xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This pass identifies loops where we can generate the Hexagon hardware
100b57cec5SDimitry Andric // loop instruction.  The hardware loop can perform loop branches with a
110b57cec5SDimitry Andric // zero-cycle overhead.
120b57cec5SDimitry Andric //
130b57cec5SDimitry Andric // The pattern that defines the induction variable can changed depending on
140b57cec5SDimitry Andric // prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
150b57cec5SDimitry Andric // normalizes induction variables, and the Loop Strength Reduction pass
160b57cec5SDimitry Andric // run by 'llc' may also make changes to the induction variable.
170b57cec5SDimitry Andric // The pattern detected by this phase is due to running Strength Reduction.
180b57cec5SDimitry Andric //
190b57cec5SDimitry Andric // Criteria for hardware loops:
200b57cec5SDimitry Andric //  - Countable loops (w/ ind. var for a trip count)
210b57cec5SDimitry Andric //  - Assumes loops are normalized by IndVarSimplify
220b57cec5SDimitry Andric //  - Try inner-most loops first
230b57cec5SDimitry Andric //  - No function calls in loops.
240b57cec5SDimitry Andric //
250b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
260b57cec5SDimitry Andric 
270b57cec5SDimitry Andric #include "HexagonInstrInfo.h"
280b57cec5SDimitry Andric #include "HexagonSubtarget.h"
290b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
300b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
310b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h"
320b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
330b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
340b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
350b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
360b57cec5SDimitry Andric #include "llvm/CodeGen/MachineDominators.h"
370b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
380b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
390b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
400b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
410b57cec5SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h"
420b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
430b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
440b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
450b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
460b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
47480093f4SDimitry Andric #include "llvm/InitializePasses.h"
480b57cec5SDimitry Andric #include "llvm/Pass.h"
490b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
500b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
510b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
520b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
530b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
540b57cec5SDimitry Andric #include <cassert>
550b57cec5SDimitry Andric #include <cstdint>
560b57cec5SDimitry Andric #include <cstdlib>
570b57cec5SDimitry Andric #include <iterator>
580b57cec5SDimitry Andric #include <map>
590b57cec5SDimitry Andric #include <set>
600b57cec5SDimitry Andric #include <string>
610b57cec5SDimitry Andric #include <utility>
620b57cec5SDimitry Andric #include <vector>
630b57cec5SDimitry Andric 
640b57cec5SDimitry Andric using namespace llvm;
650b57cec5SDimitry Andric 
660b57cec5SDimitry Andric #define DEBUG_TYPE "hwloops"
670b57cec5SDimitry Andric 
680b57cec5SDimitry Andric #ifndef NDEBUG
690b57cec5SDimitry Andric static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
700b57cec5SDimitry Andric 
710b57cec5SDimitry Andric // Option to create preheader only for a specific function.
720b57cec5SDimitry Andric static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
730b57cec5SDimitry Andric                                  cl::init(""));
740b57cec5SDimitry Andric #endif
750b57cec5SDimitry Andric 
760b57cec5SDimitry Andric // Option to create a preheader if one doesn't exist.
770b57cec5SDimitry Andric static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
780b57cec5SDimitry Andric     cl::Hidden, cl::init(true),
790b57cec5SDimitry Andric     cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
800b57cec5SDimitry Andric 
810b57cec5SDimitry Andric // Turn it off by default. If a preheader block is not created here, the
820b57cec5SDimitry Andric // software pipeliner may be unable to find a block suitable to serve as
830b57cec5SDimitry Andric // a preheader. In that case SWP will not run.
8481ad6265SDimitry Andric static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::Hidden,
8581ad6265SDimitry Andric                                    cl::desc("Allow speculation of preheader "
860b57cec5SDimitry Andric                                             "instructions"));
870b57cec5SDimitry Andric 
880b57cec5SDimitry Andric STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
890b57cec5SDimitry Andric 
900b57cec5SDimitry Andric namespace llvm {
910b57cec5SDimitry Andric 
920b57cec5SDimitry Andric   FunctionPass *createHexagonHardwareLoops();
930b57cec5SDimitry Andric   void initializeHexagonHardwareLoopsPass(PassRegistry&);
940b57cec5SDimitry Andric 
950b57cec5SDimitry Andric } // end namespace llvm
960b57cec5SDimitry Andric 
970b57cec5SDimitry Andric namespace {
980b57cec5SDimitry Andric 
990b57cec5SDimitry Andric   class CountValue;
1000b57cec5SDimitry Andric 
1010b57cec5SDimitry Andric   struct HexagonHardwareLoops : public MachineFunctionPass {
1020b57cec5SDimitry Andric     MachineLoopInfo            *MLI;
1030b57cec5SDimitry Andric     MachineRegisterInfo        *MRI;
1040b57cec5SDimitry Andric     MachineDominatorTree       *MDT;
1050b57cec5SDimitry Andric     const HexagonInstrInfo     *TII;
1060b57cec5SDimitry Andric     const HexagonRegisterInfo  *TRI;
1070b57cec5SDimitry Andric #ifndef NDEBUG
1080b57cec5SDimitry Andric     static int Counter;
1090b57cec5SDimitry Andric #endif
1100b57cec5SDimitry Andric 
1110b57cec5SDimitry Andric   public:
1120b57cec5SDimitry Andric     static char ID;
1130b57cec5SDimitry Andric 
1140b57cec5SDimitry Andric     HexagonHardwareLoops() : MachineFunctionPass(ID) {}
1150b57cec5SDimitry Andric 
1160b57cec5SDimitry Andric     bool runOnMachineFunction(MachineFunction &MF) override;
1170b57cec5SDimitry Andric 
1180b57cec5SDimitry Andric     StringRef getPassName() const override { return "Hexagon Hardware Loops"; }
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric     void getAnalysisUsage(AnalysisUsage &AU) const override {
121*0fca6ea1SDimitry Andric       AU.addRequired<MachineDominatorTreeWrapperPass>();
122*0fca6ea1SDimitry Andric       AU.addRequired<MachineLoopInfoWrapperPass>();
1230b57cec5SDimitry Andric       MachineFunctionPass::getAnalysisUsage(AU);
1240b57cec5SDimitry Andric     }
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric   private:
127bdd1243dSDimitry Andric     using LoopFeederMap = std::map<Register, MachineInstr *>;
1280b57cec5SDimitry Andric 
1290b57cec5SDimitry Andric     /// Kinds of comparisons in the compare instructions.
1300b57cec5SDimitry Andric     struct Comparison {
1310b57cec5SDimitry Andric       enum Kind {
1320b57cec5SDimitry Andric         EQ  = 0x01,
1330b57cec5SDimitry Andric         NE  = 0x02,
1340b57cec5SDimitry Andric         L   = 0x04,
1350b57cec5SDimitry Andric         G   = 0x08,
1360b57cec5SDimitry Andric         U   = 0x40,
1370b57cec5SDimitry Andric         LTs = L,
1380b57cec5SDimitry Andric         LEs = L | EQ,
1390b57cec5SDimitry Andric         GTs = G,
1400b57cec5SDimitry Andric         GEs = G | EQ,
1410b57cec5SDimitry Andric         LTu = L      | U,
1420b57cec5SDimitry Andric         LEu = L | EQ | U,
1430b57cec5SDimitry Andric         GTu = G      | U,
1440b57cec5SDimitry Andric         GEu = G | EQ | U
1450b57cec5SDimitry Andric       };
1460b57cec5SDimitry Andric 
1470b57cec5SDimitry Andric       static Kind getSwappedComparison(Kind Cmp) {
1480b57cec5SDimitry Andric         assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
1490b57cec5SDimitry Andric         if ((Cmp & L) || (Cmp & G))
1500b57cec5SDimitry Andric           return (Kind)(Cmp ^ (L|G));
1510b57cec5SDimitry Andric         return Cmp;
1520b57cec5SDimitry Andric       }
1530b57cec5SDimitry Andric 
1540b57cec5SDimitry Andric       static Kind getNegatedComparison(Kind Cmp) {
1550b57cec5SDimitry Andric         if ((Cmp & L) || (Cmp & G))
1560b57cec5SDimitry Andric           return (Kind)((Cmp ^ (L | G)) ^ EQ);
1570b57cec5SDimitry Andric         if ((Cmp & NE) || (Cmp & EQ))
1580b57cec5SDimitry Andric           return (Kind)(Cmp ^ (EQ | NE));
1590b57cec5SDimitry Andric         return (Kind)0;
1600b57cec5SDimitry Andric       }
1610b57cec5SDimitry Andric 
1620b57cec5SDimitry Andric       static bool isSigned(Kind Cmp) {
1630b57cec5SDimitry Andric         return (Cmp & (L | G) && !(Cmp & U));
1640b57cec5SDimitry Andric       }
1650b57cec5SDimitry Andric 
1660b57cec5SDimitry Andric       static bool isUnsigned(Kind Cmp) {
1670b57cec5SDimitry Andric         return (Cmp & U);
1680b57cec5SDimitry Andric       }
1690b57cec5SDimitry Andric     };
1700b57cec5SDimitry Andric 
1710b57cec5SDimitry Andric     /// Find the register that contains the loop controlling
1720b57cec5SDimitry Andric     /// induction variable.
1730b57cec5SDimitry Andric     /// If successful, it will return true and set the \p Reg, \p IVBump
1740b57cec5SDimitry Andric     /// and \p IVOp arguments.  Otherwise it will return false.
1750b57cec5SDimitry Andric     /// The returned induction register is the register R that follows the
1760b57cec5SDimitry Andric     /// following induction pattern:
1770b57cec5SDimitry Andric     /// loop:
1780b57cec5SDimitry Andric     ///   R = phi ..., [ R.next, LatchBlock ]
1790b57cec5SDimitry Andric     ///   R.next = R + #bump
1800b57cec5SDimitry Andric     ///   if (R.next < #N) goto loop
1810b57cec5SDimitry Andric     /// IVBump is the immediate value added to R, and IVOp is the instruction
1820b57cec5SDimitry Andric     /// "R.next = R + #bump".
183bdd1243dSDimitry Andric     bool findInductionRegister(MachineLoop *L, Register &Reg,
1840b57cec5SDimitry Andric                                int64_t &IVBump, MachineInstr *&IVOp) const;
1850b57cec5SDimitry Andric 
1860b57cec5SDimitry Andric     /// Return the comparison kind for the specified opcode.
1870b57cec5SDimitry Andric     Comparison::Kind getComparisonKind(unsigned CondOpc,
1880b57cec5SDimitry Andric                                        MachineOperand *InitialValue,
1890b57cec5SDimitry Andric                                        const MachineOperand *Endvalue,
1900b57cec5SDimitry Andric                                        int64_t IVBump) const;
1910b57cec5SDimitry Andric 
1920b57cec5SDimitry Andric     /// Analyze the statements in a loop to determine if the loop
1930b57cec5SDimitry Andric     /// has a computable trip count and, if so, return a value that represents
1940b57cec5SDimitry Andric     /// the trip count expression.
1950b57cec5SDimitry Andric     CountValue *getLoopTripCount(MachineLoop *L,
1960b57cec5SDimitry Andric                                  SmallVectorImpl<MachineInstr *> &OldInsts);
1970b57cec5SDimitry Andric 
1980b57cec5SDimitry Andric     /// Return the expression that represents the number of times
1990b57cec5SDimitry Andric     /// a loop iterates.  The function takes the operands that represent the
2000b57cec5SDimitry Andric     /// loop start value, loop end value, and induction value.  Based upon
2010b57cec5SDimitry Andric     /// these operands, the function attempts to compute the trip count.
2020b57cec5SDimitry Andric     /// If the trip count is not directly available (as an immediate value,
2030b57cec5SDimitry Andric     /// or a register), the function will attempt to insert computation of it
2040b57cec5SDimitry Andric     /// to the loop's preheader.
2050b57cec5SDimitry Andric     CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
206bdd1243dSDimitry Andric                              const MachineOperand *End, Register IVReg,
2070b57cec5SDimitry Andric                              int64_t IVBump, Comparison::Kind Cmp) const;
2080b57cec5SDimitry Andric 
2090b57cec5SDimitry Andric     /// Return true if the instruction is not valid within a hardware
2100b57cec5SDimitry Andric     /// loop.
2110b57cec5SDimitry Andric     bool isInvalidLoopOperation(const MachineInstr *MI,
2120b57cec5SDimitry Andric                                 bool IsInnerHWLoop) const;
2130b57cec5SDimitry Andric 
2140b57cec5SDimitry Andric     /// Return true if the loop contains an instruction that inhibits
2150b57cec5SDimitry Andric     /// using the hardware loop.
2160b57cec5SDimitry Andric     bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric     /// Given a loop, check if we can convert it to a hardware loop.
2190b57cec5SDimitry Andric     /// If so, then perform the conversion and return true.
2200b57cec5SDimitry Andric     bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
2210b57cec5SDimitry Andric 
2220b57cec5SDimitry Andric     /// Return true if the instruction is now dead.
2230b57cec5SDimitry Andric     bool isDead(const MachineInstr *MI,
2240b57cec5SDimitry Andric                 SmallVectorImpl<MachineInstr *> &DeadPhis) const;
2250b57cec5SDimitry Andric 
2260b57cec5SDimitry Andric     /// Remove the instruction if it is now dead.
2270b57cec5SDimitry Andric     void removeIfDead(MachineInstr *MI);
2280b57cec5SDimitry Andric 
2290b57cec5SDimitry Andric     /// Make sure that the "bump" instruction executes before the
2300b57cec5SDimitry Andric     /// compare.  We need that for the IV fixup, so that the compare
2310b57cec5SDimitry Andric     /// instruction would not use a bumped value that has not yet been
2320b57cec5SDimitry Andric     /// defined.  If the instructions are out of order, try to reorder them.
2330b57cec5SDimitry Andric     bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
2340b57cec5SDimitry Andric 
2350b57cec5SDimitry Andric     /// Return true if MO and MI pair is visited only once. If visited
2360b57cec5SDimitry Andric     /// more than once, this indicates there is recursion. In such a case,
2370b57cec5SDimitry Andric     /// return false.
2380b57cec5SDimitry Andric     bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
2390b57cec5SDimitry Andric                       const MachineOperand *MO,
2400b57cec5SDimitry Andric                       LoopFeederMap &LoopFeederPhi) const;
2410b57cec5SDimitry Andric 
2420b57cec5SDimitry Andric     /// Return true if the Phi may generate a value that may underflow,
2430b57cec5SDimitry Andric     /// or may wrap.
2440b57cec5SDimitry Andric     bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
2450b57cec5SDimitry Andric                                MachineBasicBlock *MBB, MachineLoop *L,
2460b57cec5SDimitry Andric                                LoopFeederMap &LoopFeederPhi) const;
2470b57cec5SDimitry Andric 
2480b57cec5SDimitry Andric     /// Return true if the induction variable may underflow an unsigned
2490b57cec5SDimitry Andric     /// value in the first iteration.
2500b57cec5SDimitry Andric     bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
2510b57cec5SDimitry Andric                                      const MachineOperand *EndVal,
2520b57cec5SDimitry Andric                                      MachineBasicBlock *MBB, MachineLoop *L,
2530b57cec5SDimitry Andric                                      LoopFeederMap &LoopFeederPhi) const;
2540b57cec5SDimitry Andric 
2550b57cec5SDimitry Andric     /// Check if the given operand has a compile-time known constant
2560b57cec5SDimitry Andric     /// value. Return true if yes, and false otherwise. When returning true, set
2570b57cec5SDimitry Andric     /// Val to the corresponding constant value.
2580b57cec5SDimitry Andric     bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
2590b57cec5SDimitry Andric 
2600b57cec5SDimitry Andric     /// Check if the operand has a compile-time known constant value.
2610b57cec5SDimitry Andric     bool isImmediate(const MachineOperand &MO) const {
2620b57cec5SDimitry Andric       int64_t V;
2630b57cec5SDimitry Andric       return checkForImmediate(MO, V);
2640b57cec5SDimitry Andric     }
2650b57cec5SDimitry Andric 
2660b57cec5SDimitry Andric     /// Return the immediate for the specified operand.
2670b57cec5SDimitry Andric     int64_t getImmediate(const MachineOperand &MO) const {
2680b57cec5SDimitry Andric       int64_t V;
2690b57cec5SDimitry Andric       if (!checkForImmediate(MO, V))
2700b57cec5SDimitry Andric         llvm_unreachable("Invalid operand");
2710b57cec5SDimitry Andric       return V;
2720b57cec5SDimitry Andric     }
2730b57cec5SDimitry Andric 
2740b57cec5SDimitry Andric     /// Reset the given machine operand to now refer to a new immediate
2750b57cec5SDimitry Andric     /// value.  Assumes that the operand was already referencing an immediate
2760b57cec5SDimitry Andric     /// value, either directly, or via a register.
2770b57cec5SDimitry Andric     void setImmediate(MachineOperand &MO, int64_t Val);
2780b57cec5SDimitry Andric 
2790b57cec5SDimitry Andric     /// Fix the data flow of the induction variable.
2800b57cec5SDimitry Andric     /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
2810b57cec5SDimitry Andric     ///                                     |
2820b57cec5SDimitry Andric     ///                                     +-> back to phi
2830b57cec5SDimitry Andric     /// where "bump" is the increment of the induction variable:
2840b57cec5SDimitry Andric     ///   iv = iv + #const.
2850b57cec5SDimitry Andric     /// Due to some prior code transformations, the actual flow may look
2860b57cec5SDimitry Andric     /// like this:
2870b57cec5SDimitry Andric     ///   phi -+-> bump ---> back to phi
2880b57cec5SDimitry Andric     ///        |
2890b57cec5SDimitry Andric     ///        +-> comparison-in-latch (against upper_bound-bump),
2900b57cec5SDimitry Andric     /// i.e. the comparison that controls the loop execution may be using
2910b57cec5SDimitry Andric     /// the value of the induction variable from before the increment.
2920b57cec5SDimitry Andric     ///
2930b57cec5SDimitry Andric     /// Return true if the loop's flow is the desired one (i.e. it's
2940b57cec5SDimitry Andric     /// either been fixed, or no fixing was necessary).
2950b57cec5SDimitry Andric     /// Otherwise, return false.  This can happen if the induction variable
2960b57cec5SDimitry Andric     /// couldn't be identified, or if the value in the latch's comparison
2970b57cec5SDimitry Andric     /// cannot be adjusted to reflect the post-bump value.
2980b57cec5SDimitry Andric     bool fixupInductionVariable(MachineLoop *L);
2990b57cec5SDimitry Andric 
3000b57cec5SDimitry Andric     /// Given a loop, if it does not have a preheader, create one.
3010b57cec5SDimitry Andric     /// Return the block that is the preheader.
3020b57cec5SDimitry Andric     MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
3030b57cec5SDimitry Andric   };
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric   char HexagonHardwareLoops::ID = 0;
3060b57cec5SDimitry Andric #ifndef NDEBUG
3070b57cec5SDimitry Andric   int HexagonHardwareLoops::Counter = 0;
3080b57cec5SDimitry Andric #endif
3090b57cec5SDimitry Andric 
3100b57cec5SDimitry Andric   /// Abstraction for a trip count of a loop. A smaller version
3110b57cec5SDimitry Andric   /// of the MachineOperand class without the concerns of changing the
3120b57cec5SDimitry Andric   /// operand representation.
3130b57cec5SDimitry Andric   class CountValue {
3140b57cec5SDimitry Andric   public:
3150b57cec5SDimitry Andric     enum CountValueType {
3160b57cec5SDimitry Andric       CV_Register,
3170b57cec5SDimitry Andric       CV_Immediate
3180b57cec5SDimitry Andric     };
3190b57cec5SDimitry Andric 
3200b57cec5SDimitry Andric   private:
3210b57cec5SDimitry Andric     CountValueType Kind;
3220b57cec5SDimitry Andric     union Values {
323bdd1243dSDimitry Andric       Values() : R{Register(), 0} {}
324bdd1243dSDimitry Andric       Values(const Values&) = default;
3250b57cec5SDimitry Andric       struct {
326bdd1243dSDimitry Andric         Register Reg;
3270b57cec5SDimitry Andric         unsigned Sub;
3280b57cec5SDimitry Andric       } R;
3290b57cec5SDimitry Andric       unsigned ImmVal;
3300b57cec5SDimitry Andric     } Contents;
3310b57cec5SDimitry Andric 
3320b57cec5SDimitry Andric   public:
333bdd1243dSDimitry Andric     explicit CountValue(CountValueType t, Register v, unsigned u = 0) {
3340b57cec5SDimitry Andric       Kind = t;
3350b57cec5SDimitry Andric       if (Kind == CV_Register) {
3360b57cec5SDimitry Andric         Contents.R.Reg = v;
3370b57cec5SDimitry Andric         Contents.R.Sub = u;
3380b57cec5SDimitry Andric       } else {
3390b57cec5SDimitry Andric         Contents.ImmVal = v;
3400b57cec5SDimitry Andric       }
3410b57cec5SDimitry Andric     }
3420b57cec5SDimitry Andric 
3430b57cec5SDimitry Andric     bool isReg() const { return Kind == CV_Register; }
3440b57cec5SDimitry Andric     bool isImm() const { return Kind == CV_Immediate; }
3450b57cec5SDimitry Andric 
346bdd1243dSDimitry Andric     Register getReg() const {
3470b57cec5SDimitry Andric       assert(isReg() && "Wrong CountValue accessor");
3480b57cec5SDimitry Andric       return Contents.R.Reg;
3490b57cec5SDimitry Andric     }
3500b57cec5SDimitry Andric 
3510b57cec5SDimitry Andric     unsigned getSubReg() const {
3520b57cec5SDimitry Andric       assert(isReg() && "Wrong CountValue accessor");
3530b57cec5SDimitry Andric       return Contents.R.Sub;
3540b57cec5SDimitry Andric     }
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric     unsigned getImm() const {
3570b57cec5SDimitry Andric       assert(isImm() && "Wrong CountValue accessor");
3580b57cec5SDimitry Andric       return Contents.ImmVal;
3590b57cec5SDimitry Andric     }
3600b57cec5SDimitry Andric 
3610b57cec5SDimitry Andric     void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
3620b57cec5SDimitry Andric       if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
3630b57cec5SDimitry Andric       if (isImm()) { OS << Contents.ImmVal; }
3640b57cec5SDimitry Andric     }
3650b57cec5SDimitry Andric   };
3660b57cec5SDimitry Andric 
3670b57cec5SDimitry Andric } // end anonymous namespace
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
3700b57cec5SDimitry Andric                       "Hexagon Hardware Loops", false, false)
371*0fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
372*0fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
3730b57cec5SDimitry Andric INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
3740b57cec5SDimitry Andric                     "Hexagon Hardware Loops", false, false)
3750b57cec5SDimitry Andric 
3760b57cec5SDimitry Andric FunctionPass *llvm::createHexagonHardwareLoops() {
3770b57cec5SDimitry Andric   return new HexagonHardwareLoops();
3780b57cec5SDimitry Andric }
3790b57cec5SDimitry Andric 
3800b57cec5SDimitry Andric bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
3810b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
3820b57cec5SDimitry Andric   if (skipFunction(MF.getFunction()))
3830b57cec5SDimitry Andric     return false;
3840b57cec5SDimitry Andric 
3850b57cec5SDimitry Andric   bool Changed = false;
3860b57cec5SDimitry Andric 
387*0fca6ea1SDimitry Andric   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
3880b57cec5SDimitry Andric   MRI = &MF.getRegInfo();
389*0fca6ea1SDimitry Andric   MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
3900b57cec5SDimitry Andric   const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
3910b57cec5SDimitry Andric   TII = HST.getInstrInfo();
3920b57cec5SDimitry Andric   TRI = HST.getRegisterInfo();
3930b57cec5SDimitry Andric 
3940b57cec5SDimitry Andric   for (auto &L : *MLI)
395e8d8bef9SDimitry Andric     if (L->isOutermost()) {
3960b57cec5SDimitry Andric       bool L0Used = false;
3970b57cec5SDimitry Andric       bool L1Used = false;
3980b57cec5SDimitry Andric       Changed |= convertToHardwareLoop(L, L0Used, L1Used);
3990b57cec5SDimitry Andric     }
4000b57cec5SDimitry Andric 
4010b57cec5SDimitry Andric   return Changed;
4020b57cec5SDimitry Andric }
4030b57cec5SDimitry Andric 
4040b57cec5SDimitry Andric bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
405bdd1243dSDimitry Andric                                                  Register &Reg,
4060b57cec5SDimitry Andric                                                  int64_t &IVBump,
4070b57cec5SDimitry Andric                                                  MachineInstr *&IVOp
4080b57cec5SDimitry Andric                                                  ) const {
4090b57cec5SDimitry Andric   MachineBasicBlock *Header = L->getHeader();
4100b57cec5SDimitry Andric   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
4110b57cec5SDimitry Andric   MachineBasicBlock *Latch = L->getLoopLatch();
4120b57cec5SDimitry Andric   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
4130b57cec5SDimitry Andric   if (!Header || !Preheader || !Latch || !ExitingBlock)
4140b57cec5SDimitry Andric     return false;
4150b57cec5SDimitry Andric 
4160b57cec5SDimitry Andric   // This pair represents an induction register together with an immediate
4170b57cec5SDimitry Andric   // value that will be added to it in each loop iteration.
418bdd1243dSDimitry Andric   using RegisterBump = std::pair<Register, int64_t>;
4190b57cec5SDimitry Andric 
4200b57cec5SDimitry Andric   // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
4210b57cec5SDimitry Andric   // from an induction operation
4220b57cec5SDimitry Andric   //   R.next = R + bump
4230b57cec5SDimitry Andric   // where bump is an immediate value.
424bdd1243dSDimitry Andric   using InductionMap = std::map<Register, RegisterBump>;
4250b57cec5SDimitry Andric 
4260b57cec5SDimitry Andric   InductionMap IndMap;
4270b57cec5SDimitry Andric 
4280b57cec5SDimitry Andric   using instr_iterator = MachineBasicBlock::instr_iterator;
4290b57cec5SDimitry Andric 
4300b57cec5SDimitry Andric   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
4310b57cec5SDimitry Andric        I != E && I->isPHI(); ++I) {
4320b57cec5SDimitry Andric     MachineInstr *Phi = &*I;
4330b57cec5SDimitry Andric 
4340b57cec5SDimitry Andric     // Have a PHI instruction.  Get the operand that corresponds to the
4350b57cec5SDimitry Andric     // latch block, and see if is a result of an addition of form "reg+imm",
4360b57cec5SDimitry Andric     // where the "reg" is defined by the PHI node we are looking at.
4370b57cec5SDimitry Andric     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
4380b57cec5SDimitry Andric       if (Phi->getOperand(i+1).getMBB() != Latch)
4390b57cec5SDimitry Andric         continue;
4400b57cec5SDimitry Andric 
4418bcb0991SDimitry Andric       Register PhiOpReg = Phi->getOperand(i).getReg();
4420b57cec5SDimitry Andric       MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
4430b57cec5SDimitry Andric 
4440b57cec5SDimitry Andric       if (DI->getDesc().isAdd()) {
4450b57cec5SDimitry Andric         // If the register operand to the add is the PHI we're looking at, this
4460b57cec5SDimitry Andric         // meets the induction pattern.
4478bcb0991SDimitry Andric         Register IndReg = DI->getOperand(1).getReg();
4480b57cec5SDimitry Andric         MachineOperand &Opnd2 = DI->getOperand(2);
4490b57cec5SDimitry Andric         int64_t V;
4500b57cec5SDimitry Andric         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
4518bcb0991SDimitry Andric           Register UpdReg = DI->getOperand(0).getReg();
4520b57cec5SDimitry Andric           IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
4530b57cec5SDimitry Andric         }
4540b57cec5SDimitry Andric       }
4550b57cec5SDimitry Andric     }  // for (i)
4560b57cec5SDimitry Andric   }  // for (instr)
4570b57cec5SDimitry Andric 
4580b57cec5SDimitry Andric   SmallVector<MachineOperand,2> Cond;
4590b57cec5SDimitry Andric   MachineBasicBlock *TB = nullptr, *FB = nullptr;
4600b57cec5SDimitry Andric   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
4610b57cec5SDimitry Andric   if (NotAnalyzed)
4620b57cec5SDimitry Andric     return false;
4630b57cec5SDimitry Andric 
464bdd1243dSDimitry Andric   Register PredR;
465bdd1243dSDimitry Andric   unsigned PredPos, PredRegFlags;
4660b57cec5SDimitry Andric   if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
4670b57cec5SDimitry Andric     return false;
4680b57cec5SDimitry Andric 
4690b57cec5SDimitry Andric   MachineInstr *PredI = MRI->getVRegDef(PredR);
4700b57cec5SDimitry Andric   if (!PredI->isCompare())
4710b57cec5SDimitry Andric     return false;
4720b57cec5SDimitry Andric 
4735ffd83dbSDimitry Andric   Register CmpReg1, CmpReg2;
474349cc55cSDimitry Andric   int64_t CmpImm = 0, CmpMask = 0;
4750b57cec5SDimitry Andric   bool CmpAnalyzed =
4760b57cec5SDimitry Andric       TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
4770b57cec5SDimitry Andric   // Fail if the compare was not analyzed, or it's not comparing a register
4780b57cec5SDimitry Andric   // with an immediate value.  Not checking the mask here, since we handle
4790b57cec5SDimitry Andric   // the individual compare opcodes (including A4_cmpb*) later on.
4800b57cec5SDimitry Andric   if (!CmpAnalyzed)
4810b57cec5SDimitry Andric     return false;
4820b57cec5SDimitry Andric 
4830b57cec5SDimitry Andric   // Exactly one of the input registers to the comparison should be among
4840b57cec5SDimitry Andric   // the induction registers.
4850b57cec5SDimitry Andric   InductionMap::iterator IndMapEnd = IndMap.end();
4860b57cec5SDimitry Andric   InductionMap::iterator F = IndMapEnd;
4870b57cec5SDimitry Andric   if (CmpReg1 != 0) {
4880b57cec5SDimitry Andric     InductionMap::iterator F1 = IndMap.find(CmpReg1);
4890b57cec5SDimitry Andric     if (F1 != IndMapEnd)
4900b57cec5SDimitry Andric       F = F1;
4910b57cec5SDimitry Andric   }
4920b57cec5SDimitry Andric   if (CmpReg2 != 0) {
4930b57cec5SDimitry Andric     InductionMap::iterator F2 = IndMap.find(CmpReg2);
4940b57cec5SDimitry Andric     if (F2 != IndMapEnd) {
4950b57cec5SDimitry Andric       if (F != IndMapEnd)
4960b57cec5SDimitry Andric         return false;
4970b57cec5SDimitry Andric       F = F2;
4980b57cec5SDimitry Andric     }
4990b57cec5SDimitry Andric   }
5000b57cec5SDimitry Andric   if (F == IndMapEnd)
5010b57cec5SDimitry Andric     return false;
5020b57cec5SDimitry Andric 
5030b57cec5SDimitry Andric   Reg = F->second.first;
5040b57cec5SDimitry Andric   IVBump = F->second.second;
5050b57cec5SDimitry Andric   IVOp = MRI->getVRegDef(F->first);
5060b57cec5SDimitry Andric   return true;
5070b57cec5SDimitry Andric }
5080b57cec5SDimitry Andric 
5090b57cec5SDimitry Andric // Return the comparison kind for the specified opcode.
5100b57cec5SDimitry Andric HexagonHardwareLoops::Comparison::Kind
5110b57cec5SDimitry Andric HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
5120b57cec5SDimitry Andric                                         MachineOperand *InitialValue,
5130b57cec5SDimitry Andric                                         const MachineOperand *EndValue,
5140b57cec5SDimitry Andric                                         int64_t IVBump) const {
5150b57cec5SDimitry Andric   Comparison::Kind Cmp = (Comparison::Kind)0;
5160b57cec5SDimitry Andric   switch (CondOpc) {
5170b57cec5SDimitry Andric   case Hexagon::C2_cmpeq:
5180b57cec5SDimitry Andric   case Hexagon::C2_cmpeqi:
5190b57cec5SDimitry Andric   case Hexagon::C2_cmpeqp:
5200b57cec5SDimitry Andric     Cmp = Comparison::EQ;
5210b57cec5SDimitry Andric     break;
5220b57cec5SDimitry Andric   case Hexagon::C4_cmpneq:
5230b57cec5SDimitry Andric   case Hexagon::C4_cmpneqi:
5240b57cec5SDimitry Andric     Cmp = Comparison::NE;
5250b57cec5SDimitry Andric     break;
5260b57cec5SDimitry Andric   case Hexagon::C2_cmplt:
5270b57cec5SDimitry Andric     Cmp = Comparison::LTs;
5280b57cec5SDimitry Andric     break;
5290b57cec5SDimitry Andric   case Hexagon::C2_cmpltu:
5300b57cec5SDimitry Andric     Cmp = Comparison::LTu;
5310b57cec5SDimitry Andric     break;
5320b57cec5SDimitry Andric   case Hexagon::C4_cmplte:
5330b57cec5SDimitry Andric   case Hexagon::C4_cmpltei:
5340b57cec5SDimitry Andric     Cmp = Comparison::LEs;
5350b57cec5SDimitry Andric     break;
5360b57cec5SDimitry Andric   case Hexagon::C4_cmplteu:
5370b57cec5SDimitry Andric   case Hexagon::C4_cmplteui:
5380b57cec5SDimitry Andric     Cmp = Comparison::LEu;
5390b57cec5SDimitry Andric     break;
5400b57cec5SDimitry Andric   case Hexagon::C2_cmpgt:
5410b57cec5SDimitry Andric   case Hexagon::C2_cmpgti:
5420b57cec5SDimitry Andric   case Hexagon::C2_cmpgtp:
5430b57cec5SDimitry Andric     Cmp = Comparison::GTs;
5440b57cec5SDimitry Andric     break;
5450b57cec5SDimitry Andric   case Hexagon::C2_cmpgtu:
5460b57cec5SDimitry Andric   case Hexagon::C2_cmpgtui:
5470b57cec5SDimitry Andric   case Hexagon::C2_cmpgtup:
5480b57cec5SDimitry Andric     Cmp = Comparison::GTu;
5490b57cec5SDimitry Andric     break;
5500b57cec5SDimitry Andric   case Hexagon::C2_cmpgei:
5510b57cec5SDimitry Andric     Cmp = Comparison::GEs;
5520b57cec5SDimitry Andric     break;
5530b57cec5SDimitry Andric   case Hexagon::C2_cmpgeui:
5540b57cec5SDimitry Andric     Cmp = Comparison::GEs;
5550b57cec5SDimitry Andric     break;
5560b57cec5SDimitry Andric   default:
5570b57cec5SDimitry Andric     return (Comparison::Kind)0;
5580b57cec5SDimitry Andric   }
5590b57cec5SDimitry Andric   return Cmp;
5600b57cec5SDimitry Andric }
5610b57cec5SDimitry Andric 
5620b57cec5SDimitry Andric /// Analyze the statements in a loop to determine if the loop has
5630b57cec5SDimitry Andric /// a computable trip count and, if so, return a value that represents
5640b57cec5SDimitry Andric /// the trip count expression.
5650b57cec5SDimitry Andric ///
5660b57cec5SDimitry Andric /// This function iterates over the phi nodes in the loop to check for
5670b57cec5SDimitry Andric /// induction variable patterns that are used in the calculation for
5680b57cec5SDimitry Andric /// the number of time the loop is executed.
5690b57cec5SDimitry Andric CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
5700b57cec5SDimitry Andric     SmallVectorImpl<MachineInstr *> &OldInsts) {
5710b57cec5SDimitry Andric   MachineBasicBlock *TopMBB = L->getTopBlock();
5720b57cec5SDimitry Andric   MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
5730b57cec5SDimitry Andric   assert(PI != TopMBB->pred_end() &&
5740b57cec5SDimitry Andric          "Loop must have more than one incoming edge!");
5750b57cec5SDimitry Andric   MachineBasicBlock *Backedge = *PI++;
5760b57cec5SDimitry Andric   if (PI == TopMBB->pred_end())  // dead loop?
5770b57cec5SDimitry Andric     return nullptr;
5780b57cec5SDimitry Andric   MachineBasicBlock *Incoming = *PI++;
5790b57cec5SDimitry Andric   if (PI != TopMBB->pred_end())  // multiple backedges?
5800b57cec5SDimitry Andric     return nullptr;
5810b57cec5SDimitry Andric 
5820b57cec5SDimitry Andric   // Make sure there is one incoming and one backedge and determine which
5830b57cec5SDimitry Andric   // is which.
5840b57cec5SDimitry Andric   if (L->contains(Incoming)) {
5850b57cec5SDimitry Andric     if (L->contains(Backedge))
5860b57cec5SDimitry Andric       return nullptr;
5870b57cec5SDimitry Andric     std::swap(Incoming, Backedge);
5880b57cec5SDimitry Andric   } else if (!L->contains(Backedge))
5890b57cec5SDimitry Andric     return nullptr;
5900b57cec5SDimitry Andric 
5910b57cec5SDimitry Andric   // Look for the cmp instruction to determine if we can get a useful trip
5920b57cec5SDimitry Andric   // count.  The trip count can be either a register or an immediate.  The
5930b57cec5SDimitry Andric   // location of the value depends upon the type (reg or imm).
5940b57cec5SDimitry Andric   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
5950b57cec5SDimitry Andric   if (!ExitingBlock)
5960b57cec5SDimitry Andric     return nullptr;
5970b57cec5SDimitry Andric 
598bdd1243dSDimitry Andric   Register IVReg = 0;
5990b57cec5SDimitry Andric   int64_t IVBump = 0;
6000b57cec5SDimitry Andric   MachineInstr *IVOp;
6010b57cec5SDimitry Andric   bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
6020b57cec5SDimitry Andric   if (!FoundIV)
6030b57cec5SDimitry Andric     return nullptr;
6040b57cec5SDimitry Andric 
6050b57cec5SDimitry Andric   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
6060b57cec5SDimitry Andric 
6070b57cec5SDimitry Andric   MachineOperand *InitialValue = nullptr;
6080b57cec5SDimitry Andric   MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
6090b57cec5SDimitry Andric   MachineBasicBlock *Latch = L->getLoopLatch();
6100b57cec5SDimitry Andric   for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
6110b57cec5SDimitry Andric     MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
6120b57cec5SDimitry Andric     if (MBB == Preheader)
6130b57cec5SDimitry Andric       InitialValue = &IV_Phi->getOperand(i);
6140b57cec5SDimitry Andric     else if (MBB == Latch)
6150b57cec5SDimitry Andric       IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
6160b57cec5SDimitry Andric   }
6170b57cec5SDimitry Andric   if (!InitialValue)
6180b57cec5SDimitry Andric     return nullptr;
6190b57cec5SDimitry Andric 
6200b57cec5SDimitry Andric   SmallVector<MachineOperand,2> Cond;
6210b57cec5SDimitry Andric   MachineBasicBlock *TB = nullptr, *FB = nullptr;
6220b57cec5SDimitry Andric   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
6230b57cec5SDimitry Andric   if (NotAnalyzed)
6240b57cec5SDimitry Andric     return nullptr;
6250b57cec5SDimitry Andric 
6260b57cec5SDimitry Andric   MachineBasicBlock *Header = L->getHeader();
6270b57cec5SDimitry Andric   // TB must be non-null.  If FB is also non-null, one of them must be
6280b57cec5SDimitry Andric   // the header.  Otherwise, branch to TB could be exiting the loop, and
6290b57cec5SDimitry Andric   // the fall through can go to the header.
6300b57cec5SDimitry Andric   assert (TB && "Exit block without a branch?");
6310b57cec5SDimitry Andric   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
6320b57cec5SDimitry Andric     MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
6330b57cec5SDimitry Andric     SmallVector<MachineOperand,2> LCond;
6340b57cec5SDimitry Andric     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
6350b57cec5SDimitry Andric     if (NotAnalyzed)
6360b57cec5SDimitry Andric       return nullptr;
6370b57cec5SDimitry Andric     if (TB == Latch)
6380b57cec5SDimitry Andric       TB = (LTB == Header) ? LTB : LFB;
6390b57cec5SDimitry Andric     else
6400b57cec5SDimitry Andric       FB = (LTB == Header) ? LTB: LFB;
6410b57cec5SDimitry Andric   }
6420b57cec5SDimitry Andric   assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
6430b57cec5SDimitry Andric   if (!TB || (FB && TB != Header && FB != Header))
6440b57cec5SDimitry Andric     return nullptr;
6450b57cec5SDimitry Andric 
6465ffd83dbSDimitry Andric   // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
6470b57cec5SDimitry Andric   // to put imm(0), followed by P in the vector Cond.
6480b57cec5SDimitry Andric   // If TB is not the header, it means that the "not-taken" path must lead
6490b57cec5SDimitry Andric   // to the header.
6500b57cec5SDimitry Andric   bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
651bdd1243dSDimitry Andric   Register PredReg;
652bdd1243dSDimitry Andric   unsigned PredPos, PredRegFlags;
6530b57cec5SDimitry Andric   if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
6540b57cec5SDimitry Andric     return nullptr;
6550b57cec5SDimitry Andric   MachineInstr *CondI = MRI->getVRegDef(PredReg);
6560b57cec5SDimitry Andric   unsigned CondOpc = CondI->getOpcode();
6570b57cec5SDimitry Andric 
6585ffd83dbSDimitry Andric   Register CmpReg1, CmpReg2;
659349cc55cSDimitry Andric   int64_t Mask = 0, ImmValue = 0;
6600b57cec5SDimitry Andric   bool AnalyzedCmp =
6610b57cec5SDimitry Andric       TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
6620b57cec5SDimitry Andric   if (!AnalyzedCmp)
6630b57cec5SDimitry Andric     return nullptr;
6640b57cec5SDimitry Andric 
6650b57cec5SDimitry Andric   // The comparison operator type determines how we compute the loop
6660b57cec5SDimitry Andric   // trip count.
6670b57cec5SDimitry Andric   OldInsts.push_back(CondI);
6680b57cec5SDimitry Andric   OldInsts.push_back(IVOp);
6690b57cec5SDimitry Andric 
6700b57cec5SDimitry Andric   // Sadly, the following code gets information based on the position
6710b57cec5SDimitry Andric   // of the operands in the compare instruction.  This has to be done
6720b57cec5SDimitry Andric   // this way, because the comparisons check for a specific relationship
6730b57cec5SDimitry Andric   // between the operands (e.g. is-less-than), rather than to find out
6740b57cec5SDimitry Andric   // what relationship the operands are in (as on PPC).
6750b57cec5SDimitry Andric   Comparison::Kind Cmp;
6760b57cec5SDimitry Andric   bool isSwapped = false;
6770b57cec5SDimitry Andric   const MachineOperand &Op1 = CondI->getOperand(1);
6780b57cec5SDimitry Andric   const MachineOperand &Op2 = CondI->getOperand(2);
6790b57cec5SDimitry Andric   const MachineOperand *EndValue = nullptr;
6800b57cec5SDimitry Andric 
6810b57cec5SDimitry Andric   if (Op1.isReg()) {
6820b57cec5SDimitry Andric     if (Op2.isImm() || Op1.getReg() == IVReg)
6830b57cec5SDimitry Andric       EndValue = &Op2;
6840b57cec5SDimitry Andric     else {
6850b57cec5SDimitry Andric       EndValue = &Op1;
6860b57cec5SDimitry Andric       isSwapped = true;
6870b57cec5SDimitry Andric     }
6880b57cec5SDimitry Andric   }
6890b57cec5SDimitry Andric 
6900b57cec5SDimitry Andric   if (!EndValue)
6910b57cec5SDimitry Andric     return nullptr;
6920b57cec5SDimitry Andric 
6930b57cec5SDimitry Andric   Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
6940b57cec5SDimitry Andric   if (!Cmp)
6950b57cec5SDimitry Andric     return nullptr;
6960b57cec5SDimitry Andric   if (Negated)
6970b57cec5SDimitry Andric     Cmp = Comparison::getNegatedComparison(Cmp);
6980b57cec5SDimitry Andric   if (isSwapped)
6990b57cec5SDimitry Andric     Cmp = Comparison::getSwappedComparison(Cmp);
7000b57cec5SDimitry Andric 
7010b57cec5SDimitry Andric   if (InitialValue->isReg()) {
7028bcb0991SDimitry Andric     Register R = InitialValue->getReg();
7030b57cec5SDimitry Andric     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
7040b57cec5SDimitry Andric     if (!MDT->properlyDominates(DefBB, Header)) {
7050b57cec5SDimitry Andric       int64_t V;
7060b57cec5SDimitry Andric       if (!checkForImmediate(*InitialValue, V))
7070b57cec5SDimitry Andric         return nullptr;
7080b57cec5SDimitry Andric     }
7090b57cec5SDimitry Andric     OldInsts.push_back(MRI->getVRegDef(R));
7100b57cec5SDimitry Andric   }
7110b57cec5SDimitry Andric   if (EndValue->isReg()) {
7128bcb0991SDimitry Andric     Register R = EndValue->getReg();
7130b57cec5SDimitry Andric     MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
7140b57cec5SDimitry Andric     if (!MDT->properlyDominates(DefBB, Header)) {
7150b57cec5SDimitry Andric       int64_t V;
7160b57cec5SDimitry Andric       if (!checkForImmediate(*EndValue, V))
7170b57cec5SDimitry Andric         return nullptr;
7180b57cec5SDimitry Andric     }
7190b57cec5SDimitry Andric     OldInsts.push_back(MRI->getVRegDef(R));
7200b57cec5SDimitry Andric   }
7210b57cec5SDimitry Andric 
7220b57cec5SDimitry Andric   return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
7230b57cec5SDimitry Andric }
7240b57cec5SDimitry Andric 
7250b57cec5SDimitry Andric /// Helper function that returns the expression that represents the
7260b57cec5SDimitry Andric /// number of times a loop iterates.  The function takes the operands that
7270b57cec5SDimitry Andric /// represent the loop start value, loop end value, and induction value.
7280b57cec5SDimitry Andric /// Based upon these operands, the function attempts to compute the trip count.
7290b57cec5SDimitry Andric CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
7300b57cec5SDimitry Andric                                                const MachineOperand *Start,
7310b57cec5SDimitry Andric                                                const MachineOperand *End,
732bdd1243dSDimitry Andric                                                Register IVReg,
7330b57cec5SDimitry Andric                                                int64_t IVBump,
7340b57cec5SDimitry Andric                                                Comparison::Kind Cmp) const {
7350b57cec5SDimitry Andric   // Cannot handle comparison EQ, i.e. while (A == B).
7360b57cec5SDimitry Andric   if (Cmp == Comparison::EQ)
7370b57cec5SDimitry Andric     return nullptr;
7380b57cec5SDimitry Andric 
7390b57cec5SDimitry Andric   // Check if either the start or end values are an assignment of an immediate.
7400b57cec5SDimitry Andric   // If so, use the immediate value rather than the register.
7410b57cec5SDimitry Andric   if (Start->isReg()) {
7420b57cec5SDimitry Andric     const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
7430b57cec5SDimitry Andric     if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
7440b57cec5SDimitry Andric                           StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
7450b57cec5SDimitry Andric       Start = &StartValInstr->getOperand(1);
7460b57cec5SDimitry Andric   }
7470b57cec5SDimitry Andric   if (End->isReg()) {
7480b57cec5SDimitry Andric     const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
7490b57cec5SDimitry Andric     if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
7500b57cec5SDimitry Andric                         EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
7510b57cec5SDimitry Andric       End = &EndValInstr->getOperand(1);
7520b57cec5SDimitry Andric   }
7530b57cec5SDimitry Andric 
7540b57cec5SDimitry Andric   if (!Start->isReg() && !Start->isImm())
7550b57cec5SDimitry Andric     return nullptr;
7560b57cec5SDimitry Andric   if (!End->isReg() && !End->isImm())
7570b57cec5SDimitry Andric     return nullptr;
7580b57cec5SDimitry Andric 
7590b57cec5SDimitry Andric   bool CmpLess =     Cmp & Comparison::L;
7600b57cec5SDimitry Andric   bool CmpGreater =  Cmp & Comparison::G;
7610b57cec5SDimitry Andric   bool CmpHasEqual = Cmp & Comparison::EQ;
7620b57cec5SDimitry Andric 
7630b57cec5SDimitry Andric   // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
7640b57cec5SDimitry Andric   if (CmpLess && IVBump < 0)
7650b57cec5SDimitry Andric     // Loop going while iv is "less" with the iv value going down.  Must wrap.
7660b57cec5SDimitry Andric     return nullptr;
7670b57cec5SDimitry Andric 
7680b57cec5SDimitry Andric   if (CmpGreater && IVBump > 0)
7690b57cec5SDimitry Andric     // Loop going while iv is "greater" with the iv value going up.  Must wrap.
7700b57cec5SDimitry Andric     return nullptr;
7710b57cec5SDimitry Andric 
7720b57cec5SDimitry Andric   // Phis that may feed into the loop.
7730b57cec5SDimitry Andric   LoopFeederMap LoopFeederPhi;
7740b57cec5SDimitry Andric 
7750b57cec5SDimitry Andric   // Check if the initial value may be zero and can be decremented in the first
7760b57cec5SDimitry Andric   // iteration. If the value is zero, the endloop instruction will not decrement
7770b57cec5SDimitry Andric   // the loop counter, so we shouldn't generate a hardware loop in this case.
7780b57cec5SDimitry Andric   if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
7790b57cec5SDimitry Andric                                   LoopFeederPhi))
7800b57cec5SDimitry Andric       return nullptr;
7810b57cec5SDimitry Andric 
7820b57cec5SDimitry Andric   if (Start->isImm() && End->isImm()) {
7830b57cec5SDimitry Andric     // Both, start and end are immediates.
7840b57cec5SDimitry Andric     int64_t StartV = Start->getImm();
7850b57cec5SDimitry Andric     int64_t EndV = End->getImm();
7860b57cec5SDimitry Andric     int64_t Dist = EndV - StartV;
7870b57cec5SDimitry Andric     if (Dist == 0)
7880b57cec5SDimitry Andric       return nullptr;
7890b57cec5SDimitry Andric 
7900b57cec5SDimitry Andric     bool Exact = (Dist % IVBump) == 0;
7910b57cec5SDimitry Andric 
7920b57cec5SDimitry Andric     if (Cmp == Comparison::NE) {
7930b57cec5SDimitry Andric       if (!Exact)
7940b57cec5SDimitry Andric         return nullptr;
7950b57cec5SDimitry Andric       if ((Dist < 0) ^ (IVBump < 0))
7960b57cec5SDimitry Andric         return nullptr;
7970b57cec5SDimitry Andric     }
7980b57cec5SDimitry Andric 
7990b57cec5SDimitry Andric     // For comparisons that include the final value (i.e. include equality
8000b57cec5SDimitry Andric     // with the final value), we need to increase the distance by 1.
8010b57cec5SDimitry Andric     if (CmpHasEqual)
8020b57cec5SDimitry Andric       Dist = Dist > 0 ? Dist+1 : Dist-1;
8030b57cec5SDimitry Andric 
8040b57cec5SDimitry Andric     // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
8050b57cec5SDimitry Andric     // CmpGreater should imply Dist < 0.  These conditions could actually
8060b57cec5SDimitry Andric     // fail, for example, in unreachable code (which may still appear to be
8070b57cec5SDimitry Andric     // reachable in the CFG).
8080b57cec5SDimitry Andric     if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
8090b57cec5SDimitry Andric       return nullptr;
8100b57cec5SDimitry Andric 
8110b57cec5SDimitry Andric     // "Normalized" distance, i.e. with the bump set to +-1.
8120b57cec5SDimitry Andric     int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
8130b57cec5SDimitry Andric                                  : (-Dist + (-IVBump - 1)) / (-IVBump);
8140b57cec5SDimitry Andric     assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");
8150b57cec5SDimitry Andric 
8160b57cec5SDimitry Andric     uint64_t Count = Dist1;
8170b57cec5SDimitry Andric 
8180b57cec5SDimitry Andric     if (Count > 0xFFFFFFFFULL)
8190b57cec5SDimitry Andric       return nullptr;
8200b57cec5SDimitry Andric 
8210b57cec5SDimitry Andric     return new CountValue(CountValue::CV_Immediate, Count);
8220b57cec5SDimitry Andric   }
8230b57cec5SDimitry Andric 
8240b57cec5SDimitry Andric   // A general case: Start and End are some values, but the actual
8250b57cec5SDimitry Andric   // iteration count may not be available.  If it is not, insert
8260b57cec5SDimitry Andric   // a computation of it into the preheader.
8270b57cec5SDimitry Andric 
8280b57cec5SDimitry Andric   // If the induction variable bump is not a power of 2, quit.
8290b57cec5SDimitry Andric   // Othwerise we'd need a general integer division.
8300b57cec5SDimitry Andric   if (!isPowerOf2_64(std::abs(IVBump)))
8310b57cec5SDimitry Andric     return nullptr;
8320b57cec5SDimitry Andric 
8330b57cec5SDimitry Andric   MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
8340b57cec5SDimitry Andric   assert (PH && "Should have a preheader by now");
8350b57cec5SDimitry Andric   MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
8360b57cec5SDimitry Andric   DebugLoc DL;
8370b57cec5SDimitry Andric   if (InsertPos != PH->end())
8380b57cec5SDimitry Andric     DL = InsertPos->getDebugLoc();
8390b57cec5SDimitry Andric 
8400b57cec5SDimitry Andric   // If Start is an immediate and End is a register, the trip count
8410b57cec5SDimitry Andric   // will be "reg - imm".  Hexagon's "subtract immediate" instruction
8420b57cec5SDimitry Andric   // is actually "reg + -imm".
8430b57cec5SDimitry Andric 
8440b57cec5SDimitry Andric   // If the loop IV is going downwards, i.e. if the bump is negative,
8450b57cec5SDimitry Andric   // then the iteration count (computed as End-Start) will need to be
8460b57cec5SDimitry Andric   // negated.  To avoid the negation, just swap Start and End.
8470b57cec5SDimitry Andric   if (IVBump < 0) {
8480b57cec5SDimitry Andric     std::swap(Start, End);
8490b57cec5SDimitry Andric     IVBump = -IVBump;
8500b57cec5SDimitry Andric   }
8510b57cec5SDimitry Andric   // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
8520b57cec5SDimitry Andric   // Signedness, and "including equality" are preserved.
8530b57cec5SDimitry Andric 
8540b57cec5SDimitry Andric   bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
8550b57cec5SDimitry Andric   bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
8560b57cec5SDimitry Andric 
8570b57cec5SDimitry Andric   int64_t StartV = 0, EndV = 0;
8580b57cec5SDimitry Andric   if (Start->isImm())
8590b57cec5SDimitry Andric     StartV = Start->getImm();
8600b57cec5SDimitry Andric   if (End->isImm())
8610b57cec5SDimitry Andric     EndV = End->getImm();
8620b57cec5SDimitry Andric 
8630b57cec5SDimitry Andric   int64_t AdjV = 0;
8640b57cec5SDimitry Andric   // To compute the iteration count, we would need this computation:
8650b57cec5SDimitry Andric   //   Count = (End - Start + (IVBump-1)) / IVBump
8660b57cec5SDimitry Andric   // or, when CmpHasEqual:
8670b57cec5SDimitry Andric   //   Count = (End - Start + (IVBump-1)+1) / IVBump
8680b57cec5SDimitry Andric   // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
8690b57cec5SDimitry Andric   // generating an instruction specifically to add it if we can adjust
8700b57cec5SDimitry Andric   // the immediate values for Start or End.
8710b57cec5SDimitry Andric 
8720b57cec5SDimitry Andric   if (CmpHasEqual) {
8730b57cec5SDimitry Andric     // Need to add 1 to the total iteration count.
8740b57cec5SDimitry Andric     if (Start->isImm())
8750b57cec5SDimitry Andric       StartV--;
8760b57cec5SDimitry Andric     else if (End->isImm())
8770b57cec5SDimitry Andric       EndV++;
8780b57cec5SDimitry Andric     else
8790b57cec5SDimitry Andric       AdjV += 1;
8800b57cec5SDimitry Andric   }
8810b57cec5SDimitry Andric 
8820b57cec5SDimitry Andric   if (Cmp != Comparison::NE) {
8830b57cec5SDimitry Andric     if (Start->isImm())
8840b57cec5SDimitry Andric       StartV -= (IVBump-1);
8850b57cec5SDimitry Andric     else if (End->isImm())
8860b57cec5SDimitry Andric       EndV += (IVBump-1);
8870b57cec5SDimitry Andric     else
8880b57cec5SDimitry Andric       AdjV += (IVBump-1);
8890b57cec5SDimitry Andric   }
8900b57cec5SDimitry Andric 
891bdd1243dSDimitry Andric   Register R = 0;
892bdd1243dSDimitry Andric   unsigned SR = 0;
8930b57cec5SDimitry Andric   if (Start->isReg()) {
8940b57cec5SDimitry Andric     R = Start->getReg();
8950b57cec5SDimitry Andric     SR = Start->getSubReg();
8960b57cec5SDimitry Andric   } else {
8970b57cec5SDimitry Andric     R = End->getReg();
8980b57cec5SDimitry Andric     SR = End->getSubReg();
8990b57cec5SDimitry Andric   }
9000b57cec5SDimitry Andric   const TargetRegisterClass *RC = MRI->getRegClass(R);
9010b57cec5SDimitry Andric   // Hardware loops cannot handle 64-bit registers.  If it's a double
9020b57cec5SDimitry Andric   // register, it has to have a subregister.
9030b57cec5SDimitry Andric   if (!SR && RC == &Hexagon::DoubleRegsRegClass)
9040b57cec5SDimitry Andric     return nullptr;
9050b57cec5SDimitry Andric   const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
9060b57cec5SDimitry Andric 
9070b57cec5SDimitry Andric   // Compute DistR (register with the distance between Start and End).
908bdd1243dSDimitry Andric   Register DistR;
909bdd1243dSDimitry Andric   unsigned DistSR;
9100b57cec5SDimitry Andric 
9110b57cec5SDimitry Andric   // Avoid special case, where the start value is an imm(0).
9120b57cec5SDimitry Andric   if (Start->isImm() && StartV == 0) {
9130b57cec5SDimitry Andric     DistR = End->getReg();
9140b57cec5SDimitry Andric     DistSR = End->getSubReg();
9150b57cec5SDimitry Andric   } else {
9160b57cec5SDimitry Andric     const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
9170b57cec5SDimitry Andric                               (RegToImm ? TII->get(Hexagon::A2_subri) :
9180b57cec5SDimitry Andric                                           TII->get(Hexagon::A2_addi));
9190b57cec5SDimitry Andric     if (RegToReg || RegToImm) {
9208bcb0991SDimitry Andric       Register SubR = MRI->createVirtualRegister(IntRC);
9210b57cec5SDimitry Andric       MachineInstrBuilder SubIB =
9220b57cec5SDimitry Andric         BuildMI(*PH, InsertPos, DL, SubD, SubR);
9230b57cec5SDimitry Andric 
9240b57cec5SDimitry Andric       if (RegToReg)
9250b57cec5SDimitry Andric         SubIB.addReg(End->getReg(), 0, End->getSubReg())
9260b57cec5SDimitry Andric           .addReg(Start->getReg(), 0, Start->getSubReg());
9270b57cec5SDimitry Andric       else
9280b57cec5SDimitry Andric         SubIB.addImm(EndV)
9290b57cec5SDimitry Andric           .addReg(Start->getReg(), 0, Start->getSubReg());
9300b57cec5SDimitry Andric       DistR = SubR;
9310b57cec5SDimitry Andric     } else {
9320b57cec5SDimitry Andric       // If the loop has been unrolled, we should use the original loop count
9330b57cec5SDimitry Andric       // instead of recalculating the value. This will avoid additional
9340b57cec5SDimitry Andric       // 'Add' instruction.
9350b57cec5SDimitry Andric       const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
9360b57cec5SDimitry Andric       if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
9370b57cec5SDimitry Andric           EndValInstr->getOperand(1).getSubReg() == 0 &&
9380b57cec5SDimitry Andric           EndValInstr->getOperand(2).getImm() == StartV) {
9390b57cec5SDimitry Andric         DistR = EndValInstr->getOperand(1).getReg();
9400b57cec5SDimitry Andric       } else {
9418bcb0991SDimitry Andric         Register SubR = MRI->createVirtualRegister(IntRC);
9420b57cec5SDimitry Andric         MachineInstrBuilder SubIB =
9430b57cec5SDimitry Andric           BuildMI(*PH, InsertPos, DL, SubD, SubR);
9440b57cec5SDimitry Andric         SubIB.addReg(End->getReg(), 0, End->getSubReg())
9450b57cec5SDimitry Andric              .addImm(-StartV);
9460b57cec5SDimitry Andric         DistR = SubR;
9470b57cec5SDimitry Andric       }
9480b57cec5SDimitry Andric     }
9490b57cec5SDimitry Andric     DistSR = 0;
9500b57cec5SDimitry Andric   }
9510b57cec5SDimitry Andric 
9520b57cec5SDimitry Andric   // From DistR, compute AdjR (register with the adjusted distance).
953bdd1243dSDimitry Andric   Register AdjR;
954bdd1243dSDimitry Andric   unsigned AdjSR;
9550b57cec5SDimitry Andric 
9560b57cec5SDimitry Andric   if (AdjV == 0) {
9570b57cec5SDimitry Andric     AdjR = DistR;
9580b57cec5SDimitry Andric     AdjSR = DistSR;
9590b57cec5SDimitry Andric   } else {
9600b57cec5SDimitry Andric     // Generate CountR = ADD DistR, AdjVal
9618bcb0991SDimitry Andric     Register AddR = MRI->createVirtualRegister(IntRC);
9620b57cec5SDimitry Andric     MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
9630b57cec5SDimitry Andric     BuildMI(*PH, InsertPos, DL, AddD, AddR)
9640b57cec5SDimitry Andric       .addReg(DistR, 0, DistSR)
9650b57cec5SDimitry Andric       .addImm(AdjV);
9660b57cec5SDimitry Andric 
9670b57cec5SDimitry Andric     AdjR = AddR;
9680b57cec5SDimitry Andric     AdjSR = 0;
9690b57cec5SDimitry Andric   }
9700b57cec5SDimitry Andric 
9710b57cec5SDimitry Andric   // From AdjR, compute CountR (register with the final count).
972bdd1243dSDimitry Andric   Register CountR;
973bdd1243dSDimitry Andric   unsigned CountSR;
9740b57cec5SDimitry Andric 
9750b57cec5SDimitry Andric   if (IVBump == 1) {
9760b57cec5SDimitry Andric     CountR = AdjR;
9770b57cec5SDimitry Andric     CountSR = AdjSR;
9780b57cec5SDimitry Andric   } else {
9790b57cec5SDimitry Andric     // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
9800b57cec5SDimitry Andric     unsigned Shift = Log2_32(IVBump);
9810b57cec5SDimitry Andric 
9820b57cec5SDimitry Andric     // Generate NormR = LSR DistR, Shift.
9838bcb0991SDimitry Andric     Register LsrR = MRI->createVirtualRegister(IntRC);
9840b57cec5SDimitry Andric     const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
9850b57cec5SDimitry Andric     BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
9860b57cec5SDimitry Andric       .addReg(AdjR, 0, AdjSR)
9870b57cec5SDimitry Andric       .addImm(Shift);
9880b57cec5SDimitry Andric 
9890b57cec5SDimitry Andric     CountR = LsrR;
9900b57cec5SDimitry Andric     CountSR = 0;
9910b57cec5SDimitry Andric   }
9920b57cec5SDimitry Andric 
9930b57cec5SDimitry Andric   return new CountValue(CountValue::CV_Register, CountR, CountSR);
9940b57cec5SDimitry Andric }
9950b57cec5SDimitry Andric 
9960b57cec5SDimitry Andric /// Return true if the operation is invalid within hardware loop.
9970b57cec5SDimitry Andric bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
9980b57cec5SDimitry Andric                                                   bool IsInnerHWLoop) const {
9990b57cec5SDimitry Andric   // Call is not allowed because the callee may use a hardware loop except for
10000b57cec5SDimitry Andric   // the case when the call never returns.
10010b57cec5SDimitry Andric   if (MI->getDesc().isCall())
10020b57cec5SDimitry Andric     return !TII->doesNotReturn(*MI);
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric   // Check if the instruction defines a hardware loop register.
10050b57cec5SDimitry Andric   using namespace Hexagon;
10060b57cec5SDimitry Andric 
1007bdd1243dSDimitry Andric   static const Register Regs01[] = { LC0, SA0, LC1, SA1 };
1008bdd1243dSDimitry Andric   static const Register Regs1[]  = { LC1, SA1 };
1009*0fca6ea1SDimitry Andric   auto CheckRegs = IsInnerHWLoop ? ArrayRef(Regs01) : ArrayRef(Regs1);
1010bdd1243dSDimitry Andric   for (Register R : CheckRegs)
10110b57cec5SDimitry Andric     if (MI->modifiesRegister(R, TRI))
10120b57cec5SDimitry Andric       return true;
10130b57cec5SDimitry Andric 
10140b57cec5SDimitry Andric   return false;
10150b57cec5SDimitry Andric }
10160b57cec5SDimitry Andric 
10170b57cec5SDimitry Andric /// Return true if the loop contains an instruction that inhibits
10180b57cec5SDimitry Andric /// the use of the hardware loop instruction.
10190b57cec5SDimitry Andric bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
10200b57cec5SDimitry Andric     bool IsInnerHWLoop) const {
10210b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "\nhw_loop head, "
10220b57cec5SDimitry Andric                     << printMBBReference(**L->block_begin()));
10230b57cec5SDimitry Andric   for (MachineBasicBlock *MBB : L->getBlocks()) {
10244824e7fdSDimitry Andric     for (const MachineInstr &MI : *MBB) {
10254824e7fdSDimitry Andric       if (isInvalidLoopOperation(&MI, IsInnerHWLoop)) {
10260b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
10274824e7fdSDimitry Andric                    MI.dump(););
10280b57cec5SDimitry Andric         return true;
10290b57cec5SDimitry Andric       }
10300b57cec5SDimitry Andric     }
10310b57cec5SDimitry Andric   }
10320b57cec5SDimitry Andric   return false;
10330b57cec5SDimitry Andric }
10340b57cec5SDimitry Andric 
10350b57cec5SDimitry Andric /// Returns true if the instruction is dead.  This was essentially
10360b57cec5SDimitry Andric /// copied from DeadMachineInstructionElim::isDead, but with special cases
10370b57cec5SDimitry Andric /// for inline asm, physical registers and instructions with side effects
10380b57cec5SDimitry Andric /// removed.
10390b57cec5SDimitry Andric bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
10400b57cec5SDimitry Andric                               SmallVectorImpl<MachineInstr *> &DeadPhis) const {
10410b57cec5SDimitry Andric   // Examine each operand.
10424824e7fdSDimitry Andric   for (const MachineOperand &MO : MI->operands()) {
10430b57cec5SDimitry Andric     if (!MO.isReg() || !MO.isDef())
10440b57cec5SDimitry Andric       continue;
10450b57cec5SDimitry Andric 
10468bcb0991SDimitry Andric     Register Reg = MO.getReg();
10470b57cec5SDimitry Andric     if (MRI->use_nodbg_empty(Reg))
10480b57cec5SDimitry Andric       continue;
10490b57cec5SDimitry Andric 
10500b57cec5SDimitry Andric     using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;
10510b57cec5SDimitry Andric 
10520b57cec5SDimitry Andric     // This instruction has users, but if the only user is the phi node for the
10530b57cec5SDimitry Andric     // parent block, and the only use of that phi node is this instruction, then
10540b57cec5SDimitry Andric     // this instruction is dead: both it (and the phi node) can be removed.
10550b57cec5SDimitry Andric     use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
10560b57cec5SDimitry Andric     use_nodbg_iterator End = MRI->use_nodbg_end();
10570b57cec5SDimitry Andric     if (std::next(I) != End || !I->getParent()->isPHI())
10580b57cec5SDimitry Andric       return false;
10590b57cec5SDimitry Andric 
10600b57cec5SDimitry Andric     MachineInstr *OnePhi = I->getParent();
106106c3fb27SDimitry Andric     for (const MachineOperand &OPO : OnePhi->operands()) {
10620b57cec5SDimitry Andric       if (!OPO.isReg() || !OPO.isDef())
10630b57cec5SDimitry Andric         continue;
10640b57cec5SDimitry Andric 
10658bcb0991SDimitry Andric       Register OPReg = OPO.getReg();
10660b57cec5SDimitry Andric       use_nodbg_iterator nextJ;
10670b57cec5SDimitry Andric       for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
10680b57cec5SDimitry Andric            J != End; J = nextJ) {
10690b57cec5SDimitry Andric         nextJ = std::next(J);
10700b57cec5SDimitry Andric         MachineOperand &Use = *J;
10710b57cec5SDimitry Andric         MachineInstr *UseMI = Use.getParent();
10720b57cec5SDimitry Andric 
10730b57cec5SDimitry Andric         // If the phi node has a user that is not MI, bail.
10740b57cec5SDimitry Andric         if (MI != UseMI)
10750b57cec5SDimitry Andric           return false;
10760b57cec5SDimitry Andric       }
10770b57cec5SDimitry Andric     }
10780b57cec5SDimitry Andric     DeadPhis.push_back(OnePhi);
10790b57cec5SDimitry Andric   }
10800b57cec5SDimitry Andric 
10810b57cec5SDimitry Andric   // If there are no defs with uses, the instruction is dead.
10820b57cec5SDimitry Andric   return true;
10830b57cec5SDimitry Andric }
10840b57cec5SDimitry Andric 
10850b57cec5SDimitry Andric void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
10860b57cec5SDimitry Andric   // This procedure was essentially copied from DeadMachineInstructionElim.
10870b57cec5SDimitry Andric 
10880b57cec5SDimitry Andric   SmallVector<MachineInstr*, 1> DeadPhis;
10890b57cec5SDimitry Andric   if (isDead(MI, DeadPhis)) {
10900b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);
10910b57cec5SDimitry Andric 
10920b57cec5SDimitry Andric     // It is possible that some DBG_VALUE instructions refer to this
10930b57cec5SDimitry Andric     // instruction.  Examine each def operand for such references;
10940b57cec5SDimitry Andric     // if found, mark the DBG_VALUE as undef (but don't delete it).
10954824e7fdSDimitry Andric     for (const MachineOperand &MO : MI->operands()) {
10960b57cec5SDimitry Andric       if (!MO.isReg() || !MO.isDef())
10970b57cec5SDimitry Andric         continue;
10988bcb0991SDimitry Andric       Register Reg = MO.getReg();
1099349cc55cSDimitry Andric       // We use make_early_inc_range here because setReg below invalidates the
1100349cc55cSDimitry Andric       // iterator.
1101349cc55cSDimitry Andric       for (MachineOperand &MO :
1102349cc55cSDimitry Andric            llvm::make_early_inc_range(MRI->use_operands(Reg))) {
1103349cc55cSDimitry Andric         MachineInstr *UseMI = MO.getParent();
11040b57cec5SDimitry Andric         if (UseMI == MI)
11050b57cec5SDimitry Andric           continue;
1106349cc55cSDimitry Andric         if (MO.isDebug())
1107349cc55cSDimitry Andric           MO.setReg(0U);
11080b57cec5SDimitry Andric       }
11090b57cec5SDimitry Andric     }
11100b57cec5SDimitry Andric 
11110b57cec5SDimitry Andric     MI->eraseFromParent();
11120b57cec5SDimitry Andric     for (unsigned i = 0; i < DeadPhis.size(); ++i)
11130b57cec5SDimitry Andric       DeadPhis[i]->eraseFromParent();
11140b57cec5SDimitry Andric   }
11150b57cec5SDimitry Andric }
11160b57cec5SDimitry Andric 
11170b57cec5SDimitry Andric /// Check if the loop is a candidate for converting to a hardware
11180b57cec5SDimitry Andric /// loop.  If so, then perform the transformation.
11190b57cec5SDimitry Andric ///
11200b57cec5SDimitry Andric /// This function works on innermost loops first.  A loop can be converted
11210b57cec5SDimitry Andric /// if it is a counting loop; either a register value or an immediate.
11220b57cec5SDimitry Andric ///
11230b57cec5SDimitry Andric /// The code makes several assumptions about the representation of the loop
11240b57cec5SDimitry Andric /// in llvm.
11250b57cec5SDimitry Andric bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
11260b57cec5SDimitry Andric                                                  bool &RecL0used,
11270b57cec5SDimitry Andric                                                  bool &RecL1used) {
11284824e7fdSDimitry Andric   // This is just to confirm basic correctness.
11290b57cec5SDimitry Andric   assert(L->getHeader() && "Loop without a header?");
11300b57cec5SDimitry Andric 
11310b57cec5SDimitry Andric   bool Changed = false;
11320b57cec5SDimitry Andric   bool L0Used = false;
11330b57cec5SDimitry Andric   bool L1Used = false;
11340b57cec5SDimitry Andric 
11350b57cec5SDimitry Andric   // Process nested loops first.
113604eeddc0SDimitry Andric   for (MachineLoop *I : *L) {
113704eeddc0SDimitry Andric     Changed |= convertToHardwareLoop(I, RecL0used, RecL1used);
11380b57cec5SDimitry Andric     L0Used |= RecL0used;
11390b57cec5SDimitry Andric     L1Used |= RecL1used;
11400b57cec5SDimitry Andric   }
11410b57cec5SDimitry Andric 
11420b57cec5SDimitry Andric   // If a nested loop has been converted, then we can't convert this loop.
11430b57cec5SDimitry Andric   if (Changed && L0Used && L1Used)
11440b57cec5SDimitry Andric     return Changed;
11450b57cec5SDimitry Andric 
11460b57cec5SDimitry Andric   unsigned LOOP_i;
11470b57cec5SDimitry Andric   unsigned LOOP_r;
11480b57cec5SDimitry Andric   unsigned ENDLOOP;
11490b57cec5SDimitry Andric 
11500b57cec5SDimitry Andric   // Flag used to track loopN instruction:
11510b57cec5SDimitry Andric   // 1 - Hardware loop is being generated for the inner most loop.
11520b57cec5SDimitry Andric   // 0 - Hardware loop is being generated for the outer loop.
11530b57cec5SDimitry Andric   unsigned IsInnerHWLoop = 1;
11540b57cec5SDimitry Andric 
11550b57cec5SDimitry Andric   if (L0Used) {
11560b57cec5SDimitry Andric     LOOP_i = Hexagon::J2_loop1i;
11570b57cec5SDimitry Andric     LOOP_r = Hexagon::J2_loop1r;
11580b57cec5SDimitry Andric     ENDLOOP = Hexagon::ENDLOOP1;
11590b57cec5SDimitry Andric     IsInnerHWLoop = 0;
11600b57cec5SDimitry Andric   } else {
11610b57cec5SDimitry Andric     LOOP_i = Hexagon::J2_loop0i;
11620b57cec5SDimitry Andric     LOOP_r = Hexagon::J2_loop0r;
11630b57cec5SDimitry Andric     ENDLOOP = Hexagon::ENDLOOP0;
11640b57cec5SDimitry Andric   }
11650b57cec5SDimitry Andric 
11660b57cec5SDimitry Andric #ifndef NDEBUG
11670b57cec5SDimitry Andric   // Stop trying after reaching the limit (if any).
11680b57cec5SDimitry Andric   int Limit = HWLoopLimit;
11690b57cec5SDimitry Andric   if (Limit >= 0) {
11700b57cec5SDimitry Andric     if (Counter >= HWLoopLimit)
11710b57cec5SDimitry Andric       return false;
11720b57cec5SDimitry Andric     Counter++;
11730b57cec5SDimitry Andric   }
11740b57cec5SDimitry Andric #endif
11750b57cec5SDimitry Andric 
11760b57cec5SDimitry Andric   // Does the loop contain any invalid instructions?
11770b57cec5SDimitry Andric   if (containsInvalidInstruction(L, IsInnerHWLoop))
11780b57cec5SDimitry Andric     return false;
11790b57cec5SDimitry Andric 
11800b57cec5SDimitry Andric   MachineBasicBlock *LastMBB = L->findLoopControlBlock();
11810b57cec5SDimitry Andric   // Don't generate hw loop if the loop has more than one exit.
11820b57cec5SDimitry Andric   if (!LastMBB)
11830b57cec5SDimitry Andric     return false;
11840b57cec5SDimitry Andric 
11850b57cec5SDimitry Andric   MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
11860b57cec5SDimitry Andric   if (LastI == LastMBB->end())
11870b57cec5SDimitry Andric     return false;
11880b57cec5SDimitry Andric 
11890b57cec5SDimitry Andric   // Is the induction variable bump feeding the latch condition?
11900b57cec5SDimitry Andric   if (!fixupInductionVariable(L))
11910b57cec5SDimitry Andric     return false;
11920b57cec5SDimitry Andric 
11930b57cec5SDimitry Andric   // Ensure the loop has a preheader: the loop instruction will be
11940b57cec5SDimitry Andric   // placed there.
11950b57cec5SDimitry Andric   MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
11960b57cec5SDimitry Andric   if (!Preheader) {
11970b57cec5SDimitry Andric     Preheader = createPreheaderForLoop(L);
11980b57cec5SDimitry Andric     if (!Preheader)
11990b57cec5SDimitry Andric       return false;
12000b57cec5SDimitry Andric   }
12010b57cec5SDimitry Andric 
12020b57cec5SDimitry Andric   MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
12030b57cec5SDimitry Andric 
12040b57cec5SDimitry Andric   SmallVector<MachineInstr*, 2> OldInsts;
12050b57cec5SDimitry Andric   // Are we able to determine the trip count for the loop?
12060b57cec5SDimitry Andric   CountValue *TripCount = getLoopTripCount(L, OldInsts);
12070b57cec5SDimitry Andric   if (!TripCount)
12080b57cec5SDimitry Andric     return false;
12090b57cec5SDimitry Andric 
12100b57cec5SDimitry Andric   // Is the trip count available in the preheader?
12110b57cec5SDimitry Andric   if (TripCount->isReg()) {
12120b57cec5SDimitry Andric     // There will be a use of the register inserted into the preheader,
12130b57cec5SDimitry Andric     // so make sure that the register is actually defined at that point.
12140b57cec5SDimitry Andric     MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
12150b57cec5SDimitry Andric     MachineBasicBlock *BBDef = TCDef->getParent();
12160b57cec5SDimitry Andric     if (!MDT->dominates(BBDef, Preheader))
12170b57cec5SDimitry Andric       return false;
12180b57cec5SDimitry Andric   }
12190b57cec5SDimitry Andric 
12200b57cec5SDimitry Andric   // Determine the loop start.
12210b57cec5SDimitry Andric   MachineBasicBlock *TopBlock = L->getTopBlock();
12220b57cec5SDimitry Andric   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
12230b57cec5SDimitry Andric   MachineBasicBlock *LoopStart = nullptr;
12240b57cec5SDimitry Andric   if (ExitingBlock !=  L->getLoopLatch()) {
12250b57cec5SDimitry Andric     MachineBasicBlock *TB = nullptr, *FB = nullptr;
12260b57cec5SDimitry Andric     SmallVector<MachineOperand, 2> Cond;
12270b57cec5SDimitry Andric 
12280b57cec5SDimitry Andric     if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
12290b57cec5SDimitry Andric       return false;
12300b57cec5SDimitry Andric 
12310b57cec5SDimitry Andric     if (L->contains(TB))
12320b57cec5SDimitry Andric       LoopStart = TB;
12330b57cec5SDimitry Andric     else if (L->contains(FB))
12340b57cec5SDimitry Andric       LoopStart = FB;
12350b57cec5SDimitry Andric     else
12360b57cec5SDimitry Andric       return false;
12370b57cec5SDimitry Andric   }
12380b57cec5SDimitry Andric   else
12390b57cec5SDimitry Andric     LoopStart = TopBlock;
12400b57cec5SDimitry Andric 
12410b57cec5SDimitry Andric   // Convert the loop to a hardware loop.
12420b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
12430b57cec5SDimitry Andric   DebugLoc DL;
12440b57cec5SDimitry Andric   if (InsertPos != Preheader->end())
12450b57cec5SDimitry Andric     DL = InsertPos->getDebugLoc();
12460b57cec5SDimitry Andric 
12470b57cec5SDimitry Andric   if (TripCount->isReg()) {
12480b57cec5SDimitry Andric     // Create a copy of the loop count register.
12498bcb0991SDimitry Andric     Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
12500b57cec5SDimitry Andric     BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
12510b57cec5SDimitry Andric       .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
12520b57cec5SDimitry Andric     // Add the Loop instruction to the beginning of the loop.
12530b57cec5SDimitry Andric     BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
12540b57cec5SDimitry Andric       .addReg(CountReg);
12550b57cec5SDimitry Andric   } else {
12560b57cec5SDimitry Andric     assert(TripCount->isImm() && "Expecting immediate value for trip count");
12570b57cec5SDimitry Andric     // Add the Loop immediate instruction to the beginning of the loop,
12580b57cec5SDimitry Andric     // if the immediate fits in the instructions.  Otherwise, we need to
12590b57cec5SDimitry Andric     // create a new virtual register.
12600b57cec5SDimitry Andric     int64_t CountImm = TripCount->getImm();
12610b57cec5SDimitry Andric     if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
12628bcb0991SDimitry Andric       Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
12630b57cec5SDimitry Andric       BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
12640b57cec5SDimitry Andric         .addImm(CountImm);
12650b57cec5SDimitry Andric       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
12660b57cec5SDimitry Andric         .addMBB(LoopStart).addReg(CountReg);
12670b57cec5SDimitry Andric     } else
12680b57cec5SDimitry Andric       BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
12690b57cec5SDimitry Andric         .addMBB(LoopStart).addImm(CountImm);
12700b57cec5SDimitry Andric   }
12710b57cec5SDimitry Andric 
1272bdd1243dSDimitry Andric   // Make sure the loop start always has a reference in the CFG.
1273bdd1243dSDimitry Andric   LoopStart->setMachineBlockAddressTaken();
12740b57cec5SDimitry Andric 
12750b57cec5SDimitry Andric   // Replace the loop branch with an endloop instruction.
12760b57cec5SDimitry Andric   DebugLoc LastIDL = LastI->getDebugLoc();
12770b57cec5SDimitry Andric   BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
12780b57cec5SDimitry Andric 
12790b57cec5SDimitry Andric   // The loop ends with either:
12800b57cec5SDimitry Andric   //  - a conditional branch followed by an unconditional branch, or
12810b57cec5SDimitry Andric   //  - a conditional branch to the loop start.
12820b57cec5SDimitry Andric   if (LastI->getOpcode() == Hexagon::J2_jumpt ||
12830b57cec5SDimitry Andric       LastI->getOpcode() == Hexagon::J2_jumpf) {
12840b57cec5SDimitry Andric     // Delete one and change/add an uncond. branch to out of the loop.
12850b57cec5SDimitry Andric     MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
12860b57cec5SDimitry Andric     LastI = LastMBB->erase(LastI);
12870b57cec5SDimitry Andric     if (!L->contains(BranchTarget)) {
12880b57cec5SDimitry Andric       if (LastI != LastMBB->end())
12890b57cec5SDimitry Andric         LastI = LastMBB->erase(LastI);
12900b57cec5SDimitry Andric       SmallVector<MachineOperand, 0> Cond;
12910b57cec5SDimitry Andric       TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
12920b57cec5SDimitry Andric     }
12930b57cec5SDimitry Andric   } else {
12940b57cec5SDimitry Andric     // Conditional branch to loop start; just delete it.
12950b57cec5SDimitry Andric     LastMBB->erase(LastI);
12960b57cec5SDimitry Andric   }
12970b57cec5SDimitry Andric   delete TripCount;
12980b57cec5SDimitry Andric 
12990b57cec5SDimitry Andric   // The induction operation and the comparison may now be
13000b57cec5SDimitry Andric   // unneeded. If these are unneeded, then remove them.
13010b57cec5SDimitry Andric   for (unsigned i = 0; i < OldInsts.size(); ++i)
13020b57cec5SDimitry Andric     removeIfDead(OldInsts[i]);
13030b57cec5SDimitry Andric 
13040b57cec5SDimitry Andric   ++NumHWLoops;
13050b57cec5SDimitry Andric 
13060b57cec5SDimitry Andric   // Set RecL1used and RecL0used only after hardware loop has been
13070b57cec5SDimitry Andric   // successfully generated. Doing it earlier can cause wrong loop instruction
13080b57cec5SDimitry Andric   // to be used.
13090b57cec5SDimitry Andric   if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
13100b57cec5SDimitry Andric     RecL1used = true;
13110b57cec5SDimitry Andric   else
13120b57cec5SDimitry Andric     RecL0used = true;
13130b57cec5SDimitry Andric 
13140b57cec5SDimitry Andric   return true;
13150b57cec5SDimitry Andric }
13160b57cec5SDimitry Andric 
13170b57cec5SDimitry Andric bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
13180b57cec5SDimitry Andric                                             MachineInstr *CmpI) {
13190b57cec5SDimitry Andric   assert (BumpI != CmpI && "Bump and compare in the same instruction?");
13200b57cec5SDimitry Andric 
13210b57cec5SDimitry Andric   MachineBasicBlock *BB = BumpI->getParent();
13220b57cec5SDimitry Andric   if (CmpI->getParent() != BB)
13230b57cec5SDimitry Andric     return false;
13240b57cec5SDimitry Andric 
13250b57cec5SDimitry Andric   using instr_iterator = MachineBasicBlock::instr_iterator;
13260b57cec5SDimitry Andric 
13270b57cec5SDimitry Andric   // Check if things are in order to begin with.
13280b57cec5SDimitry Andric   for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
13290b57cec5SDimitry Andric     if (&*I == CmpI)
13300b57cec5SDimitry Andric       return true;
13310b57cec5SDimitry Andric 
13320b57cec5SDimitry Andric   // Out of order.
13338bcb0991SDimitry Andric   Register PredR = CmpI->getOperand(0).getReg();
13340b57cec5SDimitry Andric   bool FoundBump = false;
13350b57cec5SDimitry Andric   instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
13360b57cec5SDimitry Andric   for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
13370b57cec5SDimitry Andric     MachineInstr *In = &*I;
13380b57cec5SDimitry Andric     for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
13390b57cec5SDimitry Andric       MachineOperand &MO = In->getOperand(i);
13400b57cec5SDimitry Andric       if (MO.isReg() && MO.isUse()) {
13410b57cec5SDimitry Andric         if (MO.getReg() == PredR)  // Found an intervening use of PredR.
13420b57cec5SDimitry Andric           return false;
13430b57cec5SDimitry Andric       }
13440b57cec5SDimitry Andric     }
13450b57cec5SDimitry Andric 
13460b57cec5SDimitry Andric     if (In == BumpI) {
13470b57cec5SDimitry Andric       BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
13480b57cec5SDimitry Andric       FoundBump = true;
13490b57cec5SDimitry Andric       break;
13500b57cec5SDimitry Andric     }
13510b57cec5SDimitry Andric   }
13520b57cec5SDimitry Andric   assert (FoundBump && "Cannot determine instruction order");
13530b57cec5SDimitry Andric   return FoundBump;
13540b57cec5SDimitry Andric }
13550b57cec5SDimitry Andric 
13560b57cec5SDimitry Andric /// This function is required to break recursion. Visiting phis in a loop may
13570b57cec5SDimitry Andric /// result in recursion during compilation. We break the recursion by making
13580b57cec5SDimitry Andric /// sure that we visit a MachineOperand and its definition in a
13590b57cec5SDimitry Andric /// MachineInstruction only once. If we attempt to visit more than once, then
13600b57cec5SDimitry Andric /// there is recursion, and will return false.
13610b57cec5SDimitry Andric bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
13620b57cec5SDimitry Andric                                         MachineInstr *MI,
13630b57cec5SDimitry Andric                                         const MachineOperand *MO,
13640b57cec5SDimitry Andric                                         LoopFeederMap &LoopFeederPhi) const {
13650b57cec5SDimitry Andric   if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
13660b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "\nhw_loop head, "
13670b57cec5SDimitry Andric                       << printMBBReference(**L->block_begin()));
13680b57cec5SDimitry Andric     // Ignore all BBs that form Loop.
1369fe6060f1SDimitry Andric     if (llvm::is_contained(L->getBlocks(), A))
13700b57cec5SDimitry Andric       return false;
13710b57cec5SDimitry Andric     MachineInstr *Def = MRI->getVRegDef(MO->getReg());
13720b57cec5SDimitry Andric     LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
13730b57cec5SDimitry Andric     return true;
13740b57cec5SDimitry Andric   } else
13750b57cec5SDimitry Andric     // Already visited node.
13760b57cec5SDimitry Andric     return false;
13770b57cec5SDimitry Andric }
13780b57cec5SDimitry Andric 
13790b57cec5SDimitry Andric /// Return true if a Phi may generate a value that can underflow.
13800b57cec5SDimitry Andric /// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
13810b57cec5SDimitry Andric bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
13820b57cec5SDimitry Andric     MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
13830b57cec5SDimitry Andric     MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
13840b57cec5SDimitry Andric   assert(Phi->isPHI() && "Expecting a Phi.");
13850b57cec5SDimitry Andric   // Walk through each Phi, and its used operands. Make sure that
13860b57cec5SDimitry Andric   // if there is recursion in Phi, we won't generate hardware loops.
13870b57cec5SDimitry Andric   for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
13880b57cec5SDimitry Andric     if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
13890b57cec5SDimitry Andric       if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
13900b57cec5SDimitry Andric                                       Phi->getParent(), L, LoopFeederPhi))
13910b57cec5SDimitry Andric         return true;
13920b57cec5SDimitry Andric   return false;
13930b57cec5SDimitry Andric }
13940b57cec5SDimitry Andric 
13950b57cec5SDimitry Andric /// Return true if the induction variable can underflow in the first iteration.
13960b57cec5SDimitry Andric /// An example, is an initial unsigned value that is 0 and is decrement in the
13970b57cec5SDimitry Andric /// first itertion of a do-while loop.  In this case, we cannot generate a
13980b57cec5SDimitry Andric /// hardware loop because the endloop instruction does not decrement the loop
13990b57cec5SDimitry Andric /// counter if it is <= 1. We only need to perform this analysis if the
14000b57cec5SDimitry Andric /// initial value is a register.
14010b57cec5SDimitry Andric ///
14020b57cec5SDimitry Andric /// This function assumes the initial value may underfow unless proven
14030b57cec5SDimitry Andric /// otherwise. If the type is signed, then we don't care because signed
14040b57cec5SDimitry Andric /// underflow is undefined. We attempt to prove the initial value is not
14050b57cec5SDimitry Andric /// zero by perfoming a crude analysis of the loop counter. This function
14060b57cec5SDimitry Andric /// checks if the initial value is used in any comparison prior to the loop
14070b57cec5SDimitry Andric /// and, if so, assumes the comparison is a range check. This is inexact,
14080b57cec5SDimitry Andric /// but will catch the simple cases.
14090b57cec5SDimitry Andric bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
14100b57cec5SDimitry Andric     const MachineOperand *InitVal, const MachineOperand *EndVal,
14110b57cec5SDimitry Andric     MachineBasicBlock *MBB, MachineLoop *L,
14120b57cec5SDimitry Andric     LoopFeederMap &LoopFeederPhi) const {
14130b57cec5SDimitry Andric   // Only check register values since they are unknown.
14140b57cec5SDimitry Andric   if (!InitVal->isReg())
14150b57cec5SDimitry Andric     return false;
14160b57cec5SDimitry Andric 
14170b57cec5SDimitry Andric   if (!EndVal->isImm())
14180b57cec5SDimitry Andric     return false;
14190b57cec5SDimitry Andric 
14200b57cec5SDimitry Andric   // A register value that is assigned an immediate is a known value, and it
14210b57cec5SDimitry Andric   // won't underflow in the first iteration.
14220b57cec5SDimitry Andric   int64_t Imm;
14230b57cec5SDimitry Andric   if (checkForImmediate(*InitVal, Imm))
14240b57cec5SDimitry Andric     return (EndVal->getImm() == Imm);
14250b57cec5SDimitry Andric 
14268bcb0991SDimitry Andric   Register Reg = InitVal->getReg();
14270b57cec5SDimitry Andric 
14280b57cec5SDimitry Andric   // We don't know the value of a physical register.
1429e8d8bef9SDimitry Andric   if (!Reg.isVirtual())
14300b57cec5SDimitry Andric     return true;
14310b57cec5SDimitry Andric 
14320b57cec5SDimitry Andric   MachineInstr *Def = MRI->getVRegDef(Reg);
14330b57cec5SDimitry Andric   if (!Def)
14340b57cec5SDimitry Andric     return true;
14350b57cec5SDimitry Andric 
14360b57cec5SDimitry Andric   // If the initial value is a Phi or copy and the operands may not underflow,
14370b57cec5SDimitry Andric   // then the definition cannot be underflow either.
14380b57cec5SDimitry Andric   if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
14390b57cec5SDimitry Andric                                              L, LoopFeederPhi))
14400b57cec5SDimitry Andric     return false;
14410b57cec5SDimitry Andric   if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
14420b57cec5SDimitry Andric                                                     EndVal, Def->getParent(),
14430b57cec5SDimitry Andric                                                     L, LoopFeederPhi))
14440b57cec5SDimitry Andric     return false;
14450b57cec5SDimitry Andric 
14460b57cec5SDimitry Andric   // Iterate over the uses of the initial value. If the initial value is used
14470b57cec5SDimitry Andric   // in a compare, then we assume this is a range check that ensures the loop
14480b57cec5SDimitry Andric   // doesn't underflow. This is not an exact test and should be improved.
14490b57cec5SDimitry Andric   for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
14500b57cec5SDimitry Andric          E = MRI->use_instr_nodbg_end(); I != E; ++I) {
14510b57cec5SDimitry Andric     MachineInstr *MI = &*I;
14525ffd83dbSDimitry Andric     Register CmpReg1, CmpReg2;
1453349cc55cSDimitry Andric     int64_t CmpMask = 0, CmpValue = 0;
14540b57cec5SDimitry Andric 
14550b57cec5SDimitry Andric     if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
14560b57cec5SDimitry Andric       continue;
14570b57cec5SDimitry Andric 
14580b57cec5SDimitry Andric     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
14590b57cec5SDimitry Andric     SmallVector<MachineOperand, 2> Cond;
14600b57cec5SDimitry Andric     if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
14610b57cec5SDimitry Andric       continue;
14620b57cec5SDimitry Andric 
14630b57cec5SDimitry Andric     Comparison::Kind Cmp =
14640b57cec5SDimitry Andric         getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
14650b57cec5SDimitry Andric     if (Cmp == 0)
14660b57cec5SDimitry Andric       continue;
14670b57cec5SDimitry Andric     if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
14680b57cec5SDimitry Andric       Cmp = Comparison::getNegatedComparison(Cmp);
14690b57cec5SDimitry Andric     if (CmpReg2 != 0 && CmpReg2 == Reg)
14700b57cec5SDimitry Andric       Cmp = Comparison::getSwappedComparison(Cmp);
14710b57cec5SDimitry Andric 
14720b57cec5SDimitry Andric     // Signed underflow is undefined.
14730b57cec5SDimitry Andric     if (Comparison::isSigned(Cmp))
14740b57cec5SDimitry Andric       return false;
14750b57cec5SDimitry Andric 
14760b57cec5SDimitry Andric     // Check if there is a comparison of the initial value. If the initial value
14770b57cec5SDimitry Andric     // is greater than or not equal to another value, then assume this is a
14780b57cec5SDimitry Andric     // range check.
14790b57cec5SDimitry Andric     if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
14800b57cec5SDimitry Andric       return false;
14810b57cec5SDimitry Andric   }
14820b57cec5SDimitry Andric 
14830b57cec5SDimitry Andric   // OK - this is a hack that needs to be improved. We really need to analyze
14840b57cec5SDimitry Andric   // the instructions performed on the initial value. This works on the simplest
14850b57cec5SDimitry Andric   // cases only.
14860b57cec5SDimitry Andric   if (!Def->isCopy() && !Def->isPHI())
14870b57cec5SDimitry Andric     return false;
14880b57cec5SDimitry Andric 
14890b57cec5SDimitry Andric   return true;
14900b57cec5SDimitry Andric }
14910b57cec5SDimitry Andric 
14920b57cec5SDimitry Andric bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
14930b57cec5SDimitry Andric                                              int64_t &Val) const {
14940b57cec5SDimitry Andric   if (MO.isImm()) {
14950b57cec5SDimitry Andric     Val = MO.getImm();
14960b57cec5SDimitry Andric     return true;
14970b57cec5SDimitry Andric   }
14980b57cec5SDimitry Andric   if (!MO.isReg())
14990b57cec5SDimitry Andric     return false;
15000b57cec5SDimitry Andric 
15010b57cec5SDimitry Andric   // MO is a register. Check whether it is defined as an immediate value,
15020b57cec5SDimitry Andric   // and if so, get the value of it in TV. That value will then need to be
15030b57cec5SDimitry Andric   // processed to handle potential subregisters in MO.
15040b57cec5SDimitry Andric   int64_t TV;
15050b57cec5SDimitry Andric 
15068bcb0991SDimitry Andric   Register R = MO.getReg();
1507e8d8bef9SDimitry Andric   if (!R.isVirtual())
15080b57cec5SDimitry Andric     return false;
15090b57cec5SDimitry Andric   MachineInstr *DI = MRI->getVRegDef(R);
15100b57cec5SDimitry Andric   unsigned DOpc = DI->getOpcode();
15110b57cec5SDimitry Andric   switch (DOpc) {
15120b57cec5SDimitry Andric     case TargetOpcode::COPY:
15130b57cec5SDimitry Andric     case Hexagon::A2_tfrsi:
15140b57cec5SDimitry Andric     case Hexagon::A2_tfrpi:
15150b57cec5SDimitry Andric     case Hexagon::CONST32:
15160b57cec5SDimitry Andric     case Hexagon::CONST64:
15170b57cec5SDimitry Andric       // Call recursively to avoid an extra check whether operand(1) is
15180b57cec5SDimitry Andric       // indeed an immediate (it could be a global address, for example),
15190b57cec5SDimitry Andric       // plus we can handle COPY at the same time.
15200b57cec5SDimitry Andric       if (!checkForImmediate(DI->getOperand(1), TV))
15210b57cec5SDimitry Andric         return false;
15220b57cec5SDimitry Andric       break;
15230b57cec5SDimitry Andric     case Hexagon::A2_combineii:
15240b57cec5SDimitry Andric     case Hexagon::A4_combineir:
15250b57cec5SDimitry Andric     case Hexagon::A4_combineii:
15260b57cec5SDimitry Andric     case Hexagon::A4_combineri:
15270b57cec5SDimitry Andric     case Hexagon::A2_combinew: {
15280b57cec5SDimitry Andric       const MachineOperand &S1 = DI->getOperand(1);
15290b57cec5SDimitry Andric       const MachineOperand &S2 = DI->getOperand(2);
15300b57cec5SDimitry Andric       int64_t V1, V2;
15310b57cec5SDimitry Andric       if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
15320b57cec5SDimitry Andric         return false;
15330b57cec5SDimitry Andric       TV = V2 | (static_cast<uint64_t>(V1) << 32);
15340b57cec5SDimitry Andric       break;
15350b57cec5SDimitry Andric     }
15360b57cec5SDimitry Andric     case TargetOpcode::REG_SEQUENCE: {
15370b57cec5SDimitry Andric       const MachineOperand &S1 = DI->getOperand(1);
15380b57cec5SDimitry Andric       const MachineOperand &S3 = DI->getOperand(3);
15390b57cec5SDimitry Andric       int64_t V1, V3;
15400b57cec5SDimitry Andric       if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
15410b57cec5SDimitry Andric         return false;
15420b57cec5SDimitry Andric       unsigned Sub2 = DI->getOperand(2).getImm();
15430b57cec5SDimitry Andric       unsigned Sub4 = DI->getOperand(4).getImm();
15440b57cec5SDimitry Andric       if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
15450b57cec5SDimitry Andric         TV = V1 | (V3 << 32);
15460b57cec5SDimitry Andric       else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
15470b57cec5SDimitry Andric         TV = V3 | (V1 << 32);
15480b57cec5SDimitry Andric       else
15490b57cec5SDimitry Andric         llvm_unreachable("Unexpected form of REG_SEQUENCE");
15500b57cec5SDimitry Andric       break;
15510b57cec5SDimitry Andric     }
15520b57cec5SDimitry Andric 
15530b57cec5SDimitry Andric     default:
15540b57cec5SDimitry Andric       return false;
15550b57cec5SDimitry Andric   }
15560b57cec5SDimitry Andric 
15570b57cec5SDimitry Andric   // By now, we should have successfully obtained the immediate value defining
15580b57cec5SDimitry Andric   // the register referenced in MO. Handle a potential use of a subregister.
15590b57cec5SDimitry Andric   switch (MO.getSubReg()) {
15600b57cec5SDimitry Andric     case Hexagon::isub_lo:
15610b57cec5SDimitry Andric       Val = TV & 0xFFFFFFFFULL;
15620b57cec5SDimitry Andric       break;
15630b57cec5SDimitry Andric     case Hexagon::isub_hi:
15640b57cec5SDimitry Andric       Val = (TV >> 32) & 0xFFFFFFFFULL;
15650b57cec5SDimitry Andric       break;
15660b57cec5SDimitry Andric     default:
15670b57cec5SDimitry Andric       Val = TV;
15680b57cec5SDimitry Andric       break;
15690b57cec5SDimitry Andric   }
15700b57cec5SDimitry Andric   return true;
15710b57cec5SDimitry Andric }
15720b57cec5SDimitry Andric 
15730b57cec5SDimitry Andric void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
15740b57cec5SDimitry Andric   if (MO.isImm()) {
15750b57cec5SDimitry Andric     MO.setImm(Val);
15760b57cec5SDimitry Andric     return;
15770b57cec5SDimitry Andric   }
15780b57cec5SDimitry Andric 
15790b57cec5SDimitry Andric   assert(MO.isReg());
15808bcb0991SDimitry Andric   Register R = MO.getReg();
15810b57cec5SDimitry Andric   MachineInstr *DI = MRI->getVRegDef(R);
15820b57cec5SDimitry Andric 
15830b57cec5SDimitry Andric   const TargetRegisterClass *RC = MRI->getRegClass(R);
15848bcb0991SDimitry Andric   Register NewR = MRI->createVirtualRegister(RC);
15850b57cec5SDimitry Andric   MachineBasicBlock &B = *DI->getParent();
15860b57cec5SDimitry Andric   DebugLoc DL = DI->getDebugLoc();
15870b57cec5SDimitry Andric   BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
15880b57cec5SDimitry Andric   MO.setReg(NewR);
15890b57cec5SDimitry Andric }
15900b57cec5SDimitry Andric 
15910b57cec5SDimitry Andric bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
15920b57cec5SDimitry Andric   MachineBasicBlock *Header = L->getHeader();
15930b57cec5SDimitry Andric   MachineBasicBlock *Latch = L->getLoopLatch();
15940b57cec5SDimitry Andric   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
15950b57cec5SDimitry Andric 
15960b57cec5SDimitry Andric   if (!(Header && Latch && ExitingBlock))
15970b57cec5SDimitry Andric     return false;
15980b57cec5SDimitry Andric 
15990b57cec5SDimitry Andric   // These data structures follow the same concept as the corresponding
16000b57cec5SDimitry Andric   // ones in findInductionRegister (where some comments are).
1601bdd1243dSDimitry Andric   using RegisterBump = std::pair<Register, int64_t>;
1602bdd1243dSDimitry Andric   using RegisterInduction = std::pair<Register, RegisterBump>;
16030b57cec5SDimitry Andric   using RegisterInductionSet = std::set<RegisterInduction>;
16040b57cec5SDimitry Andric 
16050b57cec5SDimitry Andric   // Register candidates for induction variables, with their associated bumps.
16060b57cec5SDimitry Andric   RegisterInductionSet IndRegs;
16070b57cec5SDimitry Andric 
16080b57cec5SDimitry Andric   // Look for induction patterns:
16090b57cec5SDimitry Andric   //   %1 = PHI ..., [ latch, %2 ]
16100b57cec5SDimitry Andric   //   %2 = ADD %1, imm
16110b57cec5SDimitry Andric   using instr_iterator = MachineBasicBlock::instr_iterator;
16120b57cec5SDimitry Andric 
16130b57cec5SDimitry Andric   for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
16140b57cec5SDimitry Andric        I != E && I->isPHI(); ++I) {
16150b57cec5SDimitry Andric     MachineInstr *Phi = &*I;
16160b57cec5SDimitry Andric 
16170b57cec5SDimitry Andric     // Have a PHI instruction.
16180b57cec5SDimitry Andric     for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
16190b57cec5SDimitry Andric       if (Phi->getOperand(i+1).getMBB() != Latch)
16200b57cec5SDimitry Andric         continue;
16210b57cec5SDimitry Andric 
16228bcb0991SDimitry Andric       Register PhiReg = Phi->getOperand(i).getReg();
16230b57cec5SDimitry Andric       MachineInstr *DI = MRI->getVRegDef(PhiReg);
16240b57cec5SDimitry Andric 
16250b57cec5SDimitry Andric       if (DI->getDesc().isAdd()) {
16260b57cec5SDimitry Andric         // If the register operand to the add/sub is the PHI we are looking
16270b57cec5SDimitry Andric         // at, this meets the induction pattern.
16288bcb0991SDimitry Andric         Register IndReg = DI->getOperand(1).getReg();
16290b57cec5SDimitry Andric         MachineOperand &Opnd2 = DI->getOperand(2);
16300b57cec5SDimitry Andric         int64_t V;
16310b57cec5SDimitry Andric         if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
16328bcb0991SDimitry Andric           Register UpdReg = DI->getOperand(0).getReg();
16330b57cec5SDimitry Andric           IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
16340b57cec5SDimitry Andric         }
16350b57cec5SDimitry Andric       }
16360b57cec5SDimitry Andric     }  // for (i)
16370b57cec5SDimitry Andric   }  // for (instr)
16380b57cec5SDimitry Andric 
16390b57cec5SDimitry Andric   if (IndRegs.empty())
16400b57cec5SDimitry Andric     return false;
16410b57cec5SDimitry Andric 
16420b57cec5SDimitry Andric   MachineBasicBlock *TB = nullptr, *FB = nullptr;
16430b57cec5SDimitry Andric   SmallVector<MachineOperand,2> Cond;
16445ffd83dbSDimitry Andric   // analyzeBranch returns true if it fails to analyze branch.
16450b57cec5SDimitry Andric   bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
16460b57cec5SDimitry Andric   if (NotAnalyzed || Cond.empty())
16470b57cec5SDimitry Andric     return false;
16480b57cec5SDimitry Andric 
16490b57cec5SDimitry Andric   if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
16500b57cec5SDimitry Andric     MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
16510b57cec5SDimitry Andric     SmallVector<MachineOperand,2> LCond;
16520b57cec5SDimitry Andric     bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
16530b57cec5SDimitry Andric     if (NotAnalyzed)
16540b57cec5SDimitry Andric       return false;
16550b57cec5SDimitry Andric 
16560b57cec5SDimitry Andric     // Since latch is not the exiting block, the latch branch should be an
16570b57cec5SDimitry Andric     // unconditional branch to the loop header.
16580b57cec5SDimitry Andric     if (TB == Latch)
16590b57cec5SDimitry Andric       TB = (LTB == Header) ? LTB : LFB;
16600b57cec5SDimitry Andric     else
16610b57cec5SDimitry Andric       FB = (LTB == Header) ? LTB : LFB;
16620b57cec5SDimitry Andric   }
16630b57cec5SDimitry Andric   if (TB != Header) {
16640b57cec5SDimitry Andric     if (FB != Header) {
16650b57cec5SDimitry Andric       // The latch/exit block does not go back to the header.
16660b57cec5SDimitry Andric       return false;
16670b57cec5SDimitry Andric     }
16680b57cec5SDimitry Andric     // FB is the header (i.e., uncond. jump to branch header)
16690b57cec5SDimitry Andric     // In this case, the LoopBody -> TB should not be a back edge otherwise
16700b57cec5SDimitry Andric     // it could result in an infinite loop after conversion to hw_loop.
16710b57cec5SDimitry Andric     // This case can happen when the Latch has two jumps like this:
16720b57cec5SDimitry Andric     // Jmp_c OuterLoopHeader <-- TB
16730b57cec5SDimitry Andric     // Jmp   InnerLoopHeader <-- FB
16740b57cec5SDimitry Andric     if (MDT->dominates(TB, FB))
16750b57cec5SDimitry Andric       return false;
16760b57cec5SDimitry Andric   }
16770b57cec5SDimitry Andric 
16780b57cec5SDimitry Andric   // Expecting a predicate register as a condition.  It won't be a hardware
16790b57cec5SDimitry Andric   // predicate register at this point yet, just a vreg.
16805ffd83dbSDimitry Andric   // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
16810b57cec5SDimitry Andric   // into Cond, followed by the predicate register.  For non-negated branches
16820b57cec5SDimitry Andric   // it's just the register.
16830b57cec5SDimitry Andric   unsigned CSz = Cond.size();
16840b57cec5SDimitry Andric   if (CSz != 1 && CSz != 2)
16850b57cec5SDimitry Andric     return false;
16860b57cec5SDimitry Andric 
16870b57cec5SDimitry Andric   if (!Cond[CSz-1].isReg())
16880b57cec5SDimitry Andric     return false;
16890b57cec5SDimitry Andric 
16908bcb0991SDimitry Andric   Register P = Cond[CSz - 1].getReg();
16910b57cec5SDimitry Andric   MachineInstr *PredDef = MRI->getVRegDef(P);
16920b57cec5SDimitry Andric 
16930b57cec5SDimitry Andric   if (!PredDef->isCompare())
16940b57cec5SDimitry Andric     return false;
16950b57cec5SDimitry Andric 
1696bdd1243dSDimitry Andric   SmallSet<Register,2> CmpRegs;
16970b57cec5SDimitry Andric   MachineOperand *CmpImmOp = nullptr;
16980b57cec5SDimitry Andric 
16990b57cec5SDimitry Andric   // Go over all operands to the compare and look for immediate and register
17000b57cec5SDimitry Andric   // operands.  Assume that if the compare has a single register use and a
17010b57cec5SDimitry Andric   // single immediate operand, then the register is being compared with the
17020b57cec5SDimitry Andric   // immediate value.
170306c3fb27SDimitry Andric   for (MachineOperand &MO : PredDef->operands()) {
17040b57cec5SDimitry Andric     if (MO.isReg()) {
17050b57cec5SDimitry Andric       // Skip all implicit references.  In one case there was:
17060b57cec5SDimitry Andric       //   %140 = FCMPUGT32_rr %138, %139, implicit %usr
17070b57cec5SDimitry Andric       if (MO.isImplicit())
17080b57cec5SDimitry Andric         continue;
17090b57cec5SDimitry Andric       if (MO.isUse()) {
17100b57cec5SDimitry Andric         if (!isImmediate(MO)) {
17110b57cec5SDimitry Andric           CmpRegs.insert(MO.getReg());
17120b57cec5SDimitry Andric           continue;
17130b57cec5SDimitry Andric         }
17140b57cec5SDimitry Andric         // Consider the register to be the "immediate" operand.
17150b57cec5SDimitry Andric         if (CmpImmOp)
17160b57cec5SDimitry Andric           return false;
17170b57cec5SDimitry Andric         CmpImmOp = &MO;
17180b57cec5SDimitry Andric       }
17190b57cec5SDimitry Andric     } else if (MO.isImm()) {
17200b57cec5SDimitry Andric       if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
17210b57cec5SDimitry Andric         return false;
17220b57cec5SDimitry Andric       CmpImmOp = &MO;
17230b57cec5SDimitry Andric     }
17240b57cec5SDimitry Andric   }
17250b57cec5SDimitry Andric 
17260b57cec5SDimitry Andric   if (CmpRegs.empty())
17270b57cec5SDimitry Andric     return false;
17280b57cec5SDimitry Andric 
17290b57cec5SDimitry Andric   // Check if the compared register follows the order we want.  Fix if needed.
17300b57cec5SDimitry Andric   for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
17310b57cec5SDimitry Andric        I != E; ++I) {
17320b57cec5SDimitry Andric     // This is a success.  If the register used in the comparison is one that
17330b57cec5SDimitry Andric     // we have identified as a bumped (updated) induction register, there is
17340b57cec5SDimitry Andric     // nothing to do.
17350b57cec5SDimitry Andric     if (CmpRegs.count(I->first))
17360b57cec5SDimitry Andric       return true;
17370b57cec5SDimitry Andric 
17380b57cec5SDimitry Andric     // Otherwise, if the register being compared comes out of a PHI node,
17390b57cec5SDimitry Andric     // and has been recognized as following the induction pattern, and is
17400b57cec5SDimitry Andric     // compared against an immediate, we can fix it.
17410b57cec5SDimitry Andric     const RegisterBump &RB = I->second;
17420b57cec5SDimitry Andric     if (CmpRegs.count(RB.first)) {
17430b57cec5SDimitry Andric       if (!CmpImmOp) {
17440b57cec5SDimitry Andric         // If both operands to the compare instruction are registers, see if
17450b57cec5SDimitry Andric         // it can be changed to use induction register as one of the operands.
17460b57cec5SDimitry Andric         MachineInstr *IndI = nullptr;
17470b57cec5SDimitry Andric         MachineInstr *nonIndI = nullptr;
17480b57cec5SDimitry Andric         MachineOperand *IndMO = nullptr;
17490b57cec5SDimitry Andric         MachineOperand *nonIndMO = nullptr;
17500b57cec5SDimitry Andric 
17510b57cec5SDimitry Andric         for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
17520b57cec5SDimitry Andric           MachineOperand &MO = PredDef->getOperand(i);
17530b57cec5SDimitry Andric           if (MO.isReg() && MO.getReg() == RB.first) {
17540b57cec5SDimitry Andric             LLVM_DEBUG(dbgs() << "\n DefMI(" << i
17550b57cec5SDimitry Andric                               << ") = " << *(MRI->getVRegDef(I->first)));
17560b57cec5SDimitry Andric             if (IndI)
17570b57cec5SDimitry Andric               return false;
17580b57cec5SDimitry Andric 
17590b57cec5SDimitry Andric             IndI = MRI->getVRegDef(I->first);
17600b57cec5SDimitry Andric             IndMO = &MO;
17610b57cec5SDimitry Andric           } else if (MO.isReg()) {
17620b57cec5SDimitry Andric             LLVM_DEBUG(dbgs() << "\n DefMI(" << i
17630b57cec5SDimitry Andric                               << ") = " << *(MRI->getVRegDef(MO.getReg())));
17640b57cec5SDimitry Andric             if (nonIndI)
17650b57cec5SDimitry Andric               return false;
17660b57cec5SDimitry Andric 
17670b57cec5SDimitry Andric             nonIndI = MRI->getVRegDef(MO.getReg());
17680b57cec5SDimitry Andric             nonIndMO = &MO;
17690b57cec5SDimitry Andric           }
17700b57cec5SDimitry Andric         }
17710b57cec5SDimitry Andric         if (IndI && nonIndI &&
17720b57cec5SDimitry Andric             nonIndI->getOpcode() == Hexagon::A2_addi &&
17730b57cec5SDimitry Andric             nonIndI->getOperand(2).isImm() &&
17740b57cec5SDimitry Andric             nonIndI->getOperand(2).getImm() == - RB.second) {
17750b57cec5SDimitry Andric           bool Order = orderBumpCompare(IndI, PredDef);
17760b57cec5SDimitry Andric           if (Order) {
17770b57cec5SDimitry Andric             IndMO->setReg(I->first);
17780b57cec5SDimitry Andric             nonIndMO->setReg(nonIndI->getOperand(1).getReg());
17790b57cec5SDimitry Andric             return true;
17800b57cec5SDimitry Andric           }
17810b57cec5SDimitry Andric         }
17820b57cec5SDimitry Andric         return false;
17830b57cec5SDimitry Andric       }
17840b57cec5SDimitry Andric 
17850b57cec5SDimitry Andric       // It is not valid to do this transformation on an unsigned comparison
17860b57cec5SDimitry Andric       // because it may underflow.
17870b57cec5SDimitry Andric       Comparison::Kind Cmp =
17880b57cec5SDimitry Andric           getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
17890b57cec5SDimitry Andric       if (!Cmp || Comparison::isUnsigned(Cmp))
17900b57cec5SDimitry Andric         return false;
17910b57cec5SDimitry Andric 
17920b57cec5SDimitry Andric       // If the register is being compared against an immediate, try changing
17930b57cec5SDimitry Andric       // the compare instruction to use induction register and adjust the
17940b57cec5SDimitry Andric       // immediate operand.
17950b57cec5SDimitry Andric       int64_t CmpImm = getImmediate(*CmpImmOp);
17960b57cec5SDimitry Andric       int64_t V = RB.second;
17970b57cec5SDimitry Andric       // Handle Overflow (64-bit).
17980b57cec5SDimitry Andric       if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
17990b57cec5SDimitry Andric           ((V < 0) && (CmpImm < INT64_MIN - V)))
18000b57cec5SDimitry Andric         return false;
18010b57cec5SDimitry Andric       CmpImm += V;
18020b57cec5SDimitry Andric       // Most comparisons of register against an immediate value allow
18030b57cec5SDimitry Andric       // the immediate to be constant-extended. There are some exceptions
18040b57cec5SDimitry Andric       // though. Make sure the new combination will work.
180504eeddc0SDimitry Andric       if (CmpImmOp->isImm() && !TII->isExtendable(*PredDef) &&
180604eeddc0SDimitry Andric           !TII->isValidOffset(PredDef->getOpcode(), CmpImm, TRI, false))
18070b57cec5SDimitry Andric         return false;
18080b57cec5SDimitry Andric 
18090b57cec5SDimitry Andric       // Make sure that the compare happens after the bump.  Otherwise,
18100b57cec5SDimitry Andric       // after the fixup, the compare would use a yet-undefined register.
18110b57cec5SDimitry Andric       MachineInstr *BumpI = MRI->getVRegDef(I->first);
18120b57cec5SDimitry Andric       bool Order = orderBumpCompare(BumpI, PredDef);
18130b57cec5SDimitry Andric       if (!Order)
18140b57cec5SDimitry Andric         return false;
18150b57cec5SDimitry Andric 
18160b57cec5SDimitry Andric       // Finally, fix the compare instruction.
18170b57cec5SDimitry Andric       setImmediate(*CmpImmOp, CmpImm);
181806c3fb27SDimitry Andric       for (MachineOperand &MO : PredDef->operands()) {
18190b57cec5SDimitry Andric         if (MO.isReg() && MO.getReg() == RB.first) {
18200b57cec5SDimitry Andric           MO.setReg(I->first);
18210b57cec5SDimitry Andric           return true;
18220b57cec5SDimitry Andric         }
18230b57cec5SDimitry Andric       }
18240b57cec5SDimitry Andric     }
18250b57cec5SDimitry Andric   }
18260b57cec5SDimitry Andric 
18270b57cec5SDimitry Andric   return false;
18280b57cec5SDimitry Andric }
18290b57cec5SDimitry Andric 
18300b57cec5SDimitry Andric /// createPreheaderForLoop - Create a preheader for a given loop.
18310b57cec5SDimitry Andric MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
18320b57cec5SDimitry Andric       MachineLoop *L) {
18330b57cec5SDimitry Andric   if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
18340b57cec5SDimitry Andric     return TmpPH;
18350b57cec5SDimitry Andric   if (!HWCreatePreheader)
18360b57cec5SDimitry Andric     return nullptr;
18370b57cec5SDimitry Andric 
18380b57cec5SDimitry Andric   MachineBasicBlock *Header = L->getHeader();
18390b57cec5SDimitry Andric   MachineBasicBlock *Latch = L->getLoopLatch();
18400b57cec5SDimitry Andric   MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
18410b57cec5SDimitry Andric   MachineFunction *MF = Header->getParent();
18420b57cec5SDimitry Andric   DebugLoc DL;
18430b57cec5SDimitry Andric 
18440b57cec5SDimitry Andric #ifndef NDEBUG
18450b57cec5SDimitry Andric   if ((!PHFn.empty()) && (PHFn != MF->getName()))
18460b57cec5SDimitry Andric     return nullptr;
18470b57cec5SDimitry Andric #endif
18480b57cec5SDimitry Andric 
18490b57cec5SDimitry Andric   if (!Latch || !ExitingBlock || Header->hasAddressTaken())
18500b57cec5SDimitry Andric     return nullptr;
18510b57cec5SDimitry Andric 
18520b57cec5SDimitry Andric   using instr_iterator = MachineBasicBlock::instr_iterator;
18530b57cec5SDimitry Andric 
18540b57cec5SDimitry Andric   // Verify that all existing predecessors have analyzable branches
18550b57cec5SDimitry Andric   // (or no branches at all).
18560b57cec5SDimitry Andric   using MBBVector = std::vector<MachineBasicBlock *>;
18570b57cec5SDimitry Andric 
18580b57cec5SDimitry Andric   MBBVector Preds(Header->pred_begin(), Header->pred_end());
18590b57cec5SDimitry Andric   SmallVector<MachineOperand,2> Tmp1;
18600b57cec5SDimitry Andric   MachineBasicBlock *TB = nullptr, *FB = nullptr;
18610b57cec5SDimitry Andric 
18620b57cec5SDimitry Andric   if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
18630b57cec5SDimitry Andric     return nullptr;
18640b57cec5SDimitry Andric 
18654824e7fdSDimitry Andric   for (MachineBasicBlock *PB : Preds) {
18660b57cec5SDimitry Andric     bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
18670b57cec5SDimitry Andric     if (NotAnalyzed)
18680b57cec5SDimitry Andric       return nullptr;
18690b57cec5SDimitry Andric   }
18700b57cec5SDimitry Andric 
18710b57cec5SDimitry Andric   MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
18720b57cec5SDimitry Andric   MF->insert(Header->getIterator(), NewPH);
18730b57cec5SDimitry Andric 
18740b57cec5SDimitry Andric   if (Header->pred_size() > 2) {
18750b57cec5SDimitry Andric     // Ensure that the header has only two predecessors: the preheader and
18760b57cec5SDimitry Andric     // the loop latch.  Any additional predecessors of the header should
18770b57cec5SDimitry Andric     // join at the newly created preheader. Inspect all PHI nodes from the
18780b57cec5SDimitry Andric     // header and create appropriate corresponding PHI nodes in the preheader.
18790b57cec5SDimitry Andric 
18800b57cec5SDimitry Andric     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
18810b57cec5SDimitry Andric          I != E && I->isPHI(); ++I) {
18820b57cec5SDimitry Andric       MachineInstr *PN = &*I;
18830b57cec5SDimitry Andric 
18840b57cec5SDimitry Andric       const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
18850b57cec5SDimitry Andric       MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
18860b57cec5SDimitry Andric       NewPH->insert(NewPH->end(), NewPN);
18870b57cec5SDimitry Andric 
18888bcb0991SDimitry Andric       Register PR = PN->getOperand(0).getReg();
18890b57cec5SDimitry Andric       const TargetRegisterClass *RC = MRI->getRegClass(PR);
18908bcb0991SDimitry Andric       Register NewPR = MRI->createVirtualRegister(RC);
18910b57cec5SDimitry Andric       NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
18920b57cec5SDimitry Andric 
18930b57cec5SDimitry Andric       // Copy all non-latch operands of a header's PHI node to the newly
18940b57cec5SDimitry Andric       // created PHI node in the preheader.
18950b57cec5SDimitry Andric       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
18968bcb0991SDimitry Andric         Register PredR = PN->getOperand(i).getReg();
18970b57cec5SDimitry Andric         unsigned PredRSub = PN->getOperand(i).getSubReg();
18980b57cec5SDimitry Andric         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
18990b57cec5SDimitry Andric         if (PredB == Latch)
19000b57cec5SDimitry Andric           continue;
19010b57cec5SDimitry Andric 
19020b57cec5SDimitry Andric         MachineOperand MO = MachineOperand::CreateReg(PredR, false);
19030b57cec5SDimitry Andric         MO.setSubReg(PredRSub);
19040b57cec5SDimitry Andric         NewPN->addOperand(MO);
19050b57cec5SDimitry Andric         NewPN->addOperand(MachineOperand::CreateMBB(PredB));
19060b57cec5SDimitry Andric       }
19070b57cec5SDimitry Andric 
19080b57cec5SDimitry Andric       // Remove copied operands from the old PHI node and add the value
19090b57cec5SDimitry Andric       // coming from the preheader's PHI.
19100b57cec5SDimitry Andric       for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
19110b57cec5SDimitry Andric         MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
19120b57cec5SDimitry Andric         if (PredB != Latch) {
191381ad6265SDimitry Andric           PN->removeOperand(i+1);
191481ad6265SDimitry Andric           PN->removeOperand(i);
19150b57cec5SDimitry Andric         }
19160b57cec5SDimitry Andric       }
19170b57cec5SDimitry Andric       PN->addOperand(MachineOperand::CreateReg(NewPR, false));
19180b57cec5SDimitry Andric       PN->addOperand(MachineOperand::CreateMBB(NewPH));
19190b57cec5SDimitry Andric     }
19200b57cec5SDimitry Andric   } else {
19210b57cec5SDimitry Andric     assert(Header->pred_size() == 2);
19220b57cec5SDimitry Andric 
19230b57cec5SDimitry Andric     // The header has only two predecessors, but the non-latch predecessor
19240b57cec5SDimitry Andric     // is not a preheader (e.g. it has other successors, etc.)
19250b57cec5SDimitry Andric     // In such a case we don't need any extra PHI nodes in the new preheader,
19260b57cec5SDimitry Andric     // all we need is to adjust existing PHIs in the header to now refer to
19270b57cec5SDimitry Andric     // the new preheader.
19280b57cec5SDimitry Andric     for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
19290b57cec5SDimitry Andric          I != E && I->isPHI(); ++I) {
19300b57cec5SDimitry Andric       MachineInstr *PN = &*I;
19310b57cec5SDimitry Andric       for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
19320b57cec5SDimitry Andric         MachineOperand &MO = PN->getOperand(i+1);
19330b57cec5SDimitry Andric         if (MO.getMBB() != Latch)
19340b57cec5SDimitry Andric           MO.setMBB(NewPH);
19350b57cec5SDimitry Andric       }
19360b57cec5SDimitry Andric     }
19370b57cec5SDimitry Andric   }
19380b57cec5SDimitry Andric 
19390b57cec5SDimitry Andric   // "Reroute" the CFG edges to link in the new preheader.
19400b57cec5SDimitry Andric   // If any of the predecessors falls through to the header, insert a branch
19410b57cec5SDimitry Andric   // to the new preheader in that place.
19420b57cec5SDimitry Andric   SmallVector<MachineOperand,1> Tmp2;
19430b57cec5SDimitry Andric   SmallVector<MachineOperand,1> EmptyCond;
19440b57cec5SDimitry Andric 
19450b57cec5SDimitry Andric   TB = FB = nullptr;
19460b57cec5SDimitry Andric 
19474824e7fdSDimitry Andric   for (MachineBasicBlock *PB : Preds) {
19480b57cec5SDimitry Andric     if (PB != Latch) {
19490b57cec5SDimitry Andric       Tmp2.clear();
19500b57cec5SDimitry Andric       bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
19510b57cec5SDimitry Andric       (void)NotAnalyzed; // suppress compiler warning
19520b57cec5SDimitry Andric       assert (!NotAnalyzed && "Should be analyzable!");
19530b57cec5SDimitry Andric       if (TB != Header && (Tmp2.empty() || FB != Header))
19540b57cec5SDimitry Andric         TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
19550b57cec5SDimitry Andric       PB->ReplaceUsesOfBlockWith(Header, NewPH);
19560b57cec5SDimitry Andric     }
19570b57cec5SDimitry Andric   }
19580b57cec5SDimitry Andric 
19590b57cec5SDimitry Andric   // It can happen that the latch block will fall through into the header.
19600b57cec5SDimitry Andric   // Insert an unconditional branch to the header.
19610b57cec5SDimitry Andric   TB = FB = nullptr;
19620b57cec5SDimitry Andric   bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
19630b57cec5SDimitry Andric   (void)LatchNotAnalyzed; // suppress compiler warning
19640b57cec5SDimitry Andric   assert (!LatchNotAnalyzed && "Should be analyzable!");
19650b57cec5SDimitry Andric   if (!TB && !FB)
19660b57cec5SDimitry Andric     TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);
19670b57cec5SDimitry Andric 
19680b57cec5SDimitry Andric   // Finally, the branch from the preheader to the header.
19690b57cec5SDimitry Andric   TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
19700b57cec5SDimitry Andric   NewPH->addSuccessor(Header);
19710b57cec5SDimitry Andric 
19720b57cec5SDimitry Andric   MachineLoop *ParentLoop = L->getParentLoop();
19730b57cec5SDimitry Andric   if (ParentLoop)
1974*0fca6ea1SDimitry Andric     ParentLoop->addBasicBlockToLoop(NewPH, *MLI);
19750b57cec5SDimitry Andric 
19760b57cec5SDimitry Andric   // Update the dominator information with the new preheader.
19770b57cec5SDimitry Andric   if (MDT) {
19780b57cec5SDimitry Andric     if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
19790b57cec5SDimitry Andric       if (MachineDomTreeNode *DHN = HN->getIDom()) {
19800b57cec5SDimitry Andric         MDT->addNewBlock(NewPH, DHN->getBlock());
19810b57cec5SDimitry Andric         MDT->changeImmediateDominator(Header, NewPH);
19820b57cec5SDimitry Andric       }
19830b57cec5SDimitry Andric     }
19840b57cec5SDimitry Andric   }
19850b57cec5SDimitry Andric 
19860b57cec5SDimitry Andric   return NewPH;
19870b57cec5SDimitry Andric }
1988