xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
106c3fb27SDimitry Andric //===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
206c3fb27SDimitry Andric //
306c3fb27SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
406c3fb27SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
506c3fb27SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
606c3fb27SDimitry Andric //
706c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
806c3fb27SDimitry Andric //
906c3fb27SDimitry Andric // This file examines all full size vector constant pool loads and attempts to
1006c3fb27SDimitry Andric // replace them with smaller constant pool entries, including:
11*0fca6ea1SDimitry Andric // * Converting AVX512 memory-fold instructions to their broadcast-fold form.
12*0fca6ea1SDimitry Andric // * Using vzload scalar loads.
135f757f3fSDimitry Andric // * Broadcasting of full width loads.
14*0fca6ea1SDimitry Andric // * Sign/Zero extension of full width loads.
1506c3fb27SDimitry Andric //
1606c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
1706c3fb27SDimitry Andric 
1806c3fb27SDimitry Andric #include "X86.h"
1906c3fb27SDimitry Andric #include "X86InstrFoldTables.h"
2006c3fb27SDimitry Andric #include "X86InstrInfo.h"
2106c3fb27SDimitry Andric #include "X86Subtarget.h"
2206c3fb27SDimitry Andric #include "llvm/ADT/Statistic.h"
2306c3fb27SDimitry Andric #include "llvm/CodeGen/MachineConstantPool.h"
2406c3fb27SDimitry Andric 
2506c3fb27SDimitry Andric using namespace llvm;
2606c3fb27SDimitry Andric 
2706c3fb27SDimitry Andric #define DEBUG_TYPE "x86-fixup-vector-constants"
2806c3fb27SDimitry Andric 
2906c3fb27SDimitry Andric STATISTIC(NumInstChanges, "Number of instructions changes");
3006c3fb27SDimitry Andric 
3106c3fb27SDimitry Andric namespace {
3206c3fb27SDimitry Andric class X86FixupVectorConstantsPass : public MachineFunctionPass {
3306c3fb27SDimitry Andric public:
3406c3fb27SDimitry Andric   static char ID;
3506c3fb27SDimitry Andric 
3606c3fb27SDimitry Andric   X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
3706c3fb27SDimitry Andric 
3806c3fb27SDimitry Andric   StringRef getPassName() const override {
3906c3fb27SDimitry Andric     return "X86 Fixup Vector Constants";
4006c3fb27SDimitry Andric   }
4106c3fb27SDimitry Andric 
4206c3fb27SDimitry Andric   bool runOnMachineFunction(MachineFunction &MF) override;
4306c3fb27SDimitry Andric   bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
4406c3fb27SDimitry Andric                           MachineInstr &MI);
4506c3fb27SDimitry Andric 
4606c3fb27SDimitry Andric   // This pass runs after regalloc and doesn't support VReg operands.
4706c3fb27SDimitry Andric   MachineFunctionProperties getRequiredProperties() const override {
4806c3fb27SDimitry Andric     return MachineFunctionProperties().set(
4906c3fb27SDimitry Andric         MachineFunctionProperties::Property::NoVRegs);
5006c3fb27SDimitry Andric   }
5106c3fb27SDimitry Andric 
5206c3fb27SDimitry Andric private:
5306c3fb27SDimitry Andric   const X86InstrInfo *TII = nullptr;
5406c3fb27SDimitry Andric   const X86Subtarget *ST = nullptr;
5506c3fb27SDimitry Andric   const MCSchedModel *SM = nullptr;
5606c3fb27SDimitry Andric };
5706c3fb27SDimitry Andric } // end anonymous namespace
5806c3fb27SDimitry Andric 
5906c3fb27SDimitry Andric char X86FixupVectorConstantsPass::ID = 0;
6006c3fb27SDimitry Andric 
6106c3fb27SDimitry Andric INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
6206c3fb27SDimitry Andric 
6306c3fb27SDimitry Andric FunctionPass *llvm::createX86FixupVectorConstants() {
6406c3fb27SDimitry Andric   return new X86FixupVectorConstantsPass();
6506c3fb27SDimitry Andric }
6606c3fb27SDimitry Andric 
67*0fca6ea1SDimitry Andric /// Normally, we only allow poison in vector splats. However, as this is part
68*0fca6ea1SDimitry Andric /// of the backend, and working with the DAG representation, which currently
69*0fca6ea1SDimitry Andric /// only natively represents undef values, we need to accept undefs here.
70*0fca6ea1SDimitry Andric static Constant *getSplatValueAllowUndef(const ConstantVector *C) {
71*0fca6ea1SDimitry Andric   Constant *Res = nullptr;
72*0fca6ea1SDimitry Andric   for (Value *Op : C->operands()) {
73*0fca6ea1SDimitry Andric     Constant *OpC = cast<Constant>(Op);
74*0fca6ea1SDimitry Andric     if (isa<UndefValue>(OpC))
75*0fca6ea1SDimitry Andric       continue;
76*0fca6ea1SDimitry Andric     if (!Res)
77*0fca6ea1SDimitry Andric       Res = OpC;
78*0fca6ea1SDimitry Andric     else if (Res != OpC)
79*0fca6ea1SDimitry Andric       return nullptr;
80*0fca6ea1SDimitry Andric   }
81*0fca6ea1SDimitry Andric   return Res;
82*0fca6ea1SDimitry Andric }
83*0fca6ea1SDimitry Andric 
8406c3fb27SDimitry Andric // Attempt to extract the full width of bits data from the constant.
8506c3fb27SDimitry Andric static std::optional<APInt> extractConstantBits(const Constant *C) {
8606c3fb27SDimitry Andric   unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
8706c3fb27SDimitry Andric 
88*0fca6ea1SDimitry Andric   if (isa<UndefValue>(C))
89*0fca6ea1SDimitry Andric     return APInt::getZero(NumBits);
90*0fca6ea1SDimitry Andric 
9106c3fb27SDimitry Andric   if (auto *CInt = dyn_cast<ConstantInt>(C))
9206c3fb27SDimitry Andric     return CInt->getValue();
9306c3fb27SDimitry Andric 
9406c3fb27SDimitry Andric   if (auto *CFP = dyn_cast<ConstantFP>(C))
9506c3fb27SDimitry Andric     return CFP->getValue().bitcastToAPInt();
9606c3fb27SDimitry Andric 
9706c3fb27SDimitry Andric   if (auto *CV = dyn_cast<ConstantVector>(C)) {
98*0fca6ea1SDimitry Andric     if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
9906c3fb27SDimitry Andric       if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
10006c3fb27SDimitry Andric         assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
10106c3fb27SDimitry Andric         return APInt::getSplat(NumBits, *Bits);
10206c3fb27SDimitry Andric       }
10306c3fb27SDimitry Andric     }
104*0fca6ea1SDimitry Andric 
105*0fca6ea1SDimitry Andric     APInt Bits = APInt::getZero(NumBits);
106*0fca6ea1SDimitry Andric     for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
107*0fca6ea1SDimitry Andric       Constant *Elt = CV->getOperand(I);
108*0fca6ea1SDimitry Andric       std::optional<APInt> SubBits = extractConstantBits(Elt);
109*0fca6ea1SDimitry Andric       if (!SubBits)
110*0fca6ea1SDimitry Andric         return std::nullopt;
111*0fca6ea1SDimitry Andric       assert(NumBits == (E * SubBits->getBitWidth()) &&
112*0fca6ea1SDimitry Andric              "Illegal vector element size");
113*0fca6ea1SDimitry Andric       Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
114*0fca6ea1SDimitry Andric     }
115*0fca6ea1SDimitry Andric     return Bits;
11606c3fb27SDimitry Andric   }
11706c3fb27SDimitry Andric 
11806c3fb27SDimitry Andric   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
11906c3fb27SDimitry Andric     bool IsInteger = CDS->getElementType()->isIntegerTy();
12006c3fb27SDimitry Andric     bool IsFloat = CDS->getElementType()->isHalfTy() ||
12106c3fb27SDimitry Andric                    CDS->getElementType()->isBFloatTy() ||
12206c3fb27SDimitry Andric                    CDS->getElementType()->isFloatTy() ||
12306c3fb27SDimitry Andric                    CDS->getElementType()->isDoubleTy();
12406c3fb27SDimitry Andric     if (IsInteger || IsFloat) {
12506c3fb27SDimitry Andric       APInt Bits = APInt::getZero(NumBits);
12606c3fb27SDimitry Andric       unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
12706c3fb27SDimitry Andric       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
12806c3fb27SDimitry Andric         if (IsInteger)
12906c3fb27SDimitry Andric           Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
13006c3fb27SDimitry Andric         else
13106c3fb27SDimitry Andric           Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
13206c3fb27SDimitry Andric                           I * EltBits);
13306c3fb27SDimitry Andric       }
13406c3fb27SDimitry Andric       return Bits;
13506c3fb27SDimitry Andric     }
13606c3fb27SDimitry Andric   }
13706c3fb27SDimitry Andric 
13806c3fb27SDimitry Andric   return std::nullopt;
13906c3fb27SDimitry Andric }
14006c3fb27SDimitry Andric 
141*0fca6ea1SDimitry Andric static std::optional<APInt> extractConstantBits(const Constant *C,
142*0fca6ea1SDimitry Andric                                                 unsigned NumBits) {
143*0fca6ea1SDimitry Andric   if (std::optional<APInt> Bits = extractConstantBits(C))
144*0fca6ea1SDimitry Andric     return Bits->zextOrTrunc(NumBits);
145*0fca6ea1SDimitry Andric   return std::nullopt;
146*0fca6ea1SDimitry Andric }
147*0fca6ea1SDimitry Andric 
14806c3fb27SDimitry Andric // Attempt to compute the splat width of bits data by normalizing the splat to
14906c3fb27SDimitry Andric // remove undefs.
15006c3fb27SDimitry Andric static std::optional<APInt> getSplatableConstant(const Constant *C,
15106c3fb27SDimitry Andric                                                  unsigned SplatBitWidth) {
15206c3fb27SDimitry Andric   const Type *Ty = C->getType();
15306c3fb27SDimitry Andric   assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
15406c3fb27SDimitry Andric          "Illegal splat width");
15506c3fb27SDimitry Andric 
15606c3fb27SDimitry Andric   if (std::optional<APInt> Bits = extractConstantBits(C))
15706c3fb27SDimitry Andric     if (Bits->isSplat(SplatBitWidth))
15806c3fb27SDimitry Andric       return Bits->trunc(SplatBitWidth);
15906c3fb27SDimitry Andric 
16006c3fb27SDimitry Andric   // Detect general splats with undefs.
16106c3fb27SDimitry Andric   // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
16206c3fb27SDimitry Andric   if (auto *CV = dyn_cast<ConstantVector>(C)) {
16306c3fb27SDimitry Andric     unsigned NumOps = CV->getNumOperands();
16406c3fb27SDimitry Andric     unsigned NumEltsBits = Ty->getScalarSizeInBits();
16506c3fb27SDimitry Andric     unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
16606c3fb27SDimitry Andric     if ((SplatBitWidth % NumEltsBits) == 0) {
16706c3fb27SDimitry Andric       // Collect the elements and ensure that within the repeated splat sequence
16806c3fb27SDimitry Andric       // they either match or are undef.
16906c3fb27SDimitry Andric       SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
17006c3fb27SDimitry Andric       for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
17106c3fb27SDimitry Andric         if (Constant *Elt = CV->getAggregateElement(Idx)) {
17206c3fb27SDimitry Andric           if (isa<UndefValue>(Elt))
17306c3fb27SDimitry Andric             continue;
17406c3fb27SDimitry Andric           unsigned SplatIdx = Idx % NumScaleOps;
17506c3fb27SDimitry Andric           if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
17606c3fb27SDimitry Andric             Sequence[SplatIdx] = Elt;
17706c3fb27SDimitry Andric             continue;
17806c3fb27SDimitry Andric           }
17906c3fb27SDimitry Andric         }
18006c3fb27SDimitry Andric         return std::nullopt;
18106c3fb27SDimitry Andric       }
18206c3fb27SDimitry Andric       // Extract the constant bits forming the splat and insert into the bits
18306c3fb27SDimitry Andric       // data, leave undef as zero.
18406c3fb27SDimitry Andric       APInt SplatBits = APInt::getZero(SplatBitWidth);
18506c3fb27SDimitry Andric       for (unsigned I = 0; I != NumScaleOps; ++I) {
18606c3fb27SDimitry Andric         if (!Sequence[I])
18706c3fb27SDimitry Andric           continue;
18806c3fb27SDimitry Andric         if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
18906c3fb27SDimitry Andric           SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
19006c3fb27SDimitry Andric           continue;
19106c3fb27SDimitry Andric         }
19206c3fb27SDimitry Andric         return std::nullopt;
19306c3fb27SDimitry Andric       }
19406c3fb27SDimitry Andric       return SplatBits;
19506c3fb27SDimitry Andric     }
19606c3fb27SDimitry Andric   }
19706c3fb27SDimitry Andric 
19806c3fb27SDimitry Andric   return std::nullopt;
19906c3fb27SDimitry Andric }
20006c3fb27SDimitry Andric 
2017a6dacacSDimitry Andric // Split raw bits into a constant vector of elements of a specific bit width.
2027a6dacacSDimitry Andric // NOTE: We don't always bother converting to scalars if the vector length is 1.
2037a6dacacSDimitry Andric static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,
2047a6dacacSDimitry Andric                                  const APInt &Bits, unsigned NumSclBits) {
2057a6dacacSDimitry Andric   unsigned BitWidth = Bits.getBitWidth();
2067a6dacacSDimitry Andric 
2077a6dacacSDimitry Andric   if (NumSclBits == 8) {
2087a6dacacSDimitry Andric     SmallVector<uint8_t> RawBits;
2097a6dacacSDimitry Andric     for (unsigned I = 0; I != BitWidth; I += 8)
2107a6dacacSDimitry Andric       RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
2117a6dacacSDimitry Andric     return ConstantDataVector::get(Ctx, RawBits);
2127a6dacacSDimitry Andric   }
2137a6dacacSDimitry Andric 
2147a6dacacSDimitry Andric   if (NumSclBits == 16) {
2157a6dacacSDimitry Andric     SmallVector<uint16_t> RawBits;
2167a6dacacSDimitry Andric     for (unsigned I = 0; I != BitWidth; I += 16)
2177a6dacacSDimitry Andric       RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
2187a6dacacSDimitry Andric     if (SclTy->is16bitFPTy())
2197a6dacacSDimitry Andric       return ConstantDataVector::getFP(SclTy, RawBits);
2207a6dacacSDimitry Andric     return ConstantDataVector::get(Ctx, RawBits);
2217a6dacacSDimitry Andric   }
2227a6dacacSDimitry Andric 
2237a6dacacSDimitry Andric   if (NumSclBits == 32) {
2247a6dacacSDimitry Andric     SmallVector<uint32_t> RawBits;
2257a6dacacSDimitry Andric     for (unsigned I = 0; I != BitWidth; I += 32)
2267a6dacacSDimitry Andric       RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
2277a6dacacSDimitry Andric     if (SclTy->isFloatTy())
2287a6dacacSDimitry Andric       return ConstantDataVector::getFP(SclTy, RawBits);
2297a6dacacSDimitry Andric     return ConstantDataVector::get(Ctx, RawBits);
2307a6dacacSDimitry Andric   }
2317a6dacacSDimitry Andric 
2327a6dacacSDimitry Andric   assert(NumSclBits == 64 && "Unhandled vector element width");
2337a6dacacSDimitry Andric 
2347a6dacacSDimitry Andric   SmallVector<uint64_t> RawBits;
2357a6dacacSDimitry Andric   for (unsigned I = 0; I != BitWidth; I += 64)
2367a6dacacSDimitry Andric     RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
2377a6dacacSDimitry Andric   if (SclTy->isDoubleTy())
2387a6dacacSDimitry Andric     return ConstantDataVector::getFP(SclTy, RawBits);
2397a6dacacSDimitry Andric   return ConstantDataVector::get(Ctx, RawBits);
2407a6dacacSDimitry Andric }
2417a6dacacSDimitry Andric 
24206c3fb27SDimitry Andric // Attempt to rebuild a normalized splat vector constant of the requested splat
24306c3fb27SDimitry Andric // width, built up of potentially smaller scalar values.
244*0fca6ea1SDimitry Andric static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
245*0fca6ea1SDimitry Andric                                  unsigned /*NumElts*/, unsigned SplatBitWidth) {
246*0fca6ea1SDimitry Andric   // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
24706c3fb27SDimitry Andric   std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
24806c3fb27SDimitry Andric   if (!Splat)
24906c3fb27SDimitry Andric     return nullptr;
25006c3fb27SDimitry Andric 
25106c3fb27SDimitry Andric   // Determine scalar size to use for the constant splat vector, clamping as we
25206c3fb27SDimitry Andric   // might have found a splat smaller than the original constant data.
253*0fca6ea1SDimitry Andric   Type *SclTy = C->getType()->getScalarType();
25406c3fb27SDimitry Andric   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
25506c3fb27SDimitry Andric   NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
25606c3fb27SDimitry Andric 
25706c3fb27SDimitry Andric   // Fallback to i64 / double.
2587a6dacacSDimitry Andric   NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
2597a6dacacSDimitry Andric                    ? NumSclBits
2607a6dacacSDimitry Andric                    : 64;
2617a6dacacSDimitry Andric 
2627a6dacacSDimitry Andric   // Extract per-element bits.
263*0fca6ea1SDimitry Andric   return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
264*0fca6ea1SDimitry Andric }
265*0fca6ea1SDimitry Andric 
266*0fca6ea1SDimitry Andric static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
267*0fca6ea1SDimitry Andric                                      unsigned /*NumElts*/,
268*0fca6ea1SDimitry Andric                                      unsigned ScalarBitWidth) {
269*0fca6ea1SDimitry Andric   Type *SclTy = C->getType()->getScalarType();
270*0fca6ea1SDimitry Andric   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
271*0fca6ea1SDimitry Andric   LLVMContext &Ctx = C->getContext();
272*0fca6ea1SDimitry Andric 
273*0fca6ea1SDimitry Andric   if (NumBits > ScalarBitWidth) {
274*0fca6ea1SDimitry Andric     // Determine if the upper bits are all zero.
275*0fca6ea1SDimitry Andric     if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
276*0fca6ea1SDimitry Andric       if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
277*0fca6ea1SDimitry Andric         // If the original constant was made of smaller elements, try to retain
278*0fca6ea1SDimitry Andric         // those types.
279*0fca6ea1SDimitry Andric         if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
280*0fca6ea1SDimitry Andric           return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);
281*0fca6ea1SDimitry Andric 
282*0fca6ea1SDimitry Andric         // Fallback to raw integer bits.
283*0fca6ea1SDimitry Andric         APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
284*0fca6ea1SDimitry Andric         return ConstantInt::get(Ctx, RawBits);
285*0fca6ea1SDimitry Andric       }
286*0fca6ea1SDimitry Andric     }
287*0fca6ea1SDimitry Andric   }
288*0fca6ea1SDimitry Andric 
289*0fca6ea1SDimitry Andric   return nullptr;
290*0fca6ea1SDimitry Andric }
291*0fca6ea1SDimitry Andric 
292*0fca6ea1SDimitry Andric static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
293*0fca6ea1SDimitry Andric                                unsigned NumBits, unsigned NumElts,
294*0fca6ea1SDimitry Andric                                unsigned SrcEltBitWidth) {
295*0fca6ea1SDimitry Andric   unsigned DstEltBitWidth = NumBits / NumElts;
296*0fca6ea1SDimitry Andric   assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
297*0fca6ea1SDimitry Andric          (DstEltBitWidth % SrcEltBitWidth) == 0 &&
298*0fca6ea1SDimitry Andric          (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
299*0fca6ea1SDimitry Andric 
300*0fca6ea1SDimitry Andric   if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
301*0fca6ea1SDimitry Andric     assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
302*0fca6ea1SDimitry Andric            (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
303*0fca6ea1SDimitry Andric            "Unexpected constant extension");
304*0fca6ea1SDimitry Andric 
305*0fca6ea1SDimitry Andric     // Ensure every vector element can be represented by the src bitwidth.
306*0fca6ea1SDimitry Andric     APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
307*0fca6ea1SDimitry Andric     for (unsigned I = 0; I != NumElts; ++I) {
308*0fca6ea1SDimitry Andric       APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
309*0fca6ea1SDimitry Andric       if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
310*0fca6ea1SDimitry Andric           (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
311*0fca6ea1SDimitry Andric         return nullptr;
312*0fca6ea1SDimitry Andric       TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
313*0fca6ea1SDimitry Andric     }
314*0fca6ea1SDimitry Andric 
315*0fca6ea1SDimitry Andric     Type *Ty = C->getType();
316*0fca6ea1SDimitry Andric     return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
317*0fca6ea1SDimitry Andric                            SrcEltBitWidth);
318*0fca6ea1SDimitry Andric   }
319*0fca6ea1SDimitry Andric 
320*0fca6ea1SDimitry Andric   return nullptr;
321*0fca6ea1SDimitry Andric }
322*0fca6ea1SDimitry Andric static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
323*0fca6ea1SDimitry Andric                                 unsigned NumElts, unsigned SrcEltBitWidth) {
324*0fca6ea1SDimitry Andric   return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
325*0fca6ea1SDimitry Andric }
326*0fca6ea1SDimitry Andric static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
327*0fca6ea1SDimitry Andric                                 unsigned NumElts, unsigned SrcEltBitWidth) {
328*0fca6ea1SDimitry Andric   return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
32906c3fb27SDimitry Andric }
33006c3fb27SDimitry Andric 
33106c3fb27SDimitry Andric bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
33206c3fb27SDimitry Andric                                                      MachineBasicBlock &MBB,
33306c3fb27SDimitry Andric                                                      MachineInstr &MI) {
33406c3fb27SDimitry Andric   unsigned Opc = MI.getOpcode();
33506c3fb27SDimitry Andric   MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
336*0fca6ea1SDimitry Andric   bool HasSSE41 = ST->hasSSE41();
3375f757f3fSDimitry Andric   bool HasAVX2 = ST->hasAVX2();
33806c3fb27SDimitry Andric   bool HasDQI = ST->hasDQI();
33906c3fb27SDimitry Andric   bool HasBWI = ST->hasBWI();
3405f757f3fSDimitry Andric   bool HasVLX = ST->hasVLX();
34106c3fb27SDimitry Andric 
342*0fca6ea1SDimitry Andric   struct FixupEntry {
343*0fca6ea1SDimitry Andric     int Op;
344*0fca6ea1SDimitry Andric     int NumCstElts;
345*0fca6ea1SDimitry Andric     int MemBitWidth;
346*0fca6ea1SDimitry Andric     std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
347*0fca6ea1SDimitry Andric         RebuildConstant;
348*0fca6ea1SDimitry Andric   };
349*0fca6ea1SDimitry Andric   auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
35006c3fb27SDimitry Andric                            unsigned OperandNo) {
351*0fca6ea1SDimitry Andric #ifdef EXPENSIVE_CHECKS
352*0fca6ea1SDimitry Andric     assert(llvm::is_sorted(Fixups,
353*0fca6ea1SDimitry Andric                            [](const FixupEntry &A, const FixupEntry &B) {
354*0fca6ea1SDimitry Andric                              return (A.NumCstElts * A.MemBitWidth) <
355*0fca6ea1SDimitry Andric                                     (B.NumCstElts * B.MemBitWidth);
356*0fca6ea1SDimitry Andric                            }) &&
357*0fca6ea1SDimitry Andric            "Constant fixup table not sorted in ascending constant size");
358*0fca6ea1SDimitry Andric #endif
35906c3fb27SDimitry Andric     assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
36006c3fb27SDimitry Andric            "Unexpected number of operands!");
3617a6dacacSDimitry Andric     if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
362*0fca6ea1SDimitry Andric       RegBitWidth =
363*0fca6ea1SDimitry Andric           RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits();
364*0fca6ea1SDimitry Andric       for (const FixupEntry &Fixup : Fixups) {
365*0fca6ea1SDimitry Andric         if (Fixup.Op) {
366*0fca6ea1SDimitry Andric           // Construct a suitable constant and adjust the MI to use the new
367*0fca6ea1SDimitry Andric           // constant pool entry.
368*0fca6ea1SDimitry Andric           if (Constant *NewCst = Fixup.RebuildConstant(
369*0fca6ea1SDimitry Andric                   C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
37006c3fb27SDimitry Andric             unsigned NewCPI =
371*0fca6ea1SDimitry Andric                 CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
372*0fca6ea1SDimitry Andric             MI.setDesc(TII->get(Fixup.Op));
3737a6dacacSDimitry Andric             MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
37406c3fb27SDimitry Andric             return true;
37506c3fb27SDimitry Andric           }
37606c3fb27SDimitry Andric         }
37706c3fb27SDimitry Andric       }
37806c3fb27SDimitry Andric     }
37906c3fb27SDimitry Andric     return false;
38006c3fb27SDimitry Andric   };
38106c3fb27SDimitry Andric 
382*0fca6ea1SDimitry Andric   // Attempt to detect a suitable vzload/broadcast/vextload from increasing
383*0fca6ea1SDimitry Andric   // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
384*0fca6ea1SDimitry Andric   // - vzload shouldn't ever need a shuffle port to zero the upper elements and
385*0fca6ea1SDimitry Andric   // the fp/int domain versions are equally available so we don't introduce a
386*0fca6ea1SDimitry Andric   // domain crossing penalty.
387*0fca6ea1SDimitry Andric   // - broadcast sometimes need a shuffle port (especially for 8/16-bit
388*0fca6ea1SDimitry Andric   // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
389*0fca6ea1SDimitry Andric   // domain equivalents.
390*0fca6ea1SDimitry Andric   // - vextload always needs a shuffle port and is only ever int domain.
39106c3fb27SDimitry Andric   switch (Opc) {
39206c3fb27SDimitry Andric   /* FP Loads */
39306c3fb27SDimitry Andric   case X86::MOVAPDrm:
39406c3fb27SDimitry Andric   case X86::MOVAPSrm:
39506c3fb27SDimitry Andric   case X86::MOVUPDrm:
39606c3fb27SDimitry Andric   case X86::MOVUPSrm:
39706c3fb27SDimitry Andric     // TODO: SSE3 MOVDDUP Handling
398*0fca6ea1SDimitry Andric     return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
399*0fca6ea1SDimitry Andric                           {X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}},
400*0fca6ea1SDimitry Andric                          128, 1);
40106c3fb27SDimitry Andric   case X86::VMOVAPDrm:
40206c3fb27SDimitry Andric   case X86::VMOVAPSrm:
40306c3fb27SDimitry Andric   case X86::VMOVUPDrm:
40406c3fb27SDimitry Andric   case X86::VMOVUPSrm:
405*0fca6ea1SDimitry Andric     return FixupConstant({{X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
406*0fca6ea1SDimitry Andric                           {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
407*0fca6ea1SDimitry Andric                           {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
408*0fca6ea1SDimitry Andric                           {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst}},
409*0fca6ea1SDimitry Andric                          128, 1);
41006c3fb27SDimitry Andric   case X86::VMOVAPDYrm:
41106c3fb27SDimitry Andric   case X86::VMOVAPSYrm:
41206c3fb27SDimitry Andric   case X86::VMOVUPDYrm:
41306c3fb27SDimitry Andric   case X86::VMOVUPSYrm:
414*0fca6ea1SDimitry Andric     return FixupConstant({{X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
415*0fca6ea1SDimitry Andric                           {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
416*0fca6ea1SDimitry Andric                           {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst}},
417*0fca6ea1SDimitry Andric                          256, 1);
41806c3fb27SDimitry Andric   case X86::VMOVAPDZ128rm:
41906c3fb27SDimitry Andric   case X86::VMOVAPSZ128rm:
42006c3fb27SDimitry Andric   case X86::VMOVUPDZ128rm:
42106c3fb27SDimitry Andric   case X86::VMOVUPSZ128rm:
422*0fca6ea1SDimitry Andric     return FixupConstant({{X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
423*0fca6ea1SDimitry Andric                           {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
424*0fca6ea1SDimitry Andric                           {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
425*0fca6ea1SDimitry Andric                           {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst}},
426*0fca6ea1SDimitry Andric                          128, 1);
42706c3fb27SDimitry Andric   case X86::VMOVAPDZ256rm:
42806c3fb27SDimitry Andric   case X86::VMOVAPSZ256rm:
42906c3fb27SDimitry Andric   case X86::VMOVUPDZ256rm:
43006c3fb27SDimitry Andric   case X86::VMOVUPSZ256rm:
431*0fca6ea1SDimitry Andric     return FixupConstant(
432*0fca6ea1SDimitry Andric         {{X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
433*0fca6ea1SDimitry Andric          {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
434*0fca6ea1SDimitry Andric          {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst}},
435*0fca6ea1SDimitry Andric         256, 1);
43606c3fb27SDimitry Andric   case X86::VMOVAPDZrm:
43706c3fb27SDimitry Andric   case X86::VMOVAPSZrm:
43806c3fb27SDimitry Andric   case X86::VMOVUPDZrm:
43906c3fb27SDimitry Andric   case X86::VMOVUPSZrm:
440*0fca6ea1SDimitry Andric     return FixupConstant({{X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
441*0fca6ea1SDimitry Andric                           {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
442*0fca6ea1SDimitry Andric                           {X86::VBROADCASTF32X4rm, 1, 128, rebuildSplatCst},
443*0fca6ea1SDimitry Andric                           {X86::VBROADCASTF64X4rm, 1, 256, rebuildSplatCst}},
444*0fca6ea1SDimitry Andric                          512, 1);
44506c3fb27SDimitry Andric     /* Integer Loads */
446*0fca6ea1SDimitry Andric   case X86::MOVDQArm:
447*0fca6ea1SDimitry Andric   case X86::MOVDQUrm: {
448*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
449*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
450*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
451*0fca6ea1SDimitry Andric         {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
452*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
453*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
454*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
455*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
456*0fca6ea1SDimitry Andric         {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
457*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
458*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
459*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
460*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
461*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
462*0fca6ea1SDimitry Andric         {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
463*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 128, 1);
464*0fca6ea1SDimitry Andric   }
46506c3fb27SDimitry Andric   case X86::VMOVDQArm:
466*0fca6ea1SDimitry Andric   case X86::VMOVDQUrm: {
467*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
468*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
469*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
470*0fca6ea1SDimitry Andric         {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
471*0fca6ea1SDimitry Andric         {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
472*0fca6ea1SDimitry Andric         {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
473*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
474*0fca6ea1SDimitry Andric          rebuildSplatCst},
475*0fca6ea1SDimitry Andric         {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
476*0fca6ea1SDimitry Andric         {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
477*0fca6ea1SDimitry Andric         {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
478*0fca6ea1SDimitry Andric         {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
479*0fca6ea1SDimitry Andric         {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
480*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
481*0fca6ea1SDimitry Andric          rebuildSplatCst},
482*0fca6ea1SDimitry Andric         {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
483*0fca6ea1SDimitry Andric         {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
484*0fca6ea1SDimitry Andric         {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
485*0fca6ea1SDimitry Andric         {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
486*0fca6ea1SDimitry Andric         {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
487*0fca6ea1SDimitry Andric         {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
488*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 128, 1);
489*0fca6ea1SDimitry Andric   }
49006c3fb27SDimitry Andric   case X86::VMOVDQAYrm:
491*0fca6ea1SDimitry Andric   case X86::VMOVDQUYrm: {
492*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
493*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
494*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
495*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
496*0fca6ea1SDimitry Andric          rebuildSplatCst},
497*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
498*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
499*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
500*0fca6ea1SDimitry Andric          rebuildSplatCst},
501*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
502*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
503*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
504*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
505*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
506*0fca6ea1SDimitry Andric          rebuildSplatCst},
507*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
508*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
509*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
510*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
511*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
512*0fca6ea1SDimitry Andric         {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
513*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 256, 1);
514*0fca6ea1SDimitry Andric   }
51506c3fb27SDimitry Andric   case X86::VMOVDQA32Z128rm:
51606c3fb27SDimitry Andric   case X86::VMOVDQA64Z128rm:
51706c3fb27SDimitry Andric   case X86::VMOVDQU32Z128rm:
518*0fca6ea1SDimitry Andric   case X86::VMOVDQU64Z128rm: {
519*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
520*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
521*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
522*0fca6ea1SDimitry Andric         {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
523*0fca6ea1SDimitry Andric         {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
524*0fca6ea1SDimitry Andric         {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
525*0fca6ea1SDimitry Andric         {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
526*0fca6ea1SDimitry Andric         {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
527*0fca6ea1SDimitry Andric         {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
528*0fca6ea1SDimitry Andric         {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
529*0fca6ea1SDimitry Andric         {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
530*0fca6ea1SDimitry Andric         {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
531*0fca6ea1SDimitry Andric         {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
532*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
533*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
534*0fca6ea1SDimitry Andric         {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
535*0fca6ea1SDimitry Andric         {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
536*0fca6ea1SDimitry Andric         {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
537*0fca6ea1SDimitry Andric         {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
538*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 128, 1);
539*0fca6ea1SDimitry Andric   }
54006c3fb27SDimitry Andric   case X86::VMOVDQA32Z256rm:
54106c3fb27SDimitry Andric   case X86::VMOVDQA64Z256rm:
54206c3fb27SDimitry Andric   case X86::VMOVDQU32Z256rm:
543*0fca6ea1SDimitry Andric   case X86::VMOVDQU64Z256rm: {
544*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
545*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
546*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
547*0fca6ea1SDimitry Andric         {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
548*0fca6ea1SDimitry Andric         {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
549*0fca6ea1SDimitry Andric         {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
550*0fca6ea1SDimitry Andric         {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
551*0fca6ea1SDimitry Andric         {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
552*0fca6ea1SDimitry Andric         {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
553*0fca6ea1SDimitry Andric         {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
554*0fca6ea1SDimitry Andric         {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
555*0fca6ea1SDimitry Andric         {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
556*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
557*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
558*0fca6ea1SDimitry Andric         {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
559*0fca6ea1SDimitry Andric         {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
560*0fca6ea1SDimitry Andric         {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
561*0fca6ea1SDimitry Andric         {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
562*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 256, 1);
563*0fca6ea1SDimitry Andric   }
56406c3fb27SDimitry Andric   case X86::VMOVDQA32Zrm:
56506c3fb27SDimitry Andric   case X86::VMOVDQA64Zrm:
56606c3fb27SDimitry Andric   case X86::VMOVDQU32Zrm:
567*0fca6ea1SDimitry Andric   case X86::VMOVDQU64Zrm: {
568*0fca6ea1SDimitry Andric     FixupEntry Fixups[] = {
569*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
570*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
571*0fca6ea1SDimitry Andric         {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
572*0fca6ea1SDimitry Andric         {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
573*0fca6ea1SDimitry Andric         {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
574*0fca6ea1SDimitry Andric         {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
575*0fca6ea1SDimitry Andric         {X86::VBROADCASTI32X4rm, 1, 128, rebuildSplatCst},
576*0fca6ea1SDimitry Andric         {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
577*0fca6ea1SDimitry Andric         {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
578*0fca6ea1SDimitry Andric         {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
579*0fca6ea1SDimitry Andric         {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
580*0fca6ea1SDimitry Andric         {X86::VBROADCASTI64X4rm, 1, 256, rebuildSplatCst},
581*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
582*0fca6ea1SDimitry Andric         {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
583*0fca6ea1SDimitry Andric         {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
584*0fca6ea1SDimitry Andric         {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
585*0fca6ea1SDimitry Andric         {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
586*0fca6ea1SDimitry Andric         {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
587*0fca6ea1SDimitry Andric     return FixupConstant(Fixups, 512, 1);
588*0fca6ea1SDimitry Andric   }
58906c3fb27SDimitry Andric   }
59006c3fb27SDimitry Andric 
5915f757f3fSDimitry Andric   auto ConvertToBroadcastAVX512 = [&](unsigned OpSrc32, unsigned OpSrc64) {
59206c3fb27SDimitry Andric     unsigned OpBcst32 = 0, OpBcst64 = 0;
59306c3fb27SDimitry Andric     unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;
5945f757f3fSDimitry Andric     if (OpSrc32) {
5955f757f3fSDimitry Andric       if (const X86FoldTableEntry *Mem2Bcst =
596*0fca6ea1SDimitry Andric               llvm::lookupBroadcastFoldTableBySize(OpSrc32, 32)) {
59706c3fb27SDimitry Andric         OpBcst32 = Mem2Bcst->DstOp;
59806c3fb27SDimitry Andric         OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;
59906c3fb27SDimitry Andric       }
6005f757f3fSDimitry Andric     }
6015f757f3fSDimitry Andric     if (OpSrc64) {
6025f757f3fSDimitry Andric       if (const X86FoldTableEntry *Mem2Bcst =
603*0fca6ea1SDimitry Andric               llvm::lookupBroadcastFoldTableBySize(OpSrc64, 64)) {
60406c3fb27SDimitry Andric         OpBcst64 = Mem2Bcst->DstOp;
60506c3fb27SDimitry Andric         OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;
60606c3fb27SDimitry Andric       }
6075f757f3fSDimitry Andric     }
60806c3fb27SDimitry Andric     assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&
60906c3fb27SDimitry Andric            "OperandNo mismatch");
61006c3fb27SDimitry Andric 
61106c3fb27SDimitry Andric     if (OpBcst32 || OpBcst64) {
61206c3fb27SDimitry Andric       unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;
613*0fca6ea1SDimitry Andric       FixupEntry Fixups[] = {{(int)OpBcst32, 32, 32, rebuildSplatCst},
614*0fca6ea1SDimitry Andric                              {(int)OpBcst64, 64, 64, rebuildSplatCst}};
615*0fca6ea1SDimitry Andric       // TODO: Add support for RegBitWidth, but currently rebuildSplatCst
616*0fca6ea1SDimitry Andric       // doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
617*0fca6ea1SDimitry Andric       return FixupConstant(Fixups, 0, OpNo);
61806c3fb27SDimitry Andric     }
6195f757f3fSDimitry Andric     return false;
6205f757f3fSDimitry Andric   };
6215f757f3fSDimitry Andric 
6225f757f3fSDimitry Andric   // Attempt to find a AVX512 mapping from a full width memory-fold instruction
6235f757f3fSDimitry Andric   // to a broadcast-fold instruction variant.
6245f757f3fSDimitry Andric   if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
6255f757f3fSDimitry Andric     return ConvertToBroadcastAVX512(Opc, Opc);
6265f757f3fSDimitry Andric 
6275f757f3fSDimitry Andric   // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
6285f757f3fSDimitry Andric   // conversion to see if we can convert to a broadcasted (integer) logic op.
6295f757f3fSDimitry Andric   if (HasVLX && !HasDQI) {
6305f757f3fSDimitry Andric     unsigned OpSrc32 = 0, OpSrc64 = 0;
6315f757f3fSDimitry Andric     switch (Opc) {
6325f757f3fSDimitry Andric     case X86::VANDPDrm:
6335f757f3fSDimitry Andric     case X86::VANDPSrm:
6345f757f3fSDimitry Andric     case X86::VPANDrm:
6355f757f3fSDimitry Andric       OpSrc32 = X86 ::VPANDDZ128rm;
6365f757f3fSDimitry Andric       OpSrc64 = X86 ::VPANDQZ128rm;
6375f757f3fSDimitry Andric       break;
6385f757f3fSDimitry Andric     case X86::VANDPDYrm:
6395f757f3fSDimitry Andric     case X86::VANDPSYrm:
6405f757f3fSDimitry Andric     case X86::VPANDYrm:
6415f757f3fSDimitry Andric       OpSrc32 = X86 ::VPANDDZ256rm;
6425f757f3fSDimitry Andric       OpSrc64 = X86 ::VPANDQZ256rm;
6435f757f3fSDimitry Andric       break;
6445f757f3fSDimitry Andric     case X86::VANDNPDrm:
6455f757f3fSDimitry Andric     case X86::VANDNPSrm:
6465f757f3fSDimitry Andric     case X86::VPANDNrm:
6475f757f3fSDimitry Andric       OpSrc32 = X86 ::VPANDNDZ128rm;
6485f757f3fSDimitry Andric       OpSrc64 = X86 ::VPANDNQZ128rm;
6495f757f3fSDimitry Andric       break;
6505f757f3fSDimitry Andric     case X86::VANDNPDYrm:
6515f757f3fSDimitry Andric     case X86::VANDNPSYrm:
6525f757f3fSDimitry Andric     case X86::VPANDNYrm:
6535f757f3fSDimitry Andric       OpSrc32 = X86 ::VPANDNDZ256rm;
6545f757f3fSDimitry Andric       OpSrc64 = X86 ::VPANDNQZ256rm;
6555f757f3fSDimitry Andric       break;
6565f757f3fSDimitry Andric     case X86::VORPDrm:
6575f757f3fSDimitry Andric     case X86::VORPSrm:
6585f757f3fSDimitry Andric     case X86::VPORrm:
6595f757f3fSDimitry Andric       OpSrc32 = X86 ::VPORDZ128rm;
6605f757f3fSDimitry Andric       OpSrc64 = X86 ::VPORQZ128rm;
6615f757f3fSDimitry Andric       break;
6625f757f3fSDimitry Andric     case X86::VORPDYrm:
6635f757f3fSDimitry Andric     case X86::VORPSYrm:
6645f757f3fSDimitry Andric     case X86::VPORYrm:
6655f757f3fSDimitry Andric       OpSrc32 = X86 ::VPORDZ256rm;
6665f757f3fSDimitry Andric       OpSrc64 = X86 ::VPORQZ256rm;
6675f757f3fSDimitry Andric       break;
6685f757f3fSDimitry Andric     case X86::VXORPDrm:
6695f757f3fSDimitry Andric     case X86::VXORPSrm:
6705f757f3fSDimitry Andric     case X86::VPXORrm:
6715f757f3fSDimitry Andric       OpSrc32 = X86 ::VPXORDZ128rm;
6725f757f3fSDimitry Andric       OpSrc64 = X86 ::VPXORQZ128rm;
6735f757f3fSDimitry Andric       break;
6745f757f3fSDimitry Andric     case X86::VXORPDYrm:
6755f757f3fSDimitry Andric     case X86::VXORPSYrm:
6765f757f3fSDimitry Andric     case X86::VPXORYrm:
6775f757f3fSDimitry Andric       OpSrc32 = X86 ::VPXORDZ256rm;
6785f757f3fSDimitry Andric       OpSrc64 = X86 ::VPXORQZ256rm;
6795f757f3fSDimitry Andric       break;
6805f757f3fSDimitry Andric     }
6815f757f3fSDimitry Andric     if (OpSrc32 || OpSrc64)
6825f757f3fSDimitry Andric       return ConvertToBroadcastAVX512(OpSrc32, OpSrc64);
68306c3fb27SDimitry Andric   }
68406c3fb27SDimitry Andric 
68506c3fb27SDimitry Andric   return false;
68606c3fb27SDimitry Andric }
68706c3fb27SDimitry Andric 
68806c3fb27SDimitry Andric bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
68906c3fb27SDimitry Andric   LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
69006c3fb27SDimitry Andric   bool Changed = false;
69106c3fb27SDimitry Andric   ST = &MF.getSubtarget<X86Subtarget>();
69206c3fb27SDimitry Andric   TII = ST->getInstrInfo();
69306c3fb27SDimitry Andric   SM = &ST->getSchedModel();
69406c3fb27SDimitry Andric 
69506c3fb27SDimitry Andric   for (MachineBasicBlock &MBB : MF) {
69606c3fb27SDimitry Andric     for (MachineInstr &MI : MBB) {
69706c3fb27SDimitry Andric       if (processInstruction(MF, MBB, MI)) {
69806c3fb27SDimitry Andric         ++NumInstChanges;
69906c3fb27SDimitry Andric         Changed = true;
70006c3fb27SDimitry Andric       }
70106c3fb27SDimitry Andric     }
70206c3fb27SDimitry Andric   }
70306c3fb27SDimitry Andric   LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
70406c3fb27SDimitry Andric   return Changed;
70506c3fb27SDimitry Andric }
706