1 //===- AggressiveInstCombine.cpp ------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the aggressive expression pattern combiner classes. 10 // Currently, it handles expression patterns for: 11 // * Truncate instruction 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h" 16 #include "AggressiveInstCombineInternal.h" 17 #include "llvm-c/Initialization.h" 18 #include "llvm-c/Transforms/AggressiveInstCombine.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BasicAliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/LegacyPassManager.h" 27 #include "llvm/IR/PatternMatch.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define DEBUG_TYPE "aggressive-instcombine" 34 35 namespace { 36 /// Contains expression pattern combiner logic. 37 /// This class provides both the logic to combine expression patterns and 38 /// combine them. It differs from InstCombiner class in that each pattern 39 /// combiner runs only once as opposed to InstCombine's multi-iteration, 40 /// which allows pattern combiner to have higher complexity than the O(1) 41 /// required by the instruction combiner. 42 class AggressiveInstCombinerLegacyPass : public FunctionPass { 43 public: 44 static char ID; // Pass identification, replacement for typeid 45 46 AggressiveInstCombinerLegacyPass() : FunctionPass(ID) { 47 initializeAggressiveInstCombinerLegacyPassPass( 48 *PassRegistry::getPassRegistry()); 49 } 50 51 void getAnalysisUsage(AnalysisUsage &AU) const override; 52 53 /// Run all expression pattern optimizations on the given /p F function. 54 /// 55 /// \param F function to optimize. 56 /// \returns true if the IR is changed. 57 bool runOnFunction(Function &F) override; 58 }; 59 } // namespace 60 61 /// Match a pattern for a bitwise rotate operation that partially guards 62 /// against undefined behavior by branching around the rotation when the shift 63 /// amount is 0. 64 static bool foldGuardedRotateToFunnelShift(Instruction &I) { 65 if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2) 66 return false; 67 68 // As with the one-use checks below, this is not strictly necessary, but we 69 // are being cautious to avoid potential perf regressions on targets that 70 // do not actually have a rotate instruction (where the funnel shift would be 71 // expanded back into math/shift/logic ops). 72 if (!isPowerOf2_32(I.getType()->getScalarSizeInBits())) 73 return false; 74 75 // Match V to funnel shift left/right and capture the source operand and 76 // shift amount in X and Y. 77 auto matchRotate = [](Value *V, Value *&X, Value *&Y) { 78 Value *L0, *L1, *R0, *R1; 79 unsigned Width = V->getType()->getScalarSizeInBits(); 80 auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1)); 81 82 // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y)) 83 auto RotL = m_OneUse( 84 m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub))); 85 if (RotL.match(V) && L0 == R0 && L1 == R1) { 86 X = L0; 87 Y = L1; 88 return Intrinsic::fshl; 89 } 90 91 // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y)) 92 auto RotR = m_OneUse( 93 m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub))); 94 if (RotR.match(V) && L0 == R0 && L1 == R1) { 95 X = L0; 96 Y = L1; 97 return Intrinsic::fshr; 98 } 99 100 return Intrinsic::not_intrinsic; 101 }; 102 103 // One phi operand must be a rotate operation, and the other phi operand must 104 // be the source value of that rotate operation: 105 // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ] 106 PHINode &Phi = cast<PHINode>(I); 107 Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1); 108 Value *RotSrc, *RotAmt; 109 Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt); 110 if (IID == Intrinsic::not_intrinsic || RotSrc != P1) { 111 IID = matchRotate(P1, RotSrc, RotAmt); 112 if (IID == Intrinsic::not_intrinsic || RotSrc != P0) 113 return false; 114 assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) && 115 "Pattern must match funnel shift left or right"); 116 } 117 118 // The incoming block with our source operand must be the "guard" block. 119 // That must contain a cmp+branch to avoid the rotate when the shift amount 120 // is equal to 0. The other incoming block is the block with the rotate. 121 BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1); 122 BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1); 123 Instruction *TermI = GuardBB->getTerminator(); 124 ICmpInst::Predicate Pred; 125 BasicBlock *PhiBB = Phi.getParent(); 126 if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()), 127 m_SpecificBB(PhiBB), m_SpecificBB(RotBB)))) 128 return false; 129 130 if (Pred != CmpInst::ICMP_EQ) 131 return false; 132 133 // We matched a variation of this IR pattern: 134 // GuardBB: 135 // %cmp = icmp eq i32 %RotAmt, 0 136 // br i1 %cmp, label %PhiBB, label %RotBB 137 // RotBB: 138 // %sub = sub i32 32, %RotAmt 139 // %shr = lshr i32 %X, %sub 140 // %shl = shl i32 %X, %RotAmt 141 // %rot = or i32 %shr, %shl 142 // br label %PhiBB 143 // PhiBB: 144 // %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ] 145 // --> 146 // llvm.fshl.i32(i32 %X, i32 %RotAmt) 147 IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt()); 148 Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType()); 149 Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt})); 150 return true; 151 } 152 153 /// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and 154 /// the bit indexes (Mask) needed by a masked compare. If we're matching a chain 155 /// of 'and' ops, then we also need to capture the fact that we saw an 156 /// "and X, 1", so that's an extra return value for that case. 157 struct MaskOps { 158 Value *Root; 159 APInt Mask; 160 bool MatchAndChain; 161 bool FoundAnd1; 162 163 MaskOps(unsigned BitWidth, bool MatchAnds) 164 : Root(nullptr), Mask(APInt::getNullValue(BitWidth)), 165 MatchAndChain(MatchAnds), FoundAnd1(false) {} 166 }; 167 168 /// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a 169 /// chain of 'and' or 'or' instructions looking for shift ops of a common source 170 /// value. Examples: 171 /// or (or (or X, (X >> 3)), (X >> 5)), (X >> 8) 172 /// returns { X, 0x129 } 173 /// and (and (X >> 1), 1), (X >> 4) 174 /// returns { X, 0x12 } 175 static bool matchAndOrChain(Value *V, MaskOps &MOps) { 176 Value *Op0, *Op1; 177 if (MOps.MatchAndChain) { 178 // Recurse through a chain of 'and' operands. This requires an extra check 179 // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere 180 // in the chain to know that all of the high bits are cleared. 181 if (match(V, m_And(m_Value(Op0), m_One()))) { 182 MOps.FoundAnd1 = true; 183 return matchAndOrChain(Op0, MOps); 184 } 185 if (match(V, m_And(m_Value(Op0), m_Value(Op1)))) 186 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 187 } else { 188 // Recurse through a chain of 'or' operands. 189 if (match(V, m_Or(m_Value(Op0), m_Value(Op1)))) 190 return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps); 191 } 192 193 // We need a shift-right or a bare value representing a compare of bit 0 of 194 // the original source operand. 195 Value *Candidate; 196 uint64_t BitIndex = 0; 197 if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex)))) 198 Candidate = V; 199 200 // Initialize result source operand. 201 if (!MOps.Root) 202 MOps.Root = Candidate; 203 204 // The shift constant is out-of-range? This code hasn't been simplified. 205 if (BitIndex >= MOps.Mask.getBitWidth()) 206 return false; 207 208 // Fill in the mask bit derived from the shift constant. 209 MOps.Mask.setBit(BitIndex); 210 return MOps.Root == Candidate; 211 } 212 213 /// Match patterns that correspond to "any-bits-set" and "all-bits-set". 214 /// These will include a chain of 'or' or 'and'-shifted bits from a 215 /// common source value: 216 /// and (or (lshr X, C), ...), 1 --> (X & CMask) != 0 217 /// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask 218 /// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns 219 /// that differ only with a final 'not' of the result. We expect that final 220 /// 'not' to be folded with the compare that we create here (invert predicate). 221 static bool foldAnyOrAllBitsSet(Instruction &I) { 222 // The 'any-bits-set' ('or' chain) pattern is simpler to match because the 223 // final "and X, 1" instruction must be the final op in the sequence. 224 bool MatchAllBitsSet; 225 if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value()))) 226 MatchAllBitsSet = true; 227 else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One()))) 228 MatchAllBitsSet = false; 229 else 230 return false; 231 232 MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet); 233 if (MatchAllBitsSet) { 234 if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1) 235 return false; 236 } else { 237 if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps)) 238 return false; 239 } 240 241 // The pattern was found. Create a masked compare that replaces all of the 242 // shift and logic ops. 243 IRBuilder<> Builder(&I); 244 Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask); 245 Value *And = Builder.CreateAnd(MOps.Root, Mask); 246 Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask) 247 : Builder.CreateIsNotNull(And); 248 Value *Zext = Builder.CreateZExt(Cmp, I.getType()); 249 I.replaceAllUsesWith(Zext); 250 return true; 251 } 252 253 // Try to recognize below function as popcount intrinsic. 254 // This is the "best" algorithm from 255 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 256 // Also used in TargetLowering::expandCTPOP(). 257 // 258 // int popcount(unsigned int i) { 259 // i = i - ((i >> 1) & 0x55555555); 260 // i = (i & 0x33333333) + ((i >> 2) & 0x33333333); 261 // i = ((i + (i >> 4)) & 0x0F0F0F0F); 262 // return (i * 0x01010101) >> 24; 263 // } 264 static bool tryToRecognizePopCount(Instruction &I) { 265 if (I.getOpcode() != Instruction::LShr) 266 return false; 267 268 Type *Ty = I.getType(); 269 if (!Ty->isIntOrIntVectorTy()) 270 return false; 271 272 unsigned Len = Ty->getScalarSizeInBits(); 273 // FIXME: fix Len == 8 and other irregular type lengths. 274 if (!(Len <= 128 && Len > 8 && Len % 8 == 0)) 275 return false; 276 277 APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55)); 278 APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33)); 279 APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F)); 280 APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01)); 281 APInt MaskShift = APInt(Len, Len - 8); 282 283 Value *Op0 = I.getOperand(0); 284 Value *Op1 = I.getOperand(1); 285 Value *MulOp0; 286 // Matching "(i * 0x01010101...) >> 24". 287 if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) && 288 match(Op1, m_SpecificInt(MaskShift))) { 289 Value *ShiftOp0; 290 // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)". 291 if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)), 292 m_Deferred(ShiftOp0)), 293 m_SpecificInt(Mask0F)))) { 294 Value *AndOp0; 295 // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)". 296 if (match(ShiftOp0, 297 m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)), 298 m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)), 299 m_SpecificInt(Mask33))))) { 300 Value *Root, *SubOp1; 301 // Matching "i - ((i >> 1) & 0x55555555...)". 302 if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) && 303 match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)), 304 m_SpecificInt(Mask55)))) { 305 LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n"); 306 IRBuilder<> Builder(&I); 307 Function *Func = Intrinsic::getDeclaration( 308 I.getModule(), Intrinsic::ctpop, I.getType()); 309 I.replaceAllUsesWith(Builder.CreateCall(Func, {Root})); 310 return true; 311 } 312 } 313 } 314 } 315 316 return false; 317 } 318 319 /// This is the entry point for folds that could be implemented in regular 320 /// InstCombine, but they are separated because they are not expected to 321 /// occur frequently and/or have more than a constant-length pattern match. 322 static bool foldUnusualPatterns(Function &F, DominatorTree &DT) { 323 bool MadeChange = false; 324 for (BasicBlock &BB : F) { 325 // Ignore unreachable basic blocks. 326 if (!DT.isReachableFromEntry(&BB)) 327 continue; 328 // Do not delete instructions under here and invalidate the iterator. 329 // Walk the block backwards for efficiency. We're matching a chain of 330 // use->defs, so we're more likely to succeed by starting from the bottom. 331 // Also, we want to avoid matching partial patterns. 332 // TODO: It would be more efficient if we removed dead instructions 333 // iteratively in this loop rather than waiting until the end. 334 for (Instruction &I : make_range(BB.rbegin(), BB.rend())) { 335 MadeChange |= foldAnyOrAllBitsSet(I); 336 MadeChange |= foldGuardedRotateToFunnelShift(I); 337 MadeChange |= tryToRecognizePopCount(I); 338 } 339 } 340 341 // We're done with transforms, so remove dead instructions. 342 if (MadeChange) 343 for (BasicBlock &BB : F) 344 SimplifyInstructionsInBlock(&BB); 345 346 return MadeChange; 347 } 348 349 /// This is the entry point for all transforms. Pass manager differences are 350 /// handled in the callers of this function. 351 static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) { 352 bool MadeChange = false; 353 const DataLayout &DL = F.getParent()->getDataLayout(); 354 TruncInstCombine TIC(TLI, DL, DT); 355 MadeChange |= TIC.run(F); 356 MadeChange |= foldUnusualPatterns(F, DT); 357 return MadeChange; 358 } 359 360 void AggressiveInstCombinerLegacyPass::getAnalysisUsage( 361 AnalysisUsage &AU) const { 362 AU.setPreservesCFG(); 363 AU.addRequired<DominatorTreeWrapperPass>(); 364 AU.addRequired<TargetLibraryInfoWrapperPass>(); 365 AU.addPreserved<AAResultsWrapperPass>(); 366 AU.addPreserved<BasicAAWrapperPass>(); 367 AU.addPreserved<DominatorTreeWrapperPass>(); 368 AU.addPreserved<GlobalsAAWrapperPass>(); 369 } 370 371 bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) { 372 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 373 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 374 return runImpl(F, TLI, DT); 375 } 376 377 PreservedAnalyses AggressiveInstCombinePass::run(Function &F, 378 FunctionAnalysisManager &AM) { 379 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 380 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 381 if (!runImpl(F, TLI, DT)) { 382 // No changes, all analyses are preserved. 383 return PreservedAnalyses::all(); 384 } 385 // Mark all the analyses that instcombine updates as preserved. 386 PreservedAnalyses PA; 387 PA.preserveSet<CFGAnalyses>(); 388 PA.preserve<AAManager>(); 389 PA.preserve<GlobalsAA>(); 390 return PA; 391 } 392 393 char AggressiveInstCombinerLegacyPass::ID = 0; 394 INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass, 395 "aggressive-instcombine", 396 "Combine pattern based expressions", false, false) 397 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 398 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 399 INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine", 400 "Combine pattern based expressions", false, false) 401 402 // Initialization Routines 403 void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) { 404 initializeAggressiveInstCombinerLegacyPassPass(Registry); 405 } 406 407 void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) { 408 initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R)); 409 } 410 411 FunctionPass *llvm::createAggressiveInstCombinerPass() { 412 return new AggressiveInstCombinerLegacyPass(); 413 } 414 415 void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) { 416 unwrap(PM)->add(createAggressiveInstCombinerPass()); 417 } 418