xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyLowerEmscriptenEHSjLj.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file lowers exception-related instructions and setjmp/longjmp
11 /// function calls in order to use Emscripten's JavaScript try and catch
12 /// mechanism.
13 ///
14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
15 /// try and catch syntax and relevant exception-related libraries implemented
16 /// in JavaScript glue code that will be produced by Emscripten. This is similar
17 /// to the current Emscripten asm.js exception handling in fastcomp. For
18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
19 /// (Location: https://github.com/kripken/emscripten-fastcomp)
20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
22 /// lib/Target/JSBackend/JSBackend.cpp
23 /// lib/Target/JSBackend/CallHandlers.h
24 ///
25 /// * Exception handling
26 /// This pass lowers invokes and landingpads into library functions in JS glue
27 /// code. Invokes are lowered into function wrappers called invoke wrappers that
28 /// exist in JS side, which wraps the original function call with JS try-catch.
29 /// If an exception occurred, cxa_throw() function in JS side sets some
30 /// variables (see below) so we can check whether an exception occurred from
31 /// wasm code and handle it appropriately.
32 ///
33 /// * Setjmp-longjmp handling
34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
35 /// The idea is that each block with a setjmp is broken up into two parts: the
36 /// part containing setjmp and the part right after the setjmp. The latter part
37 /// is either reached from the setjmp, or later from a longjmp. To handle the
38 /// longjmp, all calls that might longjmp are also called using invoke wrappers
39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
40 /// we can check / whether a longjmp occurred from wasm code. Each block with a
41 /// function call that might longjmp is also split up after the longjmp call.
42 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
43 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
44 /// We assume setjmp-longjmp handling always run after EH handling, which means
45 /// we don't expect any exception-related instructions when SjLj runs.
46 /// FIXME Currently this scheme does not support indirect call of setjmp,
47 /// because of the limitation of the scheme itself. fastcomp does not support it
48 /// either.
49 ///
50 /// In detail, this pass does following things:
51 ///
52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
53 ///    __THREW__ and __threwValue will be set in invoke wrappers
54 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
55 ///    variables are used for both exceptions and setjmp/longjmps.
56 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
57 ///    means nothing occurred, 1 means an exception occurred, and other numbers
58 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
59 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
60 ///
61 /// * Exception handling
62 ///
63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
64 ///    at link time.
65 ///    The global variables in 1) will exist in wasm address space,
66 ///    but their values should be set in JS code, so these functions
67 ///    as interfaces to JS glue code. These functions are equivalent to the
68 ///    following JS functions, which actually exist in asm.js version of JS
69 ///    library.
70 ///
71 ///    function setThrew(threw, value) {
72 ///      if (__THREW__ == 0) {
73 ///        __THREW__ = threw;
74 ///        __threwValue = value;
75 ///      }
76 ///    }
77 //
78 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
79 ///
80 ///    In exception handling, getTempRet0 indicates the type of an exception
81 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
82 ///    function.
83 ///
84 /// 3) Lower
85 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
86 ///    into
87 ///      __THREW__ = 0;
88 ///      call @__invoke_SIG(func, arg1, arg2)
89 ///      %__THREW__.val = __THREW__;
90 ///      __THREW__ = 0;
91 ///      if (%__THREW__.val == 1)
92 ///        goto %lpad
93 ///      else
94 ///         goto %invoke.cont
95 ///    SIG is a mangled string generated based on the LLVM IR-level function
96 ///    signature. After LLVM IR types are lowered to the target wasm types,
97 ///    the names for these wrappers will change based on wasm types as well,
98 ///    as in invoke_vi (function takes an int and returns void). The bodies of
99 ///    these wrappers will be generated in JS glue code, and inside those
100 ///    wrappers we use JS try-catch to generate actual exception effects. It
101 ///    also calls the original callee function. An example wrapper in JS code
102 ///    would look like this:
103 ///      function invoke_vi(index,a1) {
104 ///        try {
105 ///          Module["dynCall_vi"](index,a1); // This calls original callee
106 ///        } catch(e) {
107 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
108 ///          asm["setThrew"](1, 0); // setThrew is called here
109 ///        }
110 ///      }
111 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
112 ///    so we can jump to the right BB based on this value.
113 ///
114 /// 4) Lower
115 ///      %val = landingpad catch c1 catch c2 catch c3 ...
116 ///      ... use %val ...
117 ///    into
118 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
119 ///      %val = {%fmc, getTempRet0()}
120 ///      ... use %val ...
121 ///    Here N is a number calculated based on the number of clauses.
122 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
123 ///
124 /// 5) Lower
125 ///      resume {%a, %b}
126 ///    into
127 ///      call @__resumeException(%a)
128 ///    where __resumeException() is a function in JS glue code.
129 ///
130 /// 6) Lower
131 ///      call @llvm.eh.typeid.for(type) (intrinsic)
132 ///    into
133 ///      call @llvm_eh_typeid_for(type)
134 ///    llvm_eh_typeid_for function will be generated in JS glue code.
135 ///
136 /// * Setjmp / Longjmp handling
137 ///
138 /// In case calls to longjmp() exists
139 ///
140 /// 1) Lower
141 ///      longjmp(buf, value)
142 ///    into
143 ///      emscripten_longjmp_jmpbuf(buf, value)
144 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
145 ///
146 /// In case calls to setjmp() exists
147 ///
148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
149 ///    sejmpTableSize as follows:
150 ///      setjmpTableSize = 4;
151 ///      setjmpTable = (int *) malloc(40);
152 ///      setjmpTable[0] = 0;
153 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
154 ///    code.
155 ///
156 /// 3) Lower
157 ///      setjmp(buf)
158 ///    into
159 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
160 ///      setjmpTableSize = getTempRet0();
161 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
162 ///    is incrementally assigned from 0) and its label (a unique number that
163 ///    represents each callsite of setjmp). When we need more entries in
164 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
165 ///    return the new table address, and assign the new table size in
166 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
167 ///    buf. A BB with setjmp is split into two after setjmp call in order to
168 ///    make the post-setjmp BB the possible destination of longjmp BB.
169 ///
170 ///
171 /// 4) Lower every call that might longjmp into
172 ///      __THREW__ = 0;
173 ///      call @__invoke_SIG(func, arg1, arg2)
174 ///      %__THREW__.val = __THREW__;
175 ///      __THREW__ = 0;
176 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
177 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
178 ///                            setjmpTableSize);
179 ///        if (%label == 0)
180 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
181 ///        setTempRet0(__threwValue);
182 ///      } else {
183 ///        %label = -1;
184 ///      }
185 ///      longjmp_result = getTempRet0();
186 ///      switch label {
187 ///        label 1: goto post-setjmp BB 1
188 ///        label 2: goto post-setjmp BB 2
189 ///        ...
190 ///        default: goto splitted next BB
191 ///      }
192 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
193 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
194 ///    will be the address of matching jmp_buf buffer and __threwValue be the
195 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
196 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
197 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
198 ///    correspond to one of the setjmp callsites in this function, so in this
199 ///    case we just chain the longjmp to the caller. (Here we call
200 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
201 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
202 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
203 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
204 ///    can't translate an int value to a jmp_buf.)
205 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
206 ///    post-setjmp BB based on the label.
207 ///
208 ///===----------------------------------------------------------------------===//
209 
210 #include "WebAssembly.h"
211 #include "llvm/IR/CallSite.h"
212 #include "llvm/IR/Dominators.h"
213 #include "llvm/IR/IRBuilder.h"
214 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
215 #include "llvm/Transforms/Utils/SSAUpdater.h"
216 
217 using namespace llvm;
218 
219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
220 
221 static cl::list<std::string>
222     EHWhitelist("emscripten-cxx-exceptions-whitelist",
223                 cl::desc("The list of function names in which Emscripten-style "
224                          "exception handling is enabled (see emscripten "
225                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
226                 cl::CommaSeparated);
227 
228 namespace {
229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
230   bool EnableEH;   // Enable exception handling
231   bool EnableSjLj; // Enable setjmp/longjmp handling
232 
233   GlobalVariable *ThrewGV = nullptr;
234   GlobalVariable *ThrewValueGV = nullptr;
235   Function *GetTempRet0Func = nullptr;
236   Function *SetTempRet0Func = nullptr;
237   Function *ResumeF = nullptr;
238   Function *EHTypeIDF = nullptr;
239   Function *EmLongjmpF = nullptr;
240   Function *EmLongjmpJmpbufF = nullptr;
241   Function *SaveSetjmpF = nullptr;
242   Function *TestSetjmpF = nullptr;
243 
244   // __cxa_find_matching_catch_N functions.
245   // Indexed by the number of clauses in an original landingpad instruction.
246   DenseMap<int, Function *> FindMatchingCatches;
247   // Map of <function signature string, invoke_ wrappers>
248   StringMap<Function *> InvokeWrappers;
249   // Set of whitelisted function names for exception handling
250   std::set<std::string> EHWhitelistSet;
251 
252   StringRef getPassName() const override {
253     return "WebAssembly Lower Emscripten Exceptions";
254   }
255 
256   bool runEHOnFunction(Function &F);
257   bool runSjLjOnFunction(Function &F);
258   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
259 
260   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
261   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
262                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
263                       Value *&LongjmpResult, BasicBlock *&EndBB);
264   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
265 
266   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
267   bool canLongjmp(Module &M, const Value *Callee) const;
268   bool isEmAsmCall(Module &M, const Value *Callee) const;
269 
270   void rebuildSSA(Function &F);
271 
272 public:
273   static char ID;
274 
275   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
276       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) {
277     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
278   }
279   bool runOnModule(Module &M) override;
280 
281   void getAnalysisUsage(AnalysisUsage &AU) const override {
282     AU.addRequired<DominatorTreeWrapperPass>();
283   }
284 };
285 } // End anonymous namespace
286 
287 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
288 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
289                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
290                 false, false)
291 
292 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
293                                                          bool EnableSjLj) {
294   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
295 }
296 
297 static bool canThrow(const Value *V) {
298   if (const auto *F = dyn_cast<const Function>(V)) {
299     // Intrinsics cannot throw
300     if (F->isIntrinsic())
301       return false;
302     StringRef Name = F->getName();
303     // leave setjmp and longjmp (mostly) alone, we process them properly later
304     if (Name == "setjmp" || Name == "longjmp")
305       return false;
306     return !F->doesNotThrow();
307   }
308   // not a function, so an indirect call - can throw, we can't tell
309   return true;
310 }
311 
312 // Get a global variable with the given name.  If it doesn't exist declare it,
313 // which will generate an import and asssumes that it will exist at link time.
314 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
315                                             const char *Name) {
316 
317   auto *GV =
318       dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty()));
319   if (!GV)
320     report_fatal_error(Twine("unable to create global: ") + Name);
321 
322   return GV;
323 }
324 
325 // Simple function name mangler.
326 // This function simply takes LLVM's string representation of parameter types
327 // and concatenate them with '_'. There are non-alphanumeric characters but llc
328 // is ok with it, and we need to postprocess these names after the lowering
329 // phase anyway.
330 static std::string getSignature(FunctionType *FTy) {
331   std::string Sig;
332   raw_string_ostream OS(Sig);
333   OS << *FTy->getReturnType();
334   for (Type *ParamTy : FTy->params())
335     OS << "_" << *ParamTy;
336   if (FTy->isVarArg())
337     OS << "_...";
338   Sig = OS.str();
339   Sig.erase(remove_if(Sig, isspace), Sig.end());
340   // When s2wasm parses .s file, a comma means the end of an argument. So a
341   // mangled function name can contain any character but a comma.
342   std::replace(Sig.begin(), Sig.end(), ',', '.');
343   return Sig;
344 }
345 
346 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
347 // This is because a landingpad instruction contains two more arguments, a
348 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
349 // functions are named after the number of arguments in the original landingpad
350 // instruction.
351 Function *
352 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
353                                                        unsigned NumClauses) {
354   if (FindMatchingCatches.count(NumClauses))
355     return FindMatchingCatches[NumClauses];
356   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
357   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
358   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
359   Function *F = Function::Create(
360       FTy, GlobalValue::ExternalLinkage,
361       "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M);
362   FindMatchingCatches[NumClauses] = F;
363   return F;
364 }
365 
366 // Generate invoke wrapper seqence with preamble and postamble
367 // Preamble:
368 // __THREW__ = 0;
369 // Postamble:
370 // %__THREW__.val = __THREW__; __THREW__ = 0;
371 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
372 // whether longjmp occurred), for future use.
373 template <typename CallOrInvoke>
374 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
375   LLVMContext &C = CI->getModule()->getContext();
376 
377   // If we are calling a function that is noreturn, we must remove that
378   // attribute. The code we insert here does expect it to return, after we
379   // catch the exception.
380   if (CI->doesNotReturn()) {
381     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
382       F->removeFnAttr(Attribute::NoReturn);
383     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
384   }
385 
386   IRBuilder<> IRB(C);
387   IRB.SetInsertPoint(CI);
388 
389   // Pre-invoke
390   // __THREW__ = 0;
391   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
392 
393   // Invoke function wrapper in JavaScript
394   SmallVector<Value *, 16> Args;
395   // Put the pointer to the callee as first argument, so it can be called
396   // within the invoke wrapper later
397   Args.push_back(CI->getCalledValue());
398   Args.append(CI->arg_begin(), CI->arg_end());
399   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
400   NewCall->takeName(CI);
401   NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke);
402   NewCall->setDebugLoc(CI->getDebugLoc());
403 
404   // Because we added the pointer to the callee as first argument, all
405   // argument attribute indices have to be incremented by one.
406   SmallVector<AttributeSet, 8> ArgAttributes;
407   const AttributeList &InvokeAL = CI->getAttributes();
408 
409   // No attributes for the callee pointer.
410   ArgAttributes.push_back(AttributeSet());
411   // Copy the argument attributes from the original
412   for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I)
413     ArgAttributes.push_back(InvokeAL.getParamAttributes(I));
414 
415   AttrBuilder FnAttrs(InvokeAL.getFnAttributes());
416   if (FnAttrs.contains(Attribute::AllocSize)) {
417     // The allocsize attribute (if any) referes to parameters by index and needs
418     // to be adjusted.
419     unsigned SizeArg;
420     Optional<unsigned> NEltArg;
421     std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs();
422     SizeArg += 1;
423     if (NEltArg.hasValue())
424       NEltArg = NEltArg.getValue() + 1;
425     FnAttrs.addAllocSizeAttr(SizeArg, NEltArg);
426   }
427 
428   // Reconstruct the AttributesList based on the vector we constructed.
429   AttributeList NewCallAL =
430       AttributeList::get(C, AttributeSet::get(C, FnAttrs),
431                          InvokeAL.getRetAttributes(), ArgAttributes);
432   NewCall->setAttributes(NewCallAL);
433 
434   CI->replaceAllUsesWith(NewCall);
435 
436   // Post-invoke
437   // %__THREW__.val = __THREW__; __THREW__ = 0;
438   Value *Threw =
439       IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val");
440   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
441   return Threw;
442 }
443 
444 // Get matching invoke wrapper based on callee signature
445 template <typename CallOrInvoke>
446 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
447   Module *M = CI->getModule();
448   SmallVector<Type *, 16> ArgTys;
449   Value *Callee = CI->getCalledValue();
450   FunctionType *CalleeFTy;
451   if (auto *F = dyn_cast<Function>(Callee))
452     CalleeFTy = F->getFunctionType();
453   else {
454     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
455     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
456   }
457 
458   std::string Sig = getSignature(CalleeFTy);
459   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
460     return InvokeWrappers[Sig];
461 
462   // Put the pointer to the callee as first argument
463   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
464   // Add argument types
465   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
466 
467   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
468                                         CalleeFTy->isVarArg());
469   Function *F =
470       Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M);
471   InvokeWrappers[Sig] = F;
472   return F;
473 }
474 
475 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
476                                                   const Value *Callee) const {
477   if (auto *CalleeF = dyn_cast<Function>(Callee))
478     if (CalleeF->isIntrinsic())
479       return false;
480 
481   // Attempting to transform inline assembly will result in something like:
482   //     call void @__invoke_void(void ()* asm ...)
483   // which is invalid because inline assembly blocks do not have addresses
484   // and can't be passed by pointer. The result is a crash with illegal IR.
485   if (isa<InlineAsm>(Callee))
486     return false;
487   StringRef CalleeName = Callee->getName();
488 
489   // The reason we include malloc/free here is to exclude the malloc/free
490   // calls generated in setjmp prep / cleanup routines.
491   if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free")
492     return false;
493 
494   // There are functions in JS glue code
495   if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" ||
496       CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" ||
497       CalleeName == "getTempRet0" || CalleeName == "setTempRet0")
498     return false;
499 
500   // __cxa_find_matching_catch_N functions cannot longjmp
501   if (Callee->getName().startswith("__cxa_find_matching_catch_"))
502     return false;
503 
504   // Exception-catching related functions
505   if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" ||
506       CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" ||
507       CalleeName == "__clang_call_terminate")
508     return false;
509 
510   // Otherwise we don't know
511   return true;
512 }
513 
514 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M,
515                                                    const Value *Callee) const {
516   StringRef CalleeName = Callee->getName();
517   // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>.
518   return CalleeName == "emscripten_asm_const_int" ||
519          CalleeName == "emscripten_asm_const_double" ||
520          CalleeName == "emscripten_asm_const_int_sync_on_main_thread" ||
521          CalleeName == "emscripten_asm_const_double_sync_on_main_thread" ||
522          CalleeName == "emscripten_asm_const_async_on_main_thread";
523 }
524 
525 // Generate testSetjmp function call seqence with preamble and postamble.
526 // The code this generates is equivalent to the following JavaScript code:
527 // if (%__THREW__.val != 0 & threwValue != 0) {
528 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
529 //   if (%label == 0)
530 //     emscripten_longjmp(%__THREW__.val, threwValue);
531 //   setTempRet0(threwValue);
532 // } else {
533 //   %label = -1;
534 // }
535 // %longjmp_result = getTempRet0();
536 //
537 // As output parameters. returns %label, %longjmp_result, and the BB the last
538 // instruction (%longjmp_result = ...) is in.
539 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
540     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
541     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
542     BasicBlock *&EndBB) {
543   Function *F = BB->getParent();
544   LLVMContext &C = BB->getModule()->getContext();
545   IRBuilder<> IRB(C);
546   IRB.SetInsertPoint(InsertPt);
547 
548   // if (%__THREW__.val != 0 & threwValue != 0)
549   IRB.SetInsertPoint(BB);
550   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
551   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
552   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
553   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
554   Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV,
555                                      ThrewValueGV->getName() + ".val");
556   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
557   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
558   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
559 
560   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
561   // if (%label == 0)
562   IRB.SetInsertPoint(ThenBB1);
563   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
564   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
565   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
566                                        Threw->getName() + ".i32p");
567   Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt,
568                                       ThrewInt->getName() + ".loaded");
569   Value *ThenLabel = IRB.CreateCall(
570       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
571   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
572   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
573 
574   // emscripten_longjmp(%__THREW__.val, threwValue);
575   IRB.SetInsertPoint(ThenBB2);
576   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
577   IRB.CreateUnreachable();
578 
579   // setTempRet0(threwValue);
580   IRB.SetInsertPoint(EndBB2);
581   IRB.CreateCall(SetTempRet0Func, ThrewValue);
582   IRB.CreateBr(EndBB1);
583 
584   IRB.SetInsertPoint(ElseBB1);
585   IRB.CreateBr(EndBB1);
586 
587   // longjmp_result = getTempRet0();
588   IRB.SetInsertPoint(EndBB1);
589   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
590   LabelPHI->addIncoming(ThenLabel, EndBB2);
591 
592   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
593 
594   // Output parameter assignment
595   Label = LabelPHI;
596   EndBB = EndBB1;
597   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
598 }
599 
600 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
601   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
602   DT.recalculate(F); // CFG has been changed
603   SSAUpdater SSA;
604   for (BasicBlock &BB : F) {
605     for (Instruction &I : BB) {
606       SSA.Initialize(I.getType(), I.getName());
607       SSA.AddAvailableValue(&BB, &I);
608       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
609         Use &U = *UI;
610         ++UI;
611         auto *User = cast<Instruction>(U.getUser());
612         if (auto *UserPN = dyn_cast<PHINode>(User))
613           if (UserPN->getIncomingBlock(U) == &BB)
614             continue;
615 
616         if (DT.dominates(&I, User))
617           continue;
618         SSA.RewriteUseAfterInsertions(U);
619       }
620     }
621   }
622 }
623 
624 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
625   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
626 
627   LLVMContext &C = M.getContext();
628   IRBuilder<> IRB(C);
629 
630   Function *SetjmpF = M.getFunction("setjmp");
631   Function *LongjmpF = M.getFunction("longjmp");
632   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
633   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
634   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
635 
636   // Declare (or get) global variables __THREW__, __threwValue, and
637   // getTempRet0/setTempRet0 function which are used in common for both
638   // exception handling and setjmp/longjmp handling
639   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
640   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
641   GetTempRet0Func =
642       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
643                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
644   SetTempRet0Func = Function::Create(
645       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
646       GlobalValue::ExternalLinkage, "setTempRet0", &M);
647   GetTempRet0Func->setDoesNotThrow();
648   SetTempRet0Func->setDoesNotThrow();
649 
650   bool Changed = false;
651 
652   // Exception handling
653   if (EnableEH) {
654     // Register __resumeException function
655     FunctionType *ResumeFTy =
656         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
657     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
658                                "__resumeException", &M);
659 
660     // Register llvm_eh_typeid_for function
661     FunctionType *EHTypeIDTy =
662         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
663     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
664                                  "llvm_eh_typeid_for", &M);
665 
666     for (Function &F : M) {
667       if (F.isDeclaration())
668         continue;
669       Changed |= runEHOnFunction(F);
670     }
671   }
672 
673   // Setjmp/longjmp handling
674   if (DoSjLj) {
675     Changed = true; // We have setjmp or longjmp somewhere
676 
677     if (LongjmpF) {
678       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
679       // defined in JS code
680       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
681                                           GlobalValue::ExternalLinkage,
682                                           "emscripten_longjmp_jmpbuf", &M);
683 
684       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
685     }
686 
687     if (SetjmpF) {
688       // Register saveSetjmp function
689       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
690       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
691                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
692                                        IRB.getInt32Ty()};
693       FunctionType *FTy =
694           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
695       SaveSetjmpF =
696           Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M);
697 
698       // Register testSetjmp function
699       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
700       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
701       TestSetjmpF =
702           Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M);
703 
704       FTy = FunctionType::get(IRB.getVoidTy(),
705                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
706       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
707                                     "emscripten_longjmp", &M);
708 
709       // Only traverse functions that uses setjmp in order not to insert
710       // unnecessary prep / cleanup code in every function
711       SmallPtrSet<Function *, 8> SetjmpUsers;
712       for (User *U : SetjmpF->users()) {
713         auto *UI = cast<Instruction>(U);
714         SetjmpUsers.insert(UI->getFunction());
715       }
716       for (Function *F : SetjmpUsers)
717         runSjLjOnFunction(*F);
718     }
719   }
720 
721   if (!Changed) {
722     // Delete unused global variables and functions
723     if (ResumeF)
724       ResumeF->eraseFromParent();
725     if (EHTypeIDF)
726       EHTypeIDF->eraseFromParent();
727     if (EmLongjmpF)
728       EmLongjmpF->eraseFromParent();
729     if (SaveSetjmpF)
730       SaveSetjmpF->eraseFromParent();
731     if (TestSetjmpF)
732       TestSetjmpF->eraseFromParent();
733     return false;
734   }
735 
736   return true;
737 }
738 
739 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
740   Module &M = *F.getParent();
741   LLVMContext &C = F.getContext();
742   IRBuilder<> IRB(C);
743   bool Changed = false;
744   SmallVector<Instruction *, 64> ToErase;
745   SmallPtrSet<LandingPadInst *, 32> LandingPads;
746   bool AllowExceptions =
747       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
748 
749   for (BasicBlock &BB : F) {
750     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
751     if (!II)
752       continue;
753     Changed = true;
754     LandingPads.insert(II->getLandingPadInst());
755     IRB.SetInsertPoint(II);
756 
757     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
758     if (NeedInvoke) {
759       // Wrap invoke with invoke wrapper and generate preamble/postamble
760       Value *Threw = wrapInvoke(II);
761       ToErase.push_back(II);
762 
763       // Insert a branch based on __THREW__ variable
764       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
765       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
766 
767     } else {
768       // This can't throw, and we don't need this invoke, just replace it with a
769       // call+branch
770       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
771       CallInst *NewCall =
772           IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args);
773       NewCall->takeName(II);
774       NewCall->setCallingConv(II->getCallingConv());
775       NewCall->setDebugLoc(II->getDebugLoc());
776       NewCall->setAttributes(II->getAttributes());
777       II->replaceAllUsesWith(NewCall);
778       ToErase.push_back(II);
779 
780       IRB.CreateBr(II->getNormalDest());
781 
782       // Remove any PHI node entries from the exception destination
783       II->getUnwindDest()->removePredecessor(&BB);
784     }
785   }
786 
787   // Process resume instructions
788   for (BasicBlock &BB : F) {
789     // Scan the body of the basic block for resumes
790     for (Instruction &I : BB) {
791       auto *RI = dyn_cast<ResumeInst>(&I);
792       if (!RI)
793         continue;
794 
795       // Split the input into legal values
796       Value *Input = RI->getValue();
797       IRB.SetInsertPoint(RI);
798       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
799       // Create a call to __resumeException function
800       IRB.CreateCall(ResumeF, {Low});
801       // Add a terminator to the block
802       IRB.CreateUnreachable();
803       ToErase.push_back(RI);
804     }
805   }
806 
807   // Process llvm.eh.typeid.for intrinsics
808   for (BasicBlock &BB : F) {
809     for (Instruction &I : BB) {
810       auto *CI = dyn_cast<CallInst>(&I);
811       if (!CI)
812         continue;
813       const Function *Callee = CI->getCalledFunction();
814       if (!Callee)
815         continue;
816       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
817         continue;
818 
819       IRB.SetInsertPoint(CI);
820       CallInst *NewCI =
821           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
822       CI->replaceAllUsesWith(NewCI);
823       ToErase.push_back(CI);
824     }
825   }
826 
827   // Look for orphan landingpads, can occur in blocks with no predecessors
828   for (BasicBlock &BB : F) {
829     Instruction *I = BB.getFirstNonPHI();
830     if (auto *LPI = dyn_cast<LandingPadInst>(I))
831       LandingPads.insert(LPI);
832   }
833 
834   // Handle all the landingpad for this function together, as multiple invokes
835   // may share a single lp
836   for (LandingPadInst *LPI : LandingPads) {
837     IRB.SetInsertPoint(LPI);
838     SmallVector<Value *, 16> FMCArgs;
839     for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) {
840       Constant *Clause = LPI->getClause(I);
841       // As a temporary workaround for the lack of aggregate varargs support
842       // in the interface between JS and wasm, break out filter operands into
843       // their component elements.
844       if (LPI->isFilter(I)) {
845         auto *ATy = cast<ArrayType>(Clause->getType());
846         for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) {
847           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter");
848           FMCArgs.push_back(EV);
849         }
850       } else
851         FMCArgs.push_back(Clause);
852     }
853 
854     // Create a call to __cxa_find_matching_catch_N function
855     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
856     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
857     Value *Undef = UndefValue::get(LPI->getType());
858     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
859     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
860     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
861 
862     LPI->replaceAllUsesWith(Pair1);
863     ToErase.push_back(LPI);
864   }
865 
866   // Erase everything we no longer need in this function
867   for (Instruction *I : ToErase)
868     I->eraseFromParent();
869 
870   return Changed;
871 }
872 
873 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
874   Module &M = *F.getParent();
875   LLVMContext &C = F.getContext();
876   IRBuilder<> IRB(C);
877   SmallVector<Instruction *, 64> ToErase;
878   // Vector of %setjmpTable values
879   std::vector<Instruction *> SetjmpTableInsts;
880   // Vector of %setjmpTableSize values
881   std::vector<Instruction *> SetjmpTableSizeInsts;
882 
883   // Setjmp preparation
884 
885   // This instruction effectively means %setjmpTableSize = 4.
886   // We create this as an instruction intentionally, and we don't want to fold
887   // this instruction to a constant 4, because this value will be used in
888   // SSAUpdater.AddAvailableValue(...) later.
889   BasicBlock &EntryBB = F.getEntryBlock();
890   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
891       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
892       &*EntryBB.getFirstInsertionPt());
893   // setjmpTable = (int *) malloc(40);
894   Instruction *SetjmpTable = CallInst::CreateMalloc(
895       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
896       nullptr, nullptr, "setjmpTable");
897   // setjmpTable[0] = 0;
898   IRB.SetInsertPoint(SetjmpTableSize);
899   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
900   SetjmpTableInsts.push_back(SetjmpTable);
901   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
902 
903   // Setjmp transformation
904   std::vector<PHINode *> SetjmpRetPHIs;
905   Function *SetjmpF = M.getFunction("setjmp");
906   for (User *U : SetjmpF->users()) {
907     auto *CI = dyn_cast<CallInst>(U);
908     if (!CI)
909       report_fatal_error("Does not support indirect calls to setjmp");
910 
911     BasicBlock *BB = CI->getParent();
912     if (BB->getParent() != &F) // in other function
913       continue;
914 
915     // The tail is everything right after the call, and will be reached once
916     // when setjmp is called, and later when longjmp returns to the setjmp
917     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
918     // Add a phi to the tail, which will be the output of setjmp, which
919     // indicates if this is the first call or a longjmp back. The phi directly
920     // uses the right value based on where we arrive from
921     IRB.SetInsertPoint(Tail->getFirstNonPHI());
922     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
923 
924     // setjmp initial call returns 0
925     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
926     // The proper output is now this, not the setjmp call itself
927     CI->replaceAllUsesWith(SetjmpRet);
928     // longjmp returns to the setjmp will add themselves to this phi
929     SetjmpRetPHIs.push_back(SetjmpRet);
930 
931     // Fix call target
932     // Our index in the function is our place in the array + 1 to avoid index
933     // 0, because index 0 means the longjmp is not ours to handle.
934     IRB.SetInsertPoint(CI);
935     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
936                      SetjmpTable, SetjmpTableSize};
937     Instruction *NewSetjmpTable =
938         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
939     Instruction *NewSetjmpTableSize =
940         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
941     SetjmpTableInsts.push_back(NewSetjmpTable);
942     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
943     ToErase.push_back(CI);
944   }
945 
946   // Update each call that can longjmp so it can return to a setjmp where
947   // relevant.
948 
949   // Because we are creating new BBs while processing and don't want to make
950   // all these newly created BBs candidates again for longjmp processing, we
951   // first make the vector of candidate BBs.
952   std::vector<BasicBlock *> BBs;
953   for (BasicBlock &BB : F)
954     BBs.push_back(&BB);
955 
956   // BBs.size() will change within the loop, so we query it every time
957   for (unsigned I = 0; I < BBs.size(); I++) {
958     BasicBlock *BB = BBs[I];
959     for (Instruction &I : *BB) {
960       assert(!isa<InvokeInst>(&I));
961       auto *CI = dyn_cast<CallInst>(&I);
962       if (!CI)
963         continue;
964 
965       const Value *Callee = CI->getCalledValue();
966       if (!canLongjmp(M, Callee))
967         continue;
968       if (isEmAsmCall(M, Callee))
969         report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " +
970                                F.getName() +
971                                ". Please consider using EM_JS, or move the "
972                                "EM_ASM into another function.",
973                            false);
974 
975       Value *Threw = nullptr;
976       BasicBlock *Tail;
977       if (Callee->getName().startswith("__invoke_")) {
978         // If invoke wrapper has already been generated for this call in
979         // previous EH phase, search for the load instruction
980         // %__THREW__.val = __THREW__;
981         // in postamble after the invoke wrapper call
982         LoadInst *ThrewLI = nullptr;
983         StoreInst *ThrewResetSI = nullptr;
984         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
985              I != IE; ++I) {
986           if (auto *LI = dyn_cast<LoadInst>(I))
987             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
988               if (GV == ThrewGV) {
989                 Threw = ThrewLI = LI;
990                 break;
991               }
992         }
993         // Search for the store instruction after the load above
994         // __THREW__ = 0;
995         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
996              I != IE; ++I) {
997           if (auto *SI = dyn_cast<StoreInst>(I))
998             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
999               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1000                 ThrewResetSI = SI;
1001                 break;
1002               }
1003         }
1004         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1005         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1006         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1007 
1008       } else {
1009         // Wrap call with invoke wrapper and generate preamble/postamble
1010         Threw = wrapInvoke(CI);
1011         ToErase.push_back(CI);
1012         Tail = SplitBlock(BB, CI->getNextNode());
1013       }
1014 
1015       // We need to replace the terminator in Tail - SplitBlock makes BB go
1016       // straight to Tail, we need to check if a longjmp occurred, and go to the
1017       // right setjmp-tail if so
1018       ToErase.push_back(BB->getTerminator());
1019 
1020       // Generate a function call to testSetjmp function and preamble/postamble
1021       // code to figure out (1) whether longjmp occurred (2) if longjmp
1022       // occurred, which setjmp it corresponds to
1023       Value *Label = nullptr;
1024       Value *LongjmpResult = nullptr;
1025       BasicBlock *EndBB = nullptr;
1026       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1027                      LongjmpResult, EndBB);
1028       assert(Label && LongjmpResult && EndBB);
1029 
1030       // Create switch instruction
1031       IRB.SetInsertPoint(EndBB);
1032       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1033       // -1 means no longjmp happened, continue normally (will hit the default
1034       // switch case). 0 means a longjmp that is not ours to handle, needs a
1035       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1036       // 0).
1037       for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) {
1038         SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent());
1039         SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB);
1040       }
1041 
1042       // We are splitting the block here, and must continue to find other calls
1043       // in the block - which is now split. so continue to traverse in the Tail
1044       BBs.push_back(Tail);
1045     }
1046   }
1047 
1048   // Erase everything we no longer need in this function
1049   for (Instruction *I : ToErase)
1050     I->eraseFromParent();
1051 
1052   // Free setjmpTable buffer before each return instruction
1053   for (BasicBlock &BB : F) {
1054     Instruction *TI = BB.getTerminator();
1055     if (isa<ReturnInst>(TI))
1056       CallInst::CreateFree(SetjmpTable, TI);
1057   }
1058 
1059   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1060   // (when buffer reallocation occurs)
1061   // entry:
1062   //   setjmpTableSize = 4;
1063   //   setjmpTable = (int *) malloc(40);
1064   //   setjmpTable[0] = 0;
1065   // ...
1066   // somebb:
1067   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1068   //   setjmpTableSize = getTempRet0();
1069   // So we need to make sure the SSA for these variables is valid so that every
1070   // saveSetjmp and testSetjmp calls have the correct arguments.
1071   SSAUpdater SetjmpTableSSA;
1072   SSAUpdater SetjmpTableSizeSSA;
1073   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1074   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1075   for (Instruction *I : SetjmpTableInsts)
1076     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1077   for (Instruction *I : SetjmpTableSizeInsts)
1078     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1079 
1080   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1081        UI != UE;) {
1082     // Grab the use before incrementing the iterator.
1083     Use &U = *UI;
1084     // Increment the iterator before removing the use from the list.
1085     ++UI;
1086     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1087       if (I->getParent() != &EntryBB)
1088         SetjmpTableSSA.RewriteUse(U);
1089   }
1090   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1091        UI != UE;) {
1092     Use &U = *UI;
1093     ++UI;
1094     if (auto *I = dyn_cast<Instruction>(U.getUser()))
1095       if (I->getParent() != &EntryBB)
1096         SetjmpTableSizeSSA.RewriteUse(U);
1097   }
1098 
1099   // Finally, our modifications to the cfg can break dominance of SSA variables.
1100   // For example, in this code,
1101   // if (x()) { .. setjmp() .. }
1102   // if (y()) { .. longjmp() .. }
1103   // We must split the longjmp block, and it can jump into the block splitted
1104   // from setjmp one. But that means that when we split the setjmp block, it's
1105   // first part no longer dominates its second part - there is a theoretically
1106   // possible control flow path where x() is false, then y() is true and we
1107   // reach the second part of the setjmp block, without ever reaching the first
1108   // part. So, we rebuild SSA form here.
1109   rebuildSSA(F);
1110   return true;
1111 }
1112