xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements the visit functions for add, fadd, sub, and fsub.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "InstCombineInternal.h"
140b57cec5SDimitry Andric #include "llvm/ADT/APFloat.h"
150b57cec5SDimitry Andric #include "llvm/ADT/APInt.h"
160b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
170b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
180b57cec5SDimitry Andric #include "llvm/Analysis/InstructionSimplify.h"
190b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
200b57cec5SDimitry Andric #include "llvm/IR/Constant.h"
210b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
220b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
230b57cec5SDimitry Andric #include "llvm/IR/Instruction.h"
240b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
250b57cec5SDimitry Andric #include "llvm/IR/Operator.h"
260b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h"
270b57cec5SDimitry Andric #include "llvm/IR/Type.h"
280b57cec5SDimitry Andric #include "llvm/IR/Value.h"
290b57cec5SDimitry Andric #include "llvm/Support/AlignOf.h"
300b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
310b57cec5SDimitry Andric #include "llvm/Support/KnownBits.h"
32e8d8bef9SDimitry Andric #include "llvm/Transforms/InstCombine/InstCombiner.h"
330b57cec5SDimitry Andric #include <cassert>
340b57cec5SDimitry Andric #include <utility>
350b57cec5SDimitry Andric 
360b57cec5SDimitry Andric using namespace llvm;
370b57cec5SDimitry Andric using namespace PatternMatch;
380b57cec5SDimitry Andric 
390b57cec5SDimitry Andric #define DEBUG_TYPE "instcombine"
400b57cec5SDimitry Andric 
410b57cec5SDimitry Andric namespace {
420b57cec5SDimitry Andric 
430b57cec5SDimitry Andric   /// Class representing coefficient of floating-point addend.
440b57cec5SDimitry Andric   /// This class needs to be highly efficient, which is especially true for
450b57cec5SDimitry Andric   /// the constructor. As of I write this comment, the cost of the default
460b57cec5SDimitry Andric   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
470b57cec5SDimitry Andric   /// perform write-merging).
480b57cec5SDimitry Andric   ///
490b57cec5SDimitry Andric   class FAddendCoef {
500b57cec5SDimitry Andric   public:
510b57cec5SDimitry Andric     // The constructor has to initialize a APFloat, which is unnecessary for
520b57cec5SDimitry Andric     // most addends which have coefficient either 1 or -1. So, the constructor
530b57cec5SDimitry Andric     // is expensive. In order to avoid the cost of the constructor, we should
540b57cec5SDimitry Andric     // reuse some instances whenever possible. The pre-created instances
550b57cec5SDimitry Andric     // FAddCombine::Add[0-5] embodies this idea.
560b57cec5SDimitry Andric     FAddendCoef() = default;
570b57cec5SDimitry Andric     ~FAddendCoef();
580b57cec5SDimitry Andric 
590b57cec5SDimitry Andric     // If possible, don't define operator+/operator- etc because these
600b57cec5SDimitry Andric     // operators inevitably call FAddendCoef's constructor which is not cheap.
610b57cec5SDimitry Andric     void operator=(const FAddendCoef &A);
620b57cec5SDimitry Andric     void operator+=(const FAddendCoef &A);
630b57cec5SDimitry Andric     void operator*=(const FAddendCoef &S);
640b57cec5SDimitry Andric 
650b57cec5SDimitry Andric     void set(short C) {
660b57cec5SDimitry Andric       assert(!insaneIntVal(C) && "Insane coefficient");
670b57cec5SDimitry Andric       IsFp = false; IntVal = C;
680b57cec5SDimitry Andric     }
690b57cec5SDimitry Andric 
700b57cec5SDimitry Andric     void set(const APFloat& C);
710b57cec5SDimitry Andric 
720b57cec5SDimitry Andric     void negate();
730b57cec5SDimitry Andric 
740b57cec5SDimitry Andric     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
750b57cec5SDimitry Andric     Value *getValue(Type *) const;
760b57cec5SDimitry Andric 
770b57cec5SDimitry Andric     bool isOne() const { return isInt() && IntVal == 1; }
780b57cec5SDimitry Andric     bool isTwo() const { return isInt() && IntVal == 2; }
790b57cec5SDimitry Andric     bool isMinusOne() const { return isInt() && IntVal == -1; }
800b57cec5SDimitry Andric     bool isMinusTwo() const { return isInt() && IntVal == -2; }
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric   private:
830b57cec5SDimitry Andric     bool insaneIntVal(int V) { return V > 4 || V < -4; }
840b57cec5SDimitry Andric 
85e8d8bef9SDimitry Andric     APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
860b57cec5SDimitry Andric 
87e8d8bef9SDimitry Andric     const APFloat *getFpValPtr() const {
88e8d8bef9SDimitry Andric       return reinterpret_cast<const APFloat *>(&FpValBuf);
89e8d8bef9SDimitry Andric     }
900b57cec5SDimitry Andric 
910b57cec5SDimitry Andric     const APFloat &getFpVal() const {
920b57cec5SDimitry Andric       assert(IsFp && BufHasFpVal && "Incorret state");
930b57cec5SDimitry Andric       return *getFpValPtr();
940b57cec5SDimitry Andric     }
950b57cec5SDimitry Andric 
960b57cec5SDimitry Andric     APFloat &getFpVal() {
970b57cec5SDimitry Andric       assert(IsFp && BufHasFpVal && "Incorret state");
980b57cec5SDimitry Andric       return *getFpValPtr();
990b57cec5SDimitry Andric     }
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric     bool isInt() const { return !IsFp; }
1020b57cec5SDimitry Andric 
1030b57cec5SDimitry Andric     // If the coefficient is represented by an integer, promote it to a
1040b57cec5SDimitry Andric     // floating point.
1050b57cec5SDimitry Andric     void convertToFpType(const fltSemantics &Sem);
1060b57cec5SDimitry Andric 
1070b57cec5SDimitry Andric     // Construct an APFloat from a signed integer.
1080b57cec5SDimitry Andric     // TODO: We should get rid of this function when APFloat can be constructed
1090b57cec5SDimitry Andric     //       from an *SIGNED* integer.
1100b57cec5SDimitry Andric     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
1110b57cec5SDimitry Andric 
1120b57cec5SDimitry Andric     bool IsFp = false;
1130b57cec5SDimitry Andric 
1140b57cec5SDimitry Andric     // True iff FpValBuf contains an instance of APFloat.
1150b57cec5SDimitry Andric     bool BufHasFpVal = false;
1160b57cec5SDimitry Andric 
1170b57cec5SDimitry Andric     // The integer coefficient of an individual addend is either 1 or -1,
1180b57cec5SDimitry Andric     // and we try to simplify at most 4 addends from neighboring at most
1190b57cec5SDimitry Andric     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
1200b57cec5SDimitry Andric     // is overkill of this end.
1210b57cec5SDimitry Andric     short IntVal = 0;
1220b57cec5SDimitry Andric 
1230b57cec5SDimitry Andric     AlignedCharArrayUnion<APFloat> FpValBuf;
1240b57cec5SDimitry Andric   };
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric   /// FAddend is used to represent floating-point addend. An addend is
1270b57cec5SDimitry Andric   /// represented as <C, V>, where the V is a symbolic value, and C is a
1280b57cec5SDimitry Andric   /// constant coefficient. A constant addend is represented as <C, 0>.
1290b57cec5SDimitry Andric   class FAddend {
1300b57cec5SDimitry Andric   public:
1310b57cec5SDimitry Andric     FAddend() = default;
1320b57cec5SDimitry Andric 
1330b57cec5SDimitry Andric     void operator+=(const FAddend &T) {
1340b57cec5SDimitry Andric       assert((Val == T.Val) && "Symbolic-values disagree");
1350b57cec5SDimitry Andric       Coeff += T.Coeff;
1360b57cec5SDimitry Andric     }
1370b57cec5SDimitry Andric 
1380b57cec5SDimitry Andric     Value *getSymVal() const { return Val; }
1390b57cec5SDimitry Andric     const FAddendCoef &getCoef() const { return Coeff; }
1400b57cec5SDimitry Andric 
1410b57cec5SDimitry Andric     bool isConstant() const { return Val == nullptr; }
1420b57cec5SDimitry Andric     bool isZero() const { return Coeff.isZero(); }
1430b57cec5SDimitry Andric 
1440b57cec5SDimitry Andric     void set(short Coefficient, Value *V) {
1450b57cec5SDimitry Andric       Coeff.set(Coefficient);
1460b57cec5SDimitry Andric       Val = V;
1470b57cec5SDimitry Andric     }
1480b57cec5SDimitry Andric     void set(const APFloat &Coefficient, Value *V) {
1490b57cec5SDimitry Andric       Coeff.set(Coefficient);
1500b57cec5SDimitry Andric       Val = V;
1510b57cec5SDimitry Andric     }
1520b57cec5SDimitry Andric     void set(const ConstantFP *Coefficient, Value *V) {
1530b57cec5SDimitry Andric       Coeff.set(Coefficient->getValueAPF());
1540b57cec5SDimitry Andric       Val = V;
1550b57cec5SDimitry Andric     }
1560b57cec5SDimitry Andric 
1570b57cec5SDimitry Andric     void negate() { Coeff.negate(); }
1580b57cec5SDimitry Andric 
1590b57cec5SDimitry Andric     /// Drill down the U-D chain one step to find the definition of V, and
1600b57cec5SDimitry Andric     /// try to break the definition into one or two addends.
1610b57cec5SDimitry Andric     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
1620b57cec5SDimitry Andric 
1630b57cec5SDimitry Andric     /// Similar to FAddend::drillDownOneStep() except that the value being
1640b57cec5SDimitry Andric     /// splitted is the addend itself.
1650b57cec5SDimitry Andric     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
1660b57cec5SDimitry Andric 
1670b57cec5SDimitry Andric   private:
1680b57cec5SDimitry Andric     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
1690b57cec5SDimitry Andric 
1700b57cec5SDimitry Andric     // This addend has the value of "Coeff * Val".
1710b57cec5SDimitry Andric     Value *Val = nullptr;
1720b57cec5SDimitry Andric     FAddendCoef Coeff;
1730b57cec5SDimitry Andric   };
1740b57cec5SDimitry Andric 
1750b57cec5SDimitry Andric   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
1760b57cec5SDimitry Andric   /// with its neighboring at most two instructions.
1770b57cec5SDimitry Andric   ///
1780b57cec5SDimitry Andric   class FAddCombine {
1790b57cec5SDimitry Andric   public:
1800b57cec5SDimitry Andric     FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
1810b57cec5SDimitry Andric 
1820b57cec5SDimitry Andric     Value *simplify(Instruction *FAdd);
1830b57cec5SDimitry Andric 
1840b57cec5SDimitry Andric   private:
1850b57cec5SDimitry Andric     using AddendVect = SmallVector<const FAddend *, 4>;
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
1880b57cec5SDimitry Andric 
1890b57cec5SDimitry Andric     /// Convert given addend to a Value
1900b57cec5SDimitry Andric     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
1910b57cec5SDimitry Andric 
1920b57cec5SDimitry Andric     /// Return the number of instructions needed to emit the N-ary addition.
1930b57cec5SDimitry Andric     unsigned calcInstrNumber(const AddendVect& Vect);
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric     Value *createFSub(Value *Opnd0, Value *Opnd1);
1960b57cec5SDimitry Andric     Value *createFAdd(Value *Opnd0, Value *Opnd1);
1970b57cec5SDimitry Andric     Value *createFMul(Value *Opnd0, Value *Opnd1);
1980b57cec5SDimitry Andric     Value *createFNeg(Value *V);
1990b57cec5SDimitry Andric     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
2000b57cec5SDimitry Andric     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
2010b57cec5SDimitry Andric 
2020b57cec5SDimitry Andric      // Debugging stuff are clustered here.
2030b57cec5SDimitry Andric     #ifndef NDEBUG
2040b57cec5SDimitry Andric       unsigned CreateInstrNum;
2050b57cec5SDimitry Andric       void initCreateInstNum() { CreateInstrNum = 0; }
2060b57cec5SDimitry Andric       void incCreateInstNum() { CreateInstrNum++; }
2070b57cec5SDimitry Andric     #else
2080b57cec5SDimitry Andric       void initCreateInstNum() {}
2090b57cec5SDimitry Andric       void incCreateInstNum() {}
2100b57cec5SDimitry Andric     #endif
2110b57cec5SDimitry Andric 
2120b57cec5SDimitry Andric     InstCombiner::BuilderTy &Builder;
2130b57cec5SDimitry Andric     Instruction *Instr = nullptr;
2140b57cec5SDimitry Andric   };
2150b57cec5SDimitry Andric 
2160b57cec5SDimitry Andric } // end anonymous namespace
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
2190b57cec5SDimitry Andric //
2200b57cec5SDimitry Andric // Implementation of
2210b57cec5SDimitry Andric //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
2220b57cec5SDimitry Andric //
2230b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
2240b57cec5SDimitry Andric FAddendCoef::~FAddendCoef() {
2250b57cec5SDimitry Andric   if (BufHasFpVal)
2260b57cec5SDimitry Andric     getFpValPtr()->~APFloat();
2270b57cec5SDimitry Andric }
2280b57cec5SDimitry Andric 
2290b57cec5SDimitry Andric void FAddendCoef::set(const APFloat& C) {
2300b57cec5SDimitry Andric   APFloat *P = getFpValPtr();
2310b57cec5SDimitry Andric 
2320b57cec5SDimitry Andric   if (isInt()) {
2330b57cec5SDimitry Andric     // As the buffer is meanless byte stream, we cannot call
2340b57cec5SDimitry Andric     // APFloat::operator=().
2350b57cec5SDimitry Andric     new(P) APFloat(C);
2360b57cec5SDimitry Andric   } else
2370b57cec5SDimitry Andric     *P = C;
2380b57cec5SDimitry Andric 
2390b57cec5SDimitry Andric   IsFp = BufHasFpVal = true;
2400b57cec5SDimitry Andric }
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
2430b57cec5SDimitry Andric   if (!isInt())
2440b57cec5SDimitry Andric     return;
2450b57cec5SDimitry Andric 
2460b57cec5SDimitry Andric   APFloat *P = getFpValPtr();
2470b57cec5SDimitry Andric   if (IntVal > 0)
2480b57cec5SDimitry Andric     new(P) APFloat(Sem, IntVal);
2490b57cec5SDimitry Andric   else {
2500b57cec5SDimitry Andric     new(P) APFloat(Sem, 0 - IntVal);
2510b57cec5SDimitry Andric     P->changeSign();
2520b57cec5SDimitry Andric   }
2530b57cec5SDimitry Andric   IsFp = BufHasFpVal = true;
2540b57cec5SDimitry Andric }
2550b57cec5SDimitry Andric 
2560b57cec5SDimitry Andric APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
2570b57cec5SDimitry Andric   if (Val >= 0)
2580b57cec5SDimitry Andric     return APFloat(Sem, Val);
2590b57cec5SDimitry Andric 
2600b57cec5SDimitry Andric   APFloat T(Sem, 0 - Val);
2610b57cec5SDimitry Andric   T.changeSign();
2620b57cec5SDimitry Andric 
2630b57cec5SDimitry Andric   return T;
2640b57cec5SDimitry Andric }
2650b57cec5SDimitry Andric 
2660b57cec5SDimitry Andric void FAddendCoef::operator=(const FAddendCoef &That) {
2670b57cec5SDimitry Andric   if (That.isInt())
2680b57cec5SDimitry Andric     set(That.IntVal);
2690b57cec5SDimitry Andric   else
2700b57cec5SDimitry Andric     set(That.getFpVal());
2710b57cec5SDimitry Andric }
2720b57cec5SDimitry Andric 
2730b57cec5SDimitry Andric void FAddendCoef::operator+=(const FAddendCoef &That) {
2745ffd83dbSDimitry Andric   RoundingMode RndMode = RoundingMode::NearestTiesToEven;
2750b57cec5SDimitry Andric   if (isInt() == That.isInt()) {
2760b57cec5SDimitry Andric     if (isInt())
2770b57cec5SDimitry Andric       IntVal += That.IntVal;
2780b57cec5SDimitry Andric     else
2790b57cec5SDimitry Andric       getFpVal().add(That.getFpVal(), RndMode);
2800b57cec5SDimitry Andric     return;
2810b57cec5SDimitry Andric   }
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   if (isInt()) {
2840b57cec5SDimitry Andric     const APFloat &T = That.getFpVal();
2850b57cec5SDimitry Andric     convertToFpType(T.getSemantics());
2860b57cec5SDimitry Andric     getFpVal().add(T, RndMode);
2870b57cec5SDimitry Andric     return;
2880b57cec5SDimitry Andric   }
2890b57cec5SDimitry Andric 
2900b57cec5SDimitry Andric   APFloat &T = getFpVal();
2910b57cec5SDimitry Andric   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
2920b57cec5SDimitry Andric }
2930b57cec5SDimitry Andric 
2940b57cec5SDimitry Andric void FAddendCoef::operator*=(const FAddendCoef &That) {
2950b57cec5SDimitry Andric   if (That.isOne())
2960b57cec5SDimitry Andric     return;
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric   if (That.isMinusOne()) {
2990b57cec5SDimitry Andric     negate();
3000b57cec5SDimitry Andric     return;
3010b57cec5SDimitry Andric   }
3020b57cec5SDimitry Andric 
3030b57cec5SDimitry Andric   if (isInt() && That.isInt()) {
3040b57cec5SDimitry Andric     int Res = IntVal * (int)That.IntVal;
3050b57cec5SDimitry Andric     assert(!insaneIntVal(Res) && "Insane int value");
3060b57cec5SDimitry Andric     IntVal = Res;
3070b57cec5SDimitry Andric     return;
3080b57cec5SDimitry Andric   }
3090b57cec5SDimitry Andric 
3100b57cec5SDimitry Andric   const fltSemantics &Semantic =
3110b57cec5SDimitry Andric     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric   if (isInt())
3140b57cec5SDimitry Andric     convertToFpType(Semantic);
3150b57cec5SDimitry Andric   APFloat &F0 = getFpVal();
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric   if (That.isInt())
3180b57cec5SDimitry Andric     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
3190b57cec5SDimitry Andric                 APFloat::rmNearestTiesToEven);
3200b57cec5SDimitry Andric   else
3210b57cec5SDimitry Andric     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
3220b57cec5SDimitry Andric }
3230b57cec5SDimitry Andric 
3240b57cec5SDimitry Andric void FAddendCoef::negate() {
3250b57cec5SDimitry Andric   if (isInt())
3260b57cec5SDimitry Andric     IntVal = 0 - IntVal;
3270b57cec5SDimitry Andric   else
3280b57cec5SDimitry Andric     getFpVal().changeSign();
3290b57cec5SDimitry Andric }
3300b57cec5SDimitry Andric 
3310b57cec5SDimitry Andric Value *FAddendCoef::getValue(Type *Ty) const {
3320b57cec5SDimitry Andric   return isInt() ?
3330b57cec5SDimitry Andric     ConstantFP::get(Ty, float(IntVal)) :
3340b57cec5SDimitry Andric     ConstantFP::get(Ty->getContext(), getFpVal());
3350b57cec5SDimitry Andric }
3360b57cec5SDimitry Andric 
3370b57cec5SDimitry Andric // The definition of <Val>     Addends
3380b57cec5SDimitry Andric // =========================================
3390b57cec5SDimitry Andric //  A + B                     <1, A>, <1,B>
3400b57cec5SDimitry Andric //  A - B                     <1, A>, <1,B>
3410b57cec5SDimitry Andric //  0 - B                     <-1, B>
3420b57cec5SDimitry Andric //  C * A,                    <C, A>
3430b57cec5SDimitry Andric //  A + C                     <1, A> <C, NULL>
3440b57cec5SDimitry Andric //  0 +/- 0                   <0, NULL> (corner case)
3450b57cec5SDimitry Andric //
3460b57cec5SDimitry Andric // Legend: A and B are not constant, C is constant
3470b57cec5SDimitry Andric unsigned FAddend::drillValueDownOneStep
3480b57cec5SDimitry Andric   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
3490b57cec5SDimitry Andric   Instruction *I = nullptr;
3500b57cec5SDimitry Andric   if (!Val || !(I = dyn_cast<Instruction>(Val)))
3510b57cec5SDimitry Andric     return 0;
3520b57cec5SDimitry Andric 
3530b57cec5SDimitry Andric   unsigned Opcode = I->getOpcode();
3540b57cec5SDimitry Andric 
3550b57cec5SDimitry Andric   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
3560b57cec5SDimitry Andric     ConstantFP *C0, *C1;
3570b57cec5SDimitry Andric     Value *Opnd0 = I->getOperand(0);
3580b57cec5SDimitry Andric     Value *Opnd1 = I->getOperand(1);
3590b57cec5SDimitry Andric     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
3600b57cec5SDimitry Andric       Opnd0 = nullptr;
3610b57cec5SDimitry Andric 
3620b57cec5SDimitry Andric     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
3630b57cec5SDimitry Andric       Opnd1 = nullptr;
3640b57cec5SDimitry Andric 
3650b57cec5SDimitry Andric     if (Opnd0) {
3660b57cec5SDimitry Andric       if (!C0)
3670b57cec5SDimitry Andric         Addend0.set(1, Opnd0);
3680b57cec5SDimitry Andric       else
3690b57cec5SDimitry Andric         Addend0.set(C0, nullptr);
3700b57cec5SDimitry Andric     }
3710b57cec5SDimitry Andric 
3720b57cec5SDimitry Andric     if (Opnd1) {
3730b57cec5SDimitry Andric       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
3740b57cec5SDimitry Andric       if (!C1)
3750b57cec5SDimitry Andric         Addend.set(1, Opnd1);
3760b57cec5SDimitry Andric       else
3770b57cec5SDimitry Andric         Addend.set(C1, nullptr);
3780b57cec5SDimitry Andric       if (Opcode == Instruction::FSub)
3790b57cec5SDimitry Andric         Addend.negate();
3800b57cec5SDimitry Andric     }
3810b57cec5SDimitry Andric 
3820b57cec5SDimitry Andric     if (Opnd0 || Opnd1)
3830b57cec5SDimitry Andric       return Opnd0 && Opnd1 ? 2 : 1;
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric     // Both operands are zero. Weird!
3860b57cec5SDimitry Andric     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
3870b57cec5SDimitry Andric     return 1;
3880b57cec5SDimitry Andric   }
3890b57cec5SDimitry Andric 
3900b57cec5SDimitry Andric   if (I->getOpcode() == Instruction::FMul) {
3910b57cec5SDimitry Andric     Value *V0 = I->getOperand(0);
3920b57cec5SDimitry Andric     Value *V1 = I->getOperand(1);
3930b57cec5SDimitry Andric     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
3940b57cec5SDimitry Andric       Addend0.set(C, V1);
3950b57cec5SDimitry Andric       return 1;
3960b57cec5SDimitry Andric     }
3970b57cec5SDimitry Andric 
3980b57cec5SDimitry Andric     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
3990b57cec5SDimitry Andric       Addend0.set(C, V0);
4000b57cec5SDimitry Andric       return 1;
4010b57cec5SDimitry Andric     }
4020b57cec5SDimitry Andric   }
4030b57cec5SDimitry Andric 
4040b57cec5SDimitry Andric   return 0;
4050b57cec5SDimitry Andric }
4060b57cec5SDimitry Andric 
4070b57cec5SDimitry Andric // Try to break *this* addend into two addends. e.g. Suppose this addend is
4080b57cec5SDimitry Andric // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
4090b57cec5SDimitry Andric // i.e. <2.3, X> and <2.3, Y>.
4100b57cec5SDimitry Andric unsigned FAddend::drillAddendDownOneStep
4110b57cec5SDimitry Andric   (FAddend &Addend0, FAddend &Addend1) const {
4120b57cec5SDimitry Andric   if (isConstant())
4130b57cec5SDimitry Andric     return 0;
4140b57cec5SDimitry Andric 
4150b57cec5SDimitry Andric   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
4160b57cec5SDimitry Andric   if (!BreakNum || Coeff.isOne())
4170b57cec5SDimitry Andric     return BreakNum;
4180b57cec5SDimitry Andric 
4190b57cec5SDimitry Andric   Addend0.Scale(Coeff);
4200b57cec5SDimitry Andric 
4210b57cec5SDimitry Andric   if (BreakNum == 2)
4220b57cec5SDimitry Andric     Addend1.Scale(Coeff);
4230b57cec5SDimitry Andric 
4240b57cec5SDimitry Andric   return BreakNum;
4250b57cec5SDimitry Andric }
4260b57cec5SDimitry Andric 
4270b57cec5SDimitry Andric Value *FAddCombine::simplify(Instruction *I) {
4280b57cec5SDimitry Andric   assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
4290b57cec5SDimitry Andric          "Expected 'reassoc'+'nsz' instruction");
4300b57cec5SDimitry Andric 
4310b57cec5SDimitry Andric   // Currently we are not able to handle vector type.
4320b57cec5SDimitry Andric   if (I->getType()->isVectorTy())
4330b57cec5SDimitry Andric     return nullptr;
4340b57cec5SDimitry Andric 
4350b57cec5SDimitry Andric   assert((I->getOpcode() == Instruction::FAdd ||
4360b57cec5SDimitry Andric           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
4370b57cec5SDimitry Andric 
4380b57cec5SDimitry Andric   // Save the instruction before calling other member-functions.
4390b57cec5SDimitry Andric   Instr = I;
4400b57cec5SDimitry Andric 
4410b57cec5SDimitry Andric   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
4420b57cec5SDimitry Andric 
4430b57cec5SDimitry Andric   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
4440b57cec5SDimitry Andric 
4450b57cec5SDimitry Andric   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
4460b57cec5SDimitry Andric   unsigned Opnd0_ExpNum = 0;
4470b57cec5SDimitry Andric   unsigned Opnd1_ExpNum = 0;
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric   if (!Opnd0.isConstant())
4500b57cec5SDimitry Andric     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
4510b57cec5SDimitry Andric 
4520b57cec5SDimitry Andric   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
4530b57cec5SDimitry Andric   if (OpndNum == 2 && !Opnd1.isConstant())
4540b57cec5SDimitry Andric     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
4550b57cec5SDimitry Andric 
4560b57cec5SDimitry Andric   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
4570b57cec5SDimitry Andric   if (Opnd0_ExpNum && Opnd1_ExpNum) {
4580b57cec5SDimitry Andric     AddendVect AllOpnds;
4590b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd0_0);
4600b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd1_0);
4610b57cec5SDimitry Andric     if (Opnd0_ExpNum == 2)
4620b57cec5SDimitry Andric       AllOpnds.push_back(&Opnd0_1);
4630b57cec5SDimitry Andric     if (Opnd1_ExpNum == 2)
4640b57cec5SDimitry Andric       AllOpnds.push_back(&Opnd1_1);
4650b57cec5SDimitry Andric 
4660b57cec5SDimitry Andric     // Compute instruction quota. We should save at least one instruction.
4670b57cec5SDimitry Andric     unsigned InstQuota = 0;
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric     Value *V0 = I->getOperand(0);
4700b57cec5SDimitry Andric     Value *V1 = I->getOperand(1);
4710b57cec5SDimitry Andric     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
4720b57cec5SDimitry Andric                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
4730b57cec5SDimitry Andric 
4740b57cec5SDimitry Andric     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
4750b57cec5SDimitry Andric       return R;
4760b57cec5SDimitry Andric   }
4770b57cec5SDimitry Andric 
4780b57cec5SDimitry Andric   if (OpndNum != 2) {
4790b57cec5SDimitry Andric     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
4800b57cec5SDimitry Andric     // splitted into two addends, say "V = X - Y", the instruction would have
4810b57cec5SDimitry Andric     // been optimized into "I = Y - X" in the previous steps.
4820b57cec5SDimitry Andric     //
4830b57cec5SDimitry Andric     const FAddendCoef &CE = Opnd0.getCoef();
4840b57cec5SDimitry Andric     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
4850b57cec5SDimitry Andric   }
4860b57cec5SDimitry Andric 
4870b57cec5SDimitry Andric   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
4880b57cec5SDimitry Andric   if (Opnd1_ExpNum) {
4890b57cec5SDimitry Andric     AddendVect AllOpnds;
4900b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd0);
4910b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd1_0);
4920b57cec5SDimitry Andric     if (Opnd1_ExpNum == 2)
4930b57cec5SDimitry Andric       AllOpnds.push_back(&Opnd1_1);
4940b57cec5SDimitry Andric 
4950b57cec5SDimitry Andric     if (Value *R = simplifyFAdd(AllOpnds, 1))
4960b57cec5SDimitry Andric       return R;
4970b57cec5SDimitry Andric   }
4980b57cec5SDimitry Andric 
4990b57cec5SDimitry Andric   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
5000b57cec5SDimitry Andric   if (Opnd0_ExpNum) {
5010b57cec5SDimitry Andric     AddendVect AllOpnds;
5020b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd1);
5030b57cec5SDimitry Andric     AllOpnds.push_back(&Opnd0_0);
5040b57cec5SDimitry Andric     if (Opnd0_ExpNum == 2)
5050b57cec5SDimitry Andric       AllOpnds.push_back(&Opnd0_1);
5060b57cec5SDimitry Andric 
5070b57cec5SDimitry Andric     if (Value *R = simplifyFAdd(AllOpnds, 1))
5080b57cec5SDimitry Andric       return R;
5090b57cec5SDimitry Andric   }
5100b57cec5SDimitry Andric 
5110b57cec5SDimitry Andric   return nullptr;
5120b57cec5SDimitry Andric }
5130b57cec5SDimitry Andric 
5140b57cec5SDimitry Andric Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
5150b57cec5SDimitry Andric   unsigned AddendNum = Addends.size();
5160b57cec5SDimitry Andric   assert(AddendNum <= 4 && "Too many addends");
5170b57cec5SDimitry Andric 
5180b57cec5SDimitry Andric   // For saving intermediate results;
5190b57cec5SDimitry Andric   unsigned NextTmpIdx = 0;
5200b57cec5SDimitry Andric   FAddend TmpResult[3];
5210b57cec5SDimitry Andric 
5220b57cec5SDimitry Andric   // Simplified addends are placed <SimpVect>.
5230b57cec5SDimitry Andric   AddendVect SimpVect;
5240b57cec5SDimitry Andric 
5250b57cec5SDimitry Andric   // The outer loop works on one symbolic-value at a time. Suppose the input
5260b57cec5SDimitry Andric   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
5270b57cec5SDimitry Andric   // The symbolic-values will be processed in this order: x, y, z.
5280b57cec5SDimitry Andric   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
5290b57cec5SDimitry Andric 
5300b57cec5SDimitry Andric     const FAddend *ThisAddend = Addends[SymIdx];
5310b57cec5SDimitry Andric     if (!ThisAddend) {
5320b57cec5SDimitry Andric       // This addend was processed before.
5330b57cec5SDimitry Andric       continue;
5340b57cec5SDimitry Andric     }
5350b57cec5SDimitry Andric 
5360b57cec5SDimitry Andric     Value *Val = ThisAddend->getSymVal();
53704eeddc0SDimitry Andric 
53804eeddc0SDimitry Andric     // If the resulting expr has constant-addend, this constant-addend is
53904eeddc0SDimitry Andric     // desirable to reside at the top of the resulting expression tree. Placing
54004eeddc0SDimitry Andric     // constant close to super-expr(s) will potentially reveal some
54104eeddc0SDimitry Andric     // optimization opportunities in super-expr(s). Here we do not implement
54204eeddc0SDimitry Andric     // this logic intentionally and rely on SimplifyAssociativeOrCommutative
54304eeddc0SDimitry Andric     // call later.
54404eeddc0SDimitry Andric 
5450b57cec5SDimitry Andric     unsigned StartIdx = SimpVect.size();
5460b57cec5SDimitry Andric     SimpVect.push_back(ThisAddend);
5470b57cec5SDimitry Andric 
5480b57cec5SDimitry Andric     // The inner loop collects addends sharing same symbolic-value, and these
5490b57cec5SDimitry Andric     // addends will be later on folded into a single addend. Following above
5500b57cec5SDimitry Andric     // example, if the symbolic value "y" is being processed, the inner loop
5510b57cec5SDimitry Andric     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
5520b57cec5SDimitry Andric     // be later on folded into "<b1+b2, y>".
5530b57cec5SDimitry Andric     for (unsigned SameSymIdx = SymIdx + 1;
5540b57cec5SDimitry Andric          SameSymIdx < AddendNum; SameSymIdx++) {
5550b57cec5SDimitry Andric       const FAddend *T = Addends[SameSymIdx];
5560b57cec5SDimitry Andric       if (T && T->getSymVal() == Val) {
5570b57cec5SDimitry Andric         // Set null such that next iteration of the outer loop will not process
5580b57cec5SDimitry Andric         // this addend again.
5590b57cec5SDimitry Andric         Addends[SameSymIdx] = nullptr;
5600b57cec5SDimitry Andric         SimpVect.push_back(T);
5610b57cec5SDimitry Andric       }
5620b57cec5SDimitry Andric     }
5630b57cec5SDimitry Andric 
5640b57cec5SDimitry Andric     // If multiple addends share same symbolic value, fold them together.
5650b57cec5SDimitry Andric     if (StartIdx + 1 != SimpVect.size()) {
5660b57cec5SDimitry Andric       FAddend &R = TmpResult[NextTmpIdx ++];
5670b57cec5SDimitry Andric       R = *SimpVect[StartIdx];
5680b57cec5SDimitry Andric       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
5690b57cec5SDimitry Andric         R += *SimpVect[Idx];
5700b57cec5SDimitry Andric 
5710b57cec5SDimitry Andric       // Pop all addends being folded and push the resulting folded addend.
5720b57cec5SDimitry Andric       SimpVect.resize(StartIdx);
5730b57cec5SDimitry Andric       if (!R.isZero()) {
5740b57cec5SDimitry Andric         SimpVect.push_back(&R);
5750b57cec5SDimitry Andric       }
5760b57cec5SDimitry Andric     }
5770b57cec5SDimitry Andric   }
5780b57cec5SDimitry Andric 
579bdd1243dSDimitry Andric   assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
5800b57cec5SDimitry Andric 
5810b57cec5SDimitry Andric   Value *Result;
5820b57cec5SDimitry Andric   if (!SimpVect.empty())
5830b57cec5SDimitry Andric     Result = createNaryFAdd(SimpVect, InstrQuota);
5840b57cec5SDimitry Andric   else {
5850b57cec5SDimitry Andric     // The addition is folded to 0.0.
5860b57cec5SDimitry Andric     Result = ConstantFP::get(Instr->getType(), 0.0);
5870b57cec5SDimitry Andric   }
5880b57cec5SDimitry Andric 
5890b57cec5SDimitry Andric   return Result;
5900b57cec5SDimitry Andric }
5910b57cec5SDimitry Andric 
5920b57cec5SDimitry Andric Value *FAddCombine::createNaryFAdd
5930b57cec5SDimitry Andric   (const AddendVect &Opnds, unsigned InstrQuota) {
5940b57cec5SDimitry Andric   assert(!Opnds.empty() && "Expect at least one addend");
5950b57cec5SDimitry Andric 
5960b57cec5SDimitry Andric   // Step 1: Check if the # of instructions needed exceeds the quota.
5970b57cec5SDimitry Andric 
5980b57cec5SDimitry Andric   unsigned InstrNeeded = calcInstrNumber(Opnds);
5990b57cec5SDimitry Andric   if (InstrNeeded > InstrQuota)
6000b57cec5SDimitry Andric     return nullptr;
6010b57cec5SDimitry Andric 
6020b57cec5SDimitry Andric   initCreateInstNum();
6030b57cec5SDimitry Andric 
6040b57cec5SDimitry Andric   // step 2: Emit the N-ary addition.
6050b57cec5SDimitry Andric   // Note that at most three instructions are involved in Fadd-InstCombine: the
6060b57cec5SDimitry Andric   // addition in question, and at most two neighboring instructions.
6070b57cec5SDimitry Andric   // The resulting optimized addition should have at least one less instruction
6080b57cec5SDimitry Andric   // than the original addition expression tree. This implies that the resulting
6090b57cec5SDimitry Andric   // N-ary addition has at most two instructions, and we don't need to worry
6100b57cec5SDimitry Andric   // about tree-height when constructing the N-ary addition.
6110b57cec5SDimitry Andric 
6120b57cec5SDimitry Andric   Value *LastVal = nullptr;
6130b57cec5SDimitry Andric   bool LastValNeedNeg = false;
6140b57cec5SDimitry Andric 
6150b57cec5SDimitry Andric   // Iterate the addends, creating fadd/fsub using adjacent two addends.
6160b57cec5SDimitry Andric   for (const FAddend *Opnd : Opnds) {
6170b57cec5SDimitry Andric     bool NeedNeg;
6180b57cec5SDimitry Andric     Value *V = createAddendVal(*Opnd, NeedNeg);
6190b57cec5SDimitry Andric     if (!LastVal) {
6200b57cec5SDimitry Andric       LastVal = V;
6210b57cec5SDimitry Andric       LastValNeedNeg = NeedNeg;
6220b57cec5SDimitry Andric       continue;
6230b57cec5SDimitry Andric     }
6240b57cec5SDimitry Andric 
6250b57cec5SDimitry Andric     if (LastValNeedNeg == NeedNeg) {
6260b57cec5SDimitry Andric       LastVal = createFAdd(LastVal, V);
6270b57cec5SDimitry Andric       continue;
6280b57cec5SDimitry Andric     }
6290b57cec5SDimitry Andric 
6300b57cec5SDimitry Andric     if (LastValNeedNeg)
6310b57cec5SDimitry Andric       LastVal = createFSub(V, LastVal);
6320b57cec5SDimitry Andric     else
6330b57cec5SDimitry Andric       LastVal = createFSub(LastVal, V);
6340b57cec5SDimitry Andric 
6350b57cec5SDimitry Andric     LastValNeedNeg = false;
6360b57cec5SDimitry Andric   }
6370b57cec5SDimitry Andric 
6380b57cec5SDimitry Andric   if (LastValNeedNeg) {
6390b57cec5SDimitry Andric     LastVal = createFNeg(LastVal);
6400b57cec5SDimitry Andric   }
6410b57cec5SDimitry Andric 
6420b57cec5SDimitry Andric #ifndef NDEBUG
6430b57cec5SDimitry Andric   assert(CreateInstrNum == InstrNeeded &&
6440b57cec5SDimitry Andric          "Inconsistent in instruction numbers");
6450b57cec5SDimitry Andric #endif
6460b57cec5SDimitry Andric 
6470b57cec5SDimitry Andric   return LastVal;
6480b57cec5SDimitry Andric }
6490b57cec5SDimitry Andric 
6500b57cec5SDimitry Andric Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
6510b57cec5SDimitry Andric   Value *V = Builder.CreateFSub(Opnd0, Opnd1);
6520b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
6530b57cec5SDimitry Andric     createInstPostProc(I);
6540b57cec5SDimitry Andric   return V;
6550b57cec5SDimitry Andric }
6560b57cec5SDimitry Andric 
6570b57cec5SDimitry Andric Value *FAddCombine::createFNeg(Value *V) {
6585ffd83dbSDimitry Andric   Value *NewV = Builder.CreateFNeg(V);
6590b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(NewV))
6600b57cec5SDimitry Andric     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
6610b57cec5SDimitry Andric   return NewV;
6620b57cec5SDimitry Andric }
6630b57cec5SDimitry Andric 
6640b57cec5SDimitry Andric Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
6650b57cec5SDimitry Andric   Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
6660b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
6670b57cec5SDimitry Andric     createInstPostProc(I);
6680b57cec5SDimitry Andric   return V;
6690b57cec5SDimitry Andric }
6700b57cec5SDimitry Andric 
6710b57cec5SDimitry Andric Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
6720b57cec5SDimitry Andric   Value *V = Builder.CreateFMul(Opnd0, Opnd1);
6730b57cec5SDimitry Andric   if (Instruction *I = dyn_cast<Instruction>(V))
6740b57cec5SDimitry Andric     createInstPostProc(I);
6750b57cec5SDimitry Andric   return V;
6760b57cec5SDimitry Andric }
6770b57cec5SDimitry Andric 
6780b57cec5SDimitry Andric void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
6790b57cec5SDimitry Andric   NewInstr->setDebugLoc(Instr->getDebugLoc());
6800b57cec5SDimitry Andric 
6810b57cec5SDimitry Andric   // Keep track of the number of instruction created.
6820b57cec5SDimitry Andric   if (!NoNumber)
6830b57cec5SDimitry Andric     incCreateInstNum();
6840b57cec5SDimitry Andric 
6850b57cec5SDimitry Andric   // Propagate fast-math flags
6860b57cec5SDimitry Andric   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
6870b57cec5SDimitry Andric }
6880b57cec5SDimitry Andric 
6890b57cec5SDimitry Andric // Return the number of instruction needed to emit the N-ary addition.
6900b57cec5SDimitry Andric // NOTE: Keep this function in sync with createAddendVal().
6910b57cec5SDimitry Andric unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
6920b57cec5SDimitry Andric   unsigned OpndNum = Opnds.size();
6930b57cec5SDimitry Andric   unsigned InstrNeeded = OpndNum - 1;
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric   // Adjust the number of instructions needed to emit the N-ary add.
6960b57cec5SDimitry Andric   for (const FAddend *Opnd : Opnds) {
6970b57cec5SDimitry Andric     if (Opnd->isConstant())
6980b57cec5SDimitry Andric       continue;
6990b57cec5SDimitry Andric 
7000b57cec5SDimitry Andric     // The constant check above is really for a few special constant
7010b57cec5SDimitry Andric     // coefficients.
7020b57cec5SDimitry Andric     if (isa<UndefValue>(Opnd->getSymVal()))
7030b57cec5SDimitry Andric       continue;
7040b57cec5SDimitry Andric 
7050b57cec5SDimitry Andric     const FAddendCoef &CE = Opnd->getCoef();
7060b57cec5SDimitry Andric     // Let the addend be "c * x". If "c == +/-1", the value of the addend
7070b57cec5SDimitry Andric     // is immediately available; otherwise, it needs exactly one instruction
7080b57cec5SDimitry Andric     // to evaluate the value.
7090b57cec5SDimitry Andric     if (!CE.isMinusOne() && !CE.isOne())
7100b57cec5SDimitry Andric       InstrNeeded++;
7110b57cec5SDimitry Andric   }
7120b57cec5SDimitry Andric   return InstrNeeded;
7130b57cec5SDimitry Andric }
7140b57cec5SDimitry Andric 
7150b57cec5SDimitry Andric // Input Addend        Value           NeedNeg(output)
7160b57cec5SDimitry Andric // ================================================================
7170b57cec5SDimitry Andric // Constant C          C               false
7180b57cec5SDimitry Andric // <+/-1, V>           V               coefficient is -1
7190b57cec5SDimitry Andric // <2/-2, V>          "fadd V, V"      coefficient is -2
7200b57cec5SDimitry Andric // <C, V>             "fmul V, C"      false
7210b57cec5SDimitry Andric //
7220b57cec5SDimitry Andric // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
7230b57cec5SDimitry Andric Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
7240b57cec5SDimitry Andric   const FAddendCoef &Coeff = Opnd.getCoef();
7250b57cec5SDimitry Andric 
7260b57cec5SDimitry Andric   if (Opnd.isConstant()) {
7270b57cec5SDimitry Andric     NeedNeg = false;
7280b57cec5SDimitry Andric     return Coeff.getValue(Instr->getType());
7290b57cec5SDimitry Andric   }
7300b57cec5SDimitry Andric 
7310b57cec5SDimitry Andric   Value *OpndVal = Opnd.getSymVal();
7320b57cec5SDimitry Andric 
7330b57cec5SDimitry Andric   if (Coeff.isMinusOne() || Coeff.isOne()) {
7340b57cec5SDimitry Andric     NeedNeg = Coeff.isMinusOne();
7350b57cec5SDimitry Andric     return OpndVal;
7360b57cec5SDimitry Andric   }
7370b57cec5SDimitry Andric 
7380b57cec5SDimitry Andric   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
7390b57cec5SDimitry Andric     NeedNeg = Coeff.isMinusTwo();
7400b57cec5SDimitry Andric     return createFAdd(OpndVal, OpndVal);
7410b57cec5SDimitry Andric   }
7420b57cec5SDimitry Andric 
7430b57cec5SDimitry Andric   NeedNeg = false;
7440b57cec5SDimitry Andric   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
7450b57cec5SDimitry Andric }
7460b57cec5SDimitry Andric 
7470b57cec5SDimitry Andric // Checks if any operand is negative and we can convert add to sub.
7480b57cec5SDimitry Andric // This function checks for following negative patterns
7490b57cec5SDimitry Andric //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
7500b57cec5SDimitry Andric //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
7510b57cec5SDimitry Andric //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
7520b57cec5SDimitry Andric static Value *checkForNegativeOperand(BinaryOperator &I,
7530b57cec5SDimitry Andric                                       InstCombiner::BuilderTy &Builder) {
7540b57cec5SDimitry Andric   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
7550b57cec5SDimitry Andric 
7560b57cec5SDimitry Andric   // This function creates 2 instructions to replace ADD, we need at least one
7570b57cec5SDimitry Andric   // of LHS or RHS to have one use to ensure benefit in transform.
7580b57cec5SDimitry Andric   if (!LHS->hasOneUse() && !RHS->hasOneUse())
7590b57cec5SDimitry Andric     return nullptr;
7600b57cec5SDimitry Andric 
7610b57cec5SDimitry Andric   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
7620b57cec5SDimitry Andric   const APInt *C1 = nullptr, *C2 = nullptr;
7630b57cec5SDimitry Andric 
7640b57cec5SDimitry Andric   // if ONE is on other side, swap
7650b57cec5SDimitry Andric   if (match(RHS, m_Add(m_Value(X), m_One())))
7660b57cec5SDimitry Andric     std::swap(LHS, RHS);
7670b57cec5SDimitry Andric 
7680b57cec5SDimitry Andric   if (match(LHS, m_Add(m_Value(X), m_One()))) {
7690b57cec5SDimitry Andric     // if XOR on other side, swap
7700b57cec5SDimitry Andric     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
7710b57cec5SDimitry Andric       std::swap(X, RHS);
7720b57cec5SDimitry Andric 
7730b57cec5SDimitry Andric     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
7740b57cec5SDimitry Andric       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
7750b57cec5SDimitry Andric       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
7760b57cec5SDimitry Andric       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
7770b57cec5SDimitry Andric         Value *NewAnd = Builder.CreateAnd(Z, *C1);
7780b57cec5SDimitry Andric         return Builder.CreateSub(RHS, NewAnd, "sub");
7790b57cec5SDimitry Andric       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
7800b57cec5SDimitry Andric         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
7810b57cec5SDimitry Andric         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
7820b57cec5SDimitry Andric         Value *NewOr = Builder.CreateOr(Z, ~(*C1));
7830b57cec5SDimitry Andric         return Builder.CreateSub(RHS, NewOr, "sub");
7840b57cec5SDimitry Andric       }
7850b57cec5SDimitry Andric     }
7860b57cec5SDimitry Andric   }
7870b57cec5SDimitry Andric 
7880b57cec5SDimitry Andric   // Restore LHS and RHS
7890b57cec5SDimitry Andric   LHS = I.getOperand(0);
7900b57cec5SDimitry Andric   RHS = I.getOperand(1);
7910b57cec5SDimitry Andric 
7920b57cec5SDimitry Andric   // if XOR is on other side, swap
7930b57cec5SDimitry Andric   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
7940b57cec5SDimitry Andric     std::swap(LHS, RHS);
7950b57cec5SDimitry Andric 
7960b57cec5SDimitry Andric   // C2 is ODD
7970b57cec5SDimitry Andric   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
7980b57cec5SDimitry Andric   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
7990b57cec5SDimitry Andric   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
80006c3fb27SDimitry Andric     if (C1->countr_zero() == 0)
8010b57cec5SDimitry Andric       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
8020b57cec5SDimitry Andric         Value *NewOr = Builder.CreateOr(Z, ~(*C2));
8030b57cec5SDimitry Andric         return Builder.CreateSub(RHS, NewOr, "sub");
8040b57cec5SDimitry Andric       }
8050b57cec5SDimitry Andric   return nullptr;
8060b57cec5SDimitry Andric }
8070b57cec5SDimitry Andric 
8080b57cec5SDimitry Andric /// Wrapping flags may allow combining constants separated by an extend.
8090b57cec5SDimitry Andric static Instruction *foldNoWrapAdd(BinaryOperator &Add,
8100b57cec5SDimitry Andric                                   InstCombiner::BuilderTy &Builder) {
8110b57cec5SDimitry Andric   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
8120b57cec5SDimitry Andric   Type *Ty = Add.getType();
8130b57cec5SDimitry Andric   Constant *Op1C;
8140b57cec5SDimitry Andric   if (!match(Op1, m_Constant(Op1C)))
8150b57cec5SDimitry Andric     return nullptr;
8160b57cec5SDimitry Andric 
8170b57cec5SDimitry Andric   // Try this match first because it results in an add in the narrow type.
8180b57cec5SDimitry Andric   // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
8190b57cec5SDimitry Andric   Value *X;
8200b57cec5SDimitry Andric   const APInt *C1, *C2;
8210b57cec5SDimitry Andric   if (match(Op1, m_APInt(C1)) &&
822*0fca6ea1SDimitry Andric       match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) &&
8230b57cec5SDimitry Andric       C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824*0fca6ea1SDimitry Andric     APInt NewC = *C2 + C1->trunc(C2->getBitWidth());
825*0fca6ea1SDimitry Andric     // If the smaller add will fold to zero, we don't need to check one use.
826*0fca6ea1SDimitry Andric     if (NewC.isZero())
827*0fca6ea1SDimitry Andric       return new ZExtInst(X, Ty);
828*0fca6ea1SDimitry Andric     // Otherwise only do this if the existing zero extend will be removed.
829*0fca6ea1SDimitry Andric     if (Op0->hasOneUse())
830*0fca6ea1SDimitry Andric       return new ZExtInst(
831*0fca6ea1SDimitry Andric           Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty);
8320b57cec5SDimitry Andric   }
8330b57cec5SDimitry Andric 
8340b57cec5SDimitry Andric   // More general combining of constants in the wide type.
8350b57cec5SDimitry Andric   // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
836*0fca6ea1SDimitry Andric   // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
8370b57cec5SDimitry Andric   Constant *NarrowC;
838*0fca6ea1SDimitry Andric   if (match(Op0, m_OneUse(m_SExtLike(
839*0fca6ea1SDimitry Andric                      m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
8405f757f3fSDimitry Andric     Value *WideC = Builder.CreateSExt(NarrowC, Ty);
8415f757f3fSDimitry Andric     Value *NewC = Builder.CreateAdd(WideC, Op1C);
8420b57cec5SDimitry Andric     Value *WideX = Builder.CreateSExt(X, Ty);
8430b57cec5SDimitry Andric     return BinaryOperator::CreateAdd(WideX, NewC);
8440b57cec5SDimitry Andric   }
8450b57cec5SDimitry Andric   // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
846*0fca6ea1SDimitry Andric   if (match(Op0,
847*0fca6ea1SDimitry Andric             m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
8485f757f3fSDimitry Andric     Value *WideC = Builder.CreateZExt(NarrowC, Ty);
8495f757f3fSDimitry Andric     Value *NewC = Builder.CreateAdd(WideC, Op1C);
8500b57cec5SDimitry Andric     Value *WideX = Builder.CreateZExt(X, Ty);
8510b57cec5SDimitry Andric     return BinaryOperator::CreateAdd(WideX, NewC);
8520b57cec5SDimitry Andric   }
8530b57cec5SDimitry Andric   return nullptr;
8540b57cec5SDimitry Andric }
8550b57cec5SDimitry Andric 
856e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
8570b57cec5SDimitry Andric   Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
858bdd1243dSDimitry Andric   Type *Ty = Add.getType();
8590b57cec5SDimitry Andric   Constant *Op1C;
860fe6060f1SDimitry Andric   if (!match(Op1, m_ImmConstant(Op1C)))
8610b57cec5SDimitry Andric     return nullptr;
8620b57cec5SDimitry Andric 
8630b57cec5SDimitry Andric   if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
8640b57cec5SDimitry Andric     return NV;
8650b57cec5SDimitry Andric 
8660b57cec5SDimitry Andric   Value *X;
8670b57cec5SDimitry Andric   Constant *Op00C;
8680b57cec5SDimitry Andric 
8690b57cec5SDimitry Andric   // add (sub C1, X), C2 --> sub (add C1, C2), X
8700b57cec5SDimitry Andric   if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
8710b57cec5SDimitry Andric     return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
8720b57cec5SDimitry Andric 
8730b57cec5SDimitry Andric   Value *Y;
8740b57cec5SDimitry Andric 
8750b57cec5SDimitry Andric   // add (sub X, Y), -1 --> add (not Y), X
8760b57cec5SDimitry Andric   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
8770b57cec5SDimitry Andric       match(Op1, m_AllOnes()))
8780b57cec5SDimitry Andric     return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
8790b57cec5SDimitry Andric 
8800b57cec5SDimitry Andric   // zext(bool) + C -> bool ? C + 1 : C
8810b57cec5SDimitry Andric   if (match(Op0, m_ZExt(m_Value(X))) &&
8820b57cec5SDimitry Andric       X->getType()->getScalarSizeInBits() == 1)
883e8d8bef9SDimitry Andric     return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
884480093f4SDimitry Andric   // sext(bool) + C -> bool ? C - 1 : C
885480093f4SDimitry Andric   if (match(Op0, m_SExt(m_Value(X))) &&
886480093f4SDimitry Andric       X->getType()->getScalarSizeInBits() == 1)
887e8d8bef9SDimitry Andric     return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
8880b57cec5SDimitry Andric 
8890b57cec5SDimitry Andric   // ~X + C --> (C-1) - X
89006c3fb27SDimitry Andric   if (match(Op0, m_Not(m_Value(X)))) {
89106c3fb27SDimitry Andric     // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
89206c3fb27SDimitry Andric     auto *COne = ConstantInt::get(Op1C->getType(), 1);
89306c3fb27SDimitry Andric     bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
89406c3fb27SDimitry Andric     BinaryOperator *Res =
89506c3fb27SDimitry Andric         BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
89606c3fb27SDimitry Andric     Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
89706c3fb27SDimitry Andric     return Res;
89806c3fb27SDimitry Andric   }
8990b57cec5SDimitry Andric 
900bdd1243dSDimitry Andric   // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
9010b57cec5SDimitry Andric   const APInt *C;
902bdd1243dSDimitry Andric   unsigned BitWidth = Ty->getScalarSizeInBits();
903bdd1243dSDimitry Andric   if (match(Op0, m_OneUse(m_AShr(m_Value(X),
904*0fca6ea1SDimitry Andric                                  m_SpecificIntAllowPoison(BitWidth - 1)))) &&
905bdd1243dSDimitry Andric       match(Op1, m_One()))
906bdd1243dSDimitry Andric     return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
907bdd1243dSDimitry Andric 
9080b57cec5SDimitry Andric   if (!match(Op1, m_APInt(C)))
9090b57cec5SDimitry Andric     return nullptr;
9100b57cec5SDimitry Andric 
911fe6060f1SDimitry Andric   // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
912fe6060f1SDimitry Andric   Constant *Op01C;
913*0fca6ea1SDimitry Andric   if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) {
914*0fca6ea1SDimitry Andric     BinaryOperator *NewAdd =
915*0fca6ea1SDimitry Andric         BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
916*0fca6ea1SDimitry Andric     NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() &&
917*0fca6ea1SDimitry Andric                                willNotOverflowSignedAdd(Op01C, Op1C, Add));
918*0fca6ea1SDimitry Andric     NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap());
919*0fca6ea1SDimitry Andric     return NewAdd;
920*0fca6ea1SDimitry Andric   }
921fe6060f1SDimitry Andric 
9220b57cec5SDimitry Andric   // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
9230b57cec5SDimitry Andric   const APInt *C2;
9240b57cec5SDimitry Andric   if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
9250b57cec5SDimitry Andric     return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
9260b57cec5SDimitry Andric 
9270b57cec5SDimitry Andric   if (C->isSignMask()) {
9280b57cec5SDimitry Andric     // If wrapping is not allowed, then the addition must set the sign bit:
9290b57cec5SDimitry Andric     // X + (signmask) --> X | signmask
9300b57cec5SDimitry Andric     if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
9310b57cec5SDimitry Andric       return BinaryOperator::CreateOr(Op0, Op1);
9320b57cec5SDimitry Andric 
9330b57cec5SDimitry Andric     // If wrapping is allowed, then the addition flips the sign bit of LHS:
9340b57cec5SDimitry Andric     // X + (signmask) --> X ^ signmask
9350b57cec5SDimitry Andric     return BinaryOperator::CreateXor(Op0, Op1);
9360b57cec5SDimitry Andric   }
9370b57cec5SDimitry Andric 
9380b57cec5SDimitry Andric   // Is this add the last step in a convoluted sext?
9390b57cec5SDimitry Andric   // add(zext(xor i16 X, -32768), -32768) --> sext X
9400b57cec5SDimitry Andric   if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
9410b57cec5SDimitry Andric       C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
9420b57cec5SDimitry Andric     return CastInst::Create(Instruction::SExt, X, Ty);
9430b57cec5SDimitry Andric 
944e8d8bef9SDimitry Andric   if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
945e8d8bef9SDimitry Andric     // (X ^ signmask) + C --> (X + (signmask ^ C))
946e8d8bef9SDimitry Andric     if (C2->isSignMask())
947e8d8bef9SDimitry Andric       return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
948e8d8bef9SDimitry Andric 
949e8d8bef9SDimitry Andric     // If X has no high-bits set above an xor mask:
950e8d8bef9SDimitry Andric     // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
951e8d8bef9SDimitry Andric     if (C2->isMask()) {
952e8d8bef9SDimitry Andric       KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
953349cc55cSDimitry Andric       if ((*C2 | LHSKnown.Zero).isAllOnes())
954e8d8bef9SDimitry Andric         return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
955e8d8bef9SDimitry Andric     }
956e8d8bef9SDimitry Andric 
957e8d8bef9SDimitry Andric     // Look for a math+logic pattern that corresponds to sext-in-register of a
958e8d8bef9SDimitry Andric     // value with cleared high bits. Convert that into a pair of shifts:
959e8d8bef9SDimitry Andric     // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
960e8d8bef9SDimitry Andric     // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
961e8d8bef9SDimitry Andric     if (Op0->hasOneUse() && *C2 == -(*C)) {
962e8d8bef9SDimitry Andric       unsigned BitWidth = Ty->getScalarSizeInBits();
963e8d8bef9SDimitry Andric       unsigned ShAmt = 0;
964e8d8bef9SDimitry Andric       if (C->isPowerOf2())
965e8d8bef9SDimitry Andric         ShAmt = BitWidth - C->logBase2() - 1;
966e8d8bef9SDimitry Andric       else if (C2->isPowerOf2())
967e8d8bef9SDimitry Andric         ShAmt = BitWidth - C2->logBase2() - 1;
968e8d8bef9SDimitry Andric       if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
969e8d8bef9SDimitry Andric                                      0, &Add)) {
970e8d8bef9SDimitry Andric         Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
971e8d8bef9SDimitry Andric         Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
972e8d8bef9SDimitry Andric         return BinaryOperator::CreateAShr(NewShl, ShAmtC);
973e8d8bef9SDimitry Andric       }
974e8d8bef9SDimitry Andric     }
975e8d8bef9SDimitry Andric   }
976e8d8bef9SDimitry Andric 
977349cc55cSDimitry Andric   if (C->isOne() && Op0->hasOneUse()) {
9780b57cec5SDimitry Andric     // add (sext i1 X), 1 --> zext (not X)
9790b57cec5SDimitry Andric     // TODO: The smallest IR representation is (select X, 0, 1), and that would
9800b57cec5SDimitry Andric     // not require the one-use check. But we need to remove a transform in
9810b57cec5SDimitry Andric     // visitSelect and make sure that IR value tracking for select is equal or
9820b57cec5SDimitry Andric     // better than for these ops.
9830b57cec5SDimitry Andric     if (match(Op0, m_SExt(m_Value(X))) &&
9840b57cec5SDimitry Andric         X->getType()->getScalarSizeInBits() == 1)
9850b57cec5SDimitry Andric       return new ZExtInst(Builder.CreateNot(X), Ty);
9860b57cec5SDimitry Andric 
9870b57cec5SDimitry Andric     // Shifts and add used to flip and mask off the low bit:
9880b57cec5SDimitry Andric     // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
9890b57cec5SDimitry Andric     const APInt *C3;
9900b57cec5SDimitry Andric     if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
9910b57cec5SDimitry Andric         C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
9920b57cec5SDimitry Andric       Value *NotX = Builder.CreateNot(X);
9930b57cec5SDimitry Andric       return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
9940b57cec5SDimitry Andric     }
9950b57cec5SDimitry Andric   }
9960b57cec5SDimitry Andric 
99706c3fb27SDimitry Andric   // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
99806c3fb27SDimitry Andric   // TODO: There's a general form for any constant on the outer add.
99906c3fb27SDimitry Andric   if (C->isOne()) {
100006c3fb27SDimitry Andric     if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
100106c3fb27SDimitry Andric       const SimplifyQuery Q = SQ.getWithInstruction(&Add);
1002*0fca6ea1SDimitry Andric       if (llvm::isKnownNonZero(X, Q))
100306c3fb27SDimitry Andric         return new ZExtInst(X, Ty);
100406c3fb27SDimitry Andric     }
100506c3fb27SDimitry Andric   }
100606c3fb27SDimitry Andric 
10070b57cec5SDimitry Andric   return nullptr;
10080b57cec5SDimitry Andric }
10090b57cec5SDimitry Andric 
10105f757f3fSDimitry Andric // match variations of a^2 + 2*a*b + b^2
10115f757f3fSDimitry Andric //
10125f757f3fSDimitry Andric // to reuse the code between the FP and Int versions, the instruction OpCodes
10135f757f3fSDimitry Andric //  and constant types have been turned into template parameters.
10145f757f3fSDimitry Andric //
10155f757f3fSDimitry Andric // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
10165f757f3fSDimitry Andric //  should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
10175f757f3fSDimitry Andric //  (we're matching `X<<1` instead of `X*2` for Int)
10185f757f3fSDimitry Andric template <bool FP, typename Mul2Rhs>
10195f757f3fSDimitry Andric static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
10205f757f3fSDimitry Andric                              Value *&B) {
10215f757f3fSDimitry Andric   constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
10225f757f3fSDimitry Andric   constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
10235f757f3fSDimitry Andric   constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
10245f757f3fSDimitry Andric 
10255f757f3fSDimitry Andric   // (a * a) + (((a * 2) + b) * b)
10265f757f3fSDimitry Andric   if (match(&I, m_c_BinOp(
10275f757f3fSDimitry Andric                     AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1028*0fca6ea1SDimitry Andric                     m_OneUse(m_c_BinOp(
10295f757f3fSDimitry Andric                         MulOp,
10305f757f3fSDimitry Andric                         m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
10315f757f3fSDimitry Andric                                   m_Value(B)),
10325f757f3fSDimitry Andric                         m_Deferred(B))))))
10335f757f3fSDimitry Andric     return true;
10345f757f3fSDimitry Andric 
10355f757f3fSDimitry Andric   // ((a * b) * 2)  or ((a * 2) * b)
10365f757f3fSDimitry Andric   // +
10375f757f3fSDimitry Andric   // (a * a + b * b) or (b * b + a * a)
10385f757f3fSDimitry Andric   return match(
1039*0fca6ea1SDimitry Andric       &I, m_c_BinOp(
1040*0fca6ea1SDimitry Andric               AddOp,
10415f757f3fSDimitry Andric               m_CombineOr(
10425f757f3fSDimitry Andric                   m_OneUse(m_BinOp(
10435f757f3fSDimitry Andric                       Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1044*0fca6ea1SDimitry Andric                   m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
10455f757f3fSDimitry Andric                                      m_Value(B)))),
1046*0fca6ea1SDimitry Andric               m_OneUse(
1047*0fca6ea1SDimitry Andric                   m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
10485f757f3fSDimitry Andric                             m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
10495f757f3fSDimitry Andric }
10505f757f3fSDimitry Andric 
10515f757f3fSDimitry Andric // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
10525f757f3fSDimitry Andric Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) {
10535f757f3fSDimitry Andric   Value *A, *B;
10545f757f3fSDimitry Andric   if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) {
10555f757f3fSDimitry Andric     Value *AB = Builder.CreateAdd(A, B);
10565f757f3fSDimitry Andric     return BinaryOperator::CreateMul(AB, AB);
10575f757f3fSDimitry Andric   }
10585f757f3fSDimitry Andric   return nullptr;
10595f757f3fSDimitry Andric }
10605f757f3fSDimitry Andric 
10615f757f3fSDimitry Andric // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
10625f757f3fSDimitry Andric // Requires `nsz` and `reassoc`.
10635f757f3fSDimitry Andric Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) {
10645f757f3fSDimitry Andric   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
10655f757f3fSDimitry Andric   Value *A, *B;
10665f757f3fSDimitry Andric   if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) {
10675f757f3fSDimitry Andric     Value *AB = Builder.CreateFAddFMF(A, B, &I);
10685f757f3fSDimitry Andric     return BinaryOperator::CreateFMulFMF(AB, AB, &I);
10695f757f3fSDimitry Andric   }
10705f757f3fSDimitry Andric   return nullptr;
10715f757f3fSDimitry Andric }
10725f757f3fSDimitry Andric 
10730b57cec5SDimitry Andric // Matches multiplication expression Op * C where C is a constant. Returns the
10740b57cec5SDimitry Andric // constant value in C and the other operand in Op. Returns true if such a
10750b57cec5SDimitry Andric // match is found.
10760b57cec5SDimitry Andric static bool MatchMul(Value *E, Value *&Op, APInt &C) {
10770b57cec5SDimitry Andric   const APInt *AI;
10780b57cec5SDimitry Andric   if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
10790b57cec5SDimitry Andric     C = *AI;
10800b57cec5SDimitry Andric     return true;
10810b57cec5SDimitry Andric   }
10820b57cec5SDimitry Andric   if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
10830b57cec5SDimitry Andric     C = APInt(AI->getBitWidth(), 1);
10840b57cec5SDimitry Andric     C <<= *AI;
10850b57cec5SDimitry Andric     return true;
10860b57cec5SDimitry Andric   }
10870b57cec5SDimitry Andric   return false;
10880b57cec5SDimitry Andric }
10890b57cec5SDimitry Andric 
10900b57cec5SDimitry Andric // Matches remainder expression Op % C where C is a constant. Returns the
10910b57cec5SDimitry Andric // constant value in C and the other operand in Op. Returns the signedness of
10920b57cec5SDimitry Andric // the remainder operation in IsSigned. Returns true if such a match is
10930b57cec5SDimitry Andric // found.
10940b57cec5SDimitry Andric static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
10950b57cec5SDimitry Andric   const APInt *AI;
10960b57cec5SDimitry Andric   IsSigned = false;
10970b57cec5SDimitry Andric   if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
10980b57cec5SDimitry Andric     IsSigned = true;
10990b57cec5SDimitry Andric     C = *AI;
11000b57cec5SDimitry Andric     return true;
11010b57cec5SDimitry Andric   }
11020b57cec5SDimitry Andric   if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
11030b57cec5SDimitry Andric     C = *AI;
11040b57cec5SDimitry Andric     return true;
11050b57cec5SDimitry Andric   }
11060b57cec5SDimitry Andric   if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
11070b57cec5SDimitry Andric     C = *AI + 1;
11080b57cec5SDimitry Andric     return true;
11090b57cec5SDimitry Andric   }
11100b57cec5SDimitry Andric   return false;
11110b57cec5SDimitry Andric }
11120b57cec5SDimitry Andric 
11130b57cec5SDimitry Andric // Matches division expression Op / C with the given signedness as indicated
11140b57cec5SDimitry Andric // by IsSigned, where C is a constant. Returns the constant value in C and the
11150b57cec5SDimitry Andric // other operand in Op. Returns true if such a match is found.
11160b57cec5SDimitry Andric static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
11170b57cec5SDimitry Andric   const APInt *AI;
11180b57cec5SDimitry Andric   if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
11190b57cec5SDimitry Andric     C = *AI;
11200b57cec5SDimitry Andric     return true;
11210b57cec5SDimitry Andric   }
11220b57cec5SDimitry Andric   if (!IsSigned) {
11230b57cec5SDimitry Andric     if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
11240b57cec5SDimitry Andric       C = *AI;
11250b57cec5SDimitry Andric       return true;
11260b57cec5SDimitry Andric     }
11270b57cec5SDimitry Andric     if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
11280b57cec5SDimitry Andric       C = APInt(AI->getBitWidth(), 1);
11290b57cec5SDimitry Andric       C <<= *AI;
11300b57cec5SDimitry Andric       return true;
11310b57cec5SDimitry Andric     }
11320b57cec5SDimitry Andric   }
11330b57cec5SDimitry Andric   return false;
11340b57cec5SDimitry Andric }
11350b57cec5SDimitry Andric 
11360b57cec5SDimitry Andric // Returns whether C0 * C1 with the given signedness overflows.
11370b57cec5SDimitry Andric static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
11380b57cec5SDimitry Andric   bool overflow;
11390b57cec5SDimitry Andric   if (IsSigned)
11400b57cec5SDimitry Andric     (void)C0.smul_ov(C1, overflow);
11410b57cec5SDimitry Andric   else
11420b57cec5SDimitry Andric     (void)C0.umul_ov(C1, overflow);
11430b57cec5SDimitry Andric   return overflow;
11440b57cec5SDimitry Andric }
11450b57cec5SDimitry Andric 
11460b57cec5SDimitry Andric // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
11470b57cec5SDimitry Andric // does not overflow.
1148*0fca6ea1SDimitry Andric // Simplifies (X / C0) * C1 + (X % C0) * C2 to
1149*0fca6ea1SDimitry Andric // (X / C0) * (C1 - C2 * C0) + X * C2
1150e8d8bef9SDimitry Andric Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
11510b57cec5SDimitry Andric   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
11520b57cec5SDimitry Andric   Value *X, *MulOpV;
11530b57cec5SDimitry Andric   APInt C0, MulOpC;
11540b57cec5SDimitry Andric   bool IsSigned;
11550b57cec5SDimitry Andric   // Match I = X % C0 + MulOpV * C0
11560b57cec5SDimitry Andric   if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
11570b57cec5SDimitry Andric        (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
11580b57cec5SDimitry Andric       C0 == MulOpC) {
11590b57cec5SDimitry Andric     Value *RemOpV;
11600b57cec5SDimitry Andric     APInt C1;
11610b57cec5SDimitry Andric     bool Rem2IsSigned;
11620b57cec5SDimitry Andric     // Match MulOpC = RemOpV % C1
11630b57cec5SDimitry Andric     if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
11640b57cec5SDimitry Andric         IsSigned == Rem2IsSigned) {
11650b57cec5SDimitry Andric       Value *DivOpV;
11660b57cec5SDimitry Andric       APInt DivOpC;
11670b57cec5SDimitry Andric       // Match RemOpV = X / C0
11680b57cec5SDimitry Andric       if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
11690b57cec5SDimitry Andric           C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
11705ffd83dbSDimitry Andric         Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
11710b57cec5SDimitry Andric         return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
11720b57cec5SDimitry Andric                         : Builder.CreateURem(X, NewDivisor, "urem");
11730b57cec5SDimitry Andric       }
11740b57cec5SDimitry Andric     }
11750b57cec5SDimitry Andric   }
11760b57cec5SDimitry Andric 
1177*0fca6ea1SDimitry Andric   // Match I = (X / C0) * C1 + (X % C0) * C2
1178*0fca6ea1SDimitry Andric   Value *Div, *Rem;
1179*0fca6ea1SDimitry Andric   APInt C1, C2;
1180*0fca6ea1SDimitry Andric   if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1))
1181*0fca6ea1SDimitry Andric     Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1182*0fca6ea1SDimitry Andric   if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2))
1183*0fca6ea1SDimitry Andric     Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1184*0fca6ea1SDimitry Andric   if (match(Div, m_IRem(m_Value(), m_Value()))) {
1185*0fca6ea1SDimitry Andric     std::swap(Div, Rem);
1186*0fca6ea1SDimitry Andric     std::swap(C1, C2);
1187*0fca6ea1SDimitry Andric   }
1188*0fca6ea1SDimitry Andric   Value *DivOpV;
1189*0fca6ea1SDimitry Andric   APInt DivOpC;
1190*0fca6ea1SDimitry Andric   if (MatchRem(Rem, X, C0, IsSigned) &&
1191*0fca6ea1SDimitry Andric       MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) {
1192*0fca6ea1SDimitry Andric     APInt NewC = C1 - C2 * C0;
1193*0fca6ea1SDimitry Andric     if (!NewC.isZero() && !Rem->hasOneUse())
1194*0fca6ea1SDimitry Andric       return nullptr;
1195*0fca6ea1SDimitry Andric     if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT))
1196*0fca6ea1SDimitry Andric       return nullptr;
1197*0fca6ea1SDimitry Andric     Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2));
1198*0fca6ea1SDimitry Andric     if (NewC.isZero())
1199*0fca6ea1SDimitry Andric       return MulXC2;
1200*0fca6ea1SDimitry Andric     return Builder.CreateAdd(
1201*0fca6ea1SDimitry Andric         Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2);
1202*0fca6ea1SDimitry Andric   }
1203*0fca6ea1SDimitry Andric 
12040b57cec5SDimitry Andric   return nullptr;
12050b57cec5SDimitry Andric }
12060b57cec5SDimitry Andric 
12070b57cec5SDimitry Andric /// Fold
12080b57cec5SDimitry Andric ///   (1 << NBits) - 1
12090b57cec5SDimitry Andric /// Into:
12100b57cec5SDimitry Andric ///   ~(-(1 << NBits))
12110b57cec5SDimitry Andric /// Because a 'not' is better for bit-tracking analysis and other transforms
12120b57cec5SDimitry Andric /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
12130b57cec5SDimitry Andric static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
12140b57cec5SDimitry Andric                                            InstCombiner::BuilderTy &Builder) {
12150b57cec5SDimitry Andric   Value *NBits;
12160b57cec5SDimitry Andric   if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
12170b57cec5SDimitry Andric     return nullptr;
12180b57cec5SDimitry Andric 
12190b57cec5SDimitry Andric   Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
12200b57cec5SDimitry Andric   Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
12210b57cec5SDimitry Andric   // Be wary of constant folding.
12220b57cec5SDimitry Andric   if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
12230b57cec5SDimitry Andric     // Always NSW. But NUW propagates from `add`.
12240b57cec5SDimitry Andric     BOp->setHasNoSignedWrap();
12250b57cec5SDimitry Andric     BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
12260b57cec5SDimitry Andric   }
12270b57cec5SDimitry Andric 
12280b57cec5SDimitry Andric   return BinaryOperator::CreateNot(NotMask, I.getName());
12290b57cec5SDimitry Andric }
12300b57cec5SDimitry Andric 
12310b57cec5SDimitry Andric static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
12320b57cec5SDimitry Andric   assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
12330b57cec5SDimitry Andric   Type *Ty = I.getType();
12340b57cec5SDimitry Andric   auto getUAddSat = [&]() {
12350b57cec5SDimitry Andric     return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
12360b57cec5SDimitry Andric   };
12370b57cec5SDimitry Andric 
12380b57cec5SDimitry Andric   // add (umin X, ~Y), Y --> uaddsat X, Y
12390b57cec5SDimitry Andric   Value *X, *Y;
12400b57cec5SDimitry Andric   if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
12410b57cec5SDimitry Andric                         m_Deferred(Y))))
12420b57cec5SDimitry Andric     return CallInst::Create(getUAddSat(), { X, Y });
12430b57cec5SDimitry Andric 
12440b57cec5SDimitry Andric   // add (umin X, ~C), C --> uaddsat X, C
12450b57cec5SDimitry Andric   const APInt *C, *NotC;
12460b57cec5SDimitry Andric   if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
12470b57cec5SDimitry Andric       *C == ~*NotC)
12480b57cec5SDimitry Andric     return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
12490b57cec5SDimitry Andric 
12500b57cec5SDimitry Andric   return nullptr;
12510b57cec5SDimitry Andric }
12520b57cec5SDimitry Andric 
12535f757f3fSDimitry Andric // Transform:
12545f757f3fSDimitry Andric //  (add A, (shl (neg B), Y))
12555f757f3fSDimitry Andric //      -> (sub A, (shl B, Y))
12565f757f3fSDimitry Andric static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder,
12575f757f3fSDimitry Andric                                                const BinaryOperator &I) {
12585f757f3fSDimitry Andric   Value *A, *B, *Cnt;
12595f757f3fSDimitry Andric   if (match(&I,
12605f757f3fSDimitry Andric             m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))),
12615f757f3fSDimitry Andric                     m_Value(A)))) {
12625f757f3fSDimitry Andric     Value *NewShl = Builder.CreateShl(B, Cnt);
12635f757f3fSDimitry Andric     return BinaryOperator::CreateSub(A, NewShl);
12645f757f3fSDimitry Andric   }
12655f757f3fSDimitry Andric   return nullptr;
12665f757f3fSDimitry Andric }
12675f757f3fSDimitry Andric 
1268bdd1243dSDimitry Andric /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1269bdd1243dSDimitry Andric static Instruction *foldAddToAshr(BinaryOperator &Add) {
1270bdd1243dSDimitry Andric   // Division must be by power-of-2, but not the minimum signed value.
1271bdd1243dSDimitry Andric   Value *X;
1272bdd1243dSDimitry Andric   const APInt *DivC;
1273bdd1243dSDimitry Andric   if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1274bdd1243dSDimitry Andric       DivC->isNegative())
1275bdd1243dSDimitry Andric     return nullptr;
1276bdd1243dSDimitry Andric 
1277bdd1243dSDimitry Andric   // Rounding is done by adding -1 if the dividend (X) is negative and has any
12785f757f3fSDimitry Andric   // low bits set. It recognizes two canonical patterns:
12795f757f3fSDimitry Andric   // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
12805f757f3fSDimitry Andric   //    pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
12815f757f3fSDimitry Andric   // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
12825f757f3fSDimitry Andric   // Note that, by the time we end up here, if possible, ugt has been
12835f757f3fSDimitry Andric   // canonicalized into eq.
12845f757f3fSDimitry Andric   const APInt *MaskC, *MaskCCmp;
1285bdd1243dSDimitry Andric   ICmpInst::Predicate Pred;
1286bdd1243dSDimitry Andric   if (!match(Add.getOperand(1),
1287bdd1243dSDimitry Andric              m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
12885f757f3fSDimitry Andric                            m_APInt(MaskCCmp)))))
12895f757f3fSDimitry Andric     return nullptr;
12905f757f3fSDimitry Andric 
12915f757f3fSDimitry Andric   if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
12925f757f3fSDimitry Andric       (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1293bdd1243dSDimitry Andric     return nullptr;
1294bdd1243dSDimitry Andric 
1295bdd1243dSDimitry Andric   APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
12965f757f3fSDimitry Andric   bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
12975f757f3fSDimitry Andric                          ? (*MaskC == (SMin | (*DivC - 1)))
12985f757f3fSDimitry Andric                          : (*DivC == 2 && *MaskC == SMin + 1);
12995f757f3fSDimitry Andric   if (!IsMaskValid)
1300bdd1243dSDimitry Andric     return nullptr;
1301bdd1243dSDimitry Andric 
1302bdd1243dSDimitry Andric   // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1303bdd1243dSDimitry Andric   return BinaryOperator::CreateAShr(
1304bdd1243dSDimitry Andric       X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1305bdd1243dSDimitry Andric }
1306bdd1243dSDimitry Andric 
1307e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::
1308e8d8bef9SDimitry Andric     canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
13098bcb0991SDimitry Andric         BinaryOperator &I) {
13108bcb0991SDimitry Andric   assert((I.getOpcode() == Instruction::Add ||
13118bcb0991SDimitry Andric           I.getOpcode() == Instruction::Or ||
13128bcb0991SDimitry Andric           I.getOpcode() == Instruction::Sub) &&
13138bcb0991SDimitry Andric          "Expecting add/or/sub instruction");
13148bcb0991SDimitry Andric 
13158bcb0991SDimitry Andric   // We have a subtraction/addition between a (potentially truncated) *logical*
13168bcb0991SDimitry Andric   // right-shift of X and a "select".
13178bcb0991SDimitry Andric   Value *X, *Select;
13188bcb0991SDimitry Andric   Instruction *LowBitsToSkip, *Extract;
13198bcb0991SDimitry Andric   if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
13208bcb0991SDimitry Andric                                m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
13218bcb0991SDimitry Andric                                m_Instruction(Extract))),
13228bcb0991SDimitry Andric                            m_Value(Select))))
13238bcb0991SDimitry Andric     return nullptr;
13248bcb0991SDimitry Andric 
13258bcb0991SDimitry Andric   // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
13268bcb0991SDimitry Andric   if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
13278bcb0991SDimitry Andric     return nullptr;
13288bcb0991SDimitry Andric 
13298bcb0991SDimitry Andric   Type *XTy = X->getType();
13308bcb0991SDimitry Andric   bool HadTrunc = I.getType() != XTy;
13318bcb0991SDimitry Andric 
13328bcb0991SDimitry Andric   // If there was a truncation of extracted value, then we'll need to produce
13338bcb0991SDimitry Andric   // one extra instruction, so we need to ensure one instruction will go away.
13348bcb0991SDimitry Andric   if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
13358bcb0991SDimitry Andric     return nullptr;
13368bcb0991SDimitry Andric 
13378bcb0991SDimitry Andric   // Extraction should extract high NBits bits, with shift amount calculated as:
13388bcb0991SDimitry Andric   //   low bits to skip = shift bitwidth - high bits to extract
13398bcb0991SDimitry Andric   // The shift amount itself may be extended, and we need to look past zero-ext
13408bcb0991SDimitry Andric   // when matching NBits, that will matter for matching later.
13418bcb0991SDimitry Andric   Constant *C;
13428bcb0991SDimitry Andric   Value *NBits;
13438bcb0991SDimitry Andric   if (!match(
13448bcb0991SDimitry Andric           LowBitsToSkip,
13458bcb0991SDimitry Andric           m_ZExtOrSelf(m_Sub(m_Constant(C), m_ZExtOrSelf(m_Value(NBits))))) ||
13468bcb0991SDimitry Andric       !match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
13478bcb0991SDimitry Andric                                    APInt(C->getType()->getScalarSizeInBits(),
13488bcb0991SDimitry Andric                                          X->getType()->getScalarSizeInBits()))))
13498bcb0991SDimitry Andric     return nullptr;
13508bcb0991SDimitry Andric 
13518bcb0991SDimitry Andric   // Sign-extending value can be zero-extended if we `sub`tract it,
13528bcb0991SDimitry Andric   // or sign-extended otherwise.
13538bcb0991SDimitry Andric   auto SkipExtInMagic = [&I](Value *&V) {
13548bcb0991SDimitry Andric     if (I.getOpcode() == Instruction::Sub)
13558bcb0991SDimitry Andric       match(V, m_ZExtOrSelf(m_Value(V)));
13568bcb0991SDimitry Andric     else
13578bcb0991SDimitry Andric       match(V, m_SExtOrSelf(m_Value(V)));
13588bcb0991SDimitry Andric   };
13598bcb0991SDimitry Andric 
13608bcb0991SDimitry Andric   // Now, finally validate the sign-extending magic.
13618bcb0991SDimitry Andric   // `select` itself may be appropriately extended, look past that.
13628bcb0991SDimitry Andric   SkipExtInMagic(Select);
13638bcb0991SDimitry Andric 
13648bcb0991SDimitry Andric   ICmpInst::Predicate Pred;
13658bcb0991SDimitry Andric   const APInt *Thr;
13668bcb0991SDimitry Andric   Value *SignExtendingValue, *Zero;
13678bcb0991SDimitry Andric   bool ShouldSignext;
13688bcb0991SDimitry Andric   // It must be a select between two values we will later establish to be a
13698bcb0991SDimitry Andric   // sign-extending value and a zero constant. The condition guarding the
13708bcb0991SDimitry Andric   // sign-extension must be based on a sign bit of the same X we had in `lshr`.
13718bcb0991SDimitry Andric   if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
13728bcb0991SDimitry Andric                               m_Value(SignExtendingValue), m_Value(Zero))) ||
13738bcb0991SDimitry Andric       !isSignBitCheck(Pred, *Thr, ShouldSignext))
13748bcb0991SDimitry Andric     return nullptr;
13758bcb0991SDimitry Andric 
13768bcb0991SDimitry Andric   // icmp-select pair is commutative.
13778bcb0991SDimitry Andric   if (!ShouldSignext)
13788bcb0991SDimitry Andric     std::swap(SignExtendingValue, Zero);
13798bcb0991SDimitry Andric 
13808bcb0991SDimitry Andric   // If we should not perform sign-extension then we must add/or/subtract zero.
13818bcb0991SDimitry Andric   if (!match(Zero, m_Zero()))
13828bcb0991SDimitry Andric     return nullptr;
13838bcb0991SDimitry Andric   // Otherwise, it should be some constant, left-shifted by the same NBits we
13848bcb0991SDimitry Andric   // had in `lshr`. Said left-shift can also be appropriately extended.
13858bcb0991SDimitry Andric   // Again, we must look past zero-ext when looking for NBits.
13868bcb0991SDimitry Andric   SkipExtInMagic(SignExtendingValue);
13878bcb0991SDimitry Andric   Constant *SignExtendingValueBaseConstant;
13888bcb0991SDimitry Andric   if (!match(SignExtendingValue,
13898bcb0991SDimitry Andric              m_Shl(m_Constant(SignExtendingValueBaseConstant),
13908bcb0991SDimitry Andric                    m_ZExtOrSelf(m_Specific(NBits)))))
13918bcb0991SDimitry Andric     return nullptr;
13928bcb0991SDimitry Andric   // If we `sub`, then the constant should be one, else it should be all-ones.
13938bcb0991SDimitry Andric   if (I.getOpcode() == Instruction::Sub
13948bcb0991SDimitry Andric           ? !match(SignExtendingValueBaseConstant, m_One())
13958bcb0991SDimitry Andric           : !match(SignExtendingValueBaseConstant, m_AllOnes()))
13968bcb0991SDimitry Andric     return nullptr;
13978bcb0991SDimitry Andric 
13988bcb0991SDimitry Andric   auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
13998bcb0991SDimitry Andric                                              Extract->getName() + ".sext");
14008bcb0991SDimitry Andric   NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
14018bcb0991SDimitry Andric   if (!HadTrunc)
14028bcb0991SDimitry Andric     return NewAShr;
14038bcb0991SDimitry Andric 
14048bcb0991SDimitry Andric   Builder.Insert(NewAShr);
14058bcb0991SDimitry Andric   return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
14068bcb0991SDimitry Andric }
14078bcb0991SDimitry Andric 
1408e8d8bef9SDimitry Andric /// This is a specialization of a more general transform from
1409bdd1243dSDimitry Andric /// foldUsingDistributiveLaws. If that code can be made to work optimally
1410e8d8bef9SDimitry Andric /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1411e8d8bef9SDimitry Andric static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1412e8d8bef9SDimitry Andric                                             InstCombiner::BuilderTy &Builder) {
1413e8d8bef9SDimitry Andric   // TODO: Also handle mul by doubling the shift amount?
1414e8d8bef9SDimitry Andric   assert((I.getOpcode() == Instruction::Add ||
1415e8d8bef9SDimitry Andric           I.getOpcode() == Instruction::Sub) &&
1416e8d8bef9SDimitry Andric          "Expected add/sub");
1417e8d8bef9SDimitry Andric   auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1418e8d8bef9SDimitry Andric   auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1419e8d8bef9SDimitry Andric   if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1420e8d8bef9SDimitry Andric     return nullptr;
1421e8d8bef9SDimitry Andric 
1422e8d8bef9SDimitry Andric   Value *X, *Y, *ShAmt;
1423e8d8bef9SDimitry Andric   if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1424e8d8bef9SDimitry Andric       !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1425e8d8bef9SDimitry Andric     return nullptr;
1426e8d8bef9SDimitry Andric 
1427e8d8bef9SDimitry Andric   // No-wrap propagates only when all ops have no-wrap.
1428e8d8bef9SDimitry Andric   bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1429e8d8bef9SDimitry Andric                 Op1->hasNoSignedWrap();
1430e8d8bef9SDimitry Andric   bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1431e8d8bef9SDimitry Andric                 Op1->hasNoUnsignedWrap();
1432e8d8bef9SDimitry Andric 
1433e8d8bef9SDimitry Andric   // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1434e8d8bef9SDimitry Andric   Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1435e8d8bef9SDimitry Andric   if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1436e8d8bef9SDimitry Andric     NewI->setHasNoSignedWrap(HasNSW);
1437e8d8bef9SDimitry Andric     NewI->setHasNoUnsignedWrap(HasNUW);
1438e8d8bef9SDimitry Andric   }
1439e8d8bef9SDimitry Andric   auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1440e8d8bef9SDimitry Andric   NewShl->setHasNoSignedWrap(HasNSW);
1441e8d8bef9SDimitry Andric   NewShl->setHasNoUnsignedWrap(HasNUW);
1442e8d8bef9SDimitry Andric   return NewShl;
1443e8d8bef9SDimitry Andric }
1444e8d8bef9SDimitry Andric 
1445bdd1243dSDimitry Andric /// Reduce a sequence of masked half-width multiplies to a single multiply.
1446bdd1243dSDimitry Andric /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1447bdd1243dSDimitry Andric static Instruction *foldBoxMultiply(BinaryOperator &I) {
1448bdd1243dSDimitry Andric   unsigned BitWidth = I.getType()->getScalarSizeInBits();
1449bdd1243dSDimitry Andric   // Skip the odd bitwidth types.
1450bdd1243dSDimitry Andric   if ((BitWidth & 0x1))
1451bdd1243dSDimitry Andric     return nullptr;
1452bdd1243dSDimitry Andric 
1453bdd1243dSDimitry Andric   unsigned HalfBits = BitWidth >> 1;
1454bdd1243dSDimitry Andric   APInt HalfMask = APInt::getMaxValue(HalfBits);
1455bdd1243dSDimitry Andric 
1456bdd1243dSDimitry Andric   // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1457bdd1243dSDimitry Andric   Value *XLo, *YLo;
1458bdd1243dSDimitry Andric   Value *CrossSum;
14595f757f3fSDimitry Andric   // Require one-use on the multiply to avoid increasing the number of
14605f757f3fSDimitry Andric   // multiplications.
1461bdd1243dSDimitry Andric   if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
14625f757f3fSDimitry Andric                          m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1463bdd1243dSDimitry Andric     return nullptr;
1464bdd1243dSDimitry Andric 
1465bdd1243dSDimitry Andric   // XLo = X & HalfMask
1466bdd1243dSDimitry Andric   // YLo = Y & HalfMask
1467bdd1243dSDimitry Andric   // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1468bdd1243dSDimitry Andric   // to enhance robustness
1469bdd1243dSDimitry Andric   Value *X, *Y;
1470bdd1243dSDimitry Andric   if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1471bdd1243dSDimitry Andric       !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1472bdd1243dSDimitry Andric     return nullptr;
1473bdd1243dSDimitry Andric 
1474bdd1243dSDimitry Andric   // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1475bdd1243dSDimitry Andric   // X' can be either X or XLo in the pattern (and the same for Y')
1476bdd1243dSDimitry Andric   if (match(CrossSum,
1477bdd1243dSDimitry Andric             m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1478bdd1243dSDimitry Andric                             m_CombineOr(m_Specific(X), m_Specific(XLo))),
1479bdd1243dSDimitry Andric                     m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1480bdd1243dSDimitry Andric                             m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1481bdd1243dSDimitry Andric     return BinaryOperator::CreateMul(X, Y);
1482bdd1243dSDimitry Andric 
1483bdd1243dSDimitry Andric   return nullptr;
1484bdd1243dSDimitry Andric }
1485bdd1243dSDimitry Andric 
1486e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
148781ad6265SDimitry Andric   if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
14880b57cec5SDimitry Andric                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
14890b57cec5SDimitry Andric                                  SQ.getWithInstruction(&I)))
14900b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
14910b57cec5SDimitry Andric 
14920b57cec5SDimitry Andric   if (SimplifyAssociativeOrCommutative(I))
14930b57cec5SDimitry Andric     return &I;
14940b57cec5SDimitry Andric 
14950b57cec5SDimitry Andric   if (Instruction *X = foldVectorBinop(I))
14960b57cec5SDimitry Andric     return X;
14970b57cec5SDimitry Andric 
149804eeddc0SDimitry Andric   if (Instruction *Phi = foldBinopWithPhiOperands(I))
149904eeddc0SDimitry Andric     return Phi;
150004eeddc0SDimitry Andric 
15010b57cec5SDimitry Andric   // (A*B)+(A*C) -> A*(B+C) etc
1502bdd1243dSDimitry Andric   if (Value *V = foldUsingDistributiveLaws(I))
15030b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
15040b57cec5SDimitry Andric 
1505bdd1243dSDimitry Andric   if (Instruction *R = foldBoxMultiply(I))
1506bdd1243dSDimitry Andric     return R;
1507bdd1243dSDimitry Andric 
1508e8d8bef9SDimitry Andric   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1509e8d8bef9SDimitry Andric     return R;
1510e8d8bef9SDimitry Andric 
15110b57cec5SDimitry Andric   if (Instruction *X = foldAddWithConstant(I))
15120b57cec5SDimitry Andric     return X;
15130b57cec5SDimitry Andric 
15140b57cec5SDimitry Andric   if (Instruction *X = foldNoWrapAdd(I, Builder))
15150b57cec5SDimitry Andric     return X;
15160b57cec5SDimitry Andric 
151706c3fb27SDimitry Andric   if (Instruction *R = foldBinOpShiftWithShift(I))
151806c3fb27SDimitry Andric     return R;
151906c3fb27SDimitry Andric 
15205f757f3fSDimitry Andric   if (Instruction *R = combineAddSubWithShlAddSub(Builder, I))
15215f757f3fSDimitry Andric     return R;
15225f757f3fSDimitry Andric 
15230b57cec5SDimitry Andric   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
15240b57cec5SDimitry Andric   Type *Ty = I.getType();
15250b57cec5SDimitry Andric   if (Ty->isIntOrIntVectorTy(1))
15260b57cec5SDimitry Andric     return BinaryOperator::CreateXor(LHS, RHS);
15270b57cec5SDimitry Andric 
15280b57cec5SDimitry Andric   // X + X --> X << 1
15290b57cec5SDimitry Andric   if (LHS == RHS) {
15300b57cec5SDimitry Andric     auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
15310b57cec5SDimitry Andric     Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
15320b57cec5SDimitry Andric     Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
15330b57cec5SDimitry Andric     return Shl;
15340b57cec5SDimitry Andric   }
15350b57cec5SDimitry Andric 
15360b57cec5SDimitry Andric   Value *A, *B;
15370b57cec5SDimitry Andric   if (match(LHS, m_Neg(m_Value(A)))) {
15380b57cec5SDimitry Andric     // -A + -B --> -(A + B)
15390b57cec5SDimitry Andric     if (match(RHS, m_Neg(m_Value(B))))
15400b57cec5SDimitry Andric       return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
15410b57cec5SDimitry Andric 
15420b57cec5SDimitry Andric     // -A + B --> B - A
15435f757f3fSDimitry Andric     auto *Sub = BinaryOperator::CreateSub(RHS, A);
15445f757f3fSDimitry Andric     auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
15455f757f3fSDimitry Andric     Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
15465f757f3fSDimitry Andric 
15475f757f3fSDimitry Andric     return Sub;
15480b57cec5SDimitry Andric   }
15490b57cec5SDimitry Andric 
15500b57cec5SDimitry Andric   // A + -B  -->  A - B
15510b57cec5SDimitry Andric   if (match(RHS, m_Neg(m_Value(B))))
15520b57cec5SDimitry Andric     return BinaryOperator::CreateSub(LHS, B);
15530b57cec5SDimitry Andric 
15540b57cec5SDimitry Andric   if (Value *V = checkForNegativeOperand(I, Builder))
15550b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
15560b57cec5SDimitry Andric 
15570b57cec5SDimitry Andric   // (A + 1) + ~B --> A - B
15580b57cec5SDimitry Andric   // ~B + (A + 1) --> A - B
15590b57cec5SDimitry Andric   // (~B + A) + 1 --> A - B
15600b57cec5SDimitry Andric   // (A + ~B) + 1 --> A - B
15610b57cec5SDimitry Andric   if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
15620b57cec5SDimitry Andric       match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
15630b57cec5SDimitry Andric     return BinaryOperator::CreateSub(A, B);
15640b57cec5SDimitry Andric 
15655ffd83dbSDimitry Andric   // (A + RHS) + RHS --> A + (RHS << 1)
15665ffd83dbSDimitry Andric   if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
15675ffd83dbSDimitry Andric     return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
15685ffd83dbSDimitry Andric 
15695ffd83dbSDimitry Andric   // LHS + (A + LHS) --> A + (LHS << 1)
15705ffd83dbSDimitry Andric   if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
15715ffd83dbSDimitry Andric     return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
15725ffd83dbSDimitry Andric 
1573349cc55cSDimitry Andric   {
1574349cc55cSDimitry Andric     // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1575349cc55cSDimitry Andric     Constant *C1, *C2;
1576349cc55cSDimitry Andric     if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1577349cc55cSDimitry Andric                           m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1578349cc55cSDimitry Andric         (LHS->hasOneUse() || RHS->hasOneUse())) {
1579349cc55cSDimitry Andric       Value *Sub = Builder.CreateSub(A, B);
1580349cc55cSDimitry Andric       return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1581349cc55cSDimitry Andric     }
158206c3fb27SDimitry Andric 
158306c3fb27SDimitry Andric     // Canonicalize a constant sub operand as an add operand for better folding:
158406c3fb27SDimitry Andric     // (C1 - A) + B --> (B - A) + C1
158506c3fb27SDimitry Andric     if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))),
158606c3fb27SDimitry Andric                           m_Value(B)))) {
158706c3fb27SDimitry Andric       Value *Sub = Builder.CreateSub(B, A, "reass.sub");
158806c3fb27SDimitry Andric       return BinaryOperator::CreateAdd(Sub, C1);
158906c3fb27SDimitry Andric     }
1590349cc55cSDimitry Andric   }
1591349cc55cSDimitry Andric 
15920b57cec5SDimitry Andric   // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
15930b57cec5SDimitry Andric   if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
15940b57cec5SDimitry Andric 
15955ffd83dbSDimitry Andric   // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
15965ffd83dbSDimitry Andric   const APInt *C1, *C2;
15975ffd83dbSDimitry Andric   if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
15985ffd83dbSDimitry Andric     APInt one(C2->getBitWidth(), 1);
15995ffd83dbSDimitry Andric     APInt minusC1 = -(*C1);
16005ffd83dbSDimitry Andric     if (minusC1 == (one << *C2)) {
16015ffd83dbSDimitry Andric       Constant *NewRHS = ConstantInt::get(RHS->getType(), minusC1);
16025ffd83dbSDimitry Andric       return BinaryOperator::CreateSRem(RHS, NewRHS);
16035ffd83dbSDimitry Andric     }
16045ffd83dbSDimitry Andric   }
16055ffd83dbSDimitry Andric 
160681ad6265SDimitry Andric   // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
160781ad6265SDimitry Andric   if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
160806c3fb27SDimitry Andric       C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
160981ad6265SDimitry Andric     Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
161081ad6265SDimitry Andric     return BinaryOperator::CreateAnd(A, NewMask);
161181ad6265SDimitry Andric   }
161281ad6265SDimitry Andric 
1613bdd1243dSDimitry Andric   // ZExt (B - A) + ZExt(A) --> ZExt(B)
1614bdd1243dSDimitry Andric   if ((match(RHS, m_ZExt(m_Value(A))) &&
1615bdd1243dSDimitry Andric        match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1616bdd1243dSDimitry Andric       (match(LHS, m_ZExt(m_Value(A))) &&
1617bdd1243dSDimitry Andric        match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1618bdd1243dSDimitry Andric     return new ZExtInst(B, LHS->getType());
1619bdd1243dSDimitry Andric 
162006c3fb27SDimitry Andric   // zext(A) + sext(A) --> 0 if A is i1
162106c3fb27SDimitry Andric   if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) &&
162206c3fb27SDimitry Andric       A->getType()->isIntOrIntVectorTy(1))
162306c3fb27SDimitry Andric     return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
162406c3fb27SDimitry Andric 
16250b57cec5SDimitry Andric   // A+B --> A|B iff A and B have no bits set in common.
16265f757f3fSDimitry Andric   WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
16275f757f3fSDimitry Andric   if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
16285f757f3fSDimitry Andric     return BinaryOperator::CreateDisjointOr(LHS, RHS);
16290b57cec5SDimitry Andric 
16300b57cec5SDimitry Andric   if (Instruction *Ext = narrowMathIfNoOverflow(I))
16310b57cec5SDimitry Andric     return Ext;
16320b57cec5SDimitry Andric 
16330b57cec5SDimitry Andric   // (add (xor A, B) (and A, B)) --> (or A, B)
16340b57cec5SDimitry Andric   // (add (and A, B) (xor A, B)) --> (or A, B)
16350b57cec5SDimitry Andric   if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
16360b57cec5SDimitry Andric                           m_c_And(m_Deferred(A), m_Deferred(B)))))
16370b57cec5SDimitry Andric     return BinaryOperator::CreateOr(A, B);
16380b57cec5SDimitry Andric 
16390b57cec5SDimitry Andric   // (add (or A, B) (and A, B)) --> (add A, B)
16400b57cec5SDimitry Andric   // (add (and A, B) (or A, B)) --> (add A, B)
16410b57cec5SDimitry Andric   if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
16420b57cec5SDimitry Andric                           m_c_And(m_Deferred(A), m_Deferred(B))))) {
16435ffd83dbSDimitry Andric     // Replacing operands in-place to preserve nuw/nsw flags.
16445ffd83dbSDimitry Andric     replaceOperand(I, 0, A);
16455ffd83dbSDimitry Andric     replaceOperand(I, 1, B);
16460b57cec5SDimitry Andric     return &I;
16470b57cec5SDimitry Andric   }
16480b57cec5SDimitry Andric 
1649bdd1243dSDimitry Andric   // (add A (or A, -A)) --> (and (add A, -1) A)
1650bdd1243dSDimitry Andric   // (add A (or -A, A)) --> (and (add A, -1) A)
1651bdd1243dSDimitry Andric   // (add (or A, -A) A) --> (and (add A, -1) A)
1652bdd1243dSDimitry Andric   // (add (or -A, A) A) --> (and (add A, -1) A)
1653bdd1243dSDimitry Andric   if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1654bdd1243dSDimitry Andric                                                       m_Deferred(A)))))) {
1655bdd1243dSDimitry Andric     Value *Add =
1656bdd1243dSDimitry Andric         Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1657bdd1243dSDimitry Andric                           I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1658bdd1243dSDimitry Andric     return BinaryOperator::CreateAnd(Add, A);
1659bdd1243dSDimitry Andric   }
1660bdd1243dSDimitry Andric 
1661bdd1243dSDimitry Andric   // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1662bdd1243dSDimitry Andric   // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1663bdd1243dSDimitry Andric   if (match(&I,
1664bdd1243dSDimitry Andric             m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1665bdd1243dSDimitry Andric                   m_AllOnes()))) {
1666bdd1243dSDimitry Andric     Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1667bdd1243dSDimitry Andric     Value *Dec = Builder.CreateAdd(A, AllOnes);
1668bdd1243dSDimitry Andric     Value *Not = Builder.CreateXor(A, AllOnes);
1669bdd1243dSDimitry Andric     return BinaryOperator::CreateAnd(Dec, Not);
1670bdd1243dSDimitry Andric   }
1671bdd1243dSDimitry Andric 
1672bdd1243dSDimitry Andric   // Disguised reassociation/factorization:
1673bdd1243dSDimitry Andric   // ~(A * C1) + A
1674bdd1243dSDimitry Andric   // ((A * -C1) - 1) + A
1675bdd1243dSDimitry Andric   // ((A * -C1) + A) - 1
1676bdd1243dSDimitry Andric   // (A * (1 - C1)) - 1
1677bdd1243dSDimitry Andric   if (match(&I,
1678bdd1243dSDimitry Andric             m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1679bdd1243dSDimitry Andric                     m_Deferred(A)))) {
1680bdd1243dSDimitry Andric     Type *Ty = I.getType();
1681bdd1243dSDimitry Andric     Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1682bdd1243dSDimitry Andric     Value *NewMul = Builder.CreateMul(A, NewMulC);
1683bdd1243dSDimitry Andric     return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1684bdd1243dSDimitry Andric   }
1685bdd1243dSDimitry Andric 
1686bdd1243dSDimitry Andric   // (A * -2**C) + B --> B - (A << C)
1687bdd1243dSDimitry Andric   const APInt *NegPow2C;
1688bdd1243dSDimitry Andric   if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1689bdd1243dSDimitry Andric                         m_Value(B)))) {
169006c3fb27SDimitry Andric     Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1691bdd1243dSDimitry Andric     Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1692bdd1243dSDimitry Andric     return BinaryOperator::CreateSub(B, Shl);
1693bdd1243dSDimitry Andric   }
1694bdd1243dSDimitry Andric 
1695bdd1243dSDimitry Andric   // Canonicalize signum variant that ends in add:
1696bdd1243dSDimitry Andric   // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1697bdd1243dSDimitry Andric   ICmpInst::Predicate Pred;
1698bdd1243dSDimitry Andric   uint64_t BitWidth = Ty->getScalarSizeInBits();
1699*0fca6ea1SDimitry Andric   if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) &&
1700bdd1243dSDimitry Andric       match(RHS, m_OneUse(m_ZExt(
1701bdd1243dSDimitry Andric                      m_OneUse(m_ICmp(Pred, m_Specific(A), m_ZeroInt()))))) &&
1702bdd1243dSDimitry Andric       Pred == CmpInst::ICMP_SGT) {
1703bdd1243dSDimitry Andric     Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1704bdd1243dSDimitry Andric     Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1705bdd1243dSDimitry Andric     return BinaryOperator::CreateOr(LHS, Zext);
1706bdd1243dSDimitry Andric   }
1707bdd1243dSDimitry Andric 
1708*0fca6ea1SDimitry Andric   {
1709*0fca6ea1SDimitry Andric     Value *Cond, *Ext;
1710*0fca6ea1SDimitry Andric     Constant *C;
1711*0fca6ea1SDimitry Andric     // (add X, (sext/zext (icmp eq X, C)))
1712*0fca6ea1SDimitry Andric     //    -> (select (icmp eq X, C), (add C, (sext/zext 1)), X)
1713*0fca6ea1SDimitry Andric     auto CondMatcher = m_CombineAnd(
1714*0fca6ea1SDimitry Andric         m_Value(Cond), m_ICmp(Pred, m_Deferred(A), m_ImmConstant(C)));
1715*0fca6ea1SDimitry Andric 
1716*0fca6ea1SDimitry Andric     if (match(&I,
1717*0fca6ea1SDimitry Andric               m_c_Add(m_Value(A),
1718*0fca6ea1SDimitry Andric                       m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) &&
1719*0fca6ea1SDimitry Andric         Pred == ICmpInst::ICMP_EQ && Ext->hasOneUse()) {
1720*0fca6ea1SDimitry Andric       Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C)
1721*0fca6ea1SDimitry Andric                                       : InstCombiner::SubOne(C);
1722*0fca6ea1SDimitry Andric       return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A));
1723*0fca6ea1SDimitry Andric     }
1724*0fca6ea1SDimitry Andric   }
1725*0fca6ea1SDimitry Andric 
1726bdd1243dSDimitry Andric   if (Instruction *Ashr = foldAddToAshr(I))
1727bdd1243dSDimitry Andric     return Ashr;
1728bdd1243dSDimitry Andric 
17295f757f3fSDimitry Andric   // (~X) + (~Y) --> -2 - (X + Y)
17305f757f3fSDimitry Andric   {
17315f757f3fSDimitry Andric     // To ensure we can save instructions we need to ensure that we consume both
17325f757f3fSDimitry Andric     // LHS/RHS (i.e they have a `not`).
17335f757f3fSDimitry Andric     bool ConsumesLHS, ConsumesRHS;
17345f757f3fSDimitry Andric     if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
17355f757f3fSDimitry Andric         isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
17365f757f3fSDimitry Andric       Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder);
17375f757f3fSDimitry Andric       Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder);
17385f757f3fSDimitry Andric       assert(NotLHS != nullptr && NotRHS != nullptr &&
17395f757f3fSDimitry Andric              "isFreeToInvert desynced with getFreelyInverted");
17405f757f3fSDimitry Andric       Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1741647cbc5dSDimitry Andric       return BinaryOperator::CreateSub(
1742647cbc5dSDimitry Andric           ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
17435f757f3fSDimitry Andric     }
17445f757f3fSDimitry Andric   }
17455f757f3fSDimitry Andric 
17467a6dacacSDimitry Andric   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
17477a6dacacSDimitry Andric     return R;
17487a6dacacSDimitry Andric 
17490b57cec5SDimitry Andric   // TODO(jingyue): Consider willNotOverflowSignedAdd and
17500b57cec5SDimitry Andric   // willNotOverflowUnsignedAdd to reduce the number of invocations of
17510b57cec5SDimitry Andric   // computeKnownBits.
17520b57cec5SDimitry Andric   bool Changed = false;
17535f757f3fSDimitry Andric   if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
17540b57cec5SDimitry Andric     Changed = true;
17550b57cec5SDimitry Andric     I.setHasNoSignedWrap(true);
17560b57cec5SDimitry Andric   }
17575f757f3fSDimitry Andric   if (!I.hasNoUnsignedWrap() &&
17585f757f3fSDimitry Andric       willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
17590b57cec5SDimitry Andric     Changed = true;
17600b57cec5SDimitry Andric     I.setHasNoUnsignedWrap(true);
17610b57cec5SDimitry Andric   }
17620b57cec5SDimitry Andric 
17630b57cec5SDimitry Andric   if (Instruction *V = canonicalizeLowbitMask(I, Builder))
17640b57cec5SDimitry Andric     return V;
17650b57cec5SDimitry Andric 
17668bcb0991SDimitry Andric   if (Instruction *V =
17678bcb0991SDimitry Andric           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
17688bcb0991SDimitry Andric     return V;
17698bcb0991SDimitry Andric 
17700b57cec5SDimitry Andric   if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
17710b57cec5SDimitry Andric     return SatAdd;
17720b57cec5SDimitry Andric 
1773e8d8bef9SDimitry Andric   // usub.sat(A, B) + B => umax(A, B)
1774e8d8bef9SDimitry Andric   if (match(&I, m_c_BinOp(
1775e8d8bef9SDimitry Andric           m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1776e8d8bef9SDimitry Andric           m_Deferred(B)))) {
1777e8d8bef9SDimitry Andric     return replaceInstUsesWith(I,
1778e8d8bef9SDimitry Andric         Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1779e8d8bef9SDimitry Andric   }
1780e8d8bef9SDimitry Andric 
1781fe6060f1SDimitry Andric   // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1782fe6060f1SDimitry Andric   if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1783fe6060f1SDimitry Andric       match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
17845f757f3fSDimitry Andric       haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1785fe6060f1SDimitry Andric     return replaceInstUsesWith(
1786fe6060f1SDimitry Andric         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1787fe6060f1SDimitry Andric                                    {Builder.CreateOr(A, B)}));
1788fe6060f1SDimitry Andric 
1789297eecfbSDimitry Andric   // Fold the log2_ceil idiom:
1790297eecfbSDimitry Andric   // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1791297eecfbSDimitry Andric   // -->
1792297eecfbSDimitry Andric   // BW - ctlz(A - 1, false)
1793297eecfbSDimitry Andric   const APInt *XorC;
1794297eecfbSDimitry Andric   if (match(&I,
1795297eecfbSDimitry Andric             m_c_Add(
1796297eecfbSDimitry Andric                 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1797297eecfbSDimitry Andric                               m_One())),
1798297eecfbSDimitry Andric                 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
1799297eecfbSDimitry Andric                     m_OneUse(m_TruncOrSelf(m_OneUse(
1800297eecfbSDimitry Andric                         m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1801297eecfbSDimitry Andric                     m_APInt(XorC))))))) &&
1802297eecfbSDimitry Andric       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1803297eecfbSDimitry Andric       *XorC == A->getType()->getScalarSizeInBits() - 1) {
1804297eecfbSDimitry Andric     Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
1805297eecfbSDimitry Andric     Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1806297eecfbSDimitry Andric                                           {Sub, Builder.getFalse()});
1807297eecfbSDimitry Andric     Value *Ret = Builder.CreateSub(
1808297eecfbSDimitry Andric         ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1809297eecfbSDimitry Andric         Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
1810297eecfbSDimitry Andric     return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1811297eecfbSDimitry Andric   }
1812297eecfbSDimitry Andric 
18135f757f3fSDimitry Andric   if (Instruction *Res = foldSquareSumInt(I))
18145f757f3fSDimitry Andric     return Res;
18155f757f3fSDimitry Andric 
181606c3fb27SDimitry Andric   if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
181706c3fb27SDimitry Andric     return Res;
181806c3fb27SDimitry Andric 
181906c3fb27SDimitry Andric   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
182006c3fb27SDimitry Andric     return Res;
182106c3fb27SDimitry Andric 
18220b57cec5SDimitry Andric   return Changed ? &I : nullptr;
18230b57cec5SDimitry Andric }
18240b57cec5SDimitry Andric 
18258bcb0991SDimitry Andric /// Eliminate an op from a linear interpolation (lerp) pattern.
18268bcb0991SDimitry Andric static Instruction *factorizeLerp(BinaryOperator &I,
18278bcb0991SDimitry Andric                                   InstCombiner::BuilderTy &Builder) {
18288bcb0991SDimitry Andric   Value *X, *Y, *Z;
18298bcb0991SDimitry Andric   if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
18308bcb0991SDimitry Andric                                             m_OneUse(m_FSub(m_FPOne(),
18318bcb0991SDimitry Andric                                                             m_Value(Z))))),
18328bcb0991SDimitry Andric                           m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
18338bcb0991SDimitry Andric     return nullptr;
18348bcb0991SDimitry Andric 
18358bcb0991SDimitry Andric   // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
18368bcb0991SDimitry Andric   Value *XY = Builder.CreateFSubFMF(X, Y, &I);
18378bcb0991SDimitry Andric   Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
18388bcb0991SDimitry Andric   return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
18398bcb0991SDimitry Andric }
18408bcb0991SDimitry Andric 
18410b57cec5SDimitry Andric /// Factor a common operand out of fadd/fsub of fmul/fdiv.
18420b57cec5SDimitry Andric static Instruction *factorizeFAddFSub(BinaryOperator &I,
18430b57cec5SDimitry Andric                                       InstCombiner::BuilderTy &Builder) {
18440b57cec5SDimitry Andric   assert((I.getOpcode() == Instruction::FAdd ||
18450b57cec5SDimitry Andric           I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
18460b57cec5SDimitry Andric   assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
18470b57cec5SDimitry Andric          "FP factorization requires FMF");
18488bcb0991SDimitry Andric 
18498bcb0991SDimitry Andric   if (Instruction *Lerp = factorizeLerp(I, Builder))
18508bcb0991SDimitry Andric     return Lerp;
18518bcb0991SDimitry Andric 
18520b57cec5SDimitry Andric   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
185304eeddc0SDimitry Andric   if (!Op0->hasOneUse() || !Op1->hasOneUse())
185404eeddc0SDimitry Andric     return nullptr;
185504eeddc0SDimitry Andric 
18560b57cec5SDimitry Andric   Value *X, *Y, *Z;
18570b57cec5SDimitry Andric   bool IsFMul;
185804eeddc0SDimitry Andric   if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
185904eeddc0SDimitry Andric        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
186004eeddc0SDimitry Andric       (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
186104eeddc0SDimitry Andric        match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
18620b57cec5SDimitry Andric     IsFMul = true;
186304eeddc0SDimitry Andric   else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
186404eeddc0SDimitry Andric            match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
18650b57cec5SDimitry Andric     IsFMul = false;
18660b57cec5SDimitry Andric   else
18670b57cec5SDimitry Andric     return nullptr;
18680b57cec5SDimitry Andric 
18690b57cec5SDimitry Andric   // (X * Z) + (Y * Z) --> (X + Y) * Z
18700b57cec5SDimitry Andric   // (X * Z) - (Y * Z) --> (X - Y) * Z
18710b57cec5SDimitry Andric   // (X / Z) + (Y / Z) --> (X + Y) / Z
18720b57cec5SDimitry Andric   // (X / Z) - (Y / Z) --> (X - Y) / Z
18730b57cec5SDimitry Andric   bool IsFAdd = I.getOpcode() == Instruction::FAdd;
18740b57cec5SDimitry Andric   Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
18750b57cec5SDimitry Andric                      : Builder.CreateFSubFMF(X, Y, &I);
18760b57cec5SDimitry Andric 
18770b57cec5SDimitry Andric   // Bail out if we just created a denormal constant.
18780b57cec5SDimitry Andric   // TODO: This is copied from a previous implementation. Is it necessary?
18790b57cec5SDimitry Andric   const APFloat *C;
18800b57cec5SDimitry Andric   if (match(XY, m_APFloat(C)) && !C->isNormal())
18810b57cec5SDimitry Andric     return nullptr;
18820b57cec5SDimitry Andric 
18830b57cec5SDimitry Andric   return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
18840b57cec5SDimitry Andric                 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
18850b57cec5SDimitry Andric }
18860b57cec5SDimitry Andric 
1887e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
188881ad6265SDimitry Andric   if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
18890b57cec5SDimitry Andric                                   I.getFastMathFlags(),
18900b57cec5SDimitry Andric                                   SQ.getWithInstruction(&I)))
18910b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
18920b57cec5SDimitry Andric 
18930b57cec5SDimitry Andric   if (SimplifyAssociativeOrCommutative(I))
18940b57cec5SDimitry Andric     return &I;
18950b57cec5SDimitry Andric 
18960b57cec5SDimitry Andric   if (Instruction *X = foldVectorBinop(I))
18970b57cec5SDimitry Andric     return X;
18980b57cec5SDimitry Andric 
189904eeddc0SDimitry Andric   if (Instruction *Phi = foldBinopWithPhiOperands(I))
190004eeddc0SDimitry Andric     return Phi;
190104eeddc0SDimitry Andric 
19020b57cec5SDimitry Andric   if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
19030b57cec5SDimitry Andric     return FoldedFAdd;
19040b57cec5SDimitry Andric 
19050b57cec5SDimitry Andric   // (-X) + Y --> Y - X
19068bcb0991SDimitry Andric   Value *X, *Y;
19078bcb0991SDimitry Andric   if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
19088bcb0991SDimitry Andric     return BinaryOperator::CreateFSubFMF(Y, X, &I);
19098bcb0991SDimitry Andric 
19108bcb0991SDimitry Andric   // Similar to above, but look through fmul/fdiv for the negated term.
19118bcb0991SDimitry Andric   // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
19128bcb0991SDimitry Andric   Value *Z;
19138bcb0991SDimitry Andric   if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
19148bcb0991SDimitry Andric                          m_Value(Z)))) {
19158bcb0991SDimitry Andric     Value *XY = Builder.CreateFMulFMF(X, Y, &I);
19168bcb0991SDimitry Andric     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
19178bcb0991SDimitry Andric   }
19188bcb0991SDimitry Andric   // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
19198bcb0991SDimitry Andric   // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
19208bcb0991SDimitry Andric   if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
19218bcb0991SDimitry Andric                          m_Value(Z))) ||
19228bcb0991SDimitry Andric       match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
19238bcb0991SDimitry Andric                          m_Value(Z)))) {
19248bcb0991SDimitry Andric     Value *XY = Builder.CreateFDivFMF(X, Y, &I);
19258bcb0991SDimitry Andric     return BinaryOperator::CreateFSubFMF(Z, XY, &I);
19268bcb0991SDimitry Andric   }
19270b57cec5SDimitry Andric 
19280b57cec5SDimitry Andric   // Check for (fadd double (sitofp x), y), see if we can merge this into an
19290b57cec5SDimitry Andric   // integer add followed by a promotion.
1930*0fca6ea1SDimitry Andric   if (Instruction *R = foldFBinOpOfIntCasts(I))
1931*0fca6ea1SDimitry Andric     return R;
1932*0fca6ea1SDimitry Andric 
19338bcb0991SDimitry Andric   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
19340b57cec5SDimitry Andric   // Handle specials cases for FAdd with selects feeding the operation
19350b57cec5SDimitry Andric   if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
19360b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
19370b57cec5SDimitry Andric 
19380b57cec5SDimitry Andric   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
19390b57cec5SDimitry Andric     if (Instruction *F = factorizeFAddFSub(I, Builder))
19400b57cec5SDimitry Andric       return F;
1941fe6060f1SDimitry Andric 
19425f757f3fSDimitry Andric     if (Instruction *F = foldSquareSumFP(I))
19435f757f3fSDimitry Andric       return F;
19445f757f3fSDimitry Andric 
1945fe6060f1SDimitry Andric     // Try to fold fadd into start value of reduction intrinsic.
1946fe6060f1SDimitry Andric     if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1947fe6060f1SDimitry Andric                                m_AnyZeroFP(), m_Value(X))),
1948fe6060f1SDimitry Andric                            m_Value(Y)))) {
1949fe6060f1SDimitry Andric       // fadd (rdx 0.0, X), Y --> rdx Y, X
1950fe6060f1SDimitry Andric       return replaceInstUsesWith(
1951fe6060f1SDimitry Andric           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1952fe6060f1SDimitry Andric                                      {X->getType()}, {Y, X}, &I));
1953fe6060f1SDimitry Andric     }
1954fe6060f1SDimitry Andric     const APFloat *StartC, *C;
1955fe6060f1SDimitry Andric     if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
1956fe6060f1SDimitry Andric                        m_APFloat(StartC), m_Value(X)))) &&
1957fe6060f1SDimitry Andric         match(RHS, m_APFloat(C))) {
1958fe6060f1SDimitry Andric       // fadd (rdx StartC, X), C --> rdx (C + StartC), X
1959fe6060f1SDimitry Andric       Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
1960fe6060f1SDimitry Andric       return replaceInstUsesWith(
1961fe6060f1SDimitry Andric           I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
1962fe6060f1SDimitry Andric                                      {X->getType()}, {NewStartC, X}, &I));
1963fe6060f1SDimitry Andric     }
1964fe6060f1SDimitry Andric 
196504eeddc0SDimitry Andric     // (X * MulC) + X --> X * (MulC + 1.0)
196604eeddc0SDimitry Andric     Constant *MulC;
196704eeddc0SDimitry Andric     if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
196804eeddc0SDimitry Andric                            m_Deferred(X)))) {
1969753f127fSDimitry Andric       if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
1970753f127fSDimitry Andric               Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
1971753f127fSDimitry Andric         return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
197204eeddc0SDimitry Andric     }
197304eeddc0SDimitry Andric 
1974bdd1243dSDimitry Andric     // (-X - Y) + (X + Z) --> Z - Y
1975bdd1243dSDimitry Andric     if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
1976bdd1243dSDimitry Andric                            m_c_FAdd(m_Deferred(X), m_Value(Z)))))
1977bdd1243dSDimitry Andric       return BinaryOperator::CreateFSubFMF(Z, Y, &I);
1978bdd1243dSDimitry Andric 
19790b57cec5SDimitry Andric     if (Value *V = FAddCombine(Builder).simplify(&I))
19800b57cec5SDimitry Andric       return replaceInstUsesWith(I, V);
19810b57cec5SDimitry Andric   }
19820b57cec5SDimitry Andric 
198306c3fb27SDimitry Andric   // minumum(X, Y) + maximum(X, Y) => X + Y.
198406c3fb27SDimitry Andric   if (match(&I,
198506c3fb27SDimitry Andric             m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
198606c3fb27SDimitry Andric                      m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
198706c3fb27SDimitry Andric                                                        m_Deferred(Y))))) {
198806c3fb27SDimitry Andric     BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I);
198906c3fb27SDimitry Andric     // We cannot preserve ninf if nnan flag is not set.
199006c3fb27SDimitry Andric     // If X is NaN and Y is Inf then in original program we had NaN + NaN,
199106c3fb27SDimitry Andric     // while in optimized version NaN + Inf and this is a poison with ninf flag.
199206c3fb27SDimitry Andric     if (!Result->hasNoNaNs())
199306c3fb27SDimitry Andric       Result->setHasNoInfs(false);
199406c3fb27SDimitry Andric     return Result;
199506c3fb27SDimitry Andric   }
199606c3fb27SDimitry Andric 
19970b57cec5SDimitry Andric   return nullptr;
19980b57cec5SDimitry Andric }
19990b57cec5SDimitry Andric 
20000b57cec5SDimitry Andric /// Optimize pointer differences into the same array into a size.  Consider:
20010b57cec5SDimitry Andric ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
20020b57cec5SDimitry Andric /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
2003e8d8bef9SDimitry Andric Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
2004480093f4SDimitry Andric                                                    Type *Ty, bool IsNUW) {
20050b57cec5SDimitry Andric   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
20060b57cec5SDimitry Andric   // this.
20070b57cec5SDimitry Andric   bool Swapped = false;
20080b57cec5SDimitry Andric   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
2009e8d8bef9SDimitry Andric   if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
2010e8d8bef9SDimitry Andric     std::swap(LHS, RHS);
2011e8d8bef9SDimitry Andric     Swapped = true;
2012e8d8bef9SDimitry Andric   }
20130b57cec5SDimitry Andric 
2014e8d8bef9SDimitry Andric   // Require at least one GEP with a common base pointer on both sides.
2015e8d8bef9SDimitry Andric   if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
20160b57cec5SDimitry Andric     // (gep X, ...) - X
201781ad6265SDimitry Andric     if (LHSGEP->getOperand(0)->stripPointerCasts() ==
201881ad6265SDimitry Andric         RHS->stripPointerCasts()) {
20190b57cec5SDimitry Andric       GEP1 = LHSGEP;
2020e8d8bef9SDimitry Andric     } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
20210b57cec5SDimitry Andric       // (gep X, ...) - (gep X, ...)
20220b57cec5SDimitry Andric       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
20230b57cec5SDimitry Andric           RHSGEP->getOperand(0)->stripPointerCasts()) {
20240b57cec5SDimitry Andric         GEP1 = LHSGEP;
2025e8d8bef9SDimitry Andric         GEP2 = RHSGEP;
20260b57cec5SDimitry Andric       }
20270b57cec5SDimitry Andric     }
20280b57cec5SDimitry Andric   }
20290b57cec5SDimitry Andric 
20300b57cec5SDimitry Andric   if (!GEP1)
20310b57cec5SDimitry Andric     return nullptr;
20320b57cec5SDimitry Andric 
2033*0fca6ea1SDimitry Andric   // To avoid duplicating the offset arithmetic, rewrite the GEP to use the
2034*0fca6ea1SDimitry Andric   // computed offset. This may erase the original GEP, so be sure to cache the
2035*0fca6ea1SDimitry Andric   // inbounds flag before emitting the offset.
2036*0fca6ea1SDimitry Andric   // TODO: We should probably do this even if there is only one GEP.
2037*0fca6ea1SDimitry Andric   bool RewriteGEPs = GEP2 != nullptr;
20380b57cec5SDimitry Andric 
20390b57cec5SDimitry Andric   // Emit the offset of the GEP and an intptr_t.
2040*0fca6ea1SDimitry Andric   bool GEP1IsInBounds = GEP1->isInBounds();
2041*0fca6ea1SDimitry Andric   Value *Result = EmitGEPOffset(GEP1, RewriteGEPs);
20420b57cec5SDimitry Andric 
2043480093f4SDimitry Andric   // If this is a single inbounds GEP and the original sub was nuw,
2044e8d8bef9SDimitry Andric   // then the final multiplication is also nuw.
2045e8d8bef9SDimitry Andric   if (auto *I = dyn_cast<Instruction>(Result))
2046*0fca6ea1SDimitry Andric     if (IsNUW && !GEP2 && !Swapped && GEP1IsInBounds &&
2047480093f4SDimitry Andric         I->getOpcode() == Instruction::Mul)
2048480093f4SDimitry Andric       I->setHasNoUnsignedWrap();
2049480093f4SDimitry Andric 
2050e8d8bef9SDimitry Andric   // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2051e8d8bef9SDimitry Andric   // If both GEPs are inbounds, then the subtract does not have signed overflow.
20520b57cec5SDimitry Andric   if (GEP2) {
2053*0fca6ea1SDimitry Andric     bool GEP2IsInBounds = GEP2->isInBounds();
2054*0fca6ea1SDimitry Andric     Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs);
2055e8d8bef9SDimitry Andric     Result = Builder.CreateSub(Result, Offset, "gepdiff", /* NUW */ false,
2056*0fca6ea1SDimitry Andric                                GEP1IsInBounds && GEP2IsInBounds);
20570b57cec5SDimitry Andric   }
20580b57cec5SDimitry Andric 
20590b57cec5SDimitry Andric   // If we have p - gep(p, ...)  then we have to negate the result.
20600b57cec5SDimitry Andric   if (Swapped)
20610b57cec5SDimitry Andric     Result = Builder.CreateNeg(Result, "diff.neg");
20620b57cec5SDimitry Andric 
20630b57cec5SDimitry Andric   return Builder.CreateIntCast(Result, Ty, true);
20640b57cec5SDimitry Andric }
20650b57cec5SDimitry Andric 
2066753f127fSDimitry Andric static Instruction *foldSubOfMinMax(BinaryOperator &I,
2067753f127fSDimitry Andric                                     InstCombiner::BuilderTy &Builder) {
2068753f127fSDimitry Andric   Value *Op0 = I.getOperand(0);
2069753f127fSDimitry Andric   Value *Op1 = I.getOperand(1);
2070753f127fSDimitry Andric   Type *Ty = I.getType();
2071753f127fSDimitry Andric   auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2072753f127fSDimitry Andric   if (!MinMax)
2073753f127fSDimitry Andric     return nullptr;
2074753f127fSDimitry Andric 
2075753f127fSDimitry Andric   // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2076753f127fSDimitry Andric   // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2077753f127fSDimitry Andric   Value *X = MinMax->getLHS();
2078753f127fSDimitry Andric   Value *Y = MinMax->getRHS();
2079753f127fSDimitry Andric   if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2080753f127fSDimitry Andric       (Op0->hasOneUse() || Op1->hasOneUse())) {
2081753f127fSDimitry Andric     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2082753f127fSDimitry Andric     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2083753f127fSDimitry Andric     return CallInst::Create(F, {X, Y});
2084753f127fSDimitry Andric   }
2085753f127fSDimitry Andric 
2086753f127fSDimitry Andric   // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2087753f127fSDimitry Andric   // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2088753f127fSDimitry Andric   Value *Z;
2089753f127fSDimitry Andric   if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2090753f127fSDimitry Andric     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2091753f127fSDimitry Andric       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2092753f127fSDimitry Andric       return BinaryOperator::CreateAdd(X, USub);
2093753f127fSDimitry Andric     }
2094753f127fSDimitry Andric     if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2095753f127fSDimitry Andric       Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2096753f127fSDimitry Andric       return BinaryOperator::CreateAdd(X, USub);
2097753f127fSDimitry Andric     }
2098753f127fSDimitry Andric   }
2099753f127fSDimitry Andric 
2100753f127fSDimitry Andric   // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2101753f127fSDimitry Andric   // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2102753f127fSDimitry Andric   if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2103753f127fSDimitry Andric       match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2104753f127fSDimitry Andric     Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2105753f127fSDimitry Andric     Function *F = Intrinsic::getDeclaration(I.getModule(), InvID, Ty);
2106753f127fSDimitry Andric     return CallInst::Create(F, {Op0, Z});
2107753f127fSDimitry Andric   }
2108753f127fSDimitry Andric 
2109753f127fSDimitry Andric   return nullptr;
2110753f127fSDimitry Andric }
2111753f127fSDimitry Andric 
2112e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
211381ad6265SDimitry Andric   if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
21140b57cec5SDimitry Andric                                  I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
21150b57cec5SDimitry Andric                                  SQ.getWithInstruction(&I)))
21160b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
21170b57cec5SDimitry Andric 
21180b57cec5SDimitry Andric   if (Instruction *X = foldVectorBinop(I))
21190b57cec5SDimitry Andric     return X;
21200b57cec5SDimitry Andric 
212104eeddc0SDimitry Andric   if (Instruction *Phi = foldBinopWithPhiOperands(I))
212204eeddc0SDimitry Andric     return Phi;
212304eeddc0SDimitry Andric 
21245ffd83dbSDimitry Andric   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
21250b57cec5SDimitry Andric 
21260b57cec5SDimitry Andric   // If this is a 'B = x-(-A)', change to B = x+A.
21275ffd83dbSDimitry Andric   // We deal with this without involving Negator to preserve NSW flag.
21280b57cec5SDimitry Andric   if (Value *V = dyn_castNegVal(Op1)) {
21290b57cec5SDimitry Andric     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
21300b57cec5SDimitry Andric 
21310b57cec5SDimitry Andric     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
21320b57cec5SDimitry Andric       assert(BO->getOpcode() == Instruction::Sub &&
21330b57cec5SDimitry Andric              "Expected a subtraction operator!");
21340b57cec5SDimitry Andric       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
21350b57cec5SDimitry Andric         Res->setHasNoSignedWrap(true);
21360b57cec5SDimitry Andric     } else {
21370b57cec5SDimitry Andric       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
21380b57cec5SDimitry Andric         Res->setHasNoSignedWrap(true);
21390b57cec5SDimitry Andric     }
21400b57cec5SDimitry Andric 
21410b57cec5SDimitry Andric     return Res;
21420b57cec5SDimitry Andric   }
21430b57cec5SDimitry Andric 
2144e8d8bef9SDimitry Andric   // Try this before Negator to preserve NSW flag.
2145e8d8bef9SDimitry Andric   if (Instruction *R = factorizeMathWithShlOps(I, Builder))
2146e8d8bef9SDimitry Andric     return R;
2147e8d8bef9SDimitry Andric 
2148fe6060f1SDimitry Andric   Constant *C;
2149fe6060f1SDimitry Andric   if (match(Op0, m_ImmConstant(C))) {
2150e8d8bef9SDimitry Andric     Value *X;
2151e8d8bef9SDimitry Andric     Constant *C2;
2152e8d8bef9SDimitry Andric 
2153e8d8bef9SDimitry Andric     // C-(X+C2) --> (C-C2)-X
215406c3fb27SDimitry Andric     if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
21555f757f3fSDimitry Andric       // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
21565f757f3fSDimitry Andric       // => (C-C2)-X can have NSW/NUW
215706c3fb27SDimitry Andric       bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
215806c3fb27SDimitry Andric       BinaryOperator *Res =
215906c3fb27SDimitry Andric           BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
216006c3fb27SDimitry Andric       auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
216106c3fb27SDimitry Andric       Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
216206c3fb27SDimitry Andric                               WillNotSOV);
21635f757f3fSDimitry Andric       Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
21645f757f3fSDimitry Andric                                 OBO1->hasNoUnsignedWrap());
216506c3fb27SDimitry Andric       return Res;
216606c3fb27SDimitry Andric     }
2167e8d8bef9SDimitry Andric   }
2168e8d8bef9SDimitry Andric 
21695ffd83dbSDimitry Andric   auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
21705ffd83dbSDimitry Andric     if (Instruction *Ext = narrowMathIfNoOverflow(I))
21715ffd83dbSDimitry Andric       return Ext;
21725ffd83dbSDimitry Andric 
21735ffd83dbSDimitry Andric     bool Changed = false;
21745ffd83dbSDimitry Andric     if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
21755ffd83dbSDimitry Andric       Changed = true;
21765ffd83dbSDimitry Andric       I.setHasNoSignedWrap(true);
21775ffd83dbSDimitry Andric     }
21785ffd83dbSDimitry Andric     if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
21795ffd83dbSDimitry Andric       Changed = true;
21805ffd83dbSDimitry Andric       I.setHasNoUnsignedWrap(true);
21815ffd83dbSDimitry Andric     }
21825ffd83dbSDimitry Andric 
21835ffd83dbSDimitry Andric     return Changed ? &I : nullptr;
21845ffd83dbSDimitry Andric   };
21855ffd83dbSDimitry Andric 
21865ffd83dbSDimitry Andric   // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
21875ffd83dbSDimitry Andric   // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
21885ffd83dbSDimitry Andric   // a pure negation used by a select that looks like abs/nabs.
21895ffd83dbSDimitry Andric   bool IsNegation = match(Op0, m_ZeroInt());
21905ffd83dbSDimitry Andric   if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
21915ffd83dbSDimitry Andric         const Instruction *UI = dyn_cast<Instruction>(U);
21925ffd83dbSDimitry Andric         if (!UI)
21935ffd83dbSDimitry Andric           return false;
21945ffd83dbSDimitry Andric         return match(UI,
21955ffd83dbSDimitry Andric                      m_Select(m_Value(), m_Specific(Op1), m_Specific(&I))) ||
21965ffd83dbSDimitry Andric                match(UI, m_Select(m_Value(), m_Specific(&I), m_Specific(Op1)));
21975ffd83dbSDimitry Andric       })) {
21985f757f3fSDimitry Andric     if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
21995f757f3fSDimitry Andric                                                         I.hasNoSignedWrap(),
22005f757f3fSDimitry Andric                                         Op1, *this))
22015ffd83dbSDimitry Andric       return BinaryOperator::CreateAdd(NegOp1, Op0);
22025ffd83dbSDimitry Andric   }
22035ffd83dbSDimitry Andric   if (IsNegation)
22045ffd83dbSDimitry Andric     return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
22055ffd83dbSDimitry Andric 
22065ffd83dbSDimitry Andric   // (A*B)-(A*C) -> A*(B-C) etc
2207bdd1243dSDimitry Andric   if (Value *V = foldUsingDistributiveLaws(I))
22085ffd83dbSDimitry Andric     return replaceInstUsesWith(I, V);
22095ffd83dbSDimitry Andric 
22100b57cec5SDimitry Andric   if (I.getType()->isIntOrIntVectorTy(1))
22110b57cec5SDimitry Andric     return BinaryOperator::CreateXor(Op0, Op1);
22120b57cec5SDimitry Andric 
22130b57cec5SDimitry Andric   // Replace (-1 - A) with (~A).
22140b57cec5SDimitry Andric   if (match(Op0, m_AllOnes()))
22150b57cec5SDimitry Andric     return BinaryOperator::CreateNot(Op1);
22160b57cec5SDimitry Andric 
22170b57cec5SDimitry Andric   // (X + -1) - Y --> ~Y + X
2218349cc55cSDimitry Andric   Value *X, *Y;
22190b57cec5SDimitry Andric   if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
22200b57cec5SDimitry Andric     return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
22210b57cec5SDimitry Andric 
22225ffd83dbSDimitry Andric   // Reassociate sub/add sequences to create more add instructions and
22235ffd83dbSDimitry Andric   // reduce dependency chains:
22245ffd83dbSDimitry Andric   // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
22255ffd83dbSDimitry Andric   Value *Z;
22265ffd83dbSDimitry Andric   if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
22275ffd83dbSDimitry Andric                                   m_Value(Z))))) {
22285ffd83dbSDimitry Andric     Value *XZ = Builder.CreateAdd(X, Z);
22295ffd83dbSDimitry Andric     Value *YW = Builder.CreateAdd(Y, Op1);
22305ffd83dbSDimitry Andric     return BinaryOperator::CreateSub(XZ, YW);
22315ffd83dbSDimitry Andric   }
22320b57cec5SDimitry Andric 
2233fe6060f1SDimitry Andric   // ((X - Y) - Op1)  -->  X - (Y + Op1)
2234fe6060f1SDimitry Andric   if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
22355f757f3fSDimitry Andric     OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0);
22365f757f3fSDimitry Andric     bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
22375f757f3fSDimitry Andric     bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
22385f757f3fSDimitry Andric     Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW,
22395f757f3fSDimitry Andric                                    /* HasNSW */ HasNSW);
22405f757f3fSDimitry Andric     BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
22415f757f3fSDimitry Andric     Sub->setHasNoUnsignedWrap(HasNUW);
22425f757f3fSDimitry Andric     Sub->setHasNoSignedWrap(HasNSW);
22435f757f3fSDimitry Andric     return Sub;
22445f757f3fSDimitry Andric   }
22455f757f3fSDimitry Andric 
22465f757f3fSDimitry Andric   {
22475f757f3fSDimitry Andric     // (X + Z) - (Y + Z) --> (X - Y)
22485f757f3fSDimitry Andric     // This is done in other passes, but we want to be able to consume this
22495f757f3fSDimitry Andric     // pattern in InstCombine so we can generate it without creating infinite
22505f757f3fSDimitry Andric     // loops.
22515f757f3fSDimitry Andric     if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
22525f757f3fSDimitry Andric         match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
22535f757f3fSDimitry Andric       return BinaryOperator::CreateSub(X, Y);
22545f757f3fSDimitry Andric 
22555f757f3fSDimitry Andric     // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
22565f757f3fSDimitry Andric     Constant *CX, *CY;
22575f757f3fSDimitry Andric     if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
22585f757f3fSDimitry Andric         match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
22595f757f3fSDimitry Andric       Value *OpsSub = Builder.CreateSub(X, Y);
22605f757f3fSDimitry Andric       Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
22615f757f3fSDimitry Andric       return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
22625f757f3fSDimitry Andric     }
2263fe6060f1SDimitry Andric   }
2264fe6060f1SDimitry Andric 
2265349cc55cSDimitry Andric   // (~X) - (~Y) --> Y - X
22665f757f3fSDimitry Andric   {
22675f757f3fSDimitry Andric     // Need to ensure we can consume at least one of the `not` instructions,
22685f757f3fSDimitry Andric     // otherwise this can inf loop.
22695f757f3fSDimitry Andric     bool ConsumesOp0, ConsumesOp1;
22705f757f3fSDimitry Andric     if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
22715f757f3fSDimitry Andric         isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
22725f757f3fSDimitry Andric         (ConsumesOp0 || ConsumesOp1)) {
22735f757f3fSDimitry Andric       Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
22745f757f3fSDimitry Andric       Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
22755f757f3fSDimitry Andric       assert(NotOp0 != nullptr && NotOp1 != nullptr &&
22765f757f3fSDimitry Andric              "isFreeToInvert desynced with getFreelyInverted");
2277349cc55cSDimitry Andric       return BinaryOperator::CreateSub(NotOp1, NotOp0);
2278349cc55cSDimitry Andric     }
22795f757f3fSDimitry Andric   }
2280349cc55cSDimitry Andric 
22815ffd83dbSDimitry Andric   auto m_AddRdx = [](Value *&Vec) {
2282e8d8bef9SDimitry Andric     return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
22835ffd83dbSDimitry Andric   };
22845ffd83dbSDimitry Andric   Value *V0, *V1;
22855ffd83dbSDimitry Andric   if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
22865ffd83dbSDimitry Andric       V0->getType() == V1->getType()) {
22875ffd83dbSDimitry Andric     // Difference of sums is sum of differences:
22885ffd83dbSDimitry Andric     // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
22895ffd83dbSDimitry Andric     Value *Sub = Builder.CreateSub(V0, V1);
2290e8d8bef9SDimitry Andric     Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2291e8d8bef9SDimitry Andric                                          {Sub->getType()}, {Sub});
22925ffd83dbSDimitry Andric     return replaceInstUsesWith(I, Rdx);
22930b57cec5SDimitry Andric   }
22940b57cec5SDimitry Andric 
22950b57cec5SDimitry Andric   if (Constant *C = dyn_cast<Constant>(Op0)) {
22960b57cec5SDimitry Andric     Value *X;
22975ffd83dbSDimitry Andric     if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
22980b57cec5SDimitry Andric       // C - (zext bool) --> bool ? C - 1 : C
2299e8d8bef9SDimitry Andric       return SelectInst::Create(X, InstCombiner::SubOne(C), C);
23005ffd83dbSDimitry Andric     if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
23010b57cec5SDimitry Andric       // C - (sext bool) --> bool ? C + 1 : C
2302e8d8bef9SDimitry Andric       return SelectInst::Create(X, InstCombiner::AddOne(C), C);
23030b57cec5SDimitry Andric 
23040b57cec5SDimitry Andric     // C - ~X == X + (1+C)
23050b57cec5SDimitry Andric     if (match(Op1, m_Not(m_Value(X))))
2306e8d8bef9SDimitry Andric       return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
23070b57cec5SDimitry Andric 
23080b57cec5SDimitry Andric     // Try to fold constant sub into select arguments.
23090b57cec5SDimitry Andric     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
23100b57cec5SDimitry Andric       if (Instruction *R = FoldOpIntoSelect(I, SI))
23110b57cec5SDimitry Andric         return R;
23120b57cec5SDimitry Andric 
23130b57cec5SDimitry Andric     // Try to fold constant sub into PHI values.
23140b57cec5SDimitry Andric     if (PHINode *PN = dyn_cast<PHINode>(Op1))
23150b57cec5SDimitry Andric       if (Instruction *R = foldOpIntoPhi(I, PN))
23160b57cec5SDimitry Andric         return R;
23170b57cec5SDimitry Andric 
23180b57cec5SDimitry Andric     Constant *C2;
23190b57cec5SDimitry Andric 
23200b57cec5SDimitry Andric     // C-(C2-X) --> X+(C-C2)
2321e8d8bef9SDimitry Andric     if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
23220b57cec5SDimitry Andric       return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
23230b57cec5SDimitry Andric   }
23240b57cec5SDimitry Andric 
23250b57cec5SDimitry Andric   const APInt *Op0C;
2326bdd1243dSDimitry Andric   if (match(Op0, m_APInt(Op0C))) {
2327bdd1243dSDimitry Andric     if (Op0C->isMask()) {
2328fcaf7f86SDimitry Andric       // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2329*0fca6ea1SDimitry Andric       // zero. We don't use information from dominating conditions so this
2330*0fca6ea1SDimitry Andric       // transform is easier to reverse if necessary.
2331*0fca6ea1SDimitry Andric       KnownBits RHSKnown = llvm::computeKnownBits(
2332*0fca6ea1SDimitry Andric           Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache());
2333fcaf7f86SDimitry Andric       if ((*Op0C | RHSKnown.Zero).isAllOnes())
23340b57cec5SDimitry Andric         return BinaryOperator::CreateXor(Op1, Op0);
2335fcaf7f86SDimitry Andric     }
23360b57cec5SDimitry Andric 
2337bdd1243dSDimitry Andric     // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2338bdd1243dSDimitry Andric     // (C3 - ((C2 & C3) - 1)) is pow2
2339bdd1243dSDimitry Andric     // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2340bdd1243dSDimitry Andric     // C2 is negative pow2 || sub nuw
2341bdd1243dSDimitry Andric     const APInt *C2, *C3;
2342bdd1243dSDimitry Andric     BinaryOperator *InnerSub;
2343bdd1243dSDimitry Andric     if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2344bdd1243dSDimitry Andric         match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2345bdd1243dSDimitry Andric         (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2346bdd1243dSDimitry Andric       APInt C2AndC3 = *C2 & *C3;
2347bdd1243dSDimitry Andric       APInt C2AndC3Minus1 = C2AndC3 - 1;
2348bdd1243dSDimitry Andric       APInt C2AddC3 = *C2 + *C3;
2349bdd1243dSDimitry Andric       if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2350bdd1243dSDimitry Andric           C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2351bdd1243dSDimitry Andric         Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2352bdd1243dSDimitry Andric         return BinaryOperator::CreateAdd(
2353bdd1243dSDimitry Andric             And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2354bdd1243dSDimitry Andric       }
2355bdd1243dSDimitry Andric     }
2356bdd1243dSDimitry Andric   }
2357bdd1243dSDimitry Andric 
23580b57cec5SDimitry Andric   {
23590b57cec5SDimitry Andric     Value *Y;
23600b57cec5SDimitry Andric     // X-(X+Y) == -Y    X-(Y+X) == -Y
23610b57cec5SDimitry Andric     if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
23620b57cec5SDimitry Andric       return BinaryOperator::CreateNeg(Y);
23630b57cec5SDimitry Andric 
23640b57cec5SDimitry Andric     // (X-Y)-X == -Y
23650b57cec5SDimitry Andric     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
23660b57cec5SDimitry Andric       return BinaryOperator::CreateNeg(Y);
23670b57cec5SDimitry Andric   }
23680b57cec5SDimitry Andric 
23698bcb0991SDimitry Andric   // (sub (or A, B) (and A, B)) --> (xor A, B)
23708bcb0991SDimitry Andric   {
23718bcb0991SDimitry Andric     Value *A, *B;
23728bcb0991SDimitry Andric     if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
23738bcb0991SDimitry Andric         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
23748bcb0991SDimitry Andric       return BinaryOperator::CreateXor(A, B);
23758bcb0991SDimitry Andric   }
23768bcb0991SDimitry Andric 
2377e8d8bef9SDimitry Andric   // (sub (add A, B) (or A, B)) --> (and A, B)
2378e8d8bef9SDimitry Andric   {
2379e8d8bef9SDimitry Andric     Value *A, *B;
2380e8d8bef9SDimitry Andric     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2381e8d8bef9SDimitry Andric         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2382e8d8bef9SDimitry Andric       return BinaryOperator::CreateAnd(A, B);
2383e8d8bef9SDimitry Andric   }
2384e8d8bef9SDimitry Andric 
2385e8d8bef9SDimitry Andric   // (sub (add A, B) (and A, B)) --> (or A, B)
2386e8d8bef9SDimitry Andric   {
2387e8d8bef9SDimitry Andric     Value *A, *B;
2388e8d8bef9SDimitry Andric     if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2389e8d8bef9SDimitry Andric         match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2390e8d8bef9SDimitry Andric       return BinaryOperator::CreateOr(A, B);
2391e8d8bef9SDimitry Andric   }
2392e8d8bef9SDimitry Andric 
23938bcb0991SDimitry Andric   // (sub (and A, B) (or A, B)) --> neg (xor A, B)
23948bcb0991SDimitry Andric   {
23958bcb0991SDimitry Andric     Value *A, *B;
23968bcb0991SDimitry Andric     if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
23978bcb0991SDimitry Andric         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
23988bcb0991SDimitry Andric         (Op0->hasOneUse() || Op1->hasOneUse()))
23998bcb0991SDimitry Andric       return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
24008bcb0991SDimitry Andric   }
24018bcb0991SDimitry Andric 
24020b57cec5SDimitry Andric   // (sub (or A, B), (xor A, B)) --> (and A, B)
24030b57cec5SDimitry Andric   {
24040b57cec5SDimitry Andric     Value *A, *B;
24050b57cec5SDimitry Andric     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
24060b57cec5SDimitry Andric         match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
24070b57cec5SDimitry Andric       return BinaryOperator::CreateAnd(A, B);
24080b57cec5SDimitry Andric   }
24090b57cec5SDimitry Andric 
24108bcb0991SDimitry Andric   // (sub (xor A, B) (or A, B)) --> neg (and A, B)
24118bcb0991SDimitry Andric   {
24128bcb0991SDimitry Andric     Value *A, *B;
24138bcb0991SDimitry Andric     if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
24148bcb0991SDimitry Andric         match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
24158bcb0991SDimitry Andric         (Op0->hasOneUse() || Op1->hasOneUse()))
24168bcb0991SDimitry Andric       return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
24178bcb0991SDimitry Andric   }
24188bcb0991SDimitry Andric 
24190b57cec5SDimitry Andric   {
24200b57cec5SDimitry Andric     Value *Y;
24210b57cec5SDimitry Andric     // ((X | Y) - X) --> (~X & Y)
24220b57cec5SDimitry Andric     if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
24230b57cec5SDimitry Andric       return BinaryOperator::CreateAnd(
24240b57cec5SDimitry Andric           Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
24250b57cec5SDimitry Andric   }
24260b57cec5SDimitry Andric 
2427480093f4SDimitry Andric   {
2428480093f4SDimitry Andric     // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2429480093f4SDimitry Andric     Value *X;
2430480093f4SDimitry Andric     if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2431480093f4SDimitry Andric                                     m_OneUse(m_Neg(m_Value(X))))))) {
2432480093f4SDimitry Andric       return BinaryOperator::CreateNeg(Builder.CreateAnd(
2433480093f4SDimitry Andric           Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2434480093f4SDimitry Andric     }
2435480093f4SDimitry Andric   }
2436480093f4SDimitry Andric 
2437480093f4SDimitry Andric   {
2438480093f4SDimitry Andric     // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2439480093f4SDimitry Andric     Constant *C;
2440480093f4SDimitry Andric     if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2441480093f4SDimitry Andric       return BinaryOperator::CreateNeg(
2442480093f4SDimitry Andric           Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2443480093f4SDimitry Andric     }
2444480093f4SDimitry Andric   }
2445480093f4SDimitry Andric 
2446*0fca6ea1SDimitry Andric   {
2447*0fca6ea1SDimitry Andric     // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2448*0fca6ea1SDimitry Andric     // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2449*0fca6ea1SDimitry Andric     Value *C, *X;
2450*0fca6ea1SDimitry Andric     auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2451*0fca6ea1SDimitry Andric       return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) &&
2452*0fca6ea1SDimitry Andric              match(RHS, m_SExt(m_Value(C))) &&
2453*0fca6ea1SDimitry Andric              (C->getType()->getScalarSizeInBits() == 1);
2454*0fca6ea1SDimitry Andric     };
2455*0fca6ea1SDimitry Andric     if (m_SubXorCmp(Op0, Op1))
2456*0fca6ea1SDimitry Andric       return SelectInst::Create(C, Builder.CreateNeg(X), X);
2457*0fca6ea1SDimitry Andric     if (m_SubXorCmp(Op1, Op0))
2458*0fca6ea1SDimitry Andric       return SelectInst::Create(C, X, Builder.CreateNeg(X));
2459*0fca6ea1SDimitry Andric   }
2460*0fca6ea1SDimitry Andric 
24617a6dacacSDimitry Andric   if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
24627a6dacacSDimitry Andric     return R;
24637a6dacacSDimitry Andric 
2464753f127fSDimitry Andric   if (Instruction *R = foldSubOfMinMax(I, Builder))
2465753f127fSDimitry Andric     return R;
246681ad6265SDimitry Andric 
2467480093f4SDimitry Andric   {
2468480093f4SDimitry Andric     // If we have a subtraction between some value and a select between
2469480093f4SDimitry Andric     // said value and something else, sink subtraction into select hands, i.e.:
2470480093f4SDimitry Andric     //   sub (select %Cond, %TrueVal, %FalseVal), %Op1
2471480093f4SDimitry Andric     //     ->
2472480093f4SDimitry Andric     //   select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2473480093f4SDimitry Andric     //  or
2474480093f4SDimitry Andric     //   sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2475480093f4SDimitry Andric     //     ->
2476480093f4SDimitry Andric     //   select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2477480093f4SDimitry Andric     // This will result in select between new subtraction and 0.
2478480093f4SDimitry Andric     auto SinkSubIntoSelect =
2479480093f4SDimitry Andric         [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2480480093f4SDimitry Andric                            auto SubBuilder) -> Instruction * {
2481480093f4SDimitry Andric       Value *Cond, *TrueVal, *FalseVal;
2482480093f4SDimitry Andric       if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2483480093f4SDimitry Andric                                            m_Value(FalseVal)))))
2484480093f4SDimitry Andric         return nullptr;
2485480093f4SDimitry Andric       if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2486480093f4SDimitry Andric         return nullptr;
2487480093f4SDimitry Andric       // While it is really tempting to just create two subtractions and let
2488480093f4SDimitry Andric       // InstCombine fold one of those to 0, it isn't possible to do so
2489480093f4SDimitry Andric       // because of worklist visitation order. So ugly it is.
2490480093f4SDimitry Andric       bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2491480093f4SDimitry Andric       Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2492480093f4SDimitry Andric       Constant *Zero = Constant::getNullValue(Ty);
2493480093f4SDimitry Andric       SelectInst *NewSel =
2494480093f4SDimitry Andric           SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2495480093f4SDimitry Andric                              OtherHandOfSubIsTrueVal ? NewSub : Zero);
2496480093f4SDimitry Andric       // Preserve prof metadata if any.
2497480093f4SDimitry Andric       NewSel->copyMetadata(cast<Instruction>(*Select));
2498480093f4SDimitry Andric       return NewSel;
2499480093f4SDimitry Andric     };
2500480093f4SDimitry Andric     if (Instruction *NewSel = SinkSubIntoSelect(
2501480093f4SDimitry Andric             /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2502480093f4SDimitry Andric             [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2503480093f4SDimitry Andric               return Builder->CreateSub(OtherHandOfSelect,
2504480093f4SDimitry Andric                                         /*OtherHandOfSub=*/Op1);
2505480093f4SDimitry Andric             }))
2506480093f4SDimitry Andric       return NewSel;
2507480093f4SDimitry Andric     if (Instruction *NewSel = SinkSubIntoSelect(
2508480093f4SDimitry Andric             /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2509480093f4SDimitry Andric             [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2510480093f4SDimitry Andric               return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2511480093f4SDimitry Andric                                         OtherHandOfSelect);
2512480093f4SDimitry Andric             }))
2513480093f4SDimitry Andric       return NewSel;
2514480093f4SDimitry Andric   }
2515480093f4SDimitry Andric 
25160b57cec5SDimitry Andric   // (X - (X & Y))   -->   (X & ~Y)
25175ffd83dbSDimitry Andric   if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
25185ffd83dbSDimitry Andric       (Op1->hasOneUse() || isa<Constant>(Y)))
25195ffd83dbSDimitry Andric     return BinaryOperator::CreateAnd(
25205ffd83dbSDimitry Andric         Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
25210b57cec5SDimitry Andric 
2522349cc55cSDimitry Andric   // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2523349cc55cSDimitry Andric   // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2524349cc55cSDimitry Andric   // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2525349cc55cSDimitry Andric   // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2526349cc55cSDimitry Andric   // As long as Y is freely invertible, this will be neutral or a win.
2527349cc55cSDimitry Andric   // Note: We don't generate the inverse max/min, just create the 'not' of
2528349cc55cSDimitry Andric   // it and let other folds do the rest.
2529349cc55cSDimitry Andric   if (match(Op0, m_Not(m_Value(X))) &&
2530349cc55cSDimitry Andric       match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2531349cc55cSDimitry Andric       !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2532349cc55cSDimitry Andric     Value *Not = Builder.CreateNot(Op1);
2533349cc55cSDimitry Andric     return BinaryOperator::CreateSub(Not, X);
2534349cc55cSDimitry Andric   }
2535349cc55cSDimitry Andric   if (match(Op1, m_Not(m_Value(X))) &&
2536349cc55cSDimitry Andric       match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2537349cc55cSDimitry Andric       !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2538349cc55cSDimitry Andric     Value *Not = Builder.CreateNot(Op0);
2539349cc55cSDimitry Andric     return BinaryOperator::CreateSub(X, Not);
2540349cc55cSDimitry Andric   }
2541349cc55cSDimitry Andric 
25420b57cec5SDimitry Andric   // Optimize pointer differences into the same array into a size.  Consider:
25430b57cec5SDimitry Andric   //  &A[10] - &A[0]: we should compile this to "10".
25440b57cec5SDimitry Andric   Value *LHSOp, *RHSOp;
25450b57cec5SDimitry Andric   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
25460b57cec5SDimitry Andric       match(Op1, m_PtrToInt(m_Value(RHSOp))))
2547480093f4SDimitry Andric     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2548480093f4SDimitry Andric                                                I.hasNoUnsignedWrap()))
25490b57cec5SDimitry Andric       return replaceInstUsesWith(I, Res);
25500b57cec5SDimitry Andric 
25510b57cec5SDimitry Andric   // trunc(p)-trunc(q) -> trunc(p-q)
25520b57cec5SDimitry Andric   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
25530b57cec5SDimitry Andric       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2554480093f4SDimitry Andric     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2555480093f4SDimitry Andric                                                /* IsNUW */ false))
25560b57cec5SDimitry Andric       return replaceInstUsesWith(I, Res);
25570b57cec5SDimitry Andric 
25580b57cec5SDimitry Andric   // Canonicalize a shifty way to code absolute value to the common pattern.
25590b57cec5SDimitry Andric   // There are 2 potential commuted variants.
25600b57cec5SDimitry Andric   // We're relying on the fact that we only do this transform when the shift has
25610b57cec5SDimitry Andric   // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
25620b57cec5SDimitry Andric   // instructions).
25630b57cec5SDimitry Andric   Value *A;
25640b57cec5SDimitry Andric   const APInt *ShAmt;
25650b57cec5SDimitry Andric   Type *Ty = I.getType();
2566bdd1243dSDimitry Andric   unsigned BitWidth = Ty->getScalarSizeInBits();
25670b57cec5SDimitry Andric   if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2568bdd1243dSDimitry Andric       Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
25690b57cec5SDimitry Andric       match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
25700b57cec5SDimitry Andric     // B = ashr i32 A, 31 ; smear the sign bit
25710b57cec5SDimitry Andric     // sub (xor A, B), B  ; flip bits if negative and subtract -1 (add 1)
25720b57cec5SDimitry Andric     // --> (A < 0) ? -A : A
257381ad6265SDimitry Andric     Value *IsNeg = Builder.CreateIsNeg(A);
2574*0fca6ea1SDimitry Andric     // Copy the nsw flags from the sub to the negate.
2575*0fca6ea1SDimitry Andric     Value *NegA = I.hasNoUnsignedWrap()
2576*0fca6ea1SDimitry Andric                       ? Constant::getNullValue(A->getType())
2577*0fca6ea1SDimitry Andric                       : Builder.CreateNeg(A, "", I.hasNoSignedWrap());
257881ad6265SDimitry Andric     return SelectInst::Create(IsNeg, NegA, A);
25790b57cec5SDimitry Andric   }
25800b57cec5SDimitry Andric 
2581e8d8bef9SDimitry Andric   // If we are subtracting a low-bit masked subset of some value from an add
2582e8d8bef9SDimitry Andric   // of that same value with no low bits changed, that is clearing some low bits
2583e8d8bef9SDimitry Andric   // of the sum:
2584e8d8bef9SDimitry Andric   // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2585e8d8bef9SDimitry Andric   const APInt *AddC, *AndC;
2586e8d8bef9SDimitry Andric   if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2587e8d8bef9SDimitry Andric       match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
258806c3fb27SDimitry Andric     unsigned Cttz = AddC->countr_zero();
2589e8d8bef9SDimitry Andric     APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2590349cc55cSDimitry Andric     if ((HighMask & *AndC).isZero())
2591e8d8bef9SDimitry Andric       return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2592e8d8bef9SDimitry Andric   }
2593e8d8bef9SDimitry Andric 
25948bcb0991SDimitry Andric   if (Instruction *V =
25958bcb0991SDimitry Andric           canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
25968bcb0991SDimitry Andric     return V;
25978bcb0991SDimitry Andric 
2598fe6060f1SDimitry Andric   // X - usub.sat(X, Y) => umin(X, Y)
2599fe6060f1SDimitry Andric   if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2600fe6060f1SDimitry Andric                                                            m_Value(Y)))))
2601fe6060f1SDimitry Andric     return replaceInstUsesWith(
2602fe6060f1SDimitry Andric         I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2603fe6060f1SDimitry Andric 
2604349cc55cSDimitry Andric   // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2605349cc55cSDimitry Andric   // TODO: The one-use restriction is not strictly necessary, but it may
2606349cc55cSDimitry Andric   //       require improving other pattern matching and/or codegen.
2607349cc55cSDimitry Andric   if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2608349cc55cSDimitry Andric     return replaceInstUsesWith(
2609349cc55cSDimitry Andric         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2610349cc55cSDimitry Andric 
261181ad6265SDimitry Andric   // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
261281ad6265SDimitry Andric   if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
261381ad6265SDimitry Andric     return replaceInstUsesWith(
261481ad6265SDimitry Andric         I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
261581ad6265SDimitry Andric 
2616349cc55cSDimitry Andric   // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2617349cc55cSDimitry Andric   if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2618349cc55cSDimitry Andric     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2619349cc55cSDimitry Andric     return BinaryOperator::CreateNeg(USub);
2620349cc55cSDimitry Andric   }
2621349cc55cSDimitry Andric 
262281ad6265SDimitry Andric   // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
262381ad6265SDimitry Andric   if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
262481ad6265SDimitry Andric     Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
262581ad6265SDimitry Andric     return BinaryOperator::CreateNeg(USub);
262681ad6265SDimitry Andric   }
262781ad6265SDimitry Andric 
2628fe6060f1SDimitry Andric   // C - ctpop(X) => ctpop(~X) if C is bitwidth
2629bdd1243dSDimitry Andric   if (match(Op0, m_SpecificInt(BitWidth)) &&
2630fe6060f1SDimitry Andric       match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2631fe6060f1SDimitry Andric     return replaceInstUsesWith(
2632fe6060f1SDimitry Andric         I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2633fe6060f1SDimitry Andric                                    {Builder.CreateNot(X)}));
2634fe6060f1SDimitry Andric 
2635bdd1243dSDimitry Andric   // Reduce multiplies for difference-of-squares by factoring:
2636bdd1243dSDimitry Andric   // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2637bdd1243dSDimitry Andric   if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2638bdd1243dSDimitry Andric       match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2639bdd1243dSDimitry Andric     auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2640bdd1243dSDimitry Andric     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2641bdd1243dSDimitry Andric     bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2642bdd1243dSDimitry Andric                         OBO1->hasNoSignedWrap() && BitWidth > 2;
2643bdd1243dSDimitry Andric     bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2644bdd1243dSDimitry Andric                         OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2645bdd1243dSDimitry Andric     Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2646bdd1243dSDimitry Andric     Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2647bdd1243dSDimitry Andric     Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2648bdd1243dSDimitry Andric     return replaceInstUsesWith(I, Mul);
2649bdd1243dSDimitry Andric   }
2650bdd1243dSDimitry Andric 
265106c3fb27SDimitry Andric   // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
265206c3fb27SDimitry Andric   if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
265306c3fb27SDimitry Andric       match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) {
265406c3fb27SDimitry Andric     if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
265506c3fb27SDimitry Andric       Value *Sub =
265606c3fb27SDimitry Andric           Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
265706c3fb27SDimitry Andric       Value *Call =
265806c3fb27SDimitry Andric           Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
265906c3fb27SDimitry Andric       return replaceInstUsesWith(I, Call);
266006c3fb27SDimitry Andric     }
266106c3fb27SDimitry Andric   }
266206c3fb27SDimitry Andric 
266306c3fb27SDimitry Andric   if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
266406c3fb27SDimitry Andric     return Res;
266506c3fb27SDimitry Andric 
26665ffd83dbSDimitry Andric   return TryToNarrowDeduceFlags();
26670b57cec5SDimitry Andric }
26680b57cec5SDimitry Andric 
26690b57cec5SDimitry Andric /// This eliminates floating-point negation in either 'fneg(X)' or
26700b57cec5SDimitry Andric /// 'fsub(-0.0, X)' form by combining into a constant operand.
2671bdd1243dSDimitry Andric static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2672fe6060f1SDimitry Andric   // This is limited with one-use because fneg is assumed better for
2673fe6060f1SDimitry Andric   // reassociation and cheaper in codegen than fmul/fdiv.
2674fe6060f1SDimitry Andric   // TODO: Should the m_OneUse restriction be removed?
2675fe6060f1SDimitry Andric   Instruction *FNegOp;
2676fe6060f1SDimitry Andric   if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2677fe6060f1SDimitry Andric     return nullptr;
2678fe6060f1SDimitry Andric 
26790b57cec5SDimitry Andric   Value *X;
26800b57cec5SDimitry Andric   Constant *C;
26810b57cec5SDimitry Andric 
2682fe6060f1SDimitry Andric   // Fold negation into constant operand.
26830b57cec5SDimitry Andric   // -(X * C) --> X * (-C)
2684fe6060f1SDimitry Andric   if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2685bdd1243dSDimitry Andric     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2686bdd1243dSDimitry Andric       return BinaryOperator::CreateFMulFMF(X, NegC, &I);
26870b57cec5SDimitry Andric   // -(X / C) --> X / (-C)
2688fe6060f1SDimitry Andric   if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2689bdd1243dSDimitry Andric     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2690bdd1243dSDimitry Andric       return BinaryOperator::CreateFDivFMF(X, NegC, &I);
26910b57cec5SDimitry Andric   // -(C / X) --> (-C) / X
2692bdd1243dSDimitry Andric   if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2693bdd1243dSDimitry Andric     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2694bdd1243dSDimitry Andric       Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
26950b57cec5SDimitry Andric 
2696bdd1243dSDimitry Andric       // Intersect 'nsz' and 'ninf' because those special value exceptions may
2697bdd1243dSDimitry Andric       // not apply to the fdiv. Everything else propagates from the fneg.
2698fe6060f1SDimitry Andric       // TODO: We could propagate nsz/ninf from fdiv alone?
2699fe6060f1SDimitry Andric       FastMathFlags FMF = I.getFastMathFlags();
2700fe6060f1SDimitry Andric       FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2701349cc55cSDimitry Andric       FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2702349cc55cSDimitry Andric       FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2703fe6060f1SDimitry Andric       return FDiv;
2704fe6060f1SDimitry Andric     }
27055ffd83dbSDimitry Andric   // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
27065ffd83dbSDimitry Andric   // -(X + C) --> -X + -C --> -C - X
2707fe6060f1SDimitry Andric   if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2708bdd1243dSDimitry Andric     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2709bdd1243dSDimitry Andric       return BinaryOperator::CreateFSubFMF(NegC, X, &I);
27105ffd83dbSDimitry Andric 
27110b57cec5SDimitry Andric   return nullptr;
27120b57cec5SDimitry Andric }
27130b57cec5SDimitry Andric 
27145f757f3fSDimitry Andric Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
27155f757f3fSDimitry Andric                                                       Instruction &FMFSource) {
27168bcb0991SDimitry Andric   Value *X, *Y;
27175f757f3fSDimitry Andric   if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
27185f757f3fSDimitry Andric     return cast<Instruction>(Builder.CreateFMulFMF(
27195f757f3fSDimitry Andric         Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
27205f757f3fSDimitry Andric   }
27218bcb0991SDimitry Andric 
27225f757f3fSDimitry Andric   if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
27235f757f3fSDimitry Andric     return cast<Instruction>(Builder.CreateFDivFMF(
27245f757f3fSDimitry Andric         Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
27255f757f3fSDimitry Andric   }
27265f757f3fSDimitry Andric 
27275f757f3fSDimitry Andric   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
27285f757f3fSDimitry Andric     // Make sure to preserve flags and metadata on the call.
27295f757f3fSDimitry Andric     if (II->getIntrinsicID() == Intrinsic::ldexp) {
27305f757f3fSDimitry Andric       FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
27315f757f3fSDimitry Andric       IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
27325f757f3fSDimitry Andric       Builder.setFastMathFlags(FMF);
27335f757f3fSDimitry Andric 
27345f757f3fSDimitry Andric       CallInst *New = Builder.CreateCall(
27355f757f3fSDimitry Andric           II->getCalledFunction(),
27365f757f3fSDimitry Andric           {Builder.CreateFNeg(II->getArgOperand(0)), II->getArgOperand(1)});
27375f757f3fSDimitry Andric       New->copyMetadata(*II);
27385f757f3fSDimitry Andric       return New;
27395f757f3fSDimitry Andric     }
27405f757f3fSDimitry Andric   }
27418bcb0991SDimitry Andric 
27428bcb0991SDimitry Andric   return nullptr;
27438bcb0991SDimitry Andric }
27448bcb0991SDimitry Andric 
2745e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
27460b57cec5SDimitry Andric   Value *Op = I.getOperand(0);
27470b57cec5SDimitry Andric 
274881ad6265SDimitry Andric   if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2749e8d8bef9SDimitry Andric                                   getSimplifyQuery().getWithInstruction(&I)))
27500b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
27510b57cec5SDimitry Andric 
2752bdd1243dSDimitry Andric   if (Instruction *X = foldFNegIntoConstant(I, DL))
27530b57cec5SDimitry Andric     return X;
27540b57cec5SDimitry Andric 
27550b57cec5SDimitry Andric   Value *X, *Y;
27560b57cec5SDimitry Andric 
27570b57cec5SDimitry Andric   // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
27580b57cec5SDimitry Andric   if (I.hasNoSignedZeros() &&
27590b57cec5SDimitry Andric       match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
27600b57cec5SDimitry Andric     return BinaryOperator::CreateFSubFMF(Y, X, &I);
27610b57cec5SDimitry Andric 
2762bdd1243dSDimitry Andric   Value *OneUse;
2763bdd1243dSDimitry Andric   if (!match(Op, m_OneUse(m_Value(OneUse))))
2764bdd1243dSDimitry Andric     return nullptr;
2765bdd1243dSDimitry Andric 
27665f757f3fSDimitry Andric   if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
27675f757f3fSDimitry Andric     return replaceInstUsesWith(I, R);
27685f757f3fSDimitry Andric 
2769fe6060f1SDimitry Andric   // Try to eliminate fneg if at least 1 arm of the select is negated.
2770fe6060f1SDimitry Andric   Value *Cond;
2771bdd1243dSDimitry Andric   if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2772fe6060f1SDimitry Andric     // Unlike most transforms, this one is not safe to propagate nsz unless
2773bdd1243dSDimitry Andric     // it is present on the original select. We union the flags from the select
2774bdd1243dSDimitry Andric     // and fneg and then remove nsz if needed.
277581ad6265SDimitry Andric     auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2776fe6060f1SDimitry Andric       S->copyFastMathFlags(&I);
2777bdd1243dSDimitry Andric       if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
27785f757f3fSDimitry Andric         FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
2779bdd1243dSDimitry Andric         S->setFastMathFlags(FMF);
278081ad6265SDimitry Andric         if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
278181ad6265SDimitry Andric             !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2782fe6060f1SDimitry Andric           S->setHasNoSignedZeros(false);
2783bdd1243dSDimitry Andric       }
2784fe6060f1SDimitry Andric     };
2785fe6060f1SDimitry Andric     // -(Cond ? -P : Y) --> Cond ? P : -Y
2786fe6060f1SDimitry Andric     Value *P;
2787fe6060f1SDimitry Andric     if (match(X, m_FNeg(m_Value(P)))) {
2788fe6060f1SDimitry Andric       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2789fe6060f1SDimitry Andric       SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
279081ad6265SDimitry Andric       propagateSelectFMF(NewSel, P == Y);
2791fe6060f1SDimitry Andric       return NewSel;
2792fe6060f1SDimitry Andric     }
2793fe6060f1SDimitry Andric     // -(Cond ? X : -P) --> Cond ? -X : P
2794fe6060f1SDimitry Andric     if (match(Y, m_FNeg(m_Value(P)))) {
2795fe6060f1SDimitry Andric       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2796fe6060f1SDimitry Andric       SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
279781ad6265SDimitry Andric       propagateSelectFMF(NewSel, P == X);
2798fe6060f1SDimitry Andric       return NewSel;
2799fe6060f1SDimitry Andric     }
2800*0fca6ea1SDimitry Andric 
2801*0fca6ea1SDimitry Andric     // -(Cond ? X : C) --> Cond ? -X : -C
2802*0fca6ea1SDimitry Andric     // -(Cond ? C : Y) --> Cond ? -C : -Y
2803*0fca6ea1SDimitry Andric     if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) {
2804*0fca6ea1SDimitry Andric       Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2805*0fca6ea1SDimitry Andric       Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2806*0fca6ea1SDimitry Andric       SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY);
2807*0fca6ea1SDimitry Andric       propagateSelectFMF(NewSel, /*CommonOperand=*/true);
2808*0fca6ea1SDimitry Andric       return NewSel;
2809*0fca6ea1SDimitry Andric     }
2810fe6060f1SDimitry Andric   }
2811fe6060f1SDimitry Andric 
2812bdd1243dSDimitry Andric   // fneg (copysign x, y) -> copysign x, (fneg y)
2813bdd1243dSDimitry Andric   if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2814bdd1243dSDimitry Andric     // The source copysign has an additional value input, so we can't propagate
2815bdd1243dSDimitry Andric     // flags the copysign doesn't also have.
2816bdd1243dSDimitry Andric     FastMathFlags FMF = I.getFastMathFlags();
2817bdd1243dSDimitry Andric     FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2818bdd1243dSDimitry Andric 
2819bdd1243dSDimitry Andric     IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
2820bdd1243dSDimitry Andric     Builder.setFastMathFlags(FMF);
2821bdd1243dSDimitry Andric 
2822bdd1243dSDimitry Andric     Value *NegY = Builder.CreateFNeg(Y);
2823bdd1243dSDimitry Andric     Value *NewCopySign = Builder.CreateCopySign(X, NegY);
2824bdd1243dSDimitry Andric     return replaceInstUsesWith(I, NewCopySign);
2825bdd1243dSDimitry Andric   }
2826bdd1243dSDimitry Andric 
28270b57cec5SDimitry Andric   return nullptr;
28280b57cec5SDimitry Andric }
28290b57cec5SDimitry Andric 
2830e8d8bef9SDimitry Andric Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
283181ad6265SDimitry Andric   if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
28320b57cec5SDimitry Andric                                   I.getFastMathFlags(),
2833e8d8bef9SDimitry Andric                                   getSimplifyQuery().getWithInstruction(&I)))
28340b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
28350b57cec5SDimitry Andric 
28360b57cec5SDimitry Andric   if (Instruction *X = foldVectorBinop(I))
28370b57cec5SDimitry Andric     return X;
28380b57cec5SDimitry Andric 
283904eeddc0SDimitry Andric   if (Instruction *Phi = foldBinopWithPhiOperands(I))
284004eeddc0SDimitry Andric     return Phi;
284104eeddc0SDimitry Andric 
28420b57cec5SDimitry Andric   // Subtraction from -0.0 is the canonical form of fneg.
28435ffd83dbSDimitry Andric   // fsub -0.0, X ==> fneg X
28445ffd83dbSDimitry Andric   // fsub nsz 0.0, X ==> fneg nsz X
28455ffd83dbSDimitry Andric   //
28465ffd83dbSDimitry Andric   // FIXME This matcher does not respect FTZ or DAZ yet:
28475ffd83dbSDimitry Andric   // fsub -0.0, Denorm ==> +-0
28485ffd83dbSDimitry Andric   // fneg Denorm ==> -Denorm
28495ffd83dbSDimitry Andric   Value *Op;
28505ffd83dbSDimitry Andric   if (match(&I, m_FNeg(m_Value(Op))))
28515ffd83dbSDimitry Andric     return UnaryOperator::CreateFNegFMF(Op, &I);
28520b57cec5SDimitry Andric 
2853bdd1243dSDimitry Andric   if (Instruction *X = foldFNegIntoConstant(I, DL))
28540b57cec5SDimitry Andric     return X;
28550b57cec5SDimitry Andric 
2856*0fca6ea1SDimitry Andric   if (Instruction *R = foldFBinOpOfIntCasts(I))
2857*0fca6ea1SDimitry Andric     return R;
2858*0fca6ea1SDimitry Andric 
28590b57cec5SDimitry Andric   Value *X, *Y;
28600b57cec5SDimitry Andric   Constant *C;
28610b57cec5SDimitry Andric 
28625ffd83dbSDimitry Andric   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
28630b57cec5SDimitry Andric   // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
28640b57cec5SDimitry Andric   // Canonicalize to fadd to make analysis easier.
28650b57cec5SDimitry Andric   // This can also help codegen because fadd is commutative.
28660b57cec5SDimitry Andric   // Note that if this fsub was really an fneg, the fadd with -0.0 will get
28670b57cec5SDimitry Andric   // killed later. We still limit that particular transform with 'hasOneUse'
28680b57cec5SDimitry Andric   // because an fneg is assumed better/cheaper than a generic fsub.
2869*0fca6ea1SDimitry Andric   if (I.hasNoSignedZeros() ||
2870*0fca6ea1SDimitry Andric       cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) {
28710b57cec5SDimitry Andric     if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
28720b57cec5SDimitry Andric       Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
28730b57cec5SDimitry Andric       return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
28740b57cec5SDimitry Andric     }
28750b57cec5SDimitry Andric   }
28760b57cec5SDimitry Andric 
28775ffd83dbSDimitry Andric   // (-X) - Op1 --> -(X + Op1)
28785ffd83dbSDimitry Andric   if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
28795ffd83dbSDimitry Andric       match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
28805ffd83dbSDimitry Andric     Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
28815ffd83dbSDimitry Andric     return UnaryOperator::CreateFNegFMF(FAdd, &I);
28825ffd83dbSDimitry Andric   }
28835ffd83dbSDimitry Andric 
28840b57cec5SDimitry Andric   if (isa<Constant>(Op0))
28850b57cec5SDimitry Andric     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
28860b57cec5SDimitry Andric       if (Instruction *NV = FoldOpIntoSelect(I, SI))
28870b57cec5SDimitry Andric         return NV;
28880b57cec5SDimitry Andric 
28890b57cec5SDimitry Andric   // X - C --> X + (-C)
28900b57cec5SDimitry Andric   // But don't transform constant expressions because there's an inverse fold
28910b57cec5SDimitry Andric   // for X + (-Y) --> X - Y.
2892e8d8bef9SDimitry Andric   if (match(Op1, m_ImmConstant(C)))
2893bdd1243dSDimitry Andric     if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2894bdd1243dSDimitry Andric       return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
28950b57cec5SDimitry Andric 
28960b57cec5SDimitry Andric   // X - (-Y) --> X + Y
28970b57cec5SDimitry Andric   if (match(Op1, m_FNeg(m_Value(Y))))
28980b57cec5SDimitry Andric     return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
28990b57cec5SDimitry Andric 
29000b57cec5SDimitry Andric   // Similar to above, but look through a cast of the negated value:
29010b57cec5SDimitry Andric   // X - (fptrunc(-Y)) --> X + fptrunc(Y)
29020b57cec5SDimitry Andric   Type *Ty = I.getType();
29030b57cec5SDimitry Andric   if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
29040b57cec5SDimitry Andric     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
29050b57cec5SDimitry Andric 
29060b57cec5SDimitry Andric   // X - (fpext(-Y)) --> X + fpext(Y)
29070b57cec5SDimitry Andric   if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
29080b57cec5SDimitry Andric     return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
29090b57cec5SDimitry Andric 
29108bcb0991SDimitry Andric   // Similar to above, but look through fmul/fdiv of the negated value:
29118bcb0991SDimitry Andric   // Op0 - (-X * Y) --> Op0 + (X * Y)
29128bcb0991SDimitry Andric   // Op0 - (Y * -X) --> Op0 + (X * Y)
29138bcb0991SDimitry Andric   if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
29148bcb0991SDimitry Andric     Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
29158bcb0991SDimitry Andric     return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
29168bcb0991SDimitry Andric   }
29178bcb0991SDimitry Andric   // Op0 - (-X / Y) --> Op0 + (X / Y)
29188bcb0991SDimitry Andric   // Op0 - (X / -Y) --> Op0 + (X / Y)
29198bcb0991SDimitry Andric   if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
29208bcb0991SDimitry Andric       match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
29218bcb0991SDimitry Andric     Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
29228bcb0991SDimitry Andric     return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
29238bcb0991SDimitry Andric   }
29248bcb0991SDimitry Andric 
29250b57cec5SDimitry Andric   // Handle special cases for FSub with selects feeding the operation
29260b57cec5SDimitry Andric   if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
29270b57cec5SDimitry Andric     return replaceInstUsesWith(I, V);
29280b57cec5SDimitry Andric 
29290b57cec5SDimitry Andric   if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
29300b57cec5SDimitry Andric     // (Y - X) - Y --> -X
29310b57cec5SDimitry Andric     if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
29325ffd83dbSDimitry Andric       return UnaryOperator::CreateFNegFMF(X, &I);
29330b57cec5SDimitry Andric 
29340b57cec5SDimitry Andric     // Y - (X + Y) --> -X
29350b57cec5SDimitry Andric     // Y - (Y + X) --> -X
29360b57cec5SDimitry Andric     if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
29375ffd83dbSDimitry Andric       return UnaryOperator::CreateFNegFMF(X, &I);
29380b57cec5SDimitry Andric 
29390b57cec5SDimitry Andric     // (X * C) - X --> X * (C - 1.0)
29400b57cec5SDimitry Andric     if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2941753f127fSDimitry Andric       if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
2942753f127fSDimitry Andric               Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
29430b57cec5SDimitry Andric         return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
29440b57cec5SDimitry Andric     }
29450b57cec5SDimitry Andric     // X - (X * C) --> X * (1.0 - C)
29460b57cec5SDimitry Andric     if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2947753f127fSDimitry Andric       if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
2948753f127fSDimitry Andric               Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
29490b57cec5SDimitry Andric         return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
29500b57cec5SDimitry Andric     }
29510b57cec5SDimitry Andric 
29525ffd83dbSDimitry Andric     // Reassociate fsub/fadd sequences to create more fadd instructions and
29535ffd83dbSDimitry Andric     // reduce dependency chains:
29545ffd83dbSDimitry Andric     // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
29555ffd83dbSDimitry Andric     Value *Z;
29565ffd83dbSDimitry Andric     if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
29575ffd83dbSDimitry Andric                                      m_Value(Z))))) {
29585ffd83dbSDimitry Andric       Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
29595ffd83dbSDimitry Andric       Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
29605ffd83dbSDimitry Andric       return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
29615ffd83dbSDimitry Andric     }
29625ffd83dbSDimitry Andric 
29635ffd83dbSDimitry Andric     auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
2964e8d8bef9SDimitry Andric       return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
2965e8d8bef9SDimitry Andric                                                                  m_Value(Vec)));
29665ffd83dbSDimitry Andric     };
29675ffd83dbSDimitry Andric     Value *A0, *A1, *V0, *V1;
29685ffd83dbSDimitry Andric     if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
29695ffd83dbSDimitry Andric         V0->getType() == V1->getType()) {
29705ffd83dbSDimitry Andric       // Difference of sums is sum of differences:
29715ffd83dbSDimitry Andric       // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
29725ffd83dbSDimitry Andric       Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
2973e8d8bef9SDimitry Andric       Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2974e8d8bef9SDimitry Andric                                            {Sub->getType()}, {A0, Sub}, &I);
29755ffd83dbSDimitry Andric       return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
29765ffd83dbSDimitry Andric     }
29775ffd83dbSDimitry Andric 
29780b57cec5SDimitry Andric     if (Instruction *F = factorizeFAddFSub(I, Builder))
29790b57cec5SDimitry Andric       return F;
29800b57cec5SDimitry Andric 
29810b57cec5SDimitry Andric     // TODO: This performs reassociative folds for FP ops. Some fraction of the
29820b57cec5SDimitry Andric     // functionality has been subsumed by simple pattern matching here and in
29830b57cec5SDimitry Andric     // InstSimplify. We should let a dedicated reassociation pass handle more
29840b57cec5SDimitry Andric     // complex pattern matching and remove this from InstCombine.
29850b57cec5SDimitry Andric     if (Value *V = FAddCombine(Builder).simplify(&I))
29860b57cec5SDimitry Andric       return replaceInstUsesWith(I, V);
29875ffd83dbSDimitry Andric 
29885ffd83dbSDimitry Andric     // (X - Y) - Op1 --> X - (Y + Op1)
29895ffd83dbSDimitry Andric     if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
29905ffd83dbSDimitry Andric       Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
29915ffd83dbSDimitry Andric       return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
29925ffd83dbSDimitry Andric     }
29930b57cec5SDimitry Andric   }
29940b57cec5SDimitry Andric 
29950b57cec5SDimitry Andric   return nullptr;
29960b57cec5SDimitry Andric }
2997