1 //=- WebAssemblyISelLowering.cpp - WebAssembly DAG Lowering Implementation -==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements the WebAssemblyTargetLowering class. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "WebAssemblyISelLowering.h" 15 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 16 #include "WebAssemblyMachineFunctionInfo.h" 17 #include "WebAssemblySubtarget.h" 18 #include "WebAssemblyTargetMachine.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/CodeGen/CallingConvLower.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/MachineModuleInfo.h" 24 #include "llvm/CodeGen/MachineRegisterInfo.h" 25 #include "llvm/CodeGen/SelectionDAG.h" 26 #include "llvm/CodeGen/WasmEHFuncInfo.h" 27 #include "llvm/IR/DiagnosticInfo.h" 28 #include "llvm/IR/DiagnosticPrinter.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetOptions.h" 35 using namespace llvm; 36 37 #define DEBUG_TYPE "wasm-lower" 38 39 WebAssemblyTargetLowering::WebAssemblyTargetLowering( 40 const TargetMachine &TM, const WebAssemblySubtarget &STI) 41 : TargetLowering(TM), Subtarget(&STI) { 42 auto MVTPtr = Subtarget->hasAddr64() ? MVT::i64 : MVT::i32; 43 44 // Booleans always contain 0 or 1. 45 setBooleanContents(ZeroOrOneBooleanContent); 46 // Except in SIMD vectors 47 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 48 // We don't know the microarchitecture here, so just reduce register pressure. 49 setSchedulingPreference(Sched::RegPressure); 50 // Tell ISel that we have a stack pointer. 51 setStackPointerRegisterToSaveRestore( 52 Subtarget->hasAddr64() ? WebAssembly::SP64 : WebAssembly::SP32); 53 // Set up the register classes. 54 addRegisterClass(MVT::i32, &WebAssembly::I32RegClass); 55 addRegisterClass(MVT::i64, &WebAssembly::I64RegClass); 56 addRegisterClass(MVT::f32, &WebAssembly::F32RegClass); 57 addRegisterClass(MVT::f64, &WebAssembly::F64RegClass); 58 if (Subtarget->hasSIMD128()) { 59 addRegisterClass(MVT::v16i8, &WebAssembly::V128RegClass); 60 addRegisterClass(MVT::v8i16, &WebAssembly::V128RegClass); 61 addRegisterClass(MVT::v4i32, &WebAssembly::V128RegClass); 62 addRegisterClass(MVT::v4f32, &WebAssembly::V128RegClass); 63 } 64 if (Subtarget->hasUnimplementedSIMD128()) { 65 addRegisterClass(MVT::v2i64, &WebAssembly::V128RegClass); 66 addRegisterClass(MVT::v2f64, &WebAssembly::V128RegClass); 67 } 68 // Compute derived properties from the register classes. 69 computeRegisterProperties(Subtarget->getRegisterInfo()); 70 71 setOperationAction(ISD::GlobalAddress, MVTPtr, Custom); 72 setOperationAction(ISD::ExternalSymbol, MVTPtr, Custom); 73 setOperationAction(ISD::JumpTable, MVTPtr, Custom); 74 setOperationAction(ISD::BlockAddress, MVTPtr, Custom); 75 setOperationAction(ISD::BRIND, MVT::Other, Custom); 76 77 // Take the default expansion for va_arg, va_copy, and va_end. There is no 78 // default action for va_start, so we do that custom. 79 setOperationAction(ISD::VASTART, MVT::Other, Custom); 80 setOperationAction(ISD::VAARG, MVT::Other, Expand); 81 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 82 setOperationAction(ISD::VAEND, MVT::Other, Expand); 83 84 for (auto T : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) { 85 // Don't expand the floating-point types to constant pools. 86 setOperationAction(ISD::ConstantFP, T, Legal); 87 // Expand floating-point comparisons. 88 for (auto CC : {ISD::SETO, ISD::SETUO, ISD::SETUEQ, ISD::SETONE, 89 ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE}) 90 setCondCodeAction(CC, T, Expand); 91 // Expand floating-point library function operators. 92 for (auto Op : 93 {ISD::FSIN, ISD::FCOS, ISD::FSINCOS, ISD::FPOW, ISD::FREM, ISD::FMA}) 94 setOperationAction(Op, T, Expand); 95 // Note supported floating-point library function operators that otherwise 96 // default to expand. 97 for (auto Op : 98 {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, ISD::FRINT}) 99 setOperationAction(Op, T, Legal); 100 // Support minimum and maximum, which otherwise default to expand. 101 setOperationAction(ISD::FMINIMUM, T, Legal); 102 setOperationAction(ISD::FMAXIMUM, T, Legal); 103 // WebAssembly currently has no builtin f16 support. 104 setOperationAction(ISD::FP16_TO_FP, T, Expand); 105 setOperationAction(ISD::FP_TO_FP16, T, Expand); 106 setLoadExtAction(ISD::EXTLOAD, T, MVT::f16, Expand); 107 setTruncStoreAction(T, MVT::f16, Expand); 108 } 109 110 // Expand unavailable integer operations. 111 for (auto Op : 112 {ISD::BSWAP, ISD::SMUL_LOHI, ISD::UMUL_LOHI, ISD::MULHS, ISD::MULHU, 113 ISD::SDIVREM, ISD::UDIVREM, ISD::SHL_PARTS, ISD::SRA_PARTS, 114 ISD::SRL_PARTS, ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}) { 115 for (auto T : {MVT::i32, MVT::i64}) 116 setOperationAction(Op, T, Expand); 117 if (Subtarget->hasSIMD128()) 118 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 119 setOperationAction(Op, T, Expand); 120 if (Subtarget->hasUnimplementedSIMD128()) 121 setOperationAction(Op, MVT::v2i64, Expand); 122 } 123 124 // SIMD-specific configuration 125 if (Subtarget->hasSIMD128()) { 126 // Support saturating add for i8x16 and i16x8 127 for (auto Op : {ISD::SADDSAT, ISD::UADDSAT}) 128 for (auto T : {MVT::v16i8, MVT::v8i16}) 129 setOperationAction(Op, T, Legal); 130 131 // Custom lower BUILD_VECTORs to minimize number of replace_lanes 132 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 133 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 134 if (Subtarget->hasUnimplementedSIMD128()) 135 for (auto T : {MVT::v2i64, MVT::v2f64}) 136 setOperationAction(ISD::BUILD_VECTOR, T, Custom); 137 138 // We have custom shuffle lowering to expose the shuffle mask 139 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 140 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 141 if (Subtarget->hasUnimplementedSIMD128()) 142 for (auto T: {MVT::v2i64, MVT::v2f64}) 143 setOperationAction(ISD::VECTOR_SHUFFLE, T, Custom); 144 145 // Custom lowering since wasm shifts must have a scalar shift amount 146 for (auto Op : {ISD::SHL, ISD::SRA, ISD::SRL}) { 147 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 148 setOperationAction(Op, T, Custom); 149 if (Subtarget->hasUnimplementedSIMD128()) 150 setOperationAction(Op, MVT::v2i64, Custom); 151 } 152 153 // Custom lower lane accesses to expand out variable indices 154 for (auto Op : {ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT}) { 155 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 156 setOperationAction(Op, T, Custom); 157 if (Subtarget->hasUnimplementedSIMD128()) 158 for (auto T : {MVT::v2i64, MVT::v2f64}) 159 setOperationAction(Op, T, Custom); 160 } 161 162 // There is no i64x2.mul instruction 163 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 164 165 // There are no vector select instructions 166 for (auto Op : {ISD::VSELECT, ISD::SELECT_CC, ISD::SELECT}) { 167 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v4f32}) 168 setOperationAction(Op, T, Expand); 169 if (Subtarget->hasUnimplementedSIMD128()) 170 for (auto T : {MVT::v2i64, MVT::v2f64}) 171 setOperationAction(Op, T, Expand); 172 } 173 174 // Expand integer operations supported for scalars but not SIMD 175 for (auto Op : {ISD::CTLZ, ISD::CTTZ, ISD::CTPOP, ISD::SDIV, ISD::UDIV, 176 ISD::SREM, ISD::UREM, ISD::ROTL, ISD::ROTR}) { 177 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) 178 setOperationAction(Op, T, Expand); 179 if (Subtarget->hasUnimplementedSIMD128()) 180 setOperationAction(Op, MVT::v2i64, Expand); 181 } 182 183 // Expand float operations supported for scalars but not SIMD 184 for (auto Op : {ISD::FCEIL, ISD::FFLOOR, ISD::FTRUNC, ISD::FNEARBYINT, 185 ISD::FCOPYSIGN, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, 186 ISD::FEXP, ISD::FEXP2, ISD::FRINT}) { 187 setOperationAction(Op, MVT::v4f32, Expand); 188 if (Subtarget->hasUnimplementedSIMD128()) 189 setOperationAction(Op, MVT::v2f64, Expand); 190 } 191 192 // Expand additional SIMD ops that V8 hasn't implemented yet 193 if (!Subtarget->hasUnimplementedSIMD128()) { 194 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 195 setOperationAction(ISD::FDIV, MVT::v4f32, Expand); 196 } 197 } 198 199 // As a special case, these operators use the type to mean the type to 200 // sign-extend from. 201 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 202 if (!Subtarget->hasSignExt()) { 203 // Sign extends are legal only when extending a vector extract 204 auto Action = Subtarget->hasSIMD128() ? Custom : Expand; 205 for (auto T : {MVT::i8, MVT::i16, MVT::i32}) 206 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Action); 207 } 208 for (auto T : MVT::integer_fixedlen_vector_valuetypes()) 209 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Expand); 210 211 // Dynamic stack allocation: use the default expansion. 212 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 213 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 214 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVTPtr, Expand); 215 216 setOperationAction(ISD::FrameIndex, MVT::i32, Custom); 217 setOperationAction(ISD::CopyToReg, MVT::Other, Custom); 218 219 // Expand these forms; we pattern-match the forms that we can handle in isel. 220 for (auto T : {MVT::i32, MVT::i64, MVT::f32, MVT::f64}) 221 for (auto Op : {ISD::BR_CC, ISD::SELECT_CC}) 222 setOperationAction(Op, T, Expand); 223 224 // We have custom switch handling. 225 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 226 227 // WebAssembly doesn't have: 228 // - Floating-point extending loads. 229 // - Floating-point truncating stores. 230 // - i1 extending loads. 231 // - truncating SIMD stores and most extending loads 232 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); 233 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 234 for (auto T : MVT::integer_valuetypes()) 235 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 236 setLoadExtAction(Ext, T, MVT::i1, Promote); 237 if (Subtarget->hasSIMD128()) { 238 for (auto T : {MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64, MVT::v4f32, 239 MVT::v2f64}) { 240 for (auto MemT : MVT::fixedlen_vector_valuetypes()) { 241 if (MVT(T) != MemT) { 242 setTruncStoreAction(T, MemT, Expand); 243 for (auto Ext : {ISD::EXTLOAD, ISD::ZEXTLOAD, ISD::SEXTLOAD}) 244 setLoadExtAction(Ext, T, MemT, Expand); 245 } 246 } 247 } 248 // But some vector extending loads are legal 249 if (Subtarget->hasUnimplementedSIMD128()) { 250 for (auto Ext : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) { 251 setLoadExtAction(Ext, MVT::v8i16, MVT::v8i8, Legal); 252 setLoadExtAction(Ext, MVT::v4i32, MVT::v4i16, Legal); 253 setLoadExtAction(Ext, MVT::v2i64, MVT::v2i32, Legal); 254 } 255 } 256 } 257 258 // Don't do anything clever with build_pairs 259 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); 260 261 // Trap lowers to wasm unreachable 262 setOperationAction(ISD::TRAP, MVT::Other, Legal); 263 264 // Exception handling intrinsics 265 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 266 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); 267 268 setMaxAtomicSizeInBitsSupported(64); 269 270 // Override the __gnu_f2h_ieee/__gnu_h2f_ieee names so that the f32 name is 271 // consistent with the f64 and f128 names. 272 setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 273 setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 274 275 // Define the emscripten name for return address helper. 276 // TODO: when implementing other WASM backends, make this generic or only do 277 // this on emscripten depending on what they end up doing. 278 setLibcallName(RTLIB::RETURN_ADDRESS, "emscripten_return_address"); 279 280 // Always convert switches to br_tables unless there is only one case, which 281 // is equivalent to a simple branch. This reduces code size for wasm, and we 282 // defer possible jump table optimizations to the VM. 283 setMinimumJumpTableEntries(2); 284 } 285 286 TargetLowering::AtomicExpansionKind 287 WebAssemblyTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 288 // We have wasm instructions for these 289 switch (AI->getOperation()) { 290 case AtomicRMWInst::Add: 291 case AtomicRMWInst::Sub: 292 case AtomicRMWInst::And: 293 case AtomicRMWInst::Or: 294 case AtomicRMWInst::Xor: 295 case AtomicRMWInst::Xchg: 296 return AtomicExpansionKind::None; 297 default: 298 break; 299 } 300 return AtomicExpansionKind::CmpXChg; 301 } 302 303 FastISel *WebAssemblyTargetLowering::createFastISel( 304 FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { 305 return WebAssembly::createFastISel(FuncInfo, LibInfo); 306 } 307 308 MVT WebAssemblyTargetLowering::getScalarShiftAmountTy(const DataLayout & /*DL*/, 309 EVT VT) const { 310 unsigned BitWidth = NextPowerOf2(VT.getSizeInBits() - 1); 311 if (BitWidth > 1 && BitWidth < 8) 312 BitWidth = 8; 313 314 if (BitWidth > 64) { 315 // The shift will be lowered to a libcall, and compiler-rt libcalls expect 316 // the count to be an i32. 317 BitWidth = 32; 318 assert(BitWidth >= Log2_32_Ceil(VT.getSizeInBits()) && 319 "32-bit shift counts ought to be enough for anyone"); 320 } 321 322 MVT Result = MVT::getIntegerVT(BitWidth); 323 assert(Result != MVT::INVALID_SIMPLE_VALUE_TYPE && 324 "Unable to represent scalar shift amount type"); 325 return Result; 326 } 327 328 // Lower an fp-to-int conversion operator from the LLVM opcode, which has an 329 // undefined result on invalid/overflow, to the WebAssembly opcode, which 330 // traps on invalid/overflow. 331 static MachineBasicBlock *LowerFPToInt(MachineInstr &MI, DebugLoc DL, 332 MachineBasicBlock *BB, 333 const TargetInstrInfo &TII, 334 bool IsUnsigned, bool Int64, 335 bool Float64, unsigned LoweredOpcode) { 336 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 337 338 Register OutReg = MI.getOperand(0).getReg(); 339 Register InReg = MI.getOperand(1).getReg(); 340 341 unsigned Abs = Float64 ? WebAssembly::ABS_F64 : WebAssembly::ABS_F32; 342 unsigned FConst = Float64 ? WebAssembly::CONST_F64 : WebAssembly::CONST_F32; 343 unsigned LT = Float64 ? WebAssembly::LT_F64 : WebAssembly::LT_F32; 344 unsigned GE = Float64 ? WebAssembly::GE_F64 : WebAssembly::GE_F32; 345 unsigned IConst = Int64 ? WebAssembly::CONST_I64 : WebAssembly::CONST_I32; 346 unsigned Eqz = WebAssembly::EQZ_I32; 347 unsigned And = WebAssembly::AND_I32; 348 int64_t Limit = Int64 ? INT64_MIN : INT32_MIN; 349 int64_t Substitute = IsUnsigned ? 0 : Limit; 350 double CmpVal = IsUnsigned ? -(double)Limit * 2.0 : -(double)Limit; 351 auto &Context = BB->getParent()->getFunction().getContext(); 352 Type *Ty = Float64 ? Type::getDoubleTy(Context) : Type::getFloatTy(Context); 353 354 const BasicBlock *LLVMBB = BB->getBasicBlock(); 355 MachineFunction *F = BB->getParent(); 356 MachineBasicBlock *TrueMBB = F->CreateMachineBasicBlock(LLVMBB); 357 MachineBasicBlock *FalseMBB = F->CreateMachineBasicBlock(LLVMBB); 358 MachineBasicBlock *DoneMBB = F->CreateMachineBasicBlock(LLVMBB); 359 360 MachineFunction::iterator It = ++BB->getIterator(); 361 F->insert(It, FalseMBB); 362 F->insert(It, TrueMBB); 363 F->insert(It, DoneMBB); 364 365 // Transfer the remainder of BB and its successor edges to DoneMBB. 366 DoneMBB->splice(DoneMBB->begin(), BB, std::next(MI.getIterator()), BB->end()); 367 DoneMBB->transferSuccessorsAndUpdatePHIs(BB); 368 369 BB->addSuccessor(TrueMBB); 370 BB->addSuccessor(FalseMBB); 371 TrueMBB->addSuccessor(DoneMBB); 372 FalseMBB->addSuccessor(DoneMBB); 373 374 unsigned Tmp0, Tmp1, CmpReg, EqzReg, FalseReg, TrueReg; 375 Tmp0 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 376 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 377 CmpReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 378 EqzReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 379 FalseReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 380 TrueReg = MRI.createVirtualRegister(MRI.getRegClass(OutReg)); 381 382 MI.eraseFromParent(); 383 // For signed numbers, we can do a single comparison to determine whether 384 // fabs(x) is within range. 385 if (IsUnsigned) { 386 Tmp0 = InReg; 387 } else { 388 BuildMI(BB, DL, TII.get(Abs), Tmp0).addReg(InReg); 389 } 390 BuildMI(BB, DL, TII.get(FConst), Tmp1) 391 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, CmpVal))); 392 BuildMI(BB, DL, TII.get(LT), CmpReg).addReg(Tmp0).addReg(Tmp1); 393 394 // For unsigned numbers, we have to do a separate comparison with zero. 395 if (IsUnsigned) { 396 Tmp1 = MRI.createVirtualRegister(MRI.getRegClass(InReg)); 397 Register SecondCmpReg = 398 MRI.createVirtualRegister(&WebAssembly::I32RegClass); 399 Register AndReg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 400 BuildMI(BB, DL, TII.get(FConst), Tmp1) 401 .addFPImm(cast<ConstantFP>(ConstantFP::get(Ty, 0.0))); 402 BuildMI(BB, DL, TII.get(GE), SecondCmpReg).addReg(Tmp0).addReg(Tmp1); 403 BuildMI(BB, DL, TII.get(And), AndReg).addReg(CmpReg).addReg(SecondCmpReg); 404 CmpReg = AndReg; 405 } 406 407 BuildMI(BB, DL, TII.get(Eqz), EqzReg).addReg(CmpReg); 408 409 // Create the CFG diamond to select between doing the conversion or using 410 // the substitute value. 411 BuildMI(BB, DL, TII.get(WebAssembly::BR_IF)).addMBB(TrueMBB).addReg(EqzReg); 412 BuildMI(FalseMBB, DL, TII.get(LoweredOpcode), FalseReg).addReg(InReg); 413 BuildMI(FalseMBB, DL, TII.get(WebAssembly::BR)).addMBB(DoneMBB); 414 BuildMI(TrueMBB, DL, TII.get(IConst), TrueReg).addImm(Substitute); 415 BuildMI(*DoneMBB, DoneMBB->begin(), DL, TII.get(TargetOpcode::PHI), OutReg) 416 .addReg(FalseReg) 417 .addMBB(FalseMBB) 418 .addReg(TrueReg) 419 .addMBB(TrueMBB); 420 421 return DoneMBB; 422 } 423 424 MachineBasicBlock *WebAssemblyTargetLowering::EmitInstrWithCustomInserter( 425 MachineInstr &MI, MachineBasicBlock *BB) const { 426 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 427 DebugLoc DL = MI.getDebugLoc(); 428 429 switch (MI.getOpcode()) { 430 default: 431 llvm_unreachable("Unexpected instr type to insert"); 432 case WebAssembly::FP_TO_SINT_I32_F32: 433 return LowerFPToInt(MI, DL, BB, TII, false, false, false, 434 WebAssembly::I32_TRUNC_S_F32); 435 case WebAssembly::FP_TO_UINT_I32_F32: 436 return LowerFPToInt(MI, DL, BB, TII, true, false, false, 437 WebAssembly::I32_TRUNC_U_F32); 438 case WebAssembly::FP_TO_SINT_I64_F32: 439 return LowerFPToInt(MI, DL, BB, TII, false, true, false, 440 WebAssembly::I64_TRUNC_S_F32); 441 case WebAssembly::FP_TO_UINT_I64_F32: 442 return LowerFPToInt(MI, DL, BB, TII, true, true, false, 443 WebAssembly::I64_TRUNC_U_F32); 444 case WebAssembly::FP_TO_SINT_I32_F64: 445 return LowerFPToInt(MI, DL, BB, TII, false, false, true, 446 WebAssembly::I32_TRUNC_S_F64); 447 case WebAssembly::FP_TO_UINT_I32_F64: 448 return LowerFPToInt(MI, DL, BB, TII, true, false, true, 449 WebAssembly::I32_TRUNC_U_F64); 450 case WebAssembly::FP_TO_SINT_I64_F64: 451 return LowerFPToInt(MI, DL, BB, TII, false, true, true, 452 WebAssembly::I64_TRUNC_S_F64); 453 case WebAssembly::FP_TO_UINT_I64_F64: 454 return LowerFPToInt(MI, DL, BB, TII, true, true, true, 455 WebAssembly::I64_TRUNC_U_F64); 456 llvm_unreachable("Unexpected instruction to emit with custom inserter"); 457 } 458 } 459 460 const char * 461 WebAssemblyTargetLowering::getTargetNodeName(unsigned Opcode) const { 462 switch (static_cast<WebAssemblyISD::NodeType>(Opcode)) { 463 case WebAssemblyISD::FIRST_NUMBER: 464 break; 465 #define HANDLE_NODETYPE(NODE) \ 466 case WebAssemblyISD::NODE: \ 467 return "WebAssemblyISD::" #NODE; 468 #include "WebAssemblyISD.def" 469 #undef HANDLE_NODETYPE 470 } 471 return nullptr; 472 } 473 474 std::pair<unsigned, const TargetRegisterClass *> 475 WebAssemblyTargetLowering::getRegForInlineAsmConstraint( 476 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 477 // First, see if this is a constraint that directly corresponds to a 478 // WebAssembly register class. 479 if (Constraint.size() == 1) { 480 switch (Constraint[0]) { 481 case 'r': 482 assert(VT != MVT::iPTR && "Pointer MVT not expected here"); 483 if (Subtarget->hasSIMD128() && VT.isVector()) { 484 if (VT.getSizeInBits() == 128) 485 return std::make_pair(0U, &WebAssembly::V128RegClass); 486 } 487 if (VT.isInteger() && !VT.isVector()) { 488 if (VT.getSizeInBits() <= 32) 489 return std::make_pair(0U, &WebAssembly::I32RegClass); 490 if (VT.getSizeInBits() <= 64) 491 return std::make_pair(0U, &WebAssembly::I64RegClass); 492 } 493 break; 494 default: 495 break; 496 } 497 } 498 499 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 500 } 501 502 bool WebAssemblyTargetLowering::isCheapToSpeculateCttz() const { 503 // Assume ctz is a relatively cheap operation. 504 return true; 505 } 506 507 bool WebAssemblyTargetLowering::isCheapToSpeculateCtlz() const { 508 // Assume clz is a relatively cheap operation. 509 return true; 510 } 511 512 bool WebAssemblyTargetLowering::isLegalAddressingMode(const DataLayout &DL, 513 const AddrMode &AM, 514 Type *Ty, unsigned AS, 515 Instruction *I) const { 516 // WebAssembly offsets are added as unsigned without wrapping. The 517 // isLegalAddressingMode gives us no way to determine if wrapping could be 518 // happening, so we approximate this by accepting only non-negative offsets. 519 if (AM.BaseOffs < 0) 520 return false; 521 522 // WebAssembly has no scale register operands. 523 if (AM.Scale != 0) 524 return false; 525 526 // Everything else is legal. 527 return true; 528 } 529 530 bool WebAssemblyTargetLowering::allowsMisalignedMemoryAccesses( 531 EVT /*VT*/, unsigned /*AddrSpace*/, unsigned /*Align*/, 532 MachineMemOperand::Flags /*Flags*/, bool *Fast) const { 533 // WebAssembly supports unaligned accesses, though it should be declared 534 // with the p2align attribute on loads and stores which do so, and there 535 // may be a performance impact. We tell LLVM they're "fast" because 536 // for the kinds of things that LLVM uses this for (merging adjacent stores 537 // of constants, etc.), WebAssembly implementations will either want the 538 // unaligned access or they'll split anyway. 539 if (Fast) 540 *Fast = true; 541 return true; 542 } 543 544 bool WebAssemblyTargetLowering::isIntDivCheap(EVT VT, 545 AttributeList Attr) const { 546 // The current thinking is that wasm engines will perform this optimization, 547 // so we can save on code size. 548 return true; 549 } 550 551 bool WebAssemblyTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 552 if (!Subtarget->hasUnimplementedSIMD128()) 553 return false; 554 MVT ExtT = ExtVal.getSimpleValueType(); 555 MVT MemT = cast<LoadSDNode>(ExtVal->getOperand(0))->getSimpleValueType(0); 556 return (ExtT == MVT::v8i16 && MemT == MVT::v8i8) || 557 (ExtT == MVT::v4i32 && MemT == MVT::v4i16) || 558 (ExtT == MVT::v2i64 && MemT == MVT::v2i32); 559 } 560 561 EVT WebAssemblyTargetLowering::getSetCCResultType(const DataLayout &DL, 562 LLVMContext &C, 563 EVT VT) const { 564 if (VT.isVector()) 565 return VT.changeVectorElementTypeToInteger(); 566 567 return TargetLowering::getSetCCResultType(DL, C, VT); 568 } 569 570 bool WebAssemblyTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 571 const CallInst &I, 572 MachineFunction &MF, 573 unsigned Intrinsic) const { 574 switch (Intrinsic) { 575 case Intrinsic::wasm_atomic_notify: 576 Info.opc = ISD::INTRINSIC_W_CHAIN; 577 Info.memVT = MVT::i32; 578 Info.ptrVal = I.getArgOperand(0); 579 Info.offset = 0; 580 Info.align = Align(4); 581 // atomic.notify instruction does not really load the memory specified with 582 // this argument, but MachineMemOperand should either be load or store, so 583 // we set this to a load. 584 // FIXME Volatile isn't really correct, but currently all LLVM atomic 585 // instructions are treated as volatiles in the backend, so we should be 586 // consistent. The same applies for wasm_atomic_wait intrinsics too. 587 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 588 return true; 589 case Intrinsic::wasm_atomic_wait_i32: 590 Info.opc = ISD::INTRINSIC_W_CHAIN; 591 Info.memVT = MVT::i32; 592 Info.ptrVal = I.getArgOperand(0); 593 Info.offset = 0; 594 Info.align = Align(4); 595 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 596 return true; 597 case Intrinsic::wasm_atomic_wait_i64: 598 Info.opc = ISD::INTRINSIC_W_CHAIN; 599 Info.memVT = MVT::i64; 600 Info.ptrVal = I.getArgOperand(0); 601 Info.offset = 0; 602 Info.align = Align(8); 603 Info.flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad; 604 return true; 605 default: 606 return false; 607 } 608 } 609 610 //===----------------------------------------------------------------------===// 611 // WebAssembly Lowering private implementation. 612 //===----------------------------------------------------------------------===// 613 614 //===----------------------------------------------------------------------===// 615 // Lowering Code 616 //===----------------------------------------------------------------------===// 617 618 static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg) { 619 MachineFunction &MF = DAG.getMachineFunction(); 620 DAG.getContext()->diagnose( 621 DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc())); 622 } 623 624 // Test whether the given calling convention is supported. 625 static bool callingConvSupported(CallingConv::ID CallConv) { 626 // We currently support the language-independent target-independent 627 // conventions. We don't yet have a way to annotate calls with properties like 628 // "cold", and we don't have any call-clobbered registers, so these are mostly 629 // all handled the same. 630 return CallConv == CallingConv::C || CallConv == CallingConv::Fast || 631 CallConv == CallingConv::Cold || 632 CallConv == CallingConv::PreserveMost || 633 CallConv == CallingConv::PreserveAll || 634 CallConv == CallingConv::CXX_FAST_TLS || 635 CallConv == CallingConv::WASM_EmscriptenInvoke; 636 } 637 638 SDValue 639 WebAssemblyTargetLowering::LowerCall(CallLoweringInfo &CLI, 640 SmallVectorImpl<SDValue> &InVals) const { 641 SelectionDAG &DAG = CLI.DAG; 642 SDLoc DL = CLI.DL; 643 SDValue Chain = CLI.Chain; 644 SDValue Callee = CLI.Callee; 645 MachineFunction &MF = DAG.getMachineFunction(); 646 auto Layout = MF.getDataLayout(); 647 648 CallingConv::ID CallConv = CLI.CallConv; 649 if (!callingConvSupported(CallConv)) 650 fail(DL, DAG, 651 "WebAssembly doesn't support language-specific or target-specific " 652 "calling conventions yet"); 653 if (CLI.IsPatchPoint) 654 fail(DL, DAG, "WebAssembly doesn't support patch point yet"); 655 656 if (CLI.IsTailCall) { 657 bool MustTail = CLI.CS && CLI.CS.isMustTailCall(); 658 if (Subtarget->hasTailCall() && !CLI.IsVarArg) { 659 // Do not tail call unless caller and callee return types match 660 const Function &F = MF.getFunction(); 661 const TargetMachine &TM = getTargetMachine(); 662 Type *RetTy = F.getReturnType(); 663 SmallVector<MVT, 4> CallerRetTys; 664 SmallVector<MVT, 4> CalleeRetTys; 665 computeLegalValueVTs(F, TM, RetTy, CallerRetTys); 666 computeLegalValueVTs(F, TM, CLI.RetTy, CalleeRetTys); 667 bool TypesMatch = CallerRetTys.size() == CalleeRetTys.size() && 668 std::equal(CallerRetTys.begin(), CallerRetTys.end(), 669 CalleeRetTys.begin()); 670 if (!TypesMatch) { 671 // musttail in this case would be an LLVM IR validation failure 672 assert(!MustTail); 673 CLI.IsTailCall = false; 674 } 675 } else { 676 CLI.IsTailCall = false; 677 if (MustTail) { 678 if (CLI.IsVarArg) { 679 // The return would pop the argument buffer 680 fail(DL, DAG, "WebAssembly does not support varargs tail calls"); 681 } else { 682 fail(DL, DAG, "WebAssembly 'tail-call' feature not enabled"); 683 } 684 } 685 } 686 } 687 688 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 689 if (Ins.size() > 1) 690 fail(DL, DAG, "WebAssembly doesn't support more than 1 returned value yet"); 691 692 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 693 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 694 695 // The generic code may have added an sret argument. If we're lowering an 696 // invoke function, the ABI requires that the function pointer be the first 697 // argument, so we may have to swap the arguments. 698 if (CallConv == CallingConv::WASM_EmscriptenInvoke && Outs.size() >= 2 && 699 Outs[0].Flags.isSRet()) { 700 std::swap(Outs[0], Outs[1]); 701 std::swap(OutVals[0], OutVals[1]); 702 } 703 704 unsigned NumFixedArgs = 0; 705 for (unsigned I = 0; I < Outs.size(); ++I) { 706 const ISD::OutputArg &Out = Outs[I]; 707 SDValue &OutVal = OutVals[I]; 708 if (Out.Flags.isNest()) 709 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 710 if (Out.Flags.isInAlloca()) 711 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 712 if (Out.Flags.isInConsecutiveRegs()) 713 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 714 if (Out.Flags.isInConsecutiveRegsLast()) 715 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 716 if (Out.Flags.isByVal() && Out.Flags.getByValSize() != 0) { 717 auto &MFI = MF.getFrameInfo(); 718 int FI = MFI.CreateStackObject(Out.Flags.getByValSize(), 719 Out.Flags.getByValAlign(), 720 /*isSS=*/false); 721 SDValue SizeNode = 722 DAG.getConstant(Out.Flags.getByValSize(), DL, MVT::i32); 723 SDValue FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 724 Chain = DAG.getMemcpy( 725 Chain, DL, FINode, OutVal, SizeNode, Out.Flags.getByValAlign(), 726 /*isVolatile*/ false, /*AlwaysInline=*/false, 727 /*isTailCall*/ false, MachinePointerInfo(), MachinePointerInfo()); 728 OutVal = FINode; 729 } 730 // Count the number of fixed args *after* legalization. 731 NumFixedArgs += Out.IsFixed; 732 } 733 734 bool IsVarArg = CLI.IsVarArg; 735 auto PtrVT = getPointerTy(Layout); 736 737 // Analyze operands of the call, assigning locations to each operand. 738 SmallVector<CCValAssign, 16> ArgLocs; 739 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 740 741 if (IsVarArg) { 742 // Outgoing non-fixed arguments are placed in a buffer. First 743 // compute their offsets and the total amount of buffer space needed. 744 for (unsigned I = NumFixedArgs; I < Outs.size(); ++I) { 745 const ISD::OutputArg &Out = Outs[I]; 746 SDValue &Arg = OutVals[I]; 747 EVT VT = Arg.getValueType(); 748 assert(VT != MVT::iPTR && "Legalized args should be concrete"); 749 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 750 unsigned Align = std::max(Out.Flags.getOrigAlign(), 751 Layout.getABITypeAlignment(Ty)); 752 unsigned Offset = CCInfo.AllocateStack(Layout.getTypeAllocSize(Ty), 753 Align); 754 CCInfo.addLoc(CCValAssign::getMem(ArgLocs.size(), VT.getSimpleVT(), 755 Offset, VT.getSimpleVT(), 756 CCValAssign::Full)); 757 } 758 } 759 760 unsigned NumBytes = CCInfo.getAlignedCallFrameSize(); 761 762 SDValue FINode; 763 if (IsVarArg && NumBytes) { 764 // For non-fixed arguments, next emit stores to store the argument values 765 // to the stack buffer at the offsets computed above. 766 int FI = MF.getFrameInfo().CreateStackObject(NumBytes, 767 Layout.getStackAlignment(), 768 /*isSS=*/false); 769 unsigned ValNo = 0; 770 SmallVector<SDValue, 8> Chains; 771 for (SDValue Arg : 772 make_range(OutVals.begin() + NumFixedArgs, OutVals.end())) { 773 assert(ArgLocs[ValNo].getValNo() == ValNo && 774 "ArgLocs should remain in order and only hold varargs args"); 775 unsigned Offset = ArgLocs[ValNo++].getLocMemOffset(); 776 FINode = DAG.getFrameIndex(FI, getPointerTy(Layout)); 777 SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, FINode, 778 DAG.getConstant(Offset, DL, PtrVT)); 779 Chains.push_back( 780 DAG.getStore(Chain, DL, Arg, Add, 781 MachinePointerInfo::getFixedStack(MF, FI, Offset), 0)); 782 } 783 if (!Chains.empty()) 784 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 785 } else if (IsVarArg) { 786 FINode = DAG.getIntPtrConstant(0, DL); 787 } 788 789 if (Callee->getOpcode() == ISD::GlobalAddress) { 790 // If the callee is a GlobalAddress node (quite common, every direct call 791 // is) turn it into a TargetGlobalAddress node so that LowerGlobalAddress 792 // doesn't at MO_GOT which is not needed for direct calls. 793 GlobalAddressSDNode* GA = cast<GlobalAddressSDNode>(Callee); 794 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), DL, 795 getPointerTy(DAG.getDataLayout()), 796 GA->getOffset()); 797 Callee = DAG.getNode(WebAssemblyISD::Wrapper, DL, 798 getPointerTy(DAG.getDataLayout()), Callee); 799 } 800 801 // Compute the operands for the CALLn node. 802 SmallVector<SDValue, 16> Ops; 803 Ops.push_back(Chain); 804 Ops.push_back(Callee); 805 806 // Add all fixed arguments. Note that for non-varargs calls, NumFixedArgs 807 // isn't reliable. 808 Ops.append(OutVals.begin(), 809 IsVarArg ? OutVals.begin() + NumFixedArgs : OutVals.end()); 810 // Add a pointer to the vararg buffer. 811 if (IsVarArg) 812 Ops.push_back(FINode); 813 814 SmallVector<EVT, 8> InTys; 815 for (const auto &In : Ins) { 816 assert(!In.Flags.isByVal() && "byval is not valid for return values"); 817 assert(!In.Flags.isNest() && "nest is not valid for return values"); 818 if (In.Flags.isInAlloca()) 819 fail(DL, DAG, "WebAssembly hasn't implemented inalloca return values"); 820 if (In.Flags.isInConsecutiveRegs()) 821 fail(DL, DAG, "WebAssembly hasn't implemented cons regs return values"); 822 if (In.Flags.isInConsecutiveRegsLast()) 823 fail(DL, DAG, 824 "WebAssembly hasn't implemented cons regs last return values"); 825 // Ignore In.getOrigAlign() because all our arguments are passed in 826 // registers. 827 InTys.push_back(In.VT); 828 } 829 830 if (CLI.IsTailCall) { 831 // ret_calls do not return values to the current frame 832 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 833 return DAG.getNode(WebAssemblyISD::RET_CALL, DL, NodeTys, Ops); 834 } 835 836 InTys.push_back(MVT::Other); 837 SDVTList InTyList = DAG.getVTList(InTys); 838 SDValue Res = 839 DAG.getNode(Ins.empty() ? WebAssemblyISD::CALL0 : WebAssemblyISD::CALL1, 840 DL, InTyList, Ops); 841 if (Ins.empty()) { 842 Chain = Res; 843 } else { 844 InVals.push_back(Res); 845 Chain = Res.getValue(1); 846 } 847 848 return Chain; 849 } 850 851 bool WebAssemblyTargetLowering::CanLowerReturn( 852 CallingConv::ID /*CallConv*/, MachineFunction & /*MF*/, bool /*IsVarArg*/, 853 const SmallVectorImpl<ISD::OutputArg> &Outs, 854 LLVMContext & /*Context*/) const { 855 // WebAssembly can only handle returning tuples with multivalue enabled 856 return Subtarget->hasMultivalue() || Outs.size() <= 1; 857 } 858 859 SDValue WebAssemblyTargetLowering::LowerReturn( 860 SDValue Chain, CallingConv::ID CallConv, bool /*IsVarArg*/, 861 const SmallVectorImpl<ISD::OutputArg> &Outs, 862 const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL, 863 SelectionDAG &DAG) const { 864 assert((Subtarget->hasMultivalue() || Outs.size() <= 1) && 865 "MVP WebAssembly can only return up to one value"); 866 if (!callingConvSupported(CallConv)) 867 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 868 869 SmallVector<SDValue, 4> RetOps(1, Chain); 870 RetOps.append(OutVals.begin(), OutVals.end()); 871 Chain = DAG.getNode(WebAssemblyISD::RETURN, DL, MVT::Other, RetOps); 872 873 // Record the number and types of the return values. 874 for (const ISD::OutputArg &Out : Outs) { 875 assert(!Out.Flags.isByVal() && "byval is not valid for return values"); 876 assert(!Out.Flags.isNest() && "nest is not valid for return values"); 877 assert(Out.IsFixed && "non-fixed return value is not valid"); 878 if (Out.Flags.isInAlloca()) 879 fail(DL, DAG, "WebAssembly hasn't implemented inalloca results"); 880 if (Out.Flags.isInConsecutiveRegs()) 881 fail(DL, DAG, "WebAssembly hasn't implemented cons regs results"); 882 if (Out.Flags.isInConsecutiveRegsLast()) 883 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last results"); 884 } 885 886 return Chain; 887 } 888 889 SDValue WebAssemblyTargetLowering::LowerFormalArguments( 890 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 891 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 892 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 893 if (!callingConvSupported(CallConv)) 894 fail(DL, DAG, "WebAssembly doesn't support non-C calling conventions"); 895 896 MachineFunction &MF = DAG.getMachineFunction(); 897 auto *MFI = MF.getInfo<WebAssemblyFunctionInfo>(); 898 899 // Set up the incoming ARGUMENTS value, which serves to represent the liveness 900 // of the incoming values before they're represented by virtual registers. 901 MF.getRegInfo().addLiveIn(WebAssembly::ARGUMENTS); 902 903 for (const ISD::InputArg &In : Ins) { 904 if (In.Flags.isInAlloca()) 905 fail(DL, DAG, "WebAssembly hasn't implemented inalloca arguments"); 906 if (In.Flags.isNest()) 907 fail(DL, DAG, "WebAssembly hasn't implemented nest arguments"); 908 if (In.Flags.isInConsecutiveRegs()) 909 fail(DL, DAG, "WebAssembly hasn't implemented cons regs arguments"); 910 if (In.Flags.isInConsecutiveRegsLast()) 911 fail(DL, DAG, "WebAssembly hasn't implemented cons regs last arguments"); 912 // Ignore In.getOrigAlign() because all our arguments are passed in 913 // registers. 914 InVals.push_back(In.Used ? DAG.getNode(WebAssemblyISD::ARGUMENT, DL, In.VT, 915 DAG.getTargetConstant(InVals.size(), 916 DL, MVT::i32)) 917 : DAG.getUNDEF(In.VT)); 918 919 // Record the number and types of arguments. 920 MFI->addParam(In.VT); 921 } 922 923 // Varargs are copied into a buffer allocated by the caller, and a pointer to 924 // the buffer is passed as an argument. 925 if (IsVarArg) { 926 MVT PtrVT = getPointerTy(MF.getDataLayout()); 927 Register VarargVreg = 928 MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrVT)); 929 MFI->setVarargBufferVreg(VarargVreg); 930 Chain = DAG.getCopyToReg( 931 Chain, DL, VarargVreg, 932 DAG.getNode(WebAssemblyISD::ARGUMENT, DL, PtrVT, 933 DAG.getTargetConstant(Ins.size(), DL, MVT::i32))); 934 MFI->addParam(PtrVT); 935 } 936 937 // Record the number and types of arguments and results. 938 SmallVector<MVT, 4> Params; 939 SmallVector<MVT, 4> Results; 940 computeSignatureVTs(MF.getFunction().getFunctionType(), MF.getFunction(), 941 DAG.getTarget(), Params, Results); 942 for (MVT VT : Results) 943 MFI->addResult(VT); 944 // TODO: Use signatures in WebAssemblyMachineFunctionInfo too and unify 945 // the param logic here with ComputeSignatureVTs 946 assert(MFI->getParams().size() == Params.size() && 947 std::equal(MFI->getParams().begin(), MFI->getParams().end(), 948 Params.begin())); 949 950 return Chain; 951 } 952 953 void WebAssemblyTargetLowering::ReplaceNodeResults( 954 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 955 switch (N->getOpcode()) { 956 case ISD::SIGN_EXTEND_INREG: 957 // Do not add any results, signifying that N should not be custom lowered 958 // after all. This happens because simd128 turns on custom lowering for 959 // SIGN_EXTEND_INREG, but for non-vector sign extends the result might be an 960 // illegal type. 961 break; 962 default: 963 llvm_unreachable( 964 "ReplaceNodeResults not implemented for this op for WebAssembly!"); 965 } 966 } 967 968 //===----------------------------------------------------------------------===// 969 // Custom lowering hooks. 970 //===----------------------------------------------------------------------===// 971 972 SDValue WebAssemblyTargetLowering::LowerOperation(SDValue Op, 973 SelectionDAG &DAG) const { 974 SDLoc DL(Op); 975 switch (Op.getOpcode()) { 976 default: 977 llvm_unreachable("unimplemented operation lowering"); 978 return SDValue(); 979 case ISD::FrameIndex: 980 return LowerFrameIndex(Op, DAG); 981 case ISD::GlobalAddress: 982 return LowerGlobalAddress(Op, DAG); 983 case ISD::ExternalSymbol: 984 return LowerExternalSymbol(Op, DAG); 985 case ISD::JumpTable: 986 return LowerJumpTable(Op, DAG); 987 case ISD::BR_JT: 988 return LowerBR_JT(Op, DAG); 989 case ISD::VASTART: 990 return LowerVASTART(Op, DAG); 991 case ISD::BlockAddress: 992 case ISD::BRIND: 993 fail(DL, DAG, "WebAssembly hasn't implemented computed gotos"); 994 return SDValue(); 995 case ISD::RETURNADDR: 996 return LowerRETURNADDR(Op, DAG); 997 case ISD::FRAMEADDR: 998 return LowerFRAMEADDR(Op, DAG); 999 case ISD::CopyToReg: 1000 return LowerCopyToReg(Op, DAG); 1001 case ISD::EXTRACT_VECTOR_ELT: 1002 case ISD::INSERT_VECTOR_ELT: 1003 return LowerAccessVectorElement(Op, DAG); 1004 case ISD::INTRINSIC_VOID: 1005 case ISD::INTRINSIC_WO_CHAIN: 1006 case ISD::INTRINSIC_W_CHAIN: 1007 return LowerIntrinsic(Op, DAG); 1008 case ISD::SIGN_EXTEND_INREG: 1009 return LowerSIGN_EXTEND_INREG(Op, DAG); 1010 case ISD::BUILD_VECTOR: 1011 return LowerBUILD_VECTOR(Op, DAG); 1012 case ISD::VECTOR_SHUFFLE: 1013 return LowerVECTOR_SHUFFLE(Op, DAG); 1014 case ISD::SHL: 1015 case ISD::SRA: 1016 case ISD::SRL: 1017 return LowerShift(Op, DAG); 1018 } 1019 } 1020 1021 SDValue WebAssemblyTargetLowering::LowerCopyToReg(SDValue Op, 1022 SelectionDAG &DAG) const { 1023 SDValue Src = Op.getOperand(2); 1024 if (isa<FrameIndexSDNode>(Src.getNode())) { 1025 // CopyToReg nodes don't support FrameIndex operands. Other targets select 1026 // the FI to some LEA-like instruction, but since we don't have that, we 1027 // need to insert some kind of instruction that can take an FI operand and 1028 // produces a value usable by CopyToReg (i.e. in a vreg). So insert a dummy 1029 // local.copy between Op and its FI operand. 1030 SDValue Chain = Op.getOperand(0); 1031 SDLoc DL(Op); 1032 unsigned Reg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); 1033 EVT VT = Src.getValueType(); 1034 SDValue Copy(DAG.getMachineNode(VT == MVT::i32 ? WebAssembly::COPY_I32 1035 : WebAssembly::COPY_I64, 1036 DL, VT, Src), 1037 0); 1038 return Op.getNode()->getNumValues() == 1 1039 ? DAG.getCopyToReg(Chain, DL, Reg, Copy) 1040 : DAG.getCopyToReg(Chain, DL, Reg, Copy, 1041 Op.getNumOperands() == 4 ? Op.getOperand(3) 1042 : SDValue()); 1043 } 1044 return SDValue(); 1045 } 1046 1047 SDValue WebAssemblyTargetLowering::LowerFrameIndex(SDValue Op, 1048 SelectionDAG &DAG) const { 1049 int FI = cast<FrameIndexSDNode>(Op)->getIndex(); 1050 return DAG.getTargetFrameIndex(FI, Op.getValueType()); 1051 } 1052 1053 SDValue WebAssemblyTargetLowering::LowerRETURNADDR(SDValue Op, 1054 SelectionDAG &DAG) const { 1055 SDLoc DL(Op); 1056 1057 if (!Subtarget->getTargetTriple().isOSEmscripten()) { 1058 fail(DL, DAG, 1059 "Non-Emscripten WebAssembly hasn't implemented " 1060 "__builtin_return_address"); 1061 return SDValue(); 1062 } 1063 1064 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 1065 return SDValue(); 1066 1067 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1068 MakeLibCallOptions CallOptions; 1069 return makeLibCall(DAG, RTLIB::RETURN_ADDRESS, Op.getValueType(), 1070 {DAG.getConstant(Depth, DL, MVT::i32)}, CallOptions, DL) 1071 .first; 1072 } 1073 1074 SDValue WebAssemblyTargetLowering::LowerFRAMEADDR(SDValue Op, 1075 SelectionDAG &DAG) const { 1076 // Non-zero depths are not supported by WebAssembly currently. Use the 1077 // legalizer's default expansion, which is to return 0 (what this function is 1078 // documented to do). 1079 if (Op.getConstantOperandVal(0) > 0) 1080 return SDValue(); 1081 1082 DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); 1083 EVT VT = Op.getValueType(); 1084 Register FP = 1085 Subtarget->getRegisterInfo()->getFrameRegister(DAG.getMachineFunction()); 1086 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), FP, VT); 1087 } 1088 1089 SDValue WebAssemblyTargetLowering::LowerGlobalAddress(SDValue Op, 1090 SelectionDAG &DAG) const { 1091 SDLoc DL(Op); 1092 const auto *GA = cast<GlobalAddressSDNode>(Op); 1093 EVT VT = Op.getValueType(); 1094 assert(GA->getTargetFlags() == 0 && 1095 "Unexpected target flags on generic GlobalAddressSDNode"); 1096 if (GA->getAddressSpace() != 0) 1097 fail(DL, DAG, "WebAssembly only expects the 0 address space"); 1098 1099 unsigned OperandFlags = 0; 1100 if (isPositionIndependent()) { 1101 const GlobalValue *GV = GA->getGlobal(); 1102 if (getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV)) { 1103 MachineFunction &MF = DAG.getMachineFunction(); 1104 MVT PtrVT = getPointerTy(MF.getDataLayout()); 1105 const char *BaseName; 1106 if (GV->getValueType()->isFunctionTy()) { 1107 BaseName = MF.createExternalSymbolName("__table_base"); 1108 OperandFlags = WebAssemblyII::MO_TABLE_BASE_REL; 1109 } 1110 else { 1111 BaseName = MF.createExternalSymbolName("__memory_base"); 1112 OperandFlags = WebAssemblyII::MO_MEMORY_BASE_REL; 1113 } 1114 SDValue BaseAddr = 1115 DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1116 DAG.getTargetExternalSymbol(BaseName, PtrVT)); 1117 1118 SDValue SymAddr = DAG.getNode( 1119 WebAssemblyISD::WrapperPIC, DL, VT, 1120 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, GA->getOffset(), 1121 OperandFlags)); 1122 1123 return DAG.getNode(ISD::ADD, DL, VT, BaseAddr, SymAddr); 1124 } else { 1125 OperandFlags = WebAssemblyII::MO_GOT; 1126 } 1127 } 1128 1129 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1130 DAG.getTargetGlobalAddress(GA->getGlobal(), DL, VT, 1131 GA->getOffset(), OperandFlags)); 1132 } 1133 1134 SDValue 1135 WebAssemblyTargetLowering::LowerExternalSymbol(SDValue Op, 1136 SelectionDAG &DAG) const { 1137 SDLoc DL(Op); 1138 const auto *ES = cast<ExternalSymbolSDNode>(Op); 1139 EVT VT = Op.getValueType(); 1140 assert(ES->getTargetFlags() == 0 && 1141 "Unexpected target flags on generic ExternalSymbolSDNode"); 1142 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1143 DAG.getTargetExternalSymbol(ES->getSymbol(), VT)); 1144 } 1145 1146 SDValue WebAssemblyTargetLowering::LowerJumpTable(SDValue Op, 1147 SelectionDAG &DAG) const { 1148 // There's no need for a Wrapper node because we always incorporate a jump 1149 // table operand into a BR_TABLE instruction, rather than ever 1150 // materializing it in a register. 1151 const JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 1152 return DAG.getTargetJumpTable(JT->getIndex(), Op.getValueType(), 1153 JT->getTargetFlags()); 1154 } 1155 1156 SDValue WebAssemblyTargetLowering::LowerBR_JT(SDValue Op, 1157 SelectionDAG &DAG) const { 1158 SDLoc DL(Op); 1159 SDValue Chain = Op.getOperand(0); 1160 const auto *JT = cast<JumpTableSDNode>(Op.getOperand(1)); 1161 SDValue Index = Op.getOperand(2); 1162 assert(JT->getTargetFlags() == 0 && "WebAssembly doesn't set target flags"); 1163 1164 SmallVector<SDValue, 8> Ops; 1165 Ops.push_back(Chain); 1166 Ops.push_back(Index); 1167 1168 MachineJumpTableInfo *MJTI = DAG.getMachineFunction().getJumpTableInfo(); 1169 const auto &MBBs = MJTI->getJumpTables()[JT->getIndex()].MBBs; 1170 1171 // Add an operand for each case. 1172 for (auto MBB : MBBs) 1173 Ops.push_back(DAG.getBasicBlock(MBB)); 1174 1175 // TODO: For now, we just pick something arbitrary for a default case for now. 1176 // We really want to sniff out the guard and put in the real default case (and 1177 // delete the guard). 1178 Ops.push_back(DAG.getBasicBlock(MBBs[0])); 1179 1180 return DAG.getNode(WebAssemblyISD::BR_TABLE, DL, MVT::Other, Ops); 1181 } 1182 1183 SDValue WebAssemblyTargetLowering::LowerVASTART(SDValue Op, 1184 SelectionDAG &DAG) const { 1185 SDLoc DL(Op); 1186 EVT PtrVT = getPointerTy(DAG.getMachineFunction().getDataLayout()); 1187 1188 auto *MFI = DAG.getMachineFunction().getInfo<WebAssemblyFunctionInfo>(); 1189 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1190 1191 SDValue ArgN = DAG.getCopyFromReg(DAG.getEntryNode(), DL, 1192 MFI->getVarargBufferVreg(), PtrVT); 1193 return DAG.getStore(Op.getOperand(0), DL, ArgN, Op.getOperand(1), 1194 MachinePointerInfo(SV), 0); 1195 } 1196 1197 SDValue WebAssemblyTargetLowering::LowerIntrinsic(SDValue Op, 1198 SelectionDAG &DAG) const { 1199 MachineFunction &MF = DAG.getMachineFunction(); 1200 unsigned IntNo; 1201 switch (Op.getOpcode()) { 1202 case ISD::INTRINSIC_VOID: 1203 case ISD::INTRINSIC_W_CHAIN: 1204 IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1205 break; 1206 case ISD::INTRINSIC_WO_CHAIN: 1207 IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1208 break; 1209 default: 1210 llvm_unreachable("Invalid intrinsic"); 1211 } 1212 SDLoc DL(Op); 1213 1214 switch (IntNo) { 1215 default: 1216 return SDValue(); // Don't custom lower most intrinsics. 1217 1218 case Intrinsic::wasm_lsda: { 1219 EVT VT = Op.getValueType(); 1220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1221 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1222 auto &Context = MF.getMMI().getContext(); 1223 MCSymbol *S = Context.getOrCreateSymbol(Twine("GCC_except_table") + 1224 Twine(MF.getFunctionNumber())); 1225 return DAG.getNode(WebAssemblyISD::Wrapper, DL, VT, 1226 DAG.getMCSymbol(S, PtrVT)); 1227 } 1228 1229 case Intrinsic::wasm_throw: { 1230 // We only support C++ exceptions for now 1231 int Tag = cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue(); 1232 if (Tag != CPP_EXCEPTION) 1233 llvm_unreachable("Invalid tag!"); 1234 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1235 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 1236 const char *SymName = MF.createExternalSymbolName("__cpp_exception"); 1237 SDValue SymNode = DAG.getNode(WebAssemblyISD::Wrapper, DL, PtrVT, 1238 DAG.getTargetExternalSymbol(SymName, PtrVT)); 1239 return DAG.getNode(WebAssemblyISD::THROW, DL, 1240 MVT::Other, // outchain type 1241 { 1242 Op.getOperand(0), // inchain 1243 SymNode, // exception symbol 1244 Op.getOperand(3) // thrown value 1245 }); 1246 } 1247 } 1248 } 1249 1250 SDValue 1251 WebAssemblyTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 1252 SelectionDAG &DAG) const { 1253 SDLoc DL(Op); 1254 // If sign extension operations are disabled, allow sext_inreg only if operand 1255 // is a vector extract. SIMD does not depend on sign extension operations, but 1256 // allowing sext_inreg in this context lets us have simple patterns to select 1257 // extract_lane_s instructions. Expanding sext_inreg everywhere would be 1258 // simpler in this file, but would necessitate large and brittle patterns to 1259 // undo the expansion and select extract_lane_s instructions. 1260 assert(!Subtarget->hasSignExt() && Subtarget->hasSIMD128()); 1261 if (Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 1262 const SDValue &Extract = Op.getOperand(0); 1263 MVT VecT = Extract.getOperand(0).getSimpleValueType(); 1264 MVT ExtractedLaneT = static_cast<VTSDNode *>(Op.getOperand(1).getNode()) 1265 ->getVT() 1266 .getSimpleVT(); 1267 MVT ExtractedVecT = 1268 MVT::getVectorVT(ExtractedLaneT, 128 / ExtractedLaneT.getSizeInBits()); 1269 if (ExtractedVecT == VecT) 1270 return Op; 1271 // Bitcast vector to appropriate type to ensure ISel pattern coverage 1272 const SDValue &Index = Extract.getOperand(1); 1273 unsigned IndexVal = 1274 static_cast<ConstantSDNode *>(Index.getNode())->getZExtValue(); 1275 unsigned Scale = 1276 ExtractedVecT.getVectorNumElements() / VecT.getVectorNumElements(); 1277 assert(Scale > 1); 1278 SDValue NewIndex = 1279 DAG.getConstant(IndexVal * Scale, DL, Index.getValueType()); 1280 SDValue NewExtract = DAG.getNode( 1281 ISD::EXTRACT_VECTOR_ELT, DL, Extract.getValueType(), 1282 DAG.getBitcast(ExtractedVecT, Extract.getOperand(0)), NewIndex); 1283 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), 1284 NewExtract, Op.getOperand(1)); 1285 } 1286 // Otherwise expand 1287 return SDValue(); 1288 } 1289 1290 SDValue WebAssemblyTargetLowering::LowerBUILD_VECTOR(SDValue Op, 1291 SelectionDAG &DAG) const { 1292 SDLoc DL(Op); 1293 const EVT VecT = Op.getValueType(); 1294 const EVT LaneT = Op.getOperand(0).getValueType(); 1295 const size_t Lanes = Op.getNumOperands(); 1296 bool CanSwizzle = Subtarget->hasUnimplementedSIMD128() && VecT == MVT::v16i8; 1297 1298 // BUILD_VECTORs are lowered to the instruction that initializes the highest 1299 // possible number of lanes at once followed by a sequence of replace_lane 1300 // instructions to individually initialize any remaining lanes. 1301 1302 // TODO: Tune this. For example, lanewise swizzling is very expensive, so 1303 // swizzled lanes should be given greater weight. 1304 1305 // TODO: Investigate building vectors by shuffling together vectors built by 1306 // separately specialized means. 1307 1308 auto IsConstant = [](const SDValue &V) { 1309 return V.getOpcode() == ISD::Constant || V.getOpcode() == ISD::ConstantFP; 1310 }; 1311 1312 // Returns the source vector and index vector pair if they exist. Checks for: 1313 // (extract_vector_elt 1314 // $src, 1315 // (sign_extend_inreg (extract_vector_elt $indices, $i)) 1316 // ) 1317 auto GetSwizzleSrcs = [](size_t I, const SDValue &Lane) { 1318 auto Bail = std::make_pair(SDValue(), SDValue()); 1319 if (Lane->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1320 return Bail; 1321 const SDValue &SwizzleSrc = Lane->getOperand(0); 1322 const SDValue &IndexExt = Lane->getOperand(1); 1323 if (IndexExt->getOpcode() != ISD::SIGN_EXTEND_INREG) 1324 return Bail; 1325 const SDValue &Index = IndexExt->getOperand(0); 1326 if (Index->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 1327 return Bail; 1328 const SDValue &SwizzleIndices = Index->getOperand(0); 1329 if (SwizzleSrc.getValueType() != MVT::v16i8 || 1330 SwizzleIndices.getValueType() != MVT::v16i8 || 1331 Index->getOperand(1)->getOpcode() != ISD::Constant || 1332 Index->getConstantOperandVal(1) != I) 1333 return Bail; 1334 return std::make_pair(SwizzleSrc, SwizzleIndices); 1335 }; 1336 1337 using ValueEntry = std::pair<SDValue, size_t>; 1338 SmallVector<ValueEntry, 16> SplatValueCounts; 1339 1340 using SwizzleEntry = std::pair<std::pair<SDValue, SDValue>, size_t>; 1341 SmallVector<SwizzleEntry, 16> SwizzleCounts; 1342 1343 auto AddCount = [](auto &Counts, const auto &Val) { 1344 auto CountIt = std::find_if(Counts.begin(), Counts.end(), 1345 [&Val](auto E) { return E.first == Val; }); 1346 if (CountIt == Counts.end()) { 1347 Counts.emplace_back(Val, 1); 1348 } else { 1349 CountIt->second++; 1350 } 1351 }; 1352 1353 auto GetMostCommon = [](auto &Counts) { 1354 auto CommonIt = 1355 std::max_element(Counts.begin(), Counts.end(), 1356 [](auto A, auto B) { return A.second < B.second; }); 1357 assert(CommonIt != Counts.end() && "Unexpected all-undef build_vector"); 1358 return *CommonIt; 1359 }; 1360 1361 size_t NumConstantLanes = 0; 1362 1363 // Count eligible lanes for each type of vector creation op 1364 for (size_t I = 0; I < Lanes; ++I) { 1365 const SDValue &Lane = Op->getOperand(I); 1366 if (Lane.isUndef()) 1367 continue; 1368 1369 AddCount(SplatValueCounts, Lane); 1370 1371 if (IsConstant(Lane)) { 1372 NumConstantLanes++; 1373 } else if (CanSwizzle) { 1374 auto SwizzleSrcs = GetSwizzleSrcs(I, Lane); 1375 if (SwizzleSrcs.first) 1376 AddCount(SwizzleCounts, SwizzleSrcs); 1377 } 1378 } 1379 1380 SDValue SplatValue; 1381 size_t NumSplatLanes; 1382 std::tie(SplatValue, NumSplatLanes) = GetMostCommon(SplatValueCounts); 1383 1384 SDValue SwizzleSrc; 1385 SDValue SwizzleIndices; 1386 size_t NumSwizzleLanes = 0; 1387 if (SwizzleCounts.size()) 1388 std::forward_as_tuple(std::tie(SwizzleSrc, SwizzleIndices), 1389 NumSwizzleLanes) = GetMostCommon(SwizzleCounts); 1390 1391 // Predicate returning true if the lane is properly initialized by the 1392 // original instruction 1393 std::function<bool(size_t, const SDValue &)> IsLaneConstructed; 1394 SDValue Result; 1395 if (Subtarget->hasUnimplementedSIMD128()) { 1396 // Prefer swizzles over vector consts over splats 1397 if (NumSwizzleLanes >= NumSplatLanes && 1398 NumSwizzleLanes >= NumConstantLanes) { 1399 Result = DAG.getNode(WebAssemblyISD::SWIZZLE, DL, VecT, SwizzleSrc, 1400 SwizzleIndices); 1401 auto Swizzled = std::make_pair(SwizzleSrc, SwizzleIndices); 1402 IsLaneConstructed = [&, Swizzled](size_t I, const SDValue &Lane) { 1403 return Swizzled == GetSwizzleSrcs(I, Lane); 1404 }; 1405 } else if (NumConstantLanes >= NumSplatLanes) { 1406 SmallVector<SDValue, 16> ConstLanes; 1407 for (const SDValue &Lane : Op->op_values()) { 1408 if (IsConstant(Lane)) { 1409 ConstLanes.push_back(Lane); 1410 } else if (LaneT.isFloatingPoint()) { 1411 ConstLanes.push_back(DAG.getConstantFP(0, DL, LaneT)); 1412 } else { 1413 ConstLanes.push_back(DAG.getConstant(0, DL, LaneT)); 1414 } 1415 } 1416 Result = DAG.getBuildVector(VecT, DL, ConstLanes); 1417 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1418 return IsConstant(Lane); 1419 }; 1420 } 1421 } 1422 if (!Result) { 1423 // Use a splat, but possibly a load_splat 1424 LoadSDNode *SplattedLoad; 1425 if (Subtarget->hasUnimplementedSIMD128() && 1426 (SplattedLoad = dyn_cast<LoadSDNode>(SplatValue)) && 1427 SplattedLoad->getMemoryVT() == VecT.getVectorElementType()) { 1428 Result = DAG.getNode(WebAssemblyISD::LOAD_SPLAT, DL, VecT, SplatValue); 1429 } else { 1430 Result = DAG.getSplatBuildVector(VecT, DL, SplatValue); 1431 } 1432 IsLaneConstructed = [&](size_t _, const SDValue &Lane) { 1433 return Lane == SplatValue; 1434 }; 1435 } 1436 1437 // Add replace_lane instructions for any unhandled values 1438 for (size_t I = 0; I < Lanes; ++I) { 1439 const SDValue &Lane = Op->getOperand(I); 1440 if (!Lane.isUndef() && !IsLaneConstructed(I, Lane)) 1441 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VecT, Result, Lane, 1442 DAG.getConstant(I, DL, MVT::i32)); 1443 } 1444 1445 return Result; 1446 } 1447 1448 SDValue 1449 WebAssemblyTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 1450 SelectionDAG &DAG) const { 1451 SDLoc DL(Op); 1452 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op.getNode())->getMask(); 1453 MVT VecType = Op.getOperand(0).getSimpleValueType(); 1454 assert(VecType.is128BitVector() && "Unexpected shuffle vector type"); 1455 size_t LaneBytes = VecType.getVectorElementType().getSizeInBits() / 8; 1456 1457 // Space for two vector args and sixteen mask indices 1458 SDValue Ops[18]; 1459 size_t OpIdx = 0; 1460 Ops[OpIdx++] = Op.getOperand(0); 1461 Ops[OpIdx++] = Op.getOperand(1); 1462 1463 // Expand mask indices to byte indices and materialize them as operands 1464 for (int M : Mask) { 1465 for (size_t J = 0; J < LaneBytes; ++J) { 1466 // Lower undefs (represented by -1 in mask) to zero 1467 uint64_t ByteIndex = M == -1 ? 0 : (uint64_t)M * LaneBytes + J; 1468 Ops[OpIdx++] = DAG.getConstant(ByteIndex, DL, MVT::i32); 1469 } 1470 } 1471 1472 return DAG.getNode(WebAssemblyISD::SHUFFLE, DL, Op.getValueType(), Ops); 1473 } 1474 1475 SDValue 1476 WebAssemblyTargetLowering::LowerAccessVectorElement(SDValue Op, 1477 SelectionDAG &DAG) const { 1478 // Allow constant lane indices, expand variable lane indices 1479 SDNode *IdxNode = Op.getOperand(Op.getNumOperands() - 1).getNode(); 1480 if (isa<ConstantSDNode>(IdxNode) || IdxNode->isUndef()) 1481 return Op; 1482 else 1483 // Perform default expansion 1484 return SDValue(); 1485 } 1486 1487 static SDValue unrollVectorShift(SDValue Op, SelectionDAG &DAG) { 1488 EVT LaneT = Op.getSimpleValueType().getVectorElementType(); 1489 // 32-bit and 64-bit unrolled shifts will have proper semantics 1490 if (LaneT.bitsGE(MVT::i32)) 1491 return DAG.UnrollVectorOp(Op.getNode()); 1492 // Otherwise mask the shift value to get proper semantics from 32-bit shift 1493 SDLoc DL(Op); 1494 SDValue ShiftVal = Op.getOperand(1); 1495 uint64_t MaskVal = LaneT.getSizeInBits() - 1; 1496 SDValue MaskedShiftVal = DAG.getNode( 1497 ISD::AND, // mask opcode 1498 DL, ShiftVal.getValueType(), // masked value type 1499 ShiftVal, // original shift value operand 1500 DAG.getConstant(MaskVal, DL, ShiftVal.getValueType()) // mask operand 1501 ); 1502 1503 return DAG.UnrollVectorOp( 1504 DAG.getNode(Op.getOpcode(), // original shift opcode 1505 DL, Op.getValueType(), // original return type 1506 Op.getOperand(0), // original vector operand, 1507 MaskedShiftVal // new masked shift value operand 1508 ) 1509 .getNode()); 1510 } 1511 1512 SDValue WebAssemblyTargetLowering::LowerShift(SDValue Op, 1513 SelectionDAG &DAG) const { 1514 SDLoc DL(Op); 1515 1516 // Only manually lower vector shifts 1517 assert(Op.getSimpleValueType().isVector()); 1518 1519 // Unroll non-splat vector shifts 1520 BuildVectorSDNode *ShiftVec; 1521 SDValue SplatVal; 1522 if (!(ShiftVec = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) || 1523 !(SplatVal = ShiftVec->getSplatValue())) 1524 return unrollVectorShift(Op, DAG); 1525 1526 // All splats except i64x2 const splats are handled by patterns 1527 auto *SplatConst = dyn_cast<ConstantSDNode>(SplatVal); 1528 if (!SplatConst || Op.getSimpleValueType() != MVT::v2i64) 1529 return Op; 1530 1531 // i64x2 const splats are custom lowered to avoid unnecessary wraps 1532 unsigned Opcode; 1533 switch (Op.getOpcode()) { 1534 case ISD::SHL: 1535 Opcode = WebAssemblyISD::VEC_SHL; 1536 break; 1537 case ISD::SRA: 1538 Opcode = WebAssemblyISD::VEC_SHR_S; 1539 break; 1540 case ISD::SRL: 1541 Opcode = WebAssemblyISD::VEC_SHR_U; 1542 break; 1543 default: 1544 llvm_unreachable("unexpected opcode"); 1545 } 1546 APInt Shift = SplatConst->getAPIntValue().zextOrTrunc(32); 1547 return DAG.getNode(Opcode, DL, Op.getValueType(), Op.getOperand(0), 1548 DAG.getConstant(Shift, DL, MVT::i32)); 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // WebAssembly Optimization Hooks 1553 //===----------------------------------------------------------------------===// 1554