1*0b57cec5SDimitry Andric //=- WebAssemblyFixIrreducibleControlFlow.cpp - Fix irreducible control flow -// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric /// 9*0b57cec5SDimitry Andric /// \file 10*0b57cec5SDimitry Andric /// This file implements a pass that removes irreducible control flow. 11*0b57cec5SDimitry Andric /// Irreducible control flow means multiple-entry loops, which this pass 12*0b57cec5SDimitry Andric /// transforms to have a single entry. 13*0b57cec5SDimitry Andric /// 14*0b57cec5SDimitry Andric /// Note that LLVM has a generic pass that lowers irreducible control flow, but 15*0b57cec5SDimitry Andric /// it linearizes control flow, turning diamonds into two triangles, which is 16*0b57cec5SDimitry Andric /// both unnecessary and undesirable for WebAssembly. 17*0b57cec5SDimitry Andric /// 18*0b57cec5SDimitry Andric /// The big picture: We recursively process each "region", defined as a group 19*0b57cec5SDimitry Andric /// of blocks with a single entry and no branches back to that entry. A region 20*0b57cec5SDimitry Andric /// may be the entire function body, or the inner part of a loop, i.e., the 21*0b57cec5SDimitry Andric /// loop's body without branches back to the loop entry. In each region we fix 22*0b57cec5SDimitry Andric /// up multi-entry loops by adding a new block that can dispatch to each of the 23*0b57cec5SDimitry Andric /// loop entries, based on the value of a label "helper" variable, and we 24*0b57cec5SDimitry Andric /// replace direct branches to the entries with assignments to the label 25*0b57cec5SDimitry Andric /// variable and a branch to the dispatch block. Then the dispatch block is the 26*0b57cec5SDimitry Andric /// single entry in the loop containing the previous multiple entries. After 27*0b57cec5SDimitry Andric /// ensuring all the loops in a region are reducible, we recurse into them. The 28*0b57cec5SDimitry Andric /// total time complexity of this pass is: 29*0b57cec5SDimitry Andric /// 30*0b57cec5SDimitry Andric /// O(NumBlocks * NumNestedLoops * NumIrreducibleLoops + 31*0b57cec5SDimitry Andric /// NumLoops * NumLoops) 32*0b57cec5SDimitry Andric /// 33*0b57cec5SDimitry Andric /// This pass is similar to what the Relooper [1] does. Both identify looping 34*0b57cec5SDimitry Andric /// code that requires multiple entries, and resolve it in a similar way (in 35*0b57cec5SDimitry Andric /// Relooper terminology, we implement a Multiple shape in a Loop shape). Note 36*0b57cec5SDimitry Andric /// also that like the Relooper, we implement a "minimal" intervention: we only 37*0b57cec5SDimitry Andric /// use the "label" helper for the blocks we absolutely must and no others. We 38*0b57cec5SDimitry Andric /// also prioritize code size and do not duplicate code in order to resolve 39*0b57cec5SDimitry Andric /// irreducibility. The graph algorithms for finding loops and entries and so 40*0b57cec5SDimitry Andric /// forth are also similar to the Relooper. The main differences between this 41*0b57cec5SDimitry Andric /// pass and the Relooper are: 42*0b57cec5SDimitry Andric /// 43*0b57cec5SDimitry Andric /// * We just care about irreducibility, so we just look at loops. 44*0b57cec5SDimitry Andric /// * The Relooper emits structured control flow (with ifs etc.), while we 45*0b57cec5SDimitry Andric /// emit a CFG. 46*0b57cec5SDimitry Andric /// 47*0b57cec5SDimitry Andric /// [1] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In 48*0b57cec5SDimitry Andric /// Proceedings of the ACM international conference companion on Object oriented 49*0b57cec5SDimitry Andric /// programming systems languages and applications companion (SPLASH '11). ACM, 50*0b57cec5SDimitry Andric /// New York, NY, USA, 301-312. DOI=10.1145/2048147.2048224 51*0b57cec5SDimitry Andric /// http://doi.acm.org/10.1145/2048147.2048224 52*0b57cec5SDimitry Andric /// 53*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 54*0b57cec5SDimitry Andric 55*0b57cec5SDimitry Andric #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" 56*0b57cec5SDimitry Andric #include "WebAssembly.h" 57*0b57cec5SDimitry Andric #include "WebAssemblySubtarget.h" 58*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 59*0b57cec5SDimitry Andric using namespace llvm; 60*0b57cec5SDimitry Andric 61*0b57cec5SDimitry Andric #define DEBUG_TYPE "wasm-fix-irreducible-control-flow" 62*0b57cec5SDimitry Andric 63*0b57cec5SDimitry Andric namespace { 64*0b57cec5SDimitry Andric 65*0b57cec5SDimitry Andric using BlockVector = SmallVector<MachineBasicBlock *, 4>; 66*0b57cec5SDimitry Andric using BlockSet = SmallPtrSet<MachineBasicBlock *, 4>; 67*0b57cec5SDimitry Andric 68*0b57cec5SDimitry Andric // Calculates reachability in a region. Ignores branches to blocks outside of 69*0b57cec5SDimitry Andric // the region, and ignores branches to the region entry (for the case where 70*0b57cec5SDimitry Andric // the region is the inner part of a loop). 71*0b57cec5SDimitry Andric class ReachabilityGraph { 72*0b57cec5SDimitry Andric public: 73*0b57cec5SDimitry Andric ReachabilityGraph(MachineBasicBlock *Entry, const BlockSet &Blocks) 74*0b57cec5SDimitry Andric : Entry(Entry), Blocks(Blocks) { 75*0b57cec5SDimitry Andric #ifndef NDEBUG 76*0b57cec5SDimitry Andric // The region must have a single entry. 77*0b57cec5SDimitry Andric for (auto *MBB : Blocks) { 78*0b57cec5SDimitry Andric if (MBB != Entry) { 79*0b57cec5SDimitry Andric for (auto *Pred : MBB->predecessors()) { 80*0b57cec5SDimitry Andric assert(inRegion(Pred)); 81*0b57cec5SDimitry Andric } 82*0b57cec5SDimitry Andric } 83*0b57cec5SDimitry Andric } 84*0b57cec5SDimitry Andric #endif 85*0b57cec5SDimitry Andric calculate(); 86*0b57cec5SDimitry Andric } 87*0b57cec5SDimitry Andric 88*0b57cec5SDimitry Andric bool canReach(MachineBasicBlock *From, MachineBasicBlock *To) const { 89*0b57cec5SDimitry Andric assert(inRegion(From) && inRegion(To)); 90*0b57cec5SDimitry Andric auto I = Reachable.find(From); 91*0b57cec5SDimitry Andric if (I == Reachable.end()) 92*0b57cec5SDimitry Andric return false; 93*0b57cec5SDimitry Andric return I->second.count(To); 94*0b57cec5SDimitry Andric } 95*0b57cec5SDimitry Andric 96*0b57cec5SDimitry Andric // "Loopers" are blocks that are in a loop. We detect these by finding blocks 97*0b57cec5SDimitry Andric // that can reach themselves. 98*0b57cec5SDimitry Andric const BlockSet &getLoopers() const { return Loopers; } 99*0b57cec5SDimitry Andric 100*0b57cec5SDimitry Andric // Get all blocks that are loop entries. 101*0b57cec5SDimitry Andric const BlockSet &getLoopEntries() const { return LoopEntries; } 102*0b57cec5SDimitry Andric 103*0b57cec5SDimitry Andric // Get all blocks that enter a particular loop from outside. 104*0b57cec5SDimitry Andric const BlockSet &getLoopEnterers(MachineBasicBlock *LoopEntry) const { 105*0b57cec5SDimitry Andric assert(inRegion(LoopEntry)); 106*0b57cec5SDimitry Andric auto I = LoopEnterers.find(LoopEntry); 107*0b57cec5SDimitry Andric assert(I != LoopEnterers.end()); 108*0b57cec5SDimitry Andric return I->second; 109*0b57cec5SDimitry Andric } 110*0b57cec5SDimitry Andric 111*0b57cec5SDimitry Andric private: 112*0b57cec5SDimitry Andric MachineBasicBlock *Entry; 113*0b57cec5SDimitry Andric const BlockSet &Blocks; 114*0b57cec5SDimitry Andric 115*0b57cec5SDimitry Andric BlockSet Loopers, LoopEntries; 116*0b57cec5SDimitry Andric DenseMap<MachineBasicBlock *, BlockSet> LoopEnterers; 117*0b57cec5SDimitry Andric 118*0b57cec5SDimitry Andric bool inRegion(MachineBasicBlock *MBB) const { return Blocks.count(MBB); } 119*0b57cec5SDimitry Andric 120*0b57cec5SDimitry Andric // Maps a block to all the other blocks it can reach. 121*0b57cec5SDimitry Andric DenseMap<MachineBasicBlock *, BlockSet> Reachable; 122*0b57cec5SDimitry Andric 123*0b57cec5SDimitry Andric void calculate() { 124*0b57cec5SDimitry Andric // Reachability computation work list. Contains pairs of recent additions 125*0b57cec5SDimitry Andric // (A, B) where we just added a link A => B. 126*0b57cec5SDimitry Andric using BlockPair = std::pair<MachineBasicBlock *, MachineBasicBlock *>; 127*0b57cec5SDimitry Andric SmallVector<BlockPair, 4> WorkList; 128*0b57cec5SDimitry Andric 129*0b57cec5SDimitry Andric // Add all relevant direct branches. 130*0b57cec5SDimitry Andric for (auto *MBB : Blocks) { 131*0b57cec5SDimitry Andric for (auto *Succ : MBB->successors()) { 132*0b57cec5SDimitry Andric if (Succ != Entry && inRegion(Succ)) { 133*0b57cec5SDimitry Andric Reachable[MBB].insert(Succ); 134*0b57cec5SDimitry Andric WorkList.emplace_back(MBB, Succ); 135*0b57cec5SDimitry Andric } 136*0b57cec5SDimitry Andric } 137*0b57cec5SDimitry Andric } 138*0b57cec5SDimitry Andric 139*0b57cec5SDimitry Andric while (!WorkList.empty()) { 140*0b57cec5SDimitry Andric MachineBasicBlock *MBB, *Succ; 141*0b57cec5SDimitry Andric std::tie(MBB, Succ) = WorkList.pop_back_val(); 142*0b57cec5SDimitry Andric assert(inRegion(MBB) && Succ != Entry && inRegion(Succ)); 143*0b57cec5SDimitry Andric if (MBB != Entry) { 144*0b57cec5SDimitry Andric // We recently added MBB => Succ, and that means we may have enabled 145*0b57cec5SDimitry Andric // Pred => MBB => Succ. 146*0b57cec5SDimitry Andric for (auto *Pred : MBB->predecessors()) { 147*0b57cec5SDimitry Andric if (Reachable[Pred].insert(Succ).second) { 148*0b57cec5SDimitry Andric WorkList.emplace_back(Pred, Succ); 149*0b57cec5SDimitry Andric } 150*0b57cec5SDimitry Andric } 151*0b57cec5SDimitry Andric } 152*0b57cec5SDimitry Andric } 153*0b57cec5SDimitry Andric 154*0b57cec5SDimitry Andric // Blocks that can return to themselves are in a loop. 155*0b57cec5SDimitry Andric for (auto *MBB : Blocks) { 156*0b57cec5SDimitry Andric if (canReach(MBB, MBB)) { 157*0b57cec5SDimitry Andric Loopers.insert(MBB); 158*0b57cec5SDimitry Andric } 159*0b57cec5SDimitry Andric } 160*0b57cec5SDimitry Andric assert(!Loopers.count(Entry)); 161*0b57cec5SDimitry Andric 162*0b57cec5SDimitry Andric // Find the loop entries - loopers reachable from blocks not in that loop - 163*0b57cec5SDimitry Andric // and those outside blocks that reach them, the "loop enterers". 164*0b57cec5SDimitry Andric for (auto *Looper : Loopers) { 165*0b57cec5SDimitry Andric for (auto *Pred : Looper->predecessors()) { 166*0b57cec5SDimitry Andric // Pred can reach Looper. If Looper can reach Pred, it is in the loop; 167*0b57cec5SDimitry Andric // otherwise, it is a block that enters into the loop. 168*0b57cec5SDimitry Andric if (!canReach(Looper, Pred)) { 169*0b57cec5SDimitry Andric LoopEntries.insert(Looper); 170*0b57cec5SDimitry Andric LoopEnterers[Looper].insert(Pred); 171*0b57cec5SDimitry Andric } 172*0b57cec5SDimitry Andric } 173*0b57cec5SDimitry Andric } 174*0b57cec5SDimitry Andric } 175*0b57cec5SDimitry Andric }; 176*0b57cec5SDimitry Andric 177*0b57cec5SDimitry Andric // Finds the blocks in a single-entry loop, given the loop entry and the 178*0b57cec5SDimitry Andric // list of blocks that enter the loop. 179*0b57cec5SDimitry Andric class LoopBlocks { 180*0b57cec5SDimitry Andric public: 181*0b57cec5SDimitry Andric LoopBlocks(MachineBasicBlock *Entry, const BlockSet &Enterers) 182*0b57cec5SDimitry Andric : Entry(Entry), Enterers(Enterers) { 183*0b57cec5SDimitry Andric calculate(); 184*0b57cec5SDimitry Andric } 185*0b57cec5SDimitry Andric 186*0b57cec5SDimitry Andric BlockSet &getBlocks() { return Blocks; } 187*0b57cec5SDimitry Andric 188*0b57cec5SDimitry Andric private: 189*0b57cec5SDimitry Andric MachineBasicBlock *Entry; 190*0b57cec5SDimitry Andric const BlockSet &Enterers; 191*0b57cec5SDimitry Andric 192*0b57cec5SDimitry Andric BlockSet Blocks; 193*0b57cec5SDimitry Andric 194*0b57cec5SDimitry Andric void calculate() { 195*0b57cec5SDimitry Andric // Going backwards from the loop entry, if we ignore the blocks entering 196*0b57cec5SDimitry Andric // from outside, we will traverse all the blocks in the loop. 197*0b57cec5SDimitry Andric BlockVector WorkList; 198*0b57cec5SDimitry Andric BlockSet AddedToWorkList; 199*0b57cec5SDimitry Andric Blocks.insert(Entry); 200*0b57cec5SDimitry Andric for (auto *Pred : Entry->predecessors()) { 201*0b57cec5SDimitry Andric if (!Enterers.count(Pred)) { 202*0b57cec5SDimitry Andric WorkList.push_back(Pred); 203*0b57cec5SDimitry Andric AddedToWorkList.insert(Pred); 204*0b57cec5SDimitry Andric } 205*0b57cec5SDimitry Andric } 206*0b57cec5SDimitry Andric 207*0b57cec5SDimitry Andric while (!WorkList.empty()) { 208*0b57cec5SDimitry Andric auto *MBB = WorkList.pop_back_val(); 209*0b57cec5SDimitry Andric assert(!Enterers.count(MBB)); 210*0b57cec5SDimitry Andric if (Blocks.insert(MBB).second) { 211*0b57cec5SDimitry Andric for (auto *Pred : MBB->predecessors()) { 212*0b57cec5SDimitry Andric if (!AddedToWorkList.count(Pred)) { 213*0b57cec5SDimitry Andric WorkList.push_back(Pred); 214*0b57cec5SDimitry Andric AddedToWorkList.insert(Pred); 215*0b57cec5SDimitry Andric } 216*0b57cec5SDimitry Andric } 217*0b57cec5SDimitry Andric } 218*0b57cec5SDimitry Andric } 219*0b57cec5SDimitry Andric } 220*0b57cec5SDimitry Andric }; 221*0b57cec5SDimitry Andric 222*0b57cec5SDimitry Andric class WebAssemblyFixIrreducibleControlFlow final : public MachineFunctionPass { 223*0b57cec5SDimitry Andric StringRef getPassName() const override { 224*0b57cec5SDimitry Andric return "WebAssembly Fix Irreducible Control Flow"; 225*0b57cec5SDimitry Andric } 226*0b57cec5SDimitry Andric 227*0b57cec5SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 228*0b57cec5SDimitry Andric 229*0b57cec5SDimitry Andric bool processRegion(MachineBasicBlock *Entry, BlockSet &Blocks, 230*0b57cec5SDimitry Andric MachineFunction &MF); 231*0b57cec5SDimitry Andric 232*0b57cec5SDimitry Andric void makeSingleEntryLoop(BlockSet &Entries, BlockSet &Blocks, 233*0b57cec5SDimitry Andric MachineFunction &MF, const ReachabilityGraph &Graph); 234*0b57cec5SDimitry Andric 235*0b57cec5SDimitry Andric public: 236*0b57cec5SDimitry Andric static char ID; // Pass identification, replacement for typeid 237*0b57cec5SDimitry Andric WebAssemblyFixIrreducibleControlFlow() : MachineFunctionPass(ID) {} 238*0b57cec5SDimitry Andric }; 239*0b57cec5SDimitry Andric 240*0b57cec5SDimitry Andric bool WebAssemblyFixIrreducibleControlFlow::processRegion( 241*0b57cec5SDimitry Andric MachineBasicBlock *Entry, BlockSet &Blocks, MachineFunction &MF) { 242*0b57cec5SDimitry Andric bool Changed = false; 243*0b57cec5SDimitry Andric 244*0b57cec5SDimitry Andric // Remove irreducibility before processing child loops, which may take 245*0b57cec5SDimitry Andric // multiple iterations. 246*0b57cec5SDimitry Andric while (true) { 247*0b57cec5SDimitry Andric ReachabilityGraph Graph(Entry, Blocks); 248*0b57cec5SDimitry Andric 249*0b57cec5SDimitry Andric bool FoundIrreducibility = false; 250*0b57cec5SDimitry Andric 251*0b57cec5SDimitry Andric for (auto *LoopEntry : Graph.getLoopEntries()) { 252*0b57cec5SDimitry Andric // Find mutual entries - all entries which can reach this one, and 253*0b57cec5SDimitry Andric // are reached by it (that always includes LoopEntry itself). All mutual 254*0b57cec5SDimitry Andric // entries must be in the same loop, so if we have more than one, then we 255*0b57cec5SDimitry Andric // have irreducible control flow. 256*0b57cec5SDimitry Andric // 257*0b57cec5SDimitry Andric // Note that irreducibility may involve inner loops, e.g. imagine A 258*0b57cec5SDimitry Andric // starts one loop, and it has B inside it which starts an inner loop. 259*0b57cec5SDimitry Andric // If we add a branch from all the way on the outside to B, then in a 260*0b57cec5SDimitry Andric // sense B is no longer an "inner" loop, semantically speaking. We will 261*0b57cec5SDimitry Andric // fix that irreducibility by adding a block that dispatches to either 262*0b57cec5SDimitry Andric // either A or B, so B will no longer be an inner loop in our output. 263*0b57cec5SDimitry Andric // (A fancier approach might try to keep it as such.) 264*0b57cec5SDimitry Andric // 265*0b57cec5SDimitry Andric // Note that we still need to recurse into inner loops later, to handle 266*0b57cec5SDimitry Andric // the case where the irreducibility is entirely nested - we would not 267*0b57cec5SDimitry Andric // be able to identify that at this point, since the enclosing loop is 268*0b57cec5SDimitry Andric // a group of blocks all of whom can reach each other. (We'll see the 269*0b57cec5SDimitry Andric // irreducibility after removing branches to the top of that enclosing 270*0b57cec5SDimitry Andric // loop.) 271*0b57cec5SDimitry Andric BlockSet MutualLoopEntries; 272*0b57cec5SDimitry Andric MutualLoopEntries.insert(LoopEntry); 273*0b57cec5SDimitry Andric for (auto *OtherLoopEntry : Graph.getLoopEntries()) { 274*0b57cec5SDimitry Andric if (OtherLoopEntry != LoopEntry && 275*0b57cec5SDimitry Andric Graph.canReach(LoopEntry, OtherLoopEntry) && 276*0b57cec5SDimitry Andric Graph.canReach(OtherLoopEntry, LoopEntry)) { 277*0b57cec5SDimitry Andric MutualLoopEntries.insert(OtherLoopEntry); 278*0b57cec5SDimitry Andric } 279*0b57cec5SDimitry Andric } 280*0b57cec5SDimitry Andric 281*0b57cec5SDimitry Andric if (MutualLoopEntries.size() > 1) { 282*0b57cec5SDimitry Andric makeSingleEntryLoop(MutualLoopEntries, Blocks, MF, Graph); 283*0b57cec5SDimitry Andric FoundIrreducibility = true; 284*0b57cec5SDimitry Andric Changed = true; 285*0b57cec5SDimitry Andric break; 286*0b57cec5SDimitry Andric } 287*0b57cec5SDimitry Andric } 288*0b57cec5SDimitry Andric // Only go on to actually process the inner loops when we are done 289*0b57cec5SDimitry Andric // removing irreducible control flow and changing the graph. Modifying 290*0b57cec5SDimitry Andric // the graph as we go is possible, and that might let us avoid looking at 291*0b57cec5SDimitry Andric // the already-fixed loops again if we are careful, but all that is 292*0b57cec5SDimitry Andric // complex and bug-prone. Since irreducible loops are rare, just starting 293*0b57cec5SDimitry Andric // another iteration is best. 294*0b57cec5SDimitry Andric if (FoundIrreducibility) { 295*0b57cec5SDimitry Andric continue; 296*0b57cec5SDimitry Andric } 297*0b57cec5SDimitry Andric 298*0b57cec5SDimitry Andric for (auto *LoopEntry : Graph.getLoopEntries()) { 299*0b57cec5SDimitry Andric LoopBlocks InnerBlocks(LoopEntry, Graph.getLoopEnterers(LoopEntry)); 300*0b57cec5SDimitry Andric // Each of these calls to processRegion may change the graph, but are 301*0b57cec5SDimitry Andric // guaranteed not to interfere with each other. The only changes we make 302*0b57cec5SDimitry Andric // to the graph are to add blocks on the way to a loop entry. As the 303*0b57cec5SDimitry Andric // loops are disjoint, that means we may only alter branches that exit 304*0b57cec5SDimitry Andric // another loop, which are ignored when recursing into that other loop 305*0b57cec5SDimitry Andric // anyhow. 306*0b57cec5SDimitry Andric if (processRegion(LoopEntry, InnerBlocks.getBlocks(), MF)) { 307*0b57cec5SDimitry Andric Changed = true; 308*0b57cec5SDimitry Andric } 309*0b57cec5SDimitry Andric } 310*0b57cec5SDimitry Andric 311*0b57cec5SDimitry Andric return Changed; 312*0b57cec5SDimitry Andric } 313*0b57cec5SDimitry Andric } 314*0b57cec5SDimitry Andric 315*0b57cec5SDimitry Andric // Given a set of entries to a single loop, create a single entry for that 316*0b57cec5SDimitry Andric // loop by creating a dispatch block for them, routing control flow using 317*0b57cec5SDimitry Andric // a helper variable. Also updates Blocks with any new blocks created, so 318*0b57cec5SDimitry Andric // that we properly track all the blocks in the region. But this does not update 319*0b57cec5SDimitry Andric // ReachabilityGraph; this will be updated in the caller of this function as 320*0b57cec5SDimitry Andric // needed. 321*0b57cec5SDimitry Andric void WebAssemblyFixIrreducibleControlFlow::makeSingleEntryLoop( 322*0b57cec5SDimitry Andric BlockSet &Entries, BlockSet &Blocks, MachineFunction &MF, 323*0b57cec5SDimitry Andric const ReachabilityGraph &Graph) { 324*0b57cec5SDimitry Andric assert(Entries.size() >= 2); 325*0b57cec5SDimitry Andric 326*0b57cec5SDimitry Andric // Sort the entries to ensure a deterministic build. 327*0b57cec5SDimitry Andric BlockVector SortedEntries(Entries.begin(), Entries.end()); 328*0b57cec5SDimitry Andric llvm::sort(SortedEntries, 329*0b57cec5SDimitry Andric [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { 330*0b57cec5SDimitry Andric auto ANum = A->getNumber(); 331*0b57cec5SDimitry Andric auto BNum = B->getNumber(); 332*0b57cec5SDimitry Andric return ANum < BNum; 333*0b57cec5SDimitry Andric }); 334*0b57cec5SDimitry Andric 335*0b57cec5SDimitry Andric #ifndef NDEBUG 336*0b57cec5SDimitry Andric for (auto Block : SortedEntries) 337*0b57cec5SDimitry Andric assert(Block->getNumber() != -1); 338*0b57cec5SDimitry Andric if (SortedEntries.size() > 1) { 339*0b57cec5SDimitry Andric for (auto I = SortedEntries.begin(), E = SortedEntries.end() - 1; I != E; 340*0b57cec5SDimitry Andric ++I) { 341*0b57cec5SDimitry Andric auto ANum = (*I)->getNumber(); 342*0b57cec5SDimitry Andric auto BNum = (*(std::next(I)))->getNumber(); 343*0b57cec5SDimitry Andric assert(ANum != BNum); 344*0b57cec5SDimitry Andric } 345*0b57cec5SDimitry Andric } 346*0b57cec5SDimitry Andric #endif 347*0b57cec5SDimitry Andric 348*0b57cec5SDimitry Andric // Create a dispatch block which will contain a jump table to the entries. 349*0b57cec5SDimitry Andric MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock(); 350*0b57cec5SDimitry Andric MF.insert(MF.end(), Dispatch); 351*0b57cec5SDimitry Andric Blocks.insert(Dispatch); 352*0b57cec5SDimitry Andric 353*0b57cec5SDimitry Andric // Add the jump table. 354*0b57cec5SDimitry Andric const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo(); 355*0b57cec5SDimitry Andric MachineInstrBuilder MIB = 356*0b57cec5SDimitry Andric BuildMI(Dispatch, DebugLoc(), TII.get(WebAssembly::BR_TABLE_I32)); 357*0b57cec5SDimitry Andric 358*0b57cec5SDimitry Andric // Add the register which will be used to tell the jump table which block to 359*0b57cec5SDimitry Andric // jump to. 360*0b57cec5SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 361*0b57cec5SDimitry Andric unsigned Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass); 362*0b57cec5SDimitry Andric MIB.addReg(Reg); 363*0b57cec5SDimitry Andric 364*0b57cec5SDimitry Andric // Compute the indices in the superheader, one for each bad block, and 365*0b57cec5SDimitry Andric // add them as successors. 366*0b57cec5SDimitry Andric DenseMap<MachineBasicBlock *, unsigned> Indices; 367*0b57cec5SDimitry Andric for (auto *Entry : SortedEntries) { 368*0b57cec5SDimitry Andric auto Pair = Indices.insert(std::make_pair(Entry, 0)); 369*0b57cec5SDimitry Andric assert(Pair.second); 370*0b57cec5SDimitry Andric 371*0b57cec5SDimitry Andric unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1; 372*0b57cec5SDimitry Andric Pair.first->second = Index; 373*0b57cec5SDimitry Andric 374*0b57cec5SDimitry Andric MIB.addMBB(Entry); 375*0b57cec5SDimitry Andric Dispatch->addSuccessor(Entry); 376*0b57cec5SDimitry Andric } 377*0b57cec5SDimitry Andric 378*0b57cec5SDimitry Andric // Rewrite the problematic successors for every block that wants to reach 379*0b57cec5SDimitry Andric // the bad blocks. For simplicity, we just introduce a new block for every 380*0b57cec5SDimitry Andric // edge we need to rewrite. (Fancier things are possible.) 381*0b57cec5SDimitry Andric 382*0b57cec5SDimitry Andric BlockVector AllPreds; 383*0b57cec5SDimitry Andric for (auto *Entry : SortedEntries) { 384*0b57cec5SDimitry Andric for (auto *Pred : Entry->predecessors()) { 385*0b57cec5SDimitry Andric if (Pred != Dispatch) { 386*0b57cec5SDimitry Andric AllPreds.push_back(Pred); 387*0b57cec5SDimitry Andric } 388*0b57cec5SDimitry Andric } 389*0b57cec5SDimitry Andric } 390*0b57cec5SDimitry Andric 391*0b57cec5SDimitry Andric // This set stores predecessors within this loop. 392*0b57cec5SDimitry Andric DenseSet<MachineBasicBlock *> InLoop; 393*0b57cec5SDimitry Andric for (auto *Pred : AllPreds) { 394*0b57cec5SDimitry Andric for (auto *Entry : Pred->successors()) { 395*0b57cec5SDimitry Andric if (!Entries.count(Entry)) 396*0b57cec5SDimitry Andric continue; 397*0b57cec5SDimitry Andric if (Graph.canReach(Entry, Pred)) { 398*0b57cec5SDimitry Andric InLoop.insert(Pred); 399*0b57cec5SDimitry Andric break; 400*0b57cec5SDimitry Andric } 401*0b57cec5SDimitry Andric } 402*0b57cec5SDimitry Andric } 403*0b57cec5SDimitry Andric 404*0b57cec5SDimitry Andric // Record if each entry has a layout predecessor. This map stores 405*0b57cec5SDimitry Andric // <<Predecessor is within the loop?, loop entry>, layout predecessor> 406*0b57cec5SDimitry Andric std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> 407*0b57cec5SDimitry Andric EntryToLayoutPred; 408*0b57cec5SDimitry Andric for (auto *Pred : AllPreds) 409*0b57cec5SDimitry Andric for (auto *Entry : Pred->successors()) 410*0b57cec5SDimitry Andric if (Entries.count(Entry) && Pred->isLayoutSuccessor(Entry)) 411*0b57cec5SDimitry Andric EntryToLayoutPred[std::make_pair(InLoop.count(Pred), Entry)] = Pred; 412*0b57cec5SDimitry Andric 413*0b57cec5SDimitry Andric // We need to create at most two routing blocks per entry: one for 414*0b57cec5SDimitry Andric // predecessors outside the loop and one for predecessors inside the loop. 415*0b57cec5SDimitry Andric // This map stores 416*0b57cec5SDimitry Andric // <<Predecessor is within the loop?, loop entry>, routing block> 417*0b57cec5SDimitry Andric std::map<std::pair<bool, MachineBasicBlock *>, MachineBasicBlock *> Map; 418*0b57cec5SDimitry Andric for (auto *Pred : AllPreds) { 419*0b57cec5SDimitry Andric bool PredInLoop = InLoop.count(Pred); 420*0b57cec5SDimitry Andric for (auto *Entry : Pred->successors()) { 421*0b57cec5SDimitry Andric if (!Entries.count(Entry) || 422*0b57cec5SDimitry Andric Map.count(std::make_pair(InLoop.count(Pred), Entry))) 423*0b57cec5SDimitry Andric continue; 424*0b57cec5SDimitry Andric // If there exists a layout predecessor of this entry and this predecessor 425*0b57cec5SDimitry Andric // is not that, we rather create a routing block after that layout 426*0b57cec5SDimitry Andric // predecessor to save a branch. 427*0b57cec5SDimitry Andric if (EntryToLayoutPred.count(std::make_pair(PredInLoop, Entry)) && 428*0b57cec5SDimitry Andric EntryToLayoutPred[std::make_pair(PredInLoop, Entry)] != Pred) 429*0b57cec5SDimitry Andric continue; 430*0b57cec5SDimitry Andric 431*0b57cec5SDimitry Andric // This is a successor we need to rewrite. 432*0b57cec5SDimitry Andric MachineBasicBlock *Routing = MF.CreateMachineBasicBlock(); 433*0b57cec5SDimitry Andric MF.insert(Pred->isLayoutSuccessor(Entry) 434*0b57cec5SDimitry Andric ? MachineFunction::iterator(Entry) 435*0b57cec5SDimitry Andric : MF.end(), 436*0b57cec5SDimitry Andric Routing); 437*0b57cec5SDimitry Andric Blocks.insert(Routing); 438*0b57cec5SDimitry Andric 439*0b57cec5SDimitry Andric // Set the jump table's register of the index of the block we wish to 440*0b57cec5SDimitry Andric // jump to, and jump to the jump table. 441*0b57cec5SDimitry Andric BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::CONST_I32), Reg) 442*0b57cec5SDimitry Andric .addImm(Indices[Entry]); 443*0b57cec5SDimitry Andric BuildMI(Routing, DebugLoc(), TII.get(WebAssembly::BR)).addMBB(Dispatch); 444*0b57cec5SDimitry Andric Routing->addSuccessor(Dispatch); 445*0b57cec5SDimitry Andric Map[std::make_pair(PredInLoop, Entry)] = Routing; 446*0b57cec5SDimitry Andric } 447*0b57cec5SDimitry Andric } 448*0b57cec5SDimitry Andric 449*0b57cec5SDimitry Andric for (auto *Pred : AllPreds) { 450*0b57cec5SDimitry Andric bool PredInLoop = InLoop.count(Pred); 451*0b57cec5SDimitry Andric // Remap the terminator operands and the successor list. 452*0b57cec5SDimitry Andric for (MachineInstr &Term : Pred->terminators()) 453*0b57cec5SDimitry Andric for (auto &Op : Term.explicit_uses()) 454*0b57cec5SDimitry Andric if (Op.isMBB() && Indices.count(Op.getMBB())) 455*0b57cec5SDimitry Andric Op.setMBB(Map[std::make_pair(PredInLoop, Op.getMBB())]); 456*0b57cec5SDimitry Andric 457*0b57cec5SDimitry Andric for (auto *Succ : Pred->successors()) { 458*0b57cec5SDimitry Andric if (!Entries.count(Succ)) 459*0b57cec5SDimitry Andric continue; 460*0b57cec5SDimitry Andric auto *Routing = Map[std::make_pair(PredInLoop, Succ)]; 461*0b57cec5SDimitry Andric Pred->replaceSuccessor(Succ, Routing); 462*0b57cec5SDimitry Andric } 463*0b57cec5SDimitry Andric } 464*0b57cec5SDimitry Andric 465*0b57cec5SDimitry Andric // Create a fake default label, because br_table requires one. 466*0b57cec5SDimitry Andric MIB.addMBB(MIB.getInstr() 467*0b57cec5SDimitry Andric ->getOperand(MIB.getInstr()->getNumExplicitOperands() - 1) 468*0b57cec5SDimitry Andric .getMBB()); 469*0b57cec5SDimitry Andric } 470*0b57cec5SDimitry Andric 471*0b57cec5SDimitry Andric } // end anonymous namespace 472*0b57cec5SDimitry Andric 473*0b57cec5SDimitry Andric char WebAssemblyFixIrreducibleControlFlow::ID = 0; 474*0b57cec5SDimitry Andric INITIALIZE_PASS(WebAssemblyFixIrreducibleControlFlow, DEBUG_TYPE, 475*0b57cec5SDimitry Andric "Removes irreducible control flow", false, false) 476*0b57cec5SDimitry Andric 477*0b57cec5SDimitry Andric FunctionPass *llvm::createWebAssemblyFixIrreducibleControlFlow() { 478*0b57cec5SDimitry Andric return new WebAssemblyFixIrreducibleControlFlow(); 479*0b57cec5SDimitry Andric } 480*0b57cec5SDimitry Andric 481*0b57cec5SDimitry Andric bool WebAssemblyFixIrreducibleControlFlow::runOnMachineFunction( 482*0b57cec5SDimitry Andric MachineFunction &MF) { 483*0b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "********** Fixing Irreducible Control Flow **********\n" 484*0b57cec5SDimitry Andric "********** Function: " 485*0b57cec5SDimitry Andric << MF.getName() << '\n'); 486*0b57cec5SDimitry Andric 487*0b57cec5SDimitry Andric // Start the recursive process on the entire function body. 488*0b57cec5SDimitry Andric BlockSet AllBlocks; 489*0b57cec5SDimitry Andric for (auto &MBB : MF) { 490*0b57cec5SDimitry Andric AllBlocks.insert(&MBB); 491*0b57cec5SDimitry Andric } 492*0b57cec5SDimitry Andric 493*0b57cec5SDimitry Andric if (LLVM_UNLIKELY(processRegion(&*MF.begin(), AllBlocks, MF))) { 494*0b57cec5SDimitry Andric // We rewrote part of the function; recompute relevant things. 495*0b57cec5SDimitry Andric MF.getRegInfo().invalidateLiveness(); 496*0b57cec5SDimitry Andric MF.RenumberBlocks(); 497*0b57cec5SDimitry Andric return true; 498*0b57cec5SDimitry Andric } 499*0b57cec5SDimitry Andric 500*0b57cec5SDimitry Andric return false; 501*0b57cec5SDimitry Andric } 502