xref: /freebsd-src/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp (revision 0fca6ea1d4eea4c934cfff25ac9ee8ad6fe95583)
10b57cec5SDimitry Andric //===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
9fe6060f1SDimitry Andric // This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring
100b57cec5SDimitry Andric // there is at most one ret and one unreachable instruction, it ensures there is
110b57cec5SDimitry Andric // at most one divergent exiting block.
120b57cec5SDimitry Andric //
130b57cec5SDimitry Andric // StructurizeCFG can't deal with multi-exit regions formed by branches to
140b57cec5SDimitry Andric // multiple return nodes. It is not desirable to structurize regions with
150b57cec5SDimitry Andric // uniform branches, so unifying those to the same return block as divergent
160b57cec5SDimitry Andric // branches inhibits use of scalar branching. It still can't deal with the case
170b57cec5SDimitry Andric // where one branch goes to return, and one unreachable. Replace unreachable in
180b57cec5SDimitry Andric // this case with a return.
190b57cec5SDimitry Andric //
200b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
210b57cec5SDimitry Andric 
2206c3fb27SDimitry Andric #include "AMDGPUUnifyDivergentExitNodes.h"
230b57cec5SDimitry Andric #include "AMDGPU.h"
24e8d8bef9SDimitry Andric #include "SIDefines.h"
250b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
260b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
270b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
280b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
29e8d8bef9SDimitry Andric #include "llvm/Analysis/DomTreeUpdater.h"
300b57cec5SDimitry Andric #include "llvm/Analysis/PostDominators.h"
310b57cec5SDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
3206c3fb27SDimitry Andric #include "llvm/Analysis/UniformityAnalysis.h"
330b57cec5SDimitry Andric #include "llvm/IR/BasicBlock.h"
340b57cec5SDimitry Andric #include "llvm/IR/CFG.h"
350b57cec5SDimitry Andric #include "llvm/IR/Constants.h"
36e8d8bef9SDimitry Andric #include "llvm/IR/Dominators.h"
370b57cec5SDimitry Andric #include "llvm/IR/Function.h"
38e8d8bef9SDimitry Andric #include "llvm/IR/IRBuilder.h"
390b57cec5SDimitry Andric #include "llvm/IR/InstrTypes.h"
400b57cec5SDimitry Andric #include "llvm/IR/Instructions.h"
410b57cec5SDimitry Andric #include "llvm/IR/Intrinsics.h"
42e8d8bef9SDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h"
430b57cec5SDimitry Andric #include "llvm/IR/Type.h"
44480093f4SDimitry Andric #include "llvm/InitializePasses.h"
450b57cec5SDimitry Andric #include "llvm/Pass.h"
460b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
470b57cec5SDimitry Andric #include "llvm/Transforms/Scalar.h"
480b57cec5SDimitry Andric #include "llvm/Transforms/Utils.h"
495f757f3fSDimitry Andric #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50480093f4SDimitry Andric #include "llvm/Transforms/Utils/Local.h"
510b57cec5SDimitry Andric 
520b57cec5SDimitry Andric using namespace llvm;
530b57cec5SDimitry Andric 
540b57cec5SDimitry Andric #define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
550b57cec5SDimitry Andric 
560b57cec5SDimitry Andric namespace {
570b57cec5SDimitry Andric 
5806c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodesImpl {
59fe6060f1SDimitry Andric private:
60fe6060f1SDimitry Andric   const TargetTransformInfo *TTI = nullptr;
61fe6060f1SDimitry Andric 
620b57cec5SDimitry Andric public:
6306c3fb27SDimitry Andric   AMDGPUUnifyDivergentExitNodesImpl() = delete;
6406c3fb27SDimitry Andric   AMDGPUUnifyDivergentExitNodesImpl(const TargetTransformInfo *TTI)
6506c3fb27SDimitry Andric       : TTI(TTI) {}
660b57cec5SDimitry Andric 
670b57cec5SDimitry Andric   // We can preserve non-critical-edgeness when we unify function exit nodes
68fe6060f1SDimitry Andric   BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU,
69fe6060f1SDimitry Andric                                   ArrayRef<BasicBlock *> ReturningBlocks,
70fe6060f1SDimitry Andric                                   StringRef Name);
7106c3fb27SDimitry Andric   bool run(Function &F, DominatorTree *DT, const PostDominatorTree &PDT,
7206c3fb27SDimitry Andric            const UniformityInfo &UA);
730b57cec5SDimitry Andric };
740b57cec5SDimitry Andric 
7506c3fb27SDimitry Andric class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
7606c3fb27SDimitry Andric public:
7706c3fb27SDimitry Andric   static char ID;
7806c3fb27SDimitry Andric   AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
7906c3fb27SDimitry Andric     initializeAMDGPUUnifyDivergentExitNodesPass(
8006c3fb27SDimitry Andric         *PassRegistry::getPassRegistry());
8106c3fb27SDimitry Andric   }
8206c3fb27SDimitry Andric   void getAnalysisUsage(AnalysisUsage &AU) const override;
8306c3fb27SDimitry Andric   bool runOnFunction(Function &F) override;
8406c3fb27SDimitry Andric };
850b57cec5SDimitry Andric } // end anonymous namespace
860b57cec5SDimitry Andric 
870b57cec5SDimitry Andric char AMDGPUUnifyDivergentExitNodes::ID = 0;
880b57cec5SDimitry Andric 
890b57cec5SDimitry Andric char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
900b57cec5SDimitry Andric 
910b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
920b57cec5SDimitry Andric                       "Unify divergent function exit nodes", false, false)
93e8d8bef9SDimitry Andric INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
940b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
9506c3fb27SDimitry Andric INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
960b57cec5SDimitry Andric INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
970b57cec5SDimitry Andric                     "Unify divergent function exit nodes", false, false)
980b57cec5SDimitry Andric 
990b57cec5SDimitry Andric void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const {
100e8d8bef9SDimitry Andric   if (RequireAndPreserveDomTree)
101e8d8bef9SDimitry Andric     AU.addRequired<DominatorTreeWrapperPass>();
102e8d8bef9SDimitry Andric 
1030b57cec5SDimitry Andric   AU.addRequired<PostDominatorTreeWrapperPass>();
1040b57cec5SDimitry Andric 
10506c3fb27SDimitry Andric   AU.addRequired<UniformityInfoWrapperPass>();
1060b57cec5SDimitry Andric 
107e8d8bef9SDimitry Andric   if (RequireAndPreserveDomTree) {
108e8d8bef9SDimitry Andric     AU.addPreserved<DominatorTreeWrapperPass>();
109e8d8bef9SDimitry Andric     // FIXME: preserve PostDominatorTreeWrapperPass
110e8d8bef9SDimitry Andric   }
111e8d8bef9SDimitry Andric 
1120b57cec5SDimitry Andric   // We preserve the non-critical-edgeness property
1130b57cec5SDimitry Andric   AU.addPreservedID(BreakCriticalEdgesID);
1140b57cec5SDimitry Andric 
1150b57cec5SDimitry Andric   FunctionPass::getAnalysisUsage(AU);
1160b57cec5SDimitry Andric 
1170b57cec5SDimitry Andric   AU.addRequired<TargetTransformInfoWrapperPass>();
1180b57cec5SDimitry Andric }
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric /// \returns true if \p BB is reachable through only uniform branches.
1210b57cec5SDimitry Andric /// XXX - Is there a more efficient way to find this?
12206c3fb27SDimitry Andric static bool isUniformlyReached(const UniformityInfo &UA, BasicBlock &BB) {
123fe6060f1SDimitry Andric   SmallVector<BasicBlock *, 8> Stack(predecessors(&BB));
1240b57cec5SDimitry Andric   SmallPtrSet<BasicBlock *, 8> Visited;
1250b57cec5SDimitry Andric 
1260b57cec5SDimitry Andric   while (!Stack.empty()) {
1270b57cec5SDimitry Andric     BasicBlock *Top = Stack.pop_back_val();
12806c3fb27SDimitry Andric     if (!UA.isUniform(Top->getTerminator()))
1290b57cec5SDimitry Andric       return false;
1300b57cec5SDimitry Andric 
1310b57cec5SDimitry Andric     for (BasicBlock *Pred : predecessors(Top)) {
1320b57cec5SDimitry Andric       if (Visited.insert(Pred).second)
1330b57cec5SDimitry Andric         Stack.push_back(Pred);
1340b57cec5SDimitry Andric     }
1350b57cec5SDimitry Andric   }
1360b57cec5SDimitry Andric 
1370b57cec5SDimitry Andric   return true;
1380b57cec5SDimitry Andric }
1390b57cec5SDimitry Andric 
14006c3fb27SDimitry Andric BasicBlock *AMDGPUUnifyDivergentExitNodesImpl::unifyReturnBlockSet(
141fe6060f1SDimitry Andric     Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks,
1420b57cec5SDimitry Andric     StringRef Name) {
1430b57cec5SDimitry Andric   // Otherwise, we need to insert a new basic block into the function, add a PHI
1440b57cec5SDimitry Andric   // nodes (if the function returns values), and convert all of the return
1450b57cec5SDimitry Andric   // instructions into unconditional branches.
1460b57cec5SDimitry Andric   BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
14713138422SDimitry Andric   IRBuilder<> B(NewRetBlock);
14813138422SDimitry Andric 
1490b57cec5SDimitry Andric   PHINode *PN = nullptr;
1500b57cec5SDimitry Andric   if (F.getReturnType()->isVoidTy()) {
15113138422SDimitry Andric     B.CreateRetVoid();
1520b57cec5SDimitry Andric   } else {
1530b57cec5SDimitry Andric     // If the function doesn't return void... add a PHI node to the block...
15413138422SDimitry Andric     PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
1550b57cec5SDimitry Andric                      "UnifiedRetVal");
15613138422SDimitry Andric     B.CreateRet(PN);
1570b57cec5SDimitry Andric   }
1580b57cec5SDimitry Andric 
1590b57cec5SDimitry Andric   // Loop over all of the blocks, replacing the return instruction with an
1600b57cec5SDimitry Andric   // unconditional branch.
161e8d8bef9SDimitry Andric   std::vector<DominatorTree::UpdateType> Updates;
162e8d8bef9SDimitry Andric   Updates.reserve(ReturningBlocks.size());
1630b57cec5SDimitry Andric   for (BasicBlock *BB : ReturningBlocks) {
1640b57cec5SDimitry Andric     // Add an incoming element to the PHI node for every return instruction that
1650b57cec5SDimitry Andric     // is merging into this new block...
1660b57cec5SDimitry Andric     if (PN)
1670b57cec5SDimitry Andric       PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
1680b57cec5SDimitry Andric 
1690b57cec5SDimitry Andric     // Remove and delete the return inst.
1700b57cec5SDimitry Andric     BB->getTerminator()->eraseFromParent();
1710b57cec5SDimitry Andric     BranchInst::Create(NewRetBlock, BB);
172*0fca6ea1SDimitry Andric     Updates.emplace_back(DominatorTree::Insert, BB, NewRetBlock);
1730b57cec5SDimitry Andric   }
1740b57cec5SDimitry Andric 
175e8d8bef9SDimitry Andric   if (RequireAndPreserveDomTree)
176e8d8bef9SDimitry Andric     DTU.applyUpdates(Updates);
177e8d8bef9SDimitry Andric   Updates.clear();
178e8d8bef9SDimitry Andric 
1790b57cec5SDimitry Andric   for (BasicBlock *BB : ReturningBlocks) {
1800b57cec5SDimitry Andric     // Cleanup possible branch to unconditional branch to the return.
181fe6060f1SDimitry Andric     simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr,
182e8d8bef9SDimitry Andric                 SimplifyCFGOptions().bonusInstThreshold(2));
1830b57cec5SDimitry Andric   }
1840b57cec5SDimitry Andric 
1850b57cec5SDimitry Andric   return NewRetBlock;
1860b57cec5SDimitry Andric }
1870b57cec5SDimitry Andric 
18806c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodesImpl::run(Function &F, DominatorTree *DT,
18906c3fb27SDimitry Andric                                             const PostDominatorTree &PDT,
19006c3fb27SDimitry Andric                                             const UniformityInfo &UA) {
1915f757f3fSDimitry Andric   assert(hasOnlySimpleTerminator(F) && "Unsupported block terminator.");
1925f757f3fSDimitry Andric 
193bdd1243dSDimitry Andric   if (PDT.root_size() == 0 ||
194bdd1243dSDimitry Andric       (PDT.root_size() == 1 &&
195bdd1243dSDimitry Andric        !isa<BranchInst>(PDT.getRoot()->getTerminator())))
1960b57cec5SDimitry Andric     return false;
1970b57cec5SDimitry Andric 
1980b57cec5SDimitry Andric   // Loop over all of the blocks in a function, tracking all of the blocks that
1990b57cec5SDimitry Andric   // return.
2000b57cec5SDimitry Andric   SmallVector<BasicBlock *, 4> ReturningBlocks;
2010b57cec5SDimitry Andric   SmallVector<BasicBlock *, 4> UnreachableBlocks;
2020b57cec5SDimitry Andric 
2030b57cec5SDimitry Andric   // Dummy return block for infinite loop.
2040b57cec5SDimitry Andric   BasicBlock *DummyReturnBB = nullptr;
2050b57cec5SDimitry Andric 
2065ffd83dbSDimitry Andric   bool Changed = false;
207e8d8bef9SDimitry Andric   std::vector<DominatorTree::UpdateType> Updates;
208e8d8bef9SDimitry Andric 
209bdd1243dSDimitry Andric   // TODO: For now we unify all exit blocks, even though they are uniformly
210bdd1243dSDimitry Andric   // reachable, if there are any exits not uniformly reached. This is to
211bdd1243dSDimitry Andric   // workaround the limitation of structurizer, which can not handle multiple
212bdd1243dSDimitry Andric   // function exits. After structurizer is able to handle multiple function
213bdd1243dSDimitry Andric   // exits, we should only unify UnreachableBlocks that are not uniformly
214bdd1243dSDimitry Andric   // reachable.
215bdd1243dSDimitry Andric   bool HasDivergentExitBlock = llvm::any_of(
21606c3fb27SDimitry Andric       PDT.roots(), [&](auto BB) { return !isUniformlyReached(UA, *BB); });
217bdd1243dSDimitry Andric 
2185ffd83dbSDimitry Andric   for (BasicBlock *BB : PDT.roots()) {
2190b57cec5SDimitry Andric     if (isa<ReturnInst>(BB->getTerminator())) {
220bdd1243dSDimitry Andric       if (HasDivergentExitBlock)
2210b57cec5SDimitry Andric         ReturningBlocks.push_back(BB);
2220b57cec5SDimitry Andric     } else if (isa<UnreachableInst>(BB->getTerminator())) {
223bdd1243dSDimitry Andric       if (HasDivergentExitBlock)
2240b57cec5SDimitry Andric         UnreachableBlocks.push_back(BB);
2250b57cec5SDimitry Andric     } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
2260b57cec5SDimitry Andric 
2270b57cec5SDimitry Andric       ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
2280b57cec5SDimitry Andric       if (DummyReturnBB == nullptr) {
2290b57cec5SDimitry Andric         DummyReturnBB = BasicBlock::Create(F.getContext(),
2300b57cec5SDimitry Andric                                            "DummyReturnBlock", &F);
2310b57cec5SDimitry Andric         Type *RetTy = F.getReturnType();
232bdd1243dSDimitry Andric         Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy);
2330b57cec5SDimitry Andric         ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
2340b57cec5SDimitry Andric         ReturningBlocks.push_back(DummyReturnBB);
2350b57cec5SDimitry Andric       }
2360b57cec5SDimitry Andric 
2370b57cec5SDimitry Andric       if (BI->isUnconditional()) {
2380b57cec5SDimitry Andric         BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
2390b57cec5SDimitry Andric         BI->eraseFromParent(); // Delete the unconditional branch.
2400b57cec5SDimitry Andric         // Add a new conditional branch with a dummy edge to the return block.
2410b57cec5SDimitry Andric         BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
242*0fca6ea1SDimitry Andric         Updates.emplace_back(DominatorTree::Insert, BB, DummyReturnBB);
2430b57cec5SDimitry Andric       } else { // Conditional branch.
244349cc55cSDimitry Andric         SmallVector<BasicBlock *, 2> Successors(successors(BB));
245e8d8bef9SDimitry Andric 
2460b57cec5SDimitry Andric         // Create a new transition block to hold the conditional branch.
2470b57cec5SDimitry Andric         BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
2480b57cec5SDimitry Andric 
249e8d8bef9SDimitry Andric         Updates.reserve(Updates.size() + 2 * Successors.size() + 2);
250e8d8bef9SDimitry Andric 
251e8d8bef9SDimitry Andric         // 'Successors' become successors of TransitionBB instead of BB,
252e8d8bef9SDimitry Andric         // and TransitionBB becomes a single successor of BB.
253*0fca6ea1SDimitry Andric         Updates.emplace_back(DominatorTree::Insert, BB, TransitionBB);
254e8d8bef9SDimitry Andric         for (BasicBlock *Successor : Successors) {
255*0fca6ea1SDimitry Andric           Updates.emplace_back(DominatorTree::Insert, TransitionBB, Successor);
256*0fca6ea1SDimitry Andric           Updates.emplace_back(DominatorTree::Delete, BB, Successor);
257e8d8bef9SDimitry Andric         }
258e8d8bef9SDimitry Andric 
2590b57cec5SDimitry Andric         // Create a branch that will always branch to the transition block and
2600b57cec5SDimitry Andric         // references DummyReturnBB.
2610b57cec5SDimitry Andric         BB->getTerminator()->eraseFromParent();
2620b57cec5SDimitry Andric         BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
263*0fca6ea1SDimitry Andric         Updates.emplace_back(DominatorTree::Insert, BB, DummyReturnBB);
2640b57cec5SDimitry Andric       }
2655ffd83dbSDimitry Andric       Changed = true;
2660b57cec5SDimitry Andric     }
2670b57cec5SDimitry Andric   }
2680b57cec5SDimitry Andric 
2690b57cec5SDimitry Andric   if (!UnreachableBlocks.empty()) {
2700b57cec5SDimitry Andric     BasicBlock *UnreachableBlock = nullptr;
2710b57cec5SDimitry Andric 
2720b57cec5SDimitry Andric     if (UnreachableBlocks.size() == 1) {
2730b57cec5SDimitry Andric       UnreachableBlock = UnreachableBlocks.front();
2740b57cec5SDimitry Andric     } else {
2750b57cec5SDimitry Andric       UnreachableBlock = BasicBlock::Create(F.getContext(),
2760b57cec5SDimitry Andric                                             "UnifiedUnreachableBlock", &F);
2770b57cec5SDimitry Andric       new UnreachableInst(F.getContext(), UnreachableBlock);
2780b57cec5SDimitry Andric 
279e8d8bef9SDimitry Andric       Updates.reserve(Updates.size() + UnreachableBlocks.size());
2800b57cec5SDimitry Andric       for (BasicBlock *BB : UnreachableBlocks) {
2810b57cec5SDimitry Andric         // Remove and delete the unreachable inst.
2820b57cec5SDimitry Andric         BB->getTerminator()->eraseFromParent();
2830b57cec5SDimitry Andric         BranchInst::Create(UnreachableBlock, BB);
284*0fca6ea1SDimitry Andric         Updates.emplace_back(DominatorTree::Insert, BB, UnreachableBlock);
2850b57cec5SDimitry Andric       }
2865ffd83dbSDimitry Andric       Changed = true;
2870b57cec5SDimitry Andric     }
2880b57cec5SDimitry Andric 
2890b57cec5SDimitry Andric     if (!ReturningBlocks.empty()) {
2900b57cec5SDimitry Andric       // Don't create a new unreachable inst if we have a return. The
2910b57cec5SDimitry Andric       // structurizer/annotator can't handle the multiple exits
2920b57cec5SDimitry Andric 
2930b57cec5SDimitry Andric       Type *RetTy = F.getReturnType();
294bdd1243dSDimitry Andric       Value *RetVal = RetTy->isVoidTy() ? nullptr : PoisonValue::get(RetTy);
2950b57cec5SDimitry Andric       // Remove and delete the unreachable inst.
2960b57cec5SDimitry Andric       UnreachableBlock->getTerminator()->eraseFromParent();
2970b57cec5SDimitry Andric 
2980b57cec5SDimitry Andric       Function *UnreachableIntrin =
2990b57cec5SDimitry Andric         Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
3000b57cec5SDimitry Andric 
3010b57cec5SDimitry Andric       // Insert a call to an intrinsic tracking that this is an unreachable
3020b57cec5SDimitry Andric       // point, in case we want to kill the active lanes or something later.
3030b57cec5SDimitry Andric       CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric       // Don't create a scalar trap. We would only want to trap if this code was
3060b57cec5SDimitry Andric       // really reached, but a scalar trap would happen even if no lanes
3070b57cec5SDimitry Andric       // actually reached here.
3080b57cec5SDimitry Andric       ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
3090b57cec5SDimitry Andric       ReturningBlocks.push_back(UnreachableBlock);
3105ffd83dbSDimitry Andric       Changed = true;
3110b57cec5SDimitry Andric     }
3120b57cec5SDimitry Andric   }
3130b57cec5SDimitry Andric 
314e8d8bef9SDimitry Andric   // FIXME: add PDT here once simplifycfg is ready.
315e8d8bef9SDimitry Andric   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
316e8d8bef9SDimitry Andric   if (RequireAndPreserveDomTree)
317e8d8bef9SDimitry Andric     DTU.applyUpdates(Updates);
318e8d8bef9SDimitry Andric   Updates.clear();
319e8d8bef9SDimitry Andric 
3200b57cec5SDimitry Andric   // Now handle return blocks.
3210b57cec5SDimitry Andric   if (ReturningBlocks.empty())
3225ffd83dbSDimitry Andric     return Changed; // No blocks return
3230b57cec5SDimitry Andric 
324fe6060f1SDimitry Andric   if (ReturningBlocks.size() == 1)
3255ffd83dbSDimitry Andric     return Changed; // Already has a single return block
3260b57cec5SDimitry Andric 
327fe6060f1SDimitry Andric   unifyReturnBlockSet(F, DTU, ReturningBlocks, "UnifiedReturnBlock");
3280b57cec5SDimitry Andric   return true;
3290b57cec5SDimitry Andric }
33006c3fb27SDimitry Andric 
33106c3fb27SDimitry Andric bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
33206c3fb27SDimitry Andric   DominatorTree *DT = nullptr;
33306c3fb27SDimitry Andric   if (RequireAndPreserveDomTree)
33406c3fb27SDimitry Andric     DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
33506c3fb27SDimitry Andric   const auto &PDT =
33606c3fb27SDimitry Andric       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
33706c3fb27SDimitry Andric   const auto &UA = getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
33806c3fb27SDimitry Andric   const auto *TranformInfo =
33906c3fb27SDimitry Andric       &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
34006c3fb27SDimitry Andric   return AMDGPUUnifyDivergentExitNodesImpl(TranformInfo).run(F, DT, PDT, UA);
34106c3fb27SDimitry Andric }
34206c3fb27SDimitry Andric 
34306c3fb27SDimitry Andric PreservedAnalyses
34406c3fb27SDimitry Andric AMDGPUUnifyDivergentExitNodesPass::run(Function &F,
34506c3fb27SDimitry Andric                                        FunctionAnalysisManager &AM) {
34606c3fb27SDimitry Andric   DominatorTree *DT = nullptr;
34706c3fb27SDimitry Andric   if (RequireAndPreserveDomTree)
34806c3fb27SDimitry Andric     DT = &AM.getResult<DominatorTreeAnalysis>(F);
34906c3fb27SDimitry Andric 
35006c3fb27SDimitry Andric   const auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
35106c3fb27SDimitry Andric   const auto &UA = AM.getResult<UniformityInfoAnalysis>(F);
35206c3fb27SDimitry Andric   const auto *TransformInfo = &AM.getResult<TargetIRAnalysis>(F);
35306c3fb27SDimitry Andric   return AMDGPUUnifyDivergentExitNodesImpl(TransformInfo).run(F, DT, PDT, UA)
35406c3fb27SDimitry Andric              ? PreservedAnalyses::none()
35506c3fb27SDimitry Andric              : PreservedAnalyses::all();
35606c3fb27SDimitry Andric }
357