xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
10 #include "llvm/Analysis/BasicAliasAnalysis.h"
11 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
12 #include "llvm/Analysis/ProfileSummaryInfo.h"
13 #include "llvm/Analysis/TypeMetadataUtils.h"
14 #include "llvm/Bitcode/BitcodeWriter.h"
15 #include "llvm/IR/Constants.h"
16 #include "llvm/IR/DebugInfo.h"
17 #include "llvm/IR/Intrinsics.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/PassManager.h"
20 #include "llvm/Object/ModuleSymbolTable.h"
21 #include "llvm/Pass.h"
22 #include "llvm/Support/ScopedPrinter.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Transforms/IPO.h"
25 #include "llvm/Transforms/IPO/FunctionAttrs.h"
26 #include "llvm/Transforms/IPO/FunctionImport.h"
27 #include "llvm/Transforms/IPO/LowerTypeTests.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/ModuleUtils.h"
30 using namespace llvm;
31 
32 namespace {
33 
34 // Promote each local-linkage entity defined by ExportM and used by ImportM by
35 // changing visibility and appending the given ModuleId.
36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
37                       SetVector<GlobalValue *> &PromoteExtra) {
38   DenseMap<const Comdat *, Comdat *> RenamedComdats;
39   for (auto &ExportGV : ExportM.global_values()) {
40     if (!ExportGV.hasLocalLinkage())
41       continue;
42 
43     auto Name = ExportGV.getName();
44     GlobalValue *ImportGV = nullptr;
45     if (!PromoteExtra.count(&ExportGV)) {
46       ImportGV = ImportM.getNamedValue(Name);
47       if (!ImportGV)
48         continue;
49       ImportGV->removeDeadConstantUsers();
50       if (ImportGV->use_empty()) {
51         ImportGV->eraseFromParent();
52         continue;
53       }
54     }
55 
56     std::string NewName = (Name + ModuleId).str();
57 
58     if (const auto *C = ExportGV.getComdat())
59       if (C->getName() == Name)
60         RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
61 
62     ExportGV.setName(NewName);
63     ExportGV.setLinkage(GlobalValue::ExternalLinkage);
64     ExportGV.setVisibility(GlobalValue::HiddenVisibility);
65 
66     if (ImportGV) {
67       ImportGV->setName(NewName);
68       ImportGV->setVisibility(GlobalValue::HiddenVisibility);
69     }
70   }
71 
72   if (!RenamedComdats.empty())
73     for (auto &GO : ExportM.global_objects())
74       if (auto *C = GO.getComdat()) {
75         auto Replacement = RenamedComdats.find(C);
76         if (Replacement != RenamedComdats.end())
77           GO.setComdat(Replacement->second);
78       }
79 }
80 
81 // Promote all internal (i.e. distinct) type ids used by the module by replacing
82 // them with external type ids formed using the module id.
83 //
84 // Note that this needs to be done before we clone the module because each clone
85 // will receive its own set of distinct metadata nodes.
86 void promoteTypeIds(Module &M, StringRef ModuleId) {
87   DenseMap<Metadata *, Metadata *> LocalToGlobal;
88   auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
89     Metadata *MD =
90         cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
91 
92     if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
93       Metadata *&GlobalMD = LocalToGlobal[MD];
94       if (!GlobalMD) {
95         std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
96         GlobalMD = MDString::get(M.getContext(), NewName);
97       }
98 
99       CI->setArgOperand(ArgNo,
100                         MetadataAsValue::get(M.getContext(), GlobalMD));
101     }
102   };
103 
104   if (Function *TypeTestFunc =
105           M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
106     for (const Use &U : TypeTestFunc->uses()) {
107       auto CI = cast<CallInst>(U.getUser());
108       ExternalizeTypeId(CI, 1);
109     }
110   }
111 
112   if (Function *TypeCheckedLoadFunc =
113           M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
114     for (const Use &U : TypeCheckedLoadFunc->uses()) {
115       auto CI = cast<CallInst>(U.getUser());
116       ExternalizeTypeId(CI, 2);
117     }
118   }
119 
120   for (GlobalObject &GO : M.global_objects()) {
121     SmallVector<MDNode *, 1> MDs;
122     GO.getMetadata(LLVMContext::MD_type, MDs);
123 
124     GO.eraseMetadata(LLVMContext::MD_type);
125     for (auto MD : MDs) {
126       auto I = LocalToGlobal.find(MD->getOperand(1));
127       if (I == LocalToGlobal.end()) {
128         GO.addMetadata(LLVMContext::MD_type, *MD);
129         continue;
130       }
131       GO.addMetadata(
132           LLVMContext::MD_type,
133           *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
134     }
135   }
136 }
137 
138 // Drop unused globals, and drop type information from function declarations.
139 // FIXME: If we made functions typeless then there would be no need to do this.
140 void simplifyExternals(Module &M) {
141   FunctionType *EmptyFT =
142       FunctionType::get(Type::getVoidTy(M.getContext()), false);
143 
144   for (auto I = M.begin(), E = M.end(); I != E;) {
145     Function &F = *I++;
146     if (F.isDeclaration() && F.use_empty()) {
147       F.eraseFromParent();
148       continue;
149     }
150 
151     if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
152         // Changing the type of an intrinsic may invalidate the IR.
153         F.getName().startswith("llvm."))
154       continue;
155 
156     Function *NewF =
157         Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
158                          F.getAddressSpace(), "", &M);
159     NewF->setVisibility(F.getVisibility());
160     NewF->takeName(&F);
161     F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
162     F.eraseFromParent();
163   }
164 
165   for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
166     GlobalVariable &GV = *I++;
167     if (GV.isDeclaration() && GV.use_empty()) {
168       GV.eraseFromParent();
169       continue;
170     }
171   }
172 }
173 
174 static void
175 filterModule(Module *M,
176              function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
177   std::vector<GlobalValue *> V;
178   for (GlobalValue &GV : M->global_values())
179     if (!ShouldKeepDefinition(&GV))
180       V.push_back(&GV);
181 
182   for (GlobalValue *GV : V)
183     if (!convertToDeclaration(*GV))
184       GV->eraseFromParent();
185 }
186 
187 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
188   if (auto *F = dyn_cast<Function>(C))
189     return Fn(F);
190   if (isa<GlobalValue>(C))
191     return;
192   for (Value *Op : C->operands())
193     forEachVirtualFunction(cast<Constant>(Op), Fn);
194 }
195 
196 // If it's possible to split M into regular and thin LTO parts, do so and write
197 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a
198 // regular LTO bitcode file to OS.
199 void splitAndWriteThinLTOBitcode(
200     raw_ostream &OS, raw_ostream *ThinLinkOS,
201     function_ref<AAResults &(Function &)> AARGetter, Module &M) {
202   std::string ModuleId = getUniqueModuleId(&M);
203   if (ModuleId.empty()) {
204     // We couldn't generate a module ID for this module, write it out as a
205     // regular LTO module with an index for summary-based dead stripping.
206     ProfileSummaryInfo PSI(M);
207     M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
208     ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
209     WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
210 
211     if (ThinLinkOS)
212       // We don't have a ThinLTO part, but still write the module to the
213       // ThinLinkOS if requested so that the expected output file is produced.
214       WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
215                          &Index);
216 
217     return;
218   }
219 
220   promoteTypeIds(M, ModuleId);
221 
222   // Returns whether a global or its associated global has attached type
223   // metadata. The former may participate in CFI or whole-program
224   // devirtualization, so they need to appear in the merged module instead of
225   // the thin LTO module. Similarly, globals that are associated with globals
226   // with type metadata need to appear in the merged module because they will
227   // reference the global's section directly.
228   auto HasTypeMetadata = [](const GlobalObject *GO) {
229     if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
230       if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
231         if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
232           if (AssocGO->hasMetadata(LLVMContext::MD_type))
233             return true;
234     return GO->hasMetadata(LLVMContext::MD_type);
235   };
236 
237   // Collect the set of virtual functions that are eligible for virtual constant
238   // propagation. Each eligible function must not access memory, must return
239   // an integer of width <=64 bits, must take at least one argument, must not
240   // use its first argument (assumed to be "this") and all arguments other than
241   // the first one must be of <=64 bit integer type.
242   //
243   // Note that we test whether this copy of the function is readnone, rather
244   // than testing function attributes, which must hold for any copy of the
245   // function, even a less optimized version substituted at link time. This is
246   // sound because the virtual constant propagation optimizations effectively
247   // inline all implementations of the virtual function into each call site,
248   // rather than using function attributes to perform local optimization.
249   DenseSet<const Function *> EligibleVirtualFns;
250   // If any member of a comdat lives in MergedM, put all members of that
251   // comdat in MergedM to keep the comdat together.
252   DenseSet<const Comdat *> MergedMComdats;
253   for (GlobalVariable &GV : M.globals())
254     if (HasTypeMetadata(&GV)) {
255       if (const auto *C = GV.getComdat())
256         MergedMComdats.insert(C);
257       forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
258         auto *RT = dyn_cast<IntegerType>(F->getReturnType());
259         if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
260             !F->arg_begin()->use_empty())
261           return;
262         for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
263           auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
264           if (!ArgT || ArgT->getBitWidth() > 64)
265             return;
266         }
267         if (!F->isDeclaration() &&
268             computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
269           EligibleVirtualFns.insert(F);
270       });
271     }
272 
273   ValueToValueMapTy VMap;
274   std::unique_ptr<Module> MergedM(
275       CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
276         if (const auto *C = GV->getComdat())
277           if (MergedMComdats.count(C))
278             return true;
279         if (auto *F = dyn_cast<Function>(GV))
280           return EligibleVirtualFns.count(F);
281         if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
282           return HasTypeMetadata(GVar);
283         return false;
284       }));
285   StripDebugInfo(*MergedM);
286   MergedM->setModuleInlineAsm("");
287 
288   for (Function &F : *MergedM)
289     if (!F.isDeclaration()) {
290       // Reset the linkage of all functions eligible for virtual constant
291       // propagation. The canonical definitions live in the thin LTO module so
292       // that they can be imported.
293       F.setLinkage(GlobalValue::AvailableExternallyLinkage);
294       F.setComdat(nullptr);
295     }
296 
297   SetVector<GlobalValue *> CfiFunctions;
298   for (auto &F : M)
299     if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
300       CfiFunctions.insert(&F);
301 
302   // Remove all globals with type metadata, globals with comdats that live in
303   // MergedM, and aliases pointing to such globals from the thin LTO module.
304   filterModule(&M, [&](const GlobalValue *GV) {
305     if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
306       if (HasTypeMetadata(GVar))
307         return false;
308     if (const auto *C = GV->getComdat())
309       if (MergedMComdats.count(C))
310         return false;
311     return true;
312   });
313 
314   promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
315   promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
316 
317   auto &Ctx = MergedM->getContext();
318   SmallVector<MDNode *, 8> CfiFunctionMDs;
319   for (auto V : CfiFunctions) {
320     Function &F = *cast<Function>(V);
321     SmallVector<MDNode *, 2> Types;
322     F.getMetadata(LLVMContext::MD_type, Types);
323 
324     SmallVector<Metadata *, 4> Elts;
325     Elts.push_back(MDString::get(Ctx, F.getName()));
326     CfiFunctionLinkage Linkage;
327     if (lowertypetests::isJumpTableCanonical(&F))
328       Linkage = CFL_Definition;
329     else if (F.hasExternalWeakLinkage())
330       Linkage = CFL_WeakDeclaration;
331     else
332       Linkage = CFL_Declaration;
333     Elts.push_back(ConstantAsMetadata::get(
334         llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
335     for (auto Type : Types)
336       Elts.push_back(Type);
337     CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
338   }
339 
340   if(!CfiFunctionMDs.empty()) {
341     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
342     for (auto MD : CfiFunctionMDs)
343       NMD->addOperand(MD);
344   }
345 
346   SmallVector<MDNode *, 8> FunctionAliases;
347   for (auto &A : M.aliases()) {
348     if (!isa<Function>(A.getAliasee()))
349       continue;
350 
351     auto *F = cast<Function>(A.getAliasee());
352 
353     Metadata *Elts[] = {
354         MDString::get(Ctx, A.getName()),
355         MDString::get(Ctx, F->getName()),
356         ConstantAsMetadata::get(
357             ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
358         ConstantAsMetadata::get(
359             ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
360     };
361 
362     FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
363   }
364 
365   if (!FunctionAliases.empty()) {
366     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
367     for (auto MD : FunctionAliases)
368       NMD->addOperand(MD);
369   }
370 
371   SmallVector<MDNode *, 8> Symvers;
372   ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
373     Function *F = M.getFunction(Name);
374     if (!F || F->use_empty())
375       return;
376 
377     Symvers.push_back(MDTuple::get(
378         Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
379   });
380 
381   if (!Symvers.empty()) {
382     NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
383     for (auto MD : Symvers)
384       NMD->addOperand(MD);
385   }
386 
387   simplifyExternals(*MergedM);
388 
389   // FIXME: Try to re-use BSI and PFI from the original module here.
390   ProfileSummaryInfo PSI(M);
391   ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
392 
393   // Mark the merged module as requiring full LTO. We still want an index for
394   // it though, so that it can participate in summary-based dead stripping.
395   MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
396   ModuleSummaryIndex MergedMIndex =
397       buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
398 
399   SmallVector<char, 0> Buffer;
400 
401   BitcodeWriter W(Buffer);
402   // Save the module hash produced for the full bitcode, which will
403   // be used in the backends, and use that in the minimized bitcode
404   // produced for the full link.
405   ModuleHash ModHash = {{0}};
406   W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
407                 /*GenerateHash=*/true, &ModHash);
408   W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
409   W.writeSymtab();
410   W.writeStrtab();
411   OS << Buffer;
412 
413   // If a minimized bitcode module was requested for the thin link, only
414   // the information that is needed by thin link will be written in the
415   // given OS (the merged module will be written as usual).
416   if (ThinLinkOS) {
417     Buffer.clear();
418     BitcodeWriter W2(Buffer);
419     StripDebugInfo(M);
420     W2.writeThinLinkBitcode(M, Index, ModHash);
421     W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
422                    &MergedMIndex);
423     W2.writeSymtab();
424     W2.writeStrtab();
425     *ThinLinkOS << Buffer;
426   }
427 }
428 
429 // Check if the LTO Unit splitting has been enabled.
430 bool enableSplitLTOUnit(Module &M) {
431   bool EnableSplitLTOUnit = false;
432   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
433           M.getModuleFlag("EnableSplitLTOUnit")))
434     EnableSplitLTOUnit = MD->getZExtValue();
435   return EnableSplitLTOUnit;
436 }
437 
438 // Returns whether this module needs to be split because it uses type metadata.
439 bool hasTypeMetadata(Module &M) {
440   for (auto &GO : M.global_objects()) {
441     if (GO.hasMetadata(LLVMContext::MD_type))
442       return true;
443   }
444   return false;
445 }
446 
447 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
448                          function_ref<AAResults &(Function &)> AARGetter,
449                          Module &M, const ModuleSummaryIndex *Index) {
450   std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
451   // See if this module has any type metadata. If so, we try to split it
452   // or at least promote type ids to enable WPD.
453   if (hasTypeMetadata(M)) {
454     if (enableSplitLTOUnit(M))
455       return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
456     // Promote type ids as needed for index-based WPD.
457     std::string ModuleId = getUniqueModuleId(&M);
458     if (!ModuleId.empty()) {
459       promoteTypeIds(M, ModuleId);
460       // Need to rebuild the index so that it contains type metadata
461       // for the newly promoted type ids.
462       // FIXME: Probably should not bother building the index at all
463       // in the caller of writeThinLTOBitcode (which does so via the
464       // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
465       // anyway whenever there is type metadata (here or in
466       // splitAndWriteThinLTOBitcode). Just always build it once via the
467       // buildModuleSummaryIndex when Module(s) are ready.
468       ProfileSummaryInfo PSI(M);
469       NewIndex = std::make_unique<ModuleSummaryIndex>(
470           buildModuleSummaryIndex(M, nullptr, &PSI));
471       Index = NewIndex.get();
472     }
473   }
474 
475   // Write it out as an unsplit ThinLTO module.
476 
477   // Save the module hash produced for the full bitcode, which will
478   // be used in the backends, and use that in the minimized bitcode
479   // produced for the full link.
480   ModuleHash ModHash = {{0}};
481   WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
482                      /*GenerateHash=*/true, &ModHash);
483   // If a minimized bitcode module was requested for the thin link, only
484   // the information that is needed by thin link will be written in the
485   // given OS.
486   if (ThinLinkOS && Index)
487     WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
488 }
489 
490 class WriteThinLTOBitcode : public ModulePass {
491   raw_ostream &OS; // raw_ostream to print on
492   // The output stream on which to emit a minimized module for use
493   // just in the thin link, if requested.
494   raw_ostream *ThinLinkOS;
495 
496 public:
497   static char ID; // Pass identification, replacement for typeid
498   WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
499     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
500   }
501 
502   explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
503       : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
504     initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
505   }
506 
507   StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
508 
509   bool runOnModule(Module &M) override {
510     const ModuleSummaryIndex *Index =
511         &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
512     writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
513     return true;
514   }
515   void getAnalysisUsage(AnalysisUsage &AU) const override {
516     AU.setPreservesAll();
517     AU.addRequired<AssumptionCacheTracker>();
518     AU.addRequired<ModuleSummaryIndexWrapperPass>();
519     AU.addRequired<TargetLibraryInfoWrapperPass>();
520   }
521 };
522 } // anonymous namespace
523 
524 char WriteThinLTOBitcode::ID = 0;
525 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
526                       "Write ThinLTO Bitcode", false, true)
527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
528 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
529 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
530 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
531                     "Write ThinLTO Bitcode", false, true)
532 
533 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
534                                                 raw_ostream *ThinLinkOS) {
535   return new WriteThinLTOBitcode(Str, ThinLinkOS);
536 }
537 
538 PreservedAnalyses
539 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
540   FunctionAnalysisManager &FAM =
541       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
542   writeThinLTOBitcode(OS, ThinLinkOS,
543                       [&FAM](Function &F) -> AAResults & {
544                         return FAM.getResult<AAManager>(F);
545                       },
546                       M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
547   return PreservedAnalyses::all();
548 }
549