1))) 29260b57cec5SDimitry Andric Value *X; 29270b57cec5SDimitry Andric unsigned Mask = Width - 1; 29280b57cec5SDimitry Andric if (match(L, m_And(m_Value(X), m_SpecificInt(Mask))) && 29290b57cec5SDimitry Andric match(R, m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask)))) 29300b57cec5SDimitry Andric return X; 29310b57cec5SDimitry Andric 29327a6dacacSDimitry Andric // (shl ShVal, X) | (lshr ShVal, ((-X) & (Width - 1))) 29337a6dacacSDimitry Andric if (match(R, m_And(m_Neg(m_Specific(L)), m_SpecificInt(Mask)))) 29347a6dacacSDimitry Andric return L; 29357a6dacacSDimitry Andric 29360b57cec5SDimitry Andric // Similar to above, but the shift amount may be extended after masking, 29370b57cec5SDimitry Andric // so return the extended value as the parameter for the intrinsic. 29380b57cec5SDimitry Andric if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 29395f757f3fSDimitry Andric match(R, 29405f757f3fSDimitry Andric m_And(m_Neg(m_ZExt(m_And(m_Specific(X), m_SpecificInt(Mask)))), 29410b57cec5SDimitry Andric m_SpecificInt(Mask)))) 29420b57cec5SDimitry Andric return L; 29430b57cec5SDimitry Andric 2944e8d8bef9SDimitry Andric if (match(L, m_ZExt(m_And(m_Value(X), m_SpecificInt(Mask)))) && 2945e8d8bef9SDimitry Andric match(R, m_ZExt(m_And(m_Neg(m_Specific(X)), m_SpecificInt(Mask))))) 2946e8d8bef9SDimitry Andric return L; 2947e8d8bef9SDimitry Andric 29480b57cec5SDimitry Andric return nullptr; 29490b57cec5SDimitry Andric }; 29500b57cec5SDimitry Andric 29510b57cec5SDimitry Andric Value *ShAmt = matchShiftAmount(ShAmt0, ShAmt1, Width); 29520b57cec5SDimitry Andric if (!ShAmt) { 29530b57cec5SDimitry Andric ShAmt = matchShiftAmount(ShAmt1, ShAmt0, Width); 2954e8d8bef9SDimitry Andric IsFshl = false; // Sub on SHL. 29550b57cec5SDimitry Andric } 29560b57cec5SDimitry Andric if (!ShAmt) 29570fca6ea1SDimitry Andric return std::nullopt; 29580b57cec5SDimitry Andric 29595f757f3fSDimitry Andric FShiftArgs = {ShVal0, ShVal1, ShAmt}; 29605f757f3fSDimitry Andric } else if (isa<ZExtInst>(Or0) || isa<ZExtInst>(Or1)) { 29615f757f3fSDimitry Andric // If there are two 'or' instructions concat variables in opposite order: 29625f757f3fSDimitry Andric // 29635f757f3fSDimitry Andric // Slot1 and Slot2 are all zero bits. 29645f757f3fSDimitry Andric // | Slot1 | Low | Slot2 | High | 29655f757f3fSDimitry Andric // LowHigh = or (shl (zext Low), ZextLowShlAmt), (zext High) 29665f757f3fSDimitry Andric // | Slot2 | High | Slot1 | Low | 29675f757f3fSDimitry Andric // HighLow = or (shl (zext High), ZextHighShlAmt), (zext Low) 29685f757f3fSDimitry Andric // 29695f757f3fSDimitry Andric // the latter 'or' can be safely convert to 29705f757f3fSDimitry Andric // -> HighLow = fshl LowHigh, LowHigh, ZextHighShlAmt 29715f757f3fSDimitry Andric // if ZextLowShlAmt + ZextHighShlAmt == Width. 29725f757f3fSDimitry Andric if (!isa<ZExtInst>(Or1)) 29735f757f3fSDimitry Andric std::swap(Or0, Or1); 29745f757f3fSDimitry Andric 29755f757f3fSDimitry Andric Value *High, *ZextHigh, *Low; 29765f757f3fSDimitry Andric const APInt *ZextHighShlAmt; 29775f757f3fSDimitry Andric if (!match(Or0, 29785f757f3fSDimitry Andric m_OneUse(m_Shl(m_Value(ZextHigh), m_APInt(ZextHighShlAmt))))) 29790fca6ea1SDimitry Andric return std::nullopt; 29805f757f3fSDimitry Andric 29815f757f3fSDimitry Andric if (!match(Or1, m_ZExt(m_Value(Low))) || 29825f757f3fSDimitry Andric !match(ZextHigh, m_ZExt(m_Value(High)))) 29830fca6ea1SDimitry Andric return std::nullopt; 29845f757f3fSDimitry Andric 29855f757f3fSDimitry Andric unsigned HighSize = High->getType()->getScalarSizeInBits(); 29865f757f3fSDimitry Andric unsigned LowSize = Low->getType()->getScalarSizeInBits(); 29875f757f3fSDimitry Andric // Make sure High does not overlap with Low and most significant bits of 29885f757f3fSDimitry Andric // High aren't shifted out. 29895f757f3fSDimitry Andric if (ZextHighShlAmt->ult(LowSize) || ZextHighShlAmt->ugt(Width - HighSize)) 29900fca6ea1SDimitry Andric return std::nullopt; 29915f757f3fSDimitry Andric 29925f757f3fSDimitry Andric for (User *U : ZextHigh->users()) { 29935f757f3fSDimitry Andric Value *X, *Y; 29945f757f3fSDimitry Andric if (!match(U, m_Or(m_Value(X), m_Value(Y)))) 29955f757f3fSDimitry Andric continue; 29965f757f3fSDimitry Andric 29975f757f3fSDimitry Andric if (!isa<ZExtInst>(Y)) 29985f757f3fSDimitry Andric std::swap(X, Y); 29995f757f3fSDimitry Andric 30005f757f3fSDimitry Andric const APInt *ZextLowShlAmt; 30015f757f3fSDimitry Andric if (!match(X, m_Shl(m_Specific(Or1), m_APInt(ZextLowShlAmt))) || 30025f757f3fSDimitry Andric !match(Y, m_Specific(ZextHigh)) || !DT.dominates(U, &Or)) 30035f757f3fSDimitry Andric continue; 30045f757f3fSDimitry Andric 30055f757f3fSDimitry Andric // HighLow is good concat. If sum of two shifts amount equals to Width, 30065f757f3fSDimitry Andric // LowHigh must also be a good concat. 30075f757f3fSDimitry Andric if (*ZextLowShlAmt + *ZextHighShlAmt != Width) 30085f757f3fSDimitry Andric continue; 30095f757f3fSDimitry Andric 30105f757f3fSDimitry Andric // Low must not overlap with High and most significant bits of Low must 30115f757f3fSDimitry Andric // not be shifted out. 30125f757f3fSDimitry Andric assert(ZextLowShlAmt->uge(HighSize) && 30135f757f3fSDimitry Andric ZextLowShlAmt->ule(Width - LowSize) && "Invalid concat"); 30145f757f3fSDimitry Andric 30155f757f3fSDimitry Andric FShiftArgs = {U, U, ConstantInt::get(Or0->getType(), *ZextHighShlAmt)}; 30165f757f3fSDimitry Andric break; 30175f757f3fSDimitry Andric } 30185f757f3fSDimitry Andric } 30195f757f3fSDimitry Andric 30205f757f3fSDimitry Andric if (FShiftArgs.empty()) 30210fca6ea1SDimitry Andric return std::nullopt; 30225f757f3fSDimitry Andric 30230b57cec5SDimitry Andric Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 30240fca6ea1SDimitry Andric return std::make_pair(IID, FShiftArgs); 30250fca6ea1SDimitry Andric } 30260fca6ea1SDimitry Andric 30270fca6ea1SDimitry Andric /// Match UB-safe variants of the funnel shift intrinsic. 30280fca6ea1SDimitry Andric static Instruction *matchFunnelShift(Instruction &Or, InstCombinerImpl &IC) { 30290fca6ea1SDimitry Andric if (auto Opt = IC.convertOrOfShiftsToFunnelShift(Or)) { 30300fca6ea1SDimitry Andric auto [IID, FShiftArgs] = *Opt; 30310b57cec5SDimitry Andric Function *F = Intrinsic::getDeclaration(Or.getModule(), IID, Or.getType()); 30325f757f3fSDimitry Andric return CallInst::Create(F, FShiftArgs); 30330b57cec5SDimitry Andric } 30340b57cec5SDimitry Andric 30350fca6ea1SDimitry Andric return nullptr; 30360fca6ea1SDimitry Andric } 30370fca6ea1SDimitry Andric 30385ffd83dbSDimitry Andric /// Attempt to combine or(zext(x),shl(zext(y),bw/2) concat packing patterns. 30395ffd83dbSDimitry Andric static Instruction *matchOrConcat(Instruction &Or, 30405ffd83dbSDimitry Andric InstCombiner::BuilderTy &Builder) { 30415ffd83dbSDimitry Andric assert(Or.getOpcode() == Instruction::Or && "bswap requires an 'or'"); 30425ffd83dbSDimitry Andric Value *Op0 = Or.getOperand(0), *Op1 = Or.getOperand(1); 30435ffd83dbSDimitry Andric Type *Ty = Or.getType(); 30445ffd83dbSDimitry Andric 30455ffd83dbSDimitry Andric unsigned Width = Ty->getScalarSizeInBits(); 30465ffd83dbSDimitry Andric if ((Width & 1) != 0) 30475ffd83dbSDimitry Andric return nullptr; 30485ffd83dbSDimitry Andric unsigned HalfWidth = Width / 2; 30495ffd83dbSDimitry Andric 30505ffd83dbSDimitry Andric // Canonicalize zext (lower half) to LHS. 30515ffd83dbSDimitry Andric if (!isa<ZExtInst>(Op0)) 30525ffd83dbSDimitry Andric std::swap(Op0, Op1); 30535ffd83dbSDimitry Andric 30545ffd83dbSDimitry Andric // Find lower/upper half. 30555ffd83dbSDimitry Andric Value *LowerSrc, *ShlVal, *UpperSrc; 30565ffd83dbSDimitry Andric const APInt *C; 30575ffd83dbSDimitry Andric if (!match(Op0, m_OneUse(m_ZExt(m_Value(LowerSrc)))) || 30585ffd83dbSDimitry Andric !match(Op1, m_OneUse(m_Shl(m_Value(ShlVal), m_APInt(C)))) || 30595ffd83dbSDimitry Andric !match(ShlVal, m_OneUse(m_ZExt(m_Value(UpperSrc))))) 30605ffd83dbSDimitry Andric return nullptr; 30615ffd83dbSDimitry Andric if (*C != HalfWidth || LowerSrc->getType() != UpperSrc->getType() || 30625ffd83dbSDimitry Andric LowerSrc->getType()->getScalarSizeInBits() != HalfWidth) 30635ffd83dbSDimitry Andric return nullptr; 30645ffd83dbSDimitry Andric 30655ffd83dbSDimitry Andric auto ConcatIntrinsicCalls = [&](Intrinsic::ID id, Value *Lo, Value *Hi) { 30665ffd83dbSDimitry Andric Value *NewLower = Builder.CreateZExt(Lo, Ty); 30675ffd83dbSDimitry Andric Value *NewUpper = Builder.CreateZExt(Hi, Ty); 30685ffd83dbSDimitry Andric NewUpper = Builder.CreateShl(NewUpper, HalfWidth); 30695ffd83dbSDimitry Andric Value *BinOp = Builder.CreateOr(NewLower, NewUpper); 30705ffd83dbSDimitry Andric Function *F = Intrinsic::getDeclaration(Or.getModule(), id, Ty); 30715ffd83dbSDimitry Andric return Builder.CreateCall(F, BinOp); 30725ffd83dbSDimitry Andric }; 30735ffd83dbSDimitry Andric 30745ffd83dbSDimitry Andric // BSWAP: Push the concat down, swapping the lower/upper sources. 30755ffd83dbSDimitry Andric // concat(bswap(x),bswap(y)) -> bswap(concat(x,y)) 30765ffd83dbSDimitry Andric Value *LowerBSwap, *UpperBSwap; 30775ffd83dbSDimitry Andric if (match(LowerSrc, m_BSwap(m_Value(LowerBSwap))) && 30785ffd83dbSDimitry Andric match(UpperSrc, m_BSwap(m_Value(UpperBSwap)))) 30795ffd83dbSDimitry Andric return ConcatIntrinsicCalls(Intrinsic::bswap, UpperBSwap, LowerBSwap); 30805ffd83dbSDimitry Andric 30815ffd83dbSDimitry Andric // BITREVERSE: Push the concat down, swapping the lower/upper sources. 30825ffd83dbSDimitry Andric // concat(bitreverse(x),bitreverse(y)) -> bitreverse(concat(x,y)) 30835ffd83dbSDimitry Andric Value *LowerBRev, *UpperBRev; 30845ffd83dbSDimitry Andric if (match(LowerSrc, m_BitReverse(m_Value(LowerBRev))) && 30855ffd83dbSDimitry Andric match(UpperSrc, m_BitReverse(m_Value(UpperBRev)))) 30865ffd83dbSDimitry Andric return ConcatIntrinsicCalls(Intrinsic::bitreverse, UpperBRev, LowerBRev); 30875ffd83dbSDimitry Andric 30885ffd83dbSDimitry Andric return nullptr; 30895ffd83dbSDimitry Andric } 30905ffd83dbSDimitry Andric 30910b57cec5SDimitry Andric /// If all elements of two constant vectors are 0/-1 and inverses, return true. 30920b57cec5SDimitry Andric static bool areInverseVectorBitmasks(Constant *C1, Constant *C2) { 3093e8d8bef9SDimitry Andric unsigned NumElts = cast<FixedVectorType>(C1->getType())->getNumElements(); 30940b57cec5SDimitry Andric for (unsigned i = 0; i != NumElts; ++i) { 30950b57cec5SDimitry Andric Constant *EltC1 = C1->getAggregateElement(i); 30960b57cec5SDimitry Andric Constant *EltC2 = C2->getAggregateElement(i); 30970b57cec5SDimitry Andric if (!EltC1 || !EltC2) 30980b57cec5SDimitry Andric return false; 30990b57cec5SDimitry Andric 31000b57cec5SDimitry Andric // One element must be all ones, and the other must be all zeros. 31010b57cec5SDimitry Andric if (!((match(EltC1, m_Zero()) && match(EltC2, m_AllOnes())) || 31020b57cec5SDimitry Andric (match(EltC2, m_Zero()) && match(EltC1, m_AllOnes())))) 31030b57cec5SDimitry Andric return false; 31040b57cec5SDimitry Andric } 31050b57cec5SDimitry Andric return true; 31060b57cec5SDimitry Andric } 31070b57cec5SDimitry Andric 31080b57cec5SDimitry Andric /// We have an expression of the form (A & C) | (B & D). If A is a scalar or 31090b57cec5SDimitry Andric /// vector composed of all-zeros or all-ones values and is the bitwise 'not' of 31100b57cec5SDimitry Andric /// B, it can be used as the condition operand of a select instruction. 3111bdd1243dSDimitry Andric /// We will detect (A & C) | ~(B | D) when the flag ABIsTheSame enabled. 3112bdd1243dSDimitry Andric Value *InstCombinerImpl::getSelectCondition(Value *A, Value *B, 3113bdd1243dSDimitry Andric bool ABIsTheSame) { 3114349cc55cSDimitry Andric // We may have peeked through bitcasts in the caller. 31150b57cec5SDimitry Andric // Exit immediately if we don't have (vector) integer types. 31160b57cec5SDimitry Andric Type *Ty = A->getType(); 31170b57cec5SDimitry Andric if (!Ty->isIntOrIntVectorTy() || !B->getType()->isIntOrIntVectorTy()) 31180b57cec5SDimitry Andric return nullptr; 31190b57cec5SDimitry Andric 3120349cc55cSDimitry Andric // If A is the 'not' operand of B and has enough signbits, we have our answer. 3121bdd1243dSDimitry Andric if (ABIsTheSame ? (A == B) : match(B, m_Not(m_Specific(A)))) { 31220b57cec5SDimitry Andric // If these are scalars or vectors of i1, A can be used directly. 31230b57cec5SDimitry Andric if (Ty->isIntOrIntVectorTy(1)) 31240b57cec5SDimitry Andric return A; 3125349cc55cSDimitry Andric 3126349cc55cSDimitry Andric // If we look through a vector bitcast, the caller will bitcast the operands 3127349cc55cSDimitry Andric // to match the condition's number of bits (N x i1). 3128349cc55cSDimitry Andric // To make this poison-safe, disallow bitcast from wide element to narrow 3129349cc55cSDimitry Andric // element. That could allow poison in lanes where it was not present in the 3130349cc55cSDimitry Andric // original code. 3131349cc55cSDimitry Andric A = peekThroughBitcast(A); 3132349cc55cSDimitry Andric if (A->getType()->isIntOrIntVectorTy()) { 3133349cc55cSDimitry Andric unsigned NumSignBits = ComputeNumSignBits(A); 3134349cc55cSDimitry Andric if (NumSignBits == A->getType()->getScalarSizeInBits() && 3135349cc55cSDimitry Andric NumSignBits <= Ty->getScalarSizeInBits()) 3136349cc55cSDimitry Andric return Builder.CreateTrunc(A, CmpInst::makeCmpResultType(A->getType())); 3137349cc55cSDimitry Andric } 3138349cc55cSDimitry Andric return nullptr; 31390b57cec5SDimitry Andric } 31400b57cec5SDimitry Andric 3141bdd1243dSDimitry Andric // TODO: add support for sext and constant case 3142bdd1243dSDimitry Andric if (ABIsTheSame) 3143bdd1243dSDimitry Andric return nullptr; 3144bdd1243dSDimitry Andric 31450b57cec5SDimitry Andric // If both operands are constants, see if the constants are inverse bitmasks. 31460b57cec5SDimitry Andric Constant *AConst, *BConst; 31470b57cec5SDimitry Andric if (match(A, m_Constant(AConst)) && match(B, m_Constant(BConst))) 3148349cc55cSDimitry Andric if (AConst == ConstantExpr::getNot(BConst) && 3149349cc55cSDimitry Andric ComputeNumSignBits(A) == Ty->getScalarSizeInBits()) 31500b57cec5SDimitry Andric return Builder.CreateZExtOrTrunc(A, CmpInst::makeCmpResultType(Ty)); 31510b57cec5SDimitry Andric 31520b57cec5SDimitry Andric // Look for more complex patterns. The 'not' op may be hidden behind various 31530b57cec5SDimitry Andric // casts. Look through sexts and bitcasts to find the booleans. 31540b57cec5SDimitry Andric Value *Cond; 31550b57cec5SDimitry Andric Value *NotB; 31560b57cec5SDimitry Andric if (match(A, m_SExt(m_Value(Cond))) && 31574824e7fdSDimitry Andric Cond->getType()->isIntOrIntVectorTy(1)) { 31584824e7fdSDimitry Andric // A = sext i1 Cond; B = sext (not (i1 Cond)) 31594824e7fdSDimitry Andric if (match(B, m_SExt(m_Not(m_Specific(Cond))))) 31604824e7fdSDimitry Andric return Cond; 31614824e7fdSDimitry Andric 31624824e7fdSDimitry Andric // A = sext i1 Cond; B = not ({bitcast} (sext (i1 Cond))) 31634824e7fdSDimitry Andric // TODO: The one-use checks are unnecessary or misplaced. If the caller 31644824e7fdSDimitry Andric // checked for uses on logic ops/casts, that should be enough to 31654824e7fdSDimitry Andric // make this transform worthwhile. 31664824e7fdSDimitry Andric if (match(B, m_OneUse(m_Not(m_Value(NotB))))) { 31670b57cec5SDimitry Andric NotB = peekThroughBitcast(NotB, true); 31680b57cec5SDimitry Andric if (match(NotB, m_SExt(m_Specific(Cond)))) 31690b57cec5SDimitry Andric return Cond; 31700b57cec5SDimitry Andric } 31714824e7fdSDimitry Andric } 31720b57cec5SDimitry Andric 31730b57cec5SDimitry Andric // All scalar (and most vector) possibilities should be handled now. 31740b57cec5SDimitry Andric // Try more matches that only apply to non-splat constant vectors. 31750b57cec5SDimitry Andric if (!Ty->isVectorTy()) 31760b57cec5SDimitry Andric return nullptr; 31770b57cec5SDimitry Andric 31780b57cec5SDimitry Andric // If both operands are xor'd with constants using the same sexted boolean 31790b57cec5SDimitry Andric // operand, see if the constants are inverse bitmasks. 31800b57cec5SDimitry Andric // TODO: Use ConstantExpr::getNot()? 31810b57cec5SDimitry Andric if (match(A, (m_Xor(m_SExt(m_Value(Cond)), m_Constant(AConst)))) && 31820b57cec5SDimitry Andric match(B, (m_Xor(m_SExt(m_Specific(Cond)), m_Constant(BConst)))) && 31830b57cec5SDimitry Andric Cond->getType()->isIntOrIntVectorTy(1) && 31840b57cec5SDimitry Andric areInverseVectorBitmasks(AConst, BConst)) { 31850b57cec5SDimitry Andric AConst = ConstantExpr::getTrunc(AConst, CmpInst::makeCmpResultType(Ty)); 31860b57cec5SDimitry Andric return Builder.CreateXor(Cond, AConst); 31870b57cec5SDimitry Andric } 31880b57cec5SDimitry Andric return nullptr; 31890b57cec5SDimitry Andric } 31900b57cec5SDimitry Andric 31910fca6ea1SDimitry Andric /// We have an expression of the form (A & B) | (C & D). Try to simplify this 31920fca6ea1SDimitry Andric /// to "A' ? B : D", where A' is a boolean or vector of booleans. 3193bdd1243dSDimitry Andric /// When InvertFalseVal is set to true, we try to match the pattern 31940fca6ea1SDimitry Andric /// where we have peeked through a 'not' op and A and C are the same: 31950fca6ea1SDimitry Andric /// (A & B) | ~(A | D) --> (A & B) | (~A & ~D) --> A' ? B : ~D 31960fca6ea1SDimitry Andric Value *InstCombinerImpl::matchSelectFromAndOr(Value *A, Value *B, Value *C, 3197bdd1243dSDimitry Andric Value *D, bool InvertFalseVal) { 31980b57cec5SDimitry Andric // The potential condition of the select may be bitcasted. In that case, look 31990b57cec5SDimitry Andric // through its bitcast and the corresponding bitcast of the 'not' condition. 32000b57cec5SDimitry Andric Type *OrigType = A->getType(); 32010b57cec5SDimitry Andric A = peekThroughBitcast(A, true); 32020fca6ea1SDimitry Andric C = peekThroughBitcast(C, true); 32030fca6ea1SDimitry Andric if (Value *Cond = getSelectCondition(A, C, InvertFalseVal)) { 32040fca6ea1SDimitry Andric // ((bc Cond) & B) | ((bc ~Cond) & D) --> bc (select Cond, (bc B), (bc D)) 3205349cc55cSDimitry Andric // If this is a vector, we may need to cast to match the condition's length. 32060b57cec5SDimitry Andric // The bitcasts will either all exist or all not exist. The builder will 32070b57cec5SDimitry Andric // not create unnecessary casts if the types already match. 3208349cc55cSDimitry Andric Type *SelTy = A->getType(); 3209349cc55cSDimitry Andric if (auto *VecTy = dyn_cast<VectorType>(Cond->getType())) { 32102a66634dSDimitry Andric // For a fixed or scalable vector get N from <{vscale x} N x iM> 3211349cc55cSDimitry Andric unsigned Elts = VecTy->getElementCount().getKnownMinValue(); 32122a66634dSDimitry Andric // For a fixed or scalable vector, get the size in bits of N x iM; for a 32132a66634dSDimitry Andric // scalar this is just M. 3214bdd1243dSDimitry Andric unsigned SelEltSize = SelTy->getPrimitiveSizeInBits().getKnownMinValue(); 32152a66634dSDimitry Andric Type *EltTy = Builder.getIntNTy(SelEltSize / Elts); 3216349cc55cSDimitry Andric SelTy = VectorType::get(EltTy, VecTy->getElementCount()); 3217349cc55cSDimitry Andric } 32180fca6ea1SDimitry Andric Value *BitcastB = Builder.CreateBitCast(B, SelTy); 3219bdd1243dSDimitry Andric if (InvertFalseVal) 3220bdd1243dSDimitry Andric D = Builder.CreateNot(D); 3221349cc55cSDimitry Andric Value *BitcastD = Builder.CreateBitCast(D, SelTy); 32220fca6ea1SDimitry Andric Value *Select = Builder.CreateSelect(Cond, BitcastB, BitcastD); 32230b57cec5SDimitry Andric return Builder.CreateBitCast(Select, OrigType); 32240b57cec5SDimitry Andric } 32250b57cec5SDimitry Andric 32260b57cec5SDimitry Andric return nullptr; 32270b57cec5SDimitry Andric } 32280b57cec5SDimitry Andric 322906c3fb27SDimitry Andric // (icmp eq X, C) | (icmp ult Other, (X - C)) -> (icmp ule Other, (X - (C + 1))) 323006c3fb27SDimitry Andric // (icmp ne X, C) & (icmp uge Other, (X - C)) -> (icmp ugt Other, (X - (C + 1))) 323106c3fb27SDimitry Andric static Value *foldAndOrOfICmpEqConstantAndICmp(ICmpInst *LHS, ICmpInst *RHS, 3232bdd1243dSDimitry Andric bool IsAnd, bool IsLogical, 323381ad6265SDimitry Andric IRBuilderBase &Builder) { 323406c3fb27SDimitry Andric Value *LHS0 = LHS->getOperand(0); 323506c3fb27SDimitry Andric Value *RHS0 = RHS->getOperand(0); 323606c3fb27SDimitry Andric Value *RHS1 = RHS->getOperand(1); 323706c3fb27SDimitry Andric 323881ad6265SDimitry Andric ICmpInst::Predicate LPred = 323981ad6265SDimitry Andric IsAnd ? LHS->getInversePredicate() : LHS->getPredicate(); 324081ad6265SDimitry Andric ICmpInst::Predicate RPred = 324181ad6265SDimitry Andric IsAnd ? RHS->getInversePredicate() : RHS->getPredicate(); 324206c3fb27SDimitry Andric 324306c3fb27SDimitry Andric const APInt *CInt; 324406c3fb27SDimitry Andric if (LPred != ICmpInst::ICMP_EQ || 32450fca6ea1SDimitry Andric !match(LHS->getOperand(1), m_APIntAllowPoison(CInt)) || 324681ad6265SDimitry Andric !LHS0->getType()->isIntOrIntVectorTy() || 324781ad6265SDimitry Andric !(LHS->hasOneUse() || RHS->hasOneUse())) 324881ad6265SDimitry Andric return nullptr; 324981ad6265SDimitry Andric 325006c3fb27SDimitry Andric auto MatchRHSOp = [LHS0, CInt](const Value *RHSOp) { 325106c3fb27SDimitry Andric return match(RHSOp, 32520fca6ea1SDimitry Andric m_Add(m_Specific(LHS0), m_SpecificIntAllowPoison(-*CInt))) || 325306c3fb27SDimitry Andric (CInt->isZero() && RHSOp == LHS0); 325406c3fb27SDimitry Andric }; 325506c3fb27SDimitry Andric 325681ad6265SDimitry Andric Value *Other; 325706c3fb27SDimitry Andric if (RPred == ICmpInst::ICMP_ULT && MatchRHSOp(RHS1)) 325806c3fb27SDimitry Andric Other = RHS0; 325906c3fb27SDimitry Andric else if (RPred == ICmpInst::ICMP_UGT && MatchRHSOp(RHS0)) 326006c3fb27SDimitry Andric Other = RHS1; 326181ad6265SDimitry Andric else 326281ad6265SDimitry Andric return nullptr; 326381ad6265SDimitry Andric 3264bdd1243dSDimitry Andric if (IsLogical) 3265bdd1243dSDimitry Andric Other = Builder.CreateFreeze(Other); 326606c3fb27SDimitry Andric 326781ad6265SDimitry Andric return Builder.CreateICmp( 326881ad6265SDimitry Andric IsAnd ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_UGE, 326906c3fb27SDimitry Andric Builder.CreateSub(LHS0, ConstantInt::get(LHS0->getType(), *CInt + 1)), 327081ad6265SDimitry Andric Other); 327181ad6265SDimitry Andric } 327281ad6265SDimitry Andric 327381ad6265SDimitry Andric /// Fold (icmp)&(icmp) or (icmp)|(icmp) if possible. 327481ad6265SDimitry Andric /// If IsLogical is true, then the and/or is in select form and the transform 327581ad6265SDimitry Andric /// must be poison-safe. 327681ad6265SDimitry Andric Value *InstCombinerImpl::foldAndOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, 327781ad6265SDimitry Andric Instruction &I, bool IsAnd, 327881ad6265SDimitry Andric bool IsLogical) { 327981ad6265SDimitry Andric const SimplifyQuery Q = SQ.getWithInstruction(&I); 32808bcb0991SDimitry Andric 32810b57cec5SDimitry Andric // Fold (iszero(A & K1) | iszero(A & K2)) -> (A & (K1 | K2)) != (K1 | K2) 328281ad6265SDimitry Andric // Fold (!iszero(A & K1) & !iszero(A & K2)) -> (A & (K1 | K2)) == (K1 | K2) 32830b57cec5SDimitry Andric // if K1 and K2 are a one-bit mask. 328481ad6265SDimitry Andric if (Value *V = foldAndOrOfICmpsOfAndWithPow2(LHS, RHS, &I, IsAnd, IsLogical)) 32850b57cec5SDimitry Andric return V; 32860b57cec5SDimitry Andric 32870b57cec5SDimitry Andric ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 3288e8d8bef9SDimitry Andric Value *LHS0 = LHS->getOperand(0), *RHS0 = RHS->getOperand(0); 3289e8d8bef9SDimitry Andric Value *LHS1 = LHS->getOperand(1), *RHS1 = RHS->getOperand(1); 32900fca6ea1SDimitry Andric 3291349cc55cSDimitry Andric const APInt *LHSC = nullptr, *RHSC = nullptr; 3292349cc55cSDimitry Andric match(LHS1, m_APInt(LHSC)); 3293349cc55cSDimitry Andric match(RHS1, m_APInt(RHSC)); 32940b57cec5SDimitry Andric 32950b57cec5SDimitry Andric // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B) 329681ad6265SDimitry Andric // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B) 32970b57cec5SDimitry Andric if (predicatesFoldable(PredL, PredR)) { 329881ad6265SDimitry Andric if (LHS0 == RHS1 && LHS1 == RHS0) { 329981ad6265SDimitry Andric PredL = ICmpInst::getSwappedPredicate(PredL); 330081ad6265SDimitry Andric std::swap(LHS0, LHS1); 330181ad6265SDimitry Andric } 3302e8d8bef9SDimitry Andric if (LHS0 == RHS0 && LHS1 == RHS1) { 330381ad6265SDimitry Andric unsigned Code = IsAnd ? getICmpCode(PredL) & getICmpCode(PredR) 330481ad6265SDimitry Andric : getICmpCode(PredL) | getICmpCode(PredR); 33050b57cec5SDimitry Andric bool IsSigned = LHS->isSigned() || RHS->isSigned(); 3306e8d8bef9SDimitry Andric return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 33070b57cec5SDimitry Andric } 33080b57cec5SDimitry Andric } 33090b57cec5SDimitry Andric 33100b57cec5SDimitry Andric // handle (roughly): 33110b57cec5SDimitry Andric // (icmp ne (A & B), C) | (icmp ne (A & D), E) 331281ad6265SDimitry Andric // (icmp eq (A & B), C) & (icmp eq (A & D), E) 331381ad6265SDimitry Andric if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, IsAnd, IsLogical, Builder)) 33140b57cec5SDimitry Andric return V; 33150b57cec5SDimitry Andric 3316bdd1243dSDimitry Andric if (Value *V = 331706c3fb27SDimitry Andric foldAndOrOfICmpEqConstantAndICmp(LHS, RHS, IsAnd, IsLogical, Builder)) 331881ad6265SDimitry Andric return V; 3319bdd1243dSDimitry Andric // We can treat logical like bitwise here, because both operands are used on 3320bdd1243dSDimitry Andric // the LHS, and as such poison from both will propagate. 332106c3fb27SDimitry Andric if (Value *V = foldAndOrOfICmpEqConstantAndICmp(RHS, LHS, IsAnd, 3322bdd1243dSDimitry Andric /*IsLogical*/ false, Builder)) 332381ad6265SDimitry Andric return V; 33240b57cec5SDimitry Andric 3325bdd1243dSDimitry Andric if (Value *V = 3326bdd1243dSDimitry Andric foldAndOrOfICmpsWithConstEq(LHS, RHS, IsAnd, IsLogical, Builder, Q)) 33275ffd83dbSDimitry Andric return V; 3328bdd1243dSDimitry Andric // We can convert this case to bitwise and, because both operands are used 3329bdd1243dSDimitry Andric // on the LHS, and as such poison from both will propagate. 3330bdd1243dSDimitry Andric if (Value *V = foldAndOrOfICmpsWithConstEq(RHS, LHS, IsAnd, 3331bdd1243dSDimitry Andric /*IsLogical*/ false, Builder, Q)) 333281ad6265SDimitry Andric return V; 333381ad6265SDimitry Andric 333481ad6265SDimitry Andric if (Value *V = foldIsPowerOf2OrZero(LHS, RHS, IsAnd, Builder)) 333581ad6265SDimitry Andric return V; 333681ad6265SDimitry Andric if (Value *V = foldIsPowerOf2OrZero(RHS, LHS, IsAnd, Builder)) 33375ffd83dbSDimitry Andric return V; 33385ffd83dbSDimitry Andric 333981ad6265SDimitry Andric // TODO: One of these directions is fine with logical and/or, the other could 334081ad6265SDimitry Andric // be supported by inserting freeze. 334181ad6265SDimitry Andric if (!IsLogical) { 33420b57cec5SDimitry Andric // E.g. (icmp slt x, 0) | (icmp sgt x, n) --> icmp ugt x, n 334381ad6265SDimitry Andric // E.g. (icmp sge x, 0) & (icmp slt x, n) --> icmp ult x, n 334481ad6265SDimitry Andric if (Value *V = simplifyRangeCheck(LHS, RHS, /*Inverted=*/!IsAnd)) 33450b57cec5SDimitry Andric return V; 33460b57cec5SDimitry Andric 33470b57cec5SDimitry Andric // E.g. (icmp sgt x, n) | (icmp slt x, 0) --> icmp ugt x, n 334881ad6265SDimitry Andric // E.g. (icmp slt x, n) & (icmp sge x, 0) --> icmp ult x, n 334981ad6265SDimitry Andric if (Value *V = simplifyRangeCheck(RHS, LHS, /*Inverted=*/!IsAnd)) 335081ad6265SDimitry Andric return V; 335181ad6265SDimitry Andric } 335281ad6265SDimitry Andric 335381ad6265SDimitry Andric // TODO: Add conjugated or fold, check whether it is safe for logical and/or. 335481ad6265SDimitry Andric if (IsAnd && !IsLogical) 335581ad6265SDimitry Andric if (Value *V = foldSignedTruncationCheck(LHS, RHS, I, Builder)) 33560b57cec5SDimitry Andric return V; 33570b57cec5SDimitry Andric 3358*5deeebd8SDimitry Andric if (Value *V = foldIsPowerOf2(LHS, RHS, IsAnd, Builder, *this)) 33590b57cec5SDimitry Andric return V; 33600b57cec5SDimitry Andric 336106c3fb27SDimitry Andric if (Value *V = foldPowerOf2AndShiftedMask(LHS, RHS, IsAnd, Builder)) 336206c3fb27SDimitry Andric return V; 336306c3fb27SDimitry Andric 336481ad6265SDimitry Andric // TODO: Verify whether this is safe for logical and/or. 336581ad6265SDimitry Andric if (!IsLogical) { 336681ad6265SDimitry Andric if (Value *X = foldUnsignedUnderflowCheck(LHS, RHS, IsAnd, Q, Builder)) 33678bcb0991SDimitry Andric return X; 336881ad6265SDimitry Andric if (Value *X = foldUnsignedUnderflowCheck(RHS, LHS, IsAnd, Q, Builder)) 33698bcb0991SDimitry Andric return X; 337081ad6265SDimitry Andric } 33718bcb0991SDimitry Andric 337281ad6265SDimitry Andric if (Value *X = foldEqOfParts(LHS, RHS, IsAnd)) 3373fe6060f1SDimitry Andric return X; 3374fe6060f1SDimitry Andric 3375e8d8bef9SDimitry Andric // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0) 337681ad6265SDimitry Andric // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0) 337706c3fb27SDimitry Andric // TODO: Remove this and below when foldLogOpOfMaskedICmps can handle undefs. 337881ad6265SDimitry Andric if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 337981ad6265SDimitry Andric PredL == PredR && match(LHS1, m_ZeroInt()) && match(RHS1, m_ZeroInt()) && 3380e8d8bef9SDimitry Andric LHS0->getType() == RHS0->getType()) { 3381e8d8bef9SDimitry Andric Value *NewOr = Builder.CreateOr(LHS0, RHS0); 3382e8d8bef9SDimitry Andric return Builder.CreateICmp(PredL, NewOr, 3383e8d8bef9SDimitry Andric Constant::getNullValue(NewOr->getType())); 3384e8d8bef9SDimitry Andric } 3385e8d8bef9SDimitry Andric 338606c3fb27SDimitry Andric // (icmp ne A, -1) | (icmp ne B, -1) --> (icmp ne (A&B), -1) 338706c3fb27SDimitry Andric // (icmp eq A, -1) & (icmp eq B, -1) --> (icmp eq (A&B), -1) 338806c3fb27SDimitry Andric if (!IsLogical && PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 338906c3fb27SDimitry Andric PredL == PredR && match(LHS1, m_AllOnes()) && match(RHS1, m_AllOnes()) && 339006c3fb27SDimitry Andric LHS0->getType() == RHS0->getType()) { 339106c3fb27SDimitry Andric Value *NewAnd = Builder.CreateAnd(LHS0, RHS0); 339206c3fb27SDimitry Andric return Builder.CreateICmp(PredL, NewAnd, 339306c3fb27SDimitry Andric Constant::getAllOnesValue(LHS0->getType())); 339406c3fb27SDimitry Andric } 339506c3fb27SDimitry Andric 33960fca6ea1SDimitry Andric if (!IsLogical) 33970fca6ea1SDimitry Andric if (Value *V = 33980fca6ea1SDimitry Andric foldAndOrOfICmpsWithPow2AndWithZero(Builder, LHS, RHS, IsAnd, Q)) 33990fca6ea1SDimitry Andric return V; 34000fca6ea1SDimitry Andric 34010b57cec5SDimitry Andric // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2). 34020b57cec5SDimitry Andric if (!LHSC || !RHSC) 34030b57cec5SDimitry Andric return nullptr; 34040b57cec5SDimitry Andric 340581ad6265SDimitry Andric // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2 340681ad6265SDimitry Andric // (trunc x) != C1 | (and x, CA) != C2 -> (and x, CA|CMAX) != C1|C2 340781ad6265SDimitry Andric // where CMAX is the all ones value for the truncated type, 340881ad6265SDimitry Andric // iff the lower bits of C2 and CA are zero. 340981ad6265SDimitry Andric if (PredL == (IsAnd ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE) && 341081ad6265SDimitry Andric PredL == PredR && LHS->hasOneUse() && RHS->hasOneUse()) { 341181ad6265SDimitry Andric Value *V; 341281ad6265SDimitry Andric const APInt *AndC, *SmallC = nullptr, *BigC = nullptr; 341381ad6265SDimitry Andric 341481ad6265SDimitry Andric // (trunc x) == C1 & (and x, CA) == C2 341581ad6265SDimitry Andric // (and x, CA) == C2 & (trunc x) == C1 341681ad6265SDimitry Andric if (match(RHS0, m_Trunc(m_Value(V))) && 341781ad6265SDimitry Andric match(LHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 341881ad6265SDimitry Andric SmallC = RHSC; 341981ad6265SDimitry Andric BigC = LHSC; 342081ad6265SDimitry Andric } else if (match(LHS0, m_Trunc(m_Value(V))) && 342181ad6265SDimitry Andric match(RHS0, m_And(m_Specific(V), m_APInt(AndC)))) { 342281ad6265SDimitry Andric SmallC = LHSC; 342381ad6265SDimitry Andric BigC = RHSC; 342481ad6265SDimitry Andric } 342581ad6265SDimitry Andric 342681ad6265SDimitry Andric if (SmallC && BigC) { 342781ad6265SDimitry Andric unsigned BigBitSize = BigC->getBitWidth(); 342881ad6265SDimitry Andric unsigned SmallBitSize = SmallC->getBitWidth(); 342981ad6265SDimitry Andric 343081ad6265SDimitry Andric // Check that the low bits are zero. 343181ad6265SDimitry Andric APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize); 343281ad6265SDimitry Andric if ((Low & *AndC).isZero() && (Low & *BigC).isZero()) { 343381ad6265SDimitry Andric Value *NewAnd = Builder.CreateAnd(V, Low | *AndC); 343481ad6265SDimitry Andric APInt N = SmallC->zext(BigBitSize) | *BigC; 343581ad6265SDimitry Andric Value *NewVal = ConstantInt::get(NewAnd->getType(), N); 343681ad6265SDimitry Andric return Builder.CreateICmp(PredL, NewAnd, NewVal); 343781ad6265SDimitry Andric } 343881ad6265SDimitry Andric } 343981ad6265SDimitry Andric } 344081ad6265SDimitry Andric 344181ad6265SDimitry Andric // Match naive pattern (and its inverted form) for checking if two values 344281ad6265SDimitry Andric // share same sign. An example of the pattern: 344381ad6265SDimitry Andric // (icmp slt (X & Y), 0) | (icmp sgt (X | Y), -1) -> (icmp sgt (X ^ Y), -1) 344481ad6265SDimitry Andric // Inverted form (example): 344581ad6265SDimitry Andric // (icmp slt (X | Y), 0) & (icmp sgt (X & Y), -1) -> (icmp slt (X ^ Y), 0) 344681ad6265SDimitry Andric bool TrueIfSignedL, TrueIfSignedR; 3447fcaf7f86SDimitry Andric if (isSignBitCheck(PredL, *LHSC, TrueIfSignedL) && 3448fcaf7f86SDimitry Andric isSignBitCheck(PredR, *RHSC, TrueIfSignedR) && 344981ad6265SDimitry Andric (RHS->hasOneUse() || LHS->hasOneUse())) { 345081ad6265SDimitry Andric Value *X, *Y; 345181ad6265SDimitry Andric if (IsAnd) { 345281ad6265SDimitry Andric if ((TrueIfSignedL && !TrueIfSignedR && 345381ad6265SDimitry Andric match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 345481ad6265SDimitry Andric match(RHS0, m_c_And(m_Specific(X), m_Specific(Y)))) || 345581ad6265SDimitry Andric (!TrueIfSignedL && TrueIfSignedR && 345681ad6265SDimitry Andric match(LHS0, m_And(m_Value(X), m_Value(Y))) && 345781ad6265SDimitry Andric match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y))))) { 345881ad6265SDimitry Andric Value *NewXor = Builder.CreateXor(X, Y); 345981ad6265SDimitry Andric return Builder.CreateIsNeg(NewXor); 346081ad6265SDimitry Andric } 346181ad6265SDimitry Andric } else { 346281ad6265SDimitry Andric if ((TrueIfSignedL && !TrueIfSignedR && 346381ad6265SDimitry Andric match(LHS0, m_And(m_Value(X), m_Value(Y))) && 346481ad6265SDimitry Andric match(RHS0, m_c_Or(m_Specific(X), m_Specific(Y)))) || 346581ad6265SDimitry Andric (!TrueIfSignedL && TrueIfSignedR && 346681ad6265SDimitry Andric match(LHS0, m_Or(m_Value(X), m_Value(Y))) && 346781ad6265SDimitry Andric match(RHS0, m_c_And(m_Specific(X), m_Specific(Y))))) { 346881ad6265SDimitry Andric Value *NewXor = Builder.CreateXor(X, Y); 346981ad6265SDimitry Andric return Builder.CreateIsNotNeg(NewXor); 347081ad6265SDimitry Andric } 347181ad6265SDimitry Andric } 347281ad6265SDimitry Andric } 347381ad6265SDimitry Andric 347481ad6265SDimitry Andric return foldAndOrOfICmpsUsingRanges(LHS, RHS, IsAnd); 34750b57cec5SDimitry Andric } 34760b57cec5SDimitry Andric 34770fca6ea1SDimitry Andric static Value *foldOrOfInversions(BinaryOperator &I, 34780fca6ea1SDimitry Andric InstCombiner::BuilderTy &Builder) { 34790fca6ea1SDimitry Andric assert(I.getOpcode() == Instruction::Or && 34800fca6ea1SDimitry Andric "Simplification only supports or at the moment."); 34810fca6ea1SDimitry Andric 34820fca6ea1SDimitry Andric Value *Cmp1, *Cmp2, *Cmp3, *Cmp4; 34830fca6ea1SDimitry Andric if (!match(I.getOperand(0), m_And(m_Value(Cmp1), m_Value(Cmp2))) || 34840fca6ea1SDimitry Andric !match(I.getOperand(1), m_And(m_Value(Cmp3), m_Value(Cmp4)))) 34850fca6ea1SDimitry Andric return nullptr; 34860fca6ea1SDimitry Andric 34870fca6ea1SDimitry Andric // Check if any two pairs of the and operations are inversions of each other. 34880fca6ea1SDimitry Andric if (isKnownInversion(Cmp1, Cmp3) && isKnownInversion(Cmp2, Cmp4)) 34890fca6ea1SDimitry Andric return Builder.CreateXor(Cmp1, Cmp4); 34900fca6ea1SDimitry Andric if (isKnownInversion(Cmp1, Cmp4) && isKnownInversion(Cmp2, Cmp3)) 34910fca6ea1SDimitry Andric return Builder.CreateXor(Cmp1, Cmp3); 34920fca6ea1SDimitry Andric 34930fca6ea1SDimitry Andric return nullptr; 34940fca6ea1SDimitry Andric } 34950fca6ea1SDimitry Andric 34960b57cec5SDimitry Andric // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 34970b57cec5SDimitry Andric // here. We should standardize that construct where it is needed or choose some 34980b57cec5SDimitry Andric // other way to ensure that commutated variants of patterns are not missed. 3499e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitOr(BinaryOperator &I) { 350081ad6265SDimitry Andric if (Value *V = simplifyOrInst(I.getOperand(0), I.getOperand(1), 35010b57cec5SDimitry Andric SQ.getWithInstruction(&I))) 35020b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 35030b57cec5SDimitry Andric 35040b57cec5SDimitry Andric if (SimplifyAssociativeOrCommutative(I)) 35050b57cec5SDimitry Andric return &I; 35060b57cec5SDimitry Andric 35070b57cec5SDimitry Andric if (Instruction *X = foldVectorBinop(I)) 35080b57cec5SDimitry Andric return X; 35090b57cec5SDimitry Andric 351004eeddc0SDimitry Andric if (Instruction *Phi = foldBinopWithPhiOperands(I)) 351104eeddc0SDimitry Andric return Phi; 351204eeddc0SDimitry Andric 35130b57cec5SDimitry Andric // See if we can simplify any instructions used by the instruction whose sole 35140b57cec5SDimitry Andric // purpose is to compute bits we don't care about. 35150b57cec5SDimitry Andric if (SimplifyDemandedInstructionBits(I)) 35160b57cec5SDimitry Andric return &I; 35170b57cec5SDimitry Andric 35180b57cec5SDimitry Andric // Do this before using distributive laws to catch simple and/or/not patterns. 35190b57cec5SDimitry Andric if (Instruction *Xor = foldOrToXor(I, Builder)) 35200b57cec5SDimitry Andric return Xor; 35210b57cec5SDimitry Andric 3522349cc55cSDimitry Andric if (Instruction *X = foldComplexAndOrPatterns(I, Builder)) 3523349cc55cSDimitry Andric return X; 3524349cc55cSDimitry Andric 35250fca6ea1SDimitry Andric // (A & B) | (C & D) -> A ^ D where A == ~C && B == ~D 35260fca6ea1SDimitry Andric // (A & B) | (C & D) -> A ^ C where A == ~D && B == ~C 35270fca6ea1SDimitry Andric if (Value *V = foldOrOfInversions(I, Builder)) 35280fca6ea1SDimitry Andric return replaceInstUsesWith(I, V); 35290fca6ea1SDimitry Andric 35300b57cec5SDimitry Andric // (A&B)|(A&C) -> A&(B|C) etc 3531bdd1243dSDimitry Andric if (Value *V = foldUsingDistributiveLaws(I)) 35320b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 35330b57cec5SDimitry Andric 3534fe6060f1SDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 35354824e7fdSDimitry Andric Type *Ty = I.getType(); 35364824e7fdSDimitry Andric if (Ty->isIntOrIntVectorTy(1)) { 3537fe6060f1SDimitry Andric if (auto *SI0 = dyn_cast<SelectInst>(Op0)) { 35385f757f3fSDimitry Andric if (auto *R = 3539fe6060f1SDimitry Andric foldAndOrOfSelectUsingImpliedCond(Op1, *SI0, /* IsAnd */ false)) 35405f757f3fSDimitry Andric return R; 3541fe6060f1SDimitry Andric } 3542fe6060f1SDimitry Andric if (auto *SI1 = dyn_cast<SelectInst>(Op1)) { 35435f757f3fSDimitry Andric if (auto *R = 3544fe6060f1SDimitry Andric foldAndOrOfSelectUsingImpliedCond(Op0, *SI1, /* IsAnd */ false)) 35455f757f3fSDimitry Andric return R; 3546fe6060f1SDimitry Andric } 3547fe6060f1SDimitry Andric } 3548fe6060f1SDimitry Andric 35490b57cec5SDimitry Andric if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 35500b57cec5SDimitry Andric return FoldedLogic; 35510b57cec5SDimitry Andric 3552fe6060f1SDimitry Andric if (Instruction *BitOp = matchBSwapOrBitReverse(I, /*MatchBSwaps*/ true, 3553fe6060f1SDimitry Andric /*MatchBitReversals*/ true)) 3554fe6060f1SDimitry Andric return BitOp; 35550b57cec5SDimitry Andric 35560fca6ea1SDimitry Andric if (Instruction *Funnel = matchFunnelShift(I, *this)) 3557e8d8bef9SDimitry Andric return Funnel; 35580b57cec5SDimitry Andric 35595ffd83dbSDimitry Andric if (Instruction *Concat = matchOrConcat(I, Builder)) 35605ffd83dbSDimitry Andric return replaceInstUsesWith(I, Concat); 35615ffd83dbSDimitry Andric 356206c3fb27SDimitry Andric if (Instruction *R = foldBinOpShiftWithShift(I)) 356306c3fb27SDimitry Andric return R; 356406c3fb27SDimitry Andric 35657a6dacacSDimitry Andric if (Instruction *R = tryFoldInstWithCtpopWithNot(&I)) 35667a6dacacSDimitry Andric return R; 35677a6dacacSDimitry Andric 35680b57cec5SDimitry Andric Value *X, *Y; 35690b57cec5SDimitry Andric const APInt *CV; 35700b57cec5SDimitry Andric if (match(&I, m_c_Or(m_OneUse(m_Xor(m_Value(X), m_APInt(CV))), m_Value(Y))) && 3571349cc55cSDimitry Andric !CV->isAllOnes() && MaskedValueIsZero(Y, *CV, 0, &I)) { 35720b57cec5SDimitry Andric // (X ^ C) | Y -> (X | Y) ^ C iff Y & C == 0 35730b57cec5SDimitry Andric // The check for a 'not' op is for efficiency (if Y is known zero --> ~X). 35740b57cec5SDimitry Andric Value *Or = Builder.CreateOr(X, Y); 35754824e7fdSDimitry Andric return BinaryOperator::CreateXor(Or, ConstantInt::get(Ty, *CV)); 35764824e7fdSDimitry Andric } 35774824e7fdSDimitry Andric 35784824e7fdSDimitry Andric // If the operands have no common bits set: 35794824e7fdSDimitry Andric // or (mul X, Y), X --> add (mul X, Y), X --> mul X, (Y + 1) 35805f757f3fSDimitry Andric if (match(&I, m_c_DisjointOr(m_OneUse(m_Mul(m_Value(X), m_Value(Y))), 35815f757f3fSDimitry Andric m_Deferred(X)))) { 35824824e7fdSDimitry Andric Value *IncrementY = Builder.CreateAdd(Y, ConstantInt::get(Ty, 1)); 35834824e7fdSDimitry Andric return BinaryOperator::CreateMul(X, IncrementY); 35840b57cec5SDimitry Andric } 35850b57cec5SDimitry Andric 35860b57cec5SDimitry Andric // (A & C) | (B & D) 35870b57cec5SDimitry Andric Value *A, *B, *C, *D; 35880b57cec5SDimitry Andric if (match(Op0, m_And(m_Value(A), m_Value(C))) && 35890b57cec5SDimitry Andric match(Op1, m_And(m_Value(B), m_Value(D)))) { 35900b57cec5SDimitry Andric 3591349cc55cSDimitry Andric // (A & C0) | (B & C1) 3592349cc55cSDimitry Andric const APInt *C0, *C1; 3593349cc55cSDimitry Andric if (match(C, m_APInt(C0)) && match(D, m_APInt(C1))) { 35940b57cec5SDimitry Andric Value *X; 3595349cc55cSDimitry Andric if (*C0 == ~*C1) { 3596349cc55cSDimitry Andric // ((X | B) & MaskC) | (B & ~MaskC) -> (X & MaskC) | B 35970b57cec5SDimitry Andric if (match(A, m_c_Or(m_Value(X), m_Specific(B)))) 3598349cc55cSDimitry Andric return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C0), B); 3599349cc55cSDimitry Andric // (A & MaskC) | ((X | A) & ~MaskC) -> (X & ~MaskC) | A 36000b57cec5SDimitry Andric if (match(B, m_c_Or(m_Specific(A), m_Value(X)))) 3601349cc55cSDimitry Andric return BinaryOperator::CreateOr(Builder.CreateAnd(X, *C1), A); 36020b57cec5SDimitry Andric 3603349cc55cSDimitry Andric // ((X ^ B) & MaskC) | (B & ~MaskC) -> (X & MaskC) ^ B 36040b57cec5SDimitry Andric if (match(A, m_c_Xor(m_Value(X), m_Specific(B)))) 3605349cc55cSDimitry Andric return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C0), B); 3606349cc55cSDimitry Andric // (A & MaskC) | ((X ^ A) & ~MaskC) -> (X & ~MaskC) ^ A 36070b57cec5SDimitry Andric if (match(B, m_c_Xor(m_Specific(A), m_Value(X)))) 3608349cc55cSDimitry Andric return BinaryOperator::CreateXor(Builder.CreateAnd(X, *C1), A); 3609349cc55cSDimitry Andric } 3610349cc55cSDimitry Andric 3611349cc55cSDimitry Andric if ((*C0 & *C1).isZero()) { 3612349cc55cSDimitry Andric // ((X | B) & C0) | (B & C1) --> (X | B) & (C0 | C1) 3613349cc55cSDimitry Andric // iff (C0 & C1) == 0 and (X & ~C0) == 0 3614349cc55cSDimitry Andric if (match(A, m_c_Or(m_Value(X), m_Specific(B))) && 3615349cc55cSDimitry Andric MaskedValueIsZero(X, ~*C0, 0, &I)) { 36164824e7fdSDimitry Andric Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3617349cc55cSDimitry Andric return BinaryOperator::CreateAnd(A, C01); 3618349cc55cSDimitry Andric } 3619349cc55cSDimitry Andric // (A & C0) | ((X | A) & C1) --> (X | A) & (C0 | C1) 3620349cc55cSDimitry Andric // iff (C0 & C1) == 0 and (X & ~C1) == 0 3621349cc55cSDimitry Andric if (match(B, m_c_Or(m_Value(X), m_Specific(A))) && 3622349cc55cSDimitry Andric MaskedValueIsZero(X, ~*C1, 0, &I)) { 36234824e7fdSDimitry Andric Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3624349cc55cSDimitry Andric return BinaryOperator::CreateAnd(B, C01); 3625349cc55cSDimitry Andric } 3626349cc55cSDimitry Andric // ((X | C2) & C0) | ((X | C3) & C1) --> (X | C2 | C3) & (C0 | C1) 3627349cc55cSDimitry Andric // iff (C0 & C1) == 0 and (C2 & ~C0) == 0 and (C3 & ~C1) == 0. 3628349cc55cSDimitry Andric const APInt *C2, *C3; 3629349cc55cSDimitry Andric if (match(A, m_Or(m_Value(X), m_APInt(C2))) && 3630349cc55cSDimitry Andric match(B, m_Or(m_Specific(X), m_APInt(C3))) && 3631349cc55cSDimitry Andric (*C2 & ~*C0).isZero() && (*C3 & ~*C1).isZero()) { 3632349cc55cSDimitry Andric Value *Or = Builder.CreateOr(X, *C2 | *C3, "bitfield"); 36334824e7fdSDimitry Andric Constant *C01 = ConstantInt::get(Ty, *C0 | *C1); 3634349cc55cSDimitry Andric return BinaryOperator::CreateAnd(Or, C01); 3635349cc55cSDimitry Andric } 36360b57cec5SDimitry Andric } 36370b57cec5SDimitry Andric } 36380b57cec5SDimitry Andric 36390b57cec5SDimitry Andric // Don't try to form a select if it's unlikely that we'll get rid of at 36400b57cec5SDimitry Andric // least one of the operands. A select is generally more expensive than the 36410b57cec5SDimitry Andric // 'or' that it is replacing. 36420b57cec5SDimitry Andric if (Op0->hasOneUse() || Op1->hasOneUse()) { 36430b57cec5SDimitry Andric // (Cond & C) | (~Cond & D) -> Cond ? C : D, and commuted variants. 36440b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(A, C, B, D)) 36450b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36460b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(A, C, D, B)) 36470b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36480b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(C, A, B, D)) 36490b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36500b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(C, A, D, B)) 36510b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36520b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(B, D, A, C)) 36530b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36540b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(B, D, C, A)) 36550b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36560b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(D, B, A, C)) 36570b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36580b57cec5SDimitry Andric if (Value *V = matchSelectFromAndOr(D, B, C, A)) 36590b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 36600b57cec5SDimitry Andric } 36610b57cec5SDimitry Andric } 36620b57cec5SDimitry Andric 3663bdd1243dSDimitry Andric if (match(Op0, m_And(m_Value(A), m_Value(C))) && 3664bdd1243dSDimitry Andric match(Op1, m_Not(m_Or(m_Value(B), m_Value(D)))) && 3665bdd1243dSDimitry Andric (Op0->hasOneUse() || Op1->hasOneUse())) { 3666bdd1243dSDimitry Andric // (Cond & C) | ~(Cond | D) -> Cond ? C : ~D 3667bdd1243dSDimitry Andric if (Value *V = matchSelectFromAndOr(A, C, B, D, true)) 3668bdd1243dSDimitry Andric return replaceInstUsesWith(I, V); 3669bdd1243dSDimitry Andric if (Value *V = matchSelectFromAndOr(A, C, D, B, true)) 3670bdd1243dSDimitry Andric return replaceInstUsesWith(I, V); 3671bdd1243dSDimitry Andric if (Value *V = matchSelectFromAndOr(C, A, B, D, true)) 3672bdd1243dSDimitry Andric return replaceInstUsesWith(I, V); 3673bdd1243dSDimitry Andric if (Value *V = matchSelectFromAndOr(C, A, D, B, true)) 3674bdd1243dSDimitry Andric return replaceInstUsesWith(I, V); 3675bdd1243dSDimitry Andric } 3676bdd1243dSDimitry Andric 36770b57cec5SDimitry Andric // (A ^ B) | ((B ^ C) ^ A) -> (A ^ B) | C 36780b57cec5SDimitry Andric if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) 36790fca6ea1SDimitry Andric if (match(Op1, 36800fca6ea1SDimitry Andric m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || 36810fca6ea1SDimitry Andric match(Op1, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) 36820b57cec5SDimitry Andric return BinaryOperator::CreateOr(Op0, C); 36830b57cec5SDimitry Andric 36840fca6ea1SDimitry Andric // ((B ^ C) ^ A) | (A ^ B) -> (A ^ B) | C 36850fca6ea1SDimitry Andric if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) 36860fca6ea1SDimitry Andric if (match(Op0, 36870fca6ea1SDimitry Andric m_c_Xor(m_c_Xor(m_Specific(B), m_Value(C)), m_Specific(A))) || 36880fca6ea1SDimitry Andric match(Op0, m_c_Xor(m_c_Xor(m_Specific(A), m_Value(C)), m_Specific(B)))) 36890b57cec5SDimitry Andric return BinaryOperator::CreateOr(Op1, C); 36900b57cec5SDimitry Andric 36915f757f3fSDimitry Andric if (Instruction *DeMorgan = matchDeMorgansLaws(I, *this)) 36920b57cec5SDimitry Andric return DeMorgan; 36930b57cec5SDimitry Andric 36940b57cec5SDimitry Andric // Canonicalize xor to the RHS. 36950b57cec5SDimitry Andric bool SwappedForXor = false; 36960b57cec5SDimitry Andric if (match(Op0, m_Xor(m_Value(), m_Value()))) { 36970b57cec5SDimitry Andric std::swap(Op0, Op1); 36980b57cec5SDimitry Andric SwappedForXor = true; 36990b57cec5SDimitry Andric } 37000b57cec5SDimitry Andric 37010b57cec5SDimitry Andric if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) { 3702bdd1243dSDimitry Andric // (A | ?) | (A ^ B) --> (A | ?) | B 3703bdd1243dSDimitry Andric // (B | ?) | (A ^ B) --> (B | ?) | A 3704bdd1243dSDimitry Andric if (match(Op0, m_c_Or(m_Specific(A), m_Value()))) 3705bdd1243dSDimitry Andric return BinaryOperator::CreateOr(Op0, B); 3706bdd1243dSDimitry Andric if (match(Op0, m_c_Or(m_Specific(B), m_Value()))) 3707bdd1243dSDimitry Andric return BinaryOperator::CreateOr(Op0, A); 37080b57cec5SDimitry Andric 3709bdd1243dSDimitry Andric // (A & B) | (A ^ B) --> A | B 3710bdd1243dSDimitry Andric // (B & A) | (A ^ B) --> A | B 37110fca6ea1SDimitry Andric if (match(Op0, m_c_And(m_Specific(A), m_Specific(B)))) 37120b57cec5SDimitry Andric return BinaryOperator::CreateOr(A, B); 37130b57cec5SDimitry Andric 3714bdd1243dSDimitry Andric // ~A | (A ^ B) --> ~(A & B) 3715bdd1243dSDimitry Andric // ~B | (A ^ B) --> ~(A & B) 3716bdd1243dSDimitry Andric // The swap above should always make Op0 the 'not'. 3717349cc55cSDimitry Andric if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3718349cc55cSDimitry Andric (match(Op0, m_Not(m_Specific(A))) || match(Op0, m_Not(m_Specific(B))))) 3719349cc55cSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 3720349cc55cSDimitry Andric 3721bdd1243dSDimitry Andric // Same as above, but peek through an 'and' to the common operand: 3722bdd1243dSDimitry Andric // ~(A & ?) | (A ^ B) --> ~((A & ?) & B) 3723bdd1243dSDimitry Andric // ~(B & ?) | (A ^ B) --> ~((B & ?) & A) 3724bdd1243dSDimitry Andric Instruction *And; 3725bdd1243dSDimitry Andric if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3726bdd1243dSDimitry Andric match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3727bdd1243dSDimitry Andric m_c_And(m_Specific(A), m_Value()))))) 3728bdd1243dSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(And, B)); 3729bdd1243dSDimitry Andric if ((Op0->hasOneUse() || Op1->hasOneUse()) && 3730bdd1243dSDimitry Andric match(Op0, m_Not(m_CombineAnd(m_Instruction(And), 3731bdd1243dSDimitry Andric m_c_And(m_Specific(B), m_Value()))))) 3732bdd1243dSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(And, A)); 3733bdd1243dSDimitry Andric 3734bdd1243dSDimitry Andric // (~A | C) | (A ^ B) --> ~(A & B) | C 3735bdd1243dSDimitry Andric // (~B | C) | (A ^ B) --> ~(A & B) | C 3736bdd1243dSDimitry Andric if (Op0->hasOneUse() && Op1->hasOneUse() && 3737bdd1243dSDimitry Andric (match(Op0, m_c_Or(m_Not(m_Specific(A)), m_Value(C))) || 3738bdd1243dSDimitry Andric match(Op0, m_c_Or(m_Not(m_Specific(B)), m_Value(C))))) { 3739bdd1243dSDimitry Andric Value *Nand = Builder.CreateNot(Builder.CreateAnd(A, B), "nand"); 3740bdd1243dSDimitry Andric return BinaryOperator::CreateOr(Nand, C); 3741bdd1243dSDimitry Andric } 37420b57cec5SDimitry Andric } 37430b57cec5SDimitry Andric 37440b57cec5SDimitry Andric if (SwappedForXor) 37450b57cec5SDimitry Andric std::swap(Op0, Op1); 37460b57cec5SDimitry Andric 37470b57cec5SDimitry Andric { 37480b57cec5SDimitry Andric ICmpInst *LHS = dyn_cast<ICmpInst>(Op0); 37490b57cec5SDimitry Andric ICmpInst *RHS = dyn_cast<ICmpInst>(Op1); 37500b57cec5SDimitry Andric if (LHS && RHS) 375181ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(LHS, RHS, I, /* IsAnd */ false)) 37520b57cec5SDimitry Andric return replaceInstUsesWith(I, Res); 37530b57cec5SDimitry Andric 37540b57cec5SDimitry Andric // TODO: Make this recursive; it's a little tricky because an arbitrary 37550b57cec5SDimitry Andric // number of 'or' instructions might have to be created. 37560b57cec5SDimitry Andric Value *X, *Y; 375781ad6265SDimitry Andric if (LHS && match(Op1, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 375881ad6265SDimitry Andric bool IsLogical = isa<SelectInst>(Op1); 375981ad6265SDimitry Andric // LHS | (X || Y) --> (LHS || X) || Y 37600b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(X)) 376181ad6265SDimitry Andric if (Value *Res = 376281ad6265SDimitry Andric foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, IsLogical)) 376381ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 376481ad6265SDimitry Andric ? Builder.CreateLogicalOr(Res, Y) 376581ad6265SDimitry Andric : Builder.CreateOr(Res, Y)); 376681ad6265SDimitry Andric // LHS | (X || Y) --> X || (LHS | Y) 37670b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 376881ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(LHS, Cmp, I, /* IsAnd */ false, 376981ad6265SDimitry Andric /* IsLogical */ false)) 377081ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 377181ad6265SDimitry Andric ? Builder.CreateLogicalOr(X, Res) 377281ad6265SDimitry Andric : Builder.CreateOr(X, Res)); 37730b57cec5SDimitry Andric } 377481ad6265SDimitry Andric if (RHS && match(Op0, m_OneUse(m_LogicalOr(m_Value(X), m_Value(Y))))) { 377581ad6265SDimitry Andric bool IsLogical = isa<SelectInst>(Op0); 377681ad6265SDimitry Andric // (X || Y) | RHS --> (X || RHS) || Y 37770b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(X)) 377881ad6265SDimitry Andric if (Value *Res = 377981ad6265SDimitry Andric foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, IsLogical)) 378081ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 378181ad6265SDimitry Andric ? Builder.CreateLogicalOr(Res, Y) 378281ad6265SDimitry Andric : Builder.CreateOr(Res, Y)); 378381ad6265SDimitry Andric // (X || Y) | RHS --> X || (Y | RHS) 37840b57cec5SDimitry Andric if (auto *Cmp = dyn_cast<ICmpInst>(Y)) 378581ad6265SDimitry Andric if (Value *Res = foldAndOrOfICmps(Cmp, RHS, I, /* IsAnd */ false, 378681ad6265SDimitry Andric /* IsLogical */ false)) 378781ad6265SDimitry Andric return replaceInstUsesWith(I, IsLogical 378881ad6265SDimitry Andric ? Builder.CreateLogicalOr(X, Res) 378981ad6265SDimitry Andric : Builder.CreateOr(X, Res)); 37900b57cec5SDimitry Andric } 37910b57cec5SDimitry Andric } 37920b57cec5SDimitry Andric 37930b57cec5SDimitry Andric if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) 37940b57cec5SDimitry Andric if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) 379581ad6265SDimitry Andric if (Value *Res = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false)) 37960b57cec5SDimitry Andric return replaceInstUsesWith(I, Res); 37970b57cec5SDimitry Andric 37980b57cec5SDimitry Andric if (Instruction *FoldedFCmps = reassociateFCmps(I, Builder)) 37990b57cec5SDimitry Andric return FoldedFCmps; 38000b57cec5SDimitry Andric 38010b57cec5SDimitry Andric if (Instruction *CastedOr = foldCastedBitwiseLogic(I)) 38020b57cec5SDimitry Andric return CastedOr; 38030b57cec5SDimitry Andric 38044824e7fdSDimitry Andric if (Instruction *Sel = foldBinopOfSextBoolToSelect(I)) 38054824e7fdSDimitry Andric return Sel; 38064824e7fdSDimitry Andric 38070b57cec5SDimitry Andric // or(sext(A), B) / or(B, sext(A)) --> A ? -1 : B, where A is i1 or <N x i1>. 38084824e7fdSDimitry Andric // TODO: Move this into foldBinopOfSextBoolToSelect as a more generalized fold 38094824e7fdSDimitry Andric // with binop identity constant. But creating a select with non-constant 38104824e7fdSDimitry Andric // arm may not be reversible due to poison semantics. Is that a good 38114824e7fdSDimitry Andric // canonicalization? 38125f757f3fSDimitry Andric if (match(&I, m_c_Or(m_OneUse(m_SExt(m_Value(A))), m_Value(B))) && 38130b57cec5SDimitry Andric A->getType()->isIntOrIntVectorTy(1)) 38145f757f3fSDimitry Andric return SelectInst::Create(A, ConstantInt::getAllOnesValue(Ty), B); 38150b57cec5SDimitry Andric 38160b57cec5SDimitry Andric // Note: If we've gotten to the point of visiting the outer OR, then the 38170b57cec5SDimitry Andric // inner one couldn't be simplified. If it was a constant, then it won't 38180b57cec5SDimitry Andric // be simplified by a later pass either, so we try swapping the inner/outer 38190b57cec5SDimitry Andric // ORs in the hopes that we'll be able to simplify it this way. 38200b57cec5SDimitry Andric // (X|C) | V --> (X|V) | C 38210b57cec5SDimitry Andric ConstantInt *CI; 3822e8d8bef9SDimitry Andric if (Op0->hasOneUse() && !match(Op1, m_ConstantInt()) && 38230b57cec5SDimitry Andric match(Op0, m_Or(m_Value(A), m_ConstantInt(CI)))) { 38240b57cec5SDimitry Andric Value *Inner = Builder.CreateOr(A, Op1); 38250b57cec5SDimitry Andric Inner->takeName(Op0); 38260b57cec5SDimitry Andric return BinaryOperator::CreateOr(Inner, CI); 38270b57cec5SDimitry Andric } 38280b57cec5SDimitry Andric 38290b57cec5SDimitry Andric // Change (or (bool?A:B),(bool?C:D)) --> (bool?(or A,C):(or B,D)) 38300b57cec5SDimitry Andric // Since this OR statement hasn't been optimized further yet, we hope 38310b57cec5SDimitry Andric // that this transformation will allow the new ORs to be optimized. 38320b57cec5SDimitry Andric { 38330b57cec5SDimitry Andric Value *X = nullptr, *Y = nullptr; 38340b57cec5SDimitry Andric if (Op0->hasOneUse() && Op1->hasOneUse() && 38350b57cec5SDimitry Andric match(Op0, m_Select(m_Value(X), m_Value(A), m_Value(B))) && 38360b57cec5SDimitry Andric match(Op1, m_Select(m_Value(Y), m_Value(C), m_Value(D))) && X == Y) { 38370b57cec5SDimitry Andric Value *orTrue = Builder.CreateOr(A, C); 38380b57cec5SDimitry Andric Value *orFalse = Builder.CreateOr(B, D); 38390b57cec5SDimitry Andric return SelectInst::Create(X, orTrue, orFalse); 38400b57cec5SDimitry Andric } 38410b57cec5SDimitry Andric } 38420b57cec5SDimitry Andric 38438bcb0991SDimitry Andric // or(ashr(subNSW(Y, X), ScalarSizeInBits(Y) - 1), X) --> X s> Y ? -1 : X. 38448bcb0991SDimitry Andric { 38458bcb0991SDimitry Andric Value *X, *Y; 3846e8d8bef9SDimitry Andric if (match(&I, m_c_Or(m_OneUse(m_AShr( 3847e8d8bef9SDimitry Andric m_NSWSub(m_Value(Y), m_Value(X)), 3848e8d8bef9SDimitry Andric m_SpecificInt(Ty->getScalarSizeInBits() - 1))), 3849e8d8bef9SDimitry Andric m_Deferred(X)))) { 38508bcb0991SDimitry Andric Value *NewICmpInst = Builder.CreateICmpSGT(X, Y); 3851e8d8bef9SDimitry Andric Value *AllOnes = ConstantInt::getAllOnesValue(Ty); 3852e8d8bef9SDimitry Andric return SelectInst::Create(NewICmpInst, AllOnes, X); 38538bcb0991SDimitry Andric } 38548bcb0991SDimitry Andric } 38558bcb0991SDimitry Andric 38565f757f3fSDimitry Andric { 38575f757f3fSDimitry Andric // ((A & B) ^ A) | ((A & B) ^ B) -> A ^ B 38585f757f3fSDimitry Andric // (A ^ (A & B)) | (B ^ (A & B)) -> A ^ B 38595f757f3fSDimitry Andric // ((A & B) ^ B) | ((A & B) ^ A) -> A ^ B 38605f757f3fSDimitry Andric // (B ^ (A & B)) | (A ^ (A & B)) -> A ^ B 38615f757f3fSDimitry Andric const auto TryXorOpt = [&](Value *Lhs, Value *Rhs) -> Instruction * { 38625f757f3fSDimitry Andric if (match(Lhs, m_c_Xor(m_And(m_Value(A), m_Value(B)), m_Deferred(A))) && 38635f757f3fSDimitry Andric match(Rhs, 38640fca6ea1SDimitry Andric m_c_Xor(m_And(m_Specific(A), m_Specific(B)), m_Specific(B)))) { 38655f757f3fSDimitry Andric return BinaryOperator::CreateXor(A, B); 38665f757f3fSDimitry Andric } 38675f757f3fSDimitry Andric return nullptr; 38685f757f3fSDimitry Andric }; 38695f757f3fSDimitry Andric 38705f757f3fSDimitry Andric if (Instruction *Result = TryXorOpt(Op0, Op1)) 38715f757f3fSDimitry Andric return Result; 38725f757f3fSDimitry Andric if (Instruction *Result = TryXorOpt(Op1, Op0)) 38735f757f3fSDimitry Andric return Result; 38745f757f3fSDimitry Andric } 38755f757f3fSDimitry Andric 38768bcb0991SDimitry Andric if (Instruction *V = 38778bcb0991SDimitry Andric canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I)) 38788bcb0991SDimitry Andric return V; 38798bcb0991SDimitry Andric 38805ffd83dbSDimitry Andric CmpInst::Predicate Pred; 38815ffd83dbSDimitry Andric Value *Mul, *Ov, *MulIsNotZero, *UMulWithOv; 38825ffd83dbSDimitry Andric // Check if the OR weakens the overflow condition for umul.with.overflow by 38835ffd83dbSDimitry Andric // treating any non-zero result as overflow. In that case, we overflow if both 38845ffd83dbSDimitry Andric // umul.with.overflow operands are != 0, as in that case the result can only 38855ffd83dbSDimitry Andric // be 0, iff the multiplication overflows. 38865ffd83dbSDimitry Andric if (match(&I, 38875ffd83dbSDimitry Andric m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_Value(UMulWithOv)), 38885ffd83dbSDimitry Andric m_Value(Ov)), 38895ffd83dbSDimitry Andric m_CombineAnd(m_ICmp(Pred, 38905ffd83dbSDimitry Andric m_CombineAnd(m_ExtractValue<0>( 38915ffd83dbSDimitry Andric m_Deferred(UMulWithOv)), 38925ffd83dbSDimitry Andric m_Value(Mul)), 38935ffd83dbSDimitry Andric m_ZeroInt()), 38945ffd83dbSDimitry Andric m_Value(MulIsNotZero)))) && 38955ffd83dbSDimitry Andric (Ov->hasOneUse() || (MulIsNotZero->hasOneUse() && Mul->hasOneUse())) && 38965ffd83dbSDimitry Andric Pred == CmpInst::ICMP_NE) { 38975ffd83dbSDimitry Andric Value *A, *B; 38985ffd83dbSDimitry Andric if (match(UMulWithOv, m_Intrinsic<Intrinsic::umul_with_overflow>( 38995ffd83dbSDimitry Andric m_Value(A), m_Value(B)))) { 39005ffd83dbSDimitry Andric Value *NotNullA = Builder.CreateIsNotNull(A); 39015ffd83dbSDimitry Andric Value *NotNullB = Builder.CreateIsNotNull(B); 39025ffd83dbSDimitry Andric return BinaryOperator::CreateAnd(NotNullA, NotNullB); 39035ffd83dbSDimitry Andric } 39045ffd83dbSDimitry Andric } 39055ffd83dbSDimitry Andric 39065f757f3fSDimitry Andric /// Res, Overflow = xxx_with_overflow X, C1 39075f757f3fSDimitry Andric /// Try to canonicalize the pattern "Overflow | icmp pred Res, C2" into 39085f757f3fSDimitry Andric /// "Overflow | icmp pred X, C2 +/- C1". 39095f757f3fSDimitry Andric const WithOverflowInst *WO; 39105f757f3fSDimitry Andric const Value *WOV; 39115f757f3fSDimitry Andric const APInt *C1, *C2; 39125f757f3fSDimitry Andric if (match(&I, m_c_Or(m_CombineAnd(m_ExtractValue<1>(m_CombineAnd( 39135f757f3fSDimitry Andric m_WithOverflowInst(WO), m_Value(WOV))), 39145f757f3fSDimitry Andric m_Value(Ov)), 39155f757f3fSDimitry Andric m_OneUse(m_ICmp(Pred, m_ExtractValue<0>(m_Deferred(WOV)), 39165f757f3fSDimitry Andric m_APInt(C2))))) && 39175f757f3fSDimitry Andric (WO->getBinaryOp() == Instruction::Add || 39185f757f3fSDimitry Andric WO->getBinaryOp() == Instruction::Sub) && 39195f757f3fSDimitry Andric (ICmpInst::isEquality(Pred) || 39205f757f3fSDimitry Andric WO->isSigned() == ICmpInst::isSigned(Pred)) && 39215f757f3fSDimitry Andric match(WO->getRHS(), m_APInt(C1))) { 39225f757f3fSDimitry Andric bool Overflow; 39235f757f3fSDimitry Andric APInt NewC = WO->getBinaryOp() == Instruction::Add 39245f757f3fSDimitry Andric ? (ICmpInst::isSigned(Pred) ? C2->ssub_ov(*C1, Overflow) 39255f757f3fSDimitry Andric : C2->usub_ov(*C1, Overflow)) 39265f757f3fSDimitry Andric : (ICmpInst::isSigned(Pred) ? C2->sadd_ov(*C1, Overflow) 39275f757f3fSDimitry Andric : C2->uadd_ov(*C1, Overflow)); 39285f757f3fSDimitry Andric if (!Overflow || ICmpInst::isEquality(Pred)) { 39295f757f3fSDimitry Andric Value *NewCmp = Builder.CreateICmp( 39305f757f3fSDimitry Andric Pred, WO->getLHS(), ConstantInt::get(WO->getLHS()->getType(), NewC)); 39315f757f3fSDimitry Andric return BinaryOperator::CreateOr(Ov, NewCmp); 39325f757f3fSDimitry Andric } 39335f757f3fSDimitry Andric } 39345f757f3fSDimitry Andric 3935e8d8bef9SDimitry Andric // (~x) | y --> ~(x & (~y)) iff that gets rid of inversions 3936bdd1243dSDimitry Andric if (sinkNotIntoOtherHandOfLogicalOp(I)) 3937e8d8bef9SDimitry Andric return &I; 3938e8d8bef9SDimitry Andric 3939fe6060f1SDimitry Andric // Improve "get low bit mask up to and including bit X" pattern: 3940fe6060f1SDimitry Andric // (1 << X) | ((1 << X) + -1) --> -1 l>> (bitwidth(x) - 1 - X) 3941fe6060f1SDimitry Andric if (match(&I, m_c_Or(m_Add(m_Shl(m_One(), m_Value(X)), m_AllOnes()), 3942fe6060f1SDimitry Andric m_Shl(m_One(), m_Deferred(X)))) && 3943fe6060f1SDimitry Andric match(&I, m_c_Or(m_OneUse(m_Value()), m_Value()))) { 3944fe6060f1SDimitry Andric Value *Sub = Builder.CreateSub( 3945fe6060f1SDimitry Andric ConstantInt::get(Ty, Ty->getScalarSizeInBits() - 1), X); 3946fe6060f1SDimitry Andric return BinaryOperator::CreateLShr(Constant::getAllOnesValue(Ty), Sub); 3947fe6060f1SDimitry Andric } 3948fe6060f1SDimitry Andric 3949fe6060f1SDimitry Andric // An or recurrence w/loop invariant step is equivelent to (or start, step) 3950fe6060f1SDimitry Andric PHINode *PN = nullptr; 3951fe6060f1SDimitry Andric Value *Start = nullptr, *Step = nullptr; 3952fe6060f1SDimitry Andric if (matchSimpleRecurrence(&I, PN, Start, Step) && DT.dominates(Step, PN)) 3953fe6060f1SDimitry Andric return replaceInstUsesWith(I, Builder.CreateOr(Start, Step)); 3954fe6060f1SDimitry Andric 395581ad6265SDimitry Andric // (A & B) | (C | D) or (C | D) | (A & B) 395681ad6265SDimitry Andric // Can be combined if C or D is of type (A/B & X) 395781ad6265SDimitry Andric if (match(&I, m_c_Or(m_OneUse(m_And(m_Value(A), m_Value(B))), 395881ad6265SDimitry Andric m_OneUse(m_Or(m_Value(C), m_Value(D)))))) { 395981ad6265SDimitry Andric // (A & B) | (C | ?) -> C | (? | (A & B)) 396081ad6265SDimitry Andric // (A & B) | (C | ?) -> C | (? | (A & B)) 396181ad6265SDimitry Andric // (A & B) | (C | ?) -> C | (? | (A & B)) 396281ad6265SDimitry Andric // (A & B) | (C | ?) -> C | (? | (A & B)) 396381ad6265SDimitry Andric // (C | ?) | (A & B) -> C | (? | (A & B)) 396481ad6265SDimitry Andric // (C | ?) | (A & B) -> C | (? | (A & B)) 396581ad6265SDimitry Andric // (C | ?) | (A & B) -> C | (? | (A & B)) 396681ad6265SDimitry Andric // (C | ?) | (A & B) -> C | (? | (A & B)) 396781ad6265SDimitry Andric if (match(D, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 396881ad6265SDimitry Andric match(D, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 396981ad6265SDimitry Andric return BinaryOperator::CreateOr( 397081ad6265SDimitry Andric C, Builder.CreateOr(D, Builder.CreateAnd(A, B))); 397181ad6265SDimitry Andric // (A & B) | (? | D) -> (? | (A & B)) | D 397281ad6265SDimitry Andric // (A & B) | (? | D) -> (? | (A & B)) | D 397381ad6265SDimitry Andric // (A & B) | (? | D) -> (? | (A & B)) | D 397481ad6265SDimitry Andric // (A & B) | (? | D) -> (? | (A & B)) | D 397581ad6265SDimitry Andric // (? | D) | (A & B) -> (? | (A & B)) | D 397681ad6265SDimitry Andric // (? | D) | (A & B) -> (? | (A & B)) | D 397781ad6265SDimitry Andric // (? | D) | (A & B) -> (? | (A & B)) | D 397881ad6265SDimitry Andric // (? | D) | (A & B) -> (? | (A & B)) | D 397981ad6265SDimitry Andric if (match(C, m_OneUse(m_c_And(m_Specific(A), m_Value()))) || 398081ad6265SDimitry Andric match(C, m_OneUse(m_c_And(m_Specific(B), m_Value())))) 398181ad6265SDimitry Andric return BinaryOperator::CreateOr( 398281ad6265SDimitry Andric Builder.CreateOr(C, Builder.CreateAnd(A, B)), D); 398381ad6265SDimitry Andric } 398481ad6265SDimitry Andric 3985bdd1243dSDimitry Andric if (Instruction *R = reassociateForUses(I, Builder)) 3986bdd1243dSDimitry Andric return R; 3987bdd1243dSDimitry Andric 3988bdd1243dSDimitry Andric if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 3989bdd1243dSDimitry Andric return Canonicalized; 3990bdd1243dSDimitry Andric 3991bdd1243dSDimitry Andric if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 3992bdd1243dSDimitry Andric return Folded; 3993bdd1243dSDimitry Andric 399406c3fb27SDimitry Andric if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 399506c3fb27SDimitry Andric return Res; 399606c3fb27SDimitry Andric 39975f757f3fSDimitry Andric // If we are setting the sign bit of a floating-point value, convert 39985f757f3fSDimitry Andric // this to fneg(fabs), then cast back to integer. 39995f757f3fSDimitry Andric // 40005f757f3fSDimitry Andric // If the result isn't immediately cast back to a float, this will increase 40015f757f3fSDimitry Andric // the number of instructions. This is still probably a better canonical form 40025f757f3fSDimitry Andric // as it enables FP value tracking. 40035f757f3fSDimitry Andric // 40045f757f3fSDimitry Andric // Assumes any IEEE-represented type has the sign bit in the high bit. 40055f757f3fSDimitry Andric // 40065f757f3fSDimitry Andric // This is generous interpretation of noimplicitfloat, this is not a true 40075f757f3fSDimitry Andric // floating-point operation. 40085f757f3fSDimitry Andric Value *CastOp; 40090fca6ea1SDimitry Andric if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 40100fca6ea1SDimitry Andric match(Op1, m_SignMask()) && 40115f757f3fSDimitry Andric !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 40125f757f3fSDimitry Andric Attribute::NoImplicitFloat)) { 40135f757f3fSDimitry Andric Type *EltTy = CastOp->getType()->getScalarType(); 40140fca6ea1SDimitry Andric if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 40155f757f3fSDimitry Andric Value *FAbs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, CastOp); 40165f757f3fSDimitry Andric Value *FNegFAbs = Builder.CreateFNeg(FAbs); 40175f757f3fSDimitry Andric return new BitCastInst(FNegFAbs, I.getType()); 40185f757f3fSDimitry Andric } 40195f757f3fSDimitry Andric } 40205f757f3fSDimitry Andric 4021647cbc5dSDimitry Andric // (X & C1) | C2 -> X & (C1 | C2) iff (X & C2) == C2 4022647cbc5dSDimitry Andric if (match(Op0, m_OneUse(m_And(m_Value(X), m_APInt(C1)))) && 4023647cbc5dSDimitry Andric match(Op1, m_APInt(C2))) { 4024647cbc5dSDimitry Andric KnownBits KnownX = computeKnownBits(X, /*Depth*/ 0, &I); 4025647cbc5dSDimitry Andric if ((KnownX.One & *C2) == *C2) 4026647cbc5dSDimitry Andric return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *C1 | *C2)); 4027647cbc5dSDimitry Andric } 4028647cbc5dSDimitry Andric 4029297eecfbSDimitry Andric if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 4030297eecfbSDimitry Andric return Res; 4031297eecfbSDimitry Andric 40320fca6ea1SDimitry Andric if (Value *V = 40330fca6ea1SDimitry Andric simplifyAndOrWithOpReplaced(Op0, Op1, Constant::getNullValue(Ty), 40340fca6ea1SDimitry Andric /*SimplifyOnly*/ false, *this)) 40350fca6ea1SDimitry Andric return BinaryOperator::CreateOr(V, Op1); 40360fca6ea1SDimitry Andric if (Value *V = 40370fca6ea1SDimitry Andric simplifyAndOrWithOpReplaced(Op1, Op0, Constant::getNullValue(Ty), 40380fca6ea1SDimitry Andric /*SimplifyOnly*/ false, *this)) 40390fca6ea1SDimitry Andric return BinaryOperator::CreateOr(Op0, V); 40400fca6ea1SDimitry Andric 40410fca6ea1SDimitry Andric if (cast<PossiblyDisjointInst>(I).isDisjoint()) 40420fca6ea1SDimitry Andric if (Value *V = SimplifyAddWithRemainder(I)) 40430fca6ea1SDimitry Andric return replaceInstUsesWith(I, V); 40440fca6ea1SDimitry Andric 40450b57cec5SDimitry Andric return nullptr; 40460b57cec5SDimitry Andric } 40470b57cec5SDimitry Andric 40480b57cec5SDimitry Andric /// A ^ B can be specified using other logic ops in a variety of patterns. We 40490b57cec5SDimitry Andric /// can fold these early and efficiently by morphing an existing instruction. 40500b57cec5SDimitry Andric static Instruction *foldXorToXor(BinaryOperator &I, 40510b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 40520b57cec5SDimitry Andric assert(I.getOpcode() == Instruction::Xor); 40530b57cec5SDimitry Andric Value *Op0 = I.getOperand(0); 40540b57cec5SDimitry Andric Value *Op1 = I.getOperand(1); 40550b57cec5SDimitry Andric Value *A, *B; 40560b57cec5SDimitry Andric 40570b57cec5SDimitry Andric // There are 4 commuted variants for each of the basic patterns. 40580b57cec5SDimitry Andric 40590b57cec5SDimitry Andric // (A & B) ^ (A | B) -> A ^ B 40600b57cec5SDimitry Andric // (A & B) ^ (B | A) -> A ^ B 40610b57cec5SDimitry Andric // (A | B) ^ (A & B) -> A ^ B 40620b57cec5SDimitry Andric // (A | B) ^ (B & A) -> A ^ B 40630b57cec5SDimitry Andric if (match(&I, m_c_Xor(m_And(m_Value(A), m_Value(B)), 40645ffd83dbSDimitry Andric m_c_Or(m_Deferred(A), m_Deferred(B))))) 40655ffd83dbSDimitry Andric return BinaryOperator::CreateXor(A, B); 40660b57cec5SDimitry Andric 40670b57cec5SDimitry Andric // (A | ~B) ^ (~A | B) -> A ^ B 40680b57cec5SDimitry Andric // (~B | A) ^ (~A | B) -> A ^ B 40690b57cec5SDimitry Andric // (~A | B) ^ (A | ~B) -> A ^ B 40700b57cec5SDimitry Andric // (B | ~A) ^ (A | ~B) -> A ^ B 40710b57cec5SDimitry Andric if (match(&I, m_Xor(m_c_Or(m_Value(A), m_Not(m_Value(B))), 40725ffd83dbSDimitry Andric m_c_Or(m_Not(m_Deferred(A)), m_Deferred(B))))) 40735ffd83dbSDimitry Andric return BinaryOperator::CreateXor(A, B); 40740b57cec5SDimitry Andric 40750b57cec5SDimitry Andric // (A & ~B) ^ (~A & B) -> A ^ B 40760b57cec5SDimitry Andric // (~B & A) ^ (~A & B) -> A ^ B 40770b57cec5SDimitry Andric // (~A & B) ^ (A & ~B) -> A ^ B 40780b57cec5SDimitry Andric // (B & ~A) ^ (A & ~B) -> A ^ B 40790b57cec5SDimitry Andric if (match(&I, m_Xor(m_c_And(m_Value(A), m_Not(m_Value(B))), 40805ffd83dbSDimitry Andric m_c_And(m_Not(m_Deferred(A)), m_Deferred(B))))) 40815ffd83dbSDimitry Andric return BinaryOperator::CreateXor(A, B); 40820b57cec5SDimitry Andric 40830b57cec5SDimitry Andric // For the remaining cases we need to get rid of one of the operands. 40840b57cec5SDimitry Andric if (!Op0->hasOneUse() && !Op1->hasOneUse()) 40850b57cec5SDimitry Andric return nullptr; 40860b57cec5SDimitry Andric 40870b57cec5SDimitry Andric // (A | B) ^ ~(A & B) -> ~(A ^ B) 40880b57cec5SDimitry Andric // (A | B) ^ ~(B & A) -> ~(A ^ B) 40890b57cec5SDimitry Andric // (A & B) ^ ~(A | B) -> ~(A ^ B) 40900b57cec5SDimitry Andric // (A & B) ^ ~(B | A) -> ~(A ^ B) 40910b57cec5SDimitry Andric // Complexity sorting ensures the not will be on the right side. 40920b57cec5SDimitry Andric if ((match(Op0, m_Or(m_Value(A), m_Value(B))) && 40930b57cec5SDimitry Andric match(Op1, m_Not(m_c_And(m_Specific(A), m_Specific(B))))) || 40940b57cec5SDimitry Andric (match(Op0, m_And(m_Value(A), m_Value(B))) && 40950b57cec5SDimitry Andric match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))) 40960b57cec5SDimitry Andric return BinaryOperator::CreateNot(Builder.CreateXor(A, B)); 40970b57cec5SDimitry Andric 40980b57cec5SDimitry Andric return nullptr; 40990b57cec5SDimitry Andric } 41000b57cec5SDimitry Andric 4101e8d8bef9SDimitry Andric Value *InstCombinerImpl::foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, 41028bcb0991SDimitry Andric BinaryOperator &I) { 41038bcb0991SDimitry Andric assert(I.getOpcode() == Instruction::Xor && I.getOperand(0) == LHS && 41048bcb0991SDimitry Andric I.getOperand(1) == RHS && "Should be 'xor' with these operands"); 41058bcb0991SDimitry Andric 410681ad6265SDimitry Andric ICmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 410781ad6265SDimitry Andric Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 410881ad6265SDimitry Andric Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 410981ad6265SDimitry Andric 411081ad6265SDimitry Andric if (predicatesFoldable(PredL, PredR)) { 411181ad6265SDimitry Andric if (LHS0 == RHS1 && LHS1 == RHS0) { 411281ad6265SDimitry Andric std::swap(LHS0, LHS1); 411381ad6265SDimitry Andric PredL = ICmpInst::getSwappedPredicate(PredL); 411481ad6265SDimitry Andric } 411581ad6265SDimitry Andric if (LHS0 == RHS0 && LHS1 == RHS1) { 41160b57cec5SDimitry Andric // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B) 411781ad6265SDimitry Andric unsigned Code = getICmpCode(PredL) ^ getICmpCode(PredR); 41180b57cec5SDimitry Andric bool IsSigned = LHS->isSigned() || RHS->isSigned(); 411981ad6265SDimitry Andric return getNewICmpValue(Code, IsSigned, LHS0, LHS1, Builder); 41200b57cec5SDimitry Andric } 41210b57cec5SDimitry Andric } 41220b57cec5SDimitry Andric 41230b57cec5SDimitry Andric // TODO: This can be generalized to compares of non-signbits using 41240b57cec5SDimitry Andric // decomposeBitTestICmp(). It could be enhanced more by using (something like) 41250b57cec5SDimitry Andric // foldLogOpOfMaskedICmps(). 4126fcaf7f86SDimitry Andric const APInt *LC, *RC; 4127fcaf7f86SDimitry Andric if (match(LHS1, m_APInt(LC)) && match(RHS1, m_APInt(RC)) && 41280b57cec5SDimitry Andric LHS0->getType() == RHS0->getType() && 4129cb14a3feSDimitry Andric LHS0->getType()->isIntOrIntVectorTy()) { 4130fcaf7f86SDimitry Andric // Convert xor of signbit tests to signbit test of xor'd values: 41310b57cec5SDimitry Andric // (X > -1) ^ (Y > -1) --> (X ^ Y) < 0 41320b57cec5SDimitry Andric // (X < 0) ^ (Y < 0) --> (X ^ Y) < 0 41330b57cec5SDimitry Andric // (X > -1) ^ (Y < 0) --> (X ^ Y) > -1 41340b57cec5SDimitry Andric // (X < 0) ^ (Y > -1) --> (X ^ Y) > -1 4135fcaf7f86SDimitry Andric bool TrueIfSignedL, TrueIfSignedR; 4136cb14a3feSDimitry Andric if ((LHS->hasOneUse() || RHS->hasOneUse()) && 4137cb14a3feSDimitry Andric isSignBitCheck(PredL, *LC, TrueIfSignedL) && 4138fcaf7f86SDimitry Andric isSignBitCheck(PredR, *RC, TrueIfSignedR)) { 4139fcaf7f86SDimitry Andric Value *XorLR = Builder.CreateXor(LHS0, RHS0); 4140fcaf7f86SDimitry Andric return TrueIfSignedL == TrueIfSignedR ? Builder.CreateIsNeg(XorLR) : 4141fcaf7f86SDimitry Andric Builder.CreateIsNotNeg(XorLR); 4142fcaf7f86SDimitry Andric } 414381ad6265SDimitry Andric 4144cb14a3feSDimitry Andric // Fold (icmp pred1 X, C1) ^ (icmp pred2 X, C2) 4145cb14a3feSDimitry Andric // into a single comparison using range-based reasoning. 4146cb14a3feSDimitry Andric if (LHS0 == RHS0) { 4147cb14a3feSDimitry Andric ConstantRange CR1 = ConstantRange::makeExactICmpRegion(PredL, *LC); 4148cb14a3feSDimitry Andric ConstantRange CR2 = ConstantRange::makeExactICmpRegion(PredR, *RC); 4149cb14a3feSDimitry Andric auto CRUnion = CR1.exactUnionWith(CR2); 4150cb14a3feSDimitry Andric auto CRIntersect = CR1.exactIntersectWith(CR2); 4151cb14a3feSDimitry Andric if (CRUnion && CRIntersect) 4152cb14a3feSDimitry Andric if (auto CR = CRUnion->exactIntersectWith(CRIntersect->inverse())) { 4153cb14a3feSDimitry Andric if (CR->isFullSet()) 4154cb14a3feSDimitry Andric return ConstantInt::getTrue(I.getType()); 4155cb14a3feSDimitry Andric if (CR->isEmptySet()) 4156cb14a3feSDimitry Andric return ConstantInt::getFalse(I.getType()); 4157cb14a3feSDimitry Andric 4158cb14a3feSDimitry Andric CmpInst::Predicate NewPred; 4159cb14a3feSDimitry Andric APInt NewC, Offset; 4160cb14a3feSDimitry Andric CR->getEquivalentICmp(NewPred, NewC, Offset); 4161cb14a3feSDimitry Andric 4162cb14a3feSDimitry Andric if ((Offset.isZero() && (LHS->hasOneUse() || RHS->hasOneUse())) || 4163cb14a3feSDimitry Andric (LHS->hasOneUse() && RHS->hasOneUse())) { 4164cb14a3feSDimitry Andric Value *NewV = LHS0; 4165cb14a3feSDimitry Andric Type *Ty = LHS0->getType(); 4166cb14a3feSDimitry Andric if (!Offset.isZero()) 4167cb14a3feSDimitry Andric NewV = Builder.CreateAdd(NewV, ConstantInt::get(Ty, Offset)); 4168cb14a3feSDimitry Andric return Builder.CreateICmp(NewPred, NewV, 4169cb14a3feSDimitry Andric ConstantInt::get(Ty, NewC)); 4170cb14a3feSDimitry Andric } 4171cb14a3feSDimitry Andric } 4172cb14a3feSDimitry Andric } 41730b57cec5SDimitry Andric } 41740b57cec5SDimitry Andric 41750b57cec5SDimitry Andric // Instead of trying to imitate the folds for and/or, decompose this 'xor' 41760b57cec5SDimitry Andric // into those logic ops. That is, try to turn this into an and-of-icmps 41770b57cec5SDimitry Andric // because we have many folds for that pattern. 41780b57cec5SDimitry Andric // 41790b57cec5SDimitry Andric // This is based on a truth table definition of xor: 41800b57cec5SDimitry Andric // X ^ Y --> (X | Y) & !(X & Y) 418181ad6265SDimitry Andric if (Value *OrICmp = simplifyBinOp(Instruction::Or, LHS, RHS, SQ)) { 41820b57cec5SDimitry Andric // TODO: If OrICmp is true, then the definition of xor simplifies to !(X&Y). 41830b57cec5SDimitry Andric // TODO: If OrICmp is false, the whole thing is false (InstSimplify?). 418481ad6265SDimitry Andric if (Value *AndICmp = simplifyBinOp(Instruction::And, LHS, RHS, SQ)) { 41850b57cec5SDimitry Andric // TODO: Independently handle cases where the 'and' side is a constant. 41868bcb0991SDimitry Andric ICmpInst *X = nullptr, *Y = nullptr; 41878bcb0991SDimitry Andric if (OrICmp == LHS && AndICmp == RHS) { 41888bcb0991SDimitry Andric // (LHS | RHS) & !(LHS & RHS) --> LHS & !RHS --> X & !Y 41898bcb0991SDimitry Andric X = LHS; 41908bcb0991SDimitry Andric Y = RHS; 41910b57cec5SDimitry Andric } 41928bcb0991SDimitry Andric if (OrICmp == RHS && AndICmp == LHS) { 41938bcb0991SDimitry Andric // !(LHS & RHS) & (LHS | RHS) --> !LHS & RHS --> !Y & X 41948bcb0991SDimitry Andric X = RHS; 41958bcb0991SDimitry Andric Y = LHS; 41968bcb0991SDimitry Andric } 41978bcb0991SDimitry Andric if (X && Y && (Y->hasOneUse() || canFreelyInvertAllUsersOf(Y, &I))) { 41988bcb0991SDimitry Andric // Invert the predicate of 'Y', thus inverting its output. 41998bcb0991SDimitry Andric Y->setPredicate(Y->getInversePredicate()); 42008bcb0991SDimitry Andric // So, are there other uses of Y? 42018bcb0991SDimitry Andric if (!Y->hasOneUse()) { 42028bcb0991SDimitry Andric // We need to adapt other uses of Y though. Get a value that matches 42038bcb0991SDimitry Andric // the original value of Y before inversion. While this increases 42048bcb0991SDimitry Andric // immediate instruction count, we have just ensured that all the 42058bcb0991SDimitry Andric // users are freely-invertible, so that 'not' *will* get folded away. 42068bcb0991SDimitry Andric BuilderTy::InsertPointGuard Guard(Builder); 42078bcb0991SDimitry Andric // Set insertion point to right after the Y. 42088bcb0991SDimitry Andric Builder.SetInsertPoint(Y->getParent(), ++(Y->getIterator())); 42098bcb0991SDimitry Andric Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 42108bcb0991SDimitry Andric // Replace all uses of Y (excluding the one in NotY!) with NotY. 42115ffd83dbSDimitry Andric Worklist.pushUsersToWorkList(*Y); 42128bcb0991SDimitry Andric Y->replaceUsesWithIf(NotY, 42138bcb0991SDimitry Andric [NotY](Use &U) { return U.getUser() != NotY; }); 42148bcb0991SDimitry Andric } 42158bcb0991SDimitry Andric // All done. 42160b57cec5SDimitry Andric return Builder.CreateAnd(LHS, RHS); 42170b57cec5SDimitry Andric } 42180b57cec5SDimitry Andric } 42190b57cec5SDimitry Andric } 42200b57cec5SDimitry Andric 42210b57cec5SDimitry Andric return nullptr; 42220b57cec5SDimitry Andric } 42230b57cec5SDimitry Andric 42240b57cec5SDimitry Andric /// If we have a masked merge, in the canonical form of: 42250b57cec5SDimitry Andric /// (assuming that A only has one use.) 42260b57cec5SDimitry Andric /// | A | |B| 42270b57cec5SDimitry Andric /// ((x ^ y) & M) ^ y 42280b57cec5SDimitry Andric /// | D | 42290b57cec5SDimitry Andric /// * If M is inverted: 42300b57cec5SDimitry Andric /// | D | 42310b57cec5SDimitry Andric /// ((x ^ y) & ~M) ^ y 42320b57cec5SDimitry Andric /// We can canonicalize by swapping the final xor operand 42330b57cec5SDimitry Andric /// to eliminate the 'not' of the mask. 42340b57cec5SDimitry Andric /// ((x ^ y) & M) ^ x 42350b57cec5SDimitry Andric /// * If M is a constant, and D has one use, we transform to 'and' / 'or' ops 42360b57cec5SDimitry Andric /// because that shortens the dependency chain and improves analysis: 42370b57cec5SDimitry Andric /// (x & M) | (y & ~M) 42380b57cec5SDimitry Andric static Instruction *visitMaskedMerge(BinaryOperator &I, 42390b57cec5SDimitry Andric InstCombiner::BuilderTy &Builder) { 42400b57cec5SDimitry Andric Value *B, *X, *D; 42410b57cec5SDimitry Andric Value *M; 42420b57cec5SDimitry Andric if (!match(&I, m_c_Xor(m_Value(B), 42430b57cec5SDimitry Andric m_OneUse(m_c_And( 42440b57cec5SDimitry Andric m_CombineAnd(m_c_Xor(m_Deferred(B), m_Value(X)), 42450b57cec5SDimitry Andric m_Value(D)), 42460b57cec5SDimitry Andric m_Value(M)))))) 42470b57cec5SDimitry Andric return nullptr; 42480b57cec5SDimitry Andric 42490b57cec5SDimitry Andric Value *NotM; 42500b57cec5SDimitry Andric if (match(M, m_Not(m_Value(NotM)))) { 42510b57cec5SDimitry Andric // De-invert the mask and swap the value in B part. 42520b57cec5SDimitry Andric Value *NewA = Builder.CreateAnd(D, NotM); 42530b57cec5SDimitry Andric return BinaryOperator::CreateXor(NewA, X); 42540b57cec5SDimitry Andric } 42550b57cec5SDimitry Andric 42560b57cec5SDimitry Andric Constant *C; 42570b57cec5SDimitry Andric if (D->hasOneUse() && match(M, m_Constant(C))) { 42585ffd83dbSDimitry Andric // Propagating undef is unsafe. Clamp undef elements to -1. 42595ffd83dbSDimitry Andric Type *EltTy = C->getType()->getScalarType(); 42605ffd83dbSDimitry Andric C = Constant::replaceUndefsWith(C, ConstantInt::getAllOnesValue(EltTy)); 42610b57cec5SDimitry Andric // Unfold. 42620b57cec5SDimitry Andric Value *LHS = Builder.CreateAnd(X, C); 42630b57cec5SDimitry Andric Value *NotC = Builder.CreateNot(C); 42640b57cec5SDimitry Andric Value *RHS = Builder.CreateAnd(B, NotC); 42650b57cec5SDimitry Andric return BinaryOperator::CreateOr(LHS, RHS); 42660b57cec5SDimitry Andric } 42670b57cec5SDimitry Andric 42680b57cec5SDimitry Andric return nullptr; 42690b57cec5SDimitry Andric } 42700b57cec5SDimitry Andric 4271bdd1243dSDimitry Andric static Instruction *foldNotXor(BinaryOperator &I, 4272bdd1243dSDimitry Andric InstCombiner::BuilderTy &Builder) { 4273bdd1243dSDimitry Andric Value *X, *Y; 4274bdd1243dSDimitry Andric // FIXME: one-use check is not needed in general, but currently we are unable 4275bdd1243dSDimitry Andric // to fold 'not' into 'icmp', if that 'icmp' has multiple uses. (D35182) 4276bdd1243dSDimitry Andric if (!match(&I, m_Not(m_OneUse(m_Xor(m_Value(X), m_Value(Y)))))) 4277bdd1243dSDimitry Andric return nullptr; 4278bdd1243dSDimitry Andric 4279bdd1243dSDimitry Andric auto hasCommonOperand = [](Value *A, Value *B, Value *C, Value *D) { 4280bdd1243dSDimitry Andric return A == C || A == D || B == C || B == D; 4281bdd1243dSDimitry Andric }; 4282bdd1243dSDimitry Andric 4283bdd1243dSDimitry Andric Value *A, *B, *C, *D; 4284bdd1243dSDimitry Andric // Canonicalize ~((A & B) ^ (A | ?)) -> (A & B) | ~(A | ?) 4285bdd1243dSDimitry Andric // 4 commuted variants 4286bdd1243dSDimitry Andric if (match(X, m_And(m_Value(A), m_Value(B))) && 4287bdd1243dSDimitry Andric match(Y, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 4288bdd1243dSDimitry Andric Value *NotY = Builder.CreateNot(Y); 4289bdd1243dSDimitry Andric return BinaryOperator::CreateOr(X, NotY); 4290bdd1243dSDimitry Andric }; 4291bdd1243dSDimitry Andric 4292bdd1243dSDimitry Andric // Canonicalize ~((A | ?) ^ (A & B)) -> (A & B) | ~(A | ?) 4293bdd1243dSDimitry Andric // 4 commuted variants 4294bdd1243dSDimitry Andric if (match(Y, m_And(m_Value(A), m_Value(B))) && 4295bdd1243dSDimitry Andric match(X, m_Or(m_Value(C), m_Value(D))) && hasCommonOperand(A, B, C, D)) { 4296bdd1243dSDimitry Andric Value *NotX = Builder.CreateNot(X); 4297bdd1243dSDimitry Andric return BinaryOperator::CreateOr(Y, NotX); 4298bdd1243dSDimitry Andric }; 4299bdd1243dSDimitry Andric 4300bdd1243dSDimitry Andric return nullptr; 4301bdd1243dSDimitry Andric } 4302bdd1243dSDimitry Andric 4303fe6060f1SDimitry Andric /// Canonicalize a shifty way to code absolute value to the more common pattern 4304fe6060f1SDimitry Andric /// that uses negation and select. 4305fe6060f1SDimitry Andric static Instruction *canonicalizeAbs(BinaryOperator &Xor, 4306fe6060f1SDimitry Andric InstCombiner::BuilderTy &Builder) { 4307fe6060f1SDimitry Andric assert(Xor.getOpcode() == Instruction::Xor && "Expected an xor instruction."); 4308fe6060f1SDimitry Andric 4309fe6060f1SDimitry Andric // There are 4 potential commuted variants. Move the 'ashr' candidate to Op1. 4310fe6060f1SDimitry Andric // We're relying on the fact that we only do this transform when the shift has 4311fe6060f1SDimitry Andric // exactly 2 uses and the add has exactly 1 use (otherwise, we might increase 4312fe6060f1SDimitry Andric // instructions). 4313fe6060f1SDimitry Andric Value *Op0 = Xor.getOperand(0), *Op1 = Xor.getOperand(1); 4314fe6060f1SDimitry Andric if (Op0->hasNUses(2)) 4315fe6060f1SDimitry Andric std::swap(Op0, Op1); 4316fe6060f1SDimitry Andric 4317fe6060f1SDimitry Andric Type *Ty = Xor.getType(); 4318fe6060f1SDimitry Andric Value *A; 4319fe6060f1SDimitry Andric const APInt *ShAmt; 4320fe6060f1SDimitry Andric if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) && 4321fe6060f1SDimitry Andric Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 && 4322fe6060f1SDimitry Andric match(Op0, m_OneUse(m_c_Add(m_Specific(A), m_Specific(Op1))))) { 4323fe6060f1SDimitry Andric // Op1 = ashr i32 A, 31 ; smear the sign bit 4324fe6060f1SDimitry Andric // xor (add A, Op1), Op1 ; add -1 and flip bits if negative 4325fe6060f1SDimitry Andric // --> (A < 0) ? -A : A 432681ad6265SDimitry Andric Value *IsNeg = Builder.CreateIsNeg(A); 43270fca6ea1SDimitry Andric // Copy the nsw flags from the add to the negate. 4328fe6060f1SDimitry Andric auto *Add = cast<BinaryOperator>(Op0); 43290fca6ea1SDimitry Andric Value *NegA = Add->hasNoUnsignedWrap() 43300fca6ea1SDimitry Andric ? Constant::getNullValue(A->getType()) 43310fca6ea1SDimitry Andric : Builder.CreateNeg(A, "", Add->hasNoSignedWrap()); 433281ad6265SDimitry Andric return SelectInst::Create(IsNeg, NegA, A); 4333fe6060f1SDimitry Andric } 4334fe6060f1SDimitry Andric return nullptr; 4335fe6060f1SDimitry Andric } 4336fe6060f1SDimitry Andric 433706c3fb27SDimitry Andric static bool canFreelyInvert(InstCombiner &IC, Value *Op, 433806c3fb27SDimitry Andric Instruction *IgnoredUser) { 433906c3fb27SDimitry Andric auto *I = dyn_cast<Instruction>(Op); 434006c3fb27SDimitry Andric return I && IC.isFreeToInvert(I, /*WillInvertAllUses=*/true) && 43415f757f3fSDimitry Andric IC.canFreelyInvertAllUsersOf(I, IgnoredUser); 434206c3fb27SDimitry Andric } 434306c3fb27SDimitry Andric 434406c3fb27SDimitry Andric static Value *freelyInvert(InstCombinerImpl &IC, Value *Op, 434506c3fb27SDimitry Andric Instruction *IgnoredUser) { 434606c3fb27SDimitry Andric auto *I = cast<Instruction>(Op); 43475f757f3fSDimitry Andric IC.Builder.SetInsertPoint(*I->getInsertionPointAfterDef()); 434806c3fb27SDimitry Andric Value *NotOp = IC.Builder.CreateNot(Op, Op->getName() + ".not"); 434906c3fb27SDimitry Andric Op->replaceUsesWithIf(NotOp, 435006c3fb27SDimitry Andric [NotOp](Use &U) { return U.getUser() != NotOp; }); 435106c3fb27SDimitry Andric IC.freelyInvertAllUsersOf(NotOp, IgnoredUser); 435206c3fb27SDimitry Andric return NotOp; 435306c3fb27SDimitry Andric } 435406c3fb27SDimitry Andric 4355e8d8bef9SDimitry Andric // Transform 4356bdd1243dSDimitry Andric // z = ~(x &/| y) 4357bdd1243dSDimitry Andric // into: 4358bdd1243dSDimitry Andric // z = ((~x) |/& (~y)) 4359bdd1243dSDimitry Andric // iff both x and y are free to invert and all uses of z can be freely updated. 4360bdd1243dSDimitry Andric bool InstCombinerImpl::sinkNotIntoLogicalOp(Instruction &I) { 4361bdd1243dSDimitry Andric Value *Op0, *Op1; 4362bdd1243dSDimitry Andric if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4363bdd1243dSDimitry Andric return false; 4364bdd1243dSDimitry Andric 4365bdd1243dSDimitry Andric // If this logic op has not been simplified yet, just bail out and let that 4366bdd1243dSDimitry Andric // happen first. Otherwise, the code below may wrongly invert. 4367bdd1243dSDimitry Andric if (Op0 == Op1) 4368bdd1243dSDimitry Andric return false; 4369bdd1243dSDimitry Andric 4370bdd1243dSDimitry Andric Instruction::BinaryOps NewOpc = 4371bdd1243dSDimitry Andric match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4372bdd1243dSDimitry Andric bool IsBinaryOp = isa<BinaryOperator>(I); 4373bdd1243dSDimitry Andric 4374bdd1243dSDimitry Andric // Can our users be adapted? 4375bdd1243dSDimitry Andric if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4376bdd1243dSDimitry Andric return false; 4377bdd1243dSDimitry Andric 4378bdd1243dSDimitry Andric // And can the operands be adapted? 437906c3fb27SDimitry Andric if (!canFreelyInvert(*this, Op0, &I) || !canFreelyInvert(*this, Op1, &I)) 4380bdd1243dSDimitry Andric return false; 4381bdd1243dSDimitry Andric 438206c3fb27SDimitry Andric Op0 = freelyInvert(*this, Op0, &I); 438306c3fb27SDimitry Andric Op1 = freelyInvert(*this, Op1, &I); 4384bdd1243dSDimitry Andric 43855f757f3fSDimitry Andric Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); 4386bdd1243dSDimitry Andric Value *NewLogicOp; 4387bdd1243dSDimitry Andric if (IsBinaryOp) 4388bdd1243dSDimitry Andric NewLogicOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4389bdd1243dSDimitry Andric else 4390bdd1243dSDimitry Andric NewLogicOp = 4391bdd1243dSDimitry Andric Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4392bdd1243dSDimitry Andric 4393bdd1243dSDimitry Andric replaceInstUsesWith(I, NewLogicOp); 4394bdd1243dSDimitry Andric // We can not just create an outer `not`, it will most likely be immediately 4395bdd1243dSDimitry Andric // folded back, reconstructing our initial pattern, and causing an 4396bdd1243dSDimitry Andric // infinite combine loop, so immediately manually fold it away. 4397bdd1243dSDimitry Andric freelyInvertAllUsersOf(NewLogicOp); 4398bdd1243dSDimitry Andric return true; 4399bdd1243dSDimitry Andric } 4400bdd1243dSDimitry Andric 4401bdd1243dSDimitry Andric // Transform 4402e8d8bef9SDimitry Andric // z = (~x) &/| y 4403e8d8bef9SDimitry Andric // into: 4404e8d8bef9SDimitry Andric // z = ~(x |/& (~y)) 4405e8d8bef9SDimitry Andric // iff y is free to invert and all uses of z can be freely updated. 4406bdd1243dSDimitry Andric bool InstCombinerImpl::sinkNotIntoOtherHandOfLogicalOp(Instruction &I) { 4407bdd1243dSDimitry Andric Value *Op0, *Op1; 4408bdd1243dSDimitry Andric if (!match(&I, m_LogicalOp(m_Value(Op0), m_Value(Op1)))) 4409e8d8bef9SDimitry Andric return false; 4410bdd1243dSDimitry Andric Instruction::BinaryOps NewOpc = 4411bdd1243dSDimitry Andric match(&I, m_LogicalAnd()) ? Instruction::Or : Instruction::And; 4412bdd1243dSDimitry Andric bool IsBinaryOp = isa<BinaryOperator>(I); 4413e8d8bef9SDimitry Andric 4414bdd1243dSDimitry Andric Value *NotOp0 = nullptr; 4415bdd1243dSDimitry Andric Value *NotOp1 = nullptr; 4416bdd1243dSDimitry Andric Value **OpToInvert = nullptr; 441706c3fb27SDimitry Andric if (match(Op0, m_Not(m_Value(NotOp0))) && canFreelyInvert(*this, Op1, &I)) { 4418bdd1243dSDimitry Andric Op0 = NotOp0; 4419bdd1243dSDimitry Andric OpToInvert = &Op1; 4420bdd1243dSDimitry Andric } else if (match(Op1, m_Not(m_Value(NotOp1))) && 442106c3fb27SDimitry Andric canFreelyInvert(*this, Op0, &I)) { 4422bdd1243dSDimitry Andric Op1 = NotOp1; 4423bdd1243dSDimitry Andric OpToInvert = &Op0; 4424bdd1243dSDimitry Andric } else 4425e8d8bef9SDimitry Andric return false; 4426e8d8bef9SDimitry Andric 4427e8d8bef9SDimitry Andric // And can our users be adapted? 4428e8d8bef9SDimitry Andric if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr)) 4429e8d8bef9SDimitry Andric return false; 4430e8d8bef9SDimitry Andric 443106c3fb27SDimitry Andric *OpToInvert = freelyInvert(*this, *OpToInvert, &I); 4432bdd1243dSDimitry Andric 44335f757f3fSDimitry Andric Builder.SetInsertPoint(*I.getInsertionPointAfterDef()); 4434bdd1243dSDimitry Andric Value *NewBinOp; 4435bdd1243dSDimitry Andric if (IsBinaryOp) 4436bdd1243dSDimitry Andric NewBinOp = Builder.CreateBinOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4437bdd1243dSDimitry Andric else 4438bdd1243dSDimitry Andric NewBinOp = Builder.CreateLogicalOp(NewOpc, Op0, Op1, I.getName() + ".not"); 4439e8d8bef9SDimitry Andric replaceInstUsesWith(I, NewBinOp); 4440e8d8bef9SDimitry Andric // We can not just create an outer `not`, it will most likely be immediately 4441e8d8bef9SDimitry Andric // folded back, reconstructing our initial pattern, and causing an 4442e8d8bef9SDimitry Andric // infinite combine loop, so immediately manually fold it away. 4443e8d8bef9SDimitry Andric freelyInvertAllUsersOf(NewBinOp); 4444e8d8bef9SDimitry Andric return true; 4445e8d8bef9SDimitry Andric } 4446e8d8bef9SDimitry Andric 4447349cc55cSDimitry Andric Instruction *InstCombinerImpl::foldNot(BinaryOperator &I) { 4448349cc55cSDimitry Andric Value *NotOp; 4449349cc55cSDimitry Andric if (!match(&I, m_Not(m_Value(NotOp)))) 4450349cc55cSDimitry Andric return nullptr; 44510b57cec5SDimitry Andric 44520b57cec5SDimitry Andric // Apply DeMorgan's Law for 'nand' / 'nor' logic with an inverted operand. 44530b57cec5SDimitry Andric // We must eliminate the and/or (one-use) for these transforms to not increase 44540b57cec5SDimitry Andric // the instruction count. 4455349cc55cSDimitry Andric // 44560b57cec5SDimitry Andric // ~(~X & Y) --> (X | ~Y) 44570b57cec5SDimitry Andric // ~(Y & ~X) --> (X | ~Y) 4458349cc55cSDimitry Andric // 4459349cc55cSDimitry Andric // Note: The logical matches do not check for the commuted patterns because 4460349cc55cSDimitry Andric // those are handled via SimplifySelectsFeedingBinaryOp(). 4461349cc55cSDimitry Andric Type *Ty = I.getType(); 4462349cc55cSDimitry Andric Value *X, *Y; 4463349cc55cSDimitry Andric if (match(NotOp, m_OneUse(m_c_And(m_Not(m_Value(X)), m_Value(Y))))) { 44640b57cec5SDimitry Andric Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 44650b57cec5SDimitry Andric return BinaryOperator::CreateOr(X, NotY); 44660b57cec5SDimitry Andric } 4467349cc55cSDimitry Andric if (match(NotOp, m_OneUse(m_LogicalAnd(m_Not(m_Value(X)), m_Value(Y))))) { 4468349cc55cSDimitry Andric Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4469349cc55cSDimitry Andric return SelectInst::Create(X, ConstantInt::getTrue(Ty), NotY); 4470349cc55cSDimitry Andric } 4471349cc55cSDimitry Andric 44720b57cec5SDimitry Andric // ~(~X | Y) --> (X & ~Y) 44730b57cec5SDimitry Andric // ~(Y | ~X) --> (X & ~Y) 4474349cc55cSDimitry Andric if (match(NotOp, m_OneUse(m_c_Or(m_Not(m_Value(X)), m_Value(Y))))) { 44750b57cec5SDimitry Andric Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 44760b57cec5SDimitry Andric return BinaryOperator::CreateAnd(X, NotY); 44770b57cec5SDimitry Andric } 4478349cc55cSDimitry Andric if (match(NotOp, m_OneUse(m_LogicalOr(m_Not(m_Value(X)), m_Value(Y))))) { 4479349cc55cSDimitry Andric Value *NotY = Builder.CreateNot(Y, Y->getName() + ".not"); 4480349cc55cSDimitry Andric return SelectInst::Create(X, NotY, ConstantInt::getFalse(Ty)); 4481349cc55cSDimitry Andric } 44820b57cec5SDimitry Andric 44830b57cec5SDimitry Andric // Is this a 'not' (~) fed by a binary operator? 44840b57cec5SDimitry Andric BinaryOperator *NotVal; 4485349cc55cSDimitry Andric if (match(NotOp, m_BinOp(NotVal))) { 4486fe6060f1SDimitry Andric // ~((-X) | Y) --> (X - 1) & (~Y) 4487fe6060f1SDimitry Andric if (match(NotVal, 4488fe6060f1SDimitry Andric m_OneUse(m_c_Or(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))) { 4489fe6060f1SDimitry Andric Value *DecX = Builder.CreateAdd(X, ConstantInt::getAllOnesValue(Ty)); 4490fe6060f1SDimitry Andric Value *NotY = Builder.CreateNot(Y); 4491fe6060f1SDimitry Andric return BinaryOperator::CreateAnd(DecX, NotY); 4492fe6060f1SDimitry Andric } 4493fe6060f1SDimitry Andric 44940b57cec5SDimitry Andric // ~(~X >>s Y) --> (X >>s Y) 44950b57cec5SDimitry Andric if (match(NotVal, m_AShr(m_Not(m_Value(X)), m_Value(Y)))) 44960b57cec5SDimitry Andric return BinaryOperator::CreateAShr(X, Y); 44970b57cec5SDimitry Andric 44985f757f3fSDimitry Andric // Treat lshr with non-negative operand as ashr. 44995f757f3fSDimitry Andric // ~(~X >>u Y) --> (X >>s Y) iff X is known negative 45005f757f3fSDimitry Andric if (match(NotVal, m_LShr(m_Not(m_Value(X)), m_Value(Y))) && 45015f757f3fSDimitry Andric isKnownNegative(X, SQ.getWithInstruction(NotVal))) 45025f757f3fSDimitry Andric return BinaryOperator::CreateAShr(X, Y); 45035f757f3fSDimitry Andric 450406c3fb27SDimitry Andric // Bit-hack form of a signbit test for iN type: 450506c3fb27SDimitry Andric // ~(X >>s (N - 1)) --> sext i1 (X > -1) to iN 4506bdd1243dSDimitry Andric unsigned FullShift = Ty->getScalarSizeInBits() - 1; 4507bdd1243dSDimitry Andric if (match(NotVal, m_OneUse(m_AShr(m_Value(X), m_SpecificInt(FullShift))))) { 4508bdd1243dSDimitry Andric Value *IsNotNeg = Builder.CreateIsNotNeg(X, "isnotneg"); 4509bdd1243dSDimitry Andric return new SExtInst(IsNotNeg, Ty); 4510bdd1243dSDimitry Andric } 4511bdd1243dSDimitry Andric 45120b57cec5SDimitry Andric // If we are inverting a right-shifted constant, we may be able to eliminate 45130b57cec5SDimitry Andric // the 'not' by inverting the constant and using the opposite shift type. 45140b57cec5SDimitry Andric // Canonicalization rules ensure that only a negative constant uses 'ashr', 45150b57cec5SDimitry Andric // but we must check that in case that transform has not fired yet. 45160b57cec5SDimitry Andric 45170b57cec5SDimitry Andric // ~(C >>s Y) --> ~C >>u Y (when inverting the replicated sign bits) 45180b57cec5SDimitry Andric Constant *C; 45190b57cec5SDimitry Andric if (match(NotVal, m_AShr(m_Constant(C), m_Value(Y))) && 45200fca6ea1SDimitry Andric match(C, m_Negative())) 45210b57cec5SDimitry Andric return BinaryOperator::CreateLShr(ConstantExpr::getNot(C), Y); 45220b57cec5SDimitry Andric 45230b57cec5SDimitry Andric // ~(C >>u Y) --> ~C >>s Y (when inverting the replicated sign bits) 45240b57cec5SDimitry Andric if (match(NotVal, m_LShr(m_Constant(C), m_Value(Y))) && 45250fca6ea1SDimitry Andric match(C, m_NonNegative())) 45260b57cec5SDimitry Andric return BinaryOperator::CreateAShr(ConstantExpr::getNot(C), Y); 45270b57cec5SDimitry Andric 452823408297SDimitry Andric // ~(X + C) --> ~C - X 45290fca6ea1SDimitry Andric if (match(NotVal, m_Add(m_Value(X), m_ImmConstant(C)))) 453023408297SDimitry Andric return BinaryOperator::CreateSub(ConstantExpr::getNot(C), X); 453123408297SDimitry Andric 453223408297SDimitry Andric // ~(X - Y) --> ~X + Y 453323408297SDimitry Andric // FIXME: is it really beneficial to sink the `not` here? 453423408297SDimitry Andric if (match(NotVal, m_Sub(m_Value(X), m_Value(Y)))) 453523408297SDimitry Andric if (isa<Constant>(X) || NotVal->hasOneUse()) 453623408297SDimitry Andric return BinaryOperator::CreateAdd(Builder.CreateNot(X), Y); 4537e8d8bef9SDimitry Andric 4538e8d8bef9SDimitry Andric // ~(~X + Y) --> X - Y 4539e8d8bef9SDimitry Andric if (match(NotVal, m_c_Add(m_Not(m_Value(X)), m_Value(Y)))) 4540e8d8bef9SDimitry Andric return BinaryOperator::CreateWithCopiedFlags(Instruction::Sub, X, Y, 4541e8d8bef9SDimitry Andric NotVal); 45420b57cec5SDimitry Andric } 45430b57cec5SDimitry Andric 4544349cc55cSDimitry Andric // not (cmp A, B) = !cmp A, B 4545349cc55cSDimitry Andric CmpInst::Predicate Pred; 4546bdd1243dSDimitry Andric if (match(NotOp, m_Cmp(Pred, m_Value(), m_Value())) && 4547bdd1243dSDimitry Andric (NotOp->hasOneUse() || 4548bdd1243dSDimitry Andric InstCombiner::canFreelyInvertAllUsersOf(cast<Instruction>(NotOp), 4549bdd1243dSDimitry Andric /*IgnoredUser=*/nullptr))) { 4550349cc55cSDimitry Andric cast<CmpInst>(NotOp)->setPredicate(CmpInst::getInversePredicate(Pred)); 4551bdd1243dSDimitry Andric freelyInvertAllUsersOf(NotOp); 4552bdd1243dSDimitry Andric return &I; 4553349cc55cSDimitry Andric } 4554349cc55cSDimitry Andric 4555bdd1243dSDimitry Andric // Move a 'not' ahead of casts of a bool to enable logic reduction: 4556bdd1243dSDimitry Andric // not (bitcast (sext i1 X)) --> bitcast (sext (not i1 X)) 4557bdd1243dSDimitry Andric if (match(NotOp, m_OneUse(m_BitCast(m_OneUse(m_SExt(m_Value(X)))))) && X->getType()->isIntOrIntVectorTy(1)) { 4558bdd1243dSDimitry Andric Type *SextTy = cast<BitCastOperator>(NotOp)->getSrcTy(); 4559bdd1243dSDimitry Andric Value *NotX = Builder.CreateNot(X); 4560bdd1243dSDimitry Andric Value *Sext = Builder.CreateSExt(NotX, SextTy); 4561bdd1243dSDimitry Andric return CastInst::CreateBitOrPointerCast(Sext, Ty); 4562bdd1243dSDimitry Andric } 4563bdd1243dSDimitry Andric 4564bdd1243dSDimitry Andric if (auto *NotOpI = dyn_cast<Instruction>(NotOp)) 4565bdd1243dSDimitry Andric if (sinkNotIntoLogicalOp(*NotOpI)) 4566bdd1243dSDimitry Andric return &I; 4567bdd1243dSDimitry Andric 4568349cc55cSDimitry Andric // Eliminate a bitwise 'not' op of 'not' min/max by inverting the min/max: 4569349cc55cSDimitry Andric // ~min(~X, ~Y) --> max(X, Y) 4570349cc55cSDimitry Andric // ~max(~X, Y) --> min(X, ~Y) 4571349cc55cSDimitry Andric auto *II = dyn_cast<IntrinsicInst>(NotOp); 4572349cc55cSDimitry Andric if (II && II->hasOneUse()) { 4573349cc55cSDimitry Andric if (match(NotOp, m_c_MaxOrMin(m_Not(m_Value(X)), m_Value(Y)))) { 4574349cc55cSDimitry Andric Intrinsic::ID InvID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 4575349cc55cSDimitry Andric Value *NotY = Builder.CreateNot(Y); 4576349cc55cSDimitry Andric Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, NotY); 4577349cc55cSDimitry Andric return replaceInstUsesWith(I, InvMaxMin); 4578349cc55cSDimitry Andric } 4579bdd1243dSDimitry Andric 4580bdd1243dSDimitry Andric if (II->getIntrinsicID() == Intrinsic::is_fpclass) { 4581bdd1243dSDimitry Andric ConstantInt *ClassMask = cast<ConstantInt>(II->getArgOperand(1)); 4582bdd1243dSDimitry Andric II->setArgOperand( 4583bdd1243dSDimitry Andric 1, ConstantInt::get(ClassMask->getType(), 4584bdd1243dSDimitry Andric ~ClassMask->getZExtValue() & fcAllFlags)); 4585bdd1243dSDimitry Andric return replaceInstUsesWith(I, II); 4586bdd1243dSDimitry Andric } 4587349cc55cSDimitry Andric } 4588349cc55cSDimitry Andric 4589349cc55cSDimitry Andric if (NotOp->hasOneUse()) { 4590349cc55cSDimitry Andric // Pull 'not' into operands of select if both operands are one-use compares 4591349cc55cSDimitry Andric // or one is one-use compare and the other one is a constant. 4592349cc55cSDimitry Andric // Inverting the predicates eliminates the 'not' operation. 4593349cc55cSDimitry Andric // Example: 4594349cc55cSDimitry Andric // not (select ?, (cmp TPred, ?, ?), (cmp FPred, ?, ?) --> 4595349cc55cSDimitry Andric // select ?, (cmp InvTPred, ?, ?), (cmp InvFPred, ?, ?) 4596349cc55cSDimitry Andric // not (select ?, (cmp TPred, ?, ?), true --> 4597349cc55cSDimitry Andric // select ?, (cmp InvTPred, ?, ?), false 4598349cc55cSDimitry Andric if (auto *Sel = dyn_cast<SelectInst>(NotOp)) { 4599349cc55cSDimitry Andric Value *TV = Sel->getTrueValue(); 4600349cc55cSDimitry Andric Value *FV = Sel->getFalseValue(); 4601349cc55cSDimitry Andric auto *CmpT = dyn_cast<CmpInst>(TV); 4602349cc55cSDimitry Andric auto *CmpF = dyn_cast<CmpInst>(FV); 4603349cc55cSDimitry Andric bool InvertibleT = (CmpT && CmpT->hasOneUse()) || isa<Constant>(TV); 4604349cc55cSDimitry Andric bool InvertibleF = (CmpF && CmpF->hasOneUse()) || isa<Constant>(FV); 4605349cc55cSDimitry Andric if (InvertibleT && InvertibleF) { 4606349cc55cSDimitry Andric if (CmpT) 4607349cc55cSDimitry Andric CmpT->setPredicate(CmpT->getInversePredicate()); 4608349cc55cSDimitry Andric else 4609349cc55cSDimitry Andric Sel->setTrueValue(ConstantExpr::getNot(cast<Constant>(TV))); 4610349cc55cSDimitry Andric if (CmpF) 4611349cc55cSDimitry Andric CmpF->setPredicate(CmpF->getInversePredicate()); 4612349cc55cSDimitry Andric else 4613349cc55cSDimitry Andric Sel->setFalseValue(ConstantExpr::getNot(cast<Constant>(FV))); 4614349cc55cSDimitry Andric return replaceInstUsesWith(I, Sel); 4615349cc55cSDimitry Andric } 4616349cc55cSDimitry Andric } 4617349cc55cSDimitry Andric } 4618349cc55cSDimitry Andric 4619bdd1243dSDimitry Andric if (Instruction *NewXor = foldNotXor(I, Builder)) 4620349cc55cSDimitry Andric return NewXor; 4621349cc55cSDimitry Andric 46225f757f3fSDimitry Andric // TODO: Could handle multi-use better by checking if all uses of NotOp (other 46235f757f3fSDimitry Andric // than I) can be inverted. 46245f757f3fSDimitry Andric if (Value *R = getFreelyInverted(NotOp, NotOp->hasOneUse(), &Builder)) 46255f757f3fSDimitry Andric return replaceInstUsesWith(I, R); 46265f757f3fSDimitry Andric 4627349cc55cSDimitry Andric return nullptr; 4628349cc55cSDimitry Andric } 4629349cc55cSDimitry Andric 4630349cc55cSDimitry Andric // FIXME: We use commutative matchers (m_c_*) for some, but not all, matches 4631349cc55cSDimitry Andric // here. We should standardize that construct where it is needed or choose some 4632349cc55cSDimitry Andric // other way to ensure that commutated variants of patterns are not missed. 4633349cc55cSDimitry Andric Instruction *InstCombinerImpl::visitXor(BinaryOperator &I) { 463481ad6265SDimitry Andric if (Value *V = simplifyXorInst(I.getOperand(0), I.getOperand(1), 4635349cc55cSDimitry Andric SQ.getWithInstruction(&I))) 4636349cc55cSDimitry Andric return replaceInstUsesWith(I, V); 4637349cc55cSDimitry Andric 4638349cc55cSDimitry Andric if (SimplifyAssociativeOrCommutative(I)) 4639349cc55cSDimitry Andric return &I; 4640349cc55cSDimitry Andric 4641349cc55cSDimitry Andric if (Instruction *X = foldVectorBinop(I)) 4642349cc55cSDimitry Andric return X; 4643349cc55cSDimitry Andric 464404eeddc0SDimitry Andric if (Instruction *Phi = foldBinopWithPhiOperands(I)) 464504eeddc0SDimitry Andric return Phi; 464604eeddc0SDimitry Andric 4647349cc55cSDimitry Andric if (Instruction *NewXor = foldXorToXor(I, Builder)) 4648349cc55cSDimitry Andric return NewXor; 4649349cc55cSDimitry Andric 4650349cc55cSDimitry Andric // (A&B)^(A&C) -> A&(B^C) etc 4651bdd1243dSDimitry Andric if (Value *V = foldUsingDistributiveLaws(I)) 4652349cc55cSDimitry Andric return replaceInstUsesWith(I, V); 4653349cc55cSDimitry Andric 4654349cc55cSDimitry Andric // See if we can simplify any instructions used by the instruction whose sole 4655349cc55cSDimitry Andric // purpose is to compute bits we don't care about. 4656349cc55cSDimitry Andric if (SimplifyDemandedInstructionBits(I)) 4657349cc55cSDimitry Andric return &I; 4658349cc55cSDimitry Andric 4659349cc55cSDimitry Andric if (Instruction *R = foldNot(I)) 4660349cc55cSDimitry Andric return R; 4661349cc55cSDimitry Andric 466206c3fb27SDimitry Andric if (Instruction *R = foldBinOpShiftWithShift(I)) 466306c3fb27SDimitry Andric return R; 466406c3fb27SDimitry Andric 4665349cc55cSDimitry Andric // Fold (X & M) ^ (Y & ~M) -> (X & M) | (Y & ~M) 4666349cc55cSDimitry Andric // This it a special case in haveNoCommonBitsSet, but the computeKnownBits 4667349cc55cSDimitry Andric // calls in there are unnecessary as SimplifyDemandedInstructionBits should 4668349cc55cSDimitry Andric // have already taken care of those cases. 4669349cc55cSDimitry Andric Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 4670349cc55cSDimitry Andric Value *M; 4671349cc55cSDimitry Andric if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(M)), m_Value()), 46720fca6ea1SDimitry Andric m_c_And(m_Deferred(M), m_Value())))) { 46730fca6ea1SDimitry Andric if (isGuaranteedNotToBeUndef(M)) 46745f757f3fSDimitry Andric return BinaryOperator::CreateDisjointOr(Op0, Op1); 46750fca6ea1SDimitry Andric else 46760fca6ea1SDimitry Andric return BinaryOperator::CreateOr(Op0, Op1); 46770fca6ea1SDimitry Andric } 4678349cc55cSDimitry Andric 4679349cc55cSDimitry Andric if (Instruction *Xor = visitMaskedMerge(I, Builder)) 4680349cc55cSDimitry Andric return Xor; 4681349cc55cSDimitry Andric 4682349cc55cSDimitry Andric Value *X, *Y; 46830b57cec5SDimitry Andric Constant *C1; 46840b57cec5SDimitry Andric if (match(Op1, m_Constant(C1))) { 46850b57cec5SDimitry Andric Constant *C2; 468681ad6265SDimitry Andric 468781ad6265SDimitry Andric if (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C2)))) && 468881ad6265SDimitry Andric match(C1, m_ImmConstant())) { 468981ad6265SDimitry Andric // (X | C2) ^ C1 --> (X & ~C2) ^ (C1^C2) 469081ad6265SDimitry Andric C2 = Constant::replaceUndefsWith( 469181ad6265SDimitry Andric C2, Constant::getAllOnesValue(C2->getType()->getScalarType())); 469281ad6265SDimitry Andric Value *And = Builder.CreateAnd( 469381ad6265SDimitry Andric X, Constant::mergeUndefsWith(ConstantExpr::getNot(C2), C1)); 469481ad6265SDimitry Andric return BinaryOperator::CreateXor( 469581ad6265SDimitry Andric And, Constant::mergeUndefsWith(ConstantExpr::getXor(C1, C2), C1)); 469681ad6265SDimitry Andric } 469781ad6265SDimitry Andric 469881ad6265SDimitry Andric // Use DeMorgan and reassociation to eliminate a 'not' op. 46990b57cec5SDimitry Andric if (match(Op0, m_OneUse(m_Or(m_Not(m_Value(X)), m_Constant(C2))))) { 47000b57cec5SDimitry Andric // (~X | C2) ^ C1 --> ((X & ~C2) ^ -1) ^ C1 --> (X & ~C2) ^ ~C1 47010b57cec5SDimitry Andric Value *And = Builder.CreateAnd(X, ConstantExpr::getNot(C2)); 47020b57cec5SDimitry Andric return BinaryOperator::CreateXor(And, ConstantExpr::getNot(C1)); 47030b57cec5SDimitry Andric } 47040b57cec5SDimitry Andric if (match(Op0, m_OneUse(m_And(m_Not(m_Value(X)), m_Constant(C2))))) { 47050b57cec5SDimitry Andric // (~X & C2) ^ C1 --> ((X | ~C2) ^ -1) ^ C1 --> (X | ~C2) ^ ~C1 47060b57cec5SDimitry Andric Value *Or = Builder.CreateOr(X, ConstantExpr::getNot(C2)); 47070b57cec5SDimitry Andric return BinaryOperator::CreateXor(Or, ConstantExpr::getNot(C1)); 47080b57cec5SDimitry Andric } 4709349cc55cSDimitry Andric 4710349cc55cSDimitry Andric // Convert xor ([trunc] (ashr X, BW-1)), C => 4711349cc55cSDimitry Andric // select(X >s -1, C, ~C) 4712349cc55cSDimitry Andric // The ashr creates "AllZeroOrAllOne's", which then optionally inverses the 4713349cc55cSDimitry Andric // constant depending on whether this input is less than 0. 4714349cc55cSDimitry Andric const APInt *CA; 4715349cc55cSDimitry Andric if (match(Op0, m_OneUse(m_TruncOrSelf( 47160fca6ea1SDimitry Andric m_AShr(m_Value(X), m_APIntAllowPoison(CA))))) && 4717349cc55cSDimitry Andric *CA == X->getType()->getScalarSizeInBits() - 1 && 4718349cc55cSDimitry Andric !match(C1, m_AllOnes())) { 4719349cc55cSDimitry Andric assert(!C1->isZeroValue() && "Unexpected xor with 0"); 472081ad6265SDimitry Andric Value *IsNotNeg = Builder.CreateIsNotNeg(X); 472181ad6265SDimitry Andric return SelectInst::Create(IsNotNeg, Op1, Builder.CreateNot(Op1)); 4722349cc55cSDimitry Andric } 47230b57cec5SDimitry Andric } 47240b57cec5SDimitry Andric 4725349cc55cSDimitry Andric Type *Ty = I.getType(); 47260b57cec5SDimitry Andric { 47270b57cec5SDimitry Andric const APInt *RHSC; 47280b57cec5SDimitry Andric if (match(Op1, m_APInt(RHSC))) { 47290b57cec5SDimitry Andric Value *X; 47300b57cec5SDimitry Andric const APInt *C; 4731e8d8bef9SDimitry Andric // (C - X) ^ signmaskC --> (C + signmaskC) - X 4732e8d8bef9SDimitry Andric if (RHSC->isSignMask() && match(Op0, m_Sub(m_APInt(C), m_Value(X)))) 4733e8d8bef9SDimitry Andric return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C + *RHSC), X); 47340b57cec5SDimitry Andric 4735e8d8bef9SDimitry Andric // (X + C) ^ signmaskC --> X + (C + signmaskC) 4736e8d8bef9SDimitry Andric if (RHSC->isSignMask() && match(Op0, m_Add(m_Value(X), m_APInt(C)))) 4737e8d8bef9SDimitry Andric return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C + *RHSC)); 4738e8d8bef9SDimitry Andric 4739e8d8bef9SDimitry Andric // (X | C) ^ RHSC --> X ^ (C ^ RHSC) iff X & C == 0 47400b57cec5SDimitry Andric if (match(Op0, m_Or(m_Value(X), m_APInt(C))) && 4741e8d8bef9SDimitry Andric MaskedValueIsZero(X, *C, 0, &I)) 4742e8d8bef9SDimitry Andric return BinaryOperator::CreateXor(X, ConstantInt::get(Ty, *C ^ *RHSC)); 4743e8d8bef9SDimitry Andric 4744bdd1243dSDimitry Andric // When X is a power-of-two or zero and zero input is poison: 4745bdd1243dSDimitry Andric // ctlz(i32 X) ^ 31 --> cttz(X) 4746bdd1243dSDimitry Andric // cttz(i32 X) ^ 31 --> ctlz(X) 4747bdd1243dSDimitry Andric auto *II = dyn_cast<IntrinsicInst>(Op0); 4748bdd1243dSDimitry Andric if (II && II->hasOneUse() && *RHSC == Ty->getScalarSizeInBits() - 1) { 4749bdd1243dSDimitry Andric Intrinsic::ID IID = II->getIntrinsicID(); 4750bdd1243dSDimitry Andric if ((IID == Intrinsic::ctlz || IID == Intrinsic::cttz) && 4751bdd1243dSDimitry Andric match(II->getArgOperand(1), m_One()) && 4752bdd1243dSDimitry Andric isKnownToBeAPowerOfTwo(II->getArgOperand(0), /*OrZero */ true)) { 4753bdd1243dSDimitry Andric IID = (IID == Intrinsic::ctlz) ? Intrinsic::cttz : Intrinsic::ctlz; 4754bdd1243dSDimitry Andric Function *F = Intrinsic::getDeclaration(II->getModule(), IID, Ty); 4755bdd1243dSDimitry Andric return CallInst::Create(F, {II->getArgOperand(0), Builder.getTrue()}); 4756bdd1243dSDimitry Andric } 4757bdd1243dSDimitry Andric } 4758bdd1243dSDimitry Andric 4759e8d8bef9SDimitry Andric // If RHSC is inverting the remaining bits of shifted X, 4760e8d8bef9SDimitry Andric // canonicalize to a 'not' before the shift to help SCEV and codegen: 4761e8d8bef9SDimitry Andric // (X << C) ^ RHSC --> ~X << C 4762e8d8bef9SDimitry Andric if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_APInt(C)))) && 4763349cc55cSDimitry Andric *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).shl(*C)) { 4764e8d8bef9SDimitry Andric Value *NotX = Builder.CreateNot(X); 4765e8d8bef9SDimitry Andric return BinaryOperator::CreateShl(NotX, ConstantInt::get(Ty, *C)); 47660b57cec5SDimitry Andric } 4767e8d8bef9SDimitry Andric // (X >>u C) ^ RHSC --> ~X >>u C 4768e8d8bef9SDimitry Andric if (match(Op0, m_OneUse(m_LShr(m_Value(X), m_APInt(C)))) && 4769349cc55cSDimitry Andric *RHSC == APInt::getAllOnes(Ty->getScalarSizeInBits()).lshr(*C)) { 4770e8d8bef9SDimitry Andric Value *NotX = Builder.CreateNot(X); 4771e8d8bef9SDimitry Andric return BinaryOperator::CreateLShr(NotX, ConstantInt::get(Ty, *C)); 4772e8d8bef9SDimitry Andric } 4773e8d8bef9SDimitry Andric // TODO: We could handle 'ashr' here as well. That would be matching 4774e8d8bef9SDimitry Andric // a 'not' op and moving it before the shift. Doing that requires 4775e8d8bef9SDimitry Andric // preventing the inverse fold in canShiftBinOpWithConstantRHS(). 47760b57cec5SDimitry Andric } 47775f757f3fSDimitry Andric 47785f757f3fSDimitry Andric // If we are XORing the sign bit of a floating-point value, convert 47795f757f3fSDimitry Andric // this to fneg, then cast back to integer. 47805f757f3fSDimitry Andric // 47815f757f3fSDimitry Andric // This is generous interpretation of noimplicitfloat, this is not a true 47825f757f3fSDimitry Andric // floating-point operation. 47835f757f3fSDimitry Andric // 47845f757f3fSDimitry Andric // Assumes any IEEE-represented type has the sign bit in the high bit. 47855f757f3fSDimitry Andric // TODO: Unify with APInt matcher. This version allows undef unlike m_APInt 47865f757f3fSDimitry Andric Value *CastOp; 47870fca6ea1SDimitry Andric if (match(Op0, m_ElementWiseBitCast(m_Value(CastOp))) && 47880fca6ea1SDimitry Andric match(Op1, m_SignMask()) && 47895f757f3fSDimitry Andric !Builder.GetInsertBlock()->getParent()->hasFnAttribute( 47905f757f3fSDimitry Andric Attribute::NoImplicitFloat)) { 47915f757f3fSDimitry Andric Type *EltTy = CastOp->getType()->getScalarType(); 47920fca6ea1SDimitry Andric if (EltTy->isFloatingPointTy() && EltTy->isIEEE()) { 47935f757f3fSDimitry Andric Value *FNeg = Builder.CreateFNeg(CastOp); 47945f757f3fSDimitry Andric return new BitCastInst(FNeg, I.getType()); 47955f757f3fSDimitry Andric } 47965f757f3fSDimitry Andric } 47970b57cec5SDimitry Andric } 47980b57cec5SDimitry Andric 4799e8d8bef9SDimitry Andric // FIXME: This should not be limited to scalar (pull into APInt match above). 4800e8d8bef9SDimitry Andric { 4801e8d8bef9SDimitry Andric Value *X; 4802e8d8bef9SDimitry Andric ConstantInt *C1, *C2, *C3; 48030b57cec5SDimitry Andric // ((X^C1) >> C2) ^ C3 -> (X>>C2) ^ ((C1>>C2)^C3) 4804e8d8bef9SDimitry Andric if (match(Op1, m_ConstantInt(C3)) && 4805e8d8bef9SDimitry Andric match(Op0, m_LShr(m_Xor(m_Value(X), m_ConstantInt(C1)), 4806e8d8bef9SDimitry Andric m_ConstantInt(C2))) && 4807e8d8bef9SDimitry Andric Op0->hasOneUse()) { 48080b57cec5SDimitry Andric // fold (C1 >> C2) ^ C3 48090b57cec5SDimitry Andric APInt FoldConst = C1->getValue().lshr(C2->getValue()); 48100b57cec5SDimitry Andric FoldConst ^= C3->getValue(); 48110b57cec5SDimitry Andric // Prepare the two operands. 481281ad6265SDimitry Andric auto *Opnd0 = Builder.CreateLShr(X, C2); 481381ad6265SDimitry Andric Opnd0->takeName(Op0); 4814e8d8bef9SDimitry Andric return BinaryOperator::CreateXor(Opnd0, ConstantInt::get(Ty, FoldConst)); 48150b57cec5SDimitry Andric } 48160b57cec5SDimitry Andric } 48170b57cec5SDimitry Andric 48180b57cec5SDimitry Andric if (Instruction *FoldedLogic = foldBinOpIntoSelectOrPhi(I)) 48190b57cec5SDimitry Andric return FoldedLogic; 48200b57cec5SDimitry Andric 48210b57cec5SDimitry Andric // Y ^ (X | Y) --> X & ~Y 48220b57cec5SDimitry Andric // Y ^ (Y | X) --> X & ~Y 48230b57cec5SDimitry Andric if (match(Op1, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op0))))) 48240b57cec5SDimitry Andric return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op0)); 48250b57cec5SDimitry Andric // (X | Y) ^ Y --> X & ~Y 48260b57cec5SDimitry Andric // (Y | X) ^ Y --> X & ~Y 48270b57cec5SDimitry Andric if (match(Op0, m_OneUse(m_c_Or(m_Value(X), m_Specific(Op1))))) 48280b57cec5SDimitry Andric return BinaryOperator::CreateAnd(X, Builder.CreateNot(Op1)); 48290b57cec5SDimitry Andric 48300b57cec5SDimitry Andric // Y ^ (X & Y) --> ~X & Y 48310b57cec5SDimitry Andric // Y ^ (Y & X) --> ~X & Y 48320b57cec5SDimitry Andric if (match(Op1, m_OneUse(m_c_And(m_Value(X), m_Specific(Op0))))) 48330b57cec5SDimitry Andric return BinaryOperator::CreateAnd(Op0, Builder.CreateNot(X)); 48340b57cec5SDimitry Andric // (X & Y) ^ Y --> ~X & Y 48350b57cec5SDimitry Andric // (Y & X) ^ Y --> ~X & Y 48360b57cec5SDimitry Andric // Canonical form is (X & C) ^ C; don't touch that. 48370b57cec5SDimitry Andric // TODO: A 'not' op is better for analysis and codegen, but demanded bits must 48380b57cec5SDimitry Andric // be fixed to prefer that (otherwise we get infinite looping). 48390b57cec5SDimitry Andric if (!match(Op1, m_Constant()) && 48400b57cec5SDimitry Andric match(Op0, m_OneUse(m_c_And(m_Value(X), m_Specific(Op1))))) 48410b57cec5SDimitry Andric return BinaryOperator::CreateAnd(Op1, Builder.CreateNot(X)); 48420b57cec5SDimitry Andric 48430b57cec5SDimitry Andric Value *A, *B, *C; 48440b57cec5SDimitry Andric // (A ^ B) ^ (A | C) --> (~A & C) ^ B -- There are 4 commuted variants. 48450b57cec5SDimitry Andric if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 48460b57cec5SDimitry Andric m_OneUse(m_c_Or(m_Deferred(A), m_Value(C)))))) 48470b57cec5SDimitry Andric return BinaryOperator::CreateXor( 48480b57cec5SDimitry Andric Builder.CreateAnd(Builder.CreateNot(A), C), B); 48490b57cec5SDimitry Andric 48500b57cec5SDimitry Andric // (A ^ B) ^ (B | C) --> (~B & C) ^ A -- There are 4 commuted variants. 48510b57cec5SDimitry Andric if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_Value(A), m_Value(B))), 48520b57cec5SDimitry Andric m_OneUse(m_c_Or(m_Deferred(B), m_Value(C)))))) 48530b57cec5SDimitry Andric return BinaryOperator::CreateXor( 48540b57cec5SDimitry Andric Builder.CreateAnd(Builder.CreateNot(B), C), A); 48550b57cec5SDimitry Andric 48560b57cec5SDimitry Andric // (A & B) ^ (A ^ B) -> (A | B) 48570b57cec5SDimitry Andric if (match(Op0, m_And(m_Value(A), m_Value(B))) && 48580b57cec5SDimitry Andric match(Op1, m_c_Xor(m_Specific(A), m_Specific(B)))) 48590b57cec5SDimitry Andric return BinaryOperator::CreateOr(A, B); 48600b57cec5SDimitry Andric // (A ^ B) ^ (A & B) -> (A | B) 48610b57cec5SDimitry Andric if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 48620b57cec5SDimitry Andric match(Op1, m_c_And(m_Specific(A), m_Specific(B)))) 48630b57cec5SDimitry Andric return BinaryOperator::CreateOr(A, B); 48640b57cec5SDimitry Andric 48650b57cec5SDimitry Andric // (A & ~B) ^ ~A -> ~(A & B) 48660b57cec5SDimitry Andric // (~B & A) ^ ~A -> ~(A & B) 48670b57cec5SDimitry Andric if (match(Op0, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 48680b57cec5SDimitry Andric match(Op1, m_Not(m_Specific(A)))) 48690b57cec5SDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(A, B)); 48700b57cec5SDimitry Andric 4871e8d8bef9SDimitry Andric // (~A & B) ^ A --> A | B -- There are 4 commuted variants. 4872e8d8bef9SDimitry Andric if (match(&I, m_c_Xor(m_c_And(m_Not(m_Value(A)), m_Value(B)), m_Deferred(A)))) 4873e8d8bef9SDimitry Andric return BinaryOperator::CreateOr(A, B); 4874e8d8bef9SDimitry Andric 48754824e7fdSDimitry Andric // (~A | B) ^ A --> ~(A & B) 48764824e7fdSDimitry Andric if (match(Op0, m_OneUse(m_c_Or(m_Not(m_Specific(Op1)), m_Value(B))))) 48774824e7fdSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(Op1, B)); 48784824e7fdSDimitry Andric 48794824e7fdSDimitry Andric // A ^ (~A | B) --> ~(A & B) 48804824e7fdSDimitry Andric if (match(Op1, m_OneUse(m_c_Or(m_Not(m_Specific(Op0)), m_Value(B))))) 48814824e7fdSDimitry Andric return BinaryOperator::CreateNot(Builder.CreateAnd(Op0, B)); 48824824e7fdSDimitry Andric 4883e8d8bef9SDimitry Andric // (A | B) ^ (A | C) --> (B ^ C) & ~A -- There are 4 commuted variants. 4884e8d8bef9SDimitry Andric // TODO: Loosen one-use restriction if common operand is a constant. 4885e8d8bef9SDimitry Andric Value *D; 4886e8d8bef9SDimitry Andric if (match(Op0, m_OneUse(m_Or(m_Value(A), m_Value(B)))) && 4887e8d8bef9SDimitry Andric match(Op1, m_OneUse(m_Or(m_Value(C), m_Value(D))))) { 4888e8d8bef9SDimitry Andric if (B == C || B == D) 4889e8d8bef9SDimitry Andric std::swap(A, B); 4890e8d8bef9SDimitry Andric if (A == C) 4891e8d8bef9SDimitry Andric std::swap(C, D); 4892e8d8bef9SDimitry Andric if (A == D) { 4893e8d8bef9SDimitry Andric Value *NotA = Builder.CreateNot(A); 4894e8d8bef9SDimitry Andric return BinaryOperator::CreateAnd(Builder.CreateXor(B, C), NotA); 4895e8d8bef9SDimitry Andric } 4896e8d8bef9SDimitry Andric } 4897e8d8bef9SDimitry Andric 489806c3fb27SDimitry Andric // (A & B) ^ (A | C) --> A ? ~B : C -- There are 4 commuted variants. 489906c3fb27SDimitry Andric if (I.getType()->isIntOrIntVectorTy(1) && 490006c3fb27SDimitry Andric match(Op0, m_OneUse(m_LogicalAnd(m_Value(A), m_Value(B)))) && 490106c3fb27SDimitry Andric match(Op1, m_OneUse(m_LogicalOr(m_Value(C), m_Value(D))))) { 490206c3fb27SDimitry Andric bool NeedFreeze = isa<SelectInst>(Op0) && isa<SelectInst>(Op1) && B == D; 490306c3fb27SDimitry Andric if (B == C || B == D) 490406c3fb27SDimitry Andric std::swap(A, B); 490506c3fb27SDimitry Andric if (A == C) 490606c3fb27SDimitry Andric std::swap(C, D); 490706c3fb27SDimitry Andric if (A == D) { 490806c3fb27SDimitry Andric if (NeedFreeze) 490906c3fb27SDimitry Andric A = Builder.CreateFreeze(A); 491006c3fb27SDimitry Andric Value *NotB = Builder.CreateNot(B); 491106c3fb27SDimitry Andric return SelectInst::Create(A, NotB, C); 491206c3fb27SDimitry Andric } 491306c3fb27SDimitry Andric } 491406c3fb27SDimitry Andric 49150b57cec5SDimitry Andric if (auto *LHS = dyn_cast<ICmpInst>(I.getOperand(0))) 49160b57cec5SDimitry Andric if (auto *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) 49178bcb0991SDimitry Andric if (Value *V = foldXorOfICmps(LHS, RHS, I)) 49180b57cec5SDimitry Andric return replaceInstUsesWith(I, V); 49190b57cec5SDimitry Andric 49200b57cec5SDimitry Andric if (Instruction *CastedXor = foldCastedBitwiseLogic(I)) 49210b57cec5SDimitry Andric return CastedXor; 49220b57cec5SDimitry Andric 4923fe6060f1SDimitry Andric if (Instruction *Abs = canonicalizeAbs(I, Builder)) 4924fe6060f1SDimitry Andric return Abs; 4925fe6060f1SDimitry Andric 4926e8d8bef9SDimitry Andric // Otherwise, if all else failed, try to hoist the xor-by-constant: 4927e8d8bef9SDimitry Andric // (X ^ C) ^ Y --> (X ^ Y) ^ C 4928e8d8bef9SDimitry Andric // Just like we do in other places, we completely avoid the fold 4929e8d8bef9SDimitry Andric // for constantexprs, at least to avoid endless combine loop. 4930e8d8bef9SDimitry Andric if (match(&I, m_c_Xor(m_OneUse(m_Xor(m_CombineAnd(m_Value(X), 4931e8d8bef9SDimitry Andric m_Unless(m_ConstantExpr())), 4932e8d8bef9SDimitry Andric m_ImmConstant(C1))), 4933e8d8bef9SDimitry Andric m_Value(Y)))) 4934e8d8bef9SDimitry Andric return BinaryOperator::CreateXor(Builder.CreateXor(X, Y), C1); 4935e8d8bef9SDimitry Andric 4936bdd1243dSDimitry Andric if (Instruction *R = reassociateForUses(I, Builder)) 4937bdd1243dSDimitry Andric return R; 4938bdd1243dSDimitry Andric 4939bdd1243dSDimitry Andric if (Instruction *Canonicalized = canonicalizeLogicFirst(I, Builder)) 4940bdd1243dSDimitry Andric return Canonicalized; 4941bdd1243dSDimitry Andric 4942bdd1243dSDimitry Andric if (Instruction *Folded = foldLogicOfIsFPClass(I, Op0, Op1)) 4943bdd1243dSDimitry Andric return Folded; 4944bdd1243dSDimitry Andric 4945bdd1243dSDimitry Andric if (Instruction *Folded = canonicalizeConditionalNegationViaMathToSelect(I)) 4946bdd1243dSDimitry Andric return Folded; 4947bdd1243dSDimitry Andric 494806c3fb27SDimitry Andric if (Instruction *Res = foldBinOpOfDisplacedShifts(I)) 494906c3fb27SDimitry Andric return Res; 495006c3fb27SDimitry Andric 4951297eecfbSDimitry Andric if (Instruction *Res = foldBitwiseLogicWithIntrinsics(I, Builder)) 4952297eecfbSDimitry Andric return Res; 4953297eecfbSDimitry Andric 49540b57cec5SDimitry Andric return nullptr; 49550b57cec5SDimitry Andric } 4956