1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SampleProfileLoader transformation. This pass 10 // reads a profile file generated by a sampling profiler (e.g. Linux Perf - 11 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the 12 // profile information in the given profile. 13 // 14 // This pass generates branch weight annotations on the IR: 15 // 16 // - prof: Represents branch weights. This annotation is added to branches 17 // to indicate the weights of each edge coming out of the branch. 18 // The weight of each edge is the weight of the target block for 19 // that edge. The weight of a block B is computed as the maximum 20 // number of samples found in B. 21 // 22 //===----------------------------------------------------------------------===// 23 24 #include "llvm/Transforms/IPO/SampleProfile.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/DenseSet.h" 28 #include "llvm/ADT/None.h" 29 #include "llvm/ADT/SmallPtrSet.h" 30 #include "llvm/ADT/SmallSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringMap.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/Analysis/AssumptionCache.h" 36 #include "llvm/Analysis/InlineCost.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 39 #include "llvm/Analysis/PostDominators.h" 40 #include "llvm/Analysis/ProfileSummaryInfo.h" 41 #include "llvm/Analysis/TargetTransformInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CFG.h" 44 #include "llvm/IR/CallSite.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/DiagnosticInfo.h" 48 #include "llvm/IR/Dominators.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/MDBuilder.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/Pass.h" 61 #include "llvm/ProfileData/InstrProf.h" 62 #include "llvm/ProfileData/SampleProf.h" 63 #include "llvm/ProfileData/SampleProfReader.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/GenericDomTree.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/IPO.h" 72 #include "llvm/Transforms/Instrumentation.h" 73 #include "llvm/Transforms/Utils/CallPromotionUtils.h" 74 #include "llvm/Transforms/Utils/Cloning.h" 75 #include "llvm/Transforms/Utils/MisExpect.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstdint> 79 #include <functional> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <queue> 84 #include <string> 85 #include <system_error> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 using namespace sampleprof; 91 using ProfileCount = Function::ProfileCount; 92 #define DEBUG_TYPE "sample-profile" 93 94 // Command line option to specify the file to read samples from. This is 95 // mainly used for debugging. 96 static cl::opt<std::string> SampleProfileFile( 97 "sample-profile-file", cl::init(""), cl::value_desc("filename"), 98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); 99 100 // The named file contains a set of transformations that may have been applied 101 // to the symbol names between the program from which the sample data was 102 // collected and the current program's symbols. 103 static cl::opt<std::string> SampleProfileRemappingFile( 104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), 105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); 106 107 static cl::opt<unsigned> SampleProfileMaxPropagateIterations( 108 "sample-profile-max-propagate-iterations", cl::init(100), 109 cl::desc("Maximum number of iterations to go through when propagating " 110 "sample block/edge weights through the CFG.")); 111 112 static cl::opt<unsigned> SampleProfileRecordCoverage( 113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), 114 cl::desc("Emit a warning if less than N% of records in the input profile " 115 "are matched to the IR.")); 116 117 static cl::opt<unsigned> SampleProfileSampleCoverage( 118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), 119 cl::desc("Emit a warning if less than N% of samples in the input profile " 120 "are matched to the IR.")); 121 122 static cl::opt<bool> NoWarnSampleUnused( 123 "no-warn-sample-unused", cl::init(false), cl::Hidden, 124 cl::desc("Use this option to turn off/on warnings about function with " 125 "samples but without debug information to use those samples. ")); 126 127 static cl::opt<bool> ProfileSampleAccurate( 128 "profile-sample-accurate", cl::Hidden, cl::init(false), 129 cl::desc("If the sample profile is accurate, we will mark all un-sampled " 130 "callsite and function as having 0 samples. Otherwise, treat " 131 "un-sampled callsites and functions conservatively as unknown. ")); 132 133 static cl::opt<bool> ProfileAccurateForSymsInList( 134 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore, 135 cl::init(true), 136 cl::desc("For symbols in profile symbol list, regard their profiles to " 137 "be accurate. It may be overriden by profile-sample-accurate. ")); 138 139 namespace { 140 141 using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; 142 using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; 143 using Edge = std::pair<const BasicBlock *, const BasicBlock *>; 144 using EdgeWeightMap = DenseMap<Edge, uint64_t>; 145 using BlockEdgeMap = 146 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; 147 148 class SampleProfileLoader; 149 150 class SampleCoverageTracker { 151 public: 152 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){}; 153 154 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, 155 uint32_t Discriminator, uint64_t Samples); 156 unsigned computeCoverage(unsigned Used, unsigned Total) const; 157 unsigned countUsedRecords(const FunctionSamples *FS, 158 ProfileSummaryInfo *PSI) const; 159 unsigned countBodyRecords(const FunctionSamples *FS, 160 ProfileSummaryInfo *PSI) const; 161 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } 162 uint64_t countBodySamples(const FunctionSamples *FS, 163 ProfileSummaryInfo *PSI) const; 164 165 void clear() { 166 SampleCoverage.clear(); 167 TotalUsedSamples = 0; 168 } 169 170 private: 171 using BodySampleCoverageMap = std::map<LineLocation, unsigned>; 172 using FunctionSamplesCoverageMap = 173 DenseMap<const FunctionSamples *, BodySampleCoverageMap>; 174 175 /// Coverage map for sampling records. 176 /// 177 /// This map keeps a record of sampling records that have been matched to 178 /// an IR instruction. This is used to detect some form of staleness in 179 /// profiles (see flag -sample-profile-check-coverage). 180 /// 181 /// Each entry in the map corresponds to a FunctionSamples instance. This is 182 /// another map that counts how many times the sample record at the 183 /// given location has been used. 184 FunctionSamplesCoverageMap SampleCoverage; 185 186 /// Number of samples used from the profile. 187 /// 188 /// When a sampling record is used for the first time, the samples from 189 /// that record are added to this accumulator. Coverage is later computed 190 /// based on the total number of samples available in this function and 191 /// its callsites. 192 /// 193 /// Note that this accumulator tracks samples used from a single function 194 /// and all the inlined callsites. Strictly, we should have a map of counters 195 /// keyed by FunctionSamples pointers, but these stats are cleared after 196 /// every function, so we just need to keep a single counter. 197 uint64_t TotalUsedSamples = 0; 198 199 SampleProfileLoader &SPLoader; 200 }; 201 202 class GUIDToFuncNameMapper { 203 public: 204 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader, 205 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap) 206 : CurrentReader(Reader), CurrentModule(M), 207 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) { 208 if (CurrentReader.getFormat() != SPF_Compact_Binary) 209 return; 210 211 for (const auto &F : CurrentModule) { 212 StringRef OrigName = F.getName(); 213 CurrentGUIDToFuncNameMap.insert( 214 {Function::getGUID(OrigName), OrigName}); 215 216 // Local to global var promotion used by optimization like thinlto 217 // will rename the var and add suffix like ".llvm.xxx" to the 218 // original local name. In sample profile, the suffixes of function 219 // names are all stripped. Since it is possible that the mapper is 220 // built in post-thin-link phase and var promotion has been done, 221 // we need to add the substring of function name without the suffix 222 // into the GUIDToFuncNameMap. 223 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 224 if (CanonName != OrigName) 225 CurrentGUIDToFuncNameMap.insert( 226 {Function::getGUID(CanonName), CanonName}); 227 } 228 229 // Update GUIDToFuncNameMap for each function including inlinees. 230 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap); 231 } 232 233 ~GUIDToFuncNameMapper() { 234 if (CurrentReader.getFormat() != SPF_Compact_Binary) 235 return; 236 237 CurrentGUIDToFuncNameMap.clear(); 238 239 // Reset GUIDToFuncNameMap for of each function as they're no 240 // longer valid at this point. 241 SetGUIDToFuncNameMapForAll(nullptr); 242 } 243 244 private: 245 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) { 246 std::queue<FunctionSamples *> FSToUpdate; 247 for (auto &IFS : CurrentReader.getProfiles()) { 248 FSToUpdate.push(&IFS.second); 249 } 250 251 while (!FSToUpdate.empty()) { 252 FunctionSamples *FS = FSToUpdate.front(); 253 FSToUpdate.pop(); 254 FS->GUIDToFuncNameMap = Map; 255 for (const auto &ICS : FS->getCallsiteSamples()) { 256 const FunctionSamplesMap &FSMap = ICS.second; 257 for (auto &IFS : FSMap) { 258 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second); 259 FSToUpdate.push(&FS); 260 } 261 } 262 } 263 } 264 265 SampleProfileReader &CurrentReader; 266 Module &CurrentModule; 267 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap; 268 }; 269 270 /// Sample profile pass. 271 /// 272 /// This pass reads profile data from the file specified by 273 /// -sample-profile-file and annotates every affected function with the 274 /// profile information found in that file. 275 class SampleProfileLoader { 276 public: 277 SampleProfileLoader( 278 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, 279 std::function<AssumptionCache &(Function &)> GetAssumptionCache, 280 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) 281 : GetAC(std::move(GetAssumptionCache)), 282 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this), 283 Filename(Name), RemappingFilename(RemapName), 284 IsThinLTOPreLink(IsThinLTOPreLink) {} 285 286 bool doInitialization(Module &M); 287 bool runOnModule(Module &M, ModuleAnalysisManager *AM, 288 ProfileSummaryInfo *_PSI); 289 290 void dump() { Reader->dump(); } 291 292 protected: 293 friend class SampleCoverageTracker; 294 295 bool runOnFunction(Function &F, ModuleAnalysisManager *AM); 296 unsigned getFunctionLoc(Function &F); 297 bool emitAnnotations(Function &F); 298 ErrorOr<uint64_t> getInstWeight(const Instruction &I); 299 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); 300 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; 301 std::vector<const FunctionSamples *> 302 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; 303 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; 304 const FunctionSamples *findFunctionSamples(const Instruction &I) const; 305 bool inlineCallInstruction(Instruction *I); 306 bool inlineHotFunctions(Function &F, 307 DenseSet<GlobalValue::GUID> &InlinedGUIDs); 308 void printEdgeWeight(raw_ostream &OS, Edge E); 309 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; 310 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); 311 bool computeBlockWeights(Function &F); 312 void findEquivalenceClasses(Function &F); 313 template <bool IsPostDom> 314 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 315 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); 316 317 void propagateWeights(Function &F); 318 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); 319 void buildEdges(Function &F); 320 bool propagateThroughEdges(Function &F, bool UpdateBlockCount); 321 void computeDominanceAndLoopInfo(Function &F); 322 void clearFunctionData(); 323 bool callsiteIsHot(const FunctionSamples *CallsiteFS, 324 ProfileSummaryInfo *PSI); 325 326 /// Map basic blocks to their computed weights. 327 /// 328 /// The weight of a basic block is defined to be the maximum 329 /// of all the instruction weights in that block. 330 BlockWeightMap BlockWeights; 331 332 /// Map edges to their computed weights. 333 /// 334 /// Edge weights are computed by propagating basic block weights in 335 /// SampleProfile::propagateWeights. 336 EdgeWeightMap EdgeWeights; 337 338 /// Set of visited blocks during propagation. 339 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; 340 341 /// Set of visited edges during propagation. 342 SmallSet<Edge, 32> VisitedEdges; 343 344 /// Equivalence classes for block weights. 345 /// 346 /// Two blocks BB1 and BB2 are in the same equivalence class if they 347 /// dominate and post-dominate each other, and they are in the same loop 348 /// nest. When this happens, the two blocks are guaranteed to execute 349 /// the same number of times. 350 EquivalenceClassMap EquivalenceClass; 351 352 /// Map from function name to Function *. Used to find the function from 353 /// the function name. If the function name contains suffix, additional 354 /// entry is added to map from the stripped name to the function if there 355 /// is one-to-one mapping. 356 StringMap<Function *> SymbolMap; 357 358 /// Dominance, post-dominance and loop information. 359 std::unique_ptr<DominatorTree> DT; 360 std::unique_ptr<PostDominatorTree> PDT; 361 std::unique_ptr<LoopInfo> LI; 362 363 std::function<AssumptionCache &(Function &)> GetAC; 364 std::function<TargetTransformInfo &(Function &)> GetTTI; 365 366 /// Predecessors for each basic block in the CFG. 367 BlockEdgeMap Predecessors; 368 369 /// Successors for each basic block in the CFG. 370 BlockEdgeMap Successors; 371 372 SampleCoverageTracker CoverageTracker; 373 374 /// Profile reader object. 375 std::unique_ptr<SampleProfileReader> Reader; 376 377 /// Samples collected for the body of this function. 378 FunctionSamples *Samples = nullptr; 379 380 /// Name of the profile file to load. 381 std::string Filename; 382 383 /// Name of the profile remapping file to load. 384 std::string RemappingFilename; 385 386 /// Flag indicating whether the profile input loaded successfully. 387 bool ProfileIsValid = false; 388 389 /// Flag indicating if the pass is invoked in ThinLTO compile phase. 390 /// 391 /// In this phase, in annotation, we should not promote indirect calls. 392 /// Instead, we will mark GUIDs that needs to be annotated to the function. 393 bool IsThinLTOPreLink; 394 395 /// Profile Summary Info computed from sample profile. 396 ProfileSummaryInfo *PSI = nullptr; 397 398 /// Profle Symbol list tells whether a function name appears in the binary 399 /// used to generate the current profile. 400 std::unique_ptr<ProfileSymbolList> PSL; 401 402 /// Total number of samples collected in this profile. 403 /// 404 /// This is the sum of all the samples collected in all the functions executed 405 /// at runtime. 406 uint64_t TotalCollectedSamples = 0; 407 408 /// Optimization Remark Emitter used to emit diagnostic remarks. 409 OptimizationRemarkEmitter *ORE = nullptr; 410 411 // Information recorded when we declined to inline a call site 412 // because we have determined it is too cold is accumulated for 413 // each callee function. Initially this is just the entry count. 414 struct NotInlinedProfileInfo { 415 uint64_t entryCount; 416 }; 417 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; 418 419 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for 420 // all the function symbols defined or declared in current module. 421 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap; 422 423 // All the Names used in FunctionSamples including outline function 424 // names, inline instance names and call target names. 425 StringSet<> NamesInProfile; 426 427 // For symbol in profile symbol list, whether to regard their profiles 428 // to be accurate. It is mainly decided by existance of profile symbol 429 // list and -profile-accurate-for-symsinlist flag, but it can be 430 // overriden by -profile-sample-accurate or profile-sample-accurate 431 // attribute. 432 bool ProfAccForSymsInList; 433 }; 434 435 class SampleProfileLoaderLegacyPass : public ModulePass { 436 public: 437 // Class identification, replacement for typeinfo 438 static char ID; 439 440 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, 441 bool IsThinLTOPreLink = false) 442 : ModulePass(ID), 443 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, 444 [&](Function &F) -> AssumptionCache & { 445 return ACT->getAssumptionCache(F); 446 }, 447 [&](Function &F) -> TargetTransformInfo & { 448 return TTIWP->getTTI(F); 449 }) { 450 initializeSampleProfileLoaderLegacyPassPass( 451 *PassRegistry::getPassRegistry()); 452 } 453 454 void dump() { SampleLoader.dump(); } 455 456 bool doInitialization(Module &M) override { 457 return SampleLoader.doInitialization(M); 458 } 459 460 StringRef getPassName() const override { return "Sample profile pass"; } 461 bool runOnModule(Module &M) override; 462 463 void getAnalysisUsage(AnalysisUsage &AU) const override { 464 AU.addRequired<AssumptionCacheTracker>(); 465 AU.addRequired<TargetTransformInfoWrapperPass>(); 466 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 467 } 468 469 private: 470 SampleProfileLoader SampleLoader; 471 AssumptionCacheTracker *ACT = nullptr; 472 TargetTransformInfoWrapperPass *TTIWP = nullptr; 473 }; 474 475 } // end anonymous namespace 476 477 /// Return true if the given callsite is hot wrt to hot cutoff threshold. 478 /// 479 /// Functions that were inlined in the original binary will be represented 480 /// in the inline stack in the sample profile. If the profile shows that 481 /// the original inline decision was "good" (i.e., the callsite is executed 482 /// frequently), then we will recreate the inline decision and apply the 483 /// profile from the inlined callsite. 484 /// 485 /// To decide whether an inlined callsite is hot, we compare the callsite 486 /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is 487 /// regarded as hot if the count is above the cutoff value. 488 /// 489 /// When ProfileAccurateForSymsInList is enabled and profile symbol list 490 /// is present, functions in the profile symbol list but without profile will 491 /// be regarded as cold and much less inlining will happen in CGSCC inlining 492 /// pass, so we tend to lower the hot criteria here to allow more early 493 /// inlining to happen for warm callsites and it is helpful for performance. 494 bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS, 495 ProfileSummaryInfo *PSI) { 496 if (!CallsiteFS) 497 return false; // The callsite was not inlined in the original binary. 498 499 assert(PSI && "PSI is expected to be non null"); 500 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); 501 if (ProfAccForSymsInList) 502 return !PSI->isColdCount(CallsiteTotalSamples); 503 else 504 return PSI->isHotCount(CallsiteTotalSamples); 505 } 506 507 /// Mark as used the sample record for the given function samples at 508 /// (LineOffset, Discriminator). 509 /// 510 /// \returns true if this is the first time we mark the given record. 511 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, 512 uint32_t LineOffset, 513 uint32_t Discriminator, 514 uint64_t Samples) { 515 LineLocation Loc(LineOffset, Discriminator); 516 unsigned &Count = SampleCoverage[FS][Loc]; 517 bool FirstTime = (++Count == 1); 518 if (FirstTime) 519 TotalUsedSamples += Samples; 520 return FirstTime; 521 } 522 523 /// Return the number of sample records that were applied from this profile. 524 /// 525 /// This count does not include records from cold inlined callsites. 526 unsigned 527 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, 528 ProfileSummaryInfo *PSI) const { 529 auto I = SampleCoverage.find(FS); 530 531 // The size of the coverage map for FS represents the number of records 532 // that were marked used at least once. 533 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; 534 535 // If there are inlined callsites in this function, count the samples found 536 // in the respective bodies. However, do not bother counting callees with 0 537 // total samples, these are callees that were never invoked at runtime. 538 for (const auto &I : FS->getCallsiteSamples()) 539 for (const auto &J : I.second) { 540 const FunctionSamples *CalleeSamples = &J.second; 541 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 542 Count += countUsedRecords(CalleeSamples, PSI); 543 } 544 545 return Count; 546 } 547 548 /// Return the number of sample records in the body of this profile. 549 /// 550 /// This count does not include records from cold inlined callsites. 551 unsigned 552 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, 553 ProfileSummaryInfo *PSI) const { 554 unsigned Count = FS->getBodySamples().size(); 555 556 // Only count records in hot callsites. 557 for (const auto &I : FS->getCallsiteSamples()) 558 for (const auto &J : I.second) { 559 const FunctionSamples *CalleeSamples = &J.second; 560 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 561 Count += countBodyRecords(CalleeSamples, PSI); 562 } 563 564 return Count; 565 } 566 567 /// Return the number of samples collected in the body of this profile. 568 /// 569 /// This count does not include samples from cold inlined callsites. 570 uint64_t 571 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, 572 ProfileSummaryInfo *PSI) const { 573 uint64_t Total = 0; 574 for (const auto &I : FS->getBodySamples()) 575 Total += I.second.getSamples(); 576 577 // Only count samples in hot callsites. 578 for (const auto &I : FS->getCallsiteSamples()) 579 for (const auto &J : I.second) { 580 const FunctionSamples *CalleeSamples = &J.second; 581 if (SPLoader.callsiteIsHot(CalleeSamples, PSI)) 582 Total += countBodySamples(CalleeSamples, PSI); 583 } 584 585 return Total; 586 } 587 588 /// Return the fraction of sample records used in this profile. 589 /// 590 /// The returned value is an unsigned integer in the range 0-100 indicating 591 /// the percentage of sample records that were used while applying this 592 /// profile to the associated function. 593 unsigned SampleCoverageTracker::computeCoverage(unsigned Used, 594 unsigned Total) const { 595 assert(Used <= Total && 596 "number of used records cannot exceed the total number of records"); 597 return Total > 0 ? Used * 100 / Total : 100; 598 } 599 600 /// Clear all the per-function data used to load samples and propagate weights. 601 void SampleProfileLoader::clearFunctionData() { 602 BlockWeights.clear(); 603 EdgeWeights.clear(); 604 VisitedBlocks.clear(); 605 VisitedEdges.clear(); 606 EquivalenceClass.clear(); 607 DT = nullptr; 608 PDT = nullptr; 609 LI = nullptr; 610 Predecessors.clear(); 611 Successors.clear(); 612 CoverageTracker.clear(); 613 } 614 615 #ifndef NDEBUG 616 /// Print the weight of edge \p E on stream \p OS. 617 /// 618 /// \param OS Stream to emit the output to. 619 /// \param E Edge to print. 620 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { 621 OS << "weight[" << E.first->getName() << "->" << E.second->getName() 622 << "]: " << EdgeWeights[E] << "\n"; 623 } 624 625 /// Print the equivalence class of block \p BB on stream \p OS. 626 /// 627 /// \param OS Stream to emit the output to. 628 /// \param BB Block to print. 629 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, 630 const BasicBlock *BB) { 631 const BasicBlock *Equiv = EquivalenceClass[BB]; 632 OS << "equivalence[" << BB->getName() 633 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; 634 } 635 636 /// Print the weight of block \p BB on stream \p OS. 637 /// 638 /// \param OS Stream to emit the output to. 639 /// \param BB Block to print. 640 void SampleProfileLoader::printBlockWeight(raw_ostream &OS, 641 const BasicBlock *BB) const { 642 const auto &I = BlockWeights.find(BB); 643 uint64_t W = (I == BlockWeights.end() ? 0 : I->second); 644 OS << "weight[" << BB->getName() << "]: " << W << "\n"; 645 } 646 #endif 647 648 /// Get the weight for an instruction. 649 /// 650 /// The "weight" of an instruction \p Inst is the number of samples 651 /// collected on that instruction at runtime. To retrieve it, we 652 /// need to compute the line number of \p Inst relative to the start of its 653 /// function. We use HeaderLineno to compute the offset. We then 654 /// look up the samples collected for \p Inst using BodySamples. 655 /// 656 /// \param Inst Instruction to query. 657 /// 658 /// \returns the weight of \p Inst. 659 ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { 660 const DebugLoc &DLoc = Inst.getDebugLoc(); 661 if (!DLoc) 662 return std::error_code(); 663 664 const FunctionSamples *FS = findFunctionSamples(Inst); 665 if (!FS) 666 return std::error_code(); 667 668 // Ignore all intrinsics, phinodes and branch instructions. 669 // Branch and phinodes instruction usually contains debug info from sources outside of 670 // the residing basic block, thus we ignore them during annotation. 671 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) 672 return std::error_code(); 673 674 // If a direct call/invoke instruction is inlined in profile 675 // (findCalleeFunctionSamples returns non-empty result), but not inlined here, 676 // it means that the inlined callsite has no sample, thus the call 677 // instruction should have 0 count. 678 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && 679 !ImmutableCallSite(&Inst).isIndirectCall() && 680 findCalleeFunctionSamples(Inst)) 681 return 0; 682 683 const DILocation *DIL = DLoc; 684 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 685 uint32_t Discriminator = DIL->getBaseDiscriminator(); 686 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); 687 if (R) { 688 bool FirstMark = 689 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); 690 if (FirstMark) { 691 ORE->emit([&]() { 692 OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); 693 Remark << "Applied " << ore::NV("NumSamples", *R); 694 Remark << " samples from profile (offset: "; 695 Remark << ore::NV("LineOffset", LineOffset); 696 if (Discriminator) { 697 Remark << "."; 698 Remark << ore::NV("Discriminator", Discriminator); 699 } 700 Remark << ")"; 701 return Remark; 702 }); 703 } 704 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." 705 << DIL->getBaseDiscriminator() << ":" << Inst 706 << " (line offset: " << LineOffset << "." 707 << DIL->getBaseDiscriminator() << " - weight: " << R.get() 708 << ")\n"); 709 } 710 return R; 711 } 712 713 /// Compute the weight of a basic block. 714 /// 715 /// The weight of basic block \p BB is the maximum weight of all the 716 /// instructions in BB. 717 /// 718 /// \param BB The basic block to query. 719 /// 720 /// \returns the weight for \p BB. 721 ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { 722 uint64_t Max = 0; 723 bool HasWeight = false; 724 for (auto &I : BB->getInstList()) { 725 const ErrorOr<uint64_t> &R = getInstWeight(I); 726 if (R) { 727 Max = std::max(Max, R.get()); 728 HasWeight = true; 729 } 730 } 731 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); 732 } 733 734 /// Compute and store the weights of every basic block. 735 /// 736 /// This populates the BlockWeights map by computing 737 /// the weights of every basic block in the CFG. 738 /// 739 /// \param F The function to query. 740 bool SampleProfileLoader::computeBlockWeights(Function &F) { 741 bool Changed = false; 742 LLVM_DEBUG(dbgs() << "Block weights\n"); 743 for (const auto &BB : F) { 744 ErrorOr<uint64_t> Weight = getBlockWeight(&BB); 745 if (Weight) { 746 BlockWeights[&BB] = Weight.get(); 747 VisitedBlocks.insert(&BB); 748 Changed = true; 749 } 750 LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); 751 } 752 753 return Changed; 754 } 755 756 /// Get the FunctionSamples for a call instruction. 757 /// 758 /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined 759 /// instance in which that call instruction is calling to. It contains 760 /// all samples that resides in the inlined instance. We first find the 761 /// inlined instance in which the call instruction is from, then we 762 /// traverse its children to find the callsite with the matching 763 /// location. 764 /// 765 /// \param Inst Call/Invoke instruction to query. 766 /// 767 /// \returns The FunctionSamples pointer to the inlined instance. 768 const FunctionSamples * 769 SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { 770 const DILocation *DIL = Inst.getDebugLoc(); 771 if (!DIL) { 772 return nullptr; 773 } 774 775 StringRef CalleeName; 776 if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) 777 if (Function *Callee = CI->getCalledFunction()) 778 CalleeName = Callee->getName(); 779 780 const FunctionSamples *FS = findFunctionSamples(Inst); 781 if (FS == nullptr) 782 return nullptr; 783 784 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), 785 DIL->getBaseDiscriminator()), 786 CalleeName); 787 } 788 789 /// Returns a vector of FunctionSamples that are the indirect call targets 790 /// of \p Inst. The vector is sorted by the total number of samples. Stores 791 /// the total call count of the indirect call in \p Sum. 792 std::vector<const FunctionSamples *> 793 SampleProfileLoader::findIndirectCallFunctionSamples( 794 const Instruction &Inst, uint64_t &Sum) const { 795 const DILocation *DIL = Inst.getDebugLoc(); 796 std::vector<const FunctionSamples *> R; 797 798 if (!DIL) { 799 return R; 800 } 801 802 const FunctionSamples *FS = findFunctionSamples(Inst); 803 if (FS == nullptr) 804 return R; 805 806 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 807 uint32_t Discriminator = DIL->getBaseDiscriminator(); 808 809 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 810 Sum = 0; 811 if (T) 812 for (const auto &T_C : T.get()) 813 Sum += T_C.second; 814 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( 815 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { 816 if (M->empty()) 817 return R; 818 for (const auto &NameFS : *M) { 819 Sum += NameFS.second.getEntrySamples(); 820 R.push_back(&NameFS.second); 821 } 822 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { 823 if (L->getEntrySamples() != R->getEntrySamples()) 824 return L->getEntrySamples() > R->getEntrySamples(); 825 return FunctionSamples::getGUID(L->getName()) < 826 FunctionSamples::getGUID(R->getName()); 827 }); 828 } 829 return R; 830 } 831 832 /// Get the FunctionSamples for an instruction. 833 /// 834 /// The FunctionSamples of an instruction \p Inst is the inlined instance 835 /// in which that instruction is coming from. We traverse the inline stack 836 /// of that instruction, and match it with the tree nodes in the profile. 837 /// 838 /// \param Inst Instruction to query. 839 /// 840 /// \returns the FunctionSamples pointer to the inlined instance. 841 const FunctionSamples * 842 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { 843 const DILocation *DIL = Inst.getDebugLoc(); 844 if (!DIL) 845 return Samples; 846 847 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); 848 if (it.second) 849 it.first->second = Samples->findFunctionSamples(DIL); 850 return it.first->second; 851 } 852 853 bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { 854 assert(isa<CallInst>(I) || isa<InvokeInst>(I)); 855 CallSite CS(I); 856 Function *CalledFunction = CS.getCalledFunction(); 857 assert(CalledFunction); 858 DebugLoc DLoc = I->getDebugLoc(); 859 BasicBlock *BB = I->getParent(); 860 InlineParams Params = getInlineParams(); 861 Params.ComputeFullInlineCost = true; 862 // Checks if there is anything in the reachable portion of the callee at 863 // this callsite that makes this inlining potentially illegal. Need to 864 // set ComputeFullInlineCost, otherwise getInlineCost may return early 865 // when cost exceeds threshold without checking all IRs in the callee. 866 // The acutal cost does not matter because we only checks isNever() to 867 // see if it is legal to inline the callsite. 868 InlineCost Cost = 869 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC, 870 None, nullptr, nullptr); 871 if (Cost.isNever()) { 872 ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) 873 << "incompatible inlining"); 874 return false; 875 } 876 InlineFunctionInfo IFI(nullptr, &GetAC); 877 if (InlineFunction(CS, IFI)) { 878 // The call to InlineFunction erases I, so we can't pass it here. 879 ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) 880 << "inlined hot callee '" << ore::NV("Callee", CalledFunction) 881 << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); 882 return true; 883 } 884 return false; 885 } 886 887 /// Iteratively inline hot callsites of a function. 888 /// 889 /// Iteratively traverse all callsites of the function \p F, and find if 890 /// the corresponding inlined instance exists and is hot in profile. If 891 /// it is hot enough, inline the callsites and adds new callsites of the 892 /// callee into the caller. If the call is an indirect call, first promote 893 /// it to direct call. Each indirect call is limited with a single target. 894 /// 895 /// \param F function to perform iterative inlining. 896 /// \param InlinedGUIDs a set to be updated to include all GUIDs that are 897 /// inlined in the profiled binary. 898 /// 899 /// \returns True if there is any inline happened. 900 bool SampleProfileLoader::inlineHotFunctions( 901 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { 902 DenseSet<Instruction *> PromotedInsns; 903 904 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure 905 // Profile symbol list is ignored when profile-sample-accurate is on. 906 assert((!ProfAccForSymsInList || 907 (!ProfileSampleAccurate && 908 !F.hasFnAttribute("profile-sample-accurate"))) && 909 "ProfAccForSymsInList should be false when profile-sample-accurate " 910 "is enabled"); 911 912 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; 913 bool Changed = false; 914 while (true) { 915 bool LocalChanged = false; 916 SmallVector<Instruction *, 10> CIS; 917 for (auto &BB : F) { 918 bool Hot = false; 919 SmallVector<Instruction *, 10> Candidates; 920 for (auto &I : BB.getInstList()) { 921 const FunctionSamples *FS = nullptr; 922 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && 923 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { 924 Candidates.push_back(&I); 925 if (FS->getEntrySamples() > 0) 926 localNotInlinedCallSites.try_emplace(&I, FS); 927 if (callsiteIsHot(FS, PSI)) 928 Hot = true; 929 } 930 } 931 if (Hot) { 932 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); 933 } 934 } 935 for (auto I : CIS) { 936 Function *CalledFunction = CallSite(I).getCalledFunction(); 937 // Do not inline recursive calls. 938 if (CalledFunction == &F) 939 continue; 940 if (CallSite(I).isIndirectCall()) { 941 if (PromotedInsns.count(I)) 942 continue; 943 uint64_t Sum; 944 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { 945 if (IsThinLTOPreLink) { 946 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), 947 PSI->getOrCompHotCountThreshold()); 948 continue; 949 } 950 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); 951 // If it is a recursive call, we do not inline it as it could bloat 952 // the code exponentially. There is way to better handle this, e.g. 953 // clone the caller first, and inline the cloned caller if it is 954 // recursive. As llvm does not inline recursive calls, we will 955 // simply ignore it instead of handling it explicitly. 956 if (CalleeFunctionName == F.getName()) 957 continue; 958 959 if (!callsiteIsHot(FS, PSI)) 960 continue; 961 962 const char *Reason = "Callee function not available"; 963 auto R = SymbolMap.find(CalleeFunctionName); 964 if (R != SymbolMap.end() && R->getValue() && 965 !R->getValue()->isDeclaration() && 966 R->getValue()->getSubprogram() && 967 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { 968 uint64_t C = FS->getEntrySamples(); 969 Instruction *DI = 970 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); 971 Sum -= C; 972 PromotedInsns.insert(I); 973 // If profile mismatches, we should not attempt to inline DI. 974 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && 975 inlineCallInstruction(DI)) { 976 localNotInlinedCallSites.erase(I); 977 LocalChanged = true; 978 } 979 } else { 980 LLVM_DEBUG(dbgs() 981 << "\nFailed to promote indirect call to " 982 << CalleeFunctionName << " because " << Reason << "\n"); 983 } 984 } 985 } else if (CalledFunction && CalledFunction->getSubprogram() && 986 !CalledFunction->isDeclaration()) { 987 if (inlineCallInstruction(I)) { 988 localNotInlinedCallSites.erase(I); 989 LocalChanged = true; 990 } 991 } else if (IsThinLTOPreLink) { 992 findCalleeFunctionSamples(*I)->findInlinedFunctions( 993 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); 994 } 995 } 996 if (LocalChanged) { 997 Changed = true; 998 } else { 999 break; 1000 } 1001 } 1002 1003 // Accumulate not inlined callsite information into notInlinedSamples 1004 for (const auto &Pair : localNotInlinedCallSites) { 1005 Instruction *I = Pair.getFirst(); 1006 Function *Callee = CallSite(I).getCalledFunction(); 1007 if (!Callee || Callee->isDeclaration()) 1008 continue; 1009 const FunctionSamples *FS = Pair.getSecond(); 1010 auto pair = 1011 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); 1012 pair.first->second.entryCount += FS->getEntrySamples(); 1013 } 1014 return Changed; 1015 } 1016 1017 /// Find equivalence classes for the given block. 1018 /// 1019 /// This finds all the blocks that are guaranteed to execute the same 1020 /// number of times as \p BB1. To do this, it traverses all the 1021 /// descendants of \p BB1 in the dominator or post-dominator tree. 1022 /// 1023 /// A block BB2 will be in the same equivalence class as \p BB1 if 1024 /// the following holds: 1025 /// 1026 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 1027 /// is a descendant of \p BB1 in the dominator tree, then BB2 should 1028 /// dominate BB1 in the post-dominator tree. 1029 /// 1030 /// 2- Both BB2 and \p BB1 must be in the same loop. 1031 /// 1032 /// For every block BB2 that meets those two requirements, we set BB2's 1033 /// equivalence class to \p BB1. 1034 /// 1035 /// \param BB1 Block to check. 1036 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. 1037 /// \param DomTree Opposite dominator tree. If \p Descendants is filled 1038 /// with blocks from \p BB1's dominator tree, then 1039 /// this is the post-dominator tree, and vice versa. 1040 template <bool IsPostDom> 1041 void SampleProfileLoader::findEquivalencesFor( 1042 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, 1043 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { 1044 const BasicBlock *EC = EquivalenceClass[BB1]; 1045 uint64_t Weight = BlockWeights[EC]; 1046 for (const auto *BB2 : Descendants) { 1047 bool IsDomParent = DomTree->dominates(BB2, BB1); 1048 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); 1049 if (BB1 != BB2 && IsDomParent && IsInSameLoop) { 1050 EquivalenceClass[BB2] = EC; 1051 // If BB2 is visited, then the entire EC should be marked as visited. 1052 if (VisitedBlocks.count(BB2)) { 1053 VisitedBlocks.insert(EC); 1054 } 1055 1056 // If BB2 is heavier than BB1, make BB2 have the same weight 1057 // as BB1. 1058 // 1059 // Note that we don't worry about the opposite situation here 1060 // (when BB2 is lighter than BB1). We will deal with this 1061 // during the propagation phase. Right now, we just want to 1062 // make sure that BB1 has the largest weight of all the 1063 // members of its equivalence set. 1064 Weight = std::max(Weight, BlockWeights[BB2]); 1065 } 1066 } 1067 if (EC == &EC->getParent()->getEntryBlock()) { 1068 BlockWeights[EC] = Samples->getHeadSamples() + 1; 1069 } else { 1070 BlockWeights[EC] = Weight; 1071 } 1072 } 1073 1074 /// Find equivalence classes. 1075 /// 1076 /// Since samples may be missing from blocks, we can fill in the gaps by setting 1077 /// the weights of all the blocks in the same equivalence class to the same 1078 /// weight. To compute the concept of equivalence, we use dominance and loop 1079 /// information. Two blocks B1 and B2 are in the same equivalence class if B1 1080 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1081 /// 1082 /// \param F The function to query. 1083 void SampleProfileLoader::findEquivalenceClasses(Function &F) { 1084 SmallVector<BasicBlock *, 8> DominatedBBs; 1085 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); 1086 // Find equivalence sets based on dominance and post-dominance information. 1087 for (auto &BB : F) { 1088 BasicBlock *BB1 = &BB; 1089 1090 // Compute BB1's equivalence class once. 1091 if (EquivalenceClass.count(BB1)) { 1092 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1093 continue; 1094 } 1095 1096 // By default, blocks are in their own equivalence class. 1097 EquivalenceClass[BB1] = BB1; 1098 1099 // Traverse all the blocks dominated by BB1. We are looking for 1100 // every basic block BB2 such that: 1101 // 1102 // 1- BB1 dominates BB2. 1103 // 2- BB2 post-dominates BB1. 1104 // 3- BB1 and BB2 are in the same loop nest. 1105 // 1106 // If all those conditions hold, it means that BB2 is executed 1107 // as many times as BB1, so they are placed in the same equivalence 1108 // class by making BB2's equivalence class be BB1. 1109 DominatedBBs.clear(); 1110 DT->getDescendants(BB1, DominatedBBs); 1111 findEquivalencesFor(BB1, DominatedBBs, PDT.get()); 1112 1113 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); 1114 } 1115 1116 // Assign weights to equivalence classes. 1117 // 1118 // All the basic blocks in the same equivalence class will execute 1119 // the same number of times. Since we know that the head block in 1120 // each equivalence class has the largest weight, assign that weight 1121 // to all the blocks in that equivalence class. 1122 LLVM_DEBUG( 1123 dbgs() << "\nAssign the same weight to all blocks in the same class\n"); 1124 for (auto &BI : F) { 1125 const BasicBlock *BB = &BI; 1126 const BasicBlock *EquivBB = EquivalenceClass[BB]; 1127 if (BB != EquivBB) 1128 BlockWeights[BB] = BlockWeights[EquivBB]; 1129 LLVM_DEBUG(printBlockWeight(dbgs(), BB)); 1130 } 1131 } 1132 1133 /// Visit the given edge to decide if it has a valid weight. 1134 /// 1135 /// If \p E has not been visited before, we copy to \p UnknownEdge 1136 /// and increment the count of unknown edges. 1137 /// 1138 /// \param E Edge to visit. 1139 /// \param NumUnknownEdges Current number of unknown edges. 1140 /// \param UnknownEdge Set if E has not been visited before. 1141 /// 1142 /// \returns E's weight, if known. Otherwise, return 0. 1143 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, 1144 Edge *UnknownEdge) { 1145 if (!VisitedEdges.count(E)) { 1146 (*NumUnknownEdges)++; 1147 *UnknownEdge = E; 1148 return 0; 1149 } 1150 1151 return EdgeWeights[E]; 1152 } 1153 1154 /// Propagate weights through incoming/outgoing edges. 1155 /// 1156 /// If the weight of a basic block is known, and there is only one edge 1157 /// with an unknown weight, we can calculate the weight of that edge. 1158 /// 1159 /// Similarly, if all the edges have a known count, we can calculate the 1160 /// count of the basic block, if needed. 1161 /// 1162 /// \param F Function to process. 1163 /// \param UpdateBlockCount Whether we should update basic block counts that 1164 /// has already been annotated. 1165 /// 1166 /// \returns True if new weights were assigned to edges or blocks. 1167 bool SampleProfileLoader::propagateThroughEdges(Function &F, 1168 bool UpdateBlockCount) { 1169 bool Changed = false; 1170 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); 1171 for (const auto &BI : F) { 1172 const BasicBlock *BB = &BI; 1173 const BasicBlock *EC = EquivalenceClass[BB]; 1174 1175 // Visit all the predecessor and successor edges to determine 1176 // which ones have a weight assigned already. Note that it doesn't 1177 // matter that we only keep track of a single unknown edge. The 1178 // only case we are interested in handling is when only a single 1179 // edge is unknown (see setEdgeOrBlockWeight). 1180 for (unsigned i = 0; i < 2; i++) { 1181 uint64_t TotalWeight = 0; 1182 unsigned NumUnknownEdges = 0, NumTotalEdges = 0; 1183 Edge UnknownEdge, SelfReferentialEdge, SingleEdge; 1184 1185 if (i == 0) { 1186 // First, visit all predecessor edges. 1187 NumTotalEdges = Predecessors[BB].size(); 1188 for (auto *Pred : Predecessors[BB]) { 1189 Edge E = std::make_pair(Pred, BB); 1190 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1191 if (E.first == E.second) 1192 SelfReferentialEdge = E; 1193 } 1194 if (NumTotalEdges == 1) { 1195 SingleEdge = std::make_pair(Predecessors[BB][0], BB); 1196 } 1197 } else { 1198 // On the second round, visit all successor edges. 1199 NumTotalEdges = Successors[BB].size(); 1200 for (auto *Succ : Successors[BB]) { 1201 Edge E = std::make_pair(BB, Succ); 1202 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); 1203 } 1204 if (NumTotalEdges == 1) { 1205 SingleEdge = std::make_pair(BB, Successors[BB][0]); 1206 } 1207 } 1208 1209 // After visiting all the edges, there are three cases that we 1210 // can handle immediately: 1211 // 1212 // - All the edge weights are known (i.e., NumUnknownEdges == 0). 1213 // In this case, we simply check that the sum of all the edges 1214 // is the same as BB's weight. If not, we change BB's weight 1215 // to match. Additionally, if BB had not been visited before, 1216 // we mark it visited. 1217 // 1218 // - Only one edge is unknown and BB has already been visited. 1219 // In this case, we can compute the weight of the edge by 1220 // subtracting the total block weight from all the known 1221 // edge weights. If the edges weight more than BB, then the 1222 // edge of the last remaining edge is set to zero. 1223 // 1224 // - There exists a self-referential edge and the weight of BB is 1225 // known. In this case, this edge can be based on BB's weight. 1226 // We add up all the other known edges and set the weight on 1227 // the self-referential edge as we did in the previous case. 1228 // 1229 // In any other case, we must continue iterating. Eventually, 1230 // all edges will get a weight, or iteration will stop when 1231 // it reaches SampleProfileMaxPropagateIterations. 1232 if (NumUnknownEdges <= 1) { 1233 uint64_t &BBWeight = BlockWeights[EC]; 1234 if (NumUnknownEdges == 0) { 1235 if (!VisitedBlocks.count(EC)) { 1236 // If we already know the weight of all edges, the weight of the 1237 // basic block can be computed. It should be no larger than the sum 1238 // of all edge weights. 1239 if (TotalWeight > BBWeight) { 1240 BBWeight = TotalWeight; 1241 Changed = true; 1242 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() 1243 << " known. Set weight for block: "; 1244 printBlockWeight(dbgs(), BB);); 1245 } 1246 } else if (NumTotalEdges == 1 && 1247 EdgeWeights[SingleEdge] < BlockWeights[EC]) { 1248 // If there is only one edge for the visited basic block, use the 1249 // block weight to adjust edge weight if edge weight is smaller. 1250 EdgeWeights[SingleEdge] = BlockWeights[EC]; 1251 Changed = true; 1252 } 1253 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { 1254 // If there is a single unknown edge and the block has been 1255 // visited, then we can compute E's weight. 1256 if (BBWeight >= TotalWeight) 1257 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; 1258 else 1259 EdgeWeights[UnknownEdge] = 0; 1260 const BasicBlock *OtherEC; 1261 if (i == 0) 1262 OtherEC = EquivalenceClass[UnknownEdge.first]; 1263 else 1264 OtherEC = EquivalenceClass[UnknownEdge.second]; 1265 // Edge weights should never exceed the BB weights it connects. 1266 if (VisitedBlocks.count(OtherEC) && 1267 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) 1268 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; 1269 VisitedEdges.insert(UnknownEdge); 1270 Changed = true; 1271 LLVM_DEBUG(dbgs() << "Set weight for edge: "; 1272 printEdgeWeight(dbgs(), UnknownEdge)); 1273 } 1274 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { 1275 // If a block Weights 0, all its in/out edges should weight 0. 1276 if (i == 0) { 1277 for (auto *Pred : Predecessors[BB]) { 1278 Edge E = std::make_pair(Pred, BB); 1279 EdgeWeights[E] = 0; 1280 VisitedEdges.insert(E); 1281 } 1282 } else { 1283 for (auto *Succ : Successors[BB]) { 1284 Edge E = std::make_pair(BB, Succ); 1285 EdgeWeights[E] = 0; 1286 VisitedEdges.insert(E); 1287 } 1288 } 1289 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { 1290 uint64_t &BBWeight = BlockWeights[BB]; 1291 // We have a self-referential edge and the weight of BB is known. 1292 if (BBWeight >= TotalWeight) 1293 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; 1294 else 1295 EdgeWeights[SelfReferentialEdge] = 0; 1296 VisitedEdges.insert(SelfReferentialEdge); 1297 Changed = true; 1298 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; 1299 printEdgeWeight(dbgs(), SelfReferentialEdge)); 1300 } 1301 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { 1302 BlockWeights[EC] = TotalWeight; 1303 VisitedBlocks.insert(EC); 1304 Changed = true; 1305 } 1306 } 1307 } 1308 1309 return Changed; 1310 } 1311 1312 /// Build in/out edge lists for each basic block in the CFG. 1313 /// 1314 /// We are interested in unique edges. If a block B1 has multiple 1315 /// edges to another block B2, we only add a single B1->B2 edge. 1316 void SampleProfileLoader::buildEdges(Function &F) { 1317 for (auto &BI : F) { 1318 BasicBlock *B1 = &BI; 1319 1320 // Add predecessors for B1. 1321 SmallPtrSet<BasicBlock *, 16> Visited; 1322 if (!Predecessors[B1].empty()) 1323 llvm_unreachable("Found a stale predecessors list in a basic block."); 1324 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { 1325 BasicBlock *B2 = *PI; 1326 if (Visited.insert(B2).second) 1327 Predecessors[B1].push_back(B2); 1328 } 1329 1330 // Add successors for B1. 1331 Visited.clear(); 1332 if (!Successors[B1].empty()) 1333 llvm_unreachable("Found a stale successors list in a basic block."); 1334 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { 1335 BasicBlock *B2 = *SI; 1336 if (Visited.insert(B2).second) 1337 Successors[B1].push_back(B2); 1338 } 1339 } 1340 } 1341 1342 /// Returns the sorted CallTargetMap \p M by count in descending order. 1343 static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets( 1344 const SampleRecord::CallTargetMap & M) { 1345 SmallVector<InstrProfValueData, 2> R; 1346 for (const auto &I : SampleRecord::SortCallTargets(M)) { 1347 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second}); 1348 } 1349 return R; 1350 } 1351 1352 /// Propagate weights into edges 1353 /// 1354 /// The following rules are applied to every block BB in the CFG: 1355 /// 1356 /// - If BB has a single predecessor/successor, then the weight 1357 /// of that edge is the weight of the block. 1358 /// 1359 /// - If all incoming or outgoing edges are known except one, and the 1360 /// weight of the block is already known, the weight of the unknown 1361 /// edge will be the weight of the block minus the sum of all the known 1362 /// edges. If the sum of all the known edges is larger than BB's weight, 1363 /// we set the unknown edge weight to zero. 1364 /// 1365 /// - If there is a self-referential edge, and the weight of the block is 1366 /// known, the weight for that edge is set to the weight of the block 1367 /// minus the weight of the other incoming edges to that block (if 1368 /// known). 1369 void SampleProfileLoader::propagateWeights(Function &F) { 1370 bool Changed = true; 1371 unsigned I = 0; 1372 1373 // If BB weight is larger than its corresponding loop's header BB weight, 1374 // use the BB weight to replace the loop header BB weight. 1375 for (auto &BI : F) { 1376 BasicBlock *BB = &BI; 1377 Loop *L = LI->getLoopFor(BB); 1378 if (!L) { 1379 continue; 1380 } 1381 BasicBlock *Header = L->getHeader(); 1382 if (Header && BlockWeights[BB] > BlockWeights[Header]) { 1383 BlockWeights[Header] = BlockWeights[BB]; 1384 } 1385 } 1386 1387 // Before propagation starts, build, for each block, a list of 1388 // unique predecessors and successors. This is necessary to handle 1389 // identical edges in multiway branches. Since we visit all blocks and all 1390 // edges of the CFG, it is cleaner to build these lists once at the start 1391 // of the pass. 1392 buildEdges(F); 1393 1394 // Propagate until we converge or we go past the iteration limit. 1395 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1396 Changed = propagateThroughEdges(F, false); 1397 } 1398 1399 // The first propagation propagates BB counts from annotated BBs to unknown 1400 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights 1401 // to propagate edge weights. 1402 VisitedEdges.clear(); 1403 Changed = true; 1404 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1405 Changed = propagateThroughEdges(F, false); 1406 } 1407 1408 // The 3rd propagation pass allows adjust annotated BB weights that are 1409 // obviously wrong. 1410 Changed = true; 1411 while (Changed && I++ < SampleProfileMaxPropagateIterations) { 1412 Changed = propagateThroughEdges(F, true); 1413 } 1414 1415 // Generate MD_prof metadata for every branch instruction using the 1416 // edge weights computed during propagation. 1417 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); 1418 LLVMContext &Ctx = F.getContext(); 1419 MDBuilder MDB(Ctx); 1420 for (auto &BI : F) { 1421 BasicBlock *BB = &BI; 1422 1423 if (BlockWeights[BB]) { 1424 for (auto &I : BB->getInstList()) { 1425 if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) 1426 continue; 1427 CallSite CS(&I); 1428 if (!CS.getCalledFunction()) { 1429 const DebugLoc &DLoc = I.getDebugLoc(); 1430 if (!DLoc) 1431 continue; 1432 const DILocation *DIL = DLoc; 1433 uint32_t LineOffset = FunctionSamples::getOffset(DIL); 1434 uint32_t Discriminator = DIL->getBaseDiscriminator(); 1435 1436 const FunctionSamples *FS = findFunctionSamples(I); 1437 if (!FS) 1438 continue; 1439 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); 1440 if (!T || T.get().empty()) 1441 continue; 1442 SmallVector<InstrProfValueData, 2> SortedCallTargets = 1443 GetSortedValueDataFromCallTargets(T.get()); 1444 uint64_t Sum; 1445 findIndirectCallFunctionSamples(I, Sum); 1446 annotateValueSite(*I.getParent()->getParent()->getParent(), I, 1447 SortedCallTargets, Sum, IPVK_IndirectCallTarget, 1448 SortedCallTargets.size()); 1449 } else if (!isa<IntrinsicInst>(&I)) { 1450 I.setMetadata(LLVMContext::MD_prof, 1451 MDB.createBranchWeights( 1452 {static_cast<uint32_t>(BlockWeights[BB])})); 1453 } 1454 } 1455 } 1456 Instruction *TI = BB->getTerminator(); 1457 if (TI->getNumSuccessors() == 1) 1458 continue; 1459 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 1460 continue; 1461 1462 DebugLoc BranchLoc = TI->getDebugLoc(); 1463 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " 1464 << ((BranchLoc) ? Twine(BranchLoc.getLine()) 1465 : Twine("<UNKNOWN LOCATION>")) 1466 << ".\n"); 1467 SmallVector<uint32_t, 4> Weights; 1468 uint32_t MaxWeight = 0; 1469 Instruction *MaxDestInst; 1470 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { 1471 BasicBlock *Succ = TI->getSuccessor(I); 1472 Edge E = std::make_pair(BB, Succ); 1473 uint64_t Weight = EdgeWeights[E]; 1474 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); 1475 // Use uint32_t saturated arithmetic to adjust the incoming weights, 1476 // if needed. Sample counts in profiles are 64-bit unsigned values, 1477 // but internally branch weights are expressed as 32-bit values. 1478 if (Weight > std::numeric_limits<uint32_t>::max()) { 1479 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); 1480 Weight = std::numeric_limits<uint32_t>::max(); 1481 } 1482 // Weight is added by one to avoid propagation errors introduced by 1483 // 0 weights. 1484 Weights.push_back(static_cast<uint32_t>(Weight + 1)); 1485 if (Weight != 0) { 1486 if (Weight > MaxWeight) { 1487 MaxWeight = Weight; 1488 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); 1489 } 1490 } 1491 } 1492 1493 misexpect::verifyMisExpect(TI, Weights, TI->getContext()); 1494 1495 uint64_t TempWeight; 1496 // Only set weights if there is at least one non-zero weight. 1497 // In any other case, let the analyzer set weights. 1498 // Do not set weights if the weights are present. In ThinLTO, the profile 1499 // annotation is done twice. If the first annotation already set the 1500 // weights, the second pass does not need to set it. 1501 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { 1502 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); 1503 TI->setMetadata(LLVMContext::MD_prof, 1504 MDB.createBranchWeights(Weights)); 1505 ORE->emit([&]() { 1506 return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) 1507 << "most popular destination for conditional branches at " 1508 << ore::NV("CondBranchesLoc", BranchLoc); 1509 }); 1510 } else { 1511 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); 1512 } 1513 } 1514 } 1515 1516 /// Get the line number for the function header. 1517 /// 1518 /// This looks up function \p F in the current compilation unit and 1519 /// retrieves the line number where the function is defined. This is 1520 /// line 0 for all the samples read from the profile file. Every line 1521 /// number is relative to this line. 1522 /// 1523 /// \param F Function object to query. 1524 /// 1525 /// \returns the line number where \p F is defined. If it returns 0, 1526 /// it means that there is no debug information available for \p F. 1527 unsigned SampleProfileLoader::getFunctionLoc(Function &F) { 1528 if (DISubprogram *S = F.getSubprogram()) 1529 return S->getLine(); 1530 1531 if (NoWarnSampleUnused) 1532 return 0; 1533 1534 // If the start of \p F is missing, emit a diagnostic to inform the user 1535 // about the missed opportunity. 1536 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1537 "No debug information found in function " + F.getName() + 1538 ": Function profile not used", 1539 DS_Warning)); 1540 return 0; 1541 } 1542 1543 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { 1544 DT.reset(new DominatorTree); 1545 DT->recalculate(F); 1546 1547 PDT.reset(new PostDominatorTree(F)); 1548 1549 LI.reset(new LoopInfo); 1550 LI->analyze(*DT); 1551 } 1552 1553 /// Generate branch weight metadata for all branches in \p F. 1554 /// 1555 /// Branch weights are computed out of instruction samples using a 1556 /// propagation heuristic. Propagation proceeds in 3 phases: 1557 /// 1558 /// 1- Assignment of block weights. All the basic blocks in the function 1559 /// are initial assigned the same weight as their most frequently 1560 /// executed instruction. 1561 /// 1562 /// 2- Creation of equivalence classes. Since samples may be missing from 1563 /// blocks, we can fill in the gaps by setting the weights of all the 1564 /// blocks in the same equivalence class to the same weight. To compute 1565 /// the concept of equivalence, we use dominance and loop information. 1566 /// Two blocks B1 and B2 are in the same equivalence class if B1 1567 /// dominates B2, B2 post-dominates B1 and both are in the same loop. 1568 /// 1569 /// 3- Propagation of block weights into edges. This uses a simple 1570 /// propagation heuristic. The following rules are applied to every 1571 /// block BB in the CFG: 1572 /// 1573 /// - If BB has a single predecessor/successor, then the weight 1574 /// of that edge is the weight of the block. 1575 /// 1576 /// - If all the edges are known except one, and the weight of the 1577 /// block is already known, the weight of the unknown edge will 1578 /// be the weight of the block minus the sum of all the known 1579 /// edges. If the sum of all the known edges is larger than BB's weight, 1580 /// we set the unknown edge weight to zero. 1581 /// 1582 /// - If there is a self-referential edge, and the weight of the block is 1583 /// known, the weight for that edge is set to the weight of the block 1584 /// minus the weight of the other incoming edges to that block (if 1585 /// known). 1586 /// 1587 /// Since this propagation is not guaranteed to finalize for every CFG, we 1588 /// only allow it to proceed for a limited number of iterations (controlled 1589 /// by -sample-profile-max-propagate-iterations). 1590 /// 1591 /// FIXME: Try to replace this propagation heuristic with a scheme 1592 /// that is guaranteed to finalize. A work-list approach similar to 1593 /// the standard value propagation algorithm used by SSA-CCP might 1594 /// work here. 1595 /// 1596 /// Once all the branch weights are computed, we emit the MD_prof 1597 /// metadata on BB using the computed values for each of its branches. 1598 /// 1599 /// \param F The function to query. 1600 /// 1601 /// \returns true if \p F was modified. Returns false, otherwise. 1602 bool SampleProfileLoader::emitAnnotations(Function &F) { 1603 bool Changed = false; 1604 1605 if (getFunctionLoc(F) == 0) 1606 return false; 1607 1608 LLVM_DEBUG(dbgs() << "Line number for the first instruction in " 1609 << F.getName() << ": " << getFunctionLoc(F) << "\n"); 1610 1611 DenseSet<GlobalValue::GUID> InlinedGUIDs; 1612 Changed |= inlineHotFunctions(F, InlinedGUIDs); 1613 1614 // Compute basic block weights. 1615 Changed |= computeBlockWeights(F); 1616 1617 if (Changed) { 1618 // Add an entry count to the function using the samples gathered at the 1619 // function entry. 1620 // Sets the GUIDs that are inlined in the profiled binary. This is used 1621 // for ThinLink to make correct liveness analysis, and also make the IR 1622 // match the profiled binary before annotation. 1623 F.setEntryCount( 1624 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), 1625 &InlinedGUIDs); 1626 1627 // Compute dominance and loop info needed for propagation. 1628 computeDominanceAndLoopInfo(F); 1629 1630 // Find equivalence classes. 1631 findEquivalenceClasses(F); 1632 1633 // Propagate weights to all edges. 1634 propagateWeights(F); 1635 } 1636 1637 // If coverage checking was requested, compute it now. 1638 if (SampleProfileRecordCoverage) { 1639 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); 1640 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); 1641 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1642 if (Coverage < SampleProfileRecordCoverage) { 1643 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1644 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1645 Twine(Used) + " of " + Twine(Total) + " available profile records (" + 1646 Twine(Coverage) + "%) were applied", 1647 DS_Warning)); 1648 } 1649 } 1650 1651 if (SampleProfileSampleCoverage) { 1652 uint64_t Used = CoverageTracker.getTotalUsedSamples(); 1653 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); 1654 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); 1655 if (Coverage < SampleProfileSampleCoverage) { 1656 F.getContext().diagnose(DiagnosticInfoSampleProfile( 1657 F.getSubprogram()->getFilename(), getFunctionLoc(F), 1658 Twine(Used) + " of " + Twine(Total) + " available profile samples (" + 1659 Twine(Coverage) + "%) were applied", 1660 DS_Warning)); 1661 } 1662 } 1663 return Changed; 1664 } 1665 1666 char SampleProfileLoaderLegacyPass::ID = 0; 1667 1668 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", 1669 "Sample Profile loader", false, false) 1670 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 1671 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 1672 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1673 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", 1674 "Sample Profile loader", false, false) 1675 1676 bool SampleProfileLoader::doInitialization(Module &M) { 1677 auto &Ctx = M.getContext(); 1678 1679 std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader; 1680 auto ReaderOrErr = 1681 SampleProfileReader::create(Filename, Ctx, RemappingFilename); 1682 if (std::error_code EC = ReaderOrErr.getError()) { 1683 std::string Msg = "Could not open profile: " + EC.message(); 1684 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); 1685 return false; 1686 } 1687 Reader = std::move(ReaderOrErr.get()); 1688 Reader->collectFuncsFrom(M); 1689 ProfileIsValid = (Reader->read() == sampleprof_error::success); 1690 PSL = Reader->getProfileSymbolList(); 1691 1692 // While profile-sample-accurate is on, ignore symbol list. 1693 ProfAccForSymsInList = 1694 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate; 1695 if (ProfAccForSymsInList) { 1696 NamesInProfile.clear(); 1697 if (auto NameTable = Reader->getNameTable()) 1698 NamesInProfile.insert(NameTable->begin(), NameTable->end()); 1699 } 1700 1701 return true; 1702 } 1703 1704 ModulePass *llvm::createSampleProfileLoaderPass() { 1705 return new SampleProfileLoaderLegacyPass(); 1706 } 1707 1708 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { 1709 return new SampleProfileLoaderLegacyPass(Name); 1710 } 1711 1712 bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, 1713 ProfileSummaryInfo *_PSI) { 1714 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap); 1715 if (!ProfileIsValid) 1716 return false; 1717 1718 PSI = _PSI; 1719 if (M.getProfileSummary(/* IsCS */ false) == nullptr) 1720 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()), 1721 ProfileSummary::PSK_Sample); 1722 1723 // Compute the total number of samples collected in this profile. 1724 for (const auto &I : Reader->getProfiles()) 1725 TotalCollectedSamples += I.second.getTotalSamples(); 1726 1727 // Populate the symbol map. 1728 for (const auto &N_F : M.getValueSymbolTable()) { 1729 StringRef OrigName = N_F.getKey(); 1730 Function *F = dyn_cast<Function>(N_F.getValue()); 1731 if (F == nullptr) 1732 continue; 1733 SymbolMap[OrigName] = F; 1734 auto pos = OrigName.find('.'); 1735 if (pos != StringRef::npos) { 1736 StringRef NewName = OrigName.substr(0, pos); 1737 auto r = SymbolMap.insert(std::make_pair(NewName, F)); 1738 // Failiing to insert means there is already an entry in SymbolMap, 1739 // thus there are multiple functions that are mapped to the same 1740 // stripped name. In this case of name conflicting, set the value 1741 // to nullptr to avoid confusion. 1742 if (!r.second) 1743 r.first->second = nullptr; 1744 } 1745 } 1746 1747 bool retval = false; 1748 for (auto &F : M) 1749 if (!F.isDeclaration()) { 1750 clearFunctionData(); 1751 retval |= runOnFunction(F, AM); 1752 } 1753 1754 // Account for cold calls not inlined.... 1755 for (const std::pair<Function *, NotInlinedProfileInfo> &pair : 1756 notInlinedCallInfo) 1757 updateProfileCallee(pair.first, pair.second.entryCount); 1758 1759 return retval; 1760 } 1761 1762 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { 1763 ACT = &getAnalysis<AssumptionCacheTracker>(); 1764 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); 1765 ProfileSummaryInfo *PSI = 1766 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1767 return SampleLoader.runOnModule(M, nullptr, PSI); 1768 } 1769 1770 bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { 1771 1772 DILocation2SampleMap.clear(); 1773 // By default the entry count is initialized to -1, which will be treated 1774 // conservatively by getEntryCount as the same as unknown (None). This is 1775 // to avoid newly added code to be treated as cold. If we have samples 1776 // this will be overwritten in emitAnnotations. 1777 uint64_t initialEntryCount = -1; 1778 1779 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL; 1780 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) { 1781 // initialize all the function entry counts to 0. It means all the 1782 // functions without profile will be regarded as cold. 1783 initialEntryCount = 0; 1784 // profile-sample-accurate is a user assertion which has a higher precedence 1785 // than symbol list. When profile-sample-accurate is on, ignore symbol list. 1786 ProfAccForSymsInList = false; 1787 } 1788 1789 // PSL -- profile symbol list include all the symbols in sampled binary. 1790 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat 1791 // old functions without samples being cold, without having to worry 1792 // about new and hot functions being mistakenly treated as cold. 1793 if (ProfAccForSymsInList) { 1794 // Initialize the entry count to 0 for functions in the list. 1795 if (PSL->contains(F.getName())) 1796 initialEntryCount = 0; 1797 1798 // Function in the symbol list but without sample will be regarded as 1799 // cold. To minimize the potential negative performance impact it could 1800 // have, we want to be a little conservative here saying if a function 1801 // shows up in the profile, no matter as outline function, inline instance 1802 // or call targets, treat the function as not being cold. This will handle 1803 // the cases such as most callsites of a function are inlined in sampled 1804 // binary but not inlined in current build (because of source code drift, 1805 // imprecise debug information, or the callsites are all cold individually 1806 // but not cold accumulatively...), so the outline function showing up as 1807 // cold in sampled binary will actually not be cold after current build. 1808 StringRef CanonName = FunctionSamples::getCanonicalFnName(F); 1809 if (NamesInProfile.count(CanonName)) 1810 initialEntryCount = -1; 1811 } 1812 1813 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); 1814 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; 1815 if (AM) { 1816 auto &FAM = 1817 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) 1818 .getManager(); 1819 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); 1820 } else { 1821 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); 1822 ORE = OwnedORE.get(); 1823 } 1824 Samples = Reader->getSamplesFor(F); 1825 if (Samples && !Samples->empty()) 1826 return emitAnnotations(F); 1827 return false; 1828 } 1829 1830 PreservedAnalyses SampleProfileLoaderPass::run(Module &M, 1831 ModuleAnalysisManager &AM) { 1832 FunctionAnalysisManager &FAM = 1833 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1834 1835 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { 1836 return FAM.getResult<AssumptionAnalysis>(F); 1837 }; 1838 auto GetTTI = [&](Function &F) -> TargetTransformInfo & { 1839 return FAM.getResult<TargetIRAnalysis>(F); 1840 }; 1841 1842 SampleProfileLoader SampleLoader( 1843 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, 1844 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile 1845 : ProfileRemappingFileName, 1846 IsThinLTOPreLink, GetAssumptionCache, GetTTI); 1847 1848 SampleLoader.doInitialization(M); 1849 1850 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); 1851 if (!SampleLoader.runOnModule(M, &AM, PSI)) 1852 return PreservedAnalyses::all(); 1853 1854 return PreservedAnalyses::none(); 1855 } 1856