10b57cec5SDimitry Andric //===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric /// \file 90b57cec5SDimitry Andric /// This file defines the pass that looks through the machine instructions 100b57cec5SDimitry Andric /// late in the compilation, and finds byte or word instructions that 110b57cec5SDimitry Andric /// can be profitably replaced with 32 bit instructions that give equivalent 120b57cec5SDimitry Andric /// results for the bits of the results that are used. There are two possible 130b57cec5SDimitry Andric /// reasons to do this. 140b57cec5SDimitry Andric /// 150b57cec5SDimitry Andric /// One reason is to avoid false-dependences on the upper portions 160b57cec5SDimitry Andric /// of the registers. Only instructions that have a destination register 170b57cec5SDimitry Andric /// which is not in any of the source registers can be affected by this. 180b57cec5SDimitry Andric /// Any instruction where one of the source registers is also the destination 190b57cec5SDimitry Andric /// register is unaffected, because it has a true dependence on the source 200b57cec5SDimitry Andric /// register already. So, this consideration primarily affects load 210b57cec5SDimitry Andric /// instructions and register-to-register moves. It would 220b57cec5SDimitry Andric /// seem like cmov(s) would also be affected, but because of the way cmov is 230b57cec5SDimitry Andric /// really implemented by most machines as reading both the destination and 240b57cec5SDimitry Andric /// and source registers, and then "merging" the two based on a condition, 250b57cec5SDimitry Andric /// it really already should be considered as having a true dependence on the 260b57cec5SDimitry Andric /// destination register as well. 270b57cec5SDimitry Andric /// 280b57cec5SDimitry Andric /// The other reason to do this is for potential code size savings. Word 290b57cec5SDimitry Andric /// operations need an extra override byte compared to their 32 bit 300b57cec5SDimitry Andric /// versions. So this can convert many word operations to their larger 310b57cec5SDimitry Andric /// size, saving a byte in encoding. This could introduce partial register 320b57cec5SDimitry Andric /// dependences where none existed however. As an example take: 330b57cec5SDimitry Andric /// orw ax, $0x1000 340b57cec5SDimitry Andric /// addw ax, $3 350b57cec5SDimitry Andric /// now if this were to get transformed into 360b57cec5SDimitry Andric /// orw ax, $1000 370b57cec5SDimitry Andric /// addl eax, $3 380b57cec5SDimitry Andric /// because the addl encodes shorter than the addw, this would introduce 390b57cec5SDimitry Andric /// a use of a register that was only partially written earlier. On older 400b57cec5SDimitry Andric /// Intel processors this can be quite a performance penalty, so this should 410b57cec5SDimitry Andric /// probably only be done when it can be proven that a new partial dependence 420b57cec5SDimitry Andric /// wouldn't be created, or when your know a newer processor is being 430b57cec5SDimitry Andric /// targeted, or when optimizing for minimum code size. 440b57cec5SDimitry Andric /// 450b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 460b57cec5SDimitry Andric 470b57cec5SDimitry Andric #include "X86.h" 480b57cec5SDimitry Andric #include "X86InstrInfo.h" 490b57cec5SDimitry Andric #include "X86Subtarget.h" 500b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h" 51480093f4SDimitry Andric #include "llvm/Analysis/ProfileSummaryInfo.h" 52480093f4SDimitry Andric #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" 535f757f3fSDimitry Andric #include "llvm/CodeGen/LiveRegUnits.h" 540b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h" 550b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 560b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 57480093f4SDimitry Andric #include "llvm/CodeGen/MachineSizeOpts.h" 580b57cec5SDimitry Andric #include "llvm/CodeGen/Passes.h" 590b57cec5SDimitry Andric #include "llvm/CodeGen/TargetInstrInfo.h" 600b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 610b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 620b57cec5SDimitry Andric using namespace llvm; 630b57cec5SDimitry Andric 640b57cec5SDimitry Andric #define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup" 650b57cec5SDimitry Andric #define FIXUPBW_NAME "x86-fixup-bw-insts" 660b57cec5SDimitry Andric 670b57cec5SDimitry Andric #define DEBUG_TYPE FIXUPBW_NAME 680b57cec5SDimitry Andric 690b57cec5SDimitry Andric // Option to allow this optimization pass to have fine-grained control. 700b57cec5SDimitry Andric static cl::opt<bool> 710b57cec5SDimitry Andric FixupBWInsts("fixup-byte-word-insts", 720b57cec5SDimitry Andric cl::desc("Change byte and word instructions to larger sizes"), 730b57cec5SDimitry Andric cl::init(true), cl::Hidden); 740b57cec5SDimitry Andric 750b57cec5SDimitry Andric namespace { 760b57cec5SDimitry Andric class FixupBWInstPass : public MachineFunctionPass { 770b57cec5SDimitry Andric /// Loop over all of the instructions in the basic block replacing applicable 780b57cec5SDimitry Andric /// byte or word instructions with better alternatives. 790b57cec5SDimitry Andric void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); 800b57cec5SDimitry Andric 815f757f3fSDimitry Andric /// This returns the 32 bit super reg of the original destination register of 825f757f3fSDimitry Andric /// the MachineInstr passed in, if that super register is dead just prior to 835f757f3fSDimitry Andric /// \p OrigMI. Otherwise it returns Register(). 845f757f3fSDimitry Andric Register getSuperRegDestIfDead(MachineInstr *OrigMI) const; 850b57cec5SDimitry Andric 860b57cec5SDimitry Andric /// Change the MachineInstr \p MI into the equivalent extending load to 32 bit 870b57cec5SDimitry Andric /// register if it is safe to do so. Return the replacement instruction if 880b57cec5SDimitry Andric /// OK, otherwise return nullptr. 890b57cec5SDimitry Andric MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const; 900b57cec5SDimitry Andric 910b57cec5SDimitry Andric /// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is 920b57cec5SDimitry Andric /// safe to do so. Return the replacement instruction if OK, otherwise return 930b57cec5SDimitry Andric /// nullptr. 940b57cec5SDimitry Andric MachineInstr *tryReplaceCopy(MachineInstr *MI) const; 950b57cec5SDimitry Andric 968bcb0991SDimitry Andric /// Change the MachineInstr \p MI into the equivalent extend to 32 bit 978bcb0991SDimitry Andric /// register if it is safe to do so. Return the replacement instruction if 988bcb0991SDimitry Andric /// OK, otherwise return nullptr. 998bcb0991SDimitry Andric MachineInstr *tryReplaceExtend(unsigned New32BitOpcode, 1008bcb0991SDimitry Andric MachineInstr *MI) const; 1018bcb0991SDimitry Andric 1020b57cec5SDimitry Andric // Change the MachineInstr \p MI into an eqivalent 32 bit instruction if 1030b57cec5SDimitry Andric // possible. Return the replacement instruction if OK, return nullptr 1040b57cec5SDimitry Andric // otherwise. 1050b57cec5SDimitry Andric MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const; 1060b57cec5SDimitry Andric 1070b57cec5SDimitry Andric public: 1080b57cec5SDimitry Andric static char ID; 1090b57cec5SDimitry Andric 1100b57cec5SDimitry Andric StringRef getPassName() const override { return FIXUPBW_DESC; } 1110b57cec5SDimitry Andric 1120b57cec5SDimitry Andric FixupBWInstPass() : MachineFunctionPass(ID) { } 1130b57cec5SDimitry Andric 1140b57cec5SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 115480093f4SDimitry Andric AU.addRequired<ProfileSummaryInfoWrapperPass>(); 116480093f4SDimitry Andric AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); 1170b57cec5SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 1180b57cec5SDimitry Andric } 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric /// Loop over all of the basic blocks, replacing byte and word instructions by 1210b57cec5SDimitry Andric /// equivalent 32 bit instructions where performance or code size can be 1220b57cec5SDimitry Andric /// improved. 1230b57cec5SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 1240b57cec5SDimitry Andric 1250b57cec5SDimitry Andric MachineFunctionProperties getRequiredProperties() const override { 1260b57cec5SDimitry Andric return MachineFunctionProperties().set( 1270b57cec5SDimitry Andric MachineFunctionProperties::Property::NoVRegs); 1280b57cec5SDimitry Andric } 1290b57cec5SDimitry Andric 1300b57cec5SDimitry Andric private: 131480093f4SDimitry Andric MachineFunction *MF = nullptr; 1320b57cec5SDimitry Andric 1330b57cec5SDimitry Andric /// Machine instruction info used throughout the class. 134480093f4SDimitry Andric const X86InstrInfo *TII = nullptr; 1350b57cec5SDimitry Andric 136fe6060f1SDimitry Andric const TargetRegisterInfo *TRI = nullptr; 137fe6060f1SDimitry Andric 1380b57cec5SDimitry Andric /// Local member for function's OptForSize attribute. 139480093f4SDimitry Andric bool OptForSize = false; 1400b57cec5SDimitry Andric 1410b57cec5SDimitry Andric /// Register Liveness information after the current instruction. 1425f757f3fSDimitry Andric LiveRegUnits LiveUnits; 143480093f4SDimitry Andric 14406c3fb27SDimitry Andric ProfileSummaryInfo *PSI = nullptr; 14506c3fb27SDimitry Andric MachineBlockFrequencyInfo *MBFI = nullptr; 1460b57cec5SDimitry Andric }; 1470b57cec5SDimitry Andric char FixupBWInstPass::ID = 0; 1480b57cec5SDimitry Andric } 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false) 1510b57cec5SDimitry Andric 1520b57cec5SDimitry Andric FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); } 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) { 1550b57cec5SDimitry Andric if (!FixupBWInsts || skipFunction(MF.getFunction())) 1560b57cec5SDimitry Andric return false; 1570b57cec5SDimitry Andric 1580b57cec5SDimitry Andric this->MF = &MF; 1590b57cec5SDimitry Andric TII = MF.getSubtarget<X86Subtarget>().getInstrInfo(); 160fe6060f1SDimitry Andric TRI = MF.getRegInfo().getTargetRegisterInfo(); 161480093f4SDimitry Andric PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 162480093f4SDimitry Andric MBFI = (PSI && PSI->hasProfileSummary()) ? 163480093f4SDimitry Andric &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() : 164480093f4SDimitry Andric nullptr; 1655f757f3fSDimitry Andric LiveUnits.init(TII->getRegisterInfo()); 1660b57cec5SDimitry Andric 1670b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";); 1680b57cec5SDimitry Andric 1690b57cec5SDimitry Andric // Process all basic blocks. 1700b57cec5SDimitry Andric for (auto &MBB : MF) 1710b57cec5SDimitry Andric processBasicBlock(MF, MBB); 1720b57cec5SDimitry Andric 1730b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";); 1740b57cec5SDimitry Andric 1750b57cec5SDimitry Andric return true; 1760b57cec5SDimitry Andric } 1770b57cec5SDimitry Andric 1780b57cec5SDimitry Andric /// Check if after \p OrigMI the only portion of super register 1790b57cec5SDimitry Andric /// of the destination register of \p OrigMI that is alive is that 1800b57cec5SDimitry Andric /// destination register. 1810b57cec5SDimitry Andric /// 1820b57cec5SDimitry Andric /// If so, return that super register in \p SuperDestReg. 1835f757f3fSDimitry Andric Register FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI) const { 184e8d8bef9SDimitry Andric const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 1858bcb0991SDimitry Andric Register OrigDestReg = OrigMI->getOperand(0).getReg(); 1865f757f3fSDimitry Andric Register SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32); 18706c3fb27SDimitry Andric assert(SuperDestReg.isValid() && "Invalid Operand"); 1880b57cec5SDimitry Andric 1890b57cec5SDimitry Andric const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg); 1900b57cec5SDimitry Andric 1910b57cec5SDimitry Andric // Make sure that the sub-register that this instruction has as its 1920b57cec5SDimitry Andric // destination is the lowest order sub-register of the super-register. 1930b57cec5SDimitry Andric // If it isn't, then the register isn't really dead even if the 1940b57cec5SDimitry Andric // super-register is considered dead. 1950b57cec5SDimitry Andric if (SubRegIdx == X86::sub_8bit_hi) 1965f757f3fSDimitry Andric return Register(); 1970b57cec5SDimitry Andric 1985f757f3fSDimitry Andric // Test all regunits of the super register that are not part of the 1995f757f3fSDimitry Andric // sub register. If none of them are live then the super register is safe to 2005f757f3fSDimitry Andric // use. 2015f757f3fSDimitry Andric bool SuperIsLive = false; 2025f757f3fSDimitry Andric auto Range = TRI->regunits(OrigDestReg); 2035f757f3fSDimitry Andric MCRegUnitIterator I = Range.begin(), E = Range.end(); 2045f757f3fSDimitry Andric for (MCRegUnit S : TRI->regunits(SuperDestReg)) { 2055f757f3fSDimitry Andric I = std::lower_bound(I, E, S); 2065f757f3fSDimitry Andric if ((I == E || *I > S) && LiveUnits.getBitVector().test(S)) { 2075f757f3fSDimitry Andric SuperIsLive = true; 2085f757f3fSDimitry Andric break; 2090b57cec5SDimitry Andric } 2105f757f3fSDimitry Andric } 2115f757f3fSDimitry Andric if (!SuperIsLive) 2125f757f3fSDimitry Andric return SuperDestReg; 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric // If we get here, the super-register destination (or some part of it) is 2150b57cec5SDimitry Andric // marked as live after the original instruction. 2160b57cec5SDimitry Andric // 2170b57cec5SDimitry Andric // The X86 backend does not have subregister liveness tracking enabled, 2180b57cec5SDimitry Andric // so liveness information might be overly conservative. Specifically, the 2190b57cec5SDimitry Andric // super register might be marked as live because it is implicitly defined 2200b57cec5SDimitry Andric // by the instruction we are examining. 2210b57cec5SDimitry Andric // 2220b57cec5SDimitry Andric // However, for some specific instructions (this pass only cares about MOVs) 2230b57cec5SDimitry Andric // we can produce more precise results by analysing that MOV's operands. 2240b57cec5SDimitry Andric // 2250b57cec5SDimitry Andric // Indeed, if super-register is not live before the mov it means that it 2260b57cec5SDimitry Andric // was originally <read-undef> and so we are free to modify these 2270b57cec5SDimitry Andric // undef upper bits. That may happen in case where the use is in another MBB 2280b57cec5SDimitry Andric // and the vreg/physreg corresponding to the move has higher width than 2290b57cec5SDimitry Andric // necessary (e.g. due to register coalescing with a "truncate" copy). 2300b57cec5SDimitry Andric // So, we would like to handle patterns like this: 2310b57cec5SDimitry Andric // 2320b57cec5SDimitry Andric // %bb.2: derived from LLVM BB %if.then 2330b57cec5SDimitry Andric // Live Ins: %rdi 2340b57cec5SDimitry Andric // Predecessors according to CFG: %bb.0 2350b57cec5SDimitry Andric // %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax 2360b57cec5SDimitry Andric // ; No implicit %eax 2370b57cec5SDimitry Andric // Successors according to CFG: %bb.3(?%) 2380b57cec5SDimitry Andric // 2390b57cec5SDimitry Andric // %bb.3: derived from LLVM BB %if.end 2400b57cec5SDimitry Andric // Live Ins: %eax Only %ax is actually live 2410b57cec5SDimitry Andric // Predecessors according to CFG: %bb.2 %bb.1 2420b57cec5SDimitry Andric // %ax = KILL %ax, implicit killed %eax 2430b57cec5SDimitry Andric // RET 0, %ax 244*0fca6ea1SDimitry Andric unsigned Opc = OrigMI->getOpcode(); 2458bcb0991SDimitry Andric // These are the opcodes currently known to work with the code below, if 2468bcb0991SDimitry Andric // something // else will be added we need to ensure that new opcode has the 2478bcb0991SDimitry Andric // same properties. 2488bcb0991SDimitry Andric if (Opc != X86::MOV8rm && Opc != X86::MOV16rm && Opc != X86::MOV8rr && 2498bcb0991SDimitry Andric Opc != X86::MOV16rr) 2505f757f3fSDimitry Andric return Register(); 2510b57cec5SDimitry Andric 2520b57cec5SDimitry Andric bool IsDefined = false; 2530b57cec5SDimitry Andric for (auto &MO: OrigMI->implicit_operands()) { 2540b57cec5SDimitry Andric if (!MO.isReg()) 2550b57cec5SDimitry Andric continue; 2560b57cec5SDimitry Andric 2570b57cec5SDimitry Andric if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg())) 2580b57cec5SDimitry Andric IsDefined = true; 2590b57cec5SDimitry Andric 2600b57cec5SDimitry Andric // If MO is a use of any part of the destination register but is not equal 2610b57cec5SDimitry Andric // to OrigDestReg or one of its subregisters, we cannot use SuperDestReg. 2620b57cec5SDimitry Andric // For example, if OrigDestReg is %al then an implicit use of %ah, %ax, 2630b57cec5SDimitry Andric // %eax, or %rax will prevent us from using the %eax register. 2640b57cec5SDimitry Andric if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) && 2650b57cec5SDimitry Andric TRI->regsOverlap(SuperDestReg, MO.getReg())) 2665f757f3fSDimitry Andric return Register(); 2670b57cec5SDimitry Andric } 2680b57cec5SDimitry Andric // Reg is not Imp-def'ed -> it's live both before/after the instruction. 2690b57cec5SDimitry Andric if (!IsDefined) 2705f757f3fSDimitry Andric return Register(); 2710b57cec5SDimitry Andric 2720b57cec5SDimitry Andric // Otherwise, the Reg is not live before the MI and the MOV can't 2730b57cec5SDimitry Andric // make it really live, so it's in fact dead even after the MI. 2745f757f3fSDimitry Andric return SuperDestReg; 2750b57cec5SDimitry Andric } 2760b57cec5SDimitry Andric 2770b57cec5SDimitry Andric MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode, 2780b57cec5SDimitry Andric MachineInstr *MI) const { 2790b57cec5SDimitry Andric // We are going to try to rewrite this load to a larger zero-extending 2800b57cec5SDimitry Andric // load. This is safe if all portions of the 32 bit super-register 2810b57cec5SDimitry Andric // of the original destination register, except for the original destination 2820b57cec5SDimitry Andric // register are dead. getSuperRegDestIfDead checks that. 2835f757f3fSDimitry Andric Register NewDestReg = getSuperRegDestIfDead(MI); 2845f757f3fSDimitry Andric if (!NewDestReg) 2850b57cec5SDimitry Andric return nullptr; 2860b57cec5SDimitry Andric 2870b57cec5SDimitry Andric // Safe to change the instruction. 2880b57cec5SDimitry Andric MachineInstrBuilder MIB = 28906c3fb27SDimitry Andric BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 2900b57cec5SDimitry Andric 2910b57cec5SDimitry Andric unsigned NumArgs = MI->getNumOperands(); 2920b57cec5SDimitry Andric for (unsigned i = 1; i < NumArgs; ++i) 2930b57cec5SDimitry Andric MIB.add(MI->getOperand(i)); 2940b57cec5SDimitry Andric 2950b57cec5SDimitry Andric MIB.setMemRefs(MI->memoperands()); 2960b57cec5SDimitry Andric 297fe6060f1SDimitry Andric // If it was debug tracked, record a substitution. 298fe6060f1SDimitry Andric if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 299fe6060f1SDimitry Andric unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 300fe6060f1SDimitry Andric MI->getOperand(0).getReg()); 301fe6060f1SDimitry Andric unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 302fe6060f1SDimitry Andric MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 303fe6060f1SDimitry Andric } 304fe6060f1SDimitry Andric 3050b57cec5SDimitry Andric return MIB; 3060b57cec5SDimitry Andric } 3070b57cec5SDimitry Andric 3080b57cec5SDimitry Andric MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const { 3090b57cec5SDimitry Andric assert(MI->getNumExplicitOperands() == 2); 3100b57cec5SDimitry Andric auto &OldDest = MI->getOperand(0); 3110b57cec5SDimitry Andric auto &OldSrc = MI->getOperand(1); 3120b57cec5SDimitry Andric 3135f757f3fSDimitry Andric Register NewDestReg = getSuperRegDestIfDead(MI); 3145f757f3fSDimitry Andric if (!NewDestReg) 3150b57cec5SDimitry Andric return nullptr; 3160b57cec5SDimitry Andric 3178bcb0991SDimitry Andric Register NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32); 31806c3fb27SDimitry Andric assert(NewSrcReg.isValid() && "Invalid Operand"); 3190b57cec5SDimitry Andric 3200b57cec5SDimitry Andric // This is only correct if we access the same subregister index: otherwise, 3210b57cec5SDimitry Andric // we could try to replace "movb %ah, %al" with "movl %eax, %eax". 322e8d8bef9SDimitry Andric const X86RegisterInfo *TRI = &TII->getRegisterInfo(); 3230b57cec5SDimitry Andric if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) != 3240b57cec5SDimitry Andric TRI->getSubRegIndex(NewDestReg, OldDest.getReg())) 3250b57cec5SDimitry Andric return nullptr; 3260b57cec5SDimitry Andric 3270b57cec5SDimitry Andric // Safe to change the instruction. 3280b57cec5SDimitry Andric // Don't set src flags, as we don't know if we're also killing the superreg. 3290b57cec5SDimitry Andric // However, the superregister might not be defined; make it explicit that 3300b57cec5SDimitry Andric // we don't care about the higher bits by reading it as Undef, and adding 3310b57cec5SDimitry Andric // an imp-use on the original subregister. 3320b57cec5SDimitry Andric MachineInstrBuilder MIB = 33306c3fb27SDimitry Andric BuildMI(*MF, MIMetadata(*MI), TII->get(X86::MOV32rr), NewDestReg) 3340b57cec5SDimitry Andric .addReg(NewSrcReg, RegState::Undef) 3350b57cec5SDimitry Andric .addReg(OldSrc.getReg(), RegState::Implicit); 3360b57cec5SDimitry Andric 3370b57cec5SDimitry Andric // Drop imp-defs/uses that would be redundant with the new def/use. 3380b57cec5SDimitry Andric for (auto &Op : MI->implicit_operands()) 3390b57cec5SDimitry Andric if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg)) 3400b57cec5SDimitry Andric MIB.add(Op); 3410b57cec5SDimitry Andric 3420b57cec5SDimitry Andric return MIB; 3430b57cec5SDimitry Andric } 3440b57cec5SDimitry Andric 3458bcb0991SDimitry Andric MachineInstr *FixupBWInstPass::tryReplaceExtend(unsigned New32BitOpcode, 3468bcb0991SDimitry Andric MachineInstr *MI) const { 3475f757f3fSDimitry Andric Register NewDestReg = getSuperRegDestIfDead(MI); 3485f757f3fSDimitry Andric if (!NewDestReg) 3498bcb0991SDimitry Andric return nullptr; 3508bcb0991SDimitry Andric 3518bcb0991SDimitry Andric // Don't interfere with formation of CBW instructions which should be a 3525ffd83dbSDimitry Andric // shorter encoding than even the MOVSX32rr8. It's also immune to partial 3538bcb0991SDimitry Andric // merge issues on Intel CPUs. 3548bcb0991SDimitry Andric if (MI->getOpcode() == X86::MOVSX16rr8 && 3558bcb0991SDimitry Andric MI->getOperand(0).getReg() == X86::AX && 3568bcb0991SDimitry Andric MI->getOperand(1).getReg() == X86::AL) 3578bcb0991SDimitry Andric return nullptr; 3588bcb0991SDimitry Andric 3598bcb0991SDimitry Andric // Safe to change the instruction. 3608bcb0991SDimitry Andric MachineInstrBuilder MIB = 36106c3fb27SDimitry Andric BuildMI(*MF, MIMetadata(*MI), TII->get(New32BitOpcode), NewDestReg); 3628bcb0991SDimitry Andric 3638bcb0991SDimitry Andric unsigned NumArgs = MI->getNumOperands(); 3648bcb0991SDimitry Andric for (unsigned i = 1; i < NumArgs; ++i) 3658bcb0991SDimitry Andric MIB.add(MI->getOperand(i)); 3668bcb0991SDimitry Andric 3678bcb0991SDimitry Andric MIB.setMemRefs(MI->memoperands()); 3688bcb0991SDimitry Andric 369fe6060f1SDimitry Andric if (unsigned OldInstrNum = MI->peekDebugInstrNum()) { 370fe6060f1SDimitry Andric unsigned Subreg = TRI->getSubRegIndex(MIB->getOperand(0).getReg(), 371fe6060f1SDimitry Andric MI->getOperand(0).getReg()); 372fe6060f1SDimitry Andric unsigned NewInstrNum = MIB->getDebugInstrNum(*MF); 373fe6060f1SDimitry Andric MF->makeDebugValueSubstitution({OldInstrNum, 0}, {NewInstrNum, 0}, Subreg); 374fe6060f1SDimitry Andric } 375fe6060f1SDimitry Andric 3768bcb0991SDimitry Andric return MIB; 3778bcb0991SDimitry Andric } 3788bcb0991SDimitry Andric 3790b57cec5SDimitry Andric MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI, 3800b57cec5SDimitry Andric MachineBasicBlock &MBB) const { 3810b57cec5SDimitry Andric // See if this is an instruction of the type we are currently looking for. 3820b57cec5SDimitry Andric switch (MI->getOpcode()) { 3830b57cec5SDimitry Andric 3840b57cec5SDimitry Andric case X86::MOV8rm: 385fcaf7f86SDimitry Andric // Replace 8-bit loads with the zero-extending version if not optimizing 386fcaf7f86SDimitry Andric // for size. The extending op is cheaper across a wide range of uarch and 387fcaf7f86SDimitry Andric // it avoids a potentially expensive partial register stall. It takes an 388fcaf7f86SDimitry Andric // extra byte to encode, however, so don't do this when optimizing for size. 389fcaf7f86SDimitry Andric if (!OptForSize) 3900b57cec5SDimitry Andric return tryReplaceLoad(X86::MOVZX32rm8, MI); 3910b57cec5SDimitry Andric break; 3920b57cec5SDimitry Andric 3930b57cec5SDimitry Andric case X86::MOV16rm: 3940b57cec5SDimitry Andric // Always try to replace 16 bit load with 32 bit zero extending. 3950b57cec5SDimitry Andric // Code size is the same, and there is sometimes a perf advantage 3960b57cec5SDimitry Andric // from eliminating a false dependence on the upper portion of 3970b57cec5SDimitry Andric // the register. 3980b57cec5SDimitry Andric return tryReplaceLoad(X86::MOVZX32rm16, MI); 3990b57cec5SDimitry Andric 4000b57cec5SDimitry Andric case X86::MOV8rr: 4010b57cec5SDimitry Andric case X86::MOV16rr: 4020b57cec5SDimitry Andric // Always try to replace 8/16 bit copies with a 32 bit copy. 4030b57cec5SDimitry Andric // Code size is either less (16) or equal (8), and there is sometimes a 4040b57cec5SDimitry Andric // perf advantage from eliminating a false dependence on the upper portion 4050b57cec5SDimitry Andric // of the register. 4060b57cec5SDimitry Andric return tryReplaceCopy(MI); 4070b57cec5SDimitry Andric 4088bcb0991SDimitry Andric case X86::MOVSX16rr8: 4098bcb0991SDimitry Andric return tryReplaceExtend(X86::MOVSX32rr8, MI); 4108bcb0991SDimitry Andric case X86::MOVSX16rm8: 4118bcb0991SDimitry Andric return tryReplaceExtend(X86::MOVSX32rm8, MI); 4128bcb0991SDimitry Andric case X86::MOVZX16rr8: 4138bcb0991SDimitry Andric return tryReplaceExtend(X86::MOVZX32rr8, MI); 4148bcb0991SDimitry Andric case X86::MOVZX16rm8: 4158bcb0991SDimitry Andric return tryReplaceExtend(X86::MOVZX32rm8, MI); 4168bcb0991SDimitry Andric 4170b57cec5SDimitry Andric default: 4180b57cec5SDimitry Andric // nothing to do here. 4190b57cec5SDimitry Andric break; 4200b57cec5SDimitry Andric } 4210b57cec5SDimitry Andric 4220b57cec5SDimitry Andric return nullptr; 4230b57cec5SDimitry Andric } 4240b57cec5SDimitry Andric 4250b57cec5SDimitry Andric void FixupBWInstPass::processBasicBlock(MachineFunction &MF, 4260b57cec5SDimitry Andric MachineBasicBlock &MBB) { 4270b57cec5SDimitry Andric 4280b57cec5SDimitry Andric // This algorithm doesn't delete the instructions it is replacing 4290b57cec5SDimitry Andric // right away. By leaving the existing instructions in place, the 4300b57cec5SDimitry Andric // register liveness information doesn't change, and this makes the 4310b57cec5SDimitry Andric // analysis that goes on be better than if the replaced instructions 4320b57cec5SDimitry Andric // were immediately removed. 4330b57cec5SDimitry Andric // 4340b57cec5SDimitry Andric // This algorithm always creates a replacement instruction 4350b57cec5SDimitry Andric // and notes that and the original in a data structure, until the 4360b57cec5SDimitry Andric // whole BB has been analyzed. This keeps the replacement instructions 4370b57cec5SDimitry Andric // from making it seem as if the larger register might be live. 4380b57cec5SDimitry Andric SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements; 4390b57cec5SDimitry Andric 4400b57cec5SDimitry Andric // Start computing liveness for this block. We iterate from the end to be able 4410b57cec5SDimitry Andric // to update this for each instruction. 4425f757f3fSDimitry Andric LiveUnits.clear(); 4430b57cec5SDimitry Andric // We run after PEI, so we need to AddPristinesAndCSRs. 4445f757f3fSDimitry Andric LiveUnits.addLiveOuts(MBB); 4450b57cec5SDimitry Andric 446480093f4SDimitry Andric OptForSize = MF.getFunction().hasOptSize() || 447480093f4SDimitry Andric llvm::shouldOptimizeForSize(&MBB, PSI, MBFI); 448480093f4SDimitry Andric 4490eae32dcSDimitry Andric for (MachineInstr &MI : llvm::reverse(MBB)) { 4500eae32dcSDimitry Andric if (MachineInstr *NewMI = tryReplaceInstr(&MI, MBB)) 4510eae32dcSDimitry Andric MIReplacements.push_back(std::make_pair(&MI, NewMI)); 4520b57cec5SDimitry Andric 4530b57cec5SDimitry Andric // We're done with this instruction, update liveness for the next one. 4545f757f3fSDimitry Andric LiveUnits.stepBackward(MI); 4550b57cec5SDimitry Andric } 4560b57cec5SDimitry Andric 4570b57cec5SDimitry Andric while (!MIReplacements.empty()) { 4580b57cec5SDimitry Andric MachineInstr *MI = MIReplacements.back().first; 4590b57cec5SDimitry Andric MachineInstr *NewMI = MIReplacements.back().second; 4600b57cec5SDimitry Andric MIReplacements.pop_back(); 4610b57cec5SDimitry Andric MBB.insert(MI, NewMI); 4620b57cec5SDimitry Andric MBB.erase(MI); 4630b57cec5SDimitry Andric } 4640b57cec5SDimitry Andric } 465