1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file lowers exception-related instructions and setjmp/longjmp 11 /// function calls in order to use Emscripten's JavaScript try and catch 12 /// mechanism. 13 /// 14 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's 15 /// try and catch syntax and relevant exception-related libraries implemented 16 /// in JavaScript glue code that will be produced by Emscripten. This is similar 17 /// to the current Emscripten asm.js exception handling in fastcomp. For 18 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch: 19 /// (Location: https://github.com/kripken/emscripten-fastcomp) 20 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp 21 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp 22 /// lib/Target/JSBackend/JSBackend.cpp 23 /// lib/Target/JSBackend/CallHandlers.h 24 /// 25 /// * Exception handling 26 /// This pass lowers invokes and landingpads into library functions in JS glue 27 /// code. Invokes are lowered into function wrappers called invoke wrappers that 28 /// exist in JS side, which wraps the original function call with JS try-catch. 29 /// If an exception occurred, cxa_throw() function in JS side sets some 30 /// variables (see below) so we can check whether an exception occurred from 31 /// wasm code and handle it appropriately. 32 /// 33 /// * Setjmp-longjmp handling 34 /// This pass lowers setjmp to a reasonably-performant approach for emscripten. 35 /// The idea is that each block with a setjmp is broken up into two parts: the 36 /// part containing setjmp and the part right after the setjmp. The latter part 37 /// is either reached from the setjmp, or later from a longjmp. To handle the 38 /// longjmp, all calls that might longjmp are also called using invoke wrappers 39 /// and thus JS / try-catch. JS longjmp() function also sets some variables so 40 /// we can check / whether a longjmp occurred from wasm code. Each block with a 41 /// function call that might longjmp is also split up after the longjmp call. 42 /// After the longjmp call, we check whether a longjmp occurred, and if it did, 43 /// which setjmp it corresponds to, and jump to the right post-setjmp block. 44 /// We assume setjmp-longjmp handling always run after EH handling, which means 45 /// we don't expect any exception-related instructions when SjLj runs. 46 /// FIXME Currently this scheme does not support indirect call of setjmp, 47 /// because of the limitation of the scheme itself. fastcomp does not support it 48 /// either. 49 /// 50 /// In detail, this pass does following things: 51 /// 52 /// 1) Assumes the existence of global variables: __THREW__, __threwValue 53 /// __THREW__ and __threwValue will be set in invoke wrappers 54 /// in JS glue code. For what invoke wrappers are, refer to 3). These 55 /// variables are used for both exceptions and setjmp/longjmps. 56 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0 57 /// means nothing occurred, 1 means an exception occurred, and other numbers 58 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable 59 /// indicates the corresponding setjmp buffer the longjmp corresponds to. 60 /// 61 /// * Exception handling 62 /// 63 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions 64 /// at link time. 65 /// The global variables in 1) will exist in wasm address space, 66 /// but their values should be set in JS code, so these functions 67 /// as interfaces to JS glue code. These functions are equivalent to the 68 /// following JS functions, which actually exist in asm.js version of JS 69 /// library. 70 /// 71 /// function setThrew(threw, value) { 72 /// if (__THREW__ == 0) { 73 /// __THREW__ = threw; 74 /// __threwValue = value; 75 /// } 76 /// } 77 // 78 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 79 /// 80 /// In exception handling, getTempRet0 indicates the type of an exception 81 /// caught, and in setjmp/longjmp, it means the second argument to longjmp 82 /// function. 83 /// 84 /// 3) Lower 85 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad 86 /// into 87 /// __THREW__ = 0; 88 /// call @__invoke_SIG(func, arg1, arg2) 89 /// %__THREW__.val = __THREW__; 90 /// __THREW__ = 0; 91 /// if (%__THREW__.val == 1) 92 /// goto %lpad 93 /// else 94 /// goto %invoke.cont 95 /// SIG is a mangled string generated based on the LLVM IR-level function 96 /// signature. After LLVM IR types are lowered to the target wasm types, 97 /// the names for these wrappers will change based on wasm types as well, 98 /// as in invoke_vi (function takes an int and returns void). The bodies of 99 /// these wrappers will be generated in JS glue code, and inside those 100 /// wrappers we use JS try-catch to generate actual exception effects. It 101 /// also calls the original callee function. An example wrapper in JS code 102 /// would look like this: 103 /// function invoke_vi(index,a1) { 104 /// try { 105 /// Module["dynCall_vi"](index,a1); // This calls original callee 106 /// } catch(e) { 107 /// if (typeof e !== 'number' && e !== 'longjmp') throw e; 108 /// asm["setThrew"](1, 0); // setThrew is called here 109 /// } 110 /// } 111 /// If an exception is thrown, __THREW__ will be set to true in a wrapper, 112 /// so we can jump to the right BB based on this value. 113 /// 114 /// 4) Lower 115 /// %val = landingpad catch c1 catch c2 catch c3 ... 116 /// ... use %val ... 117 /// into 118 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...) 119 /// %val = {%fmc, getTempRet0()} 120 /// ... use %val ... 121 /// Here N is a number calculated based on the number of clauses. 122 /// setTempRet0 is called from __cxa_find_matching_catch() in JS glue code. 123 /// 124 /// 5) Lower 125 /// resume {%a, %b} 126 /// into 127 /// call @__resumeException(%a) 128 /// where __resumeException() is a function in JS glue code. 129 /// 130 /// 6) Lower 131 /// call @llvm.eh.typeid.for(type) (intrinsic) 132 /// into 133 /// call @llvm_eh_typeid_for(type) 134 /// llvm_eh_typeid_for function will be generated in JS glue code. 135 /// 136 /// * Setjmp / Longjmp handling 137 /// 138 /// In case calls to longjmp() exists 139 /// 140 /// 1) Lower 141 /// longjmp(buf, value) 142 /// into 143 /// emscripten_longjmp_jmpbuf(buf, value) 144 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later. 145 /// 146 /// In case calls to setjmp() exists 147 /// 148 /// 2) In the function entry that calls setjmp, initialize setjmpTable and 149 /// sejmpTableSize as follows: 150 /// setjmpTableSize = 4; 151 /// setjmpTable = (int *) malloc(40); 152 /// setjmpTable[0] = 0; 153 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS 154 /// code. 155 /// 156 /// 3) Lower 157 /// setjmp(buf) 158 /// into 159 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 160 /// setjmpTableSize = getTempRet0(); 161 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which 162 /// is incrementally assigned from 0) and its label (a unique number that 163 /// represents each callsite of setjmp). When we need more entries in 164 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will 165 /// return the new table address, and assign the new table size in 166 /// setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer 167 /// buf. A BB with setjmp is split into two after setjmp call in order to 168 /// make the post-setjmp BB the possible destination of longjmp BB. 169 /// 170 /// 171 /// 4) Lower every call that might longjmp into 172 /// __THREW__ = 0; 173 /// call @__invoke_SIG(func, arg1, arg2) 174 /// %__THREW__.val = __THREW__; 175 /// __THREW__ = 0; 176 /// if (%__THREW__.val != 0 & __threwValue != 0) { 177 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable, 178 /// setjmpTableSize); 179 /// if (%label == 0) 180 /// emscripten_longjmp(%__THREW__.val, __threwValue); 181 /// setTempRet0(__threwValue); 182 /// } else { 183 /// %label = -1; 184 /// } 185 /// longjmp_result = getTempRet0(); 186 /// switch label { 187 /// label 1: goto post-setjmp BB 1 188 /// label 2: goto post-setjmp BB 2 189 /// ... 190 /// default: goto splitted next BB 191 /// } 192 /// testSetjmp examines setjmpTable to see if there is a matching setjmp 193 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__ 194 /// will be the address of matching jmp_buf buffer and __threwValue be the 195 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is 196 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to 197 /// each setjmp callsite. Label 0 means this longjmp buffer does not 198 /// correspond to one of the setjmp callsites in this function, so in this 199 /// case we just chain the longjmp to the caller. (Here we call 200 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf. 201 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while 202 /// emscripten_longjmp takes an int. Both of them will eventually be lowered 203 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we 204 /// can't translate an int value to a jmp_buf.) 205 /// Label -1 means no longjmp occurred. Otherwise we jump to the right 206 /// post-setjmp BB based on the label. 207 /// 208 ///===----------------------------------------------------------------------===// 209 210 #include "WebAssembly.h" 211 #include "llvm/IR/CallSite.h" 212 #include "llvm/IR/Dominators.h" 213 #include "llvm/IR/IRBuilder.h" 214 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 215 #include "llvm/Transforms/Utils/SSAUpdater.h" 216 217 using namespace llvm; 218 219 #define DEBUG_TYPE "wasm-lower-em-ehsjlj" 220 221 static cl::list<std::string> 222 EHWhitelist("emscripten-cxx-exceptions-whitelist", 223 cl::desc("The list of function names in which Emscripten-style " 224 "exception handling is enabled (see emscripten " 225 "EMSCRIPTEN_CATCHING_WHITELIST options)"), 226 cl::CommaSeparated); 227 228 namespace { 229 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass { 230 bool EnableEH; // Enable exception handling 231 bool EnableSjLj; // Enable setjmp/longjmp handling 232 233 GlobalVariable *ThrewGV = nullptr; 234 GlobalVariable *ThrewValueGV = nullptr; 235 Function *GetTempRet0Func = nullptr; 236 Function *SetTempRet0Func = nullptr; 237 Function *ResumeF = nullptr; 238 Function *EHTypeIDF = nullptr; 239 Function *EmLongjmpF = nullptr; 240 Function *EmLongjmpJmpbufF = nullptr; 241 Function *SaveSetjmpF = nullptr; 242 Function *TestSetjmpF = nullptr; 243 244 // __cxa_find_matching_catch_N functions. 245 // Indexed by the number of clauses in an original landingpad instruction. 246 DenseMap<int, Function *> FindMatchingCatches; 247 // Map of <function signature string, invoke_ wrappers> 248 StringMap<Function *> InvokeWrappers; 249 // Set of whitelisted function names for exception handling 250 std::set<std::string> EHWhitelistSet; 251 252 StringRef getPassName() const override { 253 return "WebAssembly Lower Emscripten Exceptions"; 254 } 255 256 bool runEHOnFunction(Function &F); 257 bool runSjLjOnFunction(Function &F); 258 Function *getFindMatchingCatch(Module &M, unsigned NumClauses); 259 260 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI); 261 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw, 262 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label, 263 Value *&LongjmpResult, BasicBlock *&EndBB); 264 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI); 265 266 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); } 267 bool canLongjmp(Module &M, const Value *Callee) const; 268 bool isEmAsmCall(Module &M, const Value *Callee) const; 269 270 void rebuildSSA(Function &F); 271 272 public: 273 static char ID; 274 275 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true) 276 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj) { 277 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end()); 278 } 279 bool runOnModule(Module &M) override; 280 281 void getAnalysisUsage(AnalysisUsage &AU) const override { 282 AU.addRequired<DominatorTreeWrapperPass>(); 283 } 284 }; 285 } // End anonymous namespace 286 287 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0; 288 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE, 289 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp", 290 false, false) 291 292 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH, 293 bool EnableSjLj) { 294 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj); 295 } 296 297 static bool canThrow(const Value *V) { 298 if (const auto *F = dyn_cast<const Function>(V)) { 299 // Intrinsics cannot throw 300 if (F->isIntrinsic()) 301 return false; 302 StringRef Name = F->getName(); 303 // leave setjmp and longjmp (mostly) alone, we process them properly later 304 if (Name == "setjmp" || Name == "longjmp") 305 return false; 306 return !F->doesNotThrow(); 307 } 308 // not a function, so an indirect call - can throw, we can't tell 309 return true; 310 } 311 312 // Get a global variable with the given name. If it doesn't exist declare it, 313 // which will generate an import and asssumes that it will exist at link time. 314 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB, 315 const char *Name) { 316 317 auto *GV = 318 dyn_cast<GlobalVariable>(M.getOrInsertGlobal(Name, IRB.getInt32Ty())); 319 if (!GV) 320 report_fatal_error(Twine("unable to create global: ") + Name); 321 322 return GV; 323 } 324 325 // Simple function name mangler. 326 // This function simply takes LLVM's string representation of parameter types 327 // and concatenate them with '_'. There are non-alphanumeric characters but llc 328 // is ok with it, and we need to postprocess these names after the lowering 329 // phase anyway. 330 static std::string getSignature(FunctionType *FTy) { 331 std::string Sig; 332 raw_string_ostream OS(Sig); 333 OS << *FTy->getReturnType(); 334 for (Type *ParamTy : FTy->params()) 335 OS << "_" << *ParamTy; 336 if (FTy->isVarArg()) 337 OS << "_..."; 338 Sig = OS.str(); 339 Sig.erase(remove_if(Sig, isspace), Sig.end()); 340 // When s2wasm parses .s file, a comma means the end of an argument. So a 341 // mangled function name can contain any character but a comma. 342 std::replace(Sig.begin(), Sig.end(), ',', '.'); 343 return Sig; 344 } 345 346 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2. 347 // This is because a landingpad instruction contains two more arguments, a 348 // personality function and a cleanup bit, and __cxa_find_matching_catch_N 349 // functions are named after the number of arguments in the original landingpad 350 // instruction. 351 Function * 352 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M, 353 unsigned NumClauses) { 354 if (FindMatchingCatches.count(NumClauses)) 355 return FindMatchingCatches[NumClauses]; 356 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext()); 357 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy); 358 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false); 359 Function *F = Function::Create( 360 FTy, GlobalValue::ExternalLinkage, 361 "__cxa_find_matching_catch_" + Twine(NumClauses + 2), &M); 362 FindMatchingCatches[NumClauses] = F; 363 return F; 364 } 365 366 // Generate invoke wrapper seqence with preamble and postamble 367 // Preamble: 368 // __THREW__ = 0; 369 // Postamble: 370 // %__THREW__.val = __THREW__; __THREW__ = 0; 371 // Returns %__THREW__.val, which indicates whether an exception is thrown (or 372 // whether longjmp occurred), for future use. 373 template <typename CallOrInvoke> 374 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) { 375 LLVMContext &C = CI->getModule()->getContext(); 376 377 // If we are calling a function that is noreturn, we must remove that 378 // attribute. The code we insert here does expect it to return, after we 379 // catch the exception. 380 if (CI->doesNotReturn()) { 381 if (auto *F = dyn_cast<Function>(CI->getCalledValue())) 382 F->removeFnAttr(Attribute::NoReturn); 383 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn); 384 } 385 386 IRBuilder<> IRB(C); 387 IRB.SetInsertPoint(CI); 388 389 // Pre-invoke 390 // __THREW__ = 0; 391 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 392 393 // Invoke function wrapper in JavaScript 394 SmallVector<Value *, 16> Args; 395 // Put the pointer to the callee as first argument, so it can be called 396 // within the invoke wrapper later 397 Args.push_back(CI->getCalledValue()); 398 Args.append(CI->arg_begin(), CI->arg_end()); 399 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args); 400 NewCall->takeName(CI); 401 NewCall->setCallingConv(CallingConv::WASM_EmscriptenInvoke); 402 NewCall->setDebugLoc(CI->getDebugLoc()); 403 404 // Because we added the pointer to the callee as first argument, all 405 // argument attribute indices have to be incremented by one. 406 SmallVector<AttributeSet, 8> ArgAttributes; 407 const AttributeList &InvokeAL = CI->getAttributes(); 408 409 // No attributes for the callee pointer. 410 ArgAttributes.push_back(AttributeSet()); 411 // Copy the argument attributes from the original 412 for (unsigned I = 0, E = CI->getNumArgOperands(); I < E; ++I) 413 ArgAttributes.push_back(InvokeAL.getParamAttributes(I)); 414 415 AttrBuilder FnAttrs(InvokeAL.getFnAttributes()); 416 if (FnAttrs.contains(Attribute::AllocSize)) { 417 // The allocsize attribute (if any) referes to parameters by index and needs 418 // to be adjusted. 419 unsigned SizeArg; 420 Optional<unsigned> NEltArg; 421 std::tie(SizeArg, NEltArg) = FnAttrs.getAllocSizeArgs(); 422 SizeArg += 1; 423 if (NEltArg.hasValue()) 424 NEltArg = NEltArg.getValue() + 1; 425 FnAttrs.addAllocSizeAttr(SizeArg, NEltArg); 426 } 427 428 // Reconstruct the AttributesList based on the vector we constructed. 429 AttributeList NewCallAL = 430 AttributeList::get(C, AttributeSet::get(C, FnAttrs), 431 InvokeAL.getRetAttributes(), ArgAttributes); 432 NewCall->setAttributes(NewCallAL); 433 434 CI->replaceAllUsesWith(NewCall); 435 436 // Post-invoke 437 // %__THREW__.val = __THREW__; __THREW__ = 0; 438 Value *Threw = 439 IRB.CreateLoad(IRB.getInt32Ty(), ThrewGV, ThrewGV->getName() + ".val"); 440 IRB.CreateStore(IRB.getInt32(0), ThrewGV); 441 return Threw; 442 } 443 444 // Get matching invoke wrapper based on callee signature 445 template <typename CallOrInvoke> 446 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) { 447 Module *M = CI->getModule(); 448 SmallVector<Type *, 16> ArgTys; 449 Value *Callee = CI->getCalledValue(); 450 FunctionType *CalleeFTy; 451 if (auto *F = dyn_cast<Function>(Callee)) 452 CalleeFTy = F->getFunctionType(); 453 else { 454 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType(); 455 CalleeFTy = dyn_cast<FunctionType>(CalleeTy); 456 } 457 458 std::string Sig = getSignature(CalleeFTy); 459 if (InvokeWrappers.find(Sig) != InvokeWrappers.end()) 460 return InvokeWrappers[Sig]; 461 462 // Put the pointer to the callee as first argument 463 ArgTys.push_back(PointerType::getUnqual(CalleeFTy)); 464 // Add argument types 465 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end()); 466 467 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys, 468 CalleeFTy->isVarArg()); 469 Function *F = 470 Function::Create(FTy, GlobalValue::ExternalLinkage, "__invoke_" + Sig, M); 471 InvokeWrappers[Sig] = F; 472 return F; 473 } 474 475 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M, 476 const Value *Callee) const { 477 if (auto *CalleeF = dyn_cast<Function>(Callee)) 478 if (CalleeF->isIntrinsic()) 479 return false; 480 481 // Attempting to transform inline assembly will result in something like: 482 // call void @__invoke_void(void ()* asm ...) 483 // which is invalid because inline assembly blocks do not have addresses 484 // and can't be passed by pointer. The result is a crash with illegal IR. 485 if (isa<InlineAsm>(Callee)) 486 return false; 487 StringRef CalleeName = Callee->getName(); 488 489 // The reason we include malloc/free here is to exclude the malloc/free 490 // calls generated in setjmp prep / cleanup routines. 491 if (CalleeName == "setjmp" || CalleeName == "malloc" || CalleeName == "free") 492 return false; 493 494 // There are functions in JS glue code 495 if (CalleeName == "__resumeException" || CalleeName == "llvm_eh_typeid_for" || 496 CalleeName == "saveSetjmp" || CalleeName == "testSetjmp" || 497 CalleeName == "getTempRet0" || CalleeName == "setTempRet0") 498 return false; 499 500 // __cxa_find_matching_catch_N functions cannot longjmp 501 if (Callee->getName().startswith("__cxa_find_matching_catch_")) 502 return false; 503 504 // Exception-catching related functions 505 if (CalleeName == "__cxa_begin_catch" || CalleeName == "__cxa_end_catch" || 506 CalleeName == "__cxa_allocate_exception" || CalleeName == "__cxa_throw" || 507 CalleeName == "__clang_call_terminate") 508 return false; 509 510 // Otherwise we don't know 511 return true; 512 } 513 514 bool WebAssemblyLowerEmscriptenEHSjLj::isEmAsmCall(Module &M, 515 const Value *Callee) const { 516 StringRef CalleeName = Callee->getName(); 517 // This is an exhaustive list from Emscripten's <emscripten/em_asm.h>. 518 return CalleeName == "emscripten_asm_const_int" || 519 CalleeName == "emscripten_asm_const_double" || 520 CalleeName == "emscripten_asm_const_int_sync_on_main_thread" || 521 CalleeName == "emscripten_asm_const_double_sync_on_main_thread" || 522 CalleeName == "emscripten_asm_const_async_on_main_thread"; 523 } 524 525 // Generate testSetjmp function call seqence with preamble and postamble. 526 // The code this generates is equivalent to the following JavaScript code: 527 // if (%__THREW__.val != 0 & threwValue != 0) { 528 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize); 529 // if (%label == 0) 530 // emscripten_longjmp(%__THREW__.val, threwValue); 531 // setTempRet0(threwValue); 532 // } else { 533 // %label = -1; 534 // } 535 // %longjmp_result = getTempRet0(); 536 // 537 // As output parameters. returns %label, %longjmp_result, and the BB the last 538 // instruction (%longjmp_result = ...) is in. 539 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp( 540 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable, 541 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult, 542 BasicBlock *&EndBB) { 543 Function *F = BB->getParent(); 544 LLVMContext &C = BB->getModule()->getContext(); 545 IRBuilder<> IRB(C); 546 IRB.SetInsertPoint(InsertPt); 547 548 // if (%__THREW__.val != 0 & threwValue != 0) 549 IRB.SetInsertPoint(BB); 550 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F); 551 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F); 552 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F); 553 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0)); 554 Value *ThrewValue = IRB.CreateLoad(IRB.getInt32Ty(), ThrewValueGV, 555 ThrewValueGV->getName() + ".val"); 556 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0)); 557 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1"); 558 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1); 559 560 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize); 561 // if (%label == 0) 562 IRB.SetInsertPoint(ThenBB1); 563 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F); 564 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F); 565 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C), 566 Threw->getName() + ".i32p"); 567 Value *LoadedThrew = IRB.CreateLoad(IRB.getInt32Ty(), ThrewInt, 568 ThrewInt->getName() + ".loaded"); 569 Value *ThenLabel = IRB.CreateCall( 570 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label"); 571 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0)); 572 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2); 573 574 // emscripten_longjmp(%__THREW__.val, threwValue); 575 IRB.SetInsertPoint(ThenBB2); 576 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue}); 577 IRB.CreateUnreachable(); 578 579 // setTempRet0(threwValue); 580 IRB.SetInsertPoint(EndBB2); 581 IRB.CreateCall(SetTempRet0Func, ThrewValue); 582 IRB.CreateBr(EndBB1); 583 584 IRB.SetInsertPoint(ElseBB1); 585 IRB.CreateBr(EndBB1); 586 587 // longjmp_result = getTempRet0(); 588 IRB.SetInsertPoint(EndBB1); 589 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label"); 590 LabelPHI->addIncoming(ThenLabel, EndBB2); 591 592 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1); 593 594 // Output parameter assignment 595 Label = LabelPHI; 596 EndBB = EndBB1; 597 LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result"); 598 } 599 600 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) { 601 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); 602 DT.recalculate(F); // CFG has been changed 603 SSAUpdater SSA; 604 for (BasicBlock &BB : F) { 605 for (Instruction &I : BB) { 606 SSA.Initialize(I.getType(), I.getName()); 607 SSA.AddAvailableValue(&BB, &I); 608 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) { 609 Use &U = *UI; 610 ++UI; 611 auto *User = cast<Instruction>(U.getUser()); 612 if (auto *UserPN = dyn_cast<PHINode>(User)) 613 if (UserPN->getIncomingBlock(U) == &BB) 614 continue; 615 616 if (DT.dominates(&I, User)) 617 continue; 618 SSA.RewriteUseAfterInsertions(U); 619 } 620 } 621 } 622 } 623 624 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) { 625 LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n"); 626 627 LLVMContext &C = M.getContext(); 628 IRBuilder<> IRB(C); 629 630 Function *SetjmpF = M.getFunction("setjmp"); 631 Function *LongjmpF = M.getFunction("longjmp"); 632 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty(); 633 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty(); 634 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed); 635 636 // Declare (or get) global variables __THREW__, __threwValue, and 637 // getTempRet0/setTempRet0 function which are used in common for both 638 // exception handling and setjmp/longjmp handling 639 ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__"); 640 ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue"); 641 GetTempRet0Func = 642 Function::Create(FunctionType::get(IRB.getInt32Ty(), false), 643 GlobalValue::ExternalLinkage, "getTempRet0", &M); 644 SetTempRet0Func = Function::Create( 645 FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false), 646 GlobalValue::ExternalLinkage, "setTempRet0", &M); 647 GetTempRet0Func->setDoesNotThrow(); 648 SetTempRet0Func->setDoesNotThrow(); 649 650 bool Changed = false; 651 652 // Exception handling 653 if (EnableEH) { 654 // Register __resumeException function 655 FunctionType *ResumeFTy = 656 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false); 657 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage, 658 "__resumeException", &M); 659 660 // Register llvm_eh_typeid_for function 661 FunctionType *EHTypeIDTy = 662 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false); 663 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage, 664 "llvm_eh_typeid_for", &M); 665 666 for (Function &F : M) { 667 if (F.isDeclaration()) 668 continue; 669 Changed |= runEHOnFunction(F); 670 } 671 } 672 673 // Setjmp/longjmp handling 674 if (DoSjLj) { 675 Changed = true; // We have setjmp or longjmp somewhere 676 677 if (LongjmpF) { 678 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is 679 // defined in JS code 680 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(), 681 GlobalValue::ExternalLinkage, 682 "emscripten_longjmp_jmpbuf", &M); 683 684 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF); 685 } 686 687 if (SetjmpF) { 688 // Register saveSetjmp function 689 FunctionType *SetjmpFTy = SetjmpF->getFunctionType(); 690 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0), 691 IRB.getInt32Ty(), Type::getInt32PtrTy(C), 692 IRB.getInt32Ty()}; 693 FunctionType *FTy = 694 FunctionType::get(Type::getInt32PtrTy(C), Params, false); 695 SaveSetjmpF = 696 Function::Create(FTy, GlobalValue::ExternalLinkage, "saveSetjmp", &M); 697 698 // Register testSetjmp function 699 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()}; 700 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false); 701 TestSetjmpF = 702 Function::Create(FTy, GlobalValue::ExternalLinkage, "testSetjmp", &M); 703 704 FTy = FunctionType::get(IRB.getVoidTy(), 705 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false); 706 EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage, 707 "emscripten_longjmp", &M); 708 709 // Only traverse functions that uses setjmp in order not to insert 710 // unnecessary prep / cleanup code in every function 711 SmallPtrSet<Function *, 8> SetjmpUsers; 712 for (User *U : SetjmpF->users()) { 713 auto *UI = cast<Instruction>(U); 714 SetjmpUsers.insert(UI->getFunction()); 715 } 716 for (Function *F : SetjmpUsers) 717 runSjLjOnFunction(*F); 718 } 719 } 720 721 if (!Changed) { 722 // Delete unused global variables and functions 723 if (ResumeF) 724 ResumeF->eraseFromParent(); 725 if (EHTypeIDF) 726 EHTypeIDF->eraseFromParent(); 727 if (EmLongjmpF) 728 EmLongjmpF->eraseFromParent(); 729 if (SaveSetjmpF) 730 SaveSetjmpF->eraseFromParent(); 731 if (TestSetjmpF) 732 TestSetjmpF->eraseFromParent(); 733 return false; 734 } 735 736 return true; 737 } 738 739 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) { 740 Module &M = *F.getParent(); 741 LLVMContext &C = F.getContext(); 742 IRBuilder<> IRB(C); 743 bool Changed = false; 744 SmallVector<Instruction *, 64> ToErase; 745 SmallPtrSet<LandingPadInst *, 32> LandingPads; 746 bool AllowExceptions = 747 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName()); 748 749 for (BasicBlock &BB : F) { 750 auto *II = dyn_cast<InvokeInst>(BB.getTerminator()); 751 if (!II) 752 continue; 753 Changed = true; 754 LandingPads.insert(II->getLandingPadInst()); 755 IRB.SetInsertPoint(II); 756 757 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue()); 758 if (NeedInvoke) { 759 // Wrap invoke with invoke wrapper and generate preamble/postamble 760 Value *Threw = wrapInvoke(II); 761 ToErase.push_back(II); 762 763 // Insert a branch based on __THREW__ variable 764 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp"); 765 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest()); 766 767 } else { 768 // This can't throw, and we don't need this invoke, just replace it with a 769 // call+branch 770 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end()); 771 CallInst *NewCall = 772 IRB.CreateCall(II->getFunctionType(), II->getCalledValue(), Args); 773 NewCall->takeName(II); 774 NewCall->setCallingConv(II->getCallingConv()); 775 NewCall->setDebugLoc(II->getDebugLoc()); 776 NewCall->setAttributes(II->getAttributes()); 777 II->replaceAllUsesWith(NewCall); 778 ToErase.push_back(II); 779 780 IRB.CreateBr(II->getNormalDest()); 781 782 // Remove any PHI node entries from the exception destination 783 II->getUnwindDest()->removePredecessor(&BB); 784 } 785 } 786 787 // Process resume instructions 788 for (BasicBlock &BB : F) { 789 // Scan the body of the basic block for resumes 790 for (Instruction &I : BB) { 791 auto *RI = dyn_cast<ResumeInst>(&I); 792 if (!RI) 793 continue; 794 795 // Split the input into legal values 796 Value *Input = RI->getValue(); 797 IRB.SetInsertPoint(RI); 798 Value *Low = IRB.CreateExtractValue(Input, 0, "low"); 799 // Create a call to __resumeException function 800 IRB.CreateCall(ResumeF, {Low}); 801 // Add a terminator to the block 802 IRB.CreateUnreachable(); 803 ToErase.push_back(RI); 804 } 805 } 806 807 // Process llvm.eh.typeid.for intrinsics 808 for (BasicBlock &BB : F) { 809 for (Instruction &I : BB) { 810 auto *CI = dyn_cast<CallInst>(&I); 811 if (!CI) 812 continue; 813 const Function *Callee = CI->getCalledFunction(); 814 if (!Callee) 815 continue; 816 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for) 817 continue; 818 819 IRB.SetInsertPoint(CI); 820 CallInst *NewCI = 821 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid"); 822 CI->replaceAllUsesWith(NewCI); 823 ToErase.push_back(CI); 824 } 825 } 826 827 // Look for orphan landingpads, can occur in blocks with no predecessors 828 for (BasicBlock &BB : F) { 829 Instruction *I = BB.getFirstNonPHI(); 830 if (auto *LPI = dyn_cast<LandingPadInst>(I)) 831 LandingPads.insert(LPI); 832 } 833 834 // Handle all the landingpad for this function together, as multiple invokes 835 // may share a single lp 836 for (LandingPadInst *LPI : LandingPads) { 837 IRB.SetInsertPoint(LPI); 838 SmallVector<Value *, 16> FMCArgs; 839 for (unsigned I = 0, E = LPI->getNumClauses(); I < E; ++I) { 840 Constant *Clause = LPI->getClause(I); 841 // As a temporary workaround for the lack of aggregate varargs support 842 // in the interface between JS and wasm, break out filter operands into 843 // their component elements. 844 if (LPI->isFilter(I)) { 845 auto *ATy = cast<ArrayType>(Clause->getType()); 846 for (unsigned J = 0, E = ATy->getNumElements(); J < E; ++J) { 847 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(J), "filter"); 848 FMCArgs.push_back(EV); 849 } 850 } else 851 FMCArgs.push_back(Clause); 852 } 853 854 // Create a call to __cxa_find_matching_catch_N function 855 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size()); 856 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc"); 857 Value *Undef = UndefValue::get(LPI->getType()); 858 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0"); 859 Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0"); 860 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1"); 861 862 LPI->replaceAllUsesWith(Pair1); 863 ToErase.push_back(LPI); 864 } 865 866 // Erase everything we no longer need in this function 867 for (Instruction *I : ToErase) 868 I->eraseFromParent(); 869 870 return Changed; 871 } 872 873 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) { 874 Module &M = *F.getParent(); 875 LLVMContext &C = F.getContext(); 876 IRBuilder<> IRB(C); 877 SmallVector<Instruction *, 64> ToErase; 878 // Vector of %setjmpTable values 879 std::vector<Instruction *> SetjmpTableInsts; 880 // Vector of %setjmpTableSize values 881 std::vector<Instruction *> SetjmpTableSizeInsts; 882 883 // Setjmp preparation 884 885 // This instruction effectively means %setjmpTableSize = 4. 886 // We create this as an instruction intentionally, and we don't want to fold 887 // this instruction to a constant 4, because this value will be used in 888 // SSAUpdater.AddAvailableValue(...) later. 889 BasicBlock &EntryBB = F.getEntryBlock(); 890 BinaryOperator *SetjmpTableSize = BinaryOperator::Create( 891 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize", 892 &*EntryBB.getFirstInsertionPt()); 893 // setjmpTable = (int *) malloc(40); 894 Instruction *SetjmpTable = CallInst::CreateMalloc( 895 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40), 896 nullptr, nullptr, "setjmpTable"); 897 // setjmpTable[0] = 0; 898 IRB.SetInsertPoint(SetjmpTableSize); 899 IRB.CreateStore(IRB.getInt32(0), SetjmpTable); 900 SetjmpTableInsts.push_back(SetjmpTable); 901 SetjmpTableSizeInsts.push_back(SetjmpTableSize); 902 903 // Setjmp transformation 904 std::vector<PHINode *> SetjmpRetPHIs; 905 Function *SetjmpF = M.getFunction("setjmp"); 906 for (User *U : SetjmpF->users()) { 907 auto *CI = dyn_cast<CallInst>(U); 908 if (!CI) 909 report_fatal_error("Does not support indirect calls to setjmp"); 910 911 BasicBlock *BB = CI->getParent(); 912 if (BB->getParent() != &F) // in other function 913 continue; 914 915 // The tail is everything right after the call, and will be reached once 916 // when setjmp is called, and later when longjmp returns to the setjmp 917 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode()); 918 // Add a phi to the tail, which will be the output of setjmp, which 919 // indicates if this is the first call or a longjmp back. The phi directly 920 // uses the right value based on where we arrive from 921 IRB.SetInsertPoint(Tail->getFirstNonPHI()); 922 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret"); 923 924 // setjmp initial call returns 0 925 SetjmpRet->addIncoming(IRB.getInt32(0), BB); 926 // The proper output is now this, not the setjmp call itself 927 CI->replaceAllUsesWith(SetjmpRet); 928 // longjmp returns to the setjmp will add themselves to this phi 929 SetjmpRetPHIs.push_back(SetjmpRet); 930 931 // Fix call target 932 // Our index in the function is our place in the array + 1 to avoid index 933 // 0, because index 0 means the longjmp is not ours to handle. 934 IRB.SetInsertPoint(CI); 935 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()), 936 SetjmpTable, SetjmpTableSize}; 937 Instruction *NewSetjmpTable = 938 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable"); 939 Instruction *NewSetjmpTableSize = 940 IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize"); 941 SetjmpTableInsts.push_back(NewSetjmpTable); 942 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize); 943 ToErase.push_back(CI); 944 } 945 946 // Update each call that can longjmp so it can return to a setjmp where 947 // relevant. 948 949 // Because we are creating new BBs while processing and don't want to make 950 // all these newly created BBs candidates again for longjmp processing, we 951 // first make the vector of candidate BBs. 952 std::vector<BasicBlock *> BBs; 953 for (BasicBlock &BB : F) 954 BBs.push_back(&BB); 955 956 // BBs.size() will change within the loop, so we query it every time 957 for (unsigned I = 0; I < BBs.size(); I++) { 958 BasicBlock *BB = BBs[I]; 959 for (Instruction &I : *BB) { 960 assert(!isa<InvokeInst>(&I)); 961 auto *CI = dyn_cast<CallInst>(&I); 962 if (!CI) 963 continue; 964 965 const Value *Callee = CI->getCalledValue(); 966 if (!canLongjmp(M, Callee)) 967 continue; 968 if (isEmAsmCall(M, Callee)) 969 report_fatal_error("Cannot use EM_ASM* alongside setjmp/longjmp in " + 970 F.getName() + 971 ". Please consider using EM_JS, or move the " 972 "EM_ASM into another function.", 973 false); 974 975 Value *Threw = nullptr; 976 BasicBlock *Tail; 977 if (Callee->getName().startswith("__invoke_")) { 978 // If invoke wrapper has already been generated for this call in 979 // previous EH phase, search for the load instruction 980 // %__THREW__.val = __THREW__; 981 // in postamble after the invoke wrapper call 982 LoadInst *ThrewLI = nullptr; 983 StoreInst *ThrewResetSI = nullptr; 984 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end(); 985 I != IE; ++I) { 986 if (auto *LI = dyn_cast<LoadInst>(I)) 987 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand())) 988 if (GV == ThrewGV) { 989 Threw = ThrewLI = LI; 990 break; 991 } 992 } 993 // Search for the store instruction after the load above 994 // __THREW__ = 0; 995 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end(); 996 I != IE; ++I) { 997 if (auto *SI = dyn_cast<StoreInst>(I)) 998 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand())) 999 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) { 1000 ThrewResetSI = SI; 1001 break; 1002 } 1003 } 1004 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke"); 1005 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke"); 1006 Tail = SplitBlock(BB, ThrewResetSI->getNextNode()); 1007 1008 } else { 1009 // Wrap call with invoke wrapper and generate preamble/postamble 1010 Threw = wrapInvoke(CI); 1011 ToErase.push_back(CI); 1012 Tail = SplitBlock(BB, CI->getNextNode()); 1013 } 1014 1015 // We need to replace the terminator in Tail - SplitBlock makes BB go 1016 // straight to Tail, we need to check if a longjmp occurred, and go to the 1017 // right setjmp-tail if so 1018 ToErase.push_back(BB->getTerminator()); 1019 1020 // Generate a function call to testSetjmp function and preamble/postamble 1021 // code to figure out (1) whether longjmp occurred (2) if longjmp 1022 // occurred, which setjmp it corresponds to 1023 Value *Label = nullptr; 1024 Value *LongjmpResult = nullptr; 1025 BasicBlock *EndBB = nullptr; 1026 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label, 1027 LongjmpResult, EndBB); 1028 assert(Label && LongjmpResult && EndBB); 1029 1030 // Create switch instruction 1031 IRB.SetInsertPoint(EndBB); 1032 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size()); 1033 // -1 means no longjmp happened, continue normally (will hit the default 1034 // switch case). 0 means a longjmp that is not ours to handle, needs a 1035 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid 1036 // 0). 1037 for (unsigned I = 0; I < SetjmpRetPHIs.size(); I++) { 1038 SI->addCase(IRB.getInt32(I + 1), SetjmpRetPHIs[I]->getParent()); 1039 SetjmpRetPHIs[I]->addIncoming(LongjmpResult, EndBB); 1040 } 1041 1042 // We are splitting the block here, and must continue to find other calls 1043 // in the block - which is now split. so continue to traverse in the Tail 1044 BBs.push_back(Tail); 1045 } 1046 } 1047 1048 // Erase everything we no longer need in this function 1049 for (Instruction *I : ToErase) 1050 I->eraseFromParent(); 1051 1052 // Free setjmpTable buffer before each return instruction 1053 for (BasicBlock &BB : F) { 1054 Instruction *TI = BB.getTerminator(); 1055 if (isa<ReturnInst>(TI)) 1056 CallInst::CreateFree(SetjmpTable, TI); 1057 } 1058 1059 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize 1060 // (when buffer reallocation occurs) 1061 // entry: 1062 // setjmpTableSize = 4; 1063 // setjmpTable = (int *) malloc(40); 1064 // setjmpTable[0] = 0; 1065 // ... 1066 // somebb: 1067 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize); 1068 // setjmpTableSize = getTempRet0(); 1069 // So we need to make sure the SSA for these variables is valid so that every 1070 // saveSetjmp and testSetjmp calls have the correct arguments. 1071 SSAUpdater SetjmpTableSSA; 1072 SSAUpdater SetjmpTableSizeSSA; 1073 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable"); 1074 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize"); 1075 for (Instruction *I : SetjmpTableInsts) 1076 SetjmpTableSSA.AddAvailableValue(I->getParent(), I); 1077 for (Instruction *I : SetjmpTableSizeInsts) 1078 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I); 1079 1080 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end(); 1081 UI != UE;) { 1082 // Grab the use before incrementing the iterator. 1083 Use &U = *UI; 1084 // Increment the iterator before removing the use from the list. 1085 ++UI; 1086 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1087 if (I->getParent() != &EntryBB) 1088 SetjmpTableSSA.RewriteUse(U); 1089 } 1090 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end(); 1091 UI != UE;) { 1092 Use &U = *UI; 1093 ++UI; 1094 if (auto *I = dyn_cast<Instruction>(U.getUser())) 1095 if (I->getParent() != &EntryBB) 1096 SetjmpTableSizeSSA.RewriteUse(U); 1097 } 1098 1099 // Finally, our modifications to the cfg can break dominance of SSA variables. 1100 // For example, in this code, 1101 // if (x()) { .. setjmp() .. } 1102 // if (y()) { .. longjmp() .. } 1103 // We must split the longjmp block, and it can jump into the block splitted 1104 // from setjmp one. But that means that when we split the setjmp block, it's 1105 // first part no longer dominates its second part - there is a theoretically 1106 // possible control flow path where x() is false, then y() is true and we 1107 // reach the second part of the setjmp block, without ever reaching the first 1108 // part. So, we rebuild SSA form here. 1109 rebuildSSA(F); 1110 return true; 1111 } 1112