1 //===- AggressiveInstCombine.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the aggressive expression pattern combiner classes.
10 // Currently, it handles expression patterns for:
11 //  * Truncate instruction
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
16 #include "AggressiveInstCombineInternal.h"
17 #include "llvm-c/Initialization.h"
18 #include "llvm-c/Transforms/AggressiveInstCombine.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BasicAliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/LegacyPassManager.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define DEBUG_TYPE "aggressive-instcombine"
34 
35 namespace {
36 /// Contains expression pattern combiner logic.
37 /// This class provides both the logic to combine expression patterns and
38 /// combine them. It differs from InstCombiner class in that each pattern
39 /// combiner runs only once as opposed to InstCombine's multi-iteration,
40 /// which allows pattern combiner to have higher complexity than the O(1)
41 /// required by the instruction combiner.
42 class AggressiveInstCombinerLegacyPass : public FunctionPass {
43 public:
44   static char ID; // Pass identification, replacement for typeid
45 
46   AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
47     initializeAggressiveInstCombinerLegacyPassPass(
48         *PassRegistry::getPassRegistry());
49   }
50 
51   void getAnalysisUsage(AnalysisUsage &AU) const override;
52 
53   /// Run all expression pattern optimizations on the given /p F function.
54   ///
55   /// \param F function to optimize.
56   /// \returns true if the IR is changed.
57   bool runOnFunction(Function &F) override;
58 };
59 } // namespace
60 
61 /// Match a pattern for a bitwise rotate operation that partially guards
62 /// against undefined behavior by branching around the rotation when the shift
63 /// amount is 0.
64 static bool foldGuardedRotateToFunnelShift(Instruction &I) {
65   if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
66     return false;
67 
68   // As with the one-use checks below, this is not strictly necessary, but we
69   // are being cautious to avoid potential perf regressions on targets that
70   // do not actually have a rotate instruction (where the funnel shift would be
71   // expanded back into math/shift/logic ops).
72   if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
73     return false;
74 
75   // Match V to funnel shift left/right and capture the source operand and
76   // shift amount in X and Y.
77   auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
78     Value *L0, *L1, *R0, *R1;
79     unsigned Width = V->getType()->getScalarSizeInBits();
80     auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));
81 
82     // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
83     auto RotL = m_OneUse(
84         m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
85     if (RotL.match(V) && L0 == R0 && L1 == R1) {
86       X = L0;
87       Y = L1;
88       return Intrinsic::fshl;
89     }
90 
91     // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
92     auto RotR = m_OneUse(
93         m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
94     if (RotR.match(V) && L0 == R0 && L1 == R1) {
95       X = L0;
96       Y = L1;
97       return Intrinsic::fshr;
98     }
99 
100     return Intrinsic::not_intrinsic;
101   };
102 
103   // One phi operand must be a rotate operation, and the other phi operand must
104   // be the source value of that rotate operation:
105   // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
106   PHINode &Phi = cast<PHINode>(I);
107   Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
108   Value *RotSrc, *RotAmt;
109   Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
110   if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
111     IID = matchRotate(P1, RotSrc, RotAmt);
112     if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
113       return false;
114     assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
115            "Pattern must match funnel shift left or right");
116   }
117 
118   // The incoming block with our source operand must be the "guard" block.
119   // That must contain a cmp+branch to avoid the rotate when the shift amount
120   // is equal to 0. The other incoming block is the block with the rotate.
121   BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
122   BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
123   Instruction *TermI = GuardBB->getTerminator();
124   ICmpInst::Predicate Pred;
125   BasicBlock *PhiBB = Phi.getParent();
126   if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
127                          m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
128     return false;
129 
130   if (Pred != CmpInst::ICMP_EQ)
131     return false;
132 
133   // We matched a variation of this IR pattern:
134   // GuardBB:
135   //   %cmp = icmp eq i32 %RotAmt, 0
136   //   br i1 %cmp, label %PhiBB, label %RotBB
137   // RotBB:
138   //   %sub = sub i32 32, %RotAmt
139   //   %shr = lshr i32 %X, %sub
140   //   %shl = shl i32 %X, %RotAmt
141   //   %rot = or i32 %shr, %shl
142   //   br label %PhiBB
143   // PhiBB:
144   //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
145   // -->
146   // llvm.fshl.i32(i32 %X, i32 %RotAmt)
147   IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
148   Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
149   Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
150   return true;
151 }
152 
153 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
154 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
155 /// of 'and' ops, then we also need to capture the fact that we saw an
156 /// "and X, 1", so that's an extra return value for that case.
157 struct MaskOps {
158   Value *Root;
159   APInt Mask;
160   bool MatchAndChain;
161   bool FoundAnd1;
162 
163   MaskOps(unsigned BitWidth, bool MatchAnds)
164       : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
165         MatchAndChain(MatchAnds), FoundAnd1(false) {}
166 };
167 
168 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
169 /// chain of 'and' or 'or' instructions looking for shift ops of a common source
170 /// value. Examples:
171 ///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
172 /// returns { X, 0x129 }
173 ///   and (and (X >> 1), 1), (X >> 4)
174 /// returns { X, 0x12 }
175 static bool matchAndOrChain(Value *V, MaskOps &MOps) {
176   Value *Op0, *Op1;
177   if (MOps.MatchAndChain) {
178     // Recurse through a chain of 'and' operands. This requires an extra check
179     // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
180     // in the chain to know that all of the high bits are cleared.
181     if (match(V, m_And(m_Value(Op0), m_One()))) {
182       MOps.FoundAnd1 = true;
183       return matchAndOrChain(Op0, MOps);
184     }
185     if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
186       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
187   } else {
188     // Recurse through a chain of 'or' operands.
189     if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
190       return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
191   }
192 
193   // We need a shift-right or a bare value representing a compare of bit 0 of
194   // the original source operand.
195   Value *Candidate;
196   uint64_t BitIndex = 0;
197   if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
198     Candidate = V;
199 
200   // Initialize result source operand.
201   if (!MOps.Root)
202     MOps.Root = Candidate;
203 
204   // The shift constant is out-of-range? This code hasn't been simplified.
205   if (BitIndex >= MOps.Mask.getBitWidth())
206     return false;
207 
208   // Fill in the mask bit derived from the shift constant.
209   MOps.Mask.setBit(BitIndex);
210   return MOps.Root == Candidate;
211 }
212 
213 /// Match patterns that correspond to "any-bits-set" and "all-bits-set".
214 /// These will include a chain of 'or' or 'and'-shifted bits from a
215 /// common source value:
216 /// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
217 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
218 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
219 /// that differ only with a final 'not' of the result. We expect that final
220 /// 'not' to be folded with the compare that we create here (invert predicate).
221 static bool foldAnyOrAllBitsSet(Instruction &I) {
222   // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
223   // final "and X, 1" instruction must be the final op in the sequence.
224   bool MatchAllBitsSet;
225   if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
226     MatchAllBitsSet = true;
227   else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
228     MatchAllBitsSet = false;
229   else
230     return false;
231 
232   MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
233   if (MatchAllBitsSet) {
234     if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
235       return false;
236   } else {
237     if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
238       return false;
239   }
240 
241   // The pattern was found. Create a masked compare that replaces all of the
242   // shift and logic ops.
243   IRBuilder<> Builder(&I);
244   Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
245   Value *And = Builder.CreateAnd(MOps.Root, Mask);
246   Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
247                                : Builder.CreateIsNotNull(And);
248   Value *Zext = Builder.CreateZExt(Cmp, I.getType());
249   I.replaceAllUsesWith(Zext);
250   return true;
251 }
252 
253 // Try to recognize below function as popcount intrinsic.
254 // This is the "best" algorithm from
255 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
256 // Also used in TargetLowering::expandCTPOP().
257 //
258 // int popcount(unsigned int i) {
259 //   i = i - ((i >> 1) & 0x55555555);
260 //   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
261 //   i = ((i + (i >> 4)) & 0x0F0F0F0F);
262 //   return (i * 0x01010101) >> 24;
263 // }
264 static bool tryToRecognizePopCount(Instruction &I) {
265   if (I.getOpcode() != Instruction::LShr)
266     return false;
267 
268   Type *Ty = I.getType();
269   if (!Ty->isIntOrIntVectorTy())
270     return false;
271 
272   unsigned Len = Ty->getScalarSizeInBits();
273   // FIXME: fix Len == 8 and other irregular type lengths.
274   if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
275     return false;
276 
277   APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
278   APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
279   APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
280   APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
281   APInt MaskShift = APInt(Len, Len - 8);
282 
283   Value *Op0 = I.getOperand(0);
284   Value *Op1 = I.getOperand(1);
285   Value *MulOp0;
286   // Matching "(i * 0x01010101...) >> 24".
287   if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
288        match(Op1, m_SpecificInt(MaskShift))) {
289     Value *ShiftOp0;
290     // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
291     if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
292                                     m_Deferred(ShiftOp0)),
293                             m_SpecificInt(Mask0F)))) {
294       Value *AndOp0;
295       // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
296       if (match(ShiftOp0,
297                 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
298                         m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
299                               m_SpecificInt(Mask33))))) {
300         Value *Root, *SubOp1;
301         // Matching "i - ((i >> 1) & 0x55555555...)".
302         if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
303             match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
304                                 m_SpecificInt(Mask55)))) {
305           LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
306           IRBuilder<> Builder(&I);
307           Function *Func = Intrinsic::getDeclaration(
308               I.getModule(), Intrinsic::ctpop, I.getType());
309           I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
310           return true;
311         }
312       }
313     }
314   }
315 
316   return false;
317 }
318 
319 /// This is the entry point for folds that could be implemented in regular
320 /// InstCombine, but they are separated because they are not expected to
321 /// occur frequently and/or have more than a constant-length pattern match.
322 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
323   bool MadeChange = false;
324   for (BasicBlock &BB : F) {
325     // Ignore unreachable basic blocks.
326     if (!DT.isReachableFromEntry(&BB))
327       continue;
328     // Do not delete instructions under here and invalidate the iterator.
329     // Walk the block backwards for efficiency. We're matching a chain of
330     // use->defs, so we're more likely to succeed by starting from the bottom.
331     // Also, we want to avoid matching partial patterns.
332     // TODO: It would be more efficient if we removed dead instructions
333     // iteratively in this loop rather than waiting until the end.
334     for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
335       MadeChange |= foldAnyOrAllBitsSet(I);
336       MadeChange |= foldGuardedRotateToFunnelShift(I);
337       MadeChange |= tryToRecognizePopCount(I);
338     }
339   }
340 
341   // We're done with transforms, so remove dead instructions.
342   if (MadeChange)
343     for (BasicBlock &BB : F)
344       SimplifyInstructionsInBlock(&BB);
345 
346   return MadeChange;
347 }
348 
349 /// This is the entry point for all transforms. Pass manager differences are
350 /// handled in the callers of this function.
351 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
352   bool MadeChange = false;
353   const DataLayout &DL = F.getParent()->getDataLayout();
354   TruncInstCombine TIC(TLI, DL, DT);
355   MadeChange |= TIC.run(F);
356   MadeChange |= foldUnusualPatterns(F, DT);
357   return MadeChange;
358 }
359 
360 void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
361     AnalysisUsage &AU) const {
362   AU.setPreservesCFG();
363   AU.addRequired<DominatorTreeWrapperPass>();
364   AU.addRequired<TargetLibraryInfoWrapperPass>();
365   AU.addPreserved<AAResultsWrapperPass>();
366   AU.addPreserved<BasicAAWrapperPass>();
367   AU.addPreserved<DominatorTreeWrapperPass>();
368   AU.addPreserved<GlobalsAAWrapperPass>();
369 }
370 
371 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
372   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
373   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
374   return runImpl(F, TLI, DT);
375 }
376 
377 PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
378                                                  FunctionAnalysisManager &AM) {
379   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
380   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
381   if (!runImpl(F, TLI, DT)) {
382     // No changes, all analyses are preserved.
383     return PreservedAnalyses::all();
384   }
385   // Mark all the analyses that instcombine updates as preserved.
386   PreservedAnalyses PA;
387   PA.preserveSet<CFGAnalyses>();
388   PA.preserve<AAManager>();
389   PA.preserve<GlobalsAA>();
390   return PA;
391 }
392 
393 char AggressiveInstCombinerLegacyPass::ID = 0;
394 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
395                       "aggressive-instcombine",
396                       "Combine pattern based expressions", false, false)
397 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
398 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
399 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
400                     "Combine pattern based expressions", false, false)
401 
402 // Initialization Routines
403 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
404   initializeAggressiveInstCombinerLegacyPassPass(Registry);
405 }
406 
407 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
408   initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
409 }
410 
411 FunctionPass *llvm::createAggressiveInstCombinerPass() {
412   return new AggressiveInstCombinerLegacyPass();
413 }
414 
415 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
416   unwrap(PM)->add(createAggressiveInstCombinerPass());
417 }
418