xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/WebAssembly/WebAssemblyISelLowering.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the WebAssemblyTargetLowering class.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "WebAssemblyISelLowering.h"
15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h"
16 #include "WebAssemblyMachineFunctionInfo.h"
17 #include "WebAssemblySubtarget.h"
18 #include "WebAssemblyTargetMachine.h"
19 #include "llvm/CodeGen/Analysis.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineModuleInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/WasmEHFuncInfo.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/DiagnosticPrinter.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetOptions.h"
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "wasm-lower"
38 
39 WebAssemblyTargetLowering::WebAssemblyTargetLowering(
40     const TargetMachine &TM, const WebAssemblySubtarget &STI)
41     : TargetLowering(TM), Subtarget(&STI) {
42   auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32;
43 
44   // Booleans always contain 0 or 1.
45   setBooleanContents(ZeroOrOneBooleanContent);
46   // Except in SIMD vectors
47   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
48   // We don't know the microarchitecture here, so just reduce register pressure.
49   setSchedulingPreference(Sched::RegPressure);
50   // Tell ISel that we have a stack pointer.
51   setStackPointerRegisterToSaveRestore(
52       Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32);
53   // Set up the register classes.
54   addRegisterClass(MVT::i32, &WebAssembly::I32RegClass);
55   addRegisterClass(MVT::i64, &WebAssembly::I64RegClass);
56   addRegisterClass(MVT::f32, &WebAssembly::F32RegClass);
57   addRegisterClass(MVT::f64, &WebAssembly::F64RegClass);
58   if (Subtarget->hasSIMD128()) {
59     addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass);
60     addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass);
61     addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass);
62     addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass);
63   }
64   if (Subtarget->hasUnimplementedSIMD128()) {
65     addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass);
66     addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass);
67   }
68   // Compute derived properties from the register classes.
69   computeRegisterProperties(Subtarget->getRegisterInfo());
70 
71   setOperationAction(ISD::GlobalAddress, MVTPtr, Custom);
72   setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom);
73   setOperationAction(ISD::JumpTable, MVTPtr, Custom);
74   setOperationAction(ISD::BlockAddress, MVTPtr, Custom);
75   setOperationAction(ISD::BRIND, MVT::Other, Custom);
76 
77   // Take the default expansion for va_arg, va_copy, and va_end. There is no
78   // default action for va_start, so we do that custom.
79   setOperationAction(ISD::VASTART, MVT::Other, Custom);
80   setOperationAction(ISD::VAARG, MVT::Other, Expand);
81   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
82   setOperationAction(ISD::VAEND, MVT::Other, Expand);
83 
84   for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
85     // Don't expand the floating-point types to constant pools.
86     setOperationAction(ISD::ConstantFP, T, Legal);
87     // Expand floating-point comparisons.
88     for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE,
89                     ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE})
90       setCondCodeAction(CC, T, Expand);
91     // Expand floating-point library function operators.
92     for (auto Op :
93          {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA})
94       setOperationAction(Op, T, Expand);
95     // Note supported floating-point library function operators that otherwise
96     // default to expand.
97     for (auto Op :
98          {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT})
99       setOperationAction(Op, T, Legal);
100     // Support minimum and maximum, which otherwise default to expand.
101     setOperationAction(ISD::FMINIMUM, T, Legal);
102     setOperationAction(ISD::FMAXIMUM, T, Legal);
103     // WebAssembly currently has no builtin f16 support.
104     setOperationAction(ISD::FP16_TO_FP, T, Expand);
105     setOperationAction(ISD::FP_TO_FP16, T, Expand);
106     setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand);
107     setTruncStoreAction(T, MVT::f16, Expand);
108   }
109 
110   // Expand unavailable integer operations.
111   for (auto Op :
112        {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU,
113         ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS,
114         ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) {
115     for (auto T : {MVT::i32, MVT::i64})
116       setOperationAction(Op, T, Expand);
117     if (Subtarget->hasSIMD128())
118       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
119         setOperationAction(Op, T, Expand);
120     if (Subtarget->hasUnimplementedSIMD128())
121       setOperationAction(Op, MVT::v2i64, Expand);
122   }
123 
124   // SIMD-specific configuration
125   if (Subtarget->hasSIMD128()) {
126     // Support saturating add for i8x16 and i16x8
127     for (auto Op : {ISD::SADDSAT, ISD::UADDSAT})
128       for (auto T : {MVT::v16i8, MVT::v8i16})
129         setOperationAction(Op, T, Legal);
130 
131     // Custom lower BUILD_VECTORs to minimize number of replace_lanes
132     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
133       setOperationAction(ISD::BUILD_VECTOR, T, Custom);
134     if (Subtarget->hasUnimplementedSIMD128())
135       for (auto T : {MVT::v2i64, MVT::v2f64})
136         setOperationAction(ISD::BUILD_VECTOR, T, Custom);
137 
138     // We have custom shuffle lowering to expose the shuffle mask
139     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
140       setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
141     if (Subtarget->hasUnimplementedSIMD128())
142       for (auto T: {MVT::v2i64, MVT::v2f64})
143         setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom);
144 
145     // Custom lowering since wasm shifts must have a scalar shift amount
146     for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) {
147       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
148         setOperationAction(Op, T, Custom);
149       if (Subtarget->hasUnimplementedSIMD128())
150         setOperationAction(Op, MVT::v2i64, Custom);
151     }
152 
153     // Custom lower lane accesses to expand out variable indices
154     for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) {
155       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
156         setOperationAction(Op, T, Custom);
157       if (Subtarget->hasUnimplementedSIMD128())
158         for (auto T : {MVT::v2i64, MVT::v2f64})
159           setOperationAction(Op, T, Custom);
160     }
161 
162     // There is no i64x2.mul instruction
163     setOperationAction(ISD::MUL, MVT::v2i64, Expand);
164 
165     // There are no vector select instructions
166     for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) {
167       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32})
168         setOperationAction(Op, T, Expand);
169       if (Subtarget->hasUnimplementedSIMD128())
170         for (auto T : {MVT::v2i64, MVT::v2f64})
171           setOperationAction(Op, T, Expand);
172     }
173 
174     // Expand integer operations supported for scalars but not SIMD
175     for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV,
176                     ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) {
177       for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32})
178         setOperationAction(Op, T, Expand);
179       if (Subtarget->hasUnimplementedSIMD128())
180         setOperationAction(Op, MVT::v2i64, Expand);
181     }
182 
183     // Expand float operations supported for scalars but not SIMD
184     for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT,
185                     ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10,
186                     ISD::FEXP, ISD::FEXP2, ISD::FRINT}) {
187       setOperationAction(Op, MVT::v4f32, Expand);
188       if (Subtarget->hasUnimplementedSIMD128())
189         setOperationAction(Op, MVT::v2f64, Expand);
190     }
191 
192     // Expand additional SIMD ops that V8 hasn't implemented yet
193     if (!Subtarget->hasUnimplementedSIMD128()) {
194       setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
195       setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
196     }
197   }
198 
199   // As a special case, these operators use the type to mean the type to
200   // sign-extend from.
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
202   if (!Subtarget->hasSignExt()) {
203     // Sign extends are legal only when extending a vector extract
204     auto Action = Subtarget->hasSIMD128() ? Custom : Expand;
205     for (auto T : {MVT::i8, MVT::i16, MVT::i32})
206       setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action);
207   }
208   for (auto T : MVT::integer_fixedlen_vector_valuetypes())
209     setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand);
210 
211   // Dynamic stack allocation: use the default expansion.
212   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
213   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
214   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand);
215 
216   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
217   setOperationAction(ISD::CopyToReg, MVT::Other, Custom);
218 
219   // Expand these forms; we pattern-match the forms that we can handle in isel.
220   for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64})
221     for (auto Op : {ISD::BR_CC, ISD::SELECT_CC})
222       setOperationAction(Op, T, Expand);
223 
224   // We have custom switch handling.
225   setOperationAction(ISD::BR_JT, MVT::Other, Custom);
226 
227   // WebAssembly doesn't have:
228   //  - Floating-point extending loads.
229   //  - Floating-point truncating stores.
230   //  - i1 extending loads.
231   //  - truncating SIMD stores and most extending loads
232   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
233   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
234   for (auto T : MVT::integer_valuetypes())
235     for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
236       setLoadExtAction(Ext, T, MVT::i1, Promote);
237   if (Subtarget->hasSIMD128()) {
238     for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32,
239                    MVT::v2f64}) {
240       for (auto MemT : MVT::fixedlen_vector_valuetypes()) {
241         if (MVT(T) != MemT) {
242           setTruncStoreAction(T, MemT, Expand);
243           for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD})
244             setLoadExtAction(Ext, T, MemT, Expand);
245         }
246       }
247     }
248     // But some vector extending loads are legal
249     if (Subtarget->hasUnimplementedSIMD128()) {
250       for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
251         setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal);
252         setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal);
253         setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal);
254       }
255     }
256   }
257 
258   // Don't do anything clever with build_pairs
259   setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
260 
261   // Trap lowers to wasm unreachable
262   setOperationAction(ISD::TRAP, MVT::Other, Legal);
263 
264   // Exception handling intrinsics
265   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
266   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
267 
268   setMaxAtomicSizeInBitsSupported(64);
269 
270   // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is
271   // consistent with the f64 and f128 names.
272   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
273   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
274 
275   // Define the emscripten name for return address helper.
276   // TODO: when implementing other WASM backends, make this generic or only do
277   // this on emscripten depending on what they end up doing.
278   setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address");
279 
280   // Always convert switches to br_tables unless there is only one case, which
281   // is equivalent to a simple branch. This reduces code size for wasm, and we
282   // defer possible jump table optimizations to the VM.
283   setMinimumJumpTableEntries(2);
284 }
285 
286 TargetLowering::AtomicExpansionKind
287 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
288   // We have wasm instructions for these
289   switch (AI->getOperation()) {
290   case AtomicRMWInst::Add:
291   case AtomicRMWInst::Sub:
292   case AtomicRMWInst::And:
293   case AtomicRMWInst::Or:
294   case AtomicRMWInst::Xor:
295   case AtomicRMWInst::Xchg:
296     return AtomicExpansionKind::None;
297   default:
298     break;
299   }
300   return AtomicExpansionKind::CmpXChg;
301 }
302 
303 FastISel *WebAssemblyTargetLowering::createFastISel(
304     FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const {
305   return WebAssembly::createFastISel(FuncInfo, LibInfo);
306 }
307 
308 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/,
309                                                       EVT VT) const {
310   unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1);
311   if (BitWidth > 1 && BitWidth < 8)
312     BitWidth = 8;
313 
314   if (BitWidth > 64) {
315     // The shift will be lowered to a libcall, and compiler-rt libcalls expect
316     // the count to be an i32.
317     BitWidth = 32;
318     assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) &&
319            "32-bit shift counts ought to be enough for anyone");
320   }
321 
322   MVT Result = MVT::getIntegerVT(BitWidth);
323   assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE &&
324          "Unable to represent scalar shift amount type");
325   return Result;
326 }
327 
328 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an
329 // undefined result on invalid/overflow, to the WebAssembly opcode, which
330 // traps on invalid/overflow.
331 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL,
332                                        MachineBasicBlock *BB,
333                                        const TargetInstrInfo &TII,
334                                        bool IsUnsigned, bool Int64,
335                                        bool Float64, unsigned LoweredOpcode) {
336   MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
337 
338   Register OutReg = MI.getOperand(0).getReg();
339   Register InReg = MI.getOperand(1).getReg();
340 
341   unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32;
342   unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32;
343   unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32;
344   unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32;
345   unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32;
346   unsigned Eqz = WebAssembly::EQZ_I32;
347   unsigned And = WebAssembly::AND_I32;
348   int64_t Limit = Int64 ? INT64_MIN : INT32_MIN;
349   int64_t Substitute = IsUnsigned ? 0 : Limit;
350   double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit;
351   auto &Context = BB->getParent()->getFunction().getContext();
352   Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context);
353 
354   const BasicBlock *LLVMBB = BB->getBasicBlock();
355   MachineFunction *F = BB->getParent();
356   MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB);
357   MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB);
358   MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB);
359 
360   MachineFunction::iterator It = ++BB->getIterator();
361   F->insert(It, FalseMBB);
362   F->insert(It, TrueMBB);
363   F->insert(It, DoneMBB);
364 
365   // Transfer the remainder of BB and its successor edges to DoneMBB.
366   DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end());
367   DoneMBB->transferSuccessorsAndUpdatePHIs(BB);
368 
369   BB->addSuccessor(TrueMBB);
370   BB->addSuccessor(FalseMBB);
371   TrueMBB->addSuccessor(DoneMBB);
372   FalseMBB->addSuccessor(DoneMBB);
373 
374   unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg;
375   Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
376   Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
377   CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
378   EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
379   FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
380   TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg));
381 
382   MI.eraseFromParent();
383   // For signed numbers, we can do a single comparison to determine whether
384   // fabs(x) is within range.
385   if (IsUnsigned) {
386     Tmp0 = InReg;
387   } else {
388     BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg);
389   }
390   BuildMI(BB, DL, TII.get(FConst), Tmp1)
391       .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal)));
392   BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1);
393 
394   // For unsigned numbers, we have to do a separate comparison with zero.
395   if (IsUnsigned) {
396     Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg));
397     Register SecondCmpReg =
398         MRI.createVirtualRegister(&WebAssembly::I32RegClass);
399     Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
400     BuildMI(BB, DL, TII.get(FConst), Tmp1)
401         .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0)));
402     BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1);
403     BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg);
404     CmpReg = AndReg;
405   }
406 
407   BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg);
408 
409   // Create the CFG diamond to select between doing the conversion or using
410   // the substitute value.
411   BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg);
412   BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg);
413   BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB);
414   BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute);
415   BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg)
416       .addReg(FalseReg)
417       .addMBB(FalseMBB)
418       .addReg(TrueReg)
419       .addMBB(TrueMBB);
420 
421   return DoneMBB;
422 }
423 
424 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter(
425     MachineInstr &MI, MachineBasicBlock *BB) const {
426   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
427   DebugLoc DL = MI.getDebugLoc();
428 
429   switch (MI.getOpcode()) {
430   default:
431     llvm_unreachable("Unexpected instr type to insert");
432   case WebAssembly::FP_TO_SINT_I32_F32:
433     return LowerFPToInt(MI, DL, BB, TII, false, false, false,
434                         WebAssembly::I32_TRUNC_S_F32);
435   case WebAssembly::FP_TO_UINT_I32_F32:
436     return LowerFPToInt(MI, DL, BB, TII, true, false, false,
437                         WebAssembly::I32_TRUNC_U_F32);
438   case WebAssembly::FP_TO_SINT_I64_F32:
439     return LowerFPToInt(MI, DL, BB, TII, false, true, false,
440                         WebAssembly::I64_TRUNC_S_F32);
441   case WebAssembly::FP_TO_UINT_I64_F32:
442     return LowerFPToInt(MI, DL, BB, TII, true, true, false,
443                         WebAssembly::I64_TRUNC_U_F32);
444   case WebAssembly::FP_TO_SINT_I32_F64:
445     return LowerFPToInt(MI, DL, BB, TII, false, false, true,
446                         WebAssembly::I32_TRUNC_S_F64);
447   case WebAssembly::FP_TO_UINT_I32_F64:
448     return LowerFPToInt(MI, DL, BB, TII, true, false, true,
449                         WebAssembly::I32_TRUNC_U_F64);
450   case WebAssembly::FP_TO_SINT_I64_F64:
451     return LowerFPToInt(MI, DL, BB, TII, false, true, true,
452                         WebAssembly::I64_TRUNC_S_F64);
453   case WebAssembly::FP_TO_UINT_I64_F64:
454     return LowerFPToInt(MI, DL, BB, TII, true, true, true,
455                         WebAssembly::I64_TRUNC_U_F64);
456     llvm_unreachable("Unexpected instruction to emit with custom inserter");
457   }
458 }
459 
460 const char *
461 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const {
462   switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) {
463   case WebAssemblyISD::FIRST_NUMBER:
464     break;
465 #define HANDLE_NODETYPE(NODE)                                                  \
466   case WebAssemblyISD::NODE:                                                   \
467     return "WebAssemblyISD::" #NODE;
468 #include "WebAssemblyISD.def"
469 #undef HANDLE_NODETYPE
470   }
471   return nullptr;
472 }
473 
474 std::pair<unsigned, const TargetRegisterClass *>
475 WebAssemblyTargetLowering::getRegForInlineAsmConstraint(
476     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
477   // First, see if this is a constraint that directly corresponds to a
478   // WebAssembly register class.
479   if (Constraint.size() == 1) {
480     switch (Constraint[0]) {
481     case 'r':
482       assert(VT != MVT::iPTR && "Pointer MVT not expected here");
483       if (Subtarget->hasSIMD128() && VT.isVector()) {
484         if (VT.getSizeInBits() == 128)
485           return std::make_pair(0U, &WebAssembly::V128RegClass);
486       }
487       if (VT.isInteger() && !VT.isVector()) {
488         if (VT.getSizeInBits() <= 32)
489           return std::make_pair(0U, &WebAssembly::I32RegClass);
490         if (VT.getSizeInBits() <= 64)
491           return std::make_pair(0U, &WebAssembly::I64RegClass);
492       }
493       break;
494     default:
495       break;
496     }
497   }
498 
499   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
500 }
501 
502 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const {
503   // Assume ctz is a relatively cheap operation.
504   return true;
505 }
506 
507 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const {
508   // Assume clz is a relatively cheap operation.
509   return true;
510 }
511 
512 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL,
513                                                       const AddrMode &AM,
514                                                       Type *Ty, unsigned AS,
515                                                       Instruction *I) const {
516   // WebAssembly offsets are added as unsigned without wrapping. The
517   // isLegalAddressingMode gives us no way to determine if wrapping could be
518   // happening, so we approximate this by accepting only non-negative offsets.
519   if (AM.BaseOffs < 0)
520     return false;
521 
522   // WebAssembly has no scale register operands.
523   if (AM.Scale != 0)
524     return false;
525 
526   // Everything else is legal.
527   return true;
528 }
529 
530 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses(
531     EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/,
532     MachineMemOperand::Flags /*Flags*/, bool *Fast) const {
533   // WebAssembly supports unaligned accesses, though it should be declared
534   // with the p2align attribute on loads and stores which do so, and there
535   // may be a performance impact. We tell LLVM they're "fast" because
536   // for the kinds of things that LLVM uses this for (merging adjacent stores
537   // of constants, etc.), WebAssembly implementations will either want the
538   // unaligned access or they'll split anyway.
539   if (Fast)
540     *Fast = true;
541   return true;
542 }
543 
544 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT,
545                                               AttributeList Attr) const {
546   // The current thinking is that wasm engines will perform this optimization,
547   // so we can save on code size.
548   return true;
549 }
550 
551 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
552   if (!Subtarget->hasUnimplementedSIMD128())
553     return false;
554   MVT ExtT = ExtVal.getSimpleValueType();
555   MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0);
556   return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) ||
557          (ExtT == MVT::v4i32 && MemT == MVT::v4i16) ||
558          (ExtT == MVT::v2i64 && MemT == MVT::v2i32);
559 }
560 
561 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL,
562                                                   LLVMContext &C,
563                                                   EVT VT) const {
564   if (VT.isVector())
565     return VT.changeVectorElementTypeToInteger();
566 
567   return TargetLowering::getSetCCResultType(DL, C, VT);
568 }
569 
570 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
571                                                    const CallInst &I,
572                                                    MachineFunction &MF,
573                                                    unsigned Intrinsic) const {
574   switch (Intrinsic) {
575   case Intrinsic::wasm_atomic_notify:
576     Info.opc = ISD::INTRINSIC_W_CHAIN;
577     Info.memVT = MVT::i32;
578     Info.ptrVal = I.getArgOperand(0);
579     Info.offset = 0;
580     Info.align = Align(4);
581     // atomic.notify instruction does not really load the memory specified with
582     // this argument, but MachineMemOperand should either be load or store, so
583     // we set this to a load.
584     // FIXME Volatile isn't really correct, but currently all LLVM atomic
585     // instructions are treated as volatiles in the backend, so we should be
586     // consistent. The same applies for wasm_atomic_wait intrinsics too.
587     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
588     return true;
589   case Intrinsic::wasm_atomic_wait_i32:
590     Info.opc = ISD::INTRINSIC_W_CHAIN;
591     Info.memVT = MVT::i32;
592     Info.ptrVal = I.getArgOperand(0);
593     Info.offset = 0;
594     Info.align = Align(4);
595     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
596     return true;
597   case Intrinsic::wasm_atomic_wait_i64:
598     Info.opc = ISD::INTRINSIC_W_CHAIN;
599     Info.memVT = MVT::i64;
600     Info.ptrVal = I.getArgOperand(0);
601     Info.offset = 0;
602     Info.align = Align(8);
603     Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad;
604     return true;
605   default:
606     return false;
607   }
608 }
609 
610 //===----------------------------------------------------------------------===//
611 // WebAssembly Lowering private implementation.
612 //===----------------------------------------------------------------------===//
613 
614 //===----------------------------------------------------------------------===//
615 // Lowering Code
616 //===----------------------------------------------------------------------===//
617 
618 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) {
619   MachineFunction &MF = DAG.getMachineFunction();
620   DAG.getContext()->diagnose(
621       DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
622 }
623 
624 // Test whether the given calling convention is supported.
625 static bool callingConvSupported(CallingConv::ID CallConv) {
626   // We currently support the language-independent target-independent
627   // conventions. We don't yet have a way to annotate calls with properties like
628   // "cold", and we don't have any call-clobbered registers, so these are mostly
629   // all handled the same.
630   return CallConv == CallingConv::C || CallConv == CallingConv::Fast ||
631          CallConv == CallingConv::Cold ||
632          CallConv == CallingConv::PreserveMost ||
633          CallConv == CallingConv::PreserveAll ||
634          CallConv == CallingConv::CXX_FAST_TLS ||
635          CallConv == CallingConv::WASM_EmscriptenInvoke;
636 }
637 
638 SDValue
639 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI,
640                                      SmallVectorImpl<SDValue> &InVals) const {
641   SelectionDAG &DAG = CLI.DAG;
642   SDLoc DL = CLI.DL;
643   SDValue Chain = CLI.Chain;
644   SDValue Callee = CLI.Callee;
645   MachineFunction &MF = DAG.getMachineFunction();
646   auto Layout = MF.getDataLayout();
647 
648   CallingConv::ID CallConv = CLI.CallConv;
649   if (!callingConvSupported(CallConv))
650     fail(DL, DAG,
651          "WebAssembly doesn't support language-specific or target-specific "
652          "calling conventions yet");
653   if (CLI.IsPatchPoint)
654     fail(DL, DAG, "WebAssembly doesn't support patch point yet");
655 
656   if (CLI.IsTailCall) {
657     bool MustTail = CLI.CS && CLI.CS.isMustTailCall();
658     if (Subtarget->hasTailCall() && !CLI.IsVarArg) {
659       // Do not tail call unless caller and callee return types match
660       const Function &F = MF.getFunction();
661       const TargetMachine &TM = getTargetMachine();
662       Type *RetTy = F.getReturnType();
663       SmallVector<MVT, 4> CallerRetTys;
664       SmallVector<MVT, 4> CalleeRetTys;
665       computeLegalValueVTs(F, TM, RetTy, CallerRetTys);
666       computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys);
667       bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() &&
668                         std::equal(CallerRetTys.begin(), CallerRetTys.end(),
669                                    CalleeRetTys.begin());
670       if (!TypesMatch) {
671         // musttail in this case would be an LLVM IR validation failure
672         assert(!MustTail);
673         CLI.IsTailCall = false;
674       }
675     } else {
676       CLI.IsTailCall = false;
677       if (MustTail) {
678         if (CLI.IsVarArg) {
679           // The return would pop the argument buffer
680           fail(DL, DAG, "WebAssembly does not support varargs tail calls");
681         } else {
682           fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled");
683         }
684       }
685     }
686   }
687 
688   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
689   if (Ins.size() > 1)
690     fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet");
691 
692   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
693   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
694 
695   // The generic code may have added an sret argument. If we're lowering an
696   // invoke function, the ABI requires that the function pointer be the first
697   // argument, so we may have to swap the arguments.
698   if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 &&
699       Outs[0].Flags.isSRet()) {
700     std::swap(Outs[0], Outs[1]);
701     std::swap(OutVals[0], OutVals[1]);
702   }
703 
704   unsigned NumFixedArgs = 0;
705   for (unsigned I = 0; I < Outs.size(); ++I) {
706     const ISD::OutputArg &Out = Outs[I];
707     SDValue &OutVal = OutVals[I];
708     if (Out.Flags.isNest())
709       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
710     if (Out.Flags.isInAlloca())
711       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
712     if (Out.Flags.isInConsecutiveRegs())
713       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
714     if (Out.Flags.isInConsecutiveRegsLast())
715       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
716     if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) {
717       auto &MFI = MF.getFrameInfo();
718       int FI = MFI.CreateStackObject(Out.Flags.getByValSize(),
719                                      Out.Flags.getByValAlign(),
720                                      /*isSS=*/false);
721       SDValue SizeNode =
722           DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32);
723       SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
724       Chain = DAG.getMemcpy(
725           Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(),
726           /*isVolatile*/ false, /*AlwaysInline=*/false,
727           /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo());
728       OutVal = FINode;
729     }
730     // Count the number of fixed args *after* legalization.
731     NumFixedArgs += Out.IsFixed;
732   }
733 
734   bool IsVarArg = CLI.IsVarArg;
735   auto PtrVT = getPointerTy(Layout);
736 
737   // Analyze operands of the call, assigning locations to each operand.
738   SmallVector<CCValAssign, 16> ArgLocs;
739   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
740 
741   if (IsVarArg) {
742     // Outgoing non-fixed arguments are placed in a buffer. First
743     // compute their offsets and the total amount of buffer space needed.
744     for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) {
745       const ISD::OutputArg &Out = Outs[I];
746       SDValue &Arg = OutVals[I];
747       EVT VT = Arg.getValueType();
748       assert(VT != MVT::iPTR && "Legalized args should be concrete");
749       Type *Ty = VT.getTypeForEVT(*DAG.getContext());
750       unsigned Align = std::max(Out.Flags.getOrigAlign(),
751                                 Layout.getABITypeAlignment(Ty));
752       unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty),
753                                              Align);
754       CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(),
755                                         Offset, VT.getSimpleVT(),
756                                         CCValAssign::Full));
757     }
758   }
759 
760   unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
761 
762   SDValue FINode;
763   if (IsVarArg && NumBytes) {
764     // For non-fixed arguments, next emit stores to store the argument values
765     // to the stack buffer at the offsets computed above.
766     int FI = MF.getFrameInfo().CreateStackObject(NumBytes,
767                                                  Layout.getStackAlignment(),
768                                                  /*isSS=*/false);
769     unsigned ValNo = 0;
770     SmallVector<SDValue, 8> Chains;
771     for (SDValue Arg :
772          make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) {
773       assert(ArgLocs[ValNo].getValNo() == ValNo &&
774              "ArgLocs should remain in order and only hold varargs args");
775       unsigned Offset = ArgLocs[ValNo++].getLocMemOffset();
776       FINode = DAG.getFrameIndex(FI, getPointerTy(Layout));
777       SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode,
778                                 DAG.getConstant(Offset, DL, PtrVT));
779       Chains.push_back(
780           DAG.getStore(Chain, DL, Arg, Add,
781                        MachinePointerInfo::getFixedStack(MF, FI, Offset), 0));
782     }
783     if (!Chains.empty())
784       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
785   } else if (IsVarArg) {
786     FINode = DAG.getIntPtrConstant(0, DL);
787   }
788 
789   if (Callee->getOpcode() == ISD::GlobalAddress) {
790     // If the callee is a GlobalAddress node (quite common, every direct call
791     // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress
792     // doesn't at MO_GOT which is not needed for direct calls.
793     GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee);
794     Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
795                                         getPointerTy(DAG.getDataLayout()),
796                                         GA->getOffset());
797     Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL,
798                          getPointerTy(DAG.getDataLayout()), Callee);
799   }
800 
801   // Compute the operands for the CALLn node.
802   SmallVector<SDValue, 16> Ops;
803   Ops.push_back(Chain);
804   Ops.push_back(Callee);
805 
806   // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs
807   // isn't reliable.
808   Ops.append(OutVals.begin(),
809              IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end());
810   // Add a pointer to the vararg buffer.
811   if (IsVarArg)
812     Ops.push_back(FINode);
813 
814   SmallVector<EVT, 8> InTys;
815   for (const auto &In : Ins) {
816     assert(!In.Flags.isByVal() && "byval is not valid for return values");
817     assert(!In.Flags.isNest() && "nest is not valid for return values");
818     if (In.Flags.isInAlloca())
819       fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values");
820     if (In.Flags.isInConsecutiveRegs())
821       fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values");
822     if (In.Flags.isInConsecutiveRegsLast())
823       fail(DL, DAG,
824            "WebAssembly hasn't implemented cons regs last return values");
825     // Ignore In.getOrigAlign() because all our arguments are passed in
826     // registers.
827     InTys.push_back(In.VT);
828   }
829 
830   if (CLI.IsTailCall) {
831     // ret_calls do not return values to the current frame
832     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
833     return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops);
834   }
835 
836   InTys.push_back(MVT::Other);
837   SDVTList InTyList = DAG.getVTList(InTys);
838   SDValue Res =
839       DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1,
840                   DL, InTyList, Ops);
841   if (Ins.empty()) {
842     Chain = Res;
843   } else {
844     InVals.push_back(Res);
845     Chain = Res.getValue(1);
846   }
847 
848   return Chain;
849 }
850 
851 bool WebAssemblyTargetLowering::CanLowerReturn(
852     CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/,
853     const SmallVectorImpl<ISD::OutputArg> &Outs,
854     LLVMContext & /*Context*/) const {
855   // WebAssembly can only handle returning tuples with multivalue enabled
856   return Subtarget->hasMultivalue() || Outs.size() <= 1;
857 }
858 
859 SDValue WebAssemblyTargetLowering::LowerReturn(
860     SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/,
861     const SmallVectorImpl<ISD::OutputArg> &Outs,
862     const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
863     SelectionDAG &DAG) const {
864   assert((Subtarget->hasMultivalue() || Outs.size() <= 1) &&
865          "MVP WebAssembly can only return up to one value");
866   if (!callingConvSupported(CallConv))
867     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
868 
869   SmallVector<SDValue, 4> RetOps(1, Chain);
870   RetOps.append(OutVals.begin(), OutVals.end());
871   Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps);
872 
873   // Record the number and types of the return values.
874   for (const ISD::OutputArg &Out : Outs) {
875     assert(!Out.Flags.isByVal() && "byval is not valid for return values");
876     assert(!Out.Flags.isNest() && "nest is not valid for return values");
877     assert(Out.IsFixed && "non-fixed return value is not valid");
878     if (Out.Flags.isInAlloca())
879       fail(DL, DAG, "WebAssembly hasn't implemented inalloca results");
880     if (Out.Flags.isInConsecutiveRegs())
881       fail(DL, DAG, "WebAssembly hasn't implemented cons regs results");
882     if (Out.Flags.isInConsecutiveRegsLast())
883       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results");
884   }
885 
886   return Chain;
887 }
888 
889 SDValue WebAssemblyTargetLowering::LowerFormalArguments(
890     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
891     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
892     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
893   if (!callingConvSupported(CallConv))
894     fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions");
895 
896   MachineFunction &MF = DAG.getMachineFunction();
897   auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>();
898 
899   // Set up the incoming ARGUMENTS value, which serves to represent the liveness
900   // of the incoming values before they're represented by virtual registers.
901   MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS);
902 
903   for (const ISD::InputArg &In : Ins) {
904     if (In.Flags.isInAlloca())
905       fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments");
906     if (In.Flags.isNest())
907       fail(DL, DAG, "WebAssembly hasn't implemented nest arguments");
908     if (In.Flags.isInConsecutiveRegs())
909       fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments");
910     if (In.Flags.isInConsecutiveRegsLast())
911       fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments");
912     // Ignore In.getOrigAlign() because all our arguments are passed in
913     // registers.
914     InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT,
915                                            DAG.getTargetConstant(InVals.size(),
916                                                                  DL, MVT::i32))
917                              : DAG.getUNDEF(In.VT));
918 
919     // Record the number and types of arguments.
920     MFI->addParam(In.VT);
921   }
922 
923   // Varargs are copied into a buffer allocated by the caller, and a pointer to
924   // the buffer is passed as an argument.
925   if (IsVarArg) {
926     MVT PtrVT = getPointerTy(MF.getDataLayout());
927     Register VarargVreg =
928         MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT));
929     MFI->setVarargBufferVreg(VarargVreg);
930     Chain = DAG.getCopyToReg(
931         Chain, DL, VarargVreg,
932         DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT,
933                     DAG.getTargetConstant(Ins.size(), DL, MVT::i32)));
934     MFI->addParam(PtrVT);
935   }
936 
937   // Record the number and types of arguments and results.
938   SmallVector<MVT, 4> Params;
939   SmallVector<MVT, 4> Results;
940   computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(),
941                       DAG.getTarget(), Params, Results);
942   for (MVT VT : Results)
943     MFI->addResult(VT);
944   // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify
945   // the param logic here with ComputeSignatureVTs
946   assert(MFI->getParams().size() == Params.size() &&
947          std::equal(MFI->getParams().begin(), MFI->getParams().end(),
948                     Params.begin()));
949 
950   return Chain;
951 }
952 
953 void WebAssemblyTargetLowering::ReplaceNodeResults(
954     SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
955   switch (N->getOpcode()) {
956   case ISD::SIGN_EXTEND_INREG:
957     // Do not add any results, signifying that N should not be custom lowered
958     // after all. This happens because simd128 turns on custom lowering for
959     // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an
960     // illegal type.
961     break;
962   default:
963     llvm_unreachable(
964         "ReplaceNodeResults not implemented for this op for WebAssembly!");
965   }
966 }
967 
968 //===----------------------------------------------------------------------===//
969 //  Custom lowering hooks.
970 //===----------------------------------------------------------------------===//
971 
972 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op,
973                                                   SelectionDAG &DAG) const {
974   SDLoc DL(Op);
975   switch (Op.getOpcode()) {
976   default:
977     llvm_unreachable("unimplemented operation lowering");
978     return SDValue();
979   case ISD::FrameIndex:
980     return LowerFrameIndex(Op, DAG);
981   case ISD::GlobalAddress:
982     return LowerGlobalAddress(Op, DAG);
983   case ISD::ExternalSymbol:
984     return LowerExternalSymbol(Op, DAG);
985   case ISD::JumpTable:
986     return LowerJumpTable(Op, DAG);
987   case ISD::BR_JT:
988     return LowerBR_JT(Op, DAG);
989   case ISD::VASTART:
990     return LowerVASTART(Op, DAG);
991   case ISD::BlockAddress:
992   case ISD::BRIND:
993     fail(DL, DAG, "WebAssembly hasn't implemented computed gotos");
994     return SDValue();
995   case ISD::RETURNADDR:
996     return LowerRETURNADDR(Op, DAG);
997   case ISD::FRAMEADDR:
998     return LowerFRAMEADDR(Op, DAG);
999   case ISD::CopyToReg:
1000     return LowerCopyToReg(Op, DAG);
1001   case ISD::EXTRACT_VECTOR_ELT:
1002   case ISD::INSERT_VECTOR_ELT:
1003     return LowerAccessVectorElement(Op, DAG);
1004   case ISD::INTRINSIC_VOID:
1005   case ISD::INTRINSIC_WO_CHAIN:
1006   case ISD::INTRINSIC_W_CHAIN:
1007     return LowerIntrinsic(Op, DAG);
1008   case ISD::SIGN_EXTEND_INREG:
1009     return LowerSIGN_EXTEND_INREG(Op, DAG);
1010   case ISD::BUILD_VECTOR:
1011     return LowerBUILD_VECTOR(Op, DAG);
1012   case ISD::VECTOR_SHUFFLE:
1013     return LowerVECTOR_SHUFFLE(Op, DAG);
1014   case ISD::SHL:
1015   case ISD::SRA:
1016   case ISD::SRL:
1017     return LowerShift(Op, DAG);
1018   }
1019 }
1020 
1021 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op,
1022                                                   SelectionDAG &DAG) const {
1023   SDValue Src = Op.getOperand(2);
1024   if (isa<FrameIndexSDNode>(Src.getNode())) {
1025     // CopyToReg nodes don't support FrameIndex operands. Other targets select
1026     // the FI to some LEA-like instruction, but since we don't have that, we
1027     // need to insert some kind of instruction that can take an FI operand and
1028     // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy
1029     // local.copy between Op and its FI operand.
1030     SDValue Chain = Op.getOperand(0);
1031     SDLoc DL(Op);
1032     unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
1033     EVT VT = Src.getValueType();
1034     SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32
1035                                                    : WebAssembly::COPY_I64,
1036                                     DL, VT, Src),
1037                  0);
1038     return Op.getNode()->getNumValues() == 1
1039                ? DAG.getCopyToReg(Chain, DL, Reg, Copy)
1040                : DAG.getCopyToReg(Chain, DL, Reg, Copy,
1041                                   Op.getNumOperands() == 4 ? Op.getOperand(3)
1042                                                            : SDValue());
1043   }
1044   return SDValue();
1045 }
1046 
1047 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op,
1048                                                    SelectionDAG &DAG) const {
1049   int FI = cast<FrameIndexSDNode>(Op)->getIndex();
1050   return DAG.getTargetFrameIndex(FI, Op.getValueType());
1051 }
1052 
1053 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op,
1054                                                    SelectionDAG &DAG) const {
1055   SDLoc DL(Op);
1056 
1057   if (!Subtarget->getTargetTriple().isOSEmscripten()) {
1058     fail(DL, DAG,
1059          "Non-Emscripten WebAssembly hasn't implemented "
1060          "__builtin_return_address");
1061     return SDValue();
1062   }
1063 
1064   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1065     return SDValue();
1066 
1067   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1068   MakeLibCallOptions CallOptions;
1069   return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(),
1070                      {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL)
1071       .first;
1072 }
1073 
1074 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op,
1075                                                   SelectionDAG &DAG) const {
1076   // Non-zero depths are not supported by WebAssembly currently. Use the
1077   // legalizer's default expansion, which is to return 0 (what this function is
1078   // documented to do).
1079   if (Op.getConstantOperandVal(0) > 0)
1080     return SDValue();
1081 
1082   DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
1083   EVT VT = Op.getValueType();
1084   Register FP =
1085       Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction());
1086   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT);
1087 }
1088 
1089 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op,
1090                                                       SelectionDAG &DAG) const {
1091   SDLoc DL(Op);
1092   const auto *GA = cast<GlobalAddressSDNode>(Op);
1093   EVT VT = Op.getValueType();
1094   assert(GA->getTargetFlags() == 0 &&
1095          "Unexpected target flags on generic GlobalAddressSDNode");
1096   if (GA->getAddressSpace() != 0)
1097     fail(DL, DAG, "WebAssembly only expects the 0 address space");
1098 
1099   unsigned OperandFlags = 0;
1100   if (isPositionIndependent()) {
1101     const GlobalValue *GV = GA->getGlobal();
1102     if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) {
1103       MachineFunction &MF = DAG.getMachineFunction();
1104       MVT PtrVT = getPointerTy(MF.getDataLayout());
1105       const char *BaseName;
1106       if (GV->getValueType()->isFunctionTy()) {
1107         BaseName = MF.createExternalSymbolName("__table_base");
1108         OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL;
1109       }
1110       else {
1111         BaseName = MF.createExternalSymbolName("__memory_base");
1112         OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL;
1113       }
1114       SDValue BaseAddr =
1115           DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1116                       DAG.getTargetExternalSymbol(BaseName, PtrVT));
1117 
1118       SDValue SymAddr = DAG.getNode(
1119           WebAssemblyISD::WrapperPIC, DL, VT,
1120           DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(),
1121                                      OperandFlags));
1122 
1123       return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr);
1124     } else {
1125       OperandFlags = WebAssemblyII::MO_GOT;
1126     }
1127   }
1128 
1129   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1130                      DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT,
1131                                                 GA->getOffset(), OperandFlags));
1132 }
1133 
1134 SDValue
1135 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op,
1136                                                SelectionDAG &DAG) const {
1137   SDLoc DL(Op);
1138   const auto *ES = cast<ExternalSymbolSDNode>(Op);
1139   EVT VT = Op.getValueType();
1140   assert(ES->getTargetFlags() == 0 &&
1141          "Unexpected target flags on generic ExternalSymbolSDNode");
1142   return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1143                      DAG.getTargetExternalSymbol(ES->getSymbol(), VT));
1144 }
1145 
1146 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op,
1147                                                   SelectionDAG &DAG) const {
1148   // There's no need for a Wrapper node because we always incorporate a jump
1149   // table operand into a BR_TABLE instruction, rather than ever
1150   // materializing it in a register.
1151   const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1152   return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(),
1153                                 JT->getTargetFlags());
1154 }
1155 
1156 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op,
1157                                               SelectionDAG &DAG) const {
1158   SDLoc DL(Op);
1159   SDValue Chain = Op.getOperand(0);
1160   const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1));
1161   SDValue Index = Op.getOperand(2);
1162   assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags");
1163 
1164   SmallVector<SDValue, 8> Ops;
1165   Ops.push_back(Chain);
1166   Ops.push_back(Index);
1167 
1168   MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo();
1169   const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs;
1170 
1171   // Add an operand for each case.
1172   for (auto MBB : MBBs)
1173     Ops.push_back(DAG.getBasicBlock(MBB));
1174 
1175   // TODO: For now, we just pick something arbitrary for a default case for now.
1176   // We really want to sniff out the guard and put in the real default case (and
1177   // delete the guard).
1178   Ops.push_back(DAG.getBasicBlock(MBBs[0]));
1179 
1180   return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops);
1181 }
1182 
1183 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op,
1184                                                 SelectionDAG &DAG) const {
1185   SDLoc DL(Op);
1186   EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout());
1187 
1188   auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>();
1189   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1190 
1191   SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL,
1192                                     MFI->getVarargBufferVreg(), PtrVT);
1193   return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1),
1194                       MachinePointerInfo(SV), 0);
1195 }
1196 
1197 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op,
1198                                                   SelectionDAG &DAG) const {
1199   MachineFunction &MF = DAG.getMachineFunction();
1200   unsigned IntNo;
1201   switch (Op.getOpcode()) {
1202   case ISD::INTRINSIC_VOID:
1203   case ISD::INTRINSIC_W_CHAIN:
1204     IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1205     break;
1206   case ISD::INTRINSIC_WO_CHAIN:
1207     IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1208     break;
1209   default:
1210     llvm_unreachable("Invalid intrinsic");
1211   }
1212   SDLoc DL(Op);
1213 
1214   switch (IntNo) {
1215   default:
1216     return SDValue(); // Don't custom lower most intrinsics.
1217 
1218   case Intrinsic::wasm_lsda: {
1219     EVT VT = Op.getValueType();
1220     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1221     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1222     auto &Context = MF.getMMI().getContext();
1223     MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") +
1224                                             Twine(MF.getFunctionNumber()));
1225     return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT,
1226                        DAG.getMCSymbol(S, PtrVT));
1227   }
1228 
1229   case Intrinsic::wasm_throw: {
1230     // We only support C++ exceptions for now
1231     int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
1232     if (Tag != CPP_EXCEPTION)
1233       llvm_unreachable("Invalid tag!");
1234     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1235     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
1236     const char *SymName = MF.createExternalSymbolName("__cpp_exception");
1237     SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT,
1238                                   DAG.getTargetExternalSymbol(SymName, PtrVT));
1239     return DAG.getNode(WebAssemblyISD::THROW, DL,
1240                        MVT::Other, // outchain type
1241                        {
1242                            Op.getOperand(0), // inchain
1243                            SymNode,          // exception symbol
1244                            Op.getOperand(3)  // thrown value
1245                        });
1246   }
1247   }
1248 }
1249 
1250 SDValue
1251 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
1252                                                   SelectionDAG &DAG) const {
1253   SDLoc DL(Op);
1254   // If sign extension operations are disabled, allow sext_inreg only if operand
1255   // is a vector extract. SIMD does not depend on sign extension operations, but
1256   // allowing sext_inreg in this context lets us have simple patterns to select
1257   // extract_lane_s instructions. Expanding sext_inreg everywhere would be
1258   // simpler in this file, but would necessitate large and brittle patterns to
1259   // undo the expansion and select extract_lane_s instructions.
1260   assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128());
1261   if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1262     const SDValue &Extract = Op.getOperand(0);
1263     MVT VecT = Extract.getOperand(0).getSimpleValueType();
1264     MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode())
1265                              ->getVT()
1266                              .getSimpleVT();
1267     MVT ExtractedVecT =
1268         MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits());
1269     if (ExtractedVecT == VecT)
1270       return Op;
1271     // Bitcast vector to appropriate type to ensure ISel pattern coverage
1272     const SDValue &Index = Extract.getOperand(1);
1273     unsigned IndexVal =
1274         static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue();
1275     unsigned Scale =
1276         ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements();
1277     assert(Scale > 1);
1278     SDValue NewIndex =
1279         DAG.getConstant(IndexVal * Scale, DL, Index.getValueType());
1280     SDValue NewExtract = DAG.getNode(
1281         ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(),
1282         DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex);
1283     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(),
1284                        NewExtract, Op.getOperand(1));
1285   }
1286   // Otherwise expand
1287   return SDValue();
1288 }
1289 
1290 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op,
1291                                                      SelectionDAG &DAG) const {
1292   SDLoc DL(Op);
1293   const EVT VecT = Op.getValueType();
1294   const EVT LaneT = Op.getOperand(0).getValueType();
1295   const size_t Lanes = Op.getNumOperands();
1296   bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8;
1297 
1298   // BUILD_VECTORs are lowered to the instruction that initializes the highest
1299   // possible number of lanes at once followed by a sequence of replace_lane
1300   // instructions to individually initialize any remaining lanes.
1301 
1302   // TODO: Tune this. For example, lanewise swizzling is very expensive, so
1303   // swizzled lanes should be given greater weight.
1304 
1305   // TODO: Investigate building vectors by shuffling together vectors built by
1306   // separately specialized means.
1307 
1308   auto IsConstant = [](const SDValue &V) {
1309     return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP;
1310   };
1311 
1312   // Returns the source vector and index vector pair if they exist. Checks for:
1313   //   (extract_vector_elt
1314   //     $src,
1315   //     (sign_extend_inreg (extract_vector_elt $indices, $i))
1316   //   )
1317   auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) {
1318     auto Bail = std::make_pair(SDValue(), SDValue());
1319     if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1320       return Bail;
1321     const SDValue &SwizzleSrc = Lane->getOperand(0);
1322     const SDValue &IndexExt = Lane->getOperand(1);
1323     if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG)
1324       return Bail;
1325     const SDValue &Index = IndexExt->getOperand(0);
1326     if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1327       return Bail;
1328     const SDValue &SwizzleIndices = Index->getOperand(0);
1329     if (SwizzleSrc.getValueType() != MVT::v16i8 ||
1330         SwizzleIndices.getValueType() != MVT::v16i8 ||
1331         Index->getOperand(1)->getOpcode() != ISD::Constant ||
1332         Index->getConstantOperandVal(1) != I)
1333       return Bail;
1334     return std::make_pair(SwizzleSrc, SwizzleIndices);
1335   };
1336 
1337   using ValueEntry = std::pair<SDValue, size_t>;
1338   SmallVector<ValueEntry, 16> SplatValueCounts;
1339 
1340   using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>;
1341   SmallVector<SwizzleEntry, 16> SwizzleCounts;
1342 
1343   auto AddCount = [](auto &Counts, const auto &Val) {
1344     auto CountIt = std::find_if(Counts.begin(), Counts.end(),
1345                                 [&Val](auto E) { return E.first == Val; });
1346     if (CountIt == Counts.end()) {
1347       Counts.emplace_back(Val, 1);
1348     } else {
1349       CountIt->second++;
1350     }
1351   };
1352 
1353   auto GetMostCommon = [](auto &Counts) {
1354     auto CommonIt =
1355         std::max_element(Counts.begin(), Counts.end(),
1356                          [](auto A, auto B) { return A.second < B.second; });
1357     assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector");
1358     return *CommonIt;
1359   };
1360 
1361   size_t NumConstantLanes = 0;
1362 
1363   // Count eligible lanes for each type of vector creation op
1364   for (size_t I = 0; I < Lanes; ++I) {
1365     const SDValue &Lane = Op->getOperand(I);
1366     if (Lane.isUndef())
1367       continue;
1368 
1369     AddCount(SplatValueCounts, Lane);
1370 
1371     if (IsConstant(Lane)) {
1372       NumConstantLanes++;
1373     } else if (CanSwizzle) {
1374       auto SwizzleSrcs = GetSwizzleSrcs(I, Lane);
1375       if (SwizzleSrcs.first)
1376         AddCount(SwizzleCounts, SwizzleSrcs);
1377     }
1378   }
1379 
1380   SDValue SplatValue;
1381   size_t NumSplatLanes;
1382   std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts);
1383 
1384   SDValue SwizzleSrc;
1385   SDValue SwizzleIndices;
1386   size_t NumSwizzleLanes = 0;
1387   if (SwizzleCounts.size())
1388     std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices),
1389                           NumSwizzleLanes) = GetMostCommon(SwizzleCounts);
1390 
1391   // Predicate returning true if the lane is properly initialized by the
1392   // original instruction
1393   std::function<bool(size_t, const SDValue &)> IsLaneConstructed;
1394   SDValue Result;
1395   if (Subtarget->hasUnimplementedSIMD128()) {
1396     // Prefer swizzles over vector consts over splats
1397     if (NumSwizzleLanes >= NumSplatLanes &&
1398         NumSwizzleLanes >= NumConstantLanes) {
1399       Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc,
1400                            SwizzleIndices);
1401       auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices);
1402       IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) {
1403         return Swizzled == GetSwizzleSrcs(I, Lane);
1404       };
1405     } else if (NumConstantLanes >= NumSplatLanes) {
1406       SmallVector<SDValue, 16> ConstLanes;
1407       for (const SDValue &Lane : Op->op_values()) {
1408         if (IsConstant(Lane)) {
1409           ConstLanes.push_back(Lane);
1410         } else if (LaneT.isFloatingPoint()) {
1411           ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT));
1412         } else {
1413           ConstLanes.push_back(DAG.getConstant(0, DL, LaneT));
1414         }
1415       }
1416       Result = DAG.getBuildVector(VecT, DL, ConstLanes);
1417       IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1418         return IsConstant(Lane);
1419       };
1420     }
1421   }
1422   if (!Result) {
1423     // Use a splat, but possibly a load_splat
1424     LoadSDNode *SplattedLoad;
1425     if (Subtarget->hasUnimplementedSIMD128() &&
1426         (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) &&
1427         SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) {
1428       Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue);
1429     } else {
1430       Result = DAG.getSplatBuildVector(VecT, DL, SplatValue);
1431     }
1432     IsLaneConstructed = [&](size_t _, const SDValue &Lane) {
1433       return Lane == SplatValue;
1434     };
1435   }
1436 
1437   // Add replace_lane instructions for any unhandled values
1438   for (size_t I = 0; I < Lanes; ++I) {
1439     const SDValue &Lane = Op->getOperand(I);
1440     if (!Lane.isUndef() && !IsLaneConstructed(I, Lane))
1441       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane,
1442                            DAG.getConstant(I, DL, MVT::i32));
1443   }
1444 
1445   return Result;
1446 }
1447 
1448 SDValue
1449 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
1450                                                SelectionDAG &DAG) const {
1451   SDLoc DL(Op);
1452   ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask();
1453   MVT VecType = Op.getOperand(0).getSimpleValueType();
1454   assert(VecType.is128BitVector() && "Unexpected shuffle vector type");
1455   size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8;
1456 
1457   // Space for two vector args and sixteen mask indices
1458   SDValue Ops[18];
1459   size_t OpIdx = 0;
1460   Ops[OpIdx++] = Op.getOperand(0);
1461   Ops[OpIdx++] = Op.getOperand(1);
1462 
1463   // Expand mask indices to byte indices and materialize them as operands
1464   for (int M : Mask) {
1465     for (size_t J = 0; J < LaneBytes; ++J) {
1466       // Lower undefs (represented by -1 in mask) to zero
1467       uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J;
1468       Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32);
1469     }
1470   }
1471 
1472   return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops);
1473 }
1474 
1475 SDValue
1476 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op,
1477                                                     SelectionDAG &DAG) const {
1478   // Allow constant lane indices, expand variable lane indices
1479   SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode();
1480   if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef())
1481     return Op;
1482   else
1483     // Perform default expansion
1484     return SDValue();
1485 }
1486 
1487 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) {
1488   EVT LaneT = Op.getSimpleValueType().getVectorElementType();
1489   // 32-bit and 64-bit unrolled shifts will have proper semantics
1490   if (LaneT.bitsGE(MVT::i32))
1491     return DAG.UnrollVectorOp(Op.getNode());
1492   // Otherwise mask the shift value to get proper semantics from 32-bit shift
1493   SDLoc DL(Op);
1494   SDValue ShiftVal = Op.getOperand(1);
1495   uint64_t MaskVal = LaneT.getSizeInBits() - 1;
1496   SDValue MaskedShiftVal = DAG.getNode(
1497       ISD::AND,                    // mask opcode
1498       DL, ShiftVal.getValueType(), // masked value type
1499       ShiftVal,                    // original shift value operand
1500       DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand
1501   );
1502 
1503   return DAG.UnrollVectorOp(
1504       DAG.getNode(Op.getOpcode(),        // original shift opcode
1505                   DL, Op.getValueType(), // original return type
1506                   Op.getOperand(0),      // original vector operand,
1507                   MaskedShiftVal         // new masked shift value operand
1508                   )
1509           .getNode());
1510 }
1511 
1512 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op,
1513                                               SelectionDAG &DAG) const {
1514   SDLoc DL(Op);
1515 
1516   // Only manually lower vector shifts
1517   assert(Op.getSimpleValueType().isVector());
1518 
1519   // Unroll non-splat vector shifts
1520   BuildVectorSDNode *ShiftVec;
1521   SDValue SplatVal;
1522   if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) ||
1523       !(SplatVal = ShiftVec->getSplatValue()))
1524     return unrollVectorShift(Op, DAG);
1525 
1526   // All splats except i64x2 const splats are handled by patterns
1527   auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal);
1528   if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64)
1529     return Op;
1530 
1531   // i64x2 const splats are custom lowered to avoid unnecessary wraps
1532   unsigned Opcode;
1533   switch (Op.getOpcode()) {
1534   case ISD::SHL:
1535     Opcode = WebAssemblyISD::VEC_SHL;
1536     break;
1537   case ISD::SRA:
1538     Opcode = WebAssemblyISD::VEC_SHR_S;
1539     break;
1540   case ISD::SRL:
1541     Opcode = WebAssemblyISD::VEC_SHR_U;
1542     break;
1543   default:
1544     llvm_unreachable("unexpected opcode");
1545   }
1546   APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32);
1547   return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0),
1548                      DAG.getConstant(Shift, DL, MVT::i32));
1549 }
1550 
1551 //===----------------------------------------------------------------------===//
1552 //                          WebAssembly Optimization Hooks
1553 //===----------------------------------------------------------------------===//
1554