xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZTargetTransformInfo.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the
100b57cec5SDimitry Andric // SystemZ target machine. It uses the target's detailed information to provide
110b57cec5SDimitry Andric // more precise answers to certain TTI queries, while letting the target
120b57cec5SDimitry Andric // independent and default TTI implementations handle the rest.
130b57cec5SDimitry Andric //
140b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
150b57cec5SDimitry Andric 
160b57cec5SDimitry Andric #include "SystemZTargetTransformInfo.h"
170b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
180b57cec5SDimitry Andric #include "llvm/CodeGen/BasicTTIImpl.h"
190b57cec5SDimitry Andric #include "llvm/CodeGen/CostTable.h"
200b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
21*0fca6ea1SDimitry Andric #include "llvm/IR/DerivedTypes.h"
220b57cec5SDimitry Andric #include "llvm/IR/IntrinsicInst.h"
23*0fca6ea1SDimitry Andric #include "llvm/IR/Intrinsics.h"
240b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
25*0fca6ea1SDimitry Andric #include "llvm/Support/MathExtras.h"
26*0fca6ea1SDimitry Andric 
270b57cec5SDimitry Andric using namespace llvm;
280b57cec5SDimitry Andric 
290b57cec5SDimitry Andric #define DEBUG_TYPE "systemztti"
300b57cec5SDimitry Andric 
310b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
320b57cec5SDimitry Andric //
330b57cec5SDimitry Andric // SystemZ cost model.
340b57cec5SDimitry Andric //
350b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
360b57cec5SDimitry Andric 
3781ad6265SDimitry Andric static bool isUsedAsMemCpySource(const Value *V, bool &OtherUse) {
3881ad6265SDimitry Andric   bool UsedAsMemCpySource = false;
3981ad6265SDimitry Andric   for (const User *U : V->users())
4081ad6265SDimitry Andric     if (const Instruction *User = dyn_cast<Instruction>(U)) {
4181ad6265SDimitry Andric       if (isa<BitCastInst>(User) || isa<GetElementPtrInst>(User)) {
4281ad6265SDimitry Andric         UsedAsMemCpySource |= isUsedAsMemCpySource(User, OtherUse);
4381ad6265SDimitry Andric         continue;
4481ad6265SDimitry Andric       }
4581ad6265SDimitry Andric       if (const MemCpyInst *Memcpy = dyn_cast<MemCpyInst>(User)) {
4681ad6265SDimitry Andric         if (Memcpy->getOperand(1) == V && !Memcpy->isVolatile()) {
4781ad6265SDimitry Andric           UsedAsMemCpySource = true;
4881ad6265SDimitry Andric           continue;
4981ad6265SDimitry Andric         }
5081ad6265SDimitry Andric       }
5181ad6265SDimitry Andric       OtherUse = true;
5281ad6265SDimitry Andric     }
5381ad6265SDimitry Andric   return UsedAsMemCpySource;
5481ad6265SDimitry Andric }
5581ad6265SDimitry Andric 
5681ad6265SDimitry Andric unsigned SystemZTTIImpl::adjustInliningThreshold(const CallBase *CB) const {
5781ad6265SDimitry Andric   unsigned Bonus = 0;
5881ad6265SDimitry Andric 
5981ad6265SDimitry Andric   // Increase the threshold if an incoming argument is used only as a memcpy
6081ad6265SDimitry Andric   // source.
6181ad6265SDimitry Andric   if (Function *Callee = CB->getCalledFunction())
6281ad6265SDimitry Andric     for (Argument &Arg : Callee->args()) {
6381ad6265SDimitry Andric       bool OtherUse = false;
6481ad6265SDimitry Andric       if (isUsedAsMemCpySource(&Arg, OtherUse) && !OtherUse)
6581ad6265SDimitry Andric         Bonus += 150;
6681ad6265SDimitry Andric     }
6781ad6265SDimitry Andric 
6881ad6265SDimitry Andric   LLVM_DEBUG(if (Bonus)
6981ad6265SDimitry Andric                dbgs() << "++ SZTTI Adding inlining bonus: " << Bonus << "\n";);
7081ad6265SDimitry Andric   return Bonus;
7181ad6265SDimitry Andric }
7281ad6265SDimitry Andric 
73fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
745ffd83dbSDimitry Andric                                               TTI::TargetCostKind CostKind) {
750b57cec5SDimitry Andric   assert(Ty->isIntegerTy());
760b57cec5SDimitry Andric 
770b57cec5SDimitry Andric   unsigned BitSize = Ty->getPrimitiveSizeInBits();
780b57cec5SDimitry Andric   // There is no cost model for constants with a bit size of 0. Return TCC_Free
790b57cec5SDimitry Andric   // here, so that constant hoisting will ignore this constant.
800b57cec5SDimitry Andric   if (BitSize == 0)
810b57cec5SDimitry Andric     return TTI::TCC_Free;
827a6dacacSDimitry Andric   // No cost model for operations on integers larger than 128 bit implemented yet.
837a6dacacSDimitry Andric   if ((!ST->hasVector() && BitSize > 64) || BitSize > 128)
840b57cec5SDimitry Andric     return TTI::TCC_Free;
850b57cec5SDimitry Andric 
860b57cec5SDimitry Andric   if (Imm == 0)
870b57cec5SDimitry Andric     return TTI::TCC_Free;
880b57cec5SDimitry Andric 
890b57cec5SDimitry Andric   if (Imm.getBitWidth() <= 64) {
900b57cec5SDimitry Andric     // Constants loaded via lgfi.
910b57cec5SDimitry Andric     if (isInt<32>(Imm.getSExtValue()))
920b57cec5SDimitry Andric       return TTI::TCC_Basic;
930b57cec5SDimitry Andric     // Constants loaded via llilf.
940b57cec5SDimitry Andric     if (isUInt<32>(Imm.getZExtValue()))
950b57cec5SDimitry Andric       return TTI::TCC_Basic;
960b57cec5SDimitry Andric     // Constants loaded via llihf:
970b57cec5SDimitry Andric     if ((Imm.getZExtValue() & 0xffffffff) == 0)
980b57cec5SDimitry Andric       return TTI::TCC_Basic;
990b57cec5SDimitry Andric 
1000b57cec5SDimitry Andric     return 2 * TTI::TCC_Basic;
1010b57cec5SDimitry Andric   }
1020b57cec5SDimitry Andric 
1037a6dacacSDimitry Andric   // i128 immediates loads from Constant Pool
1047a6dacacSDimitry Andric   return 2 * TTI::TCC_Basic;
1050b57cec5SDimitry Andric }
1060b57cec5SDimitry Andric 
107fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
1085ffd83dbSDimitry Andric                                                   const APInt &Imm, Type *Ty,
109e8d8bef9SDimitry Andric                                                   TTI::TargetCostKind CostKind,
110e8d8bef9SDimitry Andric                                                   Instruction *Inst) {
1110b57cec5SDimitry Andric   assert(Ty->isIntegerTy());
1120b57cec5SDimitry Andric 
1130b57cec5SDimitry Andric   unsigned BitSize = Ty->getPrimitiveSizeInBits();
1140b57cec5SDimitry Andric   // There is no cost model for constants with a bit size of 0. Return TCC_Free
1150b57cec5SDimitry Andric   // here, so that constant hoisting will ignore this constant.
1160b57cec5SDimitry Andric   if (BitSize == 0)
1170b57cec5SDimitry Andric     return TTI::TCC_Free;
1180b57cec5SDimitry Andric   // No cost model for operations on integers larger than 64 bit implemented yet.
1190b57cec5SDimitry Andric   if (BitSize > 64)
1200b57cec5SDimitry Andric     return TTI::TCC_Free;
1210b57cec5SDimitry Andric 
1220b57cec5SDimitry Andric   switch (Opcode) {
1230b57cec5SDimitry Andric   default:
1240b57cec5SDimitry Andric     return TTI::TCC_Free;
1250b57cec5SDimitry Andric   case Instruction::GetElementPtr:
1260b57cec5SDimitry Andric     // Always hoist the base address of a GetElementPtr. This prevents the
1270b57cec5SDimitry Andric     // creation of new constants for every base constant that gets constant
1280b57cec5SDimitry Andric     // folded with the offset.
1290b57cec5SDimitry Andric     if (Idx == 0)
1300b57cec5SDimitry Andric       return 2 * TTI::TCC_Basic;
1310b57cec5SDimitry Andric     return TTI::TCC_Free;
1320b57cec5SDimitry Andric   case Instruction::Store:
1330b57cec5SDimitry Andric     if (Idx == 0 && Imm.getBitWidth() <= 64) {
1340b57cec5SDimitry Andric       // Any 8-bit immediate store can by implemented via mvi.
1350b57cec5SDimitry Andric       if (BitSize == 8)
1360b57cec5SDimitry Andric         return TTI::TCC_Free;
1370b57cec5SDimitry Andric       // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
1380b57cec5SDimitry Andric       if (isInt<16>(Imm.getSExtValue()))
1390b57cec5SDimitry Andric         return TTI::TCC_Free;
1400b57cec5SDimitry Andric     }
1410b57cec5SDimitry Andric     break;
1420b57cec5SDimitry Andric   case Instruction::ICmp:
1430b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
1440b57cec5SDimitry Andric       // Comparisons against signed 32-bit immediates implemented via cgfi.
1450b57cec5SDimitry Andric       if (isInt<32>(Imm.getSExtValue()))
1460b57cec5SDimitry Andric         return TTI::TCC_Free;
1470b57cec5SDimitry Andric       // Comparisons against unsigned 32-bit immediates implemented via clgfi.
1480b57cec5SDimitry Andric       if (isUInt<32>(Imm.getZExtValue()))
1490b57cec5SDimitry Andric         return TTI::TCC_Free;
1500b57cec5SDimitry Andric     }
1510b57cec5SDimitry Andric     break;
1520b57cec5SDimitry Andric   case Instruction::Add:
1530b57cec5SDimitry Andric   case Instruction::Sub:
1540b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
1550b57cec5SDimitry Andric       // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
1560b57cec5SDimitry Andric       if (isUInt<32>(Imm.getZExtValue()))
1570b57cec5SDimitry Andric         return TTI::TCC_Free;
1580b57cec5SDimitry Andric       // Or their negation, by swapping addition vs. subtraction.
1590b57cec5SDimitry Andric       if (isUInt<32>(-Imm.getSExtValue()))
1600b57cec5SDimitry Andric         return TTI::TCC_Free;
1610b57cec5SDimitry Andric     }
1620b57cec5SDimitry Andric     break;
1630b57cec5SDimitry Andric   case Instruction::Mul:
1640b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
1650b57cec5SDimitry Andric       // We use msgfi to multiply by 32-bit signed immediates.
1660b57cec5SDimitry Andric       if (isInt<32>(Imm.getSExtValue()))
1670b57cec5SDimitry Andric         return TTI::TCC_Free;
1680b57cec5SDimitry Andric     }
1690b57cec5SDimitry Andric     break;
1700b57cec5SDimitry Andric   case Instruction::Or:
1710b57cec5SDimitry Andric   case Instruction::Xor:
1720b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
1730b57cec5SDimitry Andric       // Masks supported by oilf/xilf.
1740b57cec5SDimitry Andric       if (isUInt<32>(Imm.getZExtValue()))
1750b57cec5SDimitry Andric         return TTI::TCC_Free;
1760b57cec5SDimitry Andric       // Masks supported by oihf/xihf.
1770b57cec5SDimitry Andric       if ((Imm.getZExtValue() & 0xffffffff) == 0)
1780b57cec5SDimitry Andric         return TTI::TCC_Free;
1790b57cec5SDimitry Andric     }
1800b57cec5SDimitry Andric     break;
1810b57cec5SDimitry Andric   case Instruction::And:
1820b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
1830b57cec5SDimitry Andric       // Any 32-bit AND operation can by implemented via nilf.
1840b57cec5SDimitry Andric       if (BitSize <= 32)
1850b57cec5SDimitry Andric         return TTI::TCC_Free;
1860b57cec5SDimitry Andric       // 64-bit masks supported by nilf.
1870b57cec5SDimitry Andric       if (isUInt<32>(~Imm.getZExtValue()))
1880b57cec5SDimitry Andric         return TTI::TCC_Free;
1890b57cec5SDimitry Andric       // 64-bit masks supported by nilh.
1900b57cec5SDimitry Andric       if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
1910b57cec5SDimitry Andric         return TTI::TCC_Free;
1920b57cec5SDimitry Andric       // Some 64-bit AND operations can be implemented via risbg.
1930b57cec5SDimitry Andric       const SystemZInstrInfo *TII = ST->getInstrInfo();
1940b57cec5SDimitry Andric       unsigned Start, End;
1950b57cec5SDimitry Andric       if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
1960b57cec5SDimitry Andric         return TTI::TCC_Free;
1970b57cec5SDimitry Andric     }
1980b57cec5SDimitry Andric     break;
1990b57cec5SDimitry Andric   case Instruction::Shl:
2000b57cec5SDimitry Andric   case Instruction::LShr:
2010b57cec5SDimitry Andric   case Instruction::AShr:
2020b57cec5SDimitry Andric     // Always return TCC_Free for the shift value of a shift instruction.
2030b57cec5SDimitry Andric     if (Idx == 1)
2040b57cec5SDimitry Andric       return TTI::TCC_Free;
2050b57cec5SDimitry Andric     break;
2060b57cec5SDimitry Andric   case Instruction::UDiv:
2070b57cec5SDimitry Andric   case Instruction::SDiv:
2080b57cec5SDimitry Andric   case Instruction::URem:
2090b57cec5SDimitry Andric   case Instruction::SRem:
2100b57cec5SDimitry Andric   case Instruction::Trunc:
2110b57cec5SDimitry Andric   case Instruction::ZExt:
2120b57cec5SDimitry Andric   case Instruction::SExt:
2130b57cec5SDimitry Andric   case Instruction::IntToPtr:
2140b57cec5SDimitry Andric   case Instruction::PtrToInt:
2150b57cec5SDimitry Andric   case Instruction::BitCast:
2160b57cec5SDimitry Andric   case Instruction::PHI:
2170b57cec5SDimitry Andric   case Instruction::Call:
2180b57cec5SDimitry Andric   case Instruction::Select:
2190b57cec5SDimitry Andric   case Instruction::Ret:
2200b57cec5SDimitry Andric   case Instruction::Load:
2210b57cec5SDimitry Andric     break;
2220b57cec5SDimitry Andric   }
2230b57cec5SDimitry Andric 
2245ffd83dbSDimitry Andric   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
2250b57cec5SDimitry Andric }
2260b57cec5SDimitry Andric 
227fe6060f1SDimitry Andric InstructionCost
228fe6060f1SDimitry Andric SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
2295ffd83dbSDimitry Andric                                     const APInt &Imm, Type *Ty,
2305ffd83dbSDimitry Andric                                     TTI::TargetCostKind CostKind) {
2310b57cec5SDimitry Andric   assert(Ty->isIntegerTy());
2320b57cec5SDimitry Andric 
2330b57cec5SDimitry Andric   unsigned BitSize = Ty->getPrimitiveSizeInBits();
2340b57cec5SDimitry Andric   // There is no cost model for constants with a bit size of 0. Return TCC_Free
2350b57cec5SDimitry Andric   // here, so that constant hoisting will ignore this constant.
2360b57cec5SDimitry Andric   if (BitSize == 0)
2370b57cec5SDimitry Andric     return TTI::TCC_Free;
2380b57cec5SDimitry Andric   // No cost model for operations on integers larger than 64 bit implemented yet.
2390b57cec5SDimitry Andric   if (BitSize > 64)
2400b57cec5SDimitry Andric     return TTI::TCC_Free;
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric   switch (IID) {
2430b57cec5SDimitry Andric   default:
2440b57cec5SDimitry Andric     return TTI::TCC_Free;
2450b57cec5SDimitry Andric   case Intrinsic::sadd_with_overflow:
2460b57cec5SDimitry Andric   case Intrinsic::uadd_with_overflow:
2470b57cec5SDimitry Andric   case Intrinsic::ssub_with_overflow:
2480b57cec5SDimitry Andric   case Intrinsic::usub_with_overflow:
2490b57cec5SDimitry Andric     // These get expanded to include a normal addition/subtraction.
2500b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
2510b57cec5SDimitry Andric       if (isUInt<32>(Imm.getZExtValue()))
2520b57cec5SDimitry Andric         return TTI::TCC_Free;
2530b57cec5SDimitry Andric       if (isUInt<32>(-Imm.getSExtValue()))
2540b57cec5SDimitry Andric         return TTI::TCC_Free;
2550b57cec5SDimitry Andric     }
2560b57cec5SDimitry Andric     break;
2570b57cec5SDimitry Andric   case Intrinsic::smul_with_overflow:
2580b57cec5SDimitry Andric   case Intrinsic::umul_with_overflow:
2590b57cec5SDimitry Andric     // These get expanded to include a normal multiplication.
2600b57cec5SDimitry Andric     if (Idx == 1 && Imm.getBitWidth() <= 64) {
2610b57cec5SDimitry Andric       if (isInt<32>(Imm.getSExtValue()))
2620b57cec5SDimitry Andric         return TTI::TCC_Free;
2630b57cec5SDimitry Andric     }
2640b57cec5SDimitry Andric     break;
2650b57cec5SDimitry Andric   case Intrinsic::experimental_stackmap:
2660b57cec5SDimitry Andric     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2670b57cec5SDimitry Andric       return TTI::TCC_Free;
2680b57cec5SDimitry Andric     break;
2690b57cec5SDimitry Andric   case Intrinsic::experimental_patchpoint_void:
270*0fca6ea1SDimitry Andric   case Intrinsic::experimental_patchpoint:
2710b57cec5SDimitry Andric     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
2720b57cec5SDimitry Andric       return TTI::TCC_Free;
2730b57cec5SDimitry Andric     break;
2740b57cec5SDimitry Andric   }
2755ffd83dbSDimitry Andric   return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
2760b57cec5SDimitry Andric }
2770b57cec5SDimitry Andric 
2780b57cec5SDimitry Andric TargetTransformInfo::PopcntSupportKind
2790b57cec5SDimitry Andric SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
2800b57cec5SDimitry Andric   assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
2810b57cec5SDimitry Andric   if (ST->hasPopulationCount() && TyWidth <= 64)
2820b57cec5SDimitry Andric     return TTI::PSK_FastHardware;
2830b57cec5SDimitry Andric   return TTI::PSK_Software;
2840b57cec5SDimitry Andric }
2850b57cec5SDimitry Andric 
2860b57cec5SDimitry Andric void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
287349cc55cSDimitry Andric                                              TTI::UnrollingPreferences &UP,
288349cc55cSDimitry Andric                                              OptimizationRemarkEmitter *ORE) {
2890b57cec5SDimitry Andric   // Find out if L contains a call, what the machine instruction count
2900b57cec5SDimitry Andric   // estimate is, and how many stores there are.
2910b57cec5SDimitry Andric   bool HasCall = false;
292fe6060f1SDimitry Andric   InstructionCost NumStores = 0;
2930b57cec5SDimitry Andric   for (auto &BB : L->blocks())
2940b57cec5SDimitry Andric     for (auto &I : *BB) {
2950b57cec5SDimitry Andric       if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
2965ffd83dbSDimitry Andric         if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
2970b57cec5SDimitry Andric           if (isLoweredToCall(F))
2980b57cec5SDimitry Andric             HasCall = true;
2990b57cec5SDimitry Andric           if (F->getIntrinsicID() == Intrinsic::memcpy ||
3000b57cec5SDimitry Andric               F->getIntrinsicID() == Intrinsic::memset)
3010b57cec5SDimitry Andric             NumStores++;
3020b57cec5SDimitry Andric         } else { // indirect call.
3030b57cec5SDimitry Andric           HasCall = true;
3040b57cec5SDimitry Andric         }
3050b57cec5SDimitry Andric       }
3060b57cec5SDimitry Andric       if (isa<StoreInst>(&I)) {
3070b57cec5SDimitry Andric         Type *MemAccessTy = I.getOperand(0)->getType();
308bdd1243dSDimitry Andric         NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy,
309bdd1243dSDimitry Andric                                      std::nullopt, 0, TTI::TCK_RecipThroughput);
3100b57cec5SDimitry Andric       }
3110b57cec5SDimitry Andric     }
3120b57cec5SDimitry Andric 
3130b57cec5SDimitry Andric   // The z13 processor will run out of store tags if too many stores
3140b57cec5SDimitry Andric   // are fed into it too quickly. Therefore make sure there are not
3150b57cec5SDimitry Andric   // too many stores in the resulting unrolled loop.
316fe6060f1SDimitry Andric   unsigned const NumStoresVal = *NumStores.getValue();
317fe6060f1SDimitry Andric   unsigned const Max = (NumStoresVal ? (12 / NumStoresVal) : UINT_MAX);
3180b57cec5SDimitry Andric 
3190b57cec5SDimitry Andric   if (HasCall) {
3200b57cec5SDimitry Andric     // Only allow full unrolling if loop has any calls.
3210b57cec5SDimitry Andric     UP.FullUnrollMaxCount = Max;
3220b57cec5SDimitry Andric     UP.MaxCount = 1;
3230b57cec5SDimitry Andric     return;
3240b57cec5SDimitry Andric   }
3250b57cec5SDimitry Andric 
3260b57cec5SDimitry Andric   UP.MaxCount = Max;
3270b57cec5SDimitry Andric   if (UP.MaxCount <= 1)
3280b57cec5SDimitry Andric     return;
3290b57cec5SDimitry Andric 
3300b57cec5SDimitry Andric   // Allow partial and runtime trip count unrolling.
3310b57cec5SDimitry Andric   UP.Partial = UP.Runtime = true;
3320b57cec5SDimitry Andric 
3330b57cec5SDimitry Andric   UP.PartialThreshold = 75;
3340b57cec5SDimitry Andric   UP.DefaultUnrollRuntimeCount = 4;
3350b57cec5SDimitry Andric 
3360b57cec5SDimitry Andric   // Allow expensive instructions in the pre-header of the loop.
3370b57cec5SDimitry Andric   UP.AllowExpensiveTripCount = true;
3380b57cec5SDimitry Andric 
3390b57cec5SDimitry Andric   UP.Force = true;
3400b57cec5SDimitry Andric }
3410b57cec5SDimitry Andric 
3425ffd83dbSDimitry Andric void SystemZTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
3435ffd83dbSDimitry Andric                                            TTI::PeelingPreferences &PP) {
3445ffd83dbSDimitry Andric   BaseT::getPeelingPreferences(L, SE, PP);
3455ffd83dbSDimitry Andric }
3460b57cec5SDimitry Andric 
34781ad6265SDimitry Andric bool SystemZTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
34881ad6265SDimitry Andric                                    const TargetTransformInfo::LSRCost &C2) {
3490b57cec5SDimitry Andric   // SystemZ specific: check instruction count (first), and don't care about
3500b57cec5SDimitry Andric   // ImmCost, since offsets are checked explicitly.
3510b57cec5SDimitry Andric   return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
3520b57cec5SDimitry Andric                   C1.NumIVMuls, C1.NumBaseAdds,
3530b57cec5SDimitry Andric                   C1.ScaleCost, C1.SetupCost) <
3540b57cec5SDimitry Andric     std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
3550b57cec5SDimitry Andric              C2.NumIVMuls, C2.NumBaseAdds,
3560b57cec5SDimitry Andric              C2.ScaleCost, C2.SetupCost);
3570b57cec5SDimitry Andric }
3580b57cec5SDimitry Andric 
3598bcb0991SDimitry Andric unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
3608bcb0991SDimitry Andric   bool Vector = (ClassID == 1);
3610b57cec5SDimitry Andric   if (!Vector)
3620b57cec5SDimitry Andric     // Discount the stack pointer.  Also leave out %r0, since it can't
3630b57cec5SDimitry Andric     // be used in an address.
3640b57cec5SDimitry Andric     return 14;
3650b57cec5SDimitry Andric   if (ST->hasVector())
3660b57cec5SDimitry Andric     return 32;
3670b57cec5SDimitry Andric   return 0;
3680b57cec5SDimitry Andric }
3690b57cec5SDimitry Andric 
370fe6060f1SDimitry Andric TypeSize
371fe6060f1SDimitry Andric SystemZTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
372fe6060f1SDimitry Andric   switch (K) {
373fe6060f1SDimitry Andric   case TargetTransformInfo::RGK_Scalar:
374fe6060f1SDimitry Andric     return TypeSize::getFixed(64);
375fe6060f1SDimitry Andric   case TargetTransformInfo::RGK_FixedWidthVector:
376fe6060f1SDimitry Andric     return TypeSize::getFixed(ST->hasVector() ? 128 : 0);
377fe6060f1SDimitry Andric   case TargetTransformInfo::RGK_ScalableVector:
378fe6060f1SDimitry Andric     return TypeSize::getScalable(0);
379fe6060f1SDimitry Andric   }
380fe6060f1SDimitry Andric 
381fe6060f1SDimitry Andric   llvm_unreachable("Unsupported register kind");
3820b57cec5SDimitry Andric }
3830b57cec5SDimitry Andric 
3845ffd83dbSDimitry Andric unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
3855ffd83dbSDimitry Andric                                               unsigned NumStridedMemAccesses,
3865ffd83dbSDimitry Andric                                               unsigned NumPrefetches,
3875ffd83dbSDimitry Andric                                               bool HasCall) const {
3885ffd83dbSDimitry Andric   // Don't prefetch a loop with many far apart accesses.
3895ffd83dbSDimitry Andric   if (NumPrefetches > 16)
3905ffd83dbSDimitry Andric     return UINT_MAX;
3915ffd83dbSDimitry Andric 
3925ffd83dbSDimitry Andric   // Emit prefetch instructions for smaller strides in cases where we think
3935ffd83dbSDimitry Andric   // the hardware prefetcher might not be able to keep up.
394e8d8bef9SDimitry Andric   if (NumStridedMemAccesses > 32 && !HasCall &&
395e8d8bef9SDimitry Andric       (NumMemAccesses - NumStridedMemAccesses) * 32 <= NumStridedMemAccesses)
3965ffd83dbSDimitry Andric     return 1;
3975ffd83dbSDimitry Andric 
3985ffd83dbSDimitry Andric   return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
3995ffd83dbSDimitry Andric }
4005ffd83dbSDimitry Andric 
4010b57cec5SDimitry Andric bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
4020b57cec5SDimitry Andric   EVT VT = TLI->getValueType(DL, DataType);
4030b57cec5SDimitry Andric   return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
4040b57cec5SDimitry Andric }
4050b57cec5SDimitry Andric 
4060b57cec5SDimitry Andric // Return the bit size for the scalar type or vector element
4070b57cec5SDimitry Andric // type. getScalarSizeInBits() returns 0 for a pointer type.
4080b57cec5SDimitry Andric static unsigned getScalarSizeInBits(Type *Ty) {
4090b57cec5SDimitry Andric   unsigned Size =
4100b57cec5SDimitry Andric     (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
4110b57cec5SDimitry Andric   assert(Size > 0 && "Element must have non-zero size.");
4120b57cec5SDimitry Andric   return Size;
4130b57cec5SDimitry Andric }
4140b57cec5SDimitry Andric 
4150b57cec5SDimitry Andric // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
4160b57cec5SDimitry Andric // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
4170b57cec5SDimitry Andric // 3.
4180b57cec5SDimitry Andric static unsigned getNumVectorRegs(Type *Ty) {
4195ffd83dbSDimitry Andric   auto *VTy = cast<FixedVectorType>(Ty);
4205ffd83dbSDimitry Andric   unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
4210b57cec5SDimitry Andric   assert(WideBits > 0 && "Could not compute size of vector");
4220b57cec5SDimitry Andric   return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
4230b57cec5SDimitry Andric }
4240b57cec5SDimitry Andric 
425fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getArithmeticInstrCost(
4265ffd83dbSDimitry Andric     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
427bdd1243dSDimitry Andric     TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
428bdd1243dSDimitry Andric     ArrayRef<const Value *> Args,
429480093f4SDimitry Andric     const Instruction *CxtI) {
4300b57cec5SDimitry Andric 
4315ffd83dbSDimitry Andric   // TODO: Handle more cost kinds.
4325ffd83dbSDimitry Andric   if (CostKind != TTI::TCK_RecipThroughput)
4335ffd83dbSDimitry Andric     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
434bdd1243dSDimitry Andric                                          Op2Info, Args, CxtI);
4355ffd83dbSDimitry Andric 
4360b57cec5SDimitry Andric   // TODO: return a good value for BB-VECTORIZER that includes the
4370b57cec5SDimitry Andric   // immediate loads, which we do not want to count for the loop
4380b57cec5SDimitry Andric   // vectorizer, since they are hopefully hoisted out of the loop. This
4390b57cec5SDimitry Andric   // would require a new parameter 'InLoop', but not sure if constant
4400b57cec5SDimitry Andric   // args are common enough to motivate this.
4410b57cec5SDimitry Andric 
4420b57cec5SDimitry Andric   unsigned ScalarBits = Ty->getScalarSizeInBits();
4430b57cec5SDimitry Andric 
4440b57cec5SDimitry Andric   // There are thre cases of division and remainder: Dividing with a register
4450b57cec5SDimitry Andric   // needs a divide instruction. A divisor which is a power of two constant
4460b57cec5SDimitry Andric   // can be implemented with a sequence of shifts. Any other constant needs a
4470b57cec5SDimitry Andric   // multiply and shifts.
4480b57cec5SDimitry Andric   const unsigned DivInstrCost = 20;
4490b57cec5SDimitry Andric   const unsigned DivMulSeqCost = 10;
4500b57cec5SDimitry Andric   const unsigned SDivPow2Cost = 4;
4510b57cec5SDimitry Andric 
4520b57cec5SDimitry Andric   bool SignedDivRem =
4530b57cec5SDimitry Andric       Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
4540b57cec5SDimitry Andric   bool UnsignedDivRem =
4550b57cec5SDimitry Andric       Opcode == Instruction::UDiv || Opcode == Instruction::URem;
4560b57cec5SDimitry Andric 
4570b57cec5SDimitry Andric   // Check for a constant divisor.
4580b57cec5SDimitry Andric   bool DivRemConst = false;
4590b57cec5SDimitry Andric   bool DivRemConstPow2 = false;
4600b57cec5SDimitry Andric   if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
4610b57cec5SDimitry Andric     if (const Constant *C = dyn_cast<Constant>(Args[1])) {
4620b57cec5SDimitry Andric       const ConstantInt *CVal =
4630b57cec5SDimitry Andric           (C->getType()->isVectorTy()
4640b57cec5SDimitry Andric                ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
4650b57cec5SDimitry Andric                : dyn_cast<const ConstantInt>(C));
466349cc55cSDimitry Andric       if (CVal && (CVal->getValue().isPowerOf2() ||
467349cc55cSDimitry Andric                    CVal->getValue().isNegatedPowerOf2()))
4680b57cec5SDimitry Andric         DivRemConstPow2 = true;
4690b57cec5SDimitry Andric       else
4700b57cec5SDimitry Andric         DivRemConst = true;
4710b57cec5SDimitry Andric     }
4720b57cec5SDimitry Andric   }
4730b57cec5SDimitry Andric 
4745ffd83dbSDimitry Andric   if (!Ty->isVectorTy()) {
4750b57cec5SDimitry Andric     // These FP operations are supported with a dedicated instruction for
4760b57cec5SDimitry Andric     // float, double and fp128 (base implementation assumes float generally
4770b57cec5SDimitry Andric     // costs 2).
4780b57cec5SDimitry Andric     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
4790b57cec5SDimitry Andric         Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
4800b57cec5SDimitry Andric       return 1;
4810b57cec5SDimitry Andric 
4820b57cec5SDimitry Andric     // There is no native support for FRem.
4830b57cec5SDimitry Andric     if (Opcode == Instruction::FRem)
4840b57cec5SDimitry Andric       return LIBCALL_COST;
4850b57cec5SDimitry Andric 
4860b57cec5SDimitry Andric     // Give discount for some combined logical operations if supported.
4877a6dacacSDimitry Andric     if (Args.size() == 2) {
4880b57cec5SDimitry Andric       if (Opcode == Instruction::Xor) {
4890b57cec5SDimitry Andric         for (const Value *A : Args) {
4900b57cec5SDimitry Andric           if (const Instruction *I = dyn_cast<Instruction>(A))
4910b57cec5SDimitry Andric             if (I->hasOneUse() &&
4927a6dacacSDimitry Andric                 (I->getOpcode() == Instruction::Or ||
4937a6dacacSDimitry Andric                  I->getOpcode() == Instruction::And ||
4940b57cec5SDimitry Andric                  I->getOpcode() == Instruction::Xor))
4957a6dacacSDimitry Andric               if ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
4967a6dacacSDimitry Andric                   (isInt128InVR(Ty) &&
4977a6dacacSDimitry Andric                    (I->getOpcode() == Instruction::Or || ST->hasVectorEnhancements1())))
4980b57cec5SDimitry Andric                 return 0;
4990b57cec5SDimitry Andric         }
5000b57cec5SDimitry Andric       }
5017a6dacacSDimitry Andric       else if (Opcode == Instruction::And || Opcode == Instruction::Or) {
5020b57cec5SDimitry Andric         for (const Value *A : Args) {
5030b57cec5SDimitry Andric           if (const Instruction *I = dyn_cast<Instruction>(A))
5047a6dacacSDimitry Andric             if ((I->hasOneUse() && I->getOpcode() == Instruction::Xor) &&
5057a6dacacSDimitry Andric                 ((ScalarBits <= 64 && ST->hasMiscellaneousExtensions3()) ||
5067a6dacacSDimitry Andric                  (isInt128InVR(Ty) &&
5077a6dacacSDimitry Andric                   (Opcode == Instruction::And || ST->hasVectorEnhancements1()))))
5080b57cec5SDimitry Andric               return 0;
5090b57cec5SDimitry Andric         }
5100b57cec5SDimitry Andric       }
5110b57cec5SDimitry Andric     }
5120b57cec5SDimitry Andric 
5130b57cec5SDimitry Andric     // Or requires one instruction, although it has custom handling for i64.
5140b57cec5SDimitry Andric     if (Opcode == Instruction::Or)
5150b57cec5SDimitry Andric       return 1;
5160b57cec5SDimitry Andric 
5170b57cec5SDimitry Andric     if (Opcode == Instruction::Xor && ScalarBits == 1) {
5180b57cec5SDimitry Andric       if (ST->hasLoadStoreOnCond2())
5190b57cec5SDimitry Andric         return 5; // 2 * (li 0; loc 1); xor
5200b57cec5SDimitry Andric       return 7; // 2 * ipm sequences ; xor ; shift ; compare
5210b57cec5SDimitry Andric     }
5220b57cec5SDimitry Andric 
5230b57cec5SDimitry Andric     if (DivRemConstPow2)
5240b57cec5SDimitry Andric       return (SignedDivRem ? SDivPow2Cost : 1);
5250b57cec5SDimitry Andric     if (DivRemConst)
5260b57cec5SDimitry Andric       return DivMulSeqCost;
5270b57cec5SDimitry Andric     if (SignedDivRem || UnsignedDivRem)
5280b57cec5SDimitry Andric       return DivInstrCost;
5290b57cec5SDimitry Andric   }
5305ffd83dbSDimitry Andric   else if (ST->hasVector()) {
5315ffd83dbSDimitry Andric     auto *VTy = cast<FixedVectorType>(Ty);
5325ffd83dbSDimitry Andric     unsigned VF = VTy->getNumElements();
5335ffd83dbSDimitry Andric     unsigned NumVectors = getNumVectorRegs(Ty);
5345ffd83dbSDimitry Andric 
5355ffd83dbSDimitry Andric     // These vector operations are custom handled, but are still supported
5365ffd83dbSDimitry Andric     // with one instruction per vector, regardless of element size.
5375ffd83dbSDimitry Andric     if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
5385ffd83dbSDimitry Andric         Opcode == Instruction::AShr) {
5395ffd83dbSDimitry Andric       return NumVectors;
5405ffd83dbSDimitry Andric     }
5415ffd83dbSDimitry Andric 
5425ffd83dbSDimitry Andric     if (DivRemConstPow2)
5435ffd83dbSDimitry Andric       return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
544fe6060f1SDimitry Andric     if (DivRemConst) {
545fe6060f1SDimitry Andric       SmallVector<Type *> Tys(Args.size(), Ty);
546bdd1243dSDimitry Andric       return VF * DivMulSeqCost +
547bdd1243dSDimitry Andric              getScalarizationOverhead(VTy, Args, Tys, CostKind);
548fe6060f1SDimitry Andric     }
5495ffd83dbSDimitry Andric     if ((SignedDivRem || UnsignedDivRem) && VF > 4)
5505ffd83dbSDimitry Andric       // Temporary hack: disable high vectorization factors with integer
5515ffd83dbSDimitry Andric       // division/remainder, which will get scalarized and handled with
5525ffd83dbSDimitry Andric       // GR128 registers. The mischeduler is not clever enough to avoid
5535ffd83dbSDimitry Andric       // spilling yet.
5545ffd83dbSDimitry Andric       return 1000;
5555ffd83dbSDimitry Andric 
5565ffd83dbSDimitry Andric     // These FP operations are supported with a single vector instruction for
5575ffd83dbSDimitry Andric     // double (base implementation assumes float generally costs 2). For
5585ffd83dbSDimitry Andric     // FP128, the scalar cost is 1, and there is no overhead since the values
5595ffd83dbSDimitry Andric     // are already in scalar registers.
5605ffd83dbSDimitry Andric     if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
5615ffd83dbSDimitry Andric         Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
5625ffd83dbSDimitry Andric       switch (ScalarBits) {
5635ffd83dbSDimitry Andric       case 32: {
5645ffd83dbSDimitry Andric         // The vector enhancements facility 1 provides v4f32 instructions.
5655ffd83dbSDimitry Andric         if (ST->hasVectorEnhancements1())
5665ffd83dbSDimitry Andric           return NumVectors;
5675ffd83dbSDimitry Andric         // Return the cost of multiple scalar invocation plus the cost of
5685ffd83dbSDimitry Andric         // inserting and extracting the values.
569fe6060f1SDimitry Andric         InstructionCost ScalarCost =
5705ffd83dbSDimitry Andric             getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
571fe6060f1SDimitry Andric         SmallVector<Type *> Tys(Args.size(), Ty);
572fe6060f1SDimitry Andric         InstructionCost Cost =
573bdd1243dSDimitry Andric             (VF * ScalarCost) +
574bdd1243dSDimitry Andric             getScalarizationOverhead(VTy, Args, Tys, CostKind);
5755ffd83dbSDimitry Andric         // FIXME: VF 2 for these FP operations are currently just as
5765ffd83dbSDimitry Andric         // expensive as for VF 4.
5775ffd83dbSDimitry Andric         if (VF == 2)
5785ffd83dbSDimitry Andric           Cost *= 2;
5795ffd83dbSDimitry Andric         return Cost;
5805ffd83dbSDimitry Andric       }
5815ffd83dbSDimitry Andric       case 64:
5825ffd83dbSDimitry Andric       case 128:
5835ffd83dbSDimitry Andric         return NumVectors;
5845ffd83dbSDimitry Andric       default:
5855ffd83dbSDimitry Andric         break;
5865ffd83dbSDimitry Andric       }
5875ffd83dbSDimitry Andric     }
5885ffd83dbSDimitry Andric 
5895ffd83dbSDimitry Andric     // There is no native support for FRem.
5905ffd83dbSDimitry Andric     if (Opcode == Instruction::FRem) {
591fe6060f1SDimitry Andric       SmallVector<Type *> Tys(Args.size(), Ty);
592bdd1243dSDimitry Andric       InstructionCost Cost = (VF * LIBCALL_COST) +
593bdd1243dSDimitry Andric                              getScalarizationOverhead(VTy, Args, Tys, CostKind);
5945ffd83dbSDimitry Andric       // FIXME: VF 2 for float is currently just as expensive as for VF 4.
5955ffd83dbSDimitry Andric       if (VF == 2 && ScalarBits == 32)
5965ffd83dbSDimitry Andric         Cost *= 2;
5975ffd83dbSDimitry Andric       return Cost;
5985ffd83dbSDimitry Andric     }
5995ffd83dbSDimitry Andric   }
6000b57cec5SDimitry Andric 
6010b57cec5SDimitry Andric   // Fallback to the default implementation.
6025ffd83dbSDimitry Andric   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
603bdd1243dSDimitry Andric                                        Args, CxtI);
6040b57cec5SDimitry Andric }
6050b57cec5SDimitry Andric 
606*0fca6ea1SDimitry Andric InstructionCost SystemZTTIImpl::getShuffleCost(
607*0fca6ea1SDimitry Andric     TTI::ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask,
608*0fca6ea1SDimitry Andric     TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
609*0fca6ea1SDimitry Andric     ArrayRef<const Value *> Args, const Instruction *CxtI) {
6105f757f3fSDimitry Andric   Kind = improveShuffleKindFromMask(Kind, Mask, Tp, Index, SubTp);
6115ffd83dbSDimitry Andric   if (ST->hasVector()) {
6120b57cec5SDimitry Andric     unsigned NumVectors = getNumVectorRegs(Tp);
6130b57cec5SDimitry Andric 
6140b57cec5SDimitry Andric     // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
6150b57cec5SDimitry Andric 
6160b57cec5SDimitry Andric     // FP128 values are always in scalar registers, so there is no work
6170b57cec5SDimitry Andric     // involved with a shuffle, except for broadcast. In that case register
6180b57cec5SDimitry Andric     // moves are done with a single instruction per element.
6190b57cec5SDimitry Andric     if (Tp->getScalarType()->isFP128Ty())
6200b57cec5SDimitry Andric       return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
6210b57cec5SDimitry Andric 
6220b57cec5SDimitry Andric     switch (Kind) {
6230b57cec5SDimitry Andric     case  TargetTransformInfo::SK_ExtractSubvector:
6240b57cec5SDimitry Andric       // ExtractSubvector Index indicates start offset.
6250b57cec5SDimitry Andric 
6260b57cec5SDimitry Andric       // Extracting a subvector from first index is a noop.
6270b57cec5SDimitry Andric       return (Index == 0 ? 0 : NumVectors);
6280b57cec5SDimitry Andric 
6290b57cec5SDimitry Andric     case TargetTransformInfo::SK_Broadcast:
6300b57cec5SDimitry Andric       // Loop vectorizer calls here to figure out the extra cost of
6310b57cec5SDimitry Andric       // broadcasting a loaded value to all elements of a vector. Since vlrep
6320b57cec5SDimitry Andric       // loads and replicates with a single instruction, adjust the returned
6330b57cec5SDimitry Andric       // value.
6340b57cec5SDimitry Andric       return NumVectors - 1;
6350b57cec5SDimitry Andric 
6360b57cec5SDimitry Andric     default:
6370b57cec5SDimitry Andric 
6380b57cec5SDimitry Andric       // SystemZ supports single instruction permutation / replication.
6390b57cec5SDimitry Andric       return NumVectors;
6400b57cec5SDimitry Andric     }
6415ffd83dbSDimitry Andric   }
6420b57cec5SDimitry Andric 
643bdd1243dSDimitry Andric   return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
6440b57cec5SDimitry Andric }
6450b57cec5SDimitry Andric 
6460b57cec5SDimitry Andric // Return the log2 difference of the element sizes of the two vector types.
6470b57cec5SDimitry Andric static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
6480b57cec5SDimitry Andric   unsigned Bits0 = Ty0->getScalarSizeInBits();
6490b57cec5SDimitry Andric   unsigned Bits1 = Ty1->getScalarSizeInBits();
6500b57cec5SDimitry Andric 
6510b57cec5SDimitry Andric   if (Bits1 >  Bits0)
6520b57cec5SDimitry Andric     return (Log2_32(Bits1) - Log2_32(Bits0));
6530b57cec5SDimitry Andric 
6540b57cec5SDimitry Andric   return (Log2_32(Bits0) - Log2_32(Bits1));
6550b57cec5SDimitry Andric }
6560b57cec5SDimitry Andric 
6570b57cec5SDimitry Andric // Return the number of instructions needed to truncate SrcTy to DstTy.
6580b57cec5SDimitry Andric unsigned SystemZTTIImpl::
6590b57cec5SDimitry Andric getVectorTruncCost(Type *SrcTy, Type *DstTy) {
6600b57cec5SDimitry Andric   assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
661bdd1243dSDimitry Andric   assert(SrcTy->getPrimitiveSizeInBits().getFixedValue() >
662bdd1243dSDimitry Andric              DstTy->getPrimitiveSizeInBits().getFixedValue() &&
6630b57cec5SDimitry Andric          "Packing must reduce size of vector type.");
6645ffd83dbSDimitry Andric   assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
6655ffd83dbSDimitry Andric              cast<FixedVectorType>(DstTy)->getNumElements() &&
6660b57cec5SDimitry Andric          "Packing should not change number of elements.");
6670b57cec5SDimitry Andric 
6680b57cec5SDimitry Andric   // TODO: Since fp32 is expanded, the extract cost should always be 0.
6690b57cec5SDimitry Andric 
6700b57cec5SDimitry Andric   unsigned NumParts = getNumVectorRegs(SrcTy);
6710b57cec5SDimitry Andric   if (NumParts <= 2)
6720b57cec5SDimitry Andric     // Up to 2 vector registers can be truncated efficiently with pack or
6730b57cec5SDimitry Andric     // permute. The latter requires an immediate mask to be loaded, which
6740b57cec5SDimitry Andric     // typically gets hoisted out of a loop.  TODO: return a good value for
6750b57cec5SDimitry Andric     // BB-VECTORIZER that includes the immediate loads, which we do not want
6760b57cec5SDimitry Andric     // to count for the loop vectorizer.
6770b57cec5SDimitry Andric     return 1;
6780b57cec5SDimitry Andric 
6790b57cec5SDimitry Andric   unsigned Cost = 0;
6800b57cec5SDimitry Andric   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
6815ffd83dbSDimitry Andric   unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
6820b57cec5SDimitry Andric   for (unsigned P = 0; P < Log2Diff; ++P) {
6830b57cec5SDimitry Andric     if (NumParts > 1)
6840b57cec5SDimitry Andric       NumParts /= 2;
6850b57cec5SDimitry Andric     Cost += NumParts;
6860b57cec5SDimitry Andric   }
6870b57cec5SDimitry Andric 
6880b57cec5SDimitry Andric   // Currently, a general mix of permutes and pack instructions is output by
6890b57cec5SDimitry Andric   // isel, which follow the cost computation above except for this case which
6900b57cec5SDimitry Andric   // is one instruction less:
6910b57cec5SDimitry Andric   if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
6920b57cec5SDimitry Andric       DstTy->getScalarSizeInBits() == 8)
6930b57cec5SDimitry Andric     Cost--;
6940b57cec5SDimitry Andric 
6950b57cec5SDimitry Andric   return Cost;
6960b57cec5SDimitry Andric }
6970b57cec5SDimitry Andric 
6980b57cec5SDimitry Andric // Return the cost of converting a vector bitmask produced by a compare
6990b57cec5SDimitry Andric // (SrcTy), to the type of the select or extend instruction (DstTy).
7000b57cec5SDimitry Andric unsigned SystemZTTIImpl::
7010b57cec5SDimitry Andric getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
7020b57cec5SDimitry Andric   assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
7030b57cec5SDimitry Andric           "Should only be called with vector types.");
7040b57cec5SDimitry Andric 
7050b57cec5SDimitry Andric   unsigned PackCost = 0;
7060b57cec5SDimitry Andric   unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
7070b57cec5SDimitry Andric   unsigned DstScalarBits = DstTy->getScalarSizeInBits();
7080b57cec5SDimitry Andric   unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
7090b57cec5SDimitry Andric   if (SrcScalarBits > DstScalarBits)
7100b57cec5SDimitry Andric     // The bitmask will be truncated.
7110b57cec5SDimitry Andric     PackCost = getVectorTruncCost(SrcTy, DstTy);
7120b57cec5SDimitry Andric   else if (SrcScalarBits < DstScalarBits) {
7130b57cec5SDimitry Andric     unsigned DstNumParts = getNumVectorRegs(DstTy);
7140b57cec5SDimitry Andric     // Each vector select needs its part of the bitmask unpacked.
7150b57cec5SDimitry Andric     PackCost = Log2Diff * DstNumParts;
7160b57cec5SDimitry Andric     // Extra cost for moving part of mask before unpacking.
7170b57cec5SDimitry Andric     PackCost += DstNumParts - 1;
7180b57cec5SDimitry Andric   }
7190b57cec5SDimitry Andric 
7200b57cec5SDimitry Andric   return PackCost;
7210b57cec5SDimitry Andric }
7220b57cec5SDimitry Andric 
7230b57cec5SDimitry Andric // Return the type of the compared operands. This is needed to compute the
7240b57cec5SDimitry Andric // cost for a Select / ZExt or SExt instruction.
7250b57cec5SDimitry Andric static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
7260b57cec5SDimitry Andric   Type *OpTy = nullptr;
7270b57cec5SDimitry Andric   if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
7280b57cec5SDimitry Andric     OpTy = CI->getOperand(0)->getType();
7290b57cec5SDimitry Andric   else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
7300b57cec5SDimitry Andric     if (LogicI->getNumOperands() == 2)
7310b57cec5SDimitry Andric       if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
7320b57cec5SDimitry Andric         if (isa<CmpInst>(LogicI->getOperand(1)))
7330b57cec5SDimitry Andric           OpTy = CI0->getOperand(0)->getType();
7340b57cec5SDimitry Andric 
7350b57cec5SDimitry Andric   if (OpTy != nullptr) {
7360b57cec5SDimitry Andric     if (VF == 1) {
7370b57cec5SDimitry Andric       assert (!OpTy->isVectorTy() && "Expected scalar type");
7380b57cec5SDimitry Andric       return OpTy;
7390b57cec5SDimitry Andric     }
7400b57cec5SDimitry Andric     // Return the potentially vectorized type based on 'I' and 'VF'.  'I' may
7410b57cec5SDimitry Andric     // be either scalar or already vectorized with a same or lesser VF.
7420b57cec5SDimitry Andric     Type *ElTy = OpTy->getScalarType();
7435ffd83dbSDimitry Andric     return FixedVectorType::get(ElTy, VF);
7440b57cec5SDimitry Andric   }
7450b57cec5SDimitry Andric 
7460b57cec5SDimitry Andric   return nullptr;
7470b57cec5SDimitry Andric }
7480b57cec5SDimitry Andric 
7490b57cec5SDimitry Andric // Get the cost of converting a boolean vector to a vector with same width
7500b57cec5SDimitry Andric // and element size as Dst, plus the cost of zero extending if needed.
7510b57cec5SDimitry Andric unsigned SystemZTTIImpl::
7520b57cec5SDimitry Andric getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
7530b57cec5SDimitry Andric                               const Instruction *I) {
7545ffd83dbSDimitry Andric   auto *DstVTy = cast<FixedVectorType>(Dst);
7555ffd83dbSDimitry Andric   unsigned VF = DstVTy->getNumElements();
7560b57cec5SDimitry Andric   unsigned Cost = 0;
7570b57cec5SDimitry Andric   // If we know what the widths of the compared operands, get any cost of
7580b57cec5SDimitry Andric   // converting it to match Dst. Otherwise assume same widths.
7590b57cec5SDimitry Andric   Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
7600b57cec5SDimitry Andric   if (CmpOpTy != nullptr)
7610b57cec5SDimitry Andric     Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
7620b57cec5SDimitry Andric   if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
7630b57cec5SDimitry Andric     // One 'vn' per dst vector with an immediate mask.
7640b57cec5SDimitry Andric     Cost += getNumVectorRegs(Dst);
7650b57cec5SDimitry Andric   return Cost;
7660b57cec5SDimitry Andric }
7670b57cec5SDimitry Andric 
768fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
769fe6060f1SDimitry Andric                                                  Type *Src,
770e8d8bef9SDimitry Andric                                                  TTI::CastContextHint CCH,
7715ffd83dbSDimitry Andric                                                  TTI::TargetCostKind CostKind,
7720b57cec5SDimitry Andric                                                  const Instruction *I) {
7735ffd83dbSDimitry Andric   // FIXME: Can the logic below also be used for these cost kinds?
7745ffd83dbSDimitry Andric   if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
775fe6060f1SDimitry Andric     auto BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
7765ffd83dbSDimitry Andric     return BaseCost == 0 ? BaseCost : 1;
7775ffd83dbSDimitry Andric   }
7785ffd83dbSDimitry Andric 
7790b57cec5SDimitry Andric   unsigned DstScalarBits = Dst->getScalarSizeInBits();
7800b57cec5SDimitry Andric   unsigned SrcScalarBits = Src->getScalarSizeInBits();
7810b57cec5SDimitry Andric 
7825ffd83dbSDimitry Andric   if (!Src->isVectorTy()) {
7835ffd83dbSDimitry Andric     assert (!Dst->isVectorTy());
7845ffd83dbSDimitry Andric 
7855ffd83dbSDimitry Andric     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
7867a6dacacSDimitry Andric       if (Src->isIntegerTy(128))
7877a6dacacSDimitry Andric         return LIBCALL_COST;
7885ffd83dbSDimitry Andric       if (SrcScalarBits >= 32 ||
7895ffd83dbSDimitry Andric           (I != nullptr && isa<LoadInst>(I->getOperand(0))))
7905ffd83dbSDimitry Andric         return 1;
7915ffd83dbSDimitry Andric       return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
7925ffd83dbSDimitry Andric     }
7935ffd83dbSDimitry Andric 
7947a6dacacSDimitry Andric     if ((Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) &&
7957a6dacacSDimitry Andric         Dst->isIntegerTy(128))
7967a6dacacSDimitry Andric       return LIBCALL_COST;
7977a6dacacSDimitry Andric 
7987a6dacacSDimitry Andric     if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt)) {
7997a6dacacSDimitry Andric       if (Src->isIntegerTy(1)) {
8007a6dacacSDimitry Andric         if (DstScalarBits == 128)
8017a6dacacSDimitry Andric           return 5 /*branch seq.*/;
8027a6dacacSDimitry Andric 
8035ffd83dbSDimitry Andric         if (ST->hasLoadStoreOnCond2())
8045ffd83dbSDimitry Andric           return 2; // li 0; loc 1
8055ffd83dbSDimitry Andric 
8065ffd83dbSDimitry Andric         // This should be extension of a compare i1 result, which is done with
8075ffd83dbSDimitry Andric         // ipm and a varying sequence of instructions.
8085ffd83dbSDimitry Andric         unsigned Cost = 0;
8095ffd83dbSDimitry Andric         if (Opcode == Instruction::SExt)
8105ffd83dbSDimitry Andric           Cost = (DstScalarBits < 64 ? 3 : 4);
8115ffd83dbSDimitry Andric         if (Opcode == Instruction::ZExt)
8125ffd83dbSDimitry Andric           Cost = 3;
8135ffd83dbSDimitry Andric         Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
8145ffd83dbSDimitry Andric         if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
8155ffd83dbSDimitry Andric           // If operands of an fp-type was compared, this costs +1.
8165ffd83dbSDimitry Andric           Cost++;
8175ffd83dbSDimitry Andric         return Cost;
8185ffd83dbSDimitry Andric       }
8197a6dacacSDimitry Andric       else if (isInt128InVR(Dst)) {
8207a6dacacSDimitry Andric         // Extensions from GPR to i128 (in VR) typically costs two instructions,
8217a6dacacSDimitry Andric         // but a zero-extending load would be just one extra instruction.
8227a6dacacSDimitry Andric         if (Opcode == Instruction::ZExt && I != nullptr)
8237a6dacacSDimitry Andric           if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
8247a6dacacSDimitry Andric             if (Ld->hasOneUse())
8257a6dacacSDimitry Andric               return 1;
8267a6dacacSDimitry Andric         return 2;
8277a6dacacSDimitry Andric       }
8287a6dacacSDimitry Andric     }
8297a6dacacSDimitry Andric 
8307a6dacacSDimitry Andric     if (Opcode == Instruction::Trunc && isInt128InVR(Src) && I != nullptr) {
8317a6dacacSDimitry Andric       if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
8327a6dacacSDimitry Andric         if (Ld->hasOneUse())
8337a6dacacSDimitry Andric           return 0;  // Will be converted to GPR load.
8347a6dacacSDimitry Andric       bool OnlyTruncatingStores = true;
8357a6dacacSDimitry Andric       for (const User *U : I->users())
8367a6dacacSDimitry Andric         if (!isa<StoreInst>(U)) {
8377a6dacacSDimitry Andric           OnlyTruncatingStores = false;
8387a6dacacSDimitry Andric           break;
8397a6dacacSDimitry Andric         }
8407a6dacacSDimitry Andric       if (OnlyTruncatingStores)
8417a6dacacSDimitry Andric         return 0;
8427a6dacacSDimitry Andric       return 2; // Vector element extraction.
8437a6dacacSDimitry Andric     }
8445ffd83dbSDimitry Andric   }
8455ffd83dbSDimitry Andric   else if (ST->hasVector()) {
846fe6060f1SDimitry Andric     // Vector to scalar cast.
8475ffd83dbSDimitry Andric     auto *SrcVecTy = cast<FixedVectorType>(Src);
848fe6060f1SDimitry Andric     auto *DstVecTy = dyn_cast<FixedVectorType>(Dst);
849fe6060f1SDimitry Andric     if (!DstVecTy) {
850fe6060f1SDimitry Andric       // TODO: tune vector-to-scalar cast.
851fe6060f1SDimitry Andric       return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
852fe6060f1SDimitry Andric     }
8535ffd83dbSDimitry Andric     unsigned VF = SrcVecTy->getNumElements();
8540b57cec5SDimitry Andric     unsigned NumDstVectors = getNumVectorRegs(Dst);
8550b57cec5SDimitry Andric     unsigned NumSrcVectors = getNumVectorRegs(Src);
8560b57cec5SDimitry Andric 
8570b57cec5SDimitry Andric     if (Opcode == Instruction::Trunc) {
8580b57cec5SDimitry Andric       if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
8590b57cec5SDimitry Andric         return 0; // Check for NOOP conversions.
8600b57cec5SDimitry Andric       return getVectorTruncCost(Src, Dst);
8610b57cec5SDimitry Andric     }
8620b57cec5SDimitry Andric 
8630b57cec5SDimitry Andric     if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
8640b57cec5SDimitry Andric       if (SrcScalarBits >= 8) {
86581ad6265SDimitry Andric         // ZExt will use either a single unpack or a vector permute.
86681ad6265SDimitry Andric         if (Opcode == Instruction::ZExt)
86781ad6265SDimitry Andric           return NumDstVectors;
86881ad6265SDimitry Andric 
86981ad6265SDimitry Andric         // SExt will be handled with one unpack per doubling of width.
8700b57cec5SDimitry Andric         unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
8710b57cec5SDimitry Andric 
8720b57cec5SDimitry Andric         // For types that spans multiple vector registers, some additional
8730b57cec5SDimitry Andric         // instructions are used to setup the unpacking.
8740b57cec5SDimitry Andric         unsigned NumSrcVectorOps =
8750b57cec5SDimitry Andric           (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
8760b57cec5SDimitry Andric                           : (NumDstVectors / 2));
8770b57cec5SDimitry Andric 
8780b57cec5SDimitry Andric         return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
8790b57cec5SDimitry Andric       }
8800b57cec5SDimitry Andric       else if (SrcScalarBits == 1)
8810b57cec5SDimitry Andric         return getBoolVecToIntConversionCost(Opcode, Dst, I);
8820b57cec5SDimitry Andric     }
8830b57cec5SDimitry Andric 
8840b57cec5SDimitry Andric     if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
8850b57cec5SDimitry Andric         Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
8860b57cec5SDimitry Andric       // TODO: Fix base implementation which could simplify things a bit here
8870b57cec5SDimitry Andric       // (seems to miss on differentiating on scalar/vector types).
8880b57cec5SDimitry Andric 
8898bcb0991SDimitry Andric       // Only 64 bit vector conversions are natively supported before z15.
8900b57cec5SDimitry Andric       if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
8910b57cec5SDimitry Andric         if (SrcScalarBits == DstScalarBits)
8920b57cec5SDimitry Andric           return NumDstVectors;
8930b57cec5SDimitry Andric 
8940b57cec5SDimitry Andric         if (SrcScalarBits == 1)
8950b57cec5SDimitry Andric           return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
8960b57cec5SDimitry Andric       }
8970b57cec5SDimitry Andric 
8980b57cec5SDimitry Andric       // Return the cost of multiple scalar invocation plus the cost of
8990b57cec5SDimitry Andric       // inserting and extracting the values. Base implementation does not
9000b57cec5SDimitry Andric       // realize float->int gets scalarized.
901fe6060f1SDimitry Andric       InstructionCost ScalarCost = getCastInstrCost(
902e8d8bef9SDimitry Andric           Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind);
903fe6060f1SDimitry Andric       InstructionCost TotCost = VF * ScalarCost;
9040b57cec5SDimitry Andric       bool NeedsInserts = true, NeedsExtracts = true;
9050b57cec5SDimitry Andric       // FP128 registers do not get inserted or extracted.
9060b57cec5SDimitry Andric       if (DstScalarBits == 128 &&
9070b57cec5SDimitry Andric           (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
9080b57cec5SDimitry Andric         NeedsInserts = false;
9090b57cec5SDimitry Andric       if (SrcScalarBits == 128 &&
9100b57cec5SDimitry Andric           (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
9110b57cec5SDimitry Andric         NeedsExtracts = false;
9120b57cec5SDimitry Andric 
913bdd1243dSDimitry Andric       TotCost += getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
914bdd1243dSDimitry Andric                                           NeedsExtracts, CostKind);
915bdd1243dSDimitry Andric       TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts,
916bdd1243dSDimitry Andric                                           /*Extract*/ false, CostKind);
9170b57cec5SDimitry Andric 
9180b57cec5SDimitry Andric       // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
9190b57cec5SDimitry Andric       if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
9200b57cec5SDimitry Andric         TotCost *= 2;
9210b57cec5SDimitry Andric 
9220b57cec5SDimitry Andric       return TotCost;
9230b57cec5SDimitry Andric     }
9240b57cec5SDimitry Andric 
9250b57cec5SDimitry Andric     if (Opcode == Instruction::FPTrunc) {
9260b57cec5SDimitry Andric       if (SrcScalarBits == 128)  // fp128 -> double/float + inserts of elements.
9275ffd83dbSDimitry Andric         return VF /*ldxbr/lexbr*/ +
928bdd1243dSDimitry Andric                getScalarizationOverhead(DstVecTy, /*Insert*/ true,
929bdd1243dSDimitry Andric                                         /*Extract*/ false, CostKind);
9300b57cec5SDimitry Andric       else // double -> float
9310b57cec5SDimitry Andric         return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
9320b57cec5SDimitry Andric     }
9330b57cec5SDimitry Andric 
9340b57cec5SDimitry Andric     if (Opcode == Instruction::FPExt) {
9350b57cec5SDimitry Andric       if (SrcScalarBits == 32 && DstScalarBits == 64) {
9360b57cec5SDimitry Andric         // float -> double is very rare and currently unoptimized. Instead of
9370b57cec5SDimitry Andric         // using vldeb, which can do two at a time, all conversions are
9380b57cec5SDimitry Andric         // scalarized.
9390b57cec5SDimitry Andric         return VF * 2;
9400b57cec5SDimitry Andric       }
9410b57cec5SDimitry Andric       // -> fp128.  VF * lxdb/lxeb + extraction of elements.
942bdd1243dSDimitry Andric       return VF + getScalarizationOverhead(SrcVecTy, /*Insert*/ false,
943bdd1243dSDimitry Andric                                            /*Extract*/ true, CostKind);
9440b57cec5SDimitry Andric     }
9450b57cec5SDimitry Andric   }
9460b57cec5SDimitry Andric 
947e8d8bef9SDimitry Andric   return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
9480b57cec5SDimitry Andric }
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric // Scalar i8 / i16 operations will typically be made after first extending
9510b57cec5SDimitry Andric // the operands to i32.
9520b57cec5SDimitry Andric static unsigned getOperandsExtensionCost(const Instruction *I) {
9530b57cec5SDimitry Andric   unsigned ExtCost = 0;
9540b57cec5SDimitry Andric   for (Value *Op : I->operands())
9550b57cec5SDimitry Andric     // A load of i8 or i16 sign/zero extends to i32.
9560b57cec5SDimitry Andric     if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
9570b57cec5SDimitry Andric       ExtCost++;
9580b57cec5SDimitry Andric 
9590b57cec5SDimitry Andric   return ExtCost;
9600b57cec5SDimitry Andric }
9610b57cec5SDimitry Andric 
962fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
963fe6060f1SDimitry Andric                                                    Type *CondTy,
964fe6060f1SDimitry Andric                                                    CmpInst::Predicate VecPred,
9655ffd83dbSDimitry Andric                                                    TTI::TargetCostKind CostKind,
9665ffd83dbSDimitry Andric                                                    const Instruction *I) {
9675ffd83dbSDimitry Andric   if (CostKind != TTI::TCK_RecipThroughput)
968e8d8bef9SDimitry Andric     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
9695ffd83dbSDimitry Andric 
9705ffd83dbSDimitry Andric   if (!ValTy->isVectorTy()) {
9715ffd83dbSDimitry Andric     switch (Opcode) {
9725ffd83dbSDimitry Andric     case Instruction::ICmp: {
9735ffd83dbSDimitry Andric       // A loaded value compared with 0 with multiple users becomes Load and
9745ffd83dbSDimitry Andric       // Test. The load is then not foldable, so return 0 cost for the ICmp.
9755ffd83dbSDimitry Andric       unsigned ScalarBits = ValTy->getScalarSizeInBits();
9767a6dacacSDimitry Andric       if (I != nullptr && (ScalarBits == 32 || ScalarBits == 64))
9775ffd83dbSDimitry Andric         if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
9785ffd83dbSDimitry Andric           if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
9795ffd83dbSDimitry Andric             if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
980e8d8bef9SDimitry Andric                 C->isZero())
9815ffd83dbSDimitry Andric               return 0;
9825ffd83dbSDimitry Andric 
9835ffd83dbSDimitry Andric       unsigned Cost = 1;
9845ffd83dbSDimitry Andric       if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
9855ffd83dbSDimitry Andric         Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
9865ffd83dbSDimitry Andric       return Cost;
9875ffd83dbSDimitry Andric     }
9885ffd83dbSDimitry Andric     case Instruction::Select:
9897a6dacacSDimitry Andric       if (ValTy->isFloatingPointTy() || isInt128InVR(ValTy))
9907a6dacacSDimitry Andric         return 4; // No LOC for FP / i128 - costs a conditional jump.
9915ffd83dbSDimitry Andric       return 1; // Load On Condition / Select Register.
9925ffd83dbSDimitry Andric     }
9935ffd83dbSDimitry Andric   }
9945ffd83dbSDimitry Andric   else if (ST->hasVector()) {
9955ffd83dbSDimitry Andric     unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
9960b57cec5SDimitry Andric 
9970b57cec5SDimitry Andric     // Called with a compare instruction.
9980b57cec5SDimitry Andric     if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
9990b57cec5SDimitry Andric       unsigned PredicateExtraCost = 0;
10000b57cec5SDimitry Andric       if (I != nullptr) {
10010b57cec5SDimitry Andric         // Some predicates cost one or two extra instructions.
10020b57cec5SDimitry Andric         switch (cast<CmpInst>(I)->getPredicate()) {
10030b57cec5SDimitry Andric         case CmpInst::Predicate::ICMP_NE:
10040b57cec5SDimitry Andric         case CmpInst::Predicate::ICMP_UGE:
10050b57cec5SDimitry Andric         case CmpInst::Predicate::ICMP_ULE:
10060b57cec5SDimitry Andric         case CmpInst::Predicate::ICMP_SGE:
10070b57cec5SDimitry Andric         case CmpInst::Predicate::ICMP_SLE:
10080b57cec5SDimitry Andric           PredicateExtraCost = 1;
10090b57cec5SDimitry Andric           break;
10100b57cec5SDimitry Andric         case CmpInst::Predicate::FCMP_ONE:
10110b57cec5SDimitry Andric         case CmpInst::Predicate::FCMP_ORD:
10120b57cec5SDimitry Andric         case CmpInst::Predicate::FCMP_UEQ:
10130b57cec5SDimitry Andric         case CmpInst::Predicate::FCMP_UNO:
10140b57cec5SDimitry Andric           PredicateExtraCost = 2;
10150b57cec5SDimitry Andric           break;
10160b57cec5SDimitry Andric         default:
10170b57cec5SDimitry Andric           break;
10180b57cec5SDimitry Andric         }
10190b57cec5SDimitry Andric       }
10200b57cec5SDimitry Andric 
10210b57cec5SDimitry Andric       // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
10220b57cec5SDimitry Andric       // floats.  FIXME: <2 x float> generates same code as <4 x float>.
10230b57cec5SDimitry Andric       unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
10240b57cec5SDimitry Andric       unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
10250b57cec5SDimitry Andric 
10260b57cec5SDimitry Andric       unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
10270b57cec5SDimitry Andric       return Cost;
10280b57cec5SDimitry Andric     }
10290b57cec5SDimitry Andric     else { // Called with a select instruction.
10300b57cec5SDimitry Andric       assert (Opcode == Instruction::Select);
10310b57cec5SDimitry Andric 
10320b57cec5SDimitry Andric       // We can figure out the extra cost of packing / unpacking if the
10330b57cec5SDimitry Andric       // instruction was passed and the compare instruction is found.
10340b57cec5SDimitry Andric       unsigned PackCost = 0;
10350b57cec5SDimitry Andric       Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
10360b57cec5SDimitry Andric       if (CmpOpTy != nullptr)
10370b57cec5SDimitry Andric         PackCost =
10380b57cec5SDimitry Andric           getVectorBitmaskConversionCost(CmpOpTy, ValTy);
10390b57cec5SDimitry Andric 
10400b57cec5SDimitry Andric       return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
10410b57cec5SDimitry Andric     }
10420b57cec5SDimitry Andric   }
10430b57cec5SDimitry Andric 
1044e8d8bef9SDimitry Andric   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind);
10450b57cec5SDimitry Andric }
10460b57cec5SDimitry Andric 
1047fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
1048bdd1243dSDimitry Andric                                                    TTI::TargetCostKind CostKind,
1049bdd1243dSDimitry Andric                                                    unsigned Index, Value *Op0,
1050bdd1243dSDimitry Andric                                                    Value *Op1) {
10510b57cec5SDimitry Andric   // vlvgp will insert two grs into a vector register, so only count half the
10520b57cec5SDimitry Andric   // number of instructions.
10530b57cec5SDimitry Andric   if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
10540b57cec5SDimitry Andric     return ((Index % 2 == 0) ? 1 : 0);
10550b57cec5SDimitry Andric 
10560b57cec5SDimitry Andric   if (Opcode == Instruction::ExtractElement) {
10570b57cec5SDimitry Andric     int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
10580b57cec5SDimitry Andric 
10590b57cec5SDimitry Andric     // Give a slight penalty for moving out of vector pipeline to FXU unit.
10600b57cec5SDimitry Andric     if (Index == 0 && Val->isIntOrIntVectorTy())
10610b57cec5SDimitry Andric       Cost += 1;
10620b57cec5SDimitry Andric 
10630b57cec5SDimitry Andric     return Cost;
10640b57cec5SDimitry Andric   }
10650b57cec5SDimitry Andric 
1066bdd1243dSDimitry Andric   return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
10670b57cec5SDimitry Andric }
10680b57cec5SDimitry Andric 
10690b57cec5SDimitry Andric // Check if a load may be folded as a memory operand in its user.
10700b57cec5SDimitry Andric bool SystemZTTIImpl::
10710b57cec5SDimitry Andric isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
10720b57cec5SDimitry Andric   if (!Ld->hasOneUse())
10730b57cec5SDimitry Andric     return false;
10740b57cec5SDimitry Andric   FoldedValue = Ld;
10750b57cec5SDimitry Andric   const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
10760b57cec5SDimitry Andric   unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
10770b57cec5SDimitry Andric   unsigned TruncBits = 0;
10780b57cec5SDimitry Andric   unsigned SExtBits = 0;
10790b57cec5SDimitry Andric   unsigned ZExtBits = 0;
10800b57cec5SDimitry Andric   if (UserI->hasOneUse()) {
10810b57cec5SDimitry Andric     unsigned UserBits = UserI->getType()->getScalarSizeInBits();
10820b57cec5SDimitry Andric     if (isa<TruncInst>(UserI))
10830b57cec5SDimitry Andric       TruncBits = UserBits;
10840b57cec5SDimitry Andric     else if (isa<SExtInst>(UserI))
10850b57cec5SDimitry Andric       SExtBits = UserBits;
10860b57cec5SDimitry Andric     else if (isa<ZExtInst>(UserI))
10870b57cec5SDimitry Andric       ZExtBits = UserBits;
10880b57cec5SDimitry Andric   }
10890b57cec5SDimitry Andric   if (TruncBits || SExtBits || ZExtBits) {
10900b57cec5SDimitry Andric     FoldedValue = UserI;
10910b57cec5SDimitry Andric     UserI = cast<Instruction>(*UserI->user_begin());
10920b57cec5SDimitry Andric     // Load (single use) -> trunc/extend (single use) -> UserI
10930b57cec5SDimitry Andric   }
10940b57cec5SDimitry Andric   if ((UserI->getOpcode() == Instruction::Sub ||
10950b57cec5SDimitry Andric        UserI->getOpcode() == Instruction::SDiv ||
10960b57cec5SDimitry Andric        UserI->getOpcode() == Instruction::UDiv) &&
10970b57cec5SDimitry Andric       UserI->getOperand(1) != FoldedValue)
10980b57cec5SDimitry Andric     return false; // Not commutative, only RHS foldable.
10990b57cec5SDimitry Andric   // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
11000b57cec5SDimitry Andric   // extension was made of the load.
11010b57cec5SDimitry Andric   unsigned LoadOrTruncBits =
11020b57cec5SDimitry Andric       ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
11030b57cec5SDimitry Andric   switch (UserI->getOpcode()) {
11040b57cec5SDimitry Andric   case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
11050b57cec5SDimitry Andric   case Instruction::Sub:
11060b57cec5SDimitry Andric   case Instruction::ICmp:
11070b57cec5SDimitry Andric     if (LoadedBits == 32 && ZExtBits == 64)
11080b57cec5SDimitry Andric       return true;
1109bdd1243dSDimitry Andric     [[fallthrough]];
11100b57cec5SDimitry Andric   case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
11110b57cec5SDimitry Andric     if (UserI->getOpcode() != Instruction::ICmp) {
11120b57cec5SDimitry Andric       if (LoadedBits == 16 &&
11130b57cec5SDimitry Andric           (SExtBits == 32 ||
11140b57cec5SDimitry Andric            (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
11150b57cec5SDimitry Andric         return true;
11160b57cec5SDimitry Andric       if (LoadOrTruncBits == 16)
11170b57cec5SDimitry Andric         return true;
11180b57cec5SDimitry Andric     }
1119bdd1243dSDimitry Andric     [[fallthrough]];
11200b57cec5SDimitry Andric   case Instruction::SDiv:// SE: 32->64
11210b57cec5SDimitry Andric     if (LoadedBits == 32 && SExtBits == 64)
11220b57cec5SDimitry Andric       return true;
1123bdd1243dSDimitry Andric     [[fallthrough]];
11240b57cec5SDimitry Andric   case Instruction::UDiv:
11250b57cec5SDimitry Andric   case Instruction::And:
11260b57cec5SDimitry Andric   case Instruction::Or:
11270b57cec5SDimitry Andric   case Instruction::Xor:
11280b57cec5SDimitry Andric     // This also makes sense for float operations, but disabled for now due
11290b57cec5SDimitry Andric     // to regressions.
11300b57cec5SDimitry Andric     // case Instruction::FCmp:
11310b57cec5SDimitry Andric     // case Instruction::FAdd:
11320b57cec5SDimitry Andric     // case Instruction::FSub:
11330b57cec5SDimitry Andric     // case Instruction::FMul:
11340b57cec5SDimitry Andric     // case Instruction::FDiv:
11350b57cec5SDimitry Andric 
11360b57cec5SDimitry Andric     // All possible extensions of memory checked above.
11370b57cec5SDimitry Andric 
11380b57cec5SDimitry Andric     // Comparison between memory and immediate.
11390b57cec5SDimitry Andric     if (UserI->getOpcode() == Instruction::ICmp)
11400b57cec5SDimitry Andric       if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
1141e8d8bef9SDimitry Andric         if (CI->getValue().isIntN(16))
11420b57cec5SDimitry Andric           return true;
11430b57cec5SDimitry Andric     return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
11440b57cec5SDimitry Andric     break;
11450b57cec5SDimitry Andric   }
11460b57cec5SDimitry Andric   return false;
11470b57cec5SDimitry Andric }
11480b57cec5SDimitry Andric 
11490b57cec5SDimitry Andric static bool isBswapIntrinsicCall(const Value *V) {
11500b57cec5SDimitry Andric   if (const Instruction *I = dyn_cast<Instruction>(V))
11510b57cec5SDimitry Andric     if (auto *CI = dyn_cast<CallInst>(I))
11520b57cec5SDimitry Andric       if (auto *F = CI->getCalledFunction())
11530b57cec5SDimitry Andric         if (F->getIntrinsicID() == Intrinsic::bswap)
11540b57cec5SDimitry Andric           return true;
11550b57cec5SDimitry Andric   return false;
11560b57cec5SDimitry Andric }
11570b57cec5SDimitry Andric 
1158fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
1159fe6060f1SDimitry Andric                                                 MaybeAlign Alignment,
1160fe6060f1SDimitry Andric                                                 unsigned AddressSpace,
11615ffd83dbSDimitry Andric                                                 TTI::TargetCostKind CostKind,
1162bdd1243dSDimitry Andric                                                 TTI::OperandValueInfo OpInfo,
11630b57cec5SDimitry Andric                                                 const Instruction *I) {
11640b57cec5SDimitry Andric   assert(!Src->isVoidTy() && "Invalid type");
11650b57cec5SDimitry Andric 
11665ffd83dbSDimitry Andric   // TODO: Handle other cost kinds.
11675ffd83dbSDimitry Andric   if (CostKind != TTI::TCK_RecipThroughput)
11685ffd83dbSDimitry Andric     return 1;
11695ffd83dbSDimitry Andric 
11700b57cec5SDimitry Andric   if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
11710b57cec5SDimitry Andric     // Store the load or its truncated or extended value in FoldedValue.
11720b57cec5SDimitry Andric     const Instruction *FoldedValue = nullptr;
11730b57cec5SDimitry Andric     if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
11740b57cec5SDimitry Andric       const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
11750b57cec5SDimitry Andric       assert (UserI->getNumOperands() == 2 && "Expected a binop.");
11760b57cec5SDimitry Andric 
11770b57cec5SDimitry Andric       // UserI can't fold two loads, so in that case return 0 cost only
11780b57cec5SDimitry Andric       // half of the time.
11790b57cec5SDimitry Andric       for (unsigned i = 0; i < 2; ++i) {
11800b57cec5SDimitry Andric         if (UserI->getOperand(i) == FoldedValue)
11810b57cec5SDimitry Andric           continue;
11820b57cec5SDimitry Andric 
11830b57cec5SDimitry Andric         if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
11840b57cec5SDimitry Andric           LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
11850b57cec5SDimitry Andric           if (!OtherLoad &&
11860b57cec5SDimitry Andric               (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
11870b57cec5SDimitry Andric                isa<ZExtInst>(OtherOp)))
11880b57cec5SDimitry Andric             OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
11890b57cec5SDimitry Andric           if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
11900b57cec5SDimitry Andric             return i == 0; // Both operands foldable.
11910b57cec5SDimitry Andric         }
11920b57cec5SDimitry Andric       }
11930b57cec5SDimitry Andric 
11940b57cec5SDimitry Andric       return 0; // Only I is foldable in user.
11950b57cec5SDimitry Andric     }
11960b57cec5SDimitry Andric   }
11970b57cec5SDimitry Andric 
11988a4dda33SDimitry Andric   // Type legalization (via getNumberOfParts) can't handle structs
11998a4dda33SDimitry Andric   if (TLI->getValueType(DL, Src, true) == MVT::Other)
12008a4dda33SDimitry Andric     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
12018a4dda33SDimitry Andric                                   CostKind);
12028a4dda33SDimitry Andric 
12037a6dacacSDimitry Andric   // FP128 is a legal type but kept in a register pair on older CPUs.
12047a6dacacSDimitry Andric   if (Src->isFP128Ty() && !ST->hasVectorEnhancements1())
12057a6dacacSDimitry Andric     return 2;
12067a6dacacSDimitry Andric 
12070b57cec5SDimitry Andric   unsigned NumOps =
12080b57cec5SDimitry Andric     (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
12090b57cec5SDimitry Andric 
12100b57cec5SDimitry Andric   // Store/Load reversed saves one instruction.
12110b57cec5SDimitry Andric   if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
12120b57cec5SDimitry Andric       I != nullptr) {
12130b57cec5SDimitry Andric     if (Opcode == Instruction::Load && I->hasOneUse()) {
12140b57cec5SDimitry Andric       const Instruction *LdUser = cast<Instruction>(*I->user_begin());
12150b57cec5SDimitry Andric       // In case of load -> bswap -> store, return normal cost for the load.
12160b57cec5SDimitry Andric       if (isBswapIntrinsicCall(LdUser) &&
12170b57cec5SDimitry Andric           (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
12180b57cec5SDimitry Andric         return 0;
12190b57cec5SDimitry Andric     }
12200b57cec5SDimitry Andric     else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
12210b57cec5SDimitry Andric       const Value *StoredVal = SI->getValueOperand();
12220b57cec5SDimitry Andric       if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
12230b57cec5SDimitry Andric         return 0;
12240b57cec5SDimitry Andric     }
12250b57cec5SDimitry Andric   }
12260b57cec5SDimitry Andric 
12270b57cec5SDimitry Andric   return  NumOps;
12280b57cec5SDimitry Andric }
12290b57cec5SDimitry Andric 
12300b57cec5SDimitry Andric // The generic implementation of getInterleavedMemoryOpCost() is based on
12310b57cec5SDimitry Andric // adding costs of the memory operations plus all the extracts and inserts
12320b57cec5SDimitry Andric // needed for using / defining the vector operands. The SystemZ version does
12330b57cec5SDimitry Andric // roughly the same but bases the computations on vector permutations
12340b57cec5SDimitry Andric // instead.
1235fe6060f1SDimitry Andric InstructionCost SystemZTTIImpl::getInterleavedMemoryOpCost(
12365ffd83dbSDimitry Andric     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
12375ffd83dbSDimitry Andric     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
12385ffd83dbSDimitry Andric     bool UseMaskForCond, bool UseMaskForGaps) {
12390b57cec5SDimitry Andric   if (UseMaskForCond || UseMaskForGaps)
12400b57cec5SDimitry Andric     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
12415ffd83dbSDimitry Andric                                              Alignment, AddressSpace, CostKind,
12420b57cec5SDimitry Andric                                              UseMaskForCond, UseMaskForGaps);
12430b57cec5SDimitry Andric   assert(isa<VectorType>(VecTy) &&
12440b57cec5SDimitry Andric          "Expect a vector type for interleaved memory op");
12450b57cec5SDimitry Andric 
12465ffd83dbSDimitry Andric   unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
12470b57cec5SDimitry Andric   assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
12480b57cec5SDimitry Andric   unsigned VF = NumElts / Factor;
12490b57cec5SDimitry Andric   unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
12500b57cec5SDimitry Andric   unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
12510b57cec5SDimitry Andric   unsigned NumPermutes = 0;
12520b57cec5SDimitry Andric 
12530b57cec5SDimitry Andric   if (Opcode == Instruction::Load) {
12540b57cec5SDimitry Andric     // Loading interleave groups may have gaps, which may mean fewer
12550b57cec5SDimitry Andric     // loads. Find out how many vectors will be loaded in total, and in how
12560b57cec5SDimitry Andric     // many of them each value will be in.
12570b57cec5SDimitry Andric     BitVector UsedInsts(NumVectorMemOps, false);
12580b57cec5SDimitry Andric     std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
12590b57cec5SDimitry Andric     for (unsigned Index : Indices)
12600b57cec5SDimitry Andric       for (unsigned Elt = 0; Elt < VF; ++Elt) {
12610b57cec5SDimitry Andric         unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
12620b57cec5SDimitry Andric         UsedInsts.set(Vec);
12630b57cec5SDimitry Andric         ValueVecs[Index].set(Vec);
12640b57cec5SDimitry Andric       }
12650b57cec5SDimitry Andric     NumVectorMemOps = UsedInsts.count();
12660b57cec5SDimitry Andric 
12670b57cec5SDimitry Andric     for (unsigned Index : Indices) {
12680b57cec5SDimitry Andric       // Estimate that each loaded source vector containing this Index
12690b57cec5SDimitry Andric       // requires one operation, except that vperm can handle two input
12700b57cec5SDimitry Andric       // registers first time for each dst vector.
12710b57cec5SDimitry Andric       unsigned NumSrcVecs = ValueVecs[Index].count();
1272fe6060f1SDimitry Andric       unsigned NumDstVecs = divideCeil(VF * getScalarSizeInBits(VecTy), 128U);
12730b57cec5SDimitry Andric       assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
12740b57cec5SDimitry Andric       NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
12750b57cec5SDimitry Andric     }
12760b57cec5SDimitry Andric   } else {
12770b57cec5SDimitry Andric     // Estimate the permutes for each stored vector as the smaller of the
12780b57cec5SDimitry Andric     // number of elements and the number of source vectors. Subtract one per
12790b57cec5SDimitry Andric     // dst vector for vperm (S.A.).
12800b57cec5SDimitry Andric     unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
12810b57cec5SDimitry Andric     unsigned NumDstVecs = NumVectorMemOps;
12820b57cec5SDimitry Andric     NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
12830b57cec5SDimitry Andric   }
12840b57cec5SDimitry Andric 
12850b57cec5SDimitry Andric   // Cost of load/store operations and the permutations needed.
12860b57cec5SDimitry Andric   return NumVectorMemOps + NumPermutes;
12870b57cec5SDimitry Andric }
12880b57cec5SDimitry Andric 
1289*0fca6ea1SDimitry Andric static int
1290*0fca6ea1SDimitry Andric getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1291*0fca6ea1SDimitry Andric                             const SmallVectorImpl<Type *> &ParamTys) {
12920b57cec5SDimitry Andric   if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
12930b57cec5SDimitry Andric     return getNumVectorRegs(RetTy); // VPERM
1294*0fca6ea1SDimitry Andric 
1295*0fca6ea1SDimitry Andric   if (ID == Intrinsic::vector_reduce_add) {
1296*0fca6ea1SDimitry Andric     // Retrieve number and size of elements for the vector op.
1297*0fca6ea1SDimitry Andric     auto *VTy = cast<FixedVectorType>(ParamTys.front());
1298*0fca6ea1SDimitry Andric     unsigned ScalarSize = VTy->getScalarSizeInBits();
1299*0fca6ea1SDimitry Andric     // For scalar sizes >128 bits, we fall back to the generic cost estimate.
1300*0fca6ea1SDimitry Andric     if (ScalarSize > SystemZ::VectorBits)
1301*0fca6ea1SDimitry Andric       return -1;
1302*0fca6ea1SDimitry Andric     // This many vector regs are needed to represent the input elements (V).
1303*0fca6ea1SDimitry Andric     unsigned VectorRegsNeeded = getNumVectorRegs(VTy);
1304*0fca6ea1SDimitry Andric     // This many instructions are needed for the final sum of vector elems (S).
1305*0fca6ea1SDimitry Andric     unsigned LastVectorHandling = (ScalarSize < 32) ? 3 : 2;
1306*0fca6ea1SDimitry Andric     // We use vector adds to create a sum vector, which takes
1307*0fca6ea1SDimitry Andric     // V/2 + V/4 + ... = V - 1 operations.
1308*0fca6ea1SDimitry Andric     // Then, we need S operations to sum up the elements of that sum vector,
1309*0fca6ea1SDimitry Andric     // for a total of V + S - 1 operations.
1310*0fca6ea1SDimitry Andric     int Cost = VectorRegsNeeded + LastVectorHandling - 1;
1311*0fca6ea1SDimitry Andric     return Cost;
1312*0fca6ea1SDimitry Andric   }
13130b57cec5SDimitry Andric   return -1;
13140b57cec5SDimitry Andric }
13150b57cec5SDimitry Andric 
1316fe6060f1SDimitry Andric InstructionCost
1317fe6060f1SDimitry Andric SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
13185ffd83dbSDimitry Andric                                       TTI::TargetCostKind CostKind) {
1319*0fca6ea1SDimitry Andric   InstructionCost Cost = getVectorIntrinsicInstrCost(
1320*0fca6ea1SDimitry Andric       ICA.getID(), ICA.getReturnType(), ICA.getArgTypes());
13210b57cec5SDimitry Andric   if (Cost != -1)
13220b57cec5SDimitry Andric     return Cost;
13235ffd83dbSDimitry Andric   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
13240b57cec5SDimitry Andric }
1325*0fca6ea1SDimitry Andric 
1326*0fca6ea1SDimitry Andric bool SystemZTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
1327*0fca6ea1SDimitry Andric   // Always expand on Subtargets without vector instructions.
1328*0fca6ea1SDimitry Andric   if (!ST->hasVector())
1329*0fca6ea1SDimitry Andric     return true;
1330*0fca6ea1SDimitry Andric 
1331*0fca6ea1SDimitry Andric   // Whether or not to expand is a per-intrinsic decision.
1332*0fca6ea1SDimitry Andric   switch (II->getIntrinsicID()) {
1333*0fca6ea1SDimitry Andric   default:
1334*0fca6ea1SDimitry Andric     return true;
1335*0fca6ea1SDimitry Andric   // Do not expand vector.reduce.add...
1336*0fca6ea1SDimitry Andric   case Intrinsic::vector_reduce_add:
1337*0fca6ea1SDimitry Andric     auto *VType = cast<FixedVectorType>(II->getOperand(0)->getType());
1338*0fca6ea1SDimitry Andric     // ...unless the scalar size is i64 or larger,
1339*0fca6ea1SDimitry Andric     // or the operand vector is not full, since the
1340*0fca6ea1SDimitry Andric     // performance benefit is dubious in those cases.
1341*0fca6ea1SDimitry Andric     return VType->getScalarSizeInBits() >= 64 ||
1342*0fca6ea1SDimitry Andric            VType->getPrimitiveSizeInBits() < SystemZ::VectorBits;
1343*0fca6ea1SDimitry Andric   }
1344*0fca6ea1SDimitry Andric }
1345