1 //===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h" 10 #include "llvm/Analysis/BasicAliasAnalysis.h" 11 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 12 #include "llvm/Analysis/ProfileSummaryInfo.h" 13 #include "llvm/Analysis/TypeMetadataUtils.h" 14 #include "llvm/Bitcode/BitcodeWriter.h" 15 #include "llvm/IR/Constants.h" 16 #include "llvm/IR/DebugInfo.h" 17 #include "llvm/IR/Intrinsics.h" 18 #include "llvm/IR/Module.h" 19 #include "llvm/IR/PassManager.h" 20 #include "llvm/Object/ModuleSymbolTable.h" 21 #include "llvm/Pass.h" 22 #include "llvm/Support/ScopedPrinter.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/Transforms/IPO.h" 25 #include "llvm/Transforms/IPO/FunctionAttrs.h" 26 #include "llvm/Transforms/IPO/FunctionImport.h" 27 #include "llvm/Transforms/IPO/LowerTypeTests.h" 28 #include "llvm/Transforms/Utils/Cloning.h" 29 #include "llvm/Transforms/Utils/ModuleUtils.h" 30 using namespace llvm; 31 32 namespace { 33 34 // Promote each local-linkage entity defined by ExportM and used by ImportM by 35 // changing visibility and appending the given ModuleId. 36 void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId, 37 SetVector<GlobalValue *> &PromoteExtra) { 38 DenseMap<const Comdat *, Comdat *> RenamedComdats; 39 for (auto &ExportGV : ExportM.global_values()) { 40 if (!ExportGV.hasLocalLinkage()) 41 continue; 42 43 auto Name = ExportGV.getName(); 44 GlobalValue *ImportGV = nullptr; 45 if (!PromoteExtra.count(&ExportGV)) { 46 ImportGV = ImportM.getNamedValue(Name); 47 if (!ImportGV) 48 continue; 49 ImportGV->removeDeadConstantUsers(); 50 if (ImportGV->use_empty()) { 51 ImportGV->eraseFromParent(); 52 continue; 53 } 54 } 55 56 std::string NewName = (Name + ModuleId).str(); 57 58 if (const auto *C = ExportGV.getComdat()) 59 if (C->getName() == Name) 60 RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName)); 61 62 ExportGV.setName(NewName); 63 ExportGV.setLinkage(GlobalValue::ExternalLinkage); 64 ExportGV.setVisibility(GlobalValue::HiddenVisibility); 65 66 if (ImportGV) { 67 ImportGV->setName(NewName); 68 ImportGV->setVisibility(GlobalValue::HiddenVisibility); 69 } 70 } 71 72 if (!RenamedComdats.empty()) 73 for (auto &GO : ExportM.global_objects()) 74 if (auto *C = GO.getComdat()) { 75 auto Replacement = RenamedComdats.find(C); 76 if (Replacement != RenamedComdats.end()) 77 GO.setComdat(Replacement->second); 78 } 79 } 80 81 // Promote all internal (i.e. distinct) type ids used by the module by replacing 82 // them with external type ids formed using the module id. 83 // 84 // Note that this needs to be done before we clone the module because each clone 85 // will receive its own set of distinct metadata nodes. 86 void promoteTypeIds(Module &M, StringRef ModuleId) { 87 DenseMap<Metadata *, Metadata *> LocalToGlobal; 88 auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) { 89 Metadata *MD = 90 cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata(); 91 92 if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) { 93 Metadata *&GlobalMD = LocalToGlobal[MD]; 94 if (!GlobalMD) { 95 std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str(); 96 GlobalMD = MDString::get(M.getContext(), NewName); 97 } 98 99 CI->setArgOperand(ArgNo, 100 MetadataAsValue::get(M.getContext(), GlobalMD)); 101 } 102 }; 103 104 if (Function *TypeTestFunc = 105 M.getFunction(Intrinsic::getName(Intrinsic::type_test))) { 106 for (const Use &U : TypeTestFunc->uses()) { 107 auto CI = cast<CallInst>(U.getUser()); 108 ExternalizeTypeId(CI, 1); 109 } 110 } 111 112 if (Function *TypeCheckedLoadFunc = 113 M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) { 114 for (const Use &U : TypeCheckedLoadFunc->uses()) { 115 auto CI = cast<CallInst>(U.getUser()); 116 ExternalizeTypeId(CI, 2); 117 } 118 } 119 120 for (GlobalObject &GO : M.global_objects()) { 121 SmallVector<MDNode *, 1> MDs; 122 GO.getMetadata(LLVMContext::MD_type, MDs); 123 124 GO.eraseMetadata(LLVMContext::MD_type); 125 for (auto MD : MDs) { 126 auto I = LocalToGlobal.find(MD->getOperand(1)); 127 if (I == LocalToGlobal.end()) { 128 GO.addMetadata(LLVMContext::MD_type, *MD); 129 continue; 130 } 131 GO.addMetadata( 132 LLVMContext::MD_type, 133 *MDNode::get(M.getContext(), {MD->getOperand(0), I->second})); 134 } 135 } 136 } 137 138 // Drop unused globals, and drop type information from function declarations. 139 // FIXME: If we made functions typeless then there would be no need to do this. 140 void simplifyExternals(Module &M) { 141 FunctionType *EmptyFT = 142 FunctionType::get(Type::getVoidTy(M.getContext()), false); 143 144 for (auto I = M.begin(), E = M.end(); I != E;) { 145 Function &F = *I++; 146 if (F.isDeclaration() && F.use_empty()) { 147 F.eraseFromParent(); 148 continue; 149 } 150 151 if (!F.isDeclaration() || F.getFunctionType() == EmptyFT || 152 // Changing the type of an intrinsic may invalidate the IR. 153 F.getName().startswith("llvm.")) 154 continue; 155 156 Function *NewF = 157 Function::Create(EmptyFT, GlobalValue::ExternalLinkage, 158 F.getAddressSpace(), "", &M); 159 NewF->setVisibility(F.getVisibility()); 160 NewF->takeName(&F); 161 F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType())); 162 F.eraseFromParent(); 163 } 164 165 for (auto I = M.global_begin(), E = M.global_end(); I != E;) { 166 GlobalVariable &GV = *I++; 167 if (GV.isDeclaration() && GV.use_empty()) { 168 GV.eraseFromParent(); 169 continue; 170 } 171 } 172 } 173 174 static void 175 filterModule(Module *M, 176 function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) { 177 std::vector<GlobalValue *> V; 178 for (GlobalValue &GV : M->global_values()) 179 if (!ShouldKeepDefinition(&GV)) 180 V.push_back(&GV); 181 182 for (GlobalValue *GV : V) 183 if (!convertToDeclaration(*GV)) 184 GV->eraseFromParent(); 185 } 186 187 void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) { 188 if (auto *F = dyn_cast<Function>(C)) 189 return Fn(F); 190 if (isa<GlobalValue>(C)) 191 return; 192 for (Value *Op : C->operands()) 193 forEachVirtualFunction(cast<Constant>(Op), Fn); 194 } 195 196 // If it's possible to split M into regular and thin LTO parts, do so and write 197 // a multi-module bitcode file with the two parts to OS. Otherwise, write only a 198 // regular LTO bitcode file to OS. 199 void splitAndWriteThinLTOBitcode( 200 raw_ostream &OS, raw_ostream *ThinLinkOS, 201 function_ref<AAResults &(Function &)> AARGetter, Module &M) { 202 std::string ModuleId = getUniqueModuleId(&M); 203 if (ModuleId.empty()) { 204 // We couldn't generate a module ID for this module, write it out as a 205 // regular LTO module with an index for summary-based dead stripping. 206 ProfileSummaryInfo PSI(M); 207 M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 208 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 209 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index); 210 211 if (ThinLinkOS) 212 // We don't have a ThinLTO part, but still write the module to the 213 // ThinLinkOS if requested so that the expected output file is produced. 214 WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false, 215 &Index); 216 217 return; 218 } 219 220 promoteTypeIds(M, ModuleId); 221 222 // Returns whether a global or its associated global has attached type 223 // metadata. The former may participate in CFI or whole-program 224 // devirtualization, so they need to appear in the merged module instead of 225 // the thin LTO module. Similarly, globals that are associated with globals 226 // with type metadata need to appear in the merged module because they will 227 // reference the global's section directly. 228 auto HasTypeMetadata = [](const GlobalObject *GO) { 229 if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated)) 230 if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0))) 231 if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue())) 232 if (AssocGO->hasMetadata(LLVMContext::MD_type)) 233 return true; 234 return GO->hasMetadata(LLVMContext::MD_type); 235 }; 236 237 // Collect the set of virtual functions that are eligible for virtual constant 238 // propagation. Each eligible function must not access memory, must return 239 // an integer of width <=64 bits, must take at least one argument, must not 240 // use its first argument (assumed to be "this") and all arguments other than 241 // the first one must be of <=64 bit integer type. 242 // 243 // Note that we test whether this copy of the function is readnone, rather 244 // than testing function attributes, which must hold for any copy of the 245 // function, even a less optimized version substituted at link time. This is 246 // sound because the virtual constant propagation optimizations effectively 247 // inline all implementations of the virtual function into each call site, 248 // rather than using function attributes to perform local optimization. 249 DenseSet<const Function *> EligibleVirtualFns; 250 // If any member of a comdat lives in MergedM, put all members of that 251 // comdat in MergedM to keep the comdat together. 252 DenseSet<const Comdat *> MergedMComdats; 253 for (GlobalVariable &GV : M.globals()) 254 if (HasTypeMetadata(&GV)) { 255 if (const auto *C = GV.getComdat()) 256 MergedMComdats.insert(C); 257 forEachVirtualFunction(GV.getInitializer(), [&](Function *F) { 258 auto *RT = dyn_cast<IntegerType>(F->getReturnType()); 259 if (!RT || RT->getBitWidth() > 64 || F->arg_empty() || 260 !F->arg_begin()->use_empty()) 261 return; 262 for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) { 263 auto *ArgT = dyn_cast<IntegerType>(Arg.getType()); 264 if (!ArgT || ArgT->getBitWidth() > 64) 265 return; 266 } 267 if (!F->isDeclaration() && 268 computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone) 269 EligibleVirtualFns.insert(F); 270 }); 271 } 272 273 ValueToValueMapTy VMap; 274 std::unique_ptr<Module> MergedM( 275 CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool { 276 if (const auto *C = GV->getComdat()) 277 if (MergedMComdats.count(C)) 278 return true; 279 if (auto *F = dyn_cast<Function>(GV)) 280 return EligibleVirtualFns.count(F); 281 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 282 return HasTypeMetadata(GVar); 283 return false; 284 })); 285 StripDebugInfo(*MergedM); 286 MergedM->setModuleInlineAsm(""); 287 288 for (Function &F : *MergedM) 289 if (!F.isDeclaration()) { 290 // Reset the linkage of all functions eligible for virtual constant 291 // propagation. The canonical definitions live in the thin LTO module so 292 // that they can be imported. 293 F.setLinkage(GlobalValue::AvailableExternallyLinkage); 294 F.setComdat(nullptr); 295 } 296 297 SetVector<GlobalValue *> CfiFunctions; 298 for (auto &F : M) 299 if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F)) 300 CfiFunctions.insert(&F); 301 302 // Remove all globals with type metadata, globals with comdats that live in 303 // MergedM, and aliases pointing to such globals from the thin LTO module. 304 filterModule(&M, [&](const GlobalValue *GV) { 305 if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject())) 306 if (HasTypeMetadata(GVar)) 307 return false; 308 if (const auto *C = GV->getComdat()) 309 if (MergedMComdats.count(C)) 310 return false; 311 return true; 312 }); 313 314 promoteInternals(*MergedM, M, ModuleId, CfiFunctions); 315 promoteInternals(M, *MergedM, ModuleId, CfiFunctions); 316 317 auto &Ctx = MergedM->getContext(); 318 SmallVector<MDNode *, 8> CfiFunctionMDs; 319 for (auto V : CfiFunctions) { 320 Function &F = *cast<Function>(V); 321 SmallVector<MDNode *, 2> Types; 322 F.getMetadata(LLVMContext::MD_type, Types); 323 324 SmallVector<Metadata *, 4> Elts; 325 Elts.push_back(MDString::get(Ctx, F.getName())); 326 CfiFunctionLinkage Linkage; 327 if (lowertypetests::isJumpTableCanonical(&F)) 328 Linkage = CFL_Definition; 329 else if (F.hasExternalWeakLinkage()) 330 Linkage = CFL_WeakDeclaration; 331 else 332 Linkage = CFL_Declaration; 333 Elts.push_back(ConstantAsMetadata::get( 334 llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage))); 335 for (auto Type : Types) 336 Elts.push_back(Type); 337 CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts)); 338 } 339 340 if(!CfiFunctionMDs.empty()) { 341 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions"); 342 for (auto MD : CfiFunctionMDs) 343 NMD->addOperand(MD); 344 } 345 346 SmallVector<MDNode *, 8> FunctionAliases; 347 for (auto &A : M.aliases()) { 348 if (!isa<Function>(A.getAliasee())) 349 continue; 350 351 auto *F = cast<Function>(A.getAliasee()); 352 353 Metadata *Elts[] = { 354 MDString::get(Ctx, A.getName()), 355 MDString::get(Ctx, F->getName()), 356 ConstantAsMetadata::get( 357 ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())), 358 ConstantAsMetadata::get( 359 ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())), 360 }; 361 362 FunctionAliases.push_back(MDTuple::get(Ctx, Elts)); 363 } 364 365 if (!FunctionAliases.empty()) { 366 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases"); 367 for (auto MD : FunctionAliases) 368 NMD->addOperand(MD); 369 } 370 371 SmallVector<MDNode *, 8> Symvers; 372 ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) { 373 Function *F = M.getFunction(Name); 374 if (!F || F->use_empty()) 375 return; 376 377 Symvers.push_back(MDTuple::get( 378 Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)})); 379 }); 380 381 if (!Symvers.empty()) { 382 NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers"); 383 for (auto MD : Symvers) 384 NMD->addOperand(MD); 385 } 386 387 simplifyExternals(*MergedM); 388 389 // FIXME: Try to re-use BSI and PFI from the original module here. 390 ProfileSummaryInfo PSI(M); 391 ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI); 392 393 // Mark the merged module as requiring full LTO. We still want an index for 394 // it though, so that it can participate in summary-based dead stripping. 395 MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0)); 396 ModuleSummaryIndex MergedMIndex = 397 buildModuleSummaryIndex(*MergedM, nullptr, &PSI); 398 399 SmallVector<char, 0> Buffer; 400 401 BitcodeWriter W(Buffer); 402 // Save the module hash produced for the full bitcode, which will 403 // be used in the backends, and use that in the minimized bitcode 404 // produced for the full link. 405 ModuleHash ModHash = {{0}}; 406 W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index, 407 /*GenerateHash=*/true, &ModHash); 408 W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex); 409 W.writeSymtab(); 410 W.writeStrtab(); 411 OS << Buffer; 412 413 // If a minimized bitcode module was requested for the thin link, only 414 // the information that is needed by thin link will be written in the 415 // given OS (the merged module will be written as usual). 416 if (ThinLinkOS) { 417 Buffer.clear(); 418 BitcodeWriter W2(Buffer); 419 StripDebugInfo(M); 420 W2.writeThinLinkBitcode(M, Index, ModHash); 421 W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, 422 &MergedMIndex); 423 W2.writeSymtab(); 424 W2.writeStrtab(); 425 *ThinLinkOS << Buffer; 426 } 427 } 428 429 // Check if the LTO Unit splitting has been enabled. 430 bool enableSplitLTOUnit(Module &M) { 431 bool EnableSplitLTOUnit = false; 432 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 433 M.getModuleFlag("EnableSplitLTOUnit"))) 434 EnableSplitLTOUnit = MD->getZExtValue(); 435 return EnableSplitLTOUnit; 436 } 437 438 // Returns whether this module needs to be split because it uses type metadata. 439 bool hasTypeMetadata(Module &M) { 440 for (auto &GO : M.global_objects()) { 441 if (GO.hasMetadata(LLVMContext::MD_type)) 442 return true; 443 } 444 return false; 445 } 446 447 void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS, 448 function_ref<AAResults &(Function &)> AARGetter, 449 Module &M, const ModuleSummaryIndex *Index) { 450 std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr; 451 // See if this module has any type metadata. If so, we try to split it 452 // or at least promote type ids to enable WPD. 453 if (hasTypeMetadata(M)) { 454 if (enableSplitLTOUnit(M)) 455 return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M); 456 // Promote type ids as needed for index-based WPD. 457 std::string ModuleId = getUniqueModuleId(&M); 458 if (!ModuleId.empty()) { 459 promoteTypeIds(M, ModuleId); 460 // Need to rebuild the index so that it contains type metadata 461 // for the newly promoted type ids. 462 // FIXME: Probably should not bother building the index at all 463 // in the caller of writeThinLTOBitcode (which does so via the 464 // ModuleSummaryIndexAnalysis pass), since we have to rebuild it 465 // anyway whenever there is type metadata (here or in 466 // splitAndWriteThinLTOBitcode). Just always build it once via the 467 // buildModuleSummaryIndex when Module(s) are ready. 468 ProfileSummaryInfo PSI(M); 469 NewIndex = std::make_unique<ModuleSummaryIndex>( 470 buildModuleSummaryIndex(M, nullptr, &PSI)); 471 Index = NewIndex.get(); 472 } 473 } 474 475 // Write it out as an unsplit ThinLTO module. 476 477 // Save the module hash produced for the full bitcode, which will 478 // be used in the backends, and use that in the minimized bitcode 479 // produced for the full link. 480 ModuleHash ModHash = {{0}}; 481 WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index, 482 /*GenerateHash=*/true, &ModHash); 483 // If a minimized bitcode module was requested for the thin link, only 484 // the information that is needed by thin link will be written in the 485 // given OS. 486 if (ThinLinkOS && Index) 487 WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash); 488 } 489 490 class WriteThinLTOBitcode : public ModulePass { 491 raw_ostream &OS; // raw_ostream to print on 492 // The output stream on which to emit a minimized module for use 493 // just in the thin link, if requested. 494 raw_ostream *ThinLinkOS; 495 496 public: 497 static char ID; // Pass identification, replacement for typeid 498 WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) { 499 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 500 } 501 502 explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS) 503 : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) { 504 initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry()); 505 } 506 507 StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; } 508 509 bool runOnModule(Module &M) override { 510 const ModuleSummaryIndex *Index = 511 &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex()); 512 writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index); 513 return true; 514 } 515 void getAnalysisUsage(AnalysisUsage &AU) const override { 516 AU.setPreservesAll(); 517 AU.addRequired<AssumptionCacheTracker>(); 518 AU.addRequired<ModuleSummaryIndexWrapperPass>(); 519 AU.addRequired<TargetLibraryInfoWrapperPass>(); 520 } 521 }; 522 } // anonymous namespace 523 524 char WriteThinLTOBitcode::ID = 0; 525 INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode", 526 "Write ThinLTO Bitcode", false, true) 527 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 528 INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass) 529 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 530 INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode", 531 "Write ThinLTO Bitcode", false, true) 532 533 ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str, 534 raw_ostream *ThinLinkOS) { 535 return new WriteThinLTOBitcode(Str, ThinLinkOS); 536 } 537 538 PreservedAnalyses 539 llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) { 540 FunctionAnalysisManager &FAM = 541 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 542 writeThinLTOBitcode(OS, ThinLinkOS, 543 [&FAM](Function &F) -> AAResults & { 544 return FAM.getResult<AAManager>(F); 545 }, 546 M, &AM.getResult<ModuleSummaryIndexAnalysis>(M)); 547 return PreservedAnalyses::all(); 548 } 549