10b57cec5SDimitry Andric //===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // \file 100b57cec5SDimitry Andric // This file implements a TargetTransformInfo analysis pass specific to the 110b57cec5SDimitry Andric // AMDGPU target machine. It uses the target's detailed information to provide 120b57cec5SDimitry Andric // more precise answers to certain TTI queries, while letting the target 130b57cec5SDimitry Andric // independent and default TTI implementations handle the rest. 140b57cec5SDimitry Andric // 150b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 160b57cec5SDimitry Andric 170b57cec5SDimitry Andric #include "AMDGPUTargetTransformInfo.h" 18e8d8bef9SDimitry Andric #include "AMDGPUTargetMachine.h" 19349cc55cSDimitry Andric #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 2006c3fb27SDimitry Andric #include "SIModeRegisterDefaults.h" 2106c3fb27SDimitry Andric #include "llvm/Analysis/InlineCost.h" 220b57cec5SDimitry Andric #include "llvm/Analysis/LoopInfo.h" 230b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h" 2406c3fb27SDimitry Andric #include "llvm/CodeGen/Analysis.h" 25fe6060f1SDimitry Andric #include "llvm/IR/IRBuilder.h" 26349cc55cSDimitry Andric #include "llvm/IR/IntrinsicsAMDGPU.h" 270b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 28e8d8bef9SDimitry Andric #include "llvm/Support/KnownBits.h" 29bdd1243dSDimitry Andric #include <optional> 300b57cec5SDimitry Andric 310b57cec5SDimitry Andric using namespace llvm; 320b57cec5SDimitry Andric 330b57cec5SDimitry Andric #define DEBUG_TYPE "AMDGPUtti" 340b57cec5SDimitry Andric 350b57cec5SDimitry Andric static cl::opt<unsigned> UnrollThresholdPrivate( 360b57cec5SDimitry Andric "amdgpu-unroll-threshold-private", 370b57cec5SDimitry Andric cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"), 38480093f4SDimitry Andric cl::init(2700), cl::Hidden); 390b57cec5SDimitry Andric 400b57cec5SDimitry Andric static cl::opt<unsigned> UnrollThresholdLocal( 410b57cec5SDimitry Andric "amdgpu-unroll-threshold-local", 420b57cec5SDimitry Andric cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"), 430b57cec5SDimitry Andric cl::init(1000), cl::Hidden); 440b57cec5SDimitry Andric 450b57cec5SDimitry Andric static cl::opt<unsigned> UnrollThresholdIf( 460b57cec5SDimitry Andric "amdgpu-unroll-threshold-if", 470b57cec5SDimitry Andric cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"), 48fe6060f1SDimitry Andric cl::init(200), cl::Hidden); 490b57cec5SDimitry Andric 505ffd83dbSDimitry Andric static cl::opt<bool> UnrollRuntimeLocal( 515ffd83dbSDimitry Andric "amdgpu-unroll-runtime-local", 525ffd83dbSDimitry Andric cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"), 535ffd83dbSDimitry Andric cl::init(true), cl::Hidden); 545ffd83dbSDimitry Andric 555ffd83dbSDimitry Andric static cl::opt<unsigned> UnrollMaxBlockToAnalyze( 565ffd83dbSDimitry Andric "amdgpu-unroll-max-block-to-analyze", 575ffd83dbSDimitry Andric cl::desc("Inner loop block size threshold to analyze in unroll for AMDGPU"), 58e8d8bef9SDimitry Andric cl::init(32), cl::Hidden); 59e8d8bef9SDimitry Andric 60e8d8bef9SDimitry Andric static cl::opt<unsigned> ArgAllocaCost("amdgpu-inline-arg-alloca-cost", 61e8d8bef9SDimitry Andric cl::Hidden, cl::init(4000), 62e8d8bef9SDimitry Andric cl::desc("Cost of alloca argument")); 63e8d8bef9SDimitry Andric 64e8d8bef9SDimitry Andric // If the amount of scratch memory to eliminate exceeds our ability to allocate 65e8d8bef9SDimitry Andric // it into registers we gain nothing by aggressively inlining functions for that 66e8d8bef9SDimitry Andric // heuristic. 67e8d8bef9SDimitry Andric static cl::opt<unsigned> 68e8d8bef9SDimitry Andric ArgAllocaCutoff("amdgpu-inline-arg-alloca-cutoff", cl::Hidden, 69e8d8bef9SDimitry Andric cl::init(256), 70e8d8bef9SDimitry Andric cl::desc("Maximum alloca size to use for inline cost")); 71e8d8bef9SDimitry Andric 72e8d8bef9SDimitry Andric // Inliner constraint to achieve reasonable compilation time. 73e8d8bef9SDimitry Andric static cl::opt<size_t> InlineMaxBB( 74e8d8bef9SDimitry Andric "amdgpu-inline-max-bb", cl::Hidden, cl::init(1100), 75e8d8bef9SDimitry Andric cl::desc("Maximum number of BBs allowed in a function after inlining" 76e8d8bef9SDimitry Andric " (compile time constraint)")); 775ffd83dbSDimitry Andric 780b57cec5SDimitry Andric static bool dependsOnLocalPhi(const Loop *L, const Value *Cond, 790b57cec5SDimitry Andric unsigned Depth = 0) { 800b57cec5SDimitry Andric const Instruction *I = dyn_cast<Instruction>(Cond); 810b57cec5SDimitry Andric if (!I) 820b57cec5SDimitry Andric return false; 830b57cec5SDimitry Andric 840b57cec5SDimitry Andric for (const Value *V : I->operand_values()) { 850b57cec5SDimitry Andric if (!L->contains(I)) 860b57cec5SDimitry Andric continue; 870b57cec5SDimitry Andric if (const PHINode *PHI = dyn_cast<PHINode>(V)) { 880b57cec5SDimitry Andric if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) { 890b57cec5SDimitry Andric return SubLoop->contains(PHI); })) 900b57cec5SDimitry Andric return true; 910b57cec5SDimitry Andric } else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1)) 920b57cec5SDimitry Andric return true; 930b57cec5SDimitry Andric } 940b57cec5SDimitry Andric return false; 950b57cec5SDimitry Andric } 960b57cec5SDimitry Andric 97e8d8bef9SDimitry Andric AMDGPUTTIImpl::AMDGPUTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 98*0fca6ea1SDimitry Andric : BaseT(TM, F.getDataLayout()), 99e8d8bef9SDimitry Andric TargetTriple(TM->getTargetTriple()), 100e8d8bef9SDimitry Andric ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 101e8d8bef9SDimitry Andric TLI(ST->getTargetLowering()) {} 102e8d8bef9SDimitry Andric 1030b57cec5SDimitry Andric void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 104349cc55cSDimitry Andric TTI::UnrollingPreferences &UP, 105349cc55cSDimitry Andric OptimizationRemarkEmitter *ORE) { 106480093f4SDimitry Andric const Function &F = *L->getHeader()->getParent(); 107bdd1243dSDimitry Andric UP.Threshold = 108bdd1243dSDimitry Andric F.getFnAttributeAsParsedInteger("amdgpu-unroll-threshold", 300); 1090b57cec5SDimitry Andric UP.MaxCount = std::numeric_limits<unsigned>::max(); 1100b57cec5SDimitry Andric UP.Partial = true; 1110b57cec5SDimitry Andric 112fe6060f1SDimitry Andric // Conditional branch in a loop back edge needs 3 additional exec 113fe6060f1SDimitry Andric // manipulations in average. 114fe6060f1SDimitry Andric UP.BEInsns += 3; 115fe6060f1SDimitry Andric 11606c3fb27SDimitry Andric // We want to run unroll even for the loops which have been vectorized. 11706c3fb27SDimitry Andric UP.UnrollVectorizedLoop = true; 11806c3fb27SDimitry Andric 1190b57cec5SDimitry Andric // TODO: Do we want runtime unrolling? 1200b57cec5SDimitry Andric 1210b57cec5SDimitry Andric // Maximum alloca size than can fit registers. Reserve 16 registers. 1220b57cec5SDimitry Andric const unsigned MaxAlloca = (256 - 16) * 4; 1230b57cec5SDimitry Andric unsigned ThresholdPrivate = UnrollThresholdPrivate; 1240b57cec5SDimitry Andric unsigned ThresholdLocal = UnrollThresholdLocal; 125e8d8bef9SDimitry Andric 126e8d8bef9SDimitry Andric // If this loop has the amdgpu.loop.unroll.threshold metadata we will use the 127e8d8bef9SDimitry Andric // provided threshold value as the default for Threshold 128e8d8bef9SDimitry Andric if (MDNode *LoopUnrollThreshold = 129e8d8bef9SDimitry Andric findOptionMDForLoop(L, "amdgpu.loop.unroll.threshold")) { 130e8d8bef9SDimitry Andric if (LoopUnrollThreshold->getNumOperands() == 2) { 131e8d8bef9SDimitry Andric ConstantInt *MetaThresholdValue = mdconst::extract_or_null<ConstantInt>( 132e8d8bef9SDimitry Andric LoopUnrollThreshold->getOperand(1)); 133e8d8bef9SDimitry Andric if (MetaThresholdValue) { 134e8d8bef9SDimitry Andric // We will also use the supplied value for PartialThreshold for now. 135e8d8bef9SDimitry Andric // We may introduce additional metadata if it becomes necessary in the 136e8d8bef9SDimitry Andric // future. 137e8d8bef9SDimitry Andric UP.Threshold = MetaThresholdValue->getSExtValue(); 138e8d8bef9SDimitry Andric UP.PartialThreshold = UP.Threshold; 139e8d8bef9SDimitry Andric ThresholdPrivate = std::min(ThresholdPrivate, UP.Threshold); 140e8d8bef9SDimitry Andric ThresholdLocal = std::min(ThresholdLocal, UP.Threshold); 141e8d8bef9SDimitry Andric } 142e8d8bef9SDimitry Andric } 143e8d8bef9SDimitry Andric } 144e8d8bef9SDimitry Andric 1450b57cec5SDimitry Andric unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal); 1460b57cec5SDimitry Andric for (const BasicBlock *BB : L->getBlocks()) { 147*0fca6ea1SDimitry Andric const DataLayout &DL = BB->getDataLayout(); 1480b57cec5SDimitry Andric unsigned LocalGEPsSeen = 0; 1490b57cec5SDimitry Andric 1500b57cec5SDimitry Andric if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) { 1510b57cec5SDimitry Andric return SubLoop->contains(BB); })) 1520b57cec5SDimitry Andric continue; // Block belongs to an inner loop. 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric for (const Instruction &I : *BB) { 1550b57cec5SDimitry Andric // Unroll a loop which contains an "if" statement whose condition 1560b57cec5SDimitry Andric // defined by a PHI belonging to the loop. This may help to eliminate 1570b57cec5SDimitry Andric // if region and potentially even PHI itself, saving on both divergence 1580b57cec5SDimitry Andric // and registers used for the PHI. 1590b57cec5SDimitry Andric // Add a small bonus for each of such "if" statements. 1600b57cec5SDimitry Andric if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) { 1610b57cec5SDimitry Andric if (UP.Threshold < MaxBoost && Br->isConditional()) { 1620b57cec5SDimitry Andric BasicBlock *Succ0 = Br->getSuccessor(0); 1630b57cec5SDimitry Andric BasicBlock *Succ1 = Br->getSuccessor(1); 1640b57cec5SDimitry Andric if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) || 1650b57cec5SDimitry Andric (L->contains(Succ1) && L->isLoopExiting(Succ1))) 1660b57cec5SDimitry Andric continue; 1670b57cec5SDimitry Andric if (dependsOnLocalPhi(L, Br->getCondition())) { 1680b57cec5SDimitry Andric UP.Threshold += UnrollThresholdIf; 1690b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold 1700b57cec5SDimitry Andric << " for loop:\n" 1710b57cec5SDimitry Andric << *L << " due to " << *Br << '\n'); 1720b57cec5SDimitry Andric if (UP.Threshold >= MaxBoost) 1730b57cec5SDimitry Andric return; 1740b57cec5SDimitry Andric } 1750b57cec5SDimitry Andric } 1760b57cec5SDimitry Andric continue; 1770b57cec5SDimitry Andric } 1780b57cec5SDimitry Andric 1790b57cec5SDimitry Andric const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 1800b57cec5SDimitry Andric if (!GEP) 1810b57cec5SDimitry Andric continue; 1820b57cec5SDimitry Andric 1830b57cec5SDimitry Andric unsigned AS = GEP->getAddressSpace(); 1840b57cec5SDimitry Andric unsigned Threshold = 0; 1850b57cec5SDimitry Andric if (AS == AMDGPUAS::PRIVATE_ADDRESS) 1860b57cec5SDimitry Andric Threshold = ThresholdPrivate; 1870b57cec5SDimitry Andric else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) 1880b57cec5SDimitry Andric Threshold = ThresholdLocal; 1890b57cec5SDimitry Andric else 1900b57cec5SDimitry Andric continue; 1910b57cec5SDimitry Andric 1920b57cec5SDimitry Andric if (UP.Threshold >= Threshold) 1930b57cec5SDimitry Andric continue; 1940b57cec5SDimitry Andric 1950b57cec5SDimitry Andric if (AS == AMDGPUAS::PRIVATE_ADDRESS) { 1960b57cec5SDimitry Andric const Value *Ptr = GEP->getPointerOperand(); 1970b57cec5SDimitry Andric const AllocaInst *Alloca = 198e8d8bef9SDimitry Andric dyn_cast<AllocaInst>(getUnderlyingObject(Ptr)); 1990b57cec5SDimitry Andric if (!Alloca || !Alloca->isStaticAlloca()) 2000b57cec5SDimitry Andric continue; 2010b57cec5SDimitry Andric Type *Ty = Alloca->getAllocatedType(); 2020b57cec5SDimitry Andric unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0; 2030b57cec5SDimitry Andric if (AllocaSize > MaxAlloca) 2040b57cec5SDimitry Andric continue; 2050b57cec5SDimitry Andric } else if (AS == AMDGPUAS::LOCAL_ADDRESS || 2060b57cec5SDimitry Andric AS == AMDGPUAS::REGION_ADDRESS) { 2070b57cec5SDimitry Andric LocalGEPsSeen++; 2080b57cec5SDimitry Andric // Inhibit unroll for local memory if we have seen addressing not to 2090b57cec5SDimitry Andric // a variable, most likely we will be unable to combine it. 2100b57cec5SDimitry Andric // Do not unroll too deep inner loops for local memory to give a chance 2110b57cec5SDimitry Andric // to unroll an outer loop for a more important reason. 2120b57cec5SDimitry Andric if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 || 2130b57cec5SDimitry Andric (!isa<GlobalVariable>(GEP->getPointerOperand()) && 2140b57cec5SDimitry Andric !isa<Argument>(GEP->getPointerOperand()))) 2150b57cec5SDimitry Andric continue; 2165ffd83dbSDimitry Andric LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n" 2175ffd83dbSDimitry Andric << *L << " due to LDS use.\n"); 2185ffd83dbSDimitry Andric UP.Runtime = UnrollRuntimeLocal; 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric 2210b57cec5SDimitry Andric // Check if GEP depends on a value defined by this loop itself. 2220b57cec5SDimitry Andric bool HasLoopDef = false; 2230b57cec5SDimitry Andric for (const Value *Op : GEP->operands()) { 2240b57cec5SDimitry Andric const Instruction *Inst = dyn_cast<Instruction>(Op); 2250b57cec5SDimitry Andric if (!Inst || L->isLoopInvariant(Op)) 2260b57cec5SDimitry Andric continue; 2270b57cec5SDimitry Andric 2280b57cec5SDimitry Andric if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) { 2290b57cec5SDimitry Andric return SubLoop->contains(Inst); })) 2300b57cec5SDimitry Andric continue; 2310b57cec5SDimitry Andric HasLoopDef = true; 2320b57cec5SDimitry Andric break; 2330b57cec5SDimitry Andric } 2340b57cec5SDimitry Andric if (!HasLoopDef) 2350b57cec5SDimitry Andric continue; 2360b57cec5SDimitry Andric 2370b57cec5SDimitry Andric // We want to do whatever we can to limit the number of alloca 2380b57cec5SDimitry Andric // instructions that make it through to the code generator. allocas 2390b57cec5SDimitry Andric // require us to use indirect addressing, which is slow and prone to 2400b57cec5SDimitry Andric // compiler bugs. If this loop does an address calculation on an 2410b57cec5SDimitry Andric // alloca ptr, then we want to use a higher than normal loop unroll 2420b57cec5SDimitry Andric // threshold. This will give SROA a better chance to eliminate these 2430b57cec5SDimitry Andric // allocas. 2440b57cec5SDimitry Andric // 2450b57cec5SDimitry Andric // We also want to have more unrolling for local memory to let ds 2460b57cec5SDimitry Andric // instructions with different offsets combine. 2470b57cec5SDimitry Andric // 2480b57cec5SDimitry Andric // Don't use the maximum allowed value here as it will make some 2490b57cec5SDimitry Andric // programs way too big. 2500b57cec5SDimitry Andric UP.Threshold = Threshold; 2510b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold 2520b57cec5SDimitry Andric << " for loop:\n" 2530b57cec5SDimitry Andric << *L << " due to " << *GEP << '\n'); 2540b57cec5SDimitry Andric if (UP.Threshold >= MaxBoost) 2550b57cec5SDimitry Andric return; 2560b57cec5SDimitry Andric } 2575ffd83dbSDimitry Andric 2585ffd83dbSDimitry Andric // If we got a GEP in a small BB from inner loop then increase max trip 2595ffd83dbSDimitry Andric // count to analyze for better estimation cost in unroll 260e8d8bef9SDimitry Andric if (L->isInnermost() && BB->size() < UnrollMaxBlockToAnalyze) 2615ffd83dbSDimitry Andric UP.MaxIterationsCountToAnalyze = 32; 2620b57cec5SDimitry Andric } 2630b57cec5SDimitry Andric } 2640b57cec5SDimitry Andric 2655ffd83dbSDimitry Andric void AMDGPUTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2665ffd83dbSDimitry Andric TTI::PeelingPreferences &PP) { 2675ffd83dbSDimitry Andric BaseT::getPeelingPreferences(L, SE, PP); 2685ffd83dbSDimitry Andric } 269e8d8bef9SDimitry Andric 27006c3fb27SDimitry Andric int64_t AMDGPUTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const { 27106c3fb27SDimitry Andric return 1024; 27206c3fb27SDimitry Andric } 27306c3fb27SDimitry Andric 274e8d8bef9SDimitry Andric const FeatureBitset GCNTTIImpl::InlineFeatureIgnoreList = { 275e8d8bef9SDimitry Andric // Codegen control options which don't matter. 276e8d8bef9SDimitry Andric AMDGPU::FeatureEnableLoadStoreOpt, AMDGPU::FeatureEnableSIScheduler, 277e8d8bef9SDimitry Andric AMDGPU::FeatureEnableUnsafeDSOffsetFolding, AMDGPU::FeatureFlatForGlobal, 278e8d8bef9SDimitry Andric AMDGPU::FeaturePromoteAlloca, AMDGPU::FeatureUnalignedScratchAccess, 279e8d8bef9SDimitry Andric AMDGPU::FeatureUnalignedAccessMode, 280e8d8bef9SDimitry Andric 281e8d8bef9SDimitry Andric AMDGPU::FeatureAutoWaitcntBeforeBarrier, 282e8d8bef9SDimitry Andric 283e8d8bef9SDimitry Andric // Property of the kernel/environment which can't actually differ. 284e8d8bef9SDimitry Andric AMDGPU::FeatureSGPRInitBug, AMDGPU::FeatureXNACK, 285e8d8bef9SDimitry Andric AMDGPU::FeatureTrapHandler, 286e8d8bef9SDimitry Andric 287e8d8bef9SDimitry Andric // The default assumption needs to be ecc is enabled, but no directly 288e8d8bef9SDimitry Andric // exposed operations depend on it, so it can be safely inlined. 289e8d8bef9SDimitry Andric AMDGPU::FeatureSRAMECC, 290e8d8bef9SDimitry Andric 291e8d8bef9SDimitry Andric // Perf-tuning features 292e8d8bef9SDimitry Andric AMDGPU::FeatureFastFMAF32, AMDGPU::HalfRate64Ops}; 293e8d8bef9SDimitry Andric 294e8d8bef9SDimitry Andric GCNTTIImpl::GCNTTIImpl(const AMDGPUTargetMachine *TM, const Function &F) 295*0fca6ea1SDimitry Andric : BaseT(TM, F.getDataLayout()), 296e8d8bef9SDimitry Andric ST(static_cast<const GCNSubtarget *>(TM->getSubtargetImpl(F))), 297e8d8bef9SDimitry Andric TLI(ST->getTargetLowering()), CommonTTI(TM, F), 29881ad6265SDimitry Andric IsGraphics(AMDGPU::isGraphics(F.getCallingConv())) { 2995f757f3fSDimitry Andric SIModeRegisterDefaults Mode(F, *ST); 30006c3fb27SDimitry Andric HasFP32Denormals = Mode.FP32Denormals != DenormalMode::getPreserveSign(); 30106c3fb27SDimitry Andric HasFP64FP16Denormals = 30206c3fb27SDimitry Andric Mode.FP64FP16Denormals != DenormalMode::getPreserveSign(); 30306c3fb27SDimitry Andric } 30406c3fb27SDimitry Andric 30506c3fb27SDimitry Andric bool GCNTTIImpl::hasBranchDivergence(const Function *F) const { 30606c3fb27SDimitry Andric return !F || !ST->isSingleLaneExecution(*F); 307e8d8bef9SDimitry Andric } 308e8d8bef9SDimitry Andric 30981ad6265SDimitry Andric unsigned GCNTTIImpl::getNumberOfRegisters(unsigned RCID) const { 31081ad6265SDimitry Andric // NB: RCID is not an RCID. In fact it is 0 or 1 for scalar or vector 31181ad6265SDimitry Andric // registers. See getRegisterClassForType for the implementation. 31281ad6265SDimitry Andric // In this case vector registers are not vector in terms of 31381ad6265SDimitry Andric // VGPRs, but those which can hold multiple values. 3140b57cec5SDimitry Andric 3150b57cec5SDimitry Andric // This is really the number of registers to fill when vectorizing / 3160b57cec5SDimitry Andric // interleaving loops, so we lie to avoid trying to use all registers. 31781ad6265SDimitry Andric return 4; 3185ffd83dbSDimitry Andric } 3195ffd83dbSDimitry Andric 320fe6060f1SDimitry Andric TypeSize 321fe6060f1SDimitry Andric GCNTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const { 322fe6060f1SDimitry Andric switch (K) { 323fe6060f1SDimitry Andric case TargetTransformInfo::RGK_Scalar: 324fe6060f1SDimitry Andric return TypeSize::getFixed(32); 325fe6060f1SDimitry Andric case TargetTransformInfo::RGK_FixedWidthVector: 326fe6060f1SDimitry Andric return TypeSize::getFixed(ST->hasPackedFP32Ops() ? 64 : 32); 327fe6060f1SDimitry Andric case TargetTransformInfo::RGK_ScalableVector: 328fe6060f1SDimitry Andric return TypeSize::getScalable(0); 329fe6060f1SDimitry Andric } 330fe6060f1SDimitry Andric llvm_unreachable("Unsupported register kind"); 3310b57cec5SDimitry Andric } 3320b57cec5SDimitry Andric 3330b57cec5SDimitry Andric unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const { 3340b57cec5SDimitry Andric return 32; 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric 337e8d8bef9SDimitry Andric unsigned GCNTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { 338e8d8bef9SDimitry Andric if (Opcode == Instruction::Load || Opcode == Instruction::Store) 339e8d8bef9SDimitry Andric return 32 * 4 / ElemWidth; 340fe6060f1SDimitry Andric return (ElemWidth == 16 && ST->has16BitInsts()) ? 2 341fe6060f1SDimitry Andric : (ElemWidth == 32 && ST->hasPackedFP32Ops()) ? 2 342fe6060f1SDimitry Andric : 1; 343e8d8bef9SDimitry Andric } 344e8d8bef9SDimitry Andric 3450b57cec5SDimitry Andric unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize, 3460b57cec5SDimitry Andric unsigned ChainSizeInBytes, 3470b57cec5SDimitry Andric VectorType *VecTy) const { 3480b57cec5SDimitry Andric unsigned VecRegBitWidth = VF * LoadSize; 3490b57cec5SDimitry Andric if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32) 3500b57cec5SDimitry Andric // TODO: Support element-size less than 32bit? 3510b57cec5SDimitry Andric return 128 / LoadSize; 3520b57cec5SDimitry Andric 3530b57cec5SDimitry Andric return VF; 3540b57cec5SDimitry Andric } 3550b57cec5SDimitry Andric 3560b57cec5SDimitry Andric unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize, 3570b57cec5SDimitry Andric unsigned ChainSizeInBytes, 3580b57cec5SDimitry Andric VectorType *VecTy) const { 3590b57cec5SDimitry Andric unsigned VecRegBitWidth = VF * StoreSize; 3600b57cec5SDimitry Andric if (VecRegBitWidth > 128) 3610b57cec5SDimitry Andric return 128 / StoreSize; 3620b57cec5SDimitry Andric 3630b57cec5SDimitry Andric return VF; 3640b57cec5SDimitry Andric } 3650b57cec5SDimitry Andric 3660b57cec5SDimitry Andric unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const { 3670b57cec5SDimitry Andric if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS || 3680b57cec5SDimitry Andric AddrSpace == AMDGPUAS::CONSTANT_ADDRESS || 3690b57cec5SDimitry Andric AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT || 37006c3fb27SDimitry Andric AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER || 3715f757f3fSDimitry Andric AddrSpace == AMDGPUAS::BUFFER_RESOURCE || 3725f757f3fSDimitry Andric AddrSpace == AMDGPUAS::BUFFER_STRIDED_POINTER) { 3730b57cec5SDimitry Andric return 512; 3740b57cec5SDimitry Andric } 3750b57cec5SDimitry Andric 3760b57cec5SDimitry Andric if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) 3770b57cec5SDimitry Andric return 8 * ST->getMaxPrivateElementSize(); 3780b57cec5SDimitry Andric 3795ffd83dbSDimitry Andric // Common to flat, global, local and region. Assume for unknown addrspace. 3805ffd83dbSDimitry Andric return 128; 3810b57cec5SDimitry Andric } 3820b57cec5SDimitry Andric 3830b57cec5SDimitry Andric bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes, 3845ffd83dbSDimitry Andric Align Alignment, 3850b57cec5SDimitry Andric unsigned AddrSpace) const { 3860b57cec5SDimitry Andric // We allow vectorization of flat stores, even though we may need to decompose 3870b57cec5SDimitry Andric // them later if they may access private memory. We don't have enough context 3880b57cec5SDimitry Andric // here, and legalization can handle it. 3890b57cec5SDimitry Andric if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) { 3900b57cec5SDimitry Andric return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) && 3910b57cec5SDimitry Andric ChainSizeInBytes <= ST->getMaxPrivateElementSize(); 3920b57cec5SDimitry Andric } 3930b57cec5SDimitry Andric return true; 3940b57cec5SDimitry Andric } 3950b57cec5SDimitry Andric 3960b57cec5SDimitry Andric bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 3975ffd83dbSDimitry Andric Align Alignment, 3980b57cec5SDimitry Andric unsigned AddrSpace) const { 3990b57cec5SDimitry Andric return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 4000b57cec5SDimitry Andric } 4010b57cec5SDimitry Andric 4020b57cec5SDimitry Andric bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 4035ffd83dbSDimitry Andric Align Alignment, 4040b57cec5SDimitry Andric unsigned AddrSpace) const { 4050b57cec5SDimitry Andric return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace); 4060b57cec5SDimitry Andric } 4070b57cec5SDimitry Andric 40806c3fb27SDimitry Andric int64_t GCNTTIImpl::getMaxMemIntrinsicInlineSizeThreshold() const { 40906c3fb27SDimitry Andric return 1024; 41006c3fb27SDimitry Andric } 41106c3fb27SDimitry Andric 4125ffd83dbSDimitry Andric // FIXME: Really we would like to issue multiple 128-bit loads and stores per 4135ffd83dbSDimitry Andric // iteration. Should we report a larger size and let it legalize? 4145ffd83dbSDimitry Andric // 4155ffd83dbSDimitry Andric // FIXME: Should we use narrower types for local/region, or account for when 4165ffd83dbSDimitry Andric // unaligned access is legal? 4175ffd83dbSDimitry Andric // 4185ffd83dbSDimitry Andric // FIXME: This could use fine tuning and microbenchmarks. 41981ad6265SDimitry Andric Type *GCNTTIImpl::getMemcpyLoopLoweringType( 42081ad6265SDimitry Andric LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 42181ad6265SDimitry Andric unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 422bdd1243dSDimitry Andric std::optional<uint32_t> AtomicElementSize) const { 42381ad6265SDimitry Andric 42481ad6265SDimitry Andric if (AtomicElementSize) 42581ad6265SDimitry Andric return Type::getIntNTy(Context, *AtomicElementSize * 8); 42681ad6265SDimitry Andric 4275ffd83dbSDimitry Andric unsigned MinAlign = std::min(SrcAlign, DestAlign); 4285ffd83dbSDimitry Andric 4295ffd83dbSDimitry Andric // A (multi-)dword access at an address == 2 (mod 4) will be decomposed by the 4305ffd83dbSDimitry Andric // hardware into byte accesses. If you assume all alignments are equally 4315ffd83dbSDimitry Andric // probable, it's more efficient on average to use short accesses for this 4325ffd83dbSDimitry Andric // case. 4335ffd83dbSDimitry Andric if (MinAlign == 2) 4345ffd83dbSDimitry Andric return Type::getInt16Ty(Context); 4355ffd83dbSDimitry Andric 4365ffd83dbSDimitry Andric // Not all subtargets have 128-bit DS instructions, and we currently don't 4375ffd83dbSDimitry Andric // form them by default. 4385ffd83dbSDimitry Andric if (SrcAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 4395ffd83dbSDimitry Andric SrcAddrSpace == AMDGPUAS::REGION_ADDRESS || 4405ffd83dbSDimitry Andric DestAddrSpace == AMDGPUAS::LOCAL_ADDRESS || 4415ffd83dbSDimitry Andric DestAddrSpace == AMDGPUAS::REGION_ADDRESS) { 4425ffd83dbSDimitry Andric return FixedVectorType::get(Type::getInt32Ty(Context), 2); 4435ffd83dbSDimitry Andric } 4445ffd83dbSDimitry Andric 4455ffd83dbSDimitry Andric // Global memory works best with 16-byte accesses. Private memory will also 4465ffd83dbSDimitry Andric // hit this, although they'll be decomposed. 4475ffd83dbSDimitry Andric return FixedVectorType::get(Type::getInt32Ty(Context), 4); 4485ffd83dbSDimitry Andric } 4495ffd83dbSDimitry Andric 4505ffd83dbSDimitry Andric void GCNTTIImpl::getMemcpyLoopResidualLoweringType( 4515ffd83dbSDimitry Andric SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 4525ffd83dbSDimitry Andric unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 45381ad6265SDimitry Andric unsigned SrcAlign, unsigned DestAlign, 454bdd1243dSDimitry Andric std::optional<uint32_t> AtomicCpySize) const { 4555ffd83dbSDimitry Andric assert(RemainingBytes < 16); 4565ffd83dbSDimitry Andric 45781ad6265SDimitry Andric if (AtomicCpySize) 45881ad6265SDimitry Andric BaseT::getMemcpyLoopResidualLoweringType( 45981ad6265SDimitry Andric OpsOut, Context, RemainingBytes, SrcAddrSpace, DestAddrSpace, SrcAlign, 46081ad6265SDimitry Andric DestAlign, AtomicCpySize); 46181ad6265SDimitry Andric 4625ffd83dbSDimitry Andric unsigned MinAlign = std::min(SrcAlign, DestAlign); 4635ffd83dbSDimitry Andric 4645ffd83dbSDimitry Andric if (MinAlign != 2) { 4655ffd83dbSDimitry Andric Type *I64Ty = Type::getInt64Ty(Context); 4665ffd83dbSDimitry Andric while (RemainingBytes >= 8) { 4675ffd83dbSDimitry Andric OpsOut.push_back(I64Ty); 4685ffd83dbSDimitry Andric RemainingBytes -= 8; 4695ffd83dbSDimitry Andric } 4705ffd83dbSDimitry Andric 4715ffd83dbSDimitry Andric Type *I32Ty = Type::getInt32Ty(Context); 4725ffd83dbSDimitry Andric while (RemainingBytes >= 4) { 4735ffd83dbSDimitry Andric OpsOut.push_back(I32Ty); 4745ffd83dbSDimitry Andric RemainingBytes -= 4; 4755ffd83dbSDimitry Andric } 4765ffd83dbSDimitry Andric } 4775ffd83dbSDimitry Andric 4785ffd83dbSDimitry Andric Type *I16Ty = Type::getInt16Ty(Context); 4795ffd83dbSDimitry Andric while (RemainingBytes >= 2) { 4805ffd83dbSDimitry Andric OpsOut.push_back(I16Ty); 4815ffd83dbSDimitry Andric RemainingBytes -= 2; 4825ffd83dbSDimitry Andric } 4835ffd83dbSDimitry Andric 4845ffd83dbSDimitry Andric Type *I8Ty = Type::getInt8Ty(Context); 4855ffd83dbSDimitry Andric while (RemainingBytes) { 4865ffd83dbSDimitry Andric OpsOut.push_back(I8Ty); 4875ffd83dbSDimitry Andric --RemainingBytes; 4885ffd83dbSDimitry Andric } 4895ffd83dbSDimitry Andric } 4905ffd83dbSDimitry Andric 49106c3fb27SDimitry Andric unsigned GCNTTIImpl::getMaxInterleaveFactor(ElementCount VF) { 4920b57cec5SDimitry Andric // Disable unrolling if the loop is not vectorized. 4930b57cec5SDimitry Andric // TODO: Enable this again. 49406c3fb27SDimitry Andric if (VF.isScalar()) 4950b57cec5SDimitry Andric return 1; 4960b57cec5SDimitry Andric 4970b57cec5SDimitry Andric return 8; 4980b57cec5SDimitry Andric } 4990b57cec5SDimitry Andric 5000b57cec5SDimitry Andric bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst, 5010b57cec5SDimitry Andric MemIntrinsicInfo &Info) const { 5020b57cec5SDimitry Andric switch (Inst->getIntrinsicID()) { 5030b57cec5SDimitry Andric case Intrinsic::amdgcn_ds_ordered_add: 504*0fca6ea1SDimitry Andric case Intrinsic::amdgcn_ds_ordered_swap: { 5050b57cec5SDimitry Andric auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2)); 5060b57cec5SDimitry Andric auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4)); 5070b57cec5SDimitry Andric if (!Ordering || !Volatile) 5080b57cec5SDimitry Andric return false; // Invalid. 5090b57cec5SDimitry Andric 5100b57cec5SDimitry Andric unsigned OrderingVal = Ordering->getZExtValue(); 5110b57cec5SDimitry Andric if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent)) 5120b57cec5SDimitry Andric return false; 5130b57cec5SDimitry Andric 5140b57cec5SDimitry Andric Info.PtrVal = Inst->getArgOperand(0); 5150b57cec5SDimitry Andric Info.Ordering = static_cast<AtomicOrdering>(OrderingVal); 5160b57cec5SDimitry Andric Info.ReadMem = true; 5170b57cec5SDimitry Andric Info.WriteMem = true; 518349cc55cSDimitry Andric Info.IsVolatile = !Volatile->isZero(); 5190b57cec5SDimitry Andric return true; 5200b57cec5SDimitry Andric } 5210b57cec5SDimitry Andric default: 5220b57cec5SDimitry Andric return false; 5230b57cec5SDimitry Andric } 5240b57cec5SDimitry Andric } 5250b57cec5SDimitry Andric 526fe6060f1SDimitry Andric InstructionCost GCNTTIImpl::getArithmeticInstrCost( 527fe6060f1SDimitry Andric unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 528bdd1243dSDimitry Andric TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info, 529bdd1243dSDimitry Andric ArrayRef<const Value *> Args, 530480093f4SDimitry Andric const Instruction *CxtI) { 5310b57cec5SDimitry Andric 5320b57cec5SDimitry Andric // Legalize the type. 533bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 5340b57cec5SDimitry Andric int ISD = TLI->InstructionOpcodeToISD(Opcode); 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric // Because we don't have any legal vector operations, but the legal types, we 5370b57cec5SDimitry Andric // need to account for split vectors. 5380b57cec5SDimitry Andric unsigned NElts = LT.second.isVector() ? 5390b57cec5SDimitry Andric LT.second.getVectorNumElements() : 1; 5400b57cec5SDimitry Andric 5410b57cec5SDimitry Andric MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 5420b57cec5SDimitry Andric 5430b57cec5SDimitry Andric switch (ISD) { 5440b57cec5SDimitry Andric case ISD::SHL: 5450b57cec5SDimitry Andric case ISD::SRL: 5460b57cec5SDimitry Andric case ISD::SRA: 5470b57cec5SDimitry Andric if (SLT == MVT::i64) 548e8d8bef9SDimitry Andric return get64BitInstrCost(CostKind) * LT.first * NElts; 5490b57cec5SDimitry Andric 550480093f4SDimitry Andric if (ST->has16BitInsts() && SLT == MVT::i16) 551480093f4SDimitry Andric NElts = (NElts + 1) / 2; 552480093f4SDimitry Andric 5530b57cec5SDimitry Andric // i32 5540b57cec5SDimitry Andric return getFullRateInstrCost() * LT.first * NElts; 5550b57cec5SDimitry Andric case ISD::ADD: 5560b57cec5SDimitry Andric case ISD::SUB: 5570b57cec5SDimitry Andric case ISD::AND: 5580b57cec5SDimitry Andric case ISD::OR: 5590b57cec5SDimitry Andric case ISD::XOR: 5600b57cec5SDimitry Andric if (SLT == MVT::i64) { 5610b57cec5SDimitry Andric // and, or and xor are typically split into 2 VALU instructions. 5620b57cec5SDimitry Andric return 2 * getFullRateInstrCost() * LT.first * NElts; 5630b57cec5SDimitry Andric } 5640b57cec5SDimitry Andric 565480093f4SDimitry Andric if (ST->has16BitInsts() && SLT == MVT::i16) 566480093f4SDimitry Andric NElts = (NElts + 1) / 2; 567480093f4SDimitry Andric 5680b57cec5SDimitry Andric return LT.first * NElts * getFullRateInstrCost(); 5690b57cec5SDimitry Andric case ISD::MUL: { 570e8d8bef9SDimitry Andric const int QuarterRateCost = getQuarterRateInstrCost(CostKind); 5710b57cec5SDimitry Andric if (SLT == MVT::i64) { 5720b57cec5SDimitry Andric const int FullRateCost = getFullRateInstrCost(); 5730b57cec5SDimitry Andric return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts; 5740b57cec5SDimitry Andric } 5750b57cec5SDimitry Andric 576480093f4SDimitry Andric if (ST->has16BitInsts() && SLT == MVT::i16) 577480093f4SDimitry Andric NElts = (NElts + 1) / 2; 578480093f4SDimitry Andric 5790b57cec5SDimitry Andric // i32 5800b57cec5SDimitry Andric return QuarterRateCost * NElts * LT.first; 5810b57cec5SDimitry Andric } 582e8d8bef9SDimitry Andric case ISD::FMUL: 583e8d8bef9SDimitry Andric // Check possible fuse {fadd|fsub}(a,fmul(b,c)) and return zero cost for 584e8d8bef9SDimitry Andric // fmul(b,c) supposing the fadd|fsub will get estimated cost for the whole 585e8d8bef9SDimitry Andric // fused operation. 586e8d8bef9SDimitry Andric if (CxtI && CxtI->hasOneUse()) 587e8d8bef9SDimitry Andric if (const auto *FAdd = dyn_cast<BinaryOperator>(*CxtI->user_begin())) { 588e8d8bef9SDimitry Andric const int OPC = TLI->InstructionOpcodeToISD(FAdd->getOpcode()); 589e8d8bef9SDimitry Andric if (OPC == ISD::FADD || OPC == ISD::FSUB) { 590e8d8bef9SDimitry Andric if (ST->hasMadMacF32Insts() && SLT == MVT::f32 && !HasFP32Denormals) 591e8d8bef9SDimitry Andric return TargetTransformInfo::TCC_Free; 592e8d8bef9SDimitry Andric if (ST->has16BitInsts() && SLT == MVT::f16 && !HasFP64FP16Denormals) 593e8d8bef9SDimitry Andric return TargetTransformInfo::TCC_Free; 594e8d8bef9SDimitry Andric 595e8d8bef9SDimitry Andric // Estimate all types may be fused with contract/unsafe flags 596e8d8bef9SDimitry Andric const TargetOptions &Options = TLI->getTargetMachine().Options; 597e8d8bef9SDimitry Andric if (Options.AllowFPOpFusion == FPOpFusion::Fast || 598e8d8bef9SDimitry Andric Options.UnsafeFPMath || 599e8d8bef9SDimitry Andric (FAdd->hasAllowContract() && CxtI->hasAllowContract())) 600e8d8bef9SDimitry Andric return TargetTransformInfo::TCC_Free; 601e8d8bef9SDimitry Andric } 602e8d8bef9SDimitry Andric } 603bdd1243dSDimitry Andric [[fallthrough]]; 6040b57cec5SDimitry Andric case ISD::FADD: 6050b57cec5SDimitry Andric case ISD::FSUB: 606fe6060f1SDimitry Andric if (ST->hasPackedFP32Ops() && SLT == MVT::f32) 607fe6060f1SDimitry Andric NElts = (NElts + 1) / 2; 6080b57cec5SDimitry Andric if (SLT == MVT::f64) 609e8d8bef9SDimitry Andric return LT.first * NElts * get64BitInstrCost(CostKind); 6100b57cec5SDimitry Andric 611480093f4SDimitry Andric if (ST->has16BitInsts() && SLT == MVT::f16) 612480093f4SDimitry Andric NElts = (NElts + 1) / 2; 613480093f4SDimitry Andric 6140b57cec5SDimitry Andric if (SLT == MVT::f32 || SLT == MVT::f16) 6150b57cec5SDimitry Andric return LT.first * NElts * getFullRateInstrCost(); 6160b57cec5SDimitry Andric break; 6170b57cec5SDimitry Andric case ISD::FDIV: 6180b57cec5SDimitry Andric case ISD::FREM: 6190b57cec5SDimitry Andric // FIXME: frem should be handled separately. The fdiv in it is most of it, 6200b57cec5SDimitry Andric // but the current lowering is also not entirely correct. 6210b57cec5SDimitry Andric if (SLT == MVT::f64) { 622e8d8bef9SDimitry Andric int Cost = 7 * get64BitInstrCost(CostKind) + 623e8d8bef9SDimitry Andric getQuarterRateInstrCost(CostKind) + 624e8d8bef9SDimitry Andric 3 * getHalfRateInstrCost(CostKind); 6250b57cec5SDimitry Andric // Add cost of workaround. 6260b57cec5SDimitry Andric if (!ST->hasUsableDivScaleConditionOutput()) 6270b57cec5SDimitry Andric Cost += 3 * getFullRateInstrCost(); 6280b57cec5SDimitry Andric 6290b57cec5SDimitry Andric return LT.first * Cost * NElts; 6300b57cec5SDimitry Andric } 6310b57cec5SDimitry Andric 6320b57cec5SDimitry Andric if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) { 6330b57cec5SDimitry Andric // TODO: This is more complicated, unsafe flags etc. 634480093f4SDimitry Andric if ((SLT == MVT::f32 && !HasFP32Denormals) || 6350b57cec5SDimitry Andric (SLT == MVT::f16 && ST->has16BitInsts())) { 636e8d8bef9SDimitry Andric return LT.first * getQuarterRateInstrCost(CostKind) * NElts; 6370b57cec5SDimitry Andric } 6380b57cec5SDimitry Andric } 6390b57cec5SDimitry Andric 6400b57cec5SDimitry Andric if (SLT == MVT::f16 && ST->has16BitInsts()) { 6410b57cec5SDimitry Andric // 2 x v_cvt_f32_f16 6420b57cec5SDimitry Andric // f32 rcp 6430b57cec5SDimitry Andric // f32 fmul 6440b57cec5SDimitry Andric // v_cvt_f16_f32 6450b57cec5SDimitry Andric // f16 div_fixup 646e8d8bef9SDimitry Andric int Cost = 647e8d8bef9SDimitry Andric 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost(CostKind); 6480b57cec5SDimitry Andric return LT.first * Cost * NElts; 6490b57cec5SDimitry Andric } 6500b57cec5SDimitry Andric 6515f757f3fSDimitry Andric if (SLT == MVT::f32 && ((CxtI && CxtI->hasApproxFunc()) || 6525f757f3fSDimitry Andric TLI->getTargetMachine().Options.UnsafeFPMath)) { 6535f757f3fSDimitry Andric // Fast unsafe fdiv lowering: 6545f757f3fSDimitry Andric // f32 rcp 6555f757f3fSDimitry Andric // f32 fmul 6565f757f3fSDimitry Andric int Cost = getQuarterRateInstrCost(CostKind) + getFullRateInstrCost(); 6575f757f3fSDimitry Andric return LT.first * Cost * NElts; 6585f757f3fSDimitry Andric } 6595f757f3fSDimitry Andric 6600b57cec5SDimitry Andric if (SLT == MVT::f32 || SLT == MVT::f16) { 661e8d8bef9SDimitry Andric // 4 more v_cvt_* insts without f16 insts support 662e8d8bef9SDimitry Andric int Cost = (SLT == MVT::f16 ? 14 : 10) * getFullRateInstrCost() + 663e8d8bef9SDimitry Andric 1 * getQuarterRateInstrCost(CostKind); 6640b57cec5SDimitry Andric 665480093f4SDimitry Andric if (!HasFP32Denormals) { 6660b57cec5SDimitry Andric // FP mode switches. 6670b57cec5SDimitry Andric Cost += 2 * getFullRateInstrCost(); 6680b57cec5SDimitry Andric } 6690b57cec5SDimitry Andric 6700b57cec5SDimitry Andric return LT.first * NElts * Cost; 6710b57cec5SDimitry Andric } 6720b57cec5SDimitry Andric break; 6735ffd83dbSDimitry Andric case ISD::FNEG: 6745ffd83dbSDimitry Andric // Use the backend' estimation. If fneg is not free each element will cost 6755ffd83dbSDimitry Andric // one additional instruction. 6765ffd83dbSDimitry Andric return TLI->isFNegFree(SLT) ? 0 : NElts; 6770b57cec5SDimitry Andric default: 6780b57cec5SDimitry Andric break; 6790b57cec5SDimitry Andric } 6800b57cec5SDimitry Andric 681bdd1243dSDimitry Andric return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info, 682bdd1243dSDimitry Andric Args, CxtI); 6830b57cec5SDimitry Andric } 6840b57cec5SDimitry Andric 685e8d8bef9SDimitry Andric // Return true if there's a potential benefit from using v2f16/v2i16 686e8d8bef9SDimitry Andric // instructions for an intrinsic, even if it requires nontrivial legalization. 6875ffd83dbSDimitry Andric static bool intrinsicHasPackedVectorBenefit(Intrinsic::ID ID) { 6885ffd83dbSDimitry Andric switch (ID) { 6895ffd83dbSDimitry Andric case Intrinsic::fma: // TODO: fmuladd 6905ffd83dbSDimitry Andric // There's a small benefit to using vector ops in the legalized code. 6915ffd83dbSDimitry Andric case Intrinsic::round: 692e8d8bef9SDimitry Andric case Intrinsic::uadd_sat: 693e8d8bef9SDimitry Andric case Intrinsic::usub_sat: 694e8d8bef9SDimitry Andric case Intrinsic::sadd_sat: 695e8d8bef9SDimitry Andric case Intrinsic::ssub_sat: 6965ffd83dbSDimitry Andric return true; 6975ffd83dbSDimitry Andric default: 6985ffd83dbSDimitry Andric return false; 6995ffd83dbSDimitry Andric } 7005ffd83dbSDimitry Andric } 701480093f4SDimitry Andric 702fe6060f1SDimitry Andric InstructionCost 703fe6060f1SDimitry Andric GCNTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 7045ffd83dbSDimitry Andric TTI::TargetCostKind CostKind) { 7055ffd83dbSDimitry Andric if (ICA.getID() == Intrinsic::fabs) 7065ffd83dbSDimitry Andric return 0; 7075ffd83dbSDimitry Andric 7085ffd83dbSDimitry Andric if (!intrinsicHasPackedVectorBenefit(ICA.getID())) 7095ffd83dbSDimitry Andric return BaseT::getIntrinsicInstrCost(ICA, CostKind); 7105ffd83dbSDimitry Andric 7115ffd83dbSDimitry Andric Type *RetTy = ICA.getReturnType(); 712480093f4SDimitry Andric 713480093f4SDimitry Andric // Legalize the type. 714bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(RetTy); 715480093f4SDimitry Andric 716480093f4SDimitry Andric unsigned NElts = LT.second.isVector() ? 717480093f4SDimitry Andric LT.second.getVectorNumElements() : 1; 718480093f4SDimitry Andric 719480093f4SDimitry Andric MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy; 720480093f4SDimitry Andric 721480093f4SDimitry Andric if (SLT == MVT::f64) 722e8d8bef9SDimitry Andric return LT.first * NElts * get64BitInstrCost(CostKind); 723480093f4SDimitry Andric 724fe6060f1SDimitry Andric if ((ST->has16BitInsts() && SLT == MVT::f16) || 725fe6060f1SDimitry Andric (ST->hasPackedFP32Ops() && SLT == MVT::f32)) 726480093f4SDimitry Andric NElts = (NElts + 1) / 2; 727480093f4SDimitry Andric 7285ffd83dbSDimitry Andric // TODO: Get more refined intrinsic costs? 729e8d8bef9SDimitry Andric unsigned InstRate = getQuarterRateInstrCost(CostKind); 730fe6060f1SDimitry Andric 731fe6060f1SDimitry Andric switch (ICA.getID()) { 732fe6060f1SDimitry Andric case Intrinsic::fma: 733e8d8bef9SDimitry Andric InstRate = ST->hasFastFMAF32() ? getHalfRateInstrCost(CostKind) 734e8d8bef9SDimitry Andric : getQuarterRateInstrCost(CostKind); 735fe6060f1SDimitry Andric break; 736fe6060f1SDimitry Andric case Intrinsic::uadd_sat: 737fe6060f1SDimitry Andric case Intrinsic::usub_sat: 738fe6060f1SDimitry Andric case Intrinsic::sadd_sat: 739fe6060f1SDimitry Andric case Intrinsic::ssub_sat: 740fe6060f1SDimitry Andric static const auto ValidSatTys = {MVT::v2i16, MVT::v4i16}; 741fe6060f1SDimitry Andric if (any_of(ValidSatTys, [<](MVT M) { return M == LT.second; })) 742fe6060f1SDimitry Andric NElts = 1; 743fe6060f1SDimitry Andric break; 744480093f4SDimitry Andric } 745480093f4SDimitry Andric 7465ffd83dbSDimitry Andric return LT.first * NElts * InstRate; 747480093f4SDimitry Andric } 748480093f4SDimitry Andric 749fe6060f1SDimitry Andric InstructionCost GCNTTIImpl::getCFInstrCost(unsigned Opcode, 750fe6060f1SDimitry Andric TTI::TargetCostKind CostKind, 751fe6060f1SDimitry Andric const Instruction *I) { 752fe6060f1SDimitry Andric assert((I == nullptr || I->getOpcode() == Opcode) && 753fe6060f1SDimitry Andric "Opcode should reflect passed instruction."); 754fe6060f1SDimitry Andric const bool SCost = 755fe6060f1SDimitry Andric (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency); 756fe6060f1SDimitry Andric const int CBrCost = SCost ? 5 : 7; 7570b57cec5SDimitry Andric switch (Opcode) { 758fe6060f1SDimitry Andric case Instruction::Br: { 759fe6060f1SDimitry Andric // Branch instruction takes about 4 slots on gfx900. 760fe6060f1SDimitry Andric auto BI = dyn_cast_or_null<BranchInst>(I); 761fe6060f1SDimitry Andric if (BI && BI->isUnconditional()) 762fe6060f1SDimitry Andric return SCost ? 1 : 4; 763fe6060f1SDimitry Andric // Suppose conditional branch takes additional 3 exec manipulations 764fe6060f1SDimitry Andric // instructions in average. 765fe6060f1SDimitry Andric return CBrCost; 7660b57cec5SDimitry Andric } 767fe6060f1SDimitry Andric case Instruction::Switch: { 768fe6060f1SDimitry Andric auto SI = dyn_cast_or_null<SwitchInst>(I); 769fe6060f1SDimitry Andric // Each case (including default) takes 1 cmp + 1 cbr instructions in 770fe6060f1SDimitry Andric // average. 771fe6060f1SDimitry Andric return (SI ? (SI->getNumCases() + 1) : 4) * (CBrCost + 1); 772fe6060f1SDimitry Andric } 773fe6060f1SDimitry Andric case Instruction::Ret: 774fe6060f1SDimitry Andric return SCost ? 1 : 10; 775fe6060f1SDimitry Andric } 776fe6060f1SDimitry Andric return BaseT::getCFInstrCost(Opcode, CostKind, I); 7770b57cec5SDimitry Andric } 7780b57cec5SDimitry Andric 779fe6060f1SDimitry Andric InstructionCost 780fe6060f1SDimitry Andric GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 781bdd1243dSDimitry Andric std::optional<FastMathFlags> FMF, 7825ffd83dbSDimitry Andric TTI::TargetCostKind CostKind) { 783fe6060f1SDimitry Andric if (TTI::requiresOrderedReduction(FMF)) 784fe6060f1SDimitry Andric return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 785fe6060f1SDimitry Andric 7860b57cec5SDimitry Andric EVT OrigTy = TLI->getValueType(DL, Ty); 7870b57cec5SDimitry Andric 7880b57cec5SDimitry Andric // Computes cost on targets that have packed math instructions(which support 7890b57cec5SDimitry Andric // 16-bit types only). 790fe6060f1SDimitry Andric if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 791fe6060f1SDimitry Andric return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 7920b57cec5SDimitry Andric 793bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 7940b57cec5SDimitry Andric return LT.first * getFullRateInstrCost(); 7950b57cec5SDimitry Andric } 7960b57cec5SDimitry Andric 797fe6060f1SDimitry Andric InstructionCost 79806c3fb27SDimitry Andric GCNTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, 79906c3fb27SDimitry Andric FastMathFlags FMF, 8005ffd83dbSDimitry Andric TTI::TargetCostKind CostKind) { 8010b57cec5SDimitry Andric EVT OrigTy = TLI->getValueType(DL, Ty); 8020b57cec5SDimitry Andric 8030b57cec5SDimitry Andric // Computes cost on targets that have packed math instructions(which support 8040b57cec5SDimitry Andric // 16-bit types only). 805fe6060f1SDimitry Andric if (!ST->hasVOP3PInsts() || OrigTy.getScalarSizeInBits() != 16) 80606c3fb27SDimitry Andric return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind); 8070b57cec5SDimitry Andric 808bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty); 809e8d8bef9SDimitry Andric return LT.first * getHalfRateInstrCost(CostKind); 8100b57cec5SDimitry Andric } 8110b57cec5SDimitry Andric 812fe6060f1SDimitry Andric InstructionCost GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 813bdd1243dSDimitry Andric TTI::TargetCostKind CostKind, 814bdd1243dSDimitry Andric unsigned Index, Value *Op0, 815bdd1243dSDimitry Andric Value *Op1) { 8160b57cec5SDimitry Andric switch (Opcode) { 8170b57cec5SDimitry Andric case Instruction::ExtractElement: 8180b57cec5SDimitry Andric case Instruction::InsertElement: { 8190b57cec5SDimitry Andric unsigned EltSize 8200b57cec5SDimitry Andric = DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType()); 8210b57cec5SDimitry Andric if (EltSize < 32) { 8220b57cec5SDimitry Andric if (EltSize == 16 && Index == 0 && ST->has16BitInsts()) 8230b57cec5SDimitry Andric return 0; 824bdd1243dSDimitry Andric return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, 825bdd1243dSDimitry Andric Op1); 8260b57cec5SDimitry Andric } 8270b57cec5SDimitry Andric 8280b57cec5SDimitry Andric // Extracts are just reads of a subregister, so are free. Inserts are 8290b57cec5SDimitry Andric // considered free because we don't want to have any cost for scalarizing 8300b57cec5SDimitry Andric // operations, and we don't have to copy into a different register class. 8310b57cec5SDimitry Andric 8320b57cec5SDimitry Andric // Dynamic indexing isn't free and is best avoided. 8330b57cec5SDimitry Andric return Index == ~0u ? 2 : 0; 8340b57cec5SDimitry Andric } 8350b57cec5SDimitry Andric default: 836bdd1243dSDimitry Andric return BaseT::getVectorInstrCost(Opcode, ValTy, CostKind, Index, Op0, Op1); 8370b57cec5SDimitry Andric } 8380b57cec5SDimitry Andric } 8390b57cec5SDimitry Andric 8405ffd83dbSDimitry Andric /// Analyze if the results of inline asm are divergent. If \p Indices is empty, 8415ffd83dbSDimitry Andric /// this is analyzing the collective result of all output registers. Otherwise, 8425ffd83dbSDimitry Andric /// this is only querying a specific result index if this returns multiple 8435ffd83dbSDimitry Andric /// registers in a struct. 8445ffd83dbSDimitry Andric bool GCNTTIImpl::isInlineAsmSourceOfDivergence( 8455ffd83dbSDimitry Andric const CallInst *CI, ArrayRef<unsigned> Indices) const { 8465ffd83dbSDimitry Andric // TODO: Handle complex extract indices 8475ffd83dbSDimitry Andric if (Indices.size() > 1) 8485ffd83dbSDimitry Andric return true; 8495ffd83dbSDimitry Andric 850*0fca6ea1SDimitry Andric const DataLayout &DL = CI->getDataLayout(); 8515ffd83dbSDimitry Andric const SIRegisterInfo *TRI = ST->getRegisterInfo(); 8525ffd83dbSDimitry Andric TargetLowering::AsmOperandInfoVector TargetConstraints = 8535ffd83dbSDimitry Andric TLI->ParseConstraints(DL, ST->getRegisterInfo(), *CI); 8545ffd83dbSDimitry Andric 8555ffd83dbSDimitry Andric const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0]; 8565ffd83dbSDimitry Andric 8575ffd83dbSDimitry Andric int OutputIdx = 0; 8585ffd83dbSDimitry Andric for (auto &TC : TargetConstraints) { 8595ffd83dbSDimitry Andric if (TC.Type != InlineAsm::isOutput) 8605ffd83dbSDimitry Andric continue; 8615ffd83dbSDimitry Andric 8625ffd83dbSDimitry Andric // Skip outputs we don't care about. 8635ffd83dbSDimitry Andric if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++) 8645ffd83dbSDimitry Andric continue; 8655ffd83dbSDimitry Andric 8665ffd83dbSDimitry Andric TLI->ComputeConstraintToUse(TC, SDValue()); 8675ffd83dbSDimitry Andric 86804eeddc0SDimitry Andric const TargetRegisterClass *RC = TLI->getRegForInlineAsmConstraint( 86904eeddc0SDimitry Andric TRI, TC.ConstraintCode, TC.ConstraintVT).second; 8705ffd83dbSDimitry Andric 8715ffd83dbSDimitry Andric // For AGPR constraints null is returned on subtargets without AGPRs, so 8725ffd83dbSDimitry Andric // assume divergent for null. 8735ffd83dbSDimitry Andric if (!RC || !TRI->isSGPRClass(RC)) 8745ffd83dbSDimitry Andric return true; 8755ffd83dbSDimitry Andric } 8765ffd83dbSDimitry Andric 8775ffd83dbSDimitry Andric return false; 8785ffd83dbSDimitry Andric } 8795ffd83dbSDimitry Andric 880bdd1243dSDimitry Andric bool GCNTTIImpl::isReadRegisterSourceOfDivergence( 881bdd1243dSDimitry Andric const IntrinsicInst *ReadReg) const { 882bdd1243dSDimitry Andric Metadata *MD = 883bdd1243dSDimitry Andric cast<MetadataAsValue>(ReadReg->getArgOperand(0))->getMetadata(); 884bdd1243dSDimitry Andric StringRef RegName = 885bdd1243dSDimitry Andric cast<MDString>(cast<MDNode>(MD)->getOperand(0))->getString(); 886bdd1243dSDimitry Andric 887bdd1243dSDimitry Andric // Special case registers that look like VCC. 888bdd1243dSDimitry Andric MVT VT = MVT::getVT(ReadReg->getType()); 889bdd1243dSDimitry Andric if (VT == MVT::i1) 890bdd1243dSDimitry Andric return true; 891bdd1243dSDimitry Andric 892bdd1243dSDimitry Andric // Special case scalar registers that start with 'v'. 8935f757f3fSDimitry Andric if (RegName.starts_with("vcc") || RegName.empty()) 894bdd1243dSDimitry Andric return false; 895bdd1243dSDimitry Andric 896bdd1243dSDimitry Andric // VGPR or AGPR is divergent. There aren't any specially named vector 897bdd1243dSDimitry Andric // registers. 898bdd1243dSDimitry Andric return RegName[0] == 'v' || RegName[0] == 'a'; 899bdd1243dSDimitry Andric } 900bdd1243dSDimitry Andric 9010b57cec5SDimitry Andric /// \returns true if the result of the value could potentially be 9020b57cec5SDimitry Andric /// different across workitems in a wavefront. 9030b57cec5SDimitry Andric bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const { 9040b57cec5SDimitry Andric if (const Argument *A = dyn_cast<Argument>(V)) 905e8d8bef9SDimitry Andric return !AMDGPU::isArgPassedInSGPR(A); 9060b57cec5SDimitry Andric 9070b57cec5SDimitry Andric // Loads from the private and flat address spaces are divergent, because 9080b57cec5SDimitry Andric // threads can execute the load instruction with the same inputs and get 9090b57cec5SDimitry Andric // different results. 9100b57cec5SDimitry Andric // 9110b57cec5SDimitry Andric // All other loads are not divergent, because if threads issue loads with the 9120b57cec5SDimitry Andric // same arguments, they will always get the same result. 9130b57cec5SDimitry Andric if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 9140b57cec5SDimitry Andric return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS || 9150b57cec5SDimitry Andric Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS; 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric // Atomics are divergent because they are executed sequentially: when an 9180b57cec5SDimitry Andric // atomic operation refers to the same address in each thread, then each 9190b57cec5SDimitry Andric // thread after the first sees the value written by the previous thread as 9200b57cec5SDimitry Andric // original value. 9210b57cec5SDimitry Andric if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V)) 9220b57cec5SDimitry Andric return true; 9230b57cec5SDimitry Andric 924bdd1243dSDimitry Andric if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 925bdd1243dSDimitry Andric if (Intrinsic->getIntrinsicID() == Intrinsic::read_register) 926bdd1243dSDimitry Andric return isReadRegisterSourceOfDivergence(Intrinsic); 927bdd1243dSDimitry Andric 9280b57cec5SDimitry Andric return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID()); 929bdd1243dSDimitry Andric } 9300b57cec5SDimitry Andric 9310b57cec5SDimitry Andric // Assume all function calls are a source of divergence. 9325ffd83dbSDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(V)) { 9335ffd83dbSDimitry Andric if (CI->isInlineAsm()) 9345ffd83dbSDimitry Andric return isInlineAsmSourceOfDivergence(CI); 9355ffd83dbSDimitry Andric return true; 9365ffd83dbSDimitry Andric } 9375ffd83dbSDimitry Andric 9385ffd83dbSDimitry Andric // Assume all function calls are a source of divergence. 9395ffd83dbSDimitry Andric if (isa<InvokeInst>(V)) 9400b57cec5SDimitry Andric return true; 9410b57cec5SDimitry Andric 9420b57cec5SDimitry Andric return false; 9430b57cec5SDimitry Andric } 9440b57cec5SDimitry Andric 9450b57cec5SDimitry Andric bool GCNTTIImpl::isAlwaysUniform(const Value *V) const { 94606c3fb27SDimitry Andric if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) 94706c3fb27SDimitry Andric return AMDGPU::isIntrinsicAlwaysUniform(Intrinsic->getIntrinsicID()); 9485ffd83dbSDimitry Andric 9495ffd83dbSDimitry Andric if (const CallInst *CI = dyn_cast<CallInst>(V)) { 9505ffd83dbSDimitry Andric if (CI->isInlineAsm()) 9515ffd83dbSDimitry Andric return !isInlineAsmSourceOfDivergence(CI); 9525ffd83dbSDimitry Andric return false; 9535ffd83dbSDimitry Andric } 9545ffd83dbSDimitry Andric 955bdd1243dSDimitry Andric // In most cases TID / wavefrontsize is uniform. 956bdd1243dSDimitry Andric // 957bdd1243dSDimitry Andric // However, if a kernel has uneven dimesions we can have a value of 958bdd1243dSDimitry Andric // workitem-id-x divided by the wavefrontsize non-uniform. For example 959bdd1243dSDimitry Andric // dimensions (65, 2) will have workitems with address (64, 0) and (0, 1) 960bdd1243dSDimitry Andric // packed into a same wave which gives 1 and 0 after the division by 64 961bdd1243dSDimitry Andric // respectively. 962bdd1243dSDimitry Andric // 963bdd1243dSDimitry Andric // FIXME: limit it to 1D kernels only, although that shall be possible 964bdd1243dSDimitry Andric // to perform this optimization is the size of the X dimension is a power 965bdd1243dSDimitry Andric // of 2, we just do not currently have infrastructure to query it. 966bdd1243dSDimitry Andric using namespace llvm::PatternMatch; 967bdd1243dSDimitry Andric uint64_t C; 968bdd1243dSDimitry Andric if (match(V, m_LShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(), 969bdd1243dSDimitry Andric m_ConstantInt(C))) || 970bdd1243dSDimitry Andric match(V, m_AShr(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(), 971bdd1243dSDimitry Andric m_ConstantInt(C)))) { 972bdd1243dSDimitry Andric const Function *F = cast<Instruction>(V)->getFunction(); 973bdd1243dSDimitry Andric return C >= ST->getWavefrontSizeLog2() && 974bdd1243dSDimitry Andric ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0; 975bdd1243dSDimitry Andric } 976bdd1243dSDimitry Andric 977bdd1243dSDimitry Andric Value *Mask; 978bdd1243dSDimitry Andric if (match(V, m_c_And(m_Intrinsic<Intrinsic::amdgcn_workitem_id_x>(), 979bdd1243dSDimitry Andric m_Value(Mask)))) { 980bdd1243dSDimitry Andric const Function *F = cast<Instruction>(V)->getFunction(); 981*0fca6ea1SDimitry Andric const DataLayout &DL = F->getDataLayout(); 982bdd1243dSDimitry Andric return computeKnownBits(Mask, DL).countMinTrailingZeros() >= 983bdd1243dSDimitry Andric ST->getWavefrontSizeLog2() && 984bdd1243dSDimitry Andric ST->getMaxWorkitemID(*F, 1) == 0 && ST->getMaxWorkitemID(*F, 2) == 0; 985bdd1243dSDimitry Andric } 986bdd1243dSDimitry Andric 9875ffd83dbSDimitry Andric const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V); 9885ffd83dbSDimitry Andric if (!ExtValue) 9895ffd83dbSDimitry Andric return false; 9905ffd83dbSDimitry Andric 9915ffd83dbSDimitry Andric const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0)); 9925ffd83dbSDimitry Andric if (!CI) 9935ffd83dbSDimitry Andric return false; 9945ffd83dbSDimitry Andric 9955ffd83dbSDimitry Andric if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) { 9965ffd83dbSDimitry Andric switch (Intrinsic->getIntrinsicID()) { 9975ffd83dbSDimitry Andric default: 9985ffd83dbSDimitry Andric return false; 9995ffd83dbSDimitry Andric case Intrinsic::amdgcn_if: 10005ffd83dbSDimitry Andric case Intrinsic::amdgcn_else: { 10015ffd83dbSDimitry Andric ArrayRef<unsigned> Indices = ExtValue->getIndices(); 10025ffd83dbSDimitry Andric return Indices.size() == 1 && Indices[0] == 1; 10035ffd83dbSDimitry Andric } 10045ffd83dbSDimitry Andric } 10055ffd83dbSDimitry Andric } 10065ffd83dbSDimitry Andric 10075ffd83dbSDimitry Andric // If we have inline asm returning mixed SGPR and VGPR results, we inferred 10085ffd83dbSDimitry Andric // divergent for the overall struct return. We need to override it in the 10095ffd83dbSDimitry Andric // case we're extracting an SGPR component here. 10105ffd83dbSDimitry Andric if (CI->isInlineAsm()) 10115ffd83dbSDimitry Andric return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices()); 10125ffd83dbSDimitry Andric 10130b57cec5SDimitry Andric return false; 10140b57cec5SDimitry Andric } 10150b57cec5SDimitry Andric 10168bcb0991SDimitry Andric bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 10178bcb0991SDimitry Andric Intrinsic::ID IID) const { 10188bcb0991SDimitry Andric switch (IID) { 10198bcb0991SDimitry Andric case Intrinsic::amdgcn_is_shared: 10208bcb0991SDimitry Andric case Intrinsic::amdgcn_is_private: 1021bdd1243dSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fadd: 1022bdd1243dSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmax: 1023bdd1243dSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmin: 10245f757f3fSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmax_num: 10255f757f3fSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmin_num: 10268bcb0991SDimitry Andric OpIndexes.push_back(0); 10278bcb0991SDimitry Andric return true; 10288bcb0991SDimitry Andric default: 10298bcb0991SDimitry Andric return false; 10308bcb0991SDimitry Andric } 10318bcb0991SDimitry Andric } 10328bcb0991SDimitry Andric 10335ffd83dbSDimitry Andric Value *GCNTTIImpl::rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 10345ffd83dbSDimitry Andric Value *OldV, 10355ffd83dbSDimitry Andric Value *NewV) const { 10368bcb0991SDimitry Andric auto IntrID = II->getIntrinsicID(); 10378bcb0991SDimitry Andric switch (IntrID) { 10388bcb0991SDimitry Andric case Intrinsic::amdgcn_is_shared: 10398bcb0991SDimitry Andric case Intrinsic::amdgcn_is_private: { 10408bcb0991SDimitry Andric unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ? 10418bcb0991SDimitry Andric AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS; 10428bcb0991SDimitry Andric unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 10438bcb0991SDimitry Andric LLVMContext &Ctx = NewV->getType()->getContext(); 10448bcb0991SDimitry Andric ConstantInt *NewVal = (TrueAS == NewAS) ? 10458bcb0991SDimitry Andric ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 10465ffd83dbSDimitry Andric return NewVal; 10475ffd83dbSDimitry Andric } 10485ffd83dbSDimitry Andric case Intrinsic::ptrmask: { 10495ffd83dbSDimitry Andric unsigned OldAS = OldV->getType()->getPointerAddressSpace(); 10505ffd83dbSDimitry Andric unsigned NewAS = NewV->getType()->getPointerAddressSpace(); 10515ffd83dbSDimitry Andric Value *MaskOp = II->getArgOperand(1); 10525ffd83dbSDimitry Andric Type *MaskTy = MaskOp->getType(); 10535ffd83dbSDimitry Andric 10545ffd83dbSDimitry Andric bool DoTruncate = false; 1055e8d8bef9SDimitry Andric 1056e8d8bef9SDimitry Andric const GCNTargetMachine &TM = 1057e8d8bef9SDimitry Andric static_cast<const GCNTargetMachine &>(getTLI()->getTargetMachine()); 1058e8d8bef9SDimitry Andric if (!TM.isNoopAddrSpaceCast(OldAS, NewAS)) { 10595ffd83dbSDimitry Andric // All valid 64-bit to 32-bit casts work by chopping off the high 10605ffd83dbSDimitry Andric // bits. Any masking only clearing the low bits will also apply in the new 10615ffd83dbSDimitry Andric // address space. 10625ffd83dbSDimitry Andric if (DL.getPointerSizeInBits(OldAS) != 64 || 10635ffd83dbSDimitry Andric DL.getPointerSizeInBits(NewAS) != 32) 10645ffd83dbSDimitry Andric return nullptr; 10655ffd83dbSDimitry Andric 10665ffd83dbSDimitry Andric // TODO: Do we need to thread more context in here? 10675ffd83dbSDimitry Andric KnownBits Known = computeKnownBits(MaskOp, DL, 0, nullptr, II); 10685ffd83dbSDimitry Andric if (Known.countMinLeadingOnes() < 32) 10695ffd83dbSDimitry Andric return nullptr; 10705ffd83dbSDimitry Andric 10715ffd83dbSDimitry Andric DoTruncate = true; 10725ffd83dbSDimitry Andric } 10735ffd83dbSDimitry Andric 10745ffd83dbSDimitry Andric IRBuilder<> B(II); 10755ffd83dbSDimitry Andric if (DoTruncate) { 10765ffd83dbSDimitry Andric MaskTy = B.getInt32Ty(); 10775ffd83dbSDimitry Andric MaskOp = B.CreateTrunc(MaskOp, MaskTy); 10785ffd83dbSDimitry Andric } 10795ffd83dbSDimitry Andric 10805ffd83dbSDimitry Andric return B.CreateIntrinsic(Intrinsic::ptrmask, {NewV->getType(), MaskTy}, 10815ffd83dbSDimitry Andric {NewV, MaskOp}); 10828bcb0991SDimitry Andric } 1083bdd1243dSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fadd: 1084bdd1243dSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmax: 10855f757f3fSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmin: 10865f757f3fSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmax_num: 10875f757f3fSDimitry Andric case Intrinsic::amdgcn_flat_atomic_fmin_num: { 1088bdd1243dSDimitry Andric Type *DestTy = II->getType(); 1089bdd1243dSDimitry Andric Type *SrcTy = NewV->getType(); 109006c3fb27SDimitry Andric unsigned NewAS = SrcTy->getPointerAddressSpace(); 109106c3fb27SDimitry Andric if (!AMDGPU::isExtendedGlobalAddrSpace(NewAS)) 109206c3fb27SDimitry Andric return nullptr; 109306c3fb27SDimitry Andric Module *M = II->getModule(); 1094bdd1243dSDimitry Andric Function *NewDecl = Intrinsic::getDeclaration(M, II->getIntrinsicID(), 1095bdd1243dSDimitry Andric {DestTy, SrcTy, DestTy}); 1096bdd1243dSDimitry Andric II->setArgOperand(0, NewV); 1097bdd1243dSDimitry Andric II->setCalledFunction(NewDecl); 1098bdd1243dSDimitry Andric return II; 1099bdd1243dSDimitry Andric } 11008bcb0991SDimitry Andric default: 11015ffd83dbSDimitry Andric return nullptr; 11028bcb0991SDimitry Andric } 11038bcb0991SDimitry Andric } 11048bcb0991SDimitry Andric 1105fe6060f1SDimitry Andric InstructionCost GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, 1106fe6060f1SDimitry Andric VectorType *VT, ArrayRef<int> Mask, 1107bdd1243dSDimitry Andric TTI::TargetCostKind CostKind, 110881ad6265SDimitry Andric int Index, VectorType *SubTp, 1109*0fca6ea1SDimitry Andric ArrayRef<const Value *> Args, 1110*0fca6ea1SDimitry Andric const Instruction *CxtI) { 1111*0fca6ea1SDimitry Andric if (!isa<FixedVectorType>(VT)) 1112*0fca6ea1SDimitry Andric return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp); 1113*0fca6ea1SDimitry Andric 11145f757f3fSDimitry Andric Kind = improveShuffleKindFromMask(Kind, Mask, VT, Index, SubTp); 11155f757f3fSDimitry Andric 1116*0fca6ea1SDimitry Andric // Larger vector widths may require additional instructions, but are 1117*0fca6ea1SDimitry Andric // typically cheaper than scalarized versions. 1118*0fca6ea1SDimitry Andric unsigned NumVectorElts = cast<FixedVectorType>(VT)->getNumElements(); 1119*0fca6ea1SDimitry Andric if (ST->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS && 11200b57cec5SDimitry Andric DL.getTypeSizeInBits(VT->getElementType()) == 16) { 1121*0fca6ea1SDimitry Andric bool HasVOP3P = ST->hasVOP3PInsts(); 1122*0fca6ea1SDimitry Andric unsigned RequestedElts = 1123*0fca6ea1SDimitry Andric count_if(Mask, [](int MaskElt) { return MaskElt != -1; }); 1124*0fca6ea1SDimitry Andric if (RequestedElts == 0) 1125*0fca6ea1SDimitry Andric return 0; 11260b57cec5SDimitry Andric switch (Kind) { 11270b57cec5SDimitry Andric case TTI::SK_Broadcast: 11280b57cec5SDimitry Andric case TTI::SK_Reverse: 1129*0fca6ea1SDimitry Andric case TTI::SK_PermuteSingleSrc: { 1130*0fca6ea1SDimitry Andric // With op_sel VOP3P instructions freely can access the low half or high 1131*0fca6ea1SDimitry Andric // half of a register, so any swizzle of two elements is free. 1132*0fca6ea1SDimitry Andric if (HasVOP3P && NumVectorElts == 2) 11330b57cec5SDimitry Andric return 0; 1134*0fca6ea1SDimitry Andric unsigned NumPerms = alignTo(RequestedElts, 2) / 2; 1135*0fca6ea1SDimitry Andric // SK_Broadcast just reuses the same mask 1136*0fca6ea1SDimitry Andric unsigned NumPermMasks = Kind == TTI::SK_Broadcast ? 1 : NumPerms; 1137*0fca6ea1SDimitry Andric return NumPerms + NumPermMasks; 1138*0fca6ea1SDimitry Andric } 1139*0fca6ea1SDimitry Andric case TTI::SK_ExtractSubvector: 1140*0fca6ea1SDimitry Andric case TTI::SK_InsertSubvector: { 1141*0fca6ea1SDimitry Andric // Even aligned accesses are free 1142*0fca6ea1SDimitry Andric if (!(Index % 2)) 1143*0fca6ea1SDimitry Andric return 0; 1144*0fca6ea1SDimitry Andric // Insert/extract subvectors only require shifts / extract code to get the 1145*0fca6ea1SDimitry Andric // relevant bits 1146*0fca6ea1SDimitry Andric return alignTo(RequestedElts, 2) / 2; 1147*0fca6ea1SDimitry Andric } 1148*0fca6ea1SDimitry Andric case TTI::SK_PermuteTwoSrc: 1149*0fca6ea1SDimitry Andric case TTI::SK_Splice: 1150*0fca6ea1SDimitry Andric case TTI::SK_Select: { 1151*0fca6ea1SDimitry Andric unsigned NumPerms = alignTo(RequestedElts, 2) / 2; 1152*0fca6ea1SDimitry Andric // SK_Select just reuses the same mask 1153*0fca6ea1SDimitry Andric unsigned NumPermMasks = Kind == TTI::SK_Select ? 1 : NumPerms; 1154*0fca6ea1SDimitry Andric return NumPerms + NumPermMasks; 1155*0fca6ea1SDimitry Andric } 1156*0fca6ea1SDimitry Andric 11570b57cec5SDimitry Andric default: 11580b57cec5SDimitry Andric break; 11590b57cec5SDimitry Andric } 11600b57cec5SDimitry Andric } 11610b57cec5SDimitry Andric 1162bdd1243dSDimitry Andric return BaseT::getShuffleCost(Kind, VT, Mask, CostKind, Index, SubTp); 11630b57cec5SDimitry Andric } 11640b57cec5SDimitry Andric 11650b57cec5SDimitry Andric bool GCNTTIImpl::areInlineCompatible(const Function *Caller, 11660b57cec5SDimitry Andric const Function *Callee) const { 11670b57cec5SDimitry Andric const TargetMachine &TM = getTLI()->getTargetMachine(); 1168480093f4SDimitry Andric const GCNSubtarget *CallerST 1169480093f4SDimitry Andric = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller)); 1170480093f4SDimitry Andric const GCNSubtarget *CalleeST 1171480093f4SDimitry Andric = static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee)); 1172480093f4SDimitry Andric 1173480093f4SDimitry Andric const FeatureBitset &CallerBits = CallerST->getFeatureBits(); 1174480093f4SDimitry Andric const FeatureBitset &CalleeBits = CalleeST->getFeatureBits(); 11750b57cec5SDimitry Andric 11760b57cec5SDimitry Andric FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList; 11770b57cec5SDimitry Andric FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList; 11780b57cec5SDimitry Andric if ((RealCallerBits & RealCalleeBits) != RealCalleeBits) 11790b57cec5SDimitry Andric return false; 11800b57cec5SDimitry Andric 11810b57cec5SDimitry Andric // FIXME: dx10_clamp can just take the caller setting, but there seems to be 11820b57cec5SDimitry Andric // no way to support merge for backend defined attributes. 11835f757f3fSDimitry Andric SIModeRegisterDefaults CallerMode(*Caller, *CallerST); 11845f757f3fSDimitry Andric SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST); 1185e8d8bef9SDimitry Andric if (!CallerMode.isInlineCompatible(CalleeMode)) 1186e8d8bef9SDimitry Andric return false; 1187e8d8bef9SDimitry Andric 1188fe6060f1SDimitry Andric if (Callee->hasFnAttribute(Attribute::AlwaysInline) || 1189fe6060f1SDimitry Andric Callee->hasFnAttribute(Attribute::InlineHint)) 1190fe6060f1SDimitry Andric return true; 1191fe6060f1SDimitry Andric 1192e8d8bef9SDimitry Andric // Hack to make compile times reasonable. 1193fe6060f1SDimitry Andric if (InlineMaxBB) { 1194fe6060f1SDimitry Andric // Single BB does not increase total BB amount. 1195fe6060f1SDimitry Andric if (Callee->size() == 1) 1196fe6060f1SDimitry Andric return true; 1197e8d8bef9SDimitry Andric size_t BBSize = Caller->size() + Callee->size() - 1; 1198e8d8bef9SDimitry Andric return BBSize <= InlineMaxBB; 1199e8d8bef9SDimitry Andric } 1200e8d8bef9SDimitry Andric 1201e8d8bef9SDimitry Andric return true; 1202e8d8bef9SDimitry Andric } 1203e8d8bef9SDimitry Andric 120406c3fb27SDimitry Andric static unsigned adjustInliningThresholdUsingCallee(const CallBase *CB, 120506c3fb27SDimitry Andric const SITargetLowering *TLI, 120606c3fb27SDimitry Andric const GCNTTIImpl *TTIImpl) { 120706c3fb27SDimitry Andric const int NrOfSGPRUntilSpill = 26; 120806c3fb27SDimitry Andric const int NrOfVGPRUntilSpill = 32; 120906c3fb27SDimitry Andric 121006c3fb27SDimitry Andric const DataLayout &DL = TTIImpl->getDataLayout(); 121106c3fb27SDimitry Andric 121206c3fb27SDimitry Andric unsigned adjustThreshold = 0; 121306c3fb27SDimitry Andric int SGPRsInUse = 0; 121406c3fb27SDimitry Andric int VGPRsInUse = 0; 121506c3fb27SDimitry Andric for (const Use &A : CB->args()) { 121606c3fb27SDimitry Andric SmallVector<EVT, 4> ValueVTs; 121706c3fb27SDimitry Andric ComputeValueVTs(*TLI, DL, A.get()->getType(), ValueVTs); 121806c3fb27SDimitry Andric for (auto ArgVT : ValueVTs) { 121906c3fb27SDimitry Andric unsigned CCRegNum = TLI->getNumRegistersForCallingConv( 122006c3fb27SDimitry Andric CB->getContext(), CB->getCallingConv(), ArgVT); 122106c3fb27SDimitry Andric if (AMDGPU::isArgPassedInSGPR(CB, CB->getArgOperandNo(&A))) 122206c3fb27SDimitry Andric SGPRsInUse += CCRegNum; 122306c3fb27SDimitry Andric else 122406c3fb27SDimitry Andric VGPRsInUse += CCRegNum; 122506c3fb27SDimitry Andric } 122606c3fb27SDimitry Andric } 122706c3fb27SDimitry Andric 122806c3fb27SDimitry Andric // The cost of passing function arguments through the stack: 122906c3fb27SDimitry Andric // 1 instruction to put a function argument on the stack in the caller. 123006c3fb27SDimitry Andric // 1 instruction to take a function argument from the stack in callee. 123106c3fb27SDimitry Andric // 1 instruction is explicitly take care of data dependencies in callee 123206c3fb27SDimitry Andric // function. 123306c3fb27SDimitry Andric InstructionCost ArgStackCost(1); 123406c3fb27SDimitry Andric ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost( 123506c3fb27SDimitry Andric Instruction::Store, Type::getInt32Ty(CB->getContext()), Align(4), 123606c3fb27SDimitry Andric AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency); 123706c3fb27SDimitry Andric ArgStackCost += const_cast<GCNTTIImpl *>(TTIImpl)->getMemoryOpCost( 123806c3fb27SDimitry Andric Instruction::Load, Type::getInt32Ty(CB->getContext()), Align(4), 123906c3fb27SDimitry Andric AMDGPUAS::PRIVATE_ADDRESS, TTI::TCK_SizeAndLatency); 124006c3fb27SDimitry Andric 124106c3fb27SDimitry Andric // The penalty cost is computed relative to the cost of instructions and does 124206c3fb27SDimitry Andric // not model any storage costs. 124306c3fb27SDimitry Andric adjustThreshold += std::max(0, SGPRsInUse - NrOfSGPRUntilSpill) * 124406c3fb27SDimitry Andric *ArgStackCost.getValue() * InlineConstants::getInstrCost(); 124506c3fb27SDimitry Andric adjustThreshold += std::max(0, VGPRsInUse - NrOfVGPRUntilSpill) * 124606c3fb27SDimitry Andric *ArgStackCost.getValue() * InlineConstants::getInstrCost(); 124706c3fb27SDimitry Andric return adjustThreshold; 124806c3fb27SDimitry Andric } 124906c3fb27SDimitry Andric 125006c3fb27SDimitry Andric static unsigned getCallArgsTotalAllocaSize(const CallBase *CB, 125106c3fb27SDimitry Andric const DataLayout &DL) { 125206c3fb27SDimitry Andric // If we have a pointer to a private array passed into a function 1253e8d8bef9SDimitry Andric // it will not be optimized out, leaving scratch usage. 125406c3fb27SDimitry Andric // This function calculates the total size in bytes of the memory that would 125506c3fb27SDimitry Andric // end in scratch if the call was not inlined. 125606c3fb27SDimitry Andric unsigned AllocaSize = 0; 1257e8d8bef9SDimitry Andric SmallPtrSet<const AllocaInst *, 8> AIVisited; 1258e8d8bef9SDimitry Andric for (Value *PtrArg : CB->args()) { 1259e8d8bef9SDimitry Andric PointerType *Ty = dyn_cast<PointerType>(PtrArg->getType()); 126006c3fb27SDimitry Andric if (!Ty) 1261e8d8bef9SDimitry Andric continue; 1262e8d8bef9SDimitry Andric 126306c3fb27SDimitry Andric unsigned AddrSpace = Ty->getAddressSpace(); 126406c3fb27SDimitry Andric if (AddrSpace != AMDGPUAS::FLAT_ADDRESS && 126506c3fb27SDimitry Andric AddrSpace != AMDGPUAS::PRIVATE_ADDRESS) 1266e8d8bef9SDimitry Andric continue; 126706c3fb27SDimitry Andric 126806c3fb27SDimitry Andric const AllocaInst *AI = dyn_cast<AllocaInst>(getUnderlyingObject(PtrArg)); 126906c3fb27SDimitry Andric if (!AI || !AI->isStaticAlloca() || !AIVisited.insert(AI).second) 127006c3fb27SDimitry Andric continue; 127106c3fb27SDimitry Andric 1272e8d8bef9SDimitry Andric AllocaSize += DL.getTypeAllocSize(AI->getAllocatedType()); 1273e8d8bef9SDimitry Andric } 127406c3fb27SDimitry Andric return AllocaSize; 1275e8d8bef9SDimitry Andric } 127606c3fb27SDimitry Andric 127706c3fb27SDimitry Andric unsigned GCNTTIImpl::adjustInliningThreshold(const CallBase *CB) const { 127806c3fb27SDimitry Andric unsigned Threshold = adjustInliningThresholdUsingCallee(CB, TLI, this); 127906c3fb27SDimitry Andric 128006c3fb27SDimitry Andric // Private object passed as arguments may end up in scratch usage if the call 128106c3fb27SDimitry Andric // is not inlined. Increase the inline threshold to promote inlining. 128206c3fb27SDimitry Andric unsigned AllocaSize = getCallArgsTotalAllocaSize(CB, DL); 128306c3fb27SDimitry Andric if (AllocaSize > 0) 128406c3fb27SDimitry Andric Threshold += ArgAllocaCost; 128506c3fb27SDimitry Andric return Threshold; 1286e8d8bef9SDimitry Andric } 128706c3fb27SDimitry Andric 128806c3fb27SDimitry Andric unsigned GCNTTIImpl::getCallerAllocaCost(const CallBase *CB, 128906c3fb27SDimitry Andric const AllocaInst *AI) const { 129006c3fb27SDimitry Andric 129106c3fb27SDimitry Andric // Below the cutoff, assume that the private memory objects would be 129206c3fb27SDimitry Andric // optimized 129306c3fb27SDimitry Andric auto AllocaSize = getCallArgsTotalAllocaSize(CB, DL); 129406c3fb27SDimitry Andric if (AllocaSize <= ArgAllocaCutoff) 1295e8d8bef9SDimitry Andric return 0; 129606c3fb27SDimitry Andric 129706c3fb27SDimitry Andric // Above the cutoff, we give a cost to each private memory object 129806c3fb27SDimitry Andric // depending its size. If the array can be optimized by SROA this cost is not 129906c3fb27SDimitry Andric // added to the total-cost in the inliner cost analysis. 130006c3fb27SDimitry Andric // 130106c3fb27SDimitry Andric // We choose the total cost of the alloca such that their sum cancels the 130206c3fb27SDimitry Andric // bonus given in the threshold (ArgAllocaCost). 130306c3fb27SDimitry Andric // 130406c3fb27SDimitry Andric // Cost_Alloca_0 + ... + Cost_Alloca_N == ArgAllocaCost 130506c3fb27SDimitry Andric // 130606c3fb27SDimitry Andric // Awkwardly, the ArgAllocaCost bonus is multiplied by threshold-multiplier, 130706c3fb27SDimitry Andric // the single-bb bonus and the vector-bonus. 130806c3fb27SDimitry Andric // 130906c3fb27SDimitry Andric // We compensate the first two multipliers, by repeating logic from the 131006c3fb27SDimitry Andric // inliner-cost in here. The vector-bonus is 0 on AMDGPU. 131106c3fb27SDimitry Andric static_assert(InlinerVectorBonusPercent == 0, "vector bonus assumed to be 0"); 131206c3fb27SDimitry Andric unsigned Threshold = ArgAllocaCost * getInliningThresholdMultiplier(); 131306c3fb27SDimitry Andric 131406c3fb27SDimitry Andric bool SingleBB = none_of(*CB->getCalledFunction(), [](const BasicBlock &BB) { 131506c3fb27SDimitry Andric return BB.getTerminator()->getNumSuccessors() > 1; 131606c3fb27SDimitry Andric }); 131706c3fb27SDimitry Andric if (SingleBB) { 131806c3fb27SDimitry Andric Threshold += Threshold / 2; 131906c3fb27SDimitry Andric } 132006c3fb27SDimitry Andric 132106c3fb27SDimitry Andric auto ArgAllocaSize = DL.getTypeAllocSize(AI->getAllocatedType()); 132206c3fb27SDimitry Andric 132306c3fb27SDimitry Andric // Attribute the bonus proportionally to the alloca size 132406c3fb27SDimitry Andric unsigned AllocaThresholdBonus = (Threshold * ArgAllocaSize) / AllocaSize; 132506c3fb27SDimitry Andric 132606c3fb27SDimitry Andric return AllocaThresholdBonus; 13270b57cec5SDimitry Andric } 13280b57cec5SDimitry Andric 13290b57cec5SDimitry Andric void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 1330349cc55cSDimitry Andric TTI::UnrollingPreferences &UP, 1331349cc55cSDimitry Andric OptimizationRemarkEmitter *ORE) { 1332349cc55cSDimitry Andric CommonTTI.getUnrollingPreferences(L, SE, UP, ORE); 13330b57cec5SDimitry Andric } 13340b57cec5SDimitry Andric 13355ffd83dbSDimitry Andric void GCNTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE, 13365ffd83dbSDimitry Andric TTI::PeelingPreferences &PP) { 13375ffd83dbSDimitry Andric CommonTTI.getPeelingPreferences(L, SE, PP); 13388bcb0991SDimitry Andric } 13398bcb0991SDimitry Andric 1340e8d8bef9SDimitry Andric int GCNTTIImpl::get64BitInstrCost(TTI::TargetCostKind CostKind) const { 1341fe6060f1SDimitry Andric return ST->hasFullRate64Ops() 1342fe6060f1SDimitry Andric ? getFullRateInstrCost() 1343fe6060f1SDimitry Andric : ST->hasHalfRate64Ops() ? getHalfRateInstrCost(CostKind) 1344e8d8bef9SDimitry Andric : getQuarterRateInstrCost(CostKind); 1345e8d8bef9SDimitry Andric } 1346bdd1243dSDimitry Andric 1347bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> 1348bdd1243dSDimitry Andric GCNTTIImpl::getTypeLegalizationCost(Type *Ty) const { 1349bdd1243dSDimitry Andric std::pair<InstructionCost, MVT> Cost = BaseT::getTypeLegalizationCost(Ty); 1350bdd1243dSDimitry Andric auto Size = DL.getTypeSizeInBits(Ty); 1351bdd1243dSDimitry Andric // Maximum load or store can handle 8 dwords for scalar and 4 for 1352bdd1243dSDimitry Andric // vector ALU. Let's assume anything above 8 dwords is expensive 1353bdd1243dSDimitry Andric // even if legal. 1354bdd1243dSDimitry Andric if (Size <= 256) 1355bdd1243dSDimitry Andric return Cost; 1356bdd1243dSDimitry Andric 1357bdd1243dSDimitry Andric Cost.first += (Size + 255) / 256; 1358bdd1243dSDimitry Andric return Cost; 1359bdd1243dSDimitry Andric } 1360cb14a3feSDimitry Andric 1361cb14a3feSDimitry Andric unsigned GCNTTIImpl::getPrefetchDistance() const { 1362cb14a3feSDimitry Andric return ST->hasPrefetch() ? 128 : 0; 1363cb14a3feSDimitry Andric } 1364cb14a3feSDimitry Andric 1365cb14a3feSDimitry Andric bool GCNTTIImpl::shouldPrefetchAddressSpace(unsigned AS) const { 1366cb14a3feSDimitry Andric return AMDGPU::isFlatGlobalAddrSpace(AS); 1367cb14a3feSDimitry Andric } 1368