xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- FunctionSpecialization.cpp - Function Specialization ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This specialises functions with constant parameters (e.g. functions,
10 // globals). Constant parameters like function pointers and constant globals
11 // are propagated to the callee by specializing the function.
12 //
13 // Current limitations:
14 // - It does not yet handle integer ranges.
15 // - Only 1 argument per function is specialised,
16 // - The cost-model could be further looked into,
17 // - We are not yet caching analysis results.
18 //
19 // Ideas:
20 // - With a function specialization attribute for arguments, we could have
21 //   a direct way to steer function specialization, avoiding the cost-model,
22 //   and thus control compile-times / code-size.
23 //
24 // Todos:
25 // - Specializing recursive functions relies on running the transformation a
26 //   number of times, which is controlled by option
27 //   `func-specialization-max-iters`. Thus, increasing this value and the
28 //   number of iterations, will linearly increase the number of times recursive
29 //   functions get specialized, see also the discussion in
30 //   https://reviews.llvm.org/D106426 for details. Perhaps there is a
31 //   compile-time friendlier way to control/limit the number of specialisations
32 //   for recursive functions.
33 // - Don't transform the function if there is no function specialization
34 //   happens.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Analysis/AssumptionCache.h"
40 #include "llvm/Analysis/CodeMetrics.h"
41 #include "llvm/Analysis/DomTreeUpdater.h"
42 #include "llvm/Analysis/InlineCost.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Scalar/SCCP.h"
47 #include "llvm/Transforms/Utils/Cloning.h"
48 #include "llvm/Transforms/Utils/SizeOpts.h"
49 #include <cmath>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "function-specialization"
54 
55 STATISTIC(NumFuncSpecialized, "Number of functions specialized");
56 
57 static cl::opt<bool> ForceFunctionSpecialization(
58     "force-function-specialization", cl::init(false), cl::Hidden,
59     cl::desc("Force function specialization for every call site with a "
60              "constant argument"));
61 
62 static cl::opt<unsigned> FuncSpecializationMaxIters(
63     "func-specialization-max-iters", cl::Hidden,
64     cl::desc("The maximum number of iterations function specialization is run"),
65     cl::init(1));
66 
67 static cl::opt<unsigned> MaxConstantsThreshold(
68     "func-specialization-max-constants", cl::Hidden,
69     cl::desc("The maximum number of clones allowed for a single function "
70              "specialization"),
71     cl::init(3));
72 
73 static cl::opt<unsigned> SmallFunctionThreshold(
74     "func-specialization-size-threshold", cl::Hidden,
75     cl::desc("Don't specialize functions that have less than this theshold "
76              "number of instructions"),
77     cl::init(100));
78 
79 static cl::opt<unsigned>
80     AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
81                           cl::desc("Average loop iteration count cost"),
82                           cl::init(10));
83 
84 static cl::opt<bool> SpecializeOnAddresses(
85     "func-specialization-on-address", cl::init(false), cl::Hidden,
86     cl::desc("Enable function specialization on the address of global values"));
87 
88 // TODO: This needs checking to see the impact on compile-times, which is why
89 // this is off by default for now.
90 static cl::opt<bool> EnableSpecializationForLiteralConstant(
91     "function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
92     cl::desc("Enable specialization of functions that take a literal constant "
93              "as an argument."));
94 
95 // Helper to check if \p LV is either a constant or a constant
96 // range with a single element. This should cover exactly the same cases as the
97 // old ValueLatticeElement::isConstant() and is intended to be used in the
98 // transition to ValueLatticeElement.
99 static bool isConstant(const ValueLatticeElement &LV) {
100   return LV.isConstant() ||
101          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
102 }
103 
104 // Helper to check if \p LV is either overdefined or a constant int.
105 static bool isOverdefined(const ValueLatticeElement &LV) {
106   return !LV.isUnknownOrUndef() && !isConstant(LV);
107 }
108 
109 static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
110   Value *StoreValue = nullptr;
111   for (auto *User : Alloca->users()) {
112     // We can't use llvm::isAllocaPromotable() as that would fail because of
113     // the usage in the CallInst, which is what we check here.
114     if (User == Call)
115       continue;
116     if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
117       if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
118         return nullptr;
119       continue;
120     }
121 
122     if (auto *Store = dyn_cast<StoreInst>(User)) {
123       // This is a duplicate store, bail out.
124       if (StoreValue || Store->isVolatile())
125         return nullptr;
126       StoreValue = Store->getValueOperand();
127       continue;
128     }
129     // Bail if there is any other unknown usage.
130     return nullptr;
131   }
132   return dyn_cast_or_null<Constant>(StoreValue);
133 }
134 
135 // A constant stack value is an AllocaInst that has a single constant
136 // value stored to it. Return this constant if such an alloca stack value
137 // is a function argument.
138 static Constant *getConstantStackValue(CallInst *Call, Value *Val,
139                                        SCCPSolver &Solver) {
140   if (!Val)
141     return nullptr;
142   Val = Val->stripPointerCasts();
143   if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
144     return ConstVal;
145   auto *Alloca = dyn_cast<AllocaInst>(Val);
146   if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
147     return nullptr;
148   return getPromotableAlloca(Alloca, Call);
149 }
150 
151 // To support specializing recursive functions, it is important to propagate
152 // constant arguments because after a first iteration of specialisation, a
153 // reduced example may look like this:
154 //
155 //     define internal void @RecursiveFn(i32* arg1) {
156 //       %temp = alloca i32, align 4
157 //       store i32 2 i32* %temp, align 4
158 //       call void @RecursiveFn.1(i32* nonnull %temp)
159 //       ret void
160 //     }
161 //
162 // Before a next iteration, we need to propagate the constant like so
163 // which allows further specialization in next iterations.
164 //
165 //     @funcspec.arg = internal constant i32 2
166 //
167 //     define internal void @someFunc(i32* arg1) {
168 //       call void @otherFunc(i32* nonnull @funcspec.arg)
169 //       ret void
170 //     }
171 //
172 static void constantArgPropagation(SmallVectorImpl<Function *> &WorkList,
173                                    Module &M, SCCPSolver &Solver) {
174   // Iterate over the argument tracked functions see if there
175   // are any new constant values for the call instruction via
176   // stack variables.
177   for (auto *F : WorkList) {
178     // TODO: Generalize for any read only arguments.
179     if (F->arg_size() != 1)
180       continue;
181 
182     auto &Arg = *F->arg_begin();
183     if (!Arg.onlyReadsMemory() || !Arg.getType()->isPointerTy())
184       continue;
185 
186     for (auto *User : F->users()) {
187       auto *Call = dyn_cast<CallInst>(User);
188       if (!Call)
189         break;
190       auto *ArgOp = Call->getArgOperand(0);
191       auto *ArgOpType = ArgOp->getType();
192       auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
193       if (!ConstVal)
194         break;
195 
196       Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
197                                      GlobalValue::InternalLinkage, ConstVal,
198                                      "funcspec.arg");
199 
200       if (ArgOpType != ConstVal->getType())
201         GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOp->getType());
202 
203       Call->setArgOperand(0, GV);
204 
205       // Add the changed CallInst to Solver Worklist
206       Solver.visitCall(*Call);
207     }
208   }
209 }
210 
211 // ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
212 // interfere with the constantArgPropagation optimization.
213 static void removeSSACopy(Function &F) {
214   for (BasicBlock &BB : F) {
215     for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
216       auto *II = dyn_cast<IntrinsicInst>(&Inst);
217       if (!II)
218         continue;
219       if (II->getIntrinsicID() != Intrinsic::ssa_copy)
220         continue;
221       Inst.replaceAllUsesWith(II->getOperand(0));
222       Inst.eraseFromParent();
223     }
224   }
225 }
226 
227 static void removeSSACopy(Module &M) {
228   for (Function &F : M)
229     removeSSACopy(F);
230 }
231 
232 namespace {
233 class FunctionSpecializer {
234 
235   /// The IPSCCP Solver.
236   SCCPSolver &Solver;
237 
238   /// Analyses used to help determine if a function should be specialized.
239   std::function<AssumptionCache &(Function &)> GetAC;
240   std::function<TargetTransformInfo &(Function &)> GetTTI;
241   std::function<TargetLibraryInfo &(Function &)> GetTLI;
242 
243   SmallPtrSet<Function *, 2> SpecializedFuncs;
244 
245 public:
246   FunctionSpecializer(SCCPSolver &Solver,
247                       std::function<AssumptionCache &(Function &)> GetAC,
248                       std::function<TargetTransformInfo &(Function &)> GetTTI,
249                       std::function<TargetLibraryInfo &(Function &)> GetTLI)
250       : Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
251 
252   /// Attempt to specialize functions in the module to enable constant
253   /// propagation across function boundaries.
254   ///
255   /// \returns true if at least one function is specialized.
256   bool
257   specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
258                       SmallVectorImpl<Function *> &CurrentSpecializations) {
259 
260     // Attempt to specialize the argument-tracked functions.
261     bool Changed = false;
262     for (auto *F : FuncDecls) {
263       if (specializeFunction(F, CurrentSpecializations)) {
264         Changed = true;
265         LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
266       } else {
267         LLVM_DEBUG(
268             dbgs() << "FnSpecialization: Cannot specialize this func.\n");
269       }
270     }
271 
272     for (auto *SpecializedFunc : CurrentSpecializations) {
273       SpecializedFuncs.insert(SpecializedFunc);
274 
275       // Initialize the state of the newly created functions, marking them
276       // argument-tracked and executable.
277       if (SpecializedFunc->hasExactDefinition() &&
278           !SpecializedFunc->hasFnAttribute(Attribute::Naked))
279         Solver.addTrackedFunction(SpecializedFunc);
280       Solver.addArgumentTrackedFunction(SpecializedFunc);
281       FuncDecls.push_back(SpecializedFunc);
282       Solver.markBlockExecutable(&SpecializedFunc->front());
283 
284       // Replace the function arguments for the specialized functions.
285       for (Argument &Arg : SpecializedFunc->args())
286         if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
287           LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
288                             << Arg.getName() << "\n");
289     }
290 
291     NumFuncSpecialized += NbFunctionsSpecialized;
292     return Changed;
293   }
294 
295   bool tryToReplaceWithConstant(Value *V) {
296     if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
297         V->user_empty())
298       return false;
299 
300     const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
301     if (isOverdefined(IV))
302       return false;
303     auto *Const =
304         isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
305     V->replaceAllUsesWith(Const);
306 
307     for (auto *U : Const->users())
308       if (auto *I = dyn_cast<Instruction>(U))
309         if (Solver.isBlockExecutable(I->getParent()))
310           Solver.visit(I);
311 
312     // Remove the instruction from Block and Solver.
313     if (auto *I = dyn_cast<Instruction>(V)) {
314       if (I->isSafeToRemove()) {
315         I->eraseFromParent();
316         Solver.removeLatticeValueFor(I);
317       }
318     }
319     return true;
320   }
321 
322 private:
323   // The number of functions specialised, used for collecting statistics and
324   // also in the cost model.
325   unsigned NbFunctionsSpecialized = 0;
326 
327   /// Clone the function \p F and remove the ssa_copy intrinsics added by
328   /// the SCCPSolver in the cloned version.
329   Function *cloneCandidateFunction(Function *F) {
330     ValueToValueMapTy EmptyMap;
331     Function *Clone = CloneFunction(F, EmptyMap);
332     removeSSACopy(*Clone);
333     return Clone;
334   }
335 
336   /// This function decides whether to specialize function \p F based on the
337   /// known constant values its arguments can take on. Specialization is
338   /// performed on the first interesting argument. Specializations based on
339   /// additional arguments will be evaluated on following iterations of the
340   /// main IPSCCP solve loop. \returns true if the function is specialized and
341   /// false otherwise.
342   bool specializeFunction(Function *F,
343                           SmallVectorImpl<Function *> &Specializations) {
344 
345     // Do not specialize the cloned function again.
346     if (SpecializedFuncs.contains(F))
347       return false;
348 
349     // If we're optimizing the function for size, we shouldn't specialize it.
350     if (F->hasOptSize() ||
351         shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
352       return false;
353 
354     // Exit if the function is not executable. There's no point in specializing
355     // a dead function.
356     if (!Solver.isBlockExecutable(&F->getEntryBlock()))
357       return false;
358 
359     // It wastes time to specialize a function which would get inlined finally.
360     if (F->hasFnAttribute(Attribute::AlwaysInline))
361       return false;
362 
363     LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
364                       << "\n");
365 
366     // Determine if it would be profitable to create a specialization of the
367     // function where the argument takes on the given constant value. If so,
368     // add the constant to Constants.
369     auto FnSpecCost = getSpecializationCost(F);
370     if (!FnSpecCost.isValid()) {
371       LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
372       return false;
373     }
374 
375     LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
376                FnSpecCost.print(dbgs()); dbgs() << "\n");
377 
378     // Determine if we should specialize the function based on the values the
379     // argument can take on. If specialization is not profitable, we continue
380     // on to the next argument.
381     for (Argument &A : F->args()) {
382       LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
383                         << "\n");
384       // True if this will be a partial specialization. We will need to keep
385       // the original function around in addition to the added specializations.
386       bool IsPartial = true;
387 
388       // Determine if this argument is interesting. If we know the argument can
389       // take on any constant values, they are collected in Constants. If the
390       // argument can only ever equal a constant value in Constants, the
391       // function will be completely specialized, and the IsPartial flag will
392       // be set to false by isArgumentInteresting (that function only adds
393       // values to the Constants list that are deemed profitable).
394       SmallVector<Constant *, 4> Constants;
395       if (!isArgumentInteresting(&A, Constants, FnSpecCost, IsPartial)) {
396         LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
397         continue;
398       }
399 
400       assert(!Constants.empty() && "No constants on which to specialize");
401       LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
402                         << "FnSpecialization: Specializing '" << F->getName()
403                         << "' on argument: " << A << "\n"
404                         << "FnSpecialization: Constants are:\n\n";
405                  for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
406                  << *Constants[I] << "\n";
407                  dbgs() << "FnSpecialization: End of constants\n\n");
408 
409       // Create a version of the function in which the argument is marked
410       // constant with the given value.
411       for (auto *C : Constants) {
412         // Clone the function. We leave the ValueToValueMap empty to allow
413         // IPSCCP to propagate the constant arguments.
414         Function *Clone = cloneCandidateFunction(F);
415         Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
416 
417         // Rewrite calls to the function so that they call the clone instead.
418         rewriteCallSites(F, Clone, *ClonedArg, C);
419 
420         // Initialize the lattice state of the arguments of the function clone,
421         // marking the argument on which we specialized the function constant
422         // with the given value.
423         Solver.markArgInFuncSpecialization(F, ClonedArg, C);
424 
425         // Mark all the specialized functions
426         Specializations.push_back(Clone);
427         NbFunctionsSpecialized++;
428       }
429 
430       // If the function has been completely specialized, the original function
431       // is no longer needed. Mark it unreachable.
432       if (!IsPartial)
433         Solver.markFunctionUnreachable(F);
434 
435       // FIXME: Only one argument per function.
436       return true;
437     }
438 
439     return false;
440   }
441 
442   /// Compute the cost of specializing function \p F.
443   InstructionCost getSpecializationCost(Function *F) {
444     // Compute the code metrics for the function.
445     SmallPtrSet<const Value *, 32> EphValues;
446     CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
447     CodeMetrics Metrics;
448     for (BasicBlock &BB : *F)
449       Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
450 
451     // If the code metrics reveal that we shouldn't duplicate the function, we
452     // shouldn't specialize it. Set the specialization cost to Invalid.
453     // Or if the lines of codes implies that this function is easy to get
454     // inlined so that we shouldn't specialize it.
455     if (Metrics.notDuplicatable ||
456         (!ForceFunctionSpecialization &&
457          Metrics.NumInsts < SmallFunctionThreshold)) {
458       InstructionCost C{};
459       C.setInvalid();
460       return C;
461     }
462 
463     // Otherwise, set the specialization cost to be the cost of all the
464     // instructions in the function and penalty for specializing more functions.
465     unsigned Penalty = NbFunctionsSpecialized + 1;
466     return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
467   }
468 
469   InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
470                                LoopInfo &LI) {
471     auto *I = dyn_cast_or_null<Instruction>(U);
472     // If not an instruction we do not know how to evaluate.
473     // Keep minimum possible cost for now so that it doesnt affect
474     // specialization.
475     if (!I)
476       return std::numeric_limits<unsigned>::min();
477 
478     auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
479 
480     // Traverse recursively if there are more uses.
481     // TODO: Any other instructions to be added here?
482     if (I->mayReadFromMemory() || I->isCast())
483       for (auto *User : I->users())
484         Cost += getUserBonus(User, TTI, LI);
485 
486     // Increase the cost if it is inside the loop.
487     auto LoopDepth = LI.getLoopDepth(I->getParent());
488     Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
489     return Cost;
490   }
491 
492   /// Compute a bonus for replacing argument \p A with constant \p C.
493   InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
494     Function *F = A->getParent();
495     DominatorTree DT(*F);
496     LoopInfo LI(DT);
497     auto &TTI = (GetTTI)(*F);
498     LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
499                       << "\n");
500 
501     InstructionCost TotalCost = 0;
502     for (auto *U : A->users()) {
503       TotalCost += getUserBonus(U, TTI, LI);
504       LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
505                  TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
506     }
507 
508     // The below heuristic is only concerned with exposing inlining
509     // opportunities via indirect call promotion. If the argument is not a
510     // function pointer, give up.
511     if (!isa<PointerType>(A->getType()) ||
512         !isa<FunctionType>(A->getType()->getPointerElementType()))
513       return TotalCost;
514 
515     // Since the argument is a function pointer, its incoming constant values
516     // should be functions or constant expressions. The code below attempts to
517     // look through cast expressions to find the function that will be called.
518     Value *CalledValue = C;
519     while (isa<ConstantExpr>(CalledValue) &&
520            cast<ConstantExpr>(CalledValue)->isCast())
521       CalledValue = cast<User>(CalledValue)->getOperand(0);
522     Function *CalledFunction = dyn_cast<Function>(CalledValue);
523     if (!CalledFunction)
524       return TotalCost;
525 
526     // Get TTI for the called function (used for the inline cost).
527     auto &CalleeTTI = (GetTTI)(*CalledFunction);
528 
529     // Look at all the call sites whose called value is the argument.
530     // Specializing the function on the argument would allow these indirect
531     // calls to be promoted to direct calls. If the indirect call promotion
532     // would likely enable the called function to be inlined, specializing is a
533     // good idea.
534     int Bonus = 0;
535     for (User *U : A->users()) {
536       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
537         continue;
538       auto *CS = cast<CallBase>(U);
539       if (CS->getCalledOperand() != A)
540         continue;
541 
542       // Get the cost of inlining the called function at this call site. Note
543       // that this is only an estimate. The called function may eventually
544       // change in a way that leads to it not being inlined here, even though
545       // inlining looks profitable now. For example, one of its called
546       // functions may be inlined into it, making the called function too large
547       // to be inlined into this call site.
548       //
549       // We apply a boost for performing indirect call promotion by increasing
550       // the default threshold by the threshold for indirect calls.
551       auto Params = getInlineParams();
552       Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
553       InlineCost IC =
554           getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
555 
556       // We clamp the bonus for this call to be between zero and the default
557       // threshold.
558       if (IC.isAlways())
559         Bonus += Params.DefaultThreshold;
560       else if (IC.isVariable() && IC.getCostDelta() > 0)
561         Bonus += IC.getCostDelta();
562     }
563 
564     return TotalCost + Bonus;
565   }
566 
567   /// Determine if we should specialize a function based on the incoming values
568   /// of the given argument.
569   ///
570   /// This function implements the goal-directed heuristic. It determines if
571   /// specializing the function based on the incoming values of argument \p A
572   /// would result in any significant optimization opportunities. If
573   /// optimization opportunities exist, the constant values of \p A on which to
574   /// specialize the function are collected in \p Constants. If the values in
575   /// \p Constants represent the complete set of values that \p A can take on,
576   /// the function will be completely specialized, and the \p IsPartial flag is
577   /// set to false.
578   ///
579   /// \returns true if the function should be specialized on the given
580   /// argument.
581   bool isArgumentInteresting(Argument *A,
582                              SmallVectorImpl<Constant *> &Constants,
583                              const InstructionCost &FnSpecCost,
584                              bool &IsPartial) {
585     // For now, don't attempt to specialize functions based on the values of
586     // composite types.
587     if (!A->getType()->isSingleValueType() || A->user_empty())
588       return false;
589 
590     // If the argument isn't overdefined, there's nothing to do. It should
591     // already be constant.
592     if (!Solver.getLatticeValueFor(A).isOverdefined()) {
593       LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
594                         << "constant?\n");
595       return false;
596     }
597 
598     // Collect the constant values that the argument can take on. If the
599     // argument can't take on any constant values, we aren't going to
600     // specialize the function. While it's possible to specialize the function
601     // based on non-constant arguments, there's likely not much benefit to
602     // constant propagation in doing so.
603     //
604     // TODO 1: currently it won't specialize if there are over the threshold of
605     // calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
606     // might be beneficial to take the occurrences into account in the cost
607     // model, so we would need to find the unique constants.
608     //
609     // TODO 2: this currently does not support constants, i.e. integer ranges.
610     //
611     SmallVector<Constant *, 4> PossibleConstants;
612     bool AllConstant = getPossibleConstants(A, PossibleConstants);
613     if (PossibleConstants.empty()) {
614       LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
615       return false;
616     }
617     if (PossibleConstants.size() > MaxConstantsThreshold) {
618       LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
619                         << "the maximum number of constants threshold.\n");
620       return false;
621     }
622 
623     for (auto *C : PossibleConstants) {
624       LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
625       if (ForceFunctionSpecialization) {
626         LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
627         Constants.push_back(C);
628         continue;
629       }
630       if (getSpecializationBonus(A, C) > FnSpecCost) {
631         LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
632         Constants.push_back(C);
633       } else {
634         LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
635       }
636     }
637 
638     // None of the constant values the argument can take on were deemed good
639     // candidates on which to specialize the function.
640     if (Constants.empty())
641       return false;
642 
643     // This will be a partial specialization if some of the constants were
644     // rejected due to their profitability.
645     IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
646 
647     return true;
648   }
649 
650   /// Collect in \p Constants all the constant values that argument \p A can
651   /// take on.
652   ///
653   /// \returns true if all of the values the argument can take on are constant
654   /// (e.g., the argument's parent function cannot be called with an
655   /// overdefined value).
656   bool getPossibleConstants(Argument *A,
657                             SmallVectorImpl<Constant *> &Constants) {
658     Function *F = A->getParent();
659     bool AllConstant = true;
660 
661     // Iterate over all the call sites of the argument's parent function.
662     for (User *U : F->users()) {
663       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
664         continue;
665       auto &CS = *cast<CallBase>(U);
666       // If the call site has attribute minsize set, that callsite won't be
667       // specialized.
668       if (CS.hasFnAttr(Attribute::MinSize)) {
669         AllConstant = false;
670         continue;
671       }
672 
673       // If the parent of the call site will never be executed, we don't need
674       // to worry about the passed value.
675       if (!Solver.isBlockExecutable(CS.getParent()))
676         continue;
677 
678       auto *V = CS.getArgOperand(A->getArgNo());
679       if (isa<PoisonValue>(V))
680         return false;
681 
682       // For now, constant expressions are fine but only if they are function
683       // calls.
684       if (auto *CE =  dyn_cast<ConstantExpr>(V))
685         if (!isa<Function>(CE->getOperand(0)))
686           return false;
687 
688       // TrackValueOfGlobalVariable only tracks scalar global variables.
689       if (auto *GV = dyn_cast<GlobalVariable>(V)) {
690         // Check if we want to specialize on the address of non-constant
691         // global values.
692         if (!GV->isConstant())
693           if (!SpecializeOnAddresses)
694             return false;
695 
696         if (!GV->getValueType()->isSingleValueType())
697           return false;
698       }
699 
700       if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
701                                EnableSpecializationForLiteralConstant))
702         Constants.push_back(cast<Constant>(V));
703       else
704         AllConstant = false;
705     }
706 
707     // If the argument can only take on constant values, AllConstant will be
708     // true.
709     return AllConstant;
710   }
711 
712   /// Rewrite calls to function \p F to call function \p Clone instead.
713   ///
714   /// This function modifies calls to function \p F whose argument at index \p
715   /// ArgNo is equal to constant \p C. The calls are rewritten to call function
716   /// \p Clone instead.
717   ///
718   /// Callsites that have been marked with the MinSize function attribute won't
719   /// be specialized and rewritten.
720   void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
721                         Constant *C) {
722     unsigned ArgNo = Arg.getArgNo();
723     SmallVector<CallBase *, 4> CallSitesToRewrite;
724     for (auto *U : F->users()) {
725       if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
726         continue;
727       auto &CS = *cast<CallBase>(U);
728       if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
729         continue;
730       CallSitesToRewrite.push_back(&CS);
731     }
732     for (auto *CS : CallSitesToRewrite) {
733       if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
734           CS->getArgOperand(ArgNo) == C) {
735         CS->setCalledFunction(Clone);
736         Solver.markOverdefined(CS);
737       }
738     }
739   }
740 };
741 } // namespace
742 
743 bool llvm::runFunctionSpecialization(
744     Module &M, const DataLayout &DL,
745     std::function<TargetLibraryInfo &(Function &)> GetTLI,
746     std::function<TargetTransformInfo &(Function &)> GetTTI,
747     std::function<AssumptionCache &(Function &)> GetAC,
748     function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
749   SCCPSolver Solver(DL, GetTLI, M.getContext());
750   FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
751   bool Changed = false;
752 
753   // Loop over all functions, marking arguments to those with their addresses
754   // taken or that are external as overdefined.
755   for (Function &F : M) {
756     if (F.isDeclaration())
757       continue;
758     if (F.hasFnAttribute(Attribute::NoDuplicate))
759       continue;
760 
761     LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
762                       << "\n");
763     Solver.addAnalysis(F, GetAnalysis(F));
764 
765     // Determine if we can track the function's arguments. If so, add the
766     // function to the solver's set of argument-tracked functions.
767     if (canTrackArgumentsInterprocedurally(&F)) {
768       LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
769       Solver.addArgumentTrackedFunction(&F);
770       continue;
771     } else {
772       LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
773                         << "FnSpecialization: Doesn't have local linkage, or "
774                         << "has its address taken\n");
775     }
776 
777     // Assume the function is called.
778     Solver.markBlockExecutable(&F.front());
779 
780     // Assume nothing about the incoming arguments.
781     for (Argument &AI : F.args())
782       Solver.markOverdefined(&AI);
783   }
784 
785   // Determine if we can track any of the module's global variables. If so, add
786   // the global variables we can track to the solver's set of tracked global
787   // variables.
788   for (GlobalVariable &G : M.globals()) {
789     G.removeDeadConstantUsers();
790     if (canTrackGlobalVariableInterprocedurally(&G))
791       Solver.trackValueOfGlobalVariable(&G);
792   }
793 
794   auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
795   SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
796                                         TrackedFuncs.end());
797 
798   // No tracked functions, so nothing to do: don't run the solver and remove
799   // the ssa_copy intrinsics that may have been introduced.
800   if (TrackedFuncs.empty()) {
801     removeSSACopy(M);
802     return false;
803   }
804 
805   // Solve for constants.
806   auto RunSCCPSolver = [&](auto &WorkList) {
807     bool ResolvedUndefs = true;
808 
809     while (ResolvedUndefs) {
810       // Not running the solver unnecessary is checked in regression test
811       // nothing-to-do.ll, so if this debug message is changed, this regression
812       // test needs updating too.
813       LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
814 
815       Solver.solve();
816       LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
817       ResolvedUndefs = false;
818       for (Function *F : WorkList)
819         if (Solver.resolvedUndefsIn(*F))
820           ResolvedUndefs = true;
821     }
822 
823     for (auto *F : WorkList) {
824       for (BasicBlock &BB : *F) {
825         if (!Solver.isBlockExecutable(&BB))
826           continue;
827         // FIXME: The solver may make changes to the function here, so set
828         // Changed, even if later function specialization does not trigger.
829         for (auto &I : make_early_inc_range(BB))
830           Changed |= FS.tryToReplaceWithConstant(&I);
831       }
832     }
833   };
834 
835 #ifndef NDEBUG
836   LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
837   for (auto *F : FuncDecls)
838     LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
839 #endif
840 
841   // Initially resolve the constants in all the argument tracked functions.
842   RunSCCPSolver(FuncDecls);
843 
844   SmallVector<Function *, 2> CurrentSpecializations;
845   unsigned I = 0;
846   while (FuncSpecializationMaxIters != I++ &&
847          FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
848 
849     // Run the solver for the specialized functions.
850     RunSCCPSolver(CurrentSpecializations);
851 
852     // Replace some unresolved constant arguments.
853     constantArgPropagation(FuncDecls, M, Solver);
854 
855     CurrentSpecializations.clear();
856     Changed = true;
857   }
858 
859   // Clean up the IR by removing ssa_copy intrinsics.
860   removeSSACopy(M);
861   return Changed;
862 }
863