xref: /freebsd-src/contrib/llvm-project/llvm/lib/Transforms/IPO/CalledValuePropagation.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements a transformation that attaches !callees metadata to
100b57cec5SDimitry Andric // indirect call sites. For a given call site, the metadata, if present,
110b57cec5SDimitry Andric // indicates the set of functions the call site could possibly target at
120b57cec5SDimitry Andric // run-time. This metadata is added to indirect call sites when the set of
130b57cec5SDimitry Andric // possible targets can be determined by analysis and is known to be small. The
140b57cec5SDimitry Andric // analysis driving the transformation is similar to constant propagation and
150b57cec5SDimitry Andric // makes uses of the generic sparse propagation solver.
160b57cec5SDimitry Andric //
170b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
180b57cec5SDimitry Andric 
190b57cec5SDimitry Andric #include "llvm/Transforms/IPO/CalledValuePropagation.h"
200b57cec5SDimitry Andric #include "llvm/Analysis/SparsePropagation.h"
210b57cec5SDimitry Andric #include "llvm/Analysis/ValueLatticeUtils.h"
2281ad6265SDimitry Andric #include "llvm/IR/Constants.h"
230b57cec5SDimitry Andric #include "llvm/IR/MDBuilder.h"
24*0fca6ea1SDimitry Andric #include "llvm/IR/Module.h"
25480093f4SDimitry Andric #include "llvm/Support/CommandLine.h"
260b57cec5SDimitry Andric #include "llvm/Transforms/IPO.h"
2781ad6265SDimitry Andric 
280b57cec5SDimitry Andric using namespace llvm;
290b57cec5SDimitry Andric 
300b57cec5SDimitry Andric #define DEBUG_TYPE "called-value-propagation"
310b57cec5SDimitry Andric 
320b57cec5SDimitry Andric /// The maximum number of functions to track per lattice value. Once the number
330b57cec5SDimitry Andric /// of functions a call site can possibly target exceeds this threshold, it's
340b57cec5SDimitry Andric /// lattice value becomes overdefined. The number of possible lattice values is
350b57cec5SDimitry Andric /// bounded by Ch(F, M), where F is the number of functions in the module and M
360b57cec5SDimitry Andric /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
370b57cec5SDimitry Andric /// likely can't do anything useful for call sites with a large number of
380b57cec5SDimitry Andric /// possible targets, anyway.
390b57cec5SDimitry Andric static cl::opt<unsigned> MaxFunctionsPerValue(
400b57cec5SDimitry Andric     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
410b57cec5SDimitry Andric     cl::desc("The maximum number of functions to track per lattice value"));
420b57cec5SDimitry Andric 
430b57cec5SDimitry Andric namespace {
440b57cec5SDimitry Andric /// To enable interprocedural analysis, we assign LLVM values to the following
450b57cec5SDimitry Andric /// groups. The register group represents SSA registers, the return group
460b57cec5SDimitry Andric /// represents the return values of functions, and the memory group represents
470b57cec5SDimitry Andric /// in-memory values. An LLVM Value can technically be in more than one group.
480b57cec5SDimitry Andric /// It's necessary to distinguish these groups so we can, for example, track a
490b57cec5SDimitry Andric /// global variable separately from the value stored at its location.
500b57cec5SDimitry Andric enum class IPOGrouping { Register, Return, Memory };
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
530b57cec5SDimitry Andric using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
540b57cec5SDimitry Andric 
550b57cec5SDimitry Andric /// The lattice value type used by our custom lattice function. It holds the
560b57cec5SDimitry Andric /// lattice state, and a set of functions.
570b57cec5SDimitry Andric class CVPLatticeVal {
580b57cec5SDimitry Andric public:
590b57cec5SDimitry Andric   /// The states of the lattice values. Only the FunctionSet state is
600b57cec5SDimitry Andric   /// interesting. It indicates the set of functions to which an LLVM value may
610b57cec5SDimitry Andric   /// refer.
620b57cec5SDimitry Andric   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
630b57cec5SDimitry Andric 
640b57cec5SDimitry Andric   /// Comparator for sorting the functions set. We want to keep the order
650b57cec5SDimitry Andric   /// deterministic for testing, etc.
660b57cec5SDimitry Andric   struct Compare {
670b57cec5SDimitry Andric     bool operator()(const Function *LHS, const Function *RHS) const {
680b57cec5SDimitry Andric       return LHS->getName() < RHS->getName();
690b57cec5SDimitry Andric     }
700b57cec5SDimitry Andric   };
710b57cec5SDimitry Andric 
7281ad6265SDimitry Andric   CVPLatticeVal() = default;
730b57cec5SDimitry Andric   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
740b57cec5SDimitry Andric   CVPLatticeVal(std::vector<Function *> &&Functions)
750b57cec5SDimitry Andric       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
765ffd83dbSDimitry Andric     assert(llvm::is_sorted(this->Functions, Compare()));
770b57cec5SDimitry Andric   }
780b57cec5SDimitry Andric 
790b57cec5SDimitry Andric   /// Get a reference to the functions held by this lattice value. The number
800b57cec5SDimitry Andric   /// of functions will be zero for states other than FunctionSet.
810b57cec5SDimitry Andric   const std::vector<Function *> &getFunctions() const {
820b57cec5SDimitry Andric     return Functions;
830b57cec5SDimitry Andric   }
840b57cec5SDimitry Andric 
850b57cec5SDimitry Andric   /// Returns true if the lattice value is in the FunctionSet state.
860b57cec5SDimitry Andric   bool isFunctionSet() const { return LatticeState == FunctionSet; }
870b57cec5SDimitry Andric 
880b57cec5SDimitry Andric   bool operator==(const CVPLatticeVal &RHS) const {
890b57cec5SDimitry Andric     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
900b57cec5SDimitry Andric   }
910b57cec5SDimitry Andric 
920b57cec5SDimitry Andric   bool operator!=(const CVPLatticeVal &RHS) const {
930b57cec5SDimitry Andric     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
940b57cec5SDimitry Andric   }
950b57cec5SDimitry Andric 
960b57cec5SDimitry Andric private:
970b57cec5SDimitry Andric   /// Holds the state this lattice value is in.
9881ad6265SDimitry Andric   CVPLatticeStateTy LatticeState = Undefined;
990b57cec5SDimitry Andric 
1000b57cec5SDimitry Andric   /// Holds functions indicating the possible targets of call sites. This set
1010b57cec5SDimitry Andric   /// is empty for lattice values in the undefined, overdefined, and untracked
1020b57cec5SDimitry Andric   /// states. The maximum size of the set is controlled by
1030b57cec5SDimitry Andric   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
1040b57cec5SDimitry Andric   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
1050b57cec5SDimitry Andric   /// small and efficiently copyable.
1060b57cec5SDimitry Andric   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
1070b57cec5SDimitry Andric   std::vector<Function *> Functions;
1080b57cec5SDimitry Andric };
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric /// The custom lattice function used by the generic sparse propagation solver.
1110b57cec5SDimitry Andric /// It handles merging lattice values and computing new lattice values for
1120b57cec5SDimitry Andric /// constants, arguments, values returned from trackable functions, and values
1130b57cec5SDimitry Andric /// located in trackable global variables. It also computes the lattice values
1140b57cec5SDimitry Andric /// that change as a result of executing instructions.
1150b57cec5SDimitry Andric class CVPLatticeFunc
1160b57cec5SDimitry Andric     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
1170b57cec5SDimitry Andric public:
1180b57cec5SDimitry Andric   CVPLatticeFunc()
1190b57cec5SDimitry Andric       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
1200b57cec5SDimitry Andric                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
1210b57cec5SDimitry Andric                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
1220b57cec5SDimitry Andric 
1230b57cec5SDimitry Andric   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
1240b57cec5SDimitry Andric   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
1250b57cec5SDimitry Andric     switch (Key.getInt()) {
1260b57cec5SDimitry Andric     case IPOGrouping::Register:
1270b57cec5SDimitry Andric       if (isa<Instruction>(Key.getPointer())) {
1280b57cec5SDimitry Andric         return getUndefVal();
1290b57cec5SDimitry Andric       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
1300b57cec5SDimitry Andric         if (canTrackArgumentsInterprocedurally(A->getParent()))
1310b57cec5SDimitry Andric           return getUndefVal();
1320b57cec5SDimitry Andric       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
1330b57cec5SDimitry Andric         return computeConstant(C);
1340b57cec5SDimitry Andric       }
1350b57cec5SDimitry Andric       return getOverdefinedVal();
1360b57cec5SDimitry Andric     case IPOGrouping::Memory:
1370b57cec5SDimitry Andric     case IPOGrouping::Return:
1380b57cec5SDimitry Andric       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
1390b57cec5SDimitry Andric         if (canTrackGlobalVariableInterprocedurally(GV))
1400b57cec5SDimitry Andric           return computeConstant(GV->getInitializer());
1410b57cec5SDimitry Andric       } else if (auto *F = cast<Function>(Key.getPointer()))
1420b57cec5SDimitry Andric         if (canTrackReturnsInterprocedurally(F))
1430b57cec5SDimitry Andric           return getUndefVal();
1440b57cec5SDimitry Andric     }
1450b57cec5SDimitry Andric     return getOverdefinedVal();
1460b57cec5SDimitry Andric   }
1470b57cec5SDimitry Andric 
1480b57cec5SDimitry Andric   /// Merge the two given lattice values. The interesting cases are merging two
1490b57cec5SDimitry Andric   /// FunctionSet values and a FunctionSet value with an Undefined value. For
1500b57cec5SDimitry Andric   /// these cases, we simply union the function sets. If the size of the union
1510b57cec5SDimitry Andric   /// is greater than the maximum functions we track, the merged value is
1520b57cec5SDimitry Andric   /// overdefined.
1530b57cec5SDimitry Andric   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
1540b57cec5SDimitry Andric     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
1550b57cec5SDimitry Andric       return getOverdefinedVal();
1560b57cec5SDimitry Andric     if (X == getUndefVal() && Y == getUndefVal())
1570b57cec5SDimitry Andric       return getUndefVal();
1580b57cec5SDimitry Andric     std::vector<Function *> Union;
1590b57cec5SDimitry Andric     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
1600b57cec5SDimitry Andric                    Y.getFunctions().begin(), Y.getFunctions().end(),
1610b57cec5SDimitry Andric                    std::back_inserter(Union), CVPLatticeVal::Compare{});
1620b57cec5SDimitry Andric     if (Union.size() > MaxFunctionsPerValue)
1630b57cec5SDimitry Andric       return getOverdefinedVal();
1640b57cec5SDimitry Andric     return CVPLatticeVal(std::move(Union));
1650b57cec5SDimitry Andric   }
1660b57cec5SDimitry Andric 
1670b57cec5SDimitry Andric   /// Compute the lattice values that change as a result of executing the given
1680b57cec5SDimitry Andric   /// instruction. The changed values are stored in \p ChangedValues. We handle
1690b57cec5SDimitry Andric   /// just a few kinds of instructions since we're only propagating values that
1700b57cec5SDimitry Andric   /// can be called.
1710b57cec5SDimitry Andric   void ComputeInstructionState(
1720b57cec5SDimitry Andric       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
1730b57cec5SDimitry Andric       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
1740b57cec5SDimitry Andric     switch (I.getOpcode()) {
1750b57cec5SDimitry Andric     case Instruction::Call:
1760b57cec5SDimitry Andric     case Instruction::Invoke:
1775ffd83dbSDimitry Andric       return visitCallBase(cast<CallBase>(I), ChangedValues, SS);
1780b57cec5SDimitry Andric     case Instruction::Load:
1790b57cec5SDimitry Andric       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
1800b57cec5SDimitry Andric     case Instruction::Ret:
1810b57cec5SDimitry Andric       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
1820b57cec5SDimitry Andric     case Instruction::Select:
1830b57cec5SDimitry Andric       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
1840b57cec5SDimitry Andric     case Instruction::Store:
1850b57cec5SDimitry Andric       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
1860b57cec5SDimitry Andric     default:
1870b57cec5SDimitry Andric       return visitInst(I, ChangedValues, SS);
1880b57cec5SDimitry Andric     }
1890b57cec5SDimitry Andric   }
1900b57cec5SDimitry Andric 
1910b57cec5SDimitry Andric   /// Print the given CVPLatticeVal to the specified stream.
1920b57cec5SDimitry Andric   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
1930b57cec5SDimitry Andric     if (LV == getUndefVal())
1940b57cec5SDimitry Andric       OS << "Undefined  ";
1950b57cec5SDimitry Andric     else if (LV == getOverdefinedVal())
1960b57cec5SDimitry Andric       OS << "Overdefined";
1970b57cec5SDimitry Andric     else if (LV == getUntrackedVal())
1980b57cec5SDimitry Andric       OS << "Untracked  ";
1990b57cec5SDimitry Andric     else
2000b57cec5SDimitry Andric       OS << "FunctionSet";
2010b57cec5SDimitry Andric   }
2020b57cec5SDimitry Andric 
2030b57cec5SDimitry Andric   /// Print the given CVPLatticeKey to the specified stream.
2040b57cec5SDimitry Andric   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
2050b57cec5SDimitry Andric     if (Key.getInt() == IPOGrouping::Register)
2060b57cec5SDimitry Andric       OS << "<reg> ";
2070b57cec5SDimitry Andric     else if (Key.getInt() == IPOGrouping::Memory)
2080b57cec5SDimitry Andric       OS << "<mem> ";
2090b57cec5SDimitry Andric     else if (Key.getInt() == IPOGrouping::Return)
2100b57cec5SDimitry Andric       OS << "<ret> ";
2110b57cec5SDimitry Andric     if (isa<Function>(Key.getPointer()))
2120b57cec5SDimitry Andric       OS << Key.getPointer()->getName();
2130b57cec5SDimitry Andric     else
2140b57cec5SDimitry Andric       OS << *Key.getPointer();
2150b57cec5SDimitry Andric   }
2160b57cec5SDimitry Andric 
2170b57cec5SDimitry Andric   /// We collect a set of indirect calls when visiting call sites. This method
2180b57cec5SDimitry Andric   /// returns a reference to that set.
2195ffd83dbSDimitry Andric   SmallPtrSetImpl<CallBase *> &getIndirectCalls() { return IndirectCalls; }
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric private:
2220b57cec5SDimitry Andric   /// Holds the indirect calls we encounter during the analysis. We will attach
2230b57cec5SDimitry Andric   /// metadata to these calls after the analysis indicating the functions the
2240b57cec5SDimitry Andric   /// calls can possibly target.
2255ffd83dbSDimitry Andric   SmallPtrSet<CallBase *, 32> IndirectCalls;
2260b57cec5SDimitry Andric 
2270b57cec5SDimitry Andric   /// Compute a new lattice value for the given constant. The constant, after
2280b57cec5SDimitry Andric   /// stripping any pointer casts, should be a Function. We ignore null
2290b57cec5SDimitry Andric   /// pointers as an optimization, since calling these values is undefined
2300b57cec5SDimitry Andric   /// behavior.
2310b57cec5SDimitry Andric   CVPLatticeVal computeConstant(Constant *C) {
2320b57cec5SDimitry Andric     if (isa<ConstantPointerNull>(C))
2330b57cec5SDimitry Andric       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
2340b57cec5SDimitry Andric     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
2350b57cec5SDimitry Andric       return CVPLatticeVal({F});
2360b57cec5SDimitry Andric     return getOverdefinedVal();
2370b57cec5SDimitry Andric   }
2380b57cec5SDimitry Andric 
2390b57cec5SDimitry Andric   /// Handle return instructions. The function's return state is the merge of
2400b57cec5SDimitry Andric   /// the returned value state and the function's return state.
2410b57cec5SDimitry Andric   void visitReturn(ReturnInst &I,
2420b57cec5SDimitry Andric                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
2430b57cec5SDimitry Andric                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
2440b57cec5SDimitry Andric     Function *F = I.getParent()->getParent();
2450b57cec5SDimitry Andric     if (F->getReturnType()->isVoidTy())
2460b57cec5SDimitry Andric       return;
2470b57cec5SDimitry Andric     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
2480b57cec5SDimitry Andric     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
2490b57cec5SDimitry Andric     ChangedValues[RetF] =
2500b57cec5SDimitry Andric         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
2510b57cec5SDimitry Andric   }
2520b57cec5SDimitry Andric 
2530b57cec5SDimitry Andric   /// Handle call sites. The state of a called function's formal arguments is
2540b57cec5SDimitry Andric   /// the merge of the argument state with the call sites corresponding actual
2550b57cec5SDimitry Andric   /// argument state. The call site state is the merge of the call site state
2560b57cec5SDimitry Andric   /// with the returned value state of the called function.
2575ffd83dbSDimitry Andric   void visitCallBase(CallBase &CB,
2580b57cec5SDimitry Andric                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
2590b57cec5SDimitry Andric                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
2605ffd83dbSDimitry Andric     Function *F = CB.getCalledFunction();
2615ffd83dbSDimitry Andric     auto RegI = CVPLatticeKey(&CB, IPOGrouping::Register);
2620b57cec5SDimitry Andric 
2630b57cec5SDimitry Andric     // If this is an indirect call, save it so we can quickly revisit it when
2640b57cec5SDimitry Andric     // attaching metadata.
2650b57cec5SDimitry Andric     if (!F)
2665ffd83dbSDimitry Andric       IndirectCalls.insert(&CB);
2670b57cec5SDimitry Andric 
2680b57cec5SDimitry Andric     // If we can't track the function's return values, there's nothing to do.
2690b57cec5SDimitry Andric     if (!F || !canTrackReturnsInterprocedurally(F)) {
2700b57cec5SDimitry Andric       // Void return, No need to create and update CVPLattice state as no one
2710b57cec5SDimitry Andric       // can use it.
2725ffd83dbSDimitry Andric       if (CB.getType()->isVoidTy())
2730b57cec5SDimitry Andric         return;
2740b57cec5SDimitry Andric       ChangedValues[RegI] = getOverdefinedVal();
2750b57cec5SDimitry Andric       return;
2760b57cec5SDimitry Andric     }
2770b57cec5SDimitry Andric 
2780b57cec5SDimitry Andric     // Inform the solver that the called function is executable, and perform
2790b57cec5SDimitry Andric     // the merges for the arguments and return value.
2800b57cec5SDimitry Andric     SS.MarkBlockExecutable(&F->front());
2810b57cec5SDimitry Andric     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
2820b57cec5SDimitry Andric     for (Argument &A : F->args()) {
2830b57cec5SDimitry Andric       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
2840b57cec5SDimitry Andric       auto RegActual =
2855ffd83dbSDimitry Andric           CVPLatticeKey(CB.getArgOperand(A.getArgNo()), IPOGrouping::Register);
2860b57cec5SDimitry Andric       ChangedValues[RegFormal] =
2870b57cec5SDimitry Andric           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
2880b57cec5SDimitry Andric     }
2890b57cec5SDimitry Andric 
2900b57cec5SDimitry Andric     // Void return, No need to create and update CVPLattice state as no one can
2910b57cec5SDimitry Andric     // use it.
2925ffd83dbSDimitry Andric     if (CB.getType()->isVoidTy())
2930b57cec5SDimitry Andric       return;
2940b57cec5SDimitry Andric 
2950b57cec5SDimitry Andric     ChangedValues[RegI] =
2960b57cec5SDimitry Andric         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
2970b57cec5SDimitry Andric   }
2980b57cec5SDimitry Andric 
2990b57cec5SDimitry Andric   /// Handle select instructions. The select instruction state is the merge the
3000b57cec5SDimitry Andric   /// true and false value states.
3010b57cec5SDimitry Andric   void visitSelect(SelectInst &I,
3020b57cec5SDimitry Andric                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3030b57cec5SDimitry Andric                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3040b57cec5SDimitry Andric     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3050b57cec5SDimitry Andric     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
3060b57cec5SDimitry Andric     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
3070b57cec5SDimitry Andric     ChangedValues[RegI] =
3080b57cec5SDimitry Andric         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
3090b57cec5SDimitry Andric   }
3100b57cec5SDimitry Andric 
3110b57cec5SDimitry Andric   /// Handle load instructions. If the pointer operand of the load is a global
3120b57cec5SDimitry Andric   /// variable, we attempt to track the value. The loaded value state is the
3130b57cec5SDimitry Andric   /// merge of the loaded value state with the global variable state.
3140b57cec5SDimitry Andric   void visitLoad(LoadInst &I,
3150b57cec5SDimitry Andric                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3160b57cec5SDimitry Andric                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3170b57cec5SDimitry Andric     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3180b57cec5SDimitry Andric     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
3190b57cec5SDimitry Andric       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
3200b57cec5SDimitry Andric       ChangedValues[RegI] =
3210b57cec5SDimitry Andric           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
3220b57cec5SDimitry Andric     } else {
3230b57cec5SDimitry Andric       ChangedValues[RegI] = getOverdefinedVal();
3240b57cec5SDimitry Andric     }
3250b57cec5SDimitry Andric   }
3260b57cec5SDimitry Andric 
3270b57cec5SDimitry Andric   /// Handle store instructions. If the pointer operand of the store is a
3280b57cec5SDimitry Andric   /// global variable, we attempt to track the value. The global variable state
3290b57cec5SDimitry Andric   /// is the merge of the stored value state with the global variable state.
3300b57cec5SDimitry Andric   void visitStore(StoreInst &I,
3310b57cec5SDimitry Andric                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3320b57cec5SDimitry Andric                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3330b57cec5SDimitry Andric     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
3340b57cec5SDimitry Andric     if (!GV)
3350b57cec5SDimitry Andric       return;
3360b57cec5SDimitry Andric     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
3370b57cec5SDimitry Andric     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
3380b57cec5SDimitry Andric     ChangedValues[MemGV] =
3390b57cec5SDimitry Andric         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
3400b57cec5SDimitry Andric   }
3410b57cec5SDimitry Andric 
3420b57cec5SDimitry Andric   /// Handle all other instructions. All other instructions are marked
3430b57cec5SDimitry Andric   /// overdefined.
3440b57cec5SDimitry Andric   void visitInst(Instruction &I,
3450b57cec5SDimitry Andric                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
3460b57cec5SDimitry Andric                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
3470b57cec5SDimitry Andric     // Simply bail if this instruction has no user.
3480b57cec5SDimitry Andric     if (I.use_empty())
3490b57cec5SDimitry Andric       return;
3500b57cec5SDimitry Andric     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
3510b57cec5SDimitry Andric     ChangedValues[RegI] = getOverdefinedVal();
3520b57cec5SDimitry Andric   }
3530b57cec5SDimitry Andric };
3540b57cec5SDimitry Andric } // namespace
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric namespace llvm {
3570b57cec5SDimitry Andric /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
3580b57cec5SDimitry Andric /// must translate between LatticeKeys and LLVM Values when adding Values to
3590b57cec5SDimitry Andric /// its work list and inspecting the state of control-flow related values.
3600b57cec5SDimitry Andric template <> struct LatticeKeyInfo<CVPLatticeKey> {
3610b57cec5SDimitry Andric   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
3620b57cec5SDimitry Andric     return Key.getPointer();
3630b57cec5SDimitry Andric   }
3640b57cec5SDimitry Andric   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
3650b57cec5SDimitry Andric     return CVPLatticeKey(V, IPOGrouping::Register);
3660b57cec5SDimitry Andric   }
3670b57cec5SDimitry Andric };
3680b57cec5SDimitry Andric } // namespace llvm
3690b57cec5SDimitry Andric 
3700b57cec5SDimitry Andric static bool runCVP(Module &M) {
3710b57cec5SDimitry Andric   // Our custom lattice function and generic sparse propagation solver.
3720b57cec5SDimitry Andric   CVPLatticeFunc Lattice;
3730b57cec5SDimitry Andric   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
3740b57cec5SDimitry Andric 
3750b57cec5SDimitry Andric   // For each function in the module, if we can't track its arguments, let the
3760b57cec5SDimitry Andric   // generic solver assume it is executable.
3770b57cec5SDimitry Andric   for (Function &F : M)
3780b57cec5SDimitry Andric     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
3790b57cec5SDimitry Andric       Solver.MarkBlockExecutable(&F.front());
3800b57cec5SDimitry Andric 
3810b57cec5SDimitry Andric   // Solver our custom lattice. In doing so, we will also build a set of
3820b57cec5SDimitry Andric   // indirect call sites.
3830b57cec5SDimitry Andric   Solver.Solve();
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric   // Attach metadata to the indirect call sites that were collected indicating
3860b57cec5SDimitry Andric   // the set of functions they can possibly target.
3870b57cec5SDimitry Andric   bool Changed = false;
3880b57cec5SDimitry Andric   MDBuilder MDB(M.getContext());
3895ffd83dbSDimitry Andric   for (CallBase *C : Lattice.getIndirectCalls()) {
3905ffd83dbSDimitry Andric     auto RegI = CVPLatticeKey(C->getCalledOperand(), IPOGrouping::Register);
3910b57cec5SDimitry Andric     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
3920b57cec5SDimitry Andric     if (!LV.isFunctionSet() || LV.getFunctions().empty())
3930b57cec5SDimitry Andric       continue;
3940b57cec5SDimitry Andric     MDNode *Callees = MDB.createCallees(LV.getFunctions());
3950b57cec5SDimitry Andric     C->setMetadata(LLVMContext::MD_callees, Callees);
3960b57cec5SDimitry Andric     Changed = true;
3970b57cec5SDimitry Andric   }
3980b57cec5SDimitry Andric 
3990b57cec5SDimitry Andric   return Changed;
4000b57cec5SDimitry Andric }
4010b57cec5SDimitry Andric 
4020b57cec5SDimitry Andric PreservedAnalyses CalledValuePropagationPass::run(Module &M,
4030b57cec5SDimitry Andric                                                   ModuleAnalysisManager &) {
4040b57cec5SDimitry Andric   runCVP(M);
4050b57cec5SDimitry Andric   return PreservedAnalyses::all();
4060b57cec5SDimitry Andric }
407