10b57cec5SDimitry Andric //===-- APInt.cpp - Implement APInt class ---------------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements a class to represent arbitrary precision integer 100b57cec5SDimitry Andric // constant values and provide a variety of arithmetic operations on them. 110b57cec5SDimitry Andric // 120b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 130b57cec5SDimitry Andric 140b57cec5SDimitry Andric #include "llvm/ADT/APInt.h" 150b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h" 160b57cec5SDimitry Andric #include "llvm/ADT/FoldingSet.h" 170b57cec5SDimitry Andric #include "llvm/ADT/Hashing.h" 180b57cec5SDimitry Andric #include "llvm/ADT/SmallString.h" 190b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 200b57cec5SDimitry Andric #include "llvm/ADT/bit.h" 210b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h" 2206c3fb27SDimitry Andric #include "llvm/Support/Alignment.h" 230b57cec5SDimitry Andric #include "llvm/Support/Debug.h" 240b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 250b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 260b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h" 270b57cec5SDimitry Andric #include <cmath> 28bdd1243dSDimitry Andric #include <optional> 29bdd1243dSDimitry Andric 300b57cec5SDimitry Andric using namespace llvm; 310b57cec5SDimitry Andric 320b57cec5SDimitry Andric #define DEBUG_TYPE "apint" 330b57cec5SDimitry Andric 340b57cec5SDimitry Andric /// A utility function for allocating memory, checking for allocation failures, 350b57cec5SDimitry Andric /// and ensuring the contents are zeroed. 360b57cec5SDimitry Andric inline static uint64_t* getClearedMemory(unsigned numWords) { 370b57cec5SDimitry Andric uint64_t *result = new uint64_t[numWords]; 380b57cec5SDimitry Andric memset(result, 0, numWords * sizeof(uint64_t)); 390b57cec5SDimitry Andric return result; 400b57cec5SDimitry Andric } 410b57cec5SDimitry Andric 420b57cec5SDimitry Andric /// A utility function for allocating memory and checking for allocation 430b57cec5SDimitry Andric /// failure. The content is not zeroed. 440b57cec5SDimitry Andric inline static uint64_t* getMemory(unsigned numWords) { 450b57cec5SDimitry Andric return new uint64_t[numWords]; 460b57cec5SDimitry Andric } 470b57cec5SDimitry Andric 480b57cec5SDimitry Andric /// A utility function that converts a character to a digit. 490b57cec5SDimitry Andric inline static unsigned getDigit(char cdigit, uint8_t radix) { 500b57cec5SDimitry Andric unsigned r; 510b57cec5SDimitry Andric 520b57cec5SDimitry Andric if (radix == 16 || radix == 36) { 530b57cec5SDimitry Andric r = cdigit - '0'; 540b57cec5SDimitry Andric if (r <= 9) 550b57cec5SDimitry Andric return r; 560b57cec5SDimitry Andric 570b57cec5SDimitry Andric r = cdigit - 'A'; 580b57cec5SDimitry Andric if (r <= radix - 11U) 590b57cec5SDimitry Andric return r + 10; 600b57cec5SDimitry Andric 610b57cec5SDimitry Andric r = cdigit - 'a'; 620b57cec5SDimitry Andric if (r <= radix - 11U) 630b57cec5SDimitry Andric return r + 10; 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric radix = 10; 660b57cec5SDimitry Andric } 670b57cec5SDimitry Andric 680b57cec5SDimitry Andric r = cdigit - '0'; 690b57cec5SDimitry Andric if (r < radix) 700b57cec5SDimitry Andric return r; 710b57cec5SDimitry Andric 7206c3fb27SDimitry Andric return UINT_MAX; 730b57cec5SDimitry Andric } 740b57cec5SDimitry Andric 750b57cec5SDimitry Andric 760b57cec5SDimitry Andric void APInt::initSlowCase(uint64_t val, bool isSigned) { 770b57cec5SDimitry Andric U.pVal = getClearedMemory(getNumWords()); 780b57cec5SDimitry Andric U.pVal[0] = val; 790b57cec5SDimitry Andric if (isSigned && int64_t(val) < 0) 800b57cec5SDimitry Andric for (unsigned i = 1; i < getNumWords(); ++i) 810b57cec5SDimitry Andric U.pVal[i] = WORDTYPE_MAX; 820b57cec5SDimitry Andric clearUnusedBits(); 830b57cec5SDimitry Andric } 840b57cec5SDimitry Andric 850b57cec5SDimitry Andric void APInt::initSlowCase(const APInt& that) { 860b57cec5SDimitry Andric U.pVal = getMemory(getNumWords()); 870b57cec5SDimitry Andric memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); 880b57cec5SDimitry Andric } 890b57cec5SDimitry Andric 900b57cec5SDimitry Andric void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 910b57cec5SDimitry Andric assert(bigVal.data() && "Null pointer detected!"); 920b57cec5SDimitry Andric if (isSingleWord()) 930b57cec5SDimitry Andric U.VAL = bigVal[0]; 940b57cec5SDimitry Andric else { 950b57cec5SDimitry Andric // Get memory, cleared to 0 960b57cec5SDimitry Andric U.pVal = getClearedMemory(getNumWords()); 970b57cec5SDimitry Andric // Calculate the number of words to copy 980b57cec5SDimitry Andric unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 990b57cec5SDimitry Andric // Copy the words from bigVal to pVal 1000b57cec5SDimitry Andric memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); 1010b57cec5SDimitry Andric } 1020b57cec5SDimitry Andric // Make sure unused high bits are cleared 1030b57cec5SDimitry Andric clearUnusedBits(); 1040b57cec5SDimitry Andric } 1050b57cec5SDimitry Andric 106349cc55cSDimitry Andric APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { 1070b57cec5SDimitry Andric initFromArray(bigVal); 1080b57cec5SDimitry Andric } 1090b57cec5SDimitry Andric 1100b57cec5SDimitry Andric APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 1110b57cec5SDimitry Andric : BitWidth(numBits) { 112bdd1243dSDimitry Andric initFromArray(ArrayRef(bigVal, numWords)); 1130b57cec5SDimitry Andric } 1140b57cec5SDimitry Andric 1150b57cec5SDimitry Andric APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 1160b57cec5SDimitry Andric : BitWidth(numbits) { 1170b57cec5SDimitry Andric fromString(numbits, Str, radix); 1180b57cec5SDimitry Andric } 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric void APInt::reallocate(unsigned NewBitWidth) { 1210b57cec5SDimitry Andric // If the number of words is the same we can just change the width and stop. 1220b57cec5SDimitry Andric if (getNumWords() == getNumWords(NewBitWidth)) { 1230b57cec5SDimitry Andric BitWidth = NewBitWidth; 1240b57cec5SDimitry Andric return; 1250b57cec5SDimitry Andric } 1260b57cec5SDimitry Andric 1270b57cec5SDimitry Andric // If we have an allocation, delete it. 1280b57cec5SDimitry Andric if (!isSingleWord()) 1290b57cec5SDimitry Andric delete [] U.pVal; 1300b57cec5SDimitry Andric 1310b57cec5SDimitry Andric // Update BitWidth. 1320b57cec5SDimitry Andric BitWidth = NewBitWidth; 1330b57cec5SDimitry Andric 1340b57cec5SDimitry Andric // If we are supposed to have an allocation, create it. 1350b57cec5SDimitry Andric if (!isSingleWord()) 1360b57cec5SDimitry Andric U.pVal = getMemory(getNumWords()); 1370b57cec5SDimitry Andric } 1380b57cec5SDimitry Andric 139349cc55cSDimitry Andric void APInt::assignSlowCase(const APInt &RHS) { 1400b57cec5SDimitry Andric // Don't do anything for X = X 1410b57cec5SDimitry Andric if (this == &RHS) 1420b57cec5SDimitry Andric return; 1430b57cec5SDimitry Andric 1440b57cec5SDimitry Andric // Adjust the bit width and handle allocations as necessary. 1450b57cec5SDimitry Andric reallocate(RHS.getBitWidth()); 1460b57cec5SDimitry Andric 1470b57cec5SDimitry Andric // Copy the data. 1480b57cec5SDimitry Andric if (isSingleWord()) 1490b57cec5SDimitry Andric U.VAL = RHS.U.VAL; 1500b57cec5SDimitry Andric else 1510b57cec5SDimitry Andric memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); 1520b57cec5SDimitry Andric } 1530b57cec5SDimitry Andric 1540b57cec5SDimitry Andric /// This method 'profiles' an APInt for use with FoldingSet. 1550b57cec5SDimitry Andric void APInt::Profile(FoldingSetNodeID& ID) const { 1560b57cec5SDimitry Andric ID.AddInteger(BitWidth); 1570b57cec5SDimitry Andric 1580b57cec5SDimitry Andric if (isSingleWord()) { 1590b57cec5SDimitry Andric ID.AddInteger(U.VAL); 1600b57cec5SDimitry Andric return; 1610b57cec5SDimitry Andric } 1620b57cec5SDimitry Andric 1630b57cec5SDimitry Andric unsigned NumWords = getNumWords(); 1640b57cec5SDimitry Andric for (unsigned i = 0; i < NumWords; ++i) 1650b57cec5SDimitry Andric ID.AddInteger(U.pVal[i]); 1660b57cec5SDimitry Andric } 1670b57cec5SDimitry Andric 16806c3fb27SDimitry Andric bool APInt::isAligned(Align A) const { 16906c3fb27SDimitry Andric if (isZero()) 17006c3fb27SDimitry Andric return true; 17106c3fb27SDimitry Andric const unsigned TrailingZeroes = countr_zero(); 17206c3fb27SDimitry Andric const unsigned MinimumTrailingZeroes = Log2(A); 17306c3fb27SDimitry Andric return TrailingZeroes >= MinimumTrailingZeroes; 17406c3fb27SDimitry Andric } 17506c3fb27SDimitry Andric 1760b57cec5SDimitry Andric /// Prefix increment operator. Increments the APInt by one. 1770b57cec5SDimitry Andric APInt& APInt::operator++() { 1780b57cec5SDimitry Andric if (isSingleWord()) 1790b57cec5SDimitry Andric ++U.VAL; 1800b57cec5SDimitry Andric else 1810b57cec5SDimitry Andric tcIncrement(U.pVal, getNumWords()); 1820b57cec5SDimitry Andric return clearUnusedBits(); 1830b57cec5SDimitry Andric } 1840b57cec5SDimitry Andric 1850b57cec5SDimitry Andric /// Prefix decrement operator. Decrements the APInt by one. 1860b57cec5SDimitry Andric APInt& APInt::operator--() { 1870b57cec5SDimitry Andric if (isSingleWord()) 1880b57cec5SDimitry Andric --U.VAL; 1890b57cec5SDimitry Andric else 1900b57cec5SDimitry Andric tcDecrement(U.pVal, getNumWords()); 1910b57cec5SDimitry Andric return clearUnusedBits(); 1920b57cec5SDimitry Andric } 1930b57cec5SDimitry Andric 194480093f4SDimitry Andric /// Adds the RHS APInt to this APInt. 1950b57cec5SDimitry Andric /// @returns this, after addition of RHS. 1960b57cec5SDimitry Andric /// Addition assignment operator. 1970b57cec5SDimitry Andric APInt& APInt::operator+=(const APInt& RHS) { 1980b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1990b57cec5SDimitry Andric if (isSingleWord()) 2000b57cec5SDimitry Andric U.VAL += RHS.U.VAL; 2010b57cec5SDimitry Andric else 2020b57cec5SDimitry Andric tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); 2030b57cec5SDimitry Andric return clearUnusedBits(); 2040b57cec5SDimitry Andric } 2050b57cec5SDimitry Andric 2060b57cec5SDimitry Andric APInt& APInt::operator+=(uint64_t RHS) { 2070b57cec5SDimitry Andric if (isSingleWord()) 2080b57cec5SDimitry Andric U.VAL += RHS; 2090b57cec5SDimitry Andric else 2100b57cec5SDimitry Andric tcAddPart(U.pVal, RHS, getNumWords()); 2110b57cec5SDimitry Andric return clearUnusedBits(); 2120b57cec5SDimitry Andric } 2130b57cec5SDimitry Andric 2140b57cec5SDimitry Andric /// Subtracts the RHS APInt from this APInt 2150b57cec5SDimitry Andric /// @returns this, after subtraction 2160b57cec5SDimitry Andric /// Subtraction assignment operator. 2170b57cec5SDimitry Andric APInt& APInt::operator-=(const APInt& RHS) { 2180b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 2190b57cec5SDimitry Andric if (isSingleWord()) 2200b57cec5SDimitry Andric U.VAL -= RHS.U.VAL; 2210b57cec5SDimitry Andric else 2220b57cec5SDimitry Andric tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); 2230b57cec5SDimitry Andric return clearUnusedBits(); 2240b57cec5SDimitry Andric } 2250b57cec5SDimitry Andric 2260b57cec5SDimitry Andric APInt& APInt::operator-=(uint64_t RHS) { 2270b57cec5SDimitry Andric if (isSingleWord()) 2280b57cec5SDimitry Andric U.VAL -= RHS; 2290b57cec5SDimitry Andric else 2300b57cec5SDimitry Andric tcSubtractPart(U.pVal, RHS, getNumWords()); 2310b57cec5SDimitry Andric return clearUnusedBits(); 2320b57cec5SDimitry Andric } 2330b57cec5SDimitry Andric 2340b57cec5SDimitry Andric APInt APInt::operator*(const APInt& RHS) const { 2350b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 2360b57cec5SDimitry Andric if (isSingleWord()) 2370b57cec5SDimitry Andric return APInt(BitWidth, U.VAL * RHS.U.VAL); 2380b57cec5SDimitry Andric 2390b57cec5SDimitry Andric APInt Result(getMemory(getNumWords()), getBitWidth()); 2400b57cec5SDimitry Andric tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); 2410b57cec5SDimitry Andric Result.clearUnusedBits(); 2420b57cec5SDimitry Andric return Result; 2430b57cec5SDimitry Andric } 2440b57cec5SDimitry Andric 245349cc55cSDimitry Andric void APInt::andAssignSlowCase(const APInt &RHS) { 246349cc55cSDimitry Andric WordType *dst = U.pVal, *rhs = RHS.U.pVal; 247349cc55cSDimitry Andric for (size_t i = 0, e = getNumWords(); i != e; ++i) 248349cc55cSDimitry Andric dst[i] &= rhs[i]; 2490b57cec5SDimitry Andric } 2500b57cec5SDimitry Andric 251349cc55cSDimitry Andric void APInt::orAssignSlowCase(const APInt &RHS) { 252349cc55cSDimitry Andric WordType *dst = U.pVal, *rhs = RHS.U.pVal; 253349cc55cSDimitry Andric for (size_t i = 0, e = getNumWords(); i != e; ++i) 254349cc55cSDimitry Andric dst[i] |= rhs[i]; 2550b57cec5SDimitry Andric } 2560b57cec5SDimitry Andric 257349cc55cSDimitry Andric void APInt::xorAssignSlowCase(const APInt &RHS) { 258349cc55cSDimitry Andric WordType *dst = U.pVal, *rhs = RHS.U.pVal; 259349cc55cSDimitry Andric for (size_t i = 0, e = getNumWords(); i != e; ++i) 260349cc55cSDimitry Andric dst[i] ^= rhs[i]; 2610b57cec5SDimitry Andric } 2620b57cec5SDimitry Andric 2630b57cec5SDimitry Andric APInt &APInt::operator*=(const APInt &RHS) { 2640b57cec5SDimitry Andric *this = *this * RHS; 2650b57cec5SDimitry Andric return *this; 2660b57cec5SDimitry Andric } 2670b57cec5SDimitry Andric 2680b57cec5SDimitry Andric APInt& APInt::operator*=(uint64_t RHS) { 2690b57cec5SDimitry Andric if (isSingleWord()) { 2700b57cec5SDimitry Andric U.VAL *= RHS; 2710b57cec5SDimitry Andric } else { 2720b57cec5SDimitry Andric unsigned NumWords = getNumWords(); 2730b57cec5SDimitry Andric tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); 2740b57cec5SDimitry Andric } 2750b57cec5SDimitry Andric return clearUnusedBits(); 2760b57cec5SDimitry Andric } 2770b57cec5SDimitry Andric 278349cc55cSDimitry Andric bool APInt::equalSlowCase(const APInt &RHS) const { 2790b57cec5SDimitry Andric return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); 2800b57cec5SDimitry Andric } 2810b57cec5SDimitry Andric 2820b57cec5SDimitry Andric int APInt::compare(const APInt& RHS) const { 2830b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 2840b57cec5SDimitry Andric if (isSingleWord()) 2850b57cec5SDimitry Andric return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; 2860b57cec5SDimitry Andric 2870b57cec5SDimitry Andric return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 2880b57cec5SDimitry Andric } 2890b57cec5SDimitry Andric 2900b57cec5SDimitry Andric int APInt::compareSigned(const APInt& RHS) const { 2910b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 2920b57cec5SDimitry Andric if (isSingleWord()) { 2930b57cec5SDimitry Andric int64_t lhsSext = SignExtend64(U.VAL, BitWidth); 2940b57cec5SDimitry Andric int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); 2950b57cec5SDimitry Andric return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; 2960b57cec5SDimitry Andric } 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric bool lhsNeg = isNegative(); 2990b57cec5SDimitry Andric bool rhsNeg = RHS.isNegative(); 3000b57cec5SDimitry Andric 3010b57cec5SDimitry Andric // If the sign bits don't match, then (LHS < RHS) if LHS is negative 3020b57cec5SDimitry Andric if (lhsNeg != rhsNeg) 3030b57cec5SDimitry Andric return lhsNeg ? -1 : 1; 3040b57cec5SDimitry Andric 3050b57cec5SDimitry Andric // Otherwise we can just use an unsigned comparison, because even negative 3060b57cec5SDimitry Andric // numbers compare correctly this way if both have the same signed-ness. 3070b57cec5SDimitry Andric return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); 3080b57cec5SDimitry Andric } 3090b57cec5SDimitry Andric 3100b57cec5SDimitry Andric void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { 3110b57cec5SDimitry Andric unsigned loWord = whichWord(loBit); 3120b57cec5SDimitry Andric unsigned hiWord = whichWord(hiBit); 3130b57cec5SDimitry Andric 3140b57cec5SDimitry Andric // Create an initial mask for the low word with zeros below loBit. 3150b57cec5SDimitry Andric uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); 3160b57cec5SDimitry Andric 3170b57cec5SDimitry Andric // If hiBit is not aligned, we need a high mask. 3180b57cec5SDimitry Andric unsigned hiShiftAmt = whichBit(hiBit); 3190b57cec5SDimitry Andric if (hiShiftAmt != 0) { 3200b57cec5SDimitry Andric // Create a high mask with zeros above hiBit. 3210b57cec5SDimitry Andric uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); 3220b57cec5SDimitry Andric // If loWord and hiWord are equal, then we combine the masks. Otherwise, 3230b57cec5SDimitry Andric // set the bits in hiWord. 3240b57cec5SDimitry Andric if (hiWord == loWord) 3250b57cec5SDimitry Andric loMask &= hiMask; 3260b57cec5SDimitry Andric else 3270b57cec5SDimitry Andric U.pVal[hiWord] |= hiMask; 3280b57cec5SDimitry Andric } 3290b57cec5SDimitry Andric // Apply the mask to the low word. 3300b57cec5SDimitry Andric U.pVal[loWord] |= loMask; 3310b57cec5SDimitry Andric 3320b57cec5SDimitry Andric // Fill any words between loWord and hiWord with all ones. 3330b57cec5SDimitry Andric for (unsigned word = loWord + 1; word < hiWord; ++word) 3340b57cec5SDimitry Andric U.pVal[word] = WORDTYPE_MAX; 3350b57cec5SDimitry Andric } 3360b57cec5SDimitry Andric 337349cc55cSDimitry Andric // Complement a bignum in-place. 338349cc55cSDimitry Andric static void tcComplement(APInt::WordType *dst, unsigned parts) { 339349cc55cSDimitry Andric for (unsigned i = 0; i < parts; i++) 340349cc55cSDimitry Andric dst[i] = ~dst[i]; 341349cc55cSDimitry Andric } 342349cc55cSDimitry Andric 3430b57cec5SDimitry Andric /// Toggle every bit to its opposite value. 3440b57cec5SDimitry Andric void APInt::flipAllBitsSlowCase() { 3450b57cec5SDimitry Andric tcComplement(U.pVal, getNumWords()); 3460b57cec5SDimitry Andric clearUnusedBits(); 3470b57cec5SDimitry Andric } 3480b57cec5SDimitry Andric 349349cc55cSDimitry Andric /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is 350349cc55cSDimitry Andric /// equivalent to: 351349cc55cSDimitry Andric /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) 352349cc55cSDimitry Andric /// In the slow case, we know the result is large. 353349cc55cSDimitry Andric APInt APInt::concatSlowCase(const APInt &NewLSB) const { 354349cc55cSDimitry Andric unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); 35581ad6265SDimitry Andric APInt Result = NewLSB.zext(NewWidth); 356349cc55cSDimitry Andric Result.insertBits(*this, NewLSB.getBitWidth()); 357349cc55cSDimitry Andric return Result; 358349cc55cSDimitry Andric } 359349cc55cSDimitry Andric 3600b57cec5SDimitry Andric /// Toggle a given bit to its opposite value whose position is given 3610b57cec5SDimitry Andric /// as "bitPosition". 3620b57cec5SDimitry Andric /// Toggles a given bit to its opposite value. 3630b57cec5SDimitry Andric void APInt::flipBit(unsigned bitPosition) { 3640b57cec5SDimitry Andric assert(bitPosition < BitWidth && "Out of the bit-width range!"); 365e8d8bef9SDimitry Andric setBitVal(bitPosition, !(*this)[bitPosition]); 3660b57cec5SDimitry Andric } 3670b57cec5SDimitry Andric 3680b57cec5SDimitry Andric void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { 3690b57cec5SDimitry Andric unsigned subBitWidth = subBits.getBitWidth(); 370349cc55cSDimitry Andric assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion"); 371349cc55cSDimitry Andric 372349cc55cSDimitry Andric // inserting no bits is a noop. 373349cc55cSDimitry Andric if (subBitWidth == 0) 374349cc55cSDimitry Andric return; 3750b57cec5SDimitry Andric 3760b57cec5SDimitry Andric // Insertion is a direct copy. 3770b57cec5SDimitry Andric if (subBitWidth == BitWidth) { 3780b57cec5SDimitry Andric *this = subBits; 3790b57cec5SDimitry Andric return; 3800b57cec5SDimitry Andric } 3810b57cec5SDimitry Andric 3820b57cec5SDimitry Andric // Single word result can be done as a direct bitmask. 3830b57cec5SDimitry Andric if (isSingleWord()) { 3840b57cec5SDimitry Andric uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 3850b57cec5SDimitry Andric U.VAL &= ~(mask << bitPosition); 3860b57cec5SDimitry Andric U.VAL |= (subBits.U.VAL << bitPosition); 3870b57cec5SDimitry Andric return; 3880b57cec5SDimitry Andric } 3890b57cec5SDimitry Andric 3900b57cec5SDimitry Andric unsigned loBit = whichBit(bitPosition); 3910b57cec5SDimitry Andric unsigned loWord = whichWord(bitPosition); 3920b57cec5SDimitry Andric unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); 3930b57cec5SDimitry Andric 3940b57cec5SDimitry Andric // Insertion within a single word can be done as a direct bitmask. 3950b57cec5SDimitry Andric if (loWord == hi1Word) { 3960b57cec5SDimitry Andric uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); 3970b57cec5SDimitry Andric U.pVal[loWord] &= ~(mask << loBit); 3980b57cec5SDimitry Andric U.pVal[loWord] |= (subBits.U.VAL << loBit); 3990b57cec5SDimitry Andric return; 4000b57cec5SDimitry Andric } 4010b57cec5SDimitry Andric 4020b57cec5SDimitry Andric // Insert on word boundaries. 4030b57cec5SDimitry Andric if (loBit == 0) { 4040b57cec5SDimitry Andric // Direct copy whole words. 4050b57cec5SDimitry Andric unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; 4060b57cec5SDimitry Andric memcpy(U.pVal + loWord, subBits.getRawData(), 4070b57cec5SDimitry Andric numWholeSubWords * APINT_WORD_SIZE); 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric // Mask+insert remaining bits. 4100b57cec5SDimitry Andric unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; 4110b57cec5SDimitry Andric if (remainingBits != 0) { 4120b57cec5SDimitry Andric uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); 4130b57cec5SDimitry Andric U.pVal[hi1Word] &= ~mask; 4140b57cec5SDimitry Andric U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); 4150b57cec5SDimitry Andric } 4160b57cec5SDimitry Andric return; 4170b57cec5SDimitry Andric } 4180b57cec5SDimitry Andric 4190b57cec5SDimitry Andric // General case - set/clear individual bits in dst based on src. 4200b57cec5SDimitry Andric // TODO - there is scope for optimization here, but at the moment this code 4210b57cec5SDimitry Andric // path is barely used so prefer readability over performance. 422e8d8bef9SDimitry Andric for (unsigned i = 0; i != subBitWidth; ++i) 423e8d8bef9SDimitry Andric setBitVal(bitPosition + i, subBits[i]); 4240b57cec5SDimitry Andric } 4250b57cec5SDimitry Andric 4268bcb0991SDimitry Andric void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { 4278bcb0991SDimitry Andric uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 4288bcb0991SDimitry Andric subBits &= maskBits; 4298bcb0991SDimitry Andric if (isSingleWord()) { 4308bcb0991SDimitry Andric U.VAL &= ~(maskBits << bitPosition); 4318bcb0991SDimitry Andric U.VAL |= subBits << bitPosition; 4328bcb0991SDimitry Andric return; 4338bcb0991SDimitry Andric } 4348bcb0991SDimitry Andric 4358bcb0991SDimitry Andric unsigned loBit = whichBit(bitPosition); 4368bcb0991SDimitry Andric unsigned loWord = whichWord(bitPosition); 4378bcb0991SDimitry Andric unsigned hiWord = whichWord(bitPosition + numBits - 1); 4388bcb0991SDimitry Andric if (loWord == hiWord) { 4398bcb0991SDimitry Andric U.pVal[loWord] &= ~(maskBits << loBit); 4408bcb0991SDimitry Andric U.pVal[loWord] |= subBits << loBit; 4418bcb0991SDimitry Andric return; 4428bcb0991SDimitry Andric } 4438bcb0991SDimitry Andric 4448bcb0991SDimitry Andric static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 4458bcb0991SDimitry Andric unsigned wordBits = 8 * sizeof(WordType); 4468bcb0991SDimitry Andric U.pVal[loWord] &= ~(maskBits << loBit); 4478bcb0991SDimitry Andric U.pVal[loWord] |= subBits << loBit; 4488bcb0991SDimitry Andric 4498bcb0991SDimitry Andric U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); 4508bcb0991SDimitry Andric U.pVal[hiWord] |= subBits >> (wordBits - loBit); 4518bcb0991SDimitry Andric } 4528bcb0991SDimitry Andric 4530b57cec5SDimitry Andric APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { 4540b57cec5SDimitry Andric assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 4550b57cec5SDimitry Andric "Illegal bit extraction"); 4560b57cec5SDimitry Andric 4570b57cec5SDimitry Andric if (isSingleWord()) 4580b57cec5SDimitry Andric return APInt(numBits, U.VAL >> bitPosition); 4590b57cec5SDimitry Andric 4600b57cec5SDimitry Andric unsigned loBit = whichBit(bitPosition); 4610b57cec5SDimitry Andric unsigned loWord = whichWord(bitPosition); 4620b57cec5SDimitry Andric unsigned hiWord = whichWord(bitPosition + numBits - 1); 4630b57cec5SDimitry Andric 4640b57cec5SDimitry Andric // Single word result extracting bits from a single word source. 4650b57cec5SDimitry Andric if (loWord == hiWord) 4660b57cec5SDimitry Andric return APInt(numBits, U.pVal[loWord] >> loBit); 4670b57cec5SDimitry Andric 4680b57cec5SDimitry Andric // Extracting bits that start on a source word boundary can be done 4690b57cec5SDimitry Andric // as a fast memory copy. 4700b57cec5SDimitry Andric if (loBit == 0) 471bdd1243dSDimitry Andric return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); 4720b57cec5SDimitry Andric 4730b57cec5SDimitry Andric // General case - shift + copy source words directly into place. 4740b57cec5SDimitry Andric APInt Result(numBits, 0); 4750b57cec5SDimitry Andric unsigned NumSrcWords = getNumWords(); 4760b57cec5SDimitry Andric unsigned NumDstWords = Result.getNumWords(); 4770b57cec5SDimitry Andric 4780b57cec5SDimitry Andric uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; 4790b57cec5SDimitry Andric for (unsigned word = 0; word < NumDstWords; ++word) { 4800b57cec5SDimitry Andric uint64_t w0 = U.pVal[loWord + word]; 4810b57cec5SDimitry Andric uint64_t w1 = 4820b57cec5SDimitry Andric (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; 4830b57cec5SDimitry Andric DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); 4840b57cec5SDimitry Andric } 4850b57cec5SDimitry Andric 4860b57cec5SDimitry Andric return Result.clearUnusedBits(); 4870b57cec5SDimitry Andric } 4880b57cec5SDimitry Andric 4898bcb0991SDimitry Andric uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, 4908bcb0991SDimitry Andric unsigned bitPosition) const { 4918bcb0991SDimitry Andric assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && 4928bcb0991SDimitry Andric "Illegal bit extraction"); 4938bcb0991SDimitry Andric assert(numBits <= 64 && "Illegal bit extraction"); 4948bcb0991SDimitry Andric 4958bcb0991SDimitry Andric uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); 4968bcb0991SDimitry Andric if (isSingleWord()) 4978bcb0991SDimitry Andric return (U.VAL >> bitPosition) & maskBits; 4988bcb0991SDimitry Andric 4998bcb0991SDimitry Andric unsigned loBit = whichBit(bitPosition); 5008bcb0991SDimitry Andric unsigned loWord = whichWord(bitPosition); 5018bcb0991SDimitry Andric unsigned hiWord = whichWord(bitPosition + numBits - 1); 5028bcb0991SDimitry Andric if (loWord == hiWord) 5038bcb0991SDimitry Andric return (U.pVal[loWord] >> loBit) & maskBits; 5048bcb0991SDimitry Andric 5058bcb0991SDimitry Andric static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); 5068bcb0991SDimitry Andric unsigned wordBits = 8 * sizeof(WordType); 5078bcb0991SDimitry Andric uint64_t retBits = U.pVal[loWord] >> loBit; 5088bcb0991SDimitry Andric retBits |= U.pVal[hiWord] << (wordBits - loBit); 5098bcb0991SDimitry Andric retBits &= maskBits; 5108bcb0991SDimitry Andric return retBits; 5118bcb0991SDimitry Andric } 5128bcb0991SDimitry Andric 51381ad6265SDimitry Andric unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { 51481ad6265SDimitry Andric assert(!Str.empty() && "Invalid string length"); 51581ad6265SDimitry Andric size_t StrLen = Str.size(); 5160b57cec5SDimitry Andric 51781ad6265SDimitry Andric // Each computation below needs to know if it's negative. 51881ad6265SDimitry Andric unsigned IsNegative = false; 51981ad6265SDimitry Andric if (Str[0] == '-' || Str[0] == '+') { 52081ad6265SDimitry Andric IsNegative = Str[0] == '-'; 52181ad6265SDimitry Andric StrLen--; 52281ad6265SDimitry Andric assert(StrLen && "String is only a sign, needs a value."); 52381ad6265SDimitry Andric } 52481ad6265SDimitry Andric 52581ad6265SDimitry Andric // For radixes of power-of-two values, the bits required is accurately and 52681ad6265SDimitry Andric // easily computed. 52781ad6265SDimitry Andric if (Radix == 2) 52881ad6265SDimitry Andric return StrLen + IsNegative; 52981ad6265SDimitry Andric if (Radix == 8) 53081ad6265SDimitry Andric return StrLen * 3 + IsNegative; 53181ad6265SDimitry Andric if (Radix == 16) 53281ad6265SDimitry Andric return StrLen * 4 + IsNegative; 53381ad6265SDimitry Andric 53481ad6265SDimitry Andric // Compute a sufficient number of bits that is always large enough but might 53581ad6265SDimitry Andric // be too large. This avoids the assertion in the constructor. This 53681ad6265SDimitry Andric // calculation doesn't work appropriately for the numbers 0-9, so just use 4 53781ad6265SDimitry Andric // bits in that case. 53881ad6265SDimitry Andric if (Radix == 10) 53981ad6265SDimitry Andric return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; 54081ad6265SDimitry Andric 54181ad6265SDimitry Andric assert(Radix == 36); 54281ad6265SDimitry Andric return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; 54381ad6265SDimitry Andric } 54481ad6265SDimitry Andric 54581ad6265SDimitry Andric unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 54681ad6265SDimitry Andric // Compute a sufficient number of bits that is always large enough but might 54781ad6265SDimitry Andric // be too large. 54881ad6265SDimitry Andric unsigned sufficient = getSufficientBitsNeeded(str, radix); 54981ad6265SDimitry Andric 55081ad6265SDimitry Andric // For bases 2, 8, and 16, the sufficient number of bits is exact and we can 55181ad6265SDimitry Andric // return the value directly. For bases 10 and 36, we need to do extra work. 55281ad6265SDimitry Andric if (radix == 2 || radix == 8 || radix == 16) 55381ad6265SDimitry Andric return sufficient; 55481ad6265SDimitry Andric 55581ad6265SDimitry Andric // This is grossly inefficient but accurate. We could probably do something 55681ad6265SDimitry Andric // with a computation of roughly slen*64/20 and then adjust by the value of 55781ad6265SDimitry Andric // the first few digits. But, I'm not sure how accurate that could be. 5580b57cec5SDimitry Andric size_t slen = str.size(); 5590b57cec5SDimitry Andric 5600b57cec5SDimitry Andric // Each computation below needs to know if it's negative. 5610b57cec5SDimitry Andric StringRef::iterator p = str.begin(); 5620b57cec5SDimitry Andric unsigned isNegative = *p == '-'; 5630b57cec5SDimitry Andric if (*p == '-' || *p == '+') { 5640b57cec5SDimitry Andric p++; 5650b57cec5SDimitry Andric slen--; 5660b57cec5SDimitry Andric assert(slen && "String is only a sign, needs a value."); 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric 5690b57cec5SDimitry Andric 5700b57cec5SDimitry Andric // Convert to the actual binary value. 5710b57cec5SDimitry Andric APInt tmp(sufficient, StringRef(p, slen), radix); 5720b57cec5SDimitry Andric 5730b57cec5SDimitry Andric // Compute how many bits are required. If the log is infinite, assume we need 5740b57cec5SDimitry Andric // just bit. If the log is exact and value is negative, then the value is 5750b57cec5SDimitry Andric // MinSignedValue with (log + 1) bits. 5760b57cec5SDimitry Andric unsigned log = tmp.logBase2(); 5770b57cec5SDimitry Andric if (log == (unsigned)-1) { 5780b57cec5SDimitry Andric return isNegative + 1; 5790b57cec5SDimitry Andric } else if (isNegative && tmp.isPowerOf2()) { 5800b57cec5SDimitry Andric return isNegative + log; 5810b57cec5SDimitry Andric } else { 5820b57cec5SDimitry Andric return isNegative + log + 1; 5830b57cec5SDimitry Andric } 5840b57cec5SDimitry Andric } 5850b57cec5SDimitry Andric 5860b57cec5SDimitry Andric hash_code llvm::hash_value(const APInt &Arg) { 5870b57cec5SDimitry Andric if (Arg.isSingleWord()) 5885ffd83dbSDimitry Andric return hash_combine(Arg.BitWidth, Arg.U.VAL); 5890b57cec5SDimitry Andric 5905ffd83dbSDimitry Andric return hash_combine( 5915ffd83dbSDimitry Andric Arg.BitWidth, 5925ffd83dbSDimitry Andric hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); 5930b57cec5SDimitry Andric } 5940b57cec5SDimitry Andric 595349cc55cSDimitry Andric unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { 596fe6060f1SDimitry Andric return static_cast<unsigned>(hash_value(Key)); 597fe6060f1SDimitry Andric } 598fe6060f1SDimitry Andric 5990b57cec5SDimitry Andric bool APInt::isSplat(unsigned SplatSizeInBits) const { 6000b57cec5SDimitry Andric assert(getBitWidth() % SplatSizeInBits == 0 && 6010b57cec5SDimitry Andric "SplatSizeInBits must divide width!"); 6020b57cec5SDimitry Andric // We can check that all parts of an integer are equal by making use of a 6030b57cec5SDimitry Andric // little trick: rotate and check if it's still the same value. 6040b57cec5SDimitry Andric return *this == rotl(SplatSizeInBits); 6050b57cec5SDimitry Andric } 6060b57cec5SDimitry Andric 6070b57cec5SDimitry Andric /// This function returns the high "numBits" bits of this APInt. 6080b57cec5SDimitry Andric APInt APInt::getHiBits(unsigned numBits) const { 6090b57cec5SDimitry Andric return this->lshr(BitWidth - numBits); 6100b57cec5SDimitry Andric } 6110b57cec5SDimitry Andric 6120b57cec5SDimitry Andric /// This function returns the low "numBits" bits of this APInt. 6130b57cec5SDimitry Andric APInt APInt::getLoBits(unsigned numBits) const { 6140b57cec5SDimitry Andric APInt Result(getLowBitsSet(BitWidth, numBits)); 6150b57cec5SDimitry Andric Result &= *this; 6160b57cec5SDimitry Andric return Result; 6170b57cec5SDimitry Andric } 6180b57cec5SDimitry Andric 6190b57cec5SDimitry Andric /// Return a value containing V broadcasted over NewLen bits. 6200b57cec5SDimitry Andric APInt APInt::getSplat(unsigned NewLen, const APInt &V) { 6210b57cec5SDimitry Andric assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!"); 6220b57cec5SDimitry Andric 62381ad6265SDimitry Andric APInt Val = V.zext(NewLen); 6240b57cec5SDimitry Andric for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) 6250b57cec5SDimitry Andric Val |= Val << I; 6260b57cec5SDimitry Andric 6270b57cec5SDimitry Andric return Val; 6280b57cec5SDimitry Andric } 6290b57cec5SDimitry Andric 6300b57cec5SDimitry Andric unsigned APInt::countLeadingZerosSlowCase() const { 6310b57cec5SDimitry Andric unsigned Count = 0; 6320b57cec5SDimitry Andric for (int i = getNumWords()-1; i >= 0; --i) { 6330b57cec5SDimitry Andric uint64_t V = U.pVal[i]; 6340b57cec5SDimitry Andric if (V == 0) 6350b57cec5SDimitry Andric Count += APINT_BITS_PER_WORD; 6360b57cec5SDimitry Andric else { 63706c3fb27SDimitry Andric Count += llvm::countl_zero(V); 6380b57cec5SDimitry Andric break; 6390b57cec5SDimitry Andric } 6400b57cec5SDimitry Andric } 6410b57cec5SDimitry Andric // Adjust for unused bits in the most significant word (they are zero). 6420b57cec5SDimitry Andric unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 6430b57cec5SDimitry Andric Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 6440b57cec5SDimitry Andric return Count; 6450b57cec5SDimitry Andric } 6460b57cec5SDimitry Andric 6470b57cec5SDimitry Andric unsigned APInt::countLeadingOnesSlowCase() const { 6480b57cec5SDimitry Andric unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 6490b57cec5SDimitry Andric unsigned shift; 6500b57cec5SDimitry Andric if (!highWordBits) { 6510b57cec5SDimitry Andric highWordBits = APINT_BITS_PER_WORD; 6520b57cec5SDimitry Andric shift = 0; 6530b57cec5SDimitry Andric } else { 6540b57cec5SDimitry Andric shift = APINT_BITS_PER_WORD - highWordBits; 6550b57cec5SDimitry Andric } 6560b57cec5SDimitry Andric int i = getNumWords() - 1; 65706c3fb27SDimitry Andric unsigned Count = llvm::countl_one(U.pVal[i] << shift); 6580b57cec5SDimitry Andric if (Count == highWordBits) { 6590b57cec5SDimitry Andric for (i--; i >= 0; --i) { 6600b57cec5SDimitry Andric if (U.pVal[i] == WORDTYPE_MAX) 6610b57cec5SDimitry Andric Count += APINT_BITS_PER_WORD; 6620b57cec5SDimitry Andric else { 66306c3fb27SDimitry Andric Count += llvm::countl_one(U.pVal[i]); 6640b57cec5SDimitry Andric break; 6650b57cec5SDimitry Andric } 6660b57cec5SDimitry Andric } 6670b57cec5SDimitry Andric } 6680b57cec5SDimitry Andric return Count; 6690b57cec5SDimitry Andric } 6700b57cec5SDimitry Andric 6710b57cec5SDimitry Andric unsigned APInt::countTrailingZerosSlowCase() const { 6720b57cec5SDimitry Andric unsigned Count = 0; 6730b57cec5SDimitry Andric unsigned i = 0; 6740b57cec5SDimitry Andric for (; i < getNumWords() && U.pVal[i] == 0; ++i) 6750b57cec5SDimitry Andric Count += APINT_BITS_PER_WORD; 6760b57cec5SDimitry Andric if (i < getNumWords()) 67706c3fb27SDimitry Andric Count += llvm::countr_zero(U.pVal[i]); 6780b57cec5SDimitry Andric return std::min(Count, BitWidth); 6790b57cec5SDimitry Andric } 6800b57cec5SDimitry Andric 6810b57cec5SDimitry Andric unsigned APInt::countTrailingOnesSlowCase() const { 6820b57cec5SDimitry Andric unsigned Count = 0; 6830b57cec5SDimitry Andric unsigned i = 0; 6840b57cec5SDimitry Andric for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) 6850b57cec5SDimitry Andric Count += APINT_BITS_PER_WORD; 6860b57cec5SDimitry Andric if (i < getNumWords()) 68706c3fb27SDimitry Andric Count += llvm::countr_one(U.pVal[i]); 6880b57cec5SDimitry Andric assert(Count <= BitWidth); 6890b57cec5SDimitry Andric return Count; 6900b57cec5SDimitry Andric } 6910b57cec5SDimitry Andric 6920b57cec5SDimitry Andric unsigned APInt::countPopulationSlowCase() const { 6930b57cec5SDimitry Andric unsigned Count = 0; 6940b57cec5SDimitry Andric for (unsigned i = 0; i < getNumWords(); ++i) 695bdd1243dSDimitry Andric Count += llvm::popcount(U.pVal[i]); 6960b57cec5SDimitry Andric return Count; 6970b57cec5SDimitry Andric } 6980b57cec5SDimitry Andric 6990b57cec5SDimitry Andric bool APInt::intersectsSlowCase(const APInt &RHS) const { 7000b57cec5SDimitry Andric for (unsigned i = 0, e = getNumWords(); i != e; ++i) 7010b57cec5SDimitry Andric if ((U.pVal[i] & RHS.U.pVal[i]) != 0) 7020b57cec5SDimitry Andric return true; 7030b57cec5SDimitry Andric 7040b57cec5SDimitry Andric return false; 7050b57cec5SDimitry Andric } 7060b57cec5SDimitry Andric 7070b57cec5SDimitry Andric bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { 7080b57cec5SDimitry Andric for (unsigned i = 0, e = getNumWords(); i != e; ++i) 7090b57cec5SDimitry Andric if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) 7100b57cec5SDimitry Andric return false; 7110b57cec5SDimitry Andric 7120b57cec5SDimitry Andric return true; 7130b57cec5SDimitry Andric } 7140b57cec5SDimitry Andric 7150b57cec5SDimitry Andric APInt APInt::byteSwap() const { 7165ffd83dbSDimitry Andric assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!"); 7170b57cec5SDimitry Andric if (BitWidth == 16) 71806c3fb27SDimitry Andric return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL)); 7190b57cec5SDimitry Andric if (BitWidth == 32) 72006c3fb27SDimitry Andric return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL)); 7215ffd83dbSDimitry Andric if (BitWidth <= 64) { 72206c3fb27SDimitry Andric uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL); 7235ffd83dbSDimitry Andric Tmp1 >>= (64 - BitWidth); 7245ffd83dbSDimitry Andric return APInt(BitWidth, Tmp1); 7250b57cec5SDimitry Andric } 7260b57cec5SDimitry Andric 7270b57cec5SDimitry Andric APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 7280b57cec5SDimitry Andric for (unsigned I = 0, N = getNumWords(); I != N; ++I) 72906c3fb27SDimitry Andric Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]); 7300b57cec5SDimitry Andric if (Result.BitWidth != BitWidth) { 7310b57cec5SDimitry Andric Result.lshrInPlace(Result.BitWidth - BitWidth); 7320b57cec5SDimitry Andric Result.BitWidth = BitWidth; 7330b57cec5SDimitry Andric } 7340b57cec5SDimitry Andric return Result; 7350b57cec5SDimitry Andric } 7360b57cec5SDimitry Andric 7370b57cec5SDimitry Andric APInt APInt::reverseBits() const { 7380b57cec5SDimitry Andric switch (BitWidth) { 7390b57cec5SDimitry Andric case 64: 7400b57cec5SDimitry Andric return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); 7410b57cec5SDimitry Andric case 32: 7420b57cec5SDimitry Andric return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); 7430b57cec5SDimitry Andric case 16: 7440b57cec5SDimitry Andric return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); 7450b57cec5SDimitry Andric case 8: 7460b57cec5SDimitry Andric return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); 747349cc55cSDimitry Andric case 0: 748349cc55cSDimitry Andric return *this; 7490b57cec5SDimitry Andric default: 7500b57cec5SDimitry Andric break; 7510b57cec5SDimitry Andric } 7520b57cec5SDimitry Andric 7530b57cec5SDimitry Andric APInt Val(*this); 7540b57cec5SDimitry Andric APInt Reversed(BitWidth, 0); 7550b57cec5SDimitry Andric unsigned S = BitWidth; 7560b57cec5SDimitry Andric 7570b57cec5SDimitry Andric for (; Val != 0; Val.lshrInPlace(1)) { 7580b57cec5SDimitry Andric Reversed <<= 1; 7590b57cec5SDimitry Andric Reversed |= Val[0]; 7600b57cec5SDimitry Andric --S; 7610b57cec5SDimitry Andric } 7620b57cec5SDimitry Andric 7630b57cec5SDimitry Andric Reversed <<= S; 7640b57cec5SDimitry Andric return Reversed; 7650b57cec5SDimitry Andric } 7660b57cec5SDimitry Andric 7670b57cec5SDimitry Andric APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { 7680b57cec5SDimitry Andric // Fast-path a common case. 7690b57cec5SDimitry Andric if (A == B) return A; 7700b57cec5SDimitry Andric 7710b57cec5SDimitry Andric // Corner cases: if either operand is zero, the other is the gcd. 7720b57cec5SDimitry Andric if (!A) return B; 7730b57cec5SDimitry Andric if (!B) return A; 7740b57cec5SDimitry Andric 7750b57cec5SDimitry Andric // Count common powers of 2 and remove all other powers of 2. 7760b57cec5SDimitry Andric unsigned Pow2; 7770b57cec5SDimitry Andric { 77806c3fb27SDimitry Andric unsigned Pow2_A = A.countr_zero(); 77906c3fb27SDimitry Andric unsigned Pow2_B = B.countr_zero(); 7800b57cec5SDimitry Andric if (Pow2_A > Pow2_B) { 7810b57cec5SDimitry Andric A.lshrInPlace(Pow2_A - Pow2_B); 7820b57cec5SDimitry Andric Pow2 = Pow2_B; 7830b57cec5SDimitry Andric } else if (Pow2_B > Pow2_A) { 7840b57cec5SDimitry Andric B.lshrInPlace(Pow2_B - Pow2_A); 7850b57cec5SDimitry Andric Pow2 = Pow2_A; 7860b57cec5SDimitry Andric } else { 7870b57cec5SDimitry Andric Pow2 = Pow2_A; 7880b57cec5SDimitry Andric } 7890b57cec5SDimitry Andric } 7900b57cec5SDimitry Andric 7910b57cec5SDimitry Andric // Both operands are odd multiples of 2^Pow_2: 7920b57cec5SDimitry Andric // 7930b57cec5SDimitry Andric // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) 7940b57cec5SDimitry Andric // 7950b57cec5SDimitry Andric // This is a modified version of Stein's algorithm, taking advantage of 7960b57cec5SDimitry Andric // efficient countTrailingZeros(). 7970b57cec5SDimitry Andric while (A != B) { 7980b57cec5SDimitry Andric if (A.ugt(B)) { 7990b57cec5SDimitry Andric A -= B; 80006c3fb27SDimitry Andric A.lshrInPlace(A.countr_zero() - Pow2); 8010b57cec5SDimitry Andric } else { 8020b57cec5SDimitry Andric B -= A; 80306c3fb27SDimitry Andric B.lshrInPlace(B.countr_zero() - Pow2); 8040b57cec5SDimitry Andric } 8050b57cec5SDimitry Andric } 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric return A; 8080b57cec5SDimitry Andric } 8090b57cec5SDimitry Andric 8100b57cec5SDimitry Andric APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 8110b57cec5SDimitry Andric uint64_t I = bit_cast<uint64_t>(Double); 8120b57cec5SDimitry Andric 8130b57cec5SDimitry Andric // Get the sign bit from the highest order bit 8140b57cec5SDimitry Andric bool isNeg = I >> 63; 8150b57cec5SDimitry Andric 8160b57cec5SDimitry Andric // Get the 11-bit exponent and adjust for the 1023 bit bias 8170b57cec5SDimitry Andric int64_t exp = ((I >> 52) & 0x7ff) - 1023; 8180b57cec5SDimitry Andric 8190b57cec5SDimitry Andric // If the exponent is negative, the value is < 0 so just return 0. 8200b57cec5SDimitry Andric if (exp < 0) 8210b57cec5SDimitry Andric return APInt(width, 0u); 8220b57cec5SDimitry Andric 8230b57cec5SDimitry Andric // Extract the mantissa by clearing the top 12 bits (sign + exponent). 8240b57cec5SDimitry Andric uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; 8250b57cec5SDimitry Andric 8260b57cec5SDimitry Andric // If the exponent doesn't shift all bits out of the mantissa 8270b57cec5SDimitry Andric if (exp < 52) 8280b57cec5SDimitry Andric return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 8290b57cec5SDimitry Andric APInt(width, mantissa >> (52 - exp)); 8300b57cec5SDimitry Andric 8310b57cec5SDimitry Andric // If the client didn't provide enough bits for us to shift the mantissa into 8320b57cec5SDimitry Andric // then the result is undefined, just return 0 8330b57cec5SDimitry Andric if (width <= exp - 52) 8340b57cec5SDimitry Andric return APInt(width, 0); 8350b57cec5SDimitry Andric 8360b57cec5SDimitry Andric // Otherwise, we have to shift the mantissa bits up to the right location 8370b57cec5SDimitry Andric APInt Tmp(width, mantissa); 8380b57cec5SDimitry Andric Tmp <<= (unsigned)exp - 52; 8390b57cec5SDimitry Andric return isNeg ? -Tmp : Tmp; 8400b57cec5SDimitry Andric } 8410b57cec5SDimitry Andric 8420b57cec5SDimitry Andric /// This function converts this APInt to a double. 8430b57cec5SDimitry Andric /// The layout for double is as following (IEEE Standard 754): 8440b57cec5SDimitry Andric /// -------------------------------------- 8450b57cec5SDimitry Andric /// | Sign Exponent Fraction Bias | 8460b57cec5SDimitry Andric /// |-------------------------------------- | 8470b57cec5SDimitry Andric /// | 1[63] 11[62-52] 52[51-00] 1023 | 8480b57cec5SDimitry Andric /// -------------------------------------- 8490b57cec5SDimitry Andric double APInt::roundToDouble(bool isSigned) const { 8500b57cec5SDimitry Andric 8510b57cec5SDimitry Andric // Handle the simple case where the value is contained in one uint64_t. 8520b57cec5SDimitry Andric // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 8530b57cec5SDimitry Andric if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 8540b57cec5SDimitry Andric if (isSigned) { 8550b57cec5SDimitry Andric int64_t sext = SignExtend64(getWord(0), BitWidth); 8560b57cec5SDimitry Andric return double(sext); 8570b57cec5SDimitry Andric } else 8580b57cec5SDimitry Andric return double(getWord(0)); 8590b57cec5SDimitry Andric } 8600b57cec5SDimitry Andric 8610b57cec5SDimitry Andric // Determine if the value is negative. 8620b57cec5SDimitry Andric bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 8630b57cec5SDimitry Andric 8640b57cec5SDimitry Andric // Construct the absolute value if we're negative. 8650b57cec5SDimitry Andric APInt Tmp(isNeg ? -(*this) : (*this)); 8660b57cec5SDimitry Andric 8670b57cec5SDimitry Andric // Figure out how many bits we're using. 8680b57cec5SDimitry Andric unsigned n = Tmp.getActiveBits(); 8690b57cec5SDimitry Andric 8700b57cec5SDimitry Andric // The exponent (without bias normalization) is just the number of bits 8710b57cec5SDimitry Andric // we are using. Note that the sign bit is gone since we constructed the 8720b57cec5SDimitry Andric // absolute value. 8730b57cec5SDimitry Andric uint64_t exp = n; 8740b57cec5SDimitry Andric 8750b57cec5SDimitry Andric // Return infinity for exponent overflow 8760b57cec5SDimitry Andric if (exp > 1023) { 8770b57cec5SDimitry Andric if (!isSigned || !isNeg) 8780b57cec5SDimitry Andric return std::numeric_limits<double>::infinity(); 8790b57cec5SDimitry Andric else 8800b57cec5SDimitry Andric return -std::numeric_limits<double>::infinity(); 8810b57cec5SDimitry Andric } 8820b57cec5SDimitry Andric exp += 1023; // Increment for 1023 bias 8830b57cec5SDimitry Andric 8840b57cec5SDimitry Andric // Number of bits in mantissa is 52. To obtain the mantissa value, we must 8850b57cec5SDimitry Andric // extract the high 52 bits from the correct words in pVal. 8860b57cec5SDimitry Andric uint64_t mantissa; 8870b57cec5SDimitry Andric unsigned hiWord = whichWord(n-1); 8880b57cec5SDimitry Andric if (hiWord == 0) { 8890b57cec5SDimitry Andric mantissa = Tmp.U.pVal[0]; 8900b57cec5SDimitry Andric if (n > 52) 8910b57cec5SDimitry Andric mantissa >>= n - 52; // shift down, we want the top 52 bits. 8920b57cec5SDimitry Andric } else { 8930b57cec5SDimitry Andric assert(hiWord > 0 && "huh?"); 8940b57cec5SDimitry Andric uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 8950b57cec5SDimitry Andric uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 8960b57cec5SDimitry Andric mantissa = hibits | lobits; 8970b57cec5SDimitry Andric } 8980b57cec5SDimitry Andric 8990b57cec5SDimitry Andric // The leading bit of mantissa is implicit, so get rid of it. 9000b57cec5SDimitry Andric uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 9010b57cec5SDimitry Andric uint64_t I = sign | (exp << 52) | mantissa; 9020b57cec5SDimitry Andric return bit_cast<double>(I); 9030b57cec5SDimitry Andric } 9040b57cec5SDimitry Andric 9050b57cec5SDimitry Andric // Truncate to new width. 9060b57cec5SDimitry Andric APInt APInt::trunc(unsigned width) const { 90781ad6265SDimitry Andric assert(width <= BitWidth && "Invalid APInt Truncate request"); 9080b57cec5SDimitry Andric 9090b57cec5SDimitry Andric if (width <= APINT_BITS_PER_WORD) 9100b57cec5SDimitry Andric return APInt(width, getRawData()[0]); 9110b57cec5SDimitry Andric 91281ad6265SDimitry Andric if (width == BitWidth) 91381ad6265SDimitry Andric return *this; 91481ad6265SDimitry Andric 9150b57cec5SDimitry Andric APInt Result(getMemory(getNumWords(width)), width); 9160b57cec5SDimitry Andric 9170b57cec5SDimitry Andric // Copy full words. 9180b57cec5SDimitry Andric unsigned i; 9190b57cec5SDimitry Andric for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 9200b57cec5SDimitry Andric Result.U.pVal[i] = U.pVal[i]; 9210b57cec5SDimitry Andric 9220b57cec5SDimitry Andric // Truncate and copy any partial word. 9230b57cec5SDimitry Andric unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 9240b57cec5SDimitry Andric if (bits != 0) 9250b57cec5SDimitry Andric Result.U.pVal[i] = U.pVal[i] << bits >> bits; 9260b57cec5SDimitry Andric 9270b57cec5SDimitry Andric return Result; 9280b57cec5SDimitry Andric } 9290b57cec5SDimitry Andric 930480093f4SDimitry Andric // Truncate to new width with unsigned saturation. 931480093f4SDimitry Andric APInt APInt::truncUSat(unsigned width) const { 93281ad6265SDimitry Andric assert(width <= BitWidth && "Invalid APInt Truncate request"); 933480093f4SDimitry Andric 934480093f4SDimitry Andric // Can we just losslessly truncate it? 935480093f4SDimitry Andric if (isIntN(width)) 936480093f4SDimitry Andric return trunc(width); 937480093f4SDimitry Andric // If not, then just return the new limit. 938480093f4SDimitry Andric return APInt::getMaxValue(width); 939480093f4SDimitry Andric } 940480093f4SDimitry Andric 941480093f4SDimitry Andric // Truncate to new width with signed saturation. 942480093f4SDimitry Andric APInt APInt::truncSSat(unsigned width) const { 94381ad6265SDimitry Andric assert(width <= BitWidth && "Invalid APInt Truncate request"); 944480093f4SDimitry Andric 945480093f4SDimitry Andric // Can we just losslessly truncate it? 946480093f4SDimitry Andric if (isSignedIntN(width)) 947480093f4SDimitry Andric return trunc(width); 948480093f4SDimitry Andric // If not, then just return the new limits. 949480093f4SDimitry Andric return isNegative() ? APInt::getSignedMinValue(width) 950480093f4SDimitry Andric : APInt::getSignedMaxValue(width); 951480093f4SDimitry Andric } 952480093f4SDimitry Andric 9530b57cec5SDimitry Andric // Sign extend to a new width. 9540b57cec5SDimitry Andric APInt APInt::sext(unsigned Width) const { 95581ad6265SDimitry Andric assert(Width >= BitWidth && "Invalid APInt SignExtend request"); 9560b57cec5SDimitry Andric 9570b57cec5SDimitry Andric if (Width <= APINT_BITS_PER_WORD) 9580b57cec5SDimitry Andric return APInt(Width, SignExtend64(U.VAL, BitWidth)); 9590b57cec5SDimitry Andric 96081ad6265SDimitry Andric if (Width == BitWidth) 96181ad6265SDimitry Andric return *this; 96281ad6265SDimitry Andric 9630b57cec5SDimitry Andric APInt Result(getMemory(getNumWords(Width)), Width); 9640b57cec5SDimitry Andric 9650b57cec5SDimitry Andric // Copy words. 9660b57cec5SDimitry Andric std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 9670b57cec5SDimitry Andric 9680b57cec5SDimitry Andric // Sign extend the last word since there may be unused bits in the input. 9690b57cec5SDimitry Andric Result.U.pVal[getNumWords() - 1] = 9700b57cec5SDimitry Andric SignExtend64(Result.U.pVal[getNumWords() - 1], 9710b57cec5SDimitry Andric ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 9720b57cec5SDimitry Andric 9730b57cec5SDimitry Andric // Fill with sign bits. 9740b57cec5SDimitry Andric std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, 9750b57cec5SDimitry Andric (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 9760b57cec5SDimitry Andric Result.clearUnusedBits(); 9770b57cec5SDimitry Andric return Result; 9780b57cec5SDimitry Andric } 9790b57cec5SDimitry Andric 9800b57cec5SDimitry Andric // Zero extend to a new width. 9810b57cec5SDimitry Andric APInt APInt::zext(unsigned width) const { 98281ad6265SDimitry Andric assert(width >= BitWidth && "Invalid APInt ZeroExtend request"); 9830b57cec5SDimitry Andric 9840b57cec5SDimitry Andric if (width <= APINT_BITS_PER_WORD) 9850b57cec5SDimitry Andric return APInt(width, U.VAL); 9860b57cec5SDimitry Andric 98781ad6265SDimitry Andric if (width == BitWidth) 98881ad6265SDimitry Andric return *this; 98981ad6265SDimitry Andric 9900b57cec5SDimitry Andric APInt Result(getMemory(getNumWords(width)), width); 9910b57cec5SDimitry Andric 9920b57cec5SDimitry Andric // Copy words. 9930b57cec5SDimitry Andric std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); 9940b57cec5SDimitry Andric 9950b57cec5SDimitry Andric // Zero remaining words. 9960b57cec5SDimitry Andric std::memset(Result.U.pVal + getNumWords(), 0, 9970b57cec5SDimitry Andric (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); 9980b57cec5SDimitry Andric 9990b57cec5SDimitry Andric return Result; 10000b57cec5SDimitry Andric } 10010b57cec5SDimitry Andric 10020b57cec5SDimitry Andric APInt APInt::zextOrTrunc(unsigned width) const { 10030b57cec5SDimitry Andric if (BitWidth < width) 10040b57cec5SDimitry Andric return zext(width); 10050b57cec5SDimitry Andric if (BitWidth > width) 10060b57cec5SDimitry Andric return trunc(width); 10070b57cec5SDimitry Andric return *this; 10080b57cec5SDimitry Andric } 10090b57cec5SDimitry Andric 10100b57cec5SDimitry Andric APInt APInt::sextOrTrunc(unsigned width) const { 10110b57cec5SDimitry Andric if (BitWidth < width) 10120b57cec5SDimitry Andric return sext(width); 10130b57cec5SDimitry Andric if (BitWidth > width) 10140b57cec5SDimitry Andric return trunc(width); 10150b57cec5SDimitry Andric return *this; 10160b57cec5SDimitry Andric } 10170b57cec5SDimitry Andric 10180b57cec5SDimitry Andric /// Arithmetic right-shift this APInt by shiftAmt. 10190b57cec5SDimitry Andric /// Arithmetic right-shift function. 10200b57cec5SDimitry Andric void APInt::ashrInPlace(const APInt &shiftAmt) { 10210b57cec5SDimitry Andric ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 10220b57cec5SDimitry Andric } 10230b57cec5SDimitry Andric 10240b57cec5SDimitry Andric /// Arithmetic right-shift this APInt by shiftAmt. 10250b57cec5SDimitry Andric /// Arithmetic right-shift function. 10260b57cec5SDimitry Andric void APInt::ashrSlowCase(unsigned ShiftAmt) { 10270b57cec5SDimitry Andric // Don't bother performing a no-op shift. 10280b57cec5SDimitry Andric if (!ShiftAmt) 10290b57cec5SDimitry Andric return; 10300b57cec5SDimitry Andric 10310b57cec5SDimitry Andric // Save the original sign bit for later. 10320b57cec5SDimitry Andric bool Negative = isNegative(); 10330b57cec5SDimitry Andric 10340b57cec5SDimitry Andric // WordShift is the inter-part shift; BitShift is intra-part shift. 10350b57cec5SDimitry Andric unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; 10360b57cec5SDimitry Andric unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; 10370b57cec5SDimitry Andric 10380b57cec5SDimitry Andric unsigned WordsToMove = getNumWords() - WordShift; 10390b57cec5SDimitry Andric if (WordsToMove != 0) { 10400b57cec5SDimitry Andric // Sign extend the last word to fill in the unused bits. 10410b57cec5SDimitry Andric U.pVal[getNumWords() - 1] = SignExtend64( 10420b57cec5SDimitry Andric U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); 10430b57cec5SDimitry Andric 10440b57cec5SDimitry Andric // Fastpath for moving by whole words. 10450b57cec5SDimitry Andric if (BitShift == 0) { 10460b57cec5SDimitry Andric std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); 10470b57cec5SDimitry Andric } else { 10480b57cec5SDimitry Andric // Move the words containing significant bits. 10490b57cec5SDimitry Andric for (unsigned i = 0; i != WordsToMove - 1; ++i) 10500b57cec5SDimitry Andric U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | 10510b57cec5SDimitry Andric (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); 10520b57cec5SDimitry Andric 10530b57cec5SDimitry Andric // Handle the last word which has no high bits to copy. 10540b57cec5SDimitry Andric U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; 10550b57cec5SDimitry Andric // Sign extend one more time. 10560b57cec5SDimitry Andric U.pVal[WordsToMove - 1] = 10570b57cec5SDimitry Andric SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); 10580b57cec5SDimitry Andric } 10590b57cec5SDimitry Andric } 10600b57cec5SDimitry Andric 10610b57cec5SDimitry Andric // Fill in the remainder based on the original sign. 10620b57cec5SDimitry Andric std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, 10630b57cec5SDimitry Andric WordShift * APINT_WORD_SIZE); 10640b57cec5SDimitry Andric clearUnusedBits(); 10650b57cec5SDimitry Andric } 10660b57cec5SDimitry Andric 10670b57cec5SDimitry Andric /// Logical right-shift this APInt by shiftAmt. 10680b57cec5SDimitry Andric /// Logical right-shift function. 10690b57cec5SDimitry Andric void APInt::lshrInPlace(const APInt &shiftAmt) { 10700b57cec5SDimitry Andric lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); 10710b57cec5SDimitry Andric } 10720b57cec5SDimitry Andric 10730b57cec5SDimitry Andric /// Logical right-shift this APInt by shiftAmt. 10740b57cec5SDimitry Andric /// Logical right-shift function. 10750b57cec5SDimitry Andric void APInt::lshrSlowCase(unsigned ShiftAmt) { 10760b57cec5SDimitry Andric tcShiftRight(U.pVal, getNumWords(), ShiftAmt); 10770b57cec5SDimitry Andric } 10780b57cec5SDimitry Andric 10790b57cec5SDimitry Andric /// Left-shift this APInt by shiftAmt. 10800b57cec5SDimitry Andric /// Left-shift function. 10810b57cec5SDimitry Andric APInt &APInt::operator<<=(const APInt &shiftAmt) { 10820b57cec5SDimitry Andric // It's undefined behavior in C to shift by BitWidth or greater. 10830b57cec5SDimitry Andric *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); 10840b57cec5SDimitry Andric return *this; 10850b57cec5SDimitry Andric } 10860b57cec5SDimitry Andric 10870b57cec5SDimitry Andric void APInt::shlSlowCase(unsigned ShiftAmt) { 10880b57cec5SDimitry Andric tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); 10890b57cec5SDimitry Andric clearUnusedBits(); 10900b57cec5SDimitry Andric } 10910b57cec5SDimitry Andric 10920b57cec5SDimitry Andric // Calculate the rotate amount modulo the bit width. 10930b57cec5SDimitry Andric static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { 1094349cc55cSDimitry Andric if (LLVM_UNLIKELY(BitWidth == 0)) 1095349cc55cSDimitry Andric return 0; 10960b57cec5SDimitry Andric unsigned rotBitWidth = rotateAmt.getBitWidth(); 10970b57cec5SDimitry Andric APInt rot = rotateAmt; 10980b57cec5SDimitry Andric if (rotBitWidth < BitWidth) { 10990b57cec5SDimitry Andric // Extend the rotate APInt, so that the urem doesn't divide by 0. 11000b57cec5SDimitry Andric // e.g. APInt(1, 32) would give APInt(1, 0). 11010b57cec5SDimitry Andric rot = rotateAmt.zext(BitWidth); 11020b57cec5SDimitry Andric } 11030b57cec5SDimitry Andric rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); 11040b57cec5SDimitry Andric return rot.getLimitedValue(BitWidth); 11050b57cec5SDimitry Andric } 11060b57cec5SDimitry Andric 11070b57cec5SDimitry Andric APInt APInt::rotl(const APInt &rotateAmt) const { 11080b57cec5SDimitry Andric return rotl(rotateModulo(BitWidth, rotateAmt)); 11090b57cec5SDimitry Andric } 11100b57cec5SDimitry Andric 11110b57cec5SDimitry Andric APInt APInt::rotl(unsigned rotateAmt) const { 1112349cc55cSDimitry Andric if (LLVM_UNLIKELY(BitWidth == 0)) 1113349cc55cSDimitry Andric return *this; 11140b57cec5SDimitry Andric rotateAmt %= BitWidth; 11150b57cec5SDimitry Andric if (rotateAmt == 0) 11160b57cec5SDimitry Andric return *this; 11170b57cec5SDimitry Andric return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 11180b57cec5SDimitry Andric } 11190b57cec5SDimitry Andric 11200b57cec5SDimitry Andric APInt APInt::rotr(const APInt &rotateAmt) const { 11210b57cec5SDimitry Andric return rotr(rotateModulo(BitWidth, rotateAmt)); 11220b57cec5SDimitry Andric } 11230b57cec5SDimitry Andric 11240b57cec5SDimitry Andric APInt APInt::rotr(unsigned rotateAmt) const { 1125349cc55cSDimitry Andric if (BitWidth == 0) 1126349cc55cSDimitry Andric return *this; 11270b57cec5SDimitry Andric rotateAmt %= BitWidth; 11280b57cec5SDimitry Andric if (rotateAmt == 0) 11290b57cec5SDimitry Andric return *this; 11300b57cec5SDimitry Andric return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 11310b57cec5SDimitry Andric } 11320b57cec5SDimitry Andric 1133349cc55cSDimitry Andric /// \returns the nearest log base 2 of this APInt. Ties round up. 1134349cc55cSDimitry Andric /// 1135349cc55cSDimitry Andric /// NOTE: When we have a BitWidth of 1, we define: 1136349cc55cSDimitry Andric /// 1137349cc55cSDimitry Andric /// log2(0) = UINT32_MAX 1138349cc55cSDimitry Andric /// log2(1) = 0 1139349cc55cSDimitry Andric /// 1140349cc55cSDimitry Andric /// to get around any mathematical concerns resulting from 1141349cc55cSDimitry Andric /// referencing 2 in a space where 2 does no exist. 1142349cc55cSDimitry Andric unsigned APInt::nearestLogBase2() const { 1143349cc55cSDimitry Andric // Special case when we have a bitwidth of 1. If VAL is 1, then we 1144349cc55cSDimitry Andric // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1145349cc55cSDimitry Andric // UINT32_MAX. 1146349cc55cSDimitry Andric if (BitWidth == 1) 1147349cc55cSDimitry Andric return U.VAL - 1; 1148349cc55cSDimitry Andric 1149349cc55cSDimitry Andric // Handle the zero case. 1150349cc55cSDimitry Andric if (isZero()) 1151349cc55cSDimitry Andric return UINT32_MAX; 1152349cc55cSDimitry Andric 1153349cc55cSDimitry Andric // The non-zero case is handled by computing: 1154349cc55cSDimitry Andric // 1155349cc55cSDimitry Andric // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1156349cc55cSDimitry Andric // 1157349cc55cSDimitry Andric // where x[i] is referring to the value of the ith bit of x. 1158349cc55cSDimitry Andric unsigned lg = logBase2(); 1159349cc55cSDimitry Andric return lg + unsigned((*this)[lg - 1]); 1160349cc55cSDimitry Andric } 1161349cc55cSDimitry Andric 11620b57cec5SDimitry Andric // Square Root - this method computes and returns the square root of "this". 11630b57cec5SDimitry Andric // Three mechanisms are used for computation. For small values (<= 5 bits), 11640b57cec5SDimitry Andric // a table lookup is done. This gets some performance for common cases. For 11650b57cec5SDimitry Andric // values using less than 52 bits, the value is converted to double and then 11660b57cec5SDimitry Andric // the libc sqrt function is called. The result is rounded and then converted 11670b57cec5SDimitry Andric // back to a uint64_t which is then used to construct the result. Finally, 11680b57cec5SDimitry Andric // the Babylonian method for computing square roots is used. 11690b57cec5SDimitry Andric APInt APInt::sqrt() const { 11700b57cec5SDimitry Andric 11710b57cec5SDimitry Andric // Determine the magnitude of the value. 11720b57cec5SDimitry Andric unsigned magnitude = getActiveBits(); 11730b57cec5SDimitry Andric 11740b57cec5SDimitry Andric // Use a fast table for some small values. This also gets rid of some 11750b57cec5SDimitry Andric // rounding errors in libc sqrt for small values. 11760b57cec5SDimitry Andric if (magnitude <= 5) { 11770b57cec5SDimitry Andric static const uint8_t results[32] = { 11780b57cec5SDimitry Andric /* 0 */ 0, 11790b57cec5SDimitry Andric /* 1- 2 */ 1, 1, 11800b57cec5SDimitry Andric /* 3- 6 */ 2, 2, 2, 2, 11810b57cec5SDimitry Andric /* 7-12 */ 3, 3, 3, 3, 3, 3, 11820b57cec5SDimitry Andric /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 11830b57cec5SDimitry Andric /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 11840b57cec5SDimitry Andric /* 31 */ 6 11850b57cec5SDimitry Andric }; 11860b57cec5SDimitry Andric return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); 11870b57cec5SDimitry Andric } 11880b57cec5SDimitry Andric 11890b57cec5SDimitry Andric // If the magnitude of the value fits in less than 52 bits (the precision of 11900b57cec5SDimitry Andric // an IEEE double precision floating point value), then we can use the 11910b57cec5SDimitry Andric // libc sqrt function which will probably use a hardware sqrt computation. 11920b57cec5SDimitry Andric // This should be faster than the algorithm below. 11930b57cec5SDimitry Andric if (magnitude < 52) { 11940b57cec5SDimitry Andric return APInt(BitWidth, 11950b57cec5SDimitry Andric uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL 11960b57cec5SDimitry Andric : U.pVal[0]))))); 11970b57cec5SDimitry Andric } 11980b57cec5SDimitry Andric 11990b57cec5SDimitry Andric // Okay, all the short cuts are exhausted. We must compute it. The following 12000b57cec5SDimitry Andric // is a classical Babylonian method for computing the square root. This code 12010b57cec5SDimitry Andric // was adapted to APInt from a wikipedia article on such computations. 12020b57cec5SDimitry Andric // See http://www.wikipedia.org/ and go to the page named 12030b57cec5SDimitry Andric // Calculate_an_integer_square_root. 12040b57cec5SDimitry Andric unsigned nbits = BitWidth, i = 4; 12050b57cec5SDimitry Andric APInt testy(BitWidth, 16); 12060b57cec5SDimitry Andric APInt x_old(BitWidth, 1); 12070b57cec5SDimitry Andric APInt x_new(BitWidth, 0); 12080b57cec5SDimitry Andric APInt two(BitWidth, 2); 12090b57cec5SDimitry Andric 12100b57cec5SDimitry Andric // Select a good starting value using binary logarithms. 12110b57cec5SDimitry Andric for (;; i += 2, testy = testy.shl(2)) 12120b57cec5SDimitry Andric if (i >= nbits || this->ule(testy)) { 12130b57cec5SDimitry Andric x_old = x_old.shl(i / 2); 12140b57cec5SDimitry Andric break; 12150b57cec5SDimitry Andric } 12160b57cec5SDimitry Andric 12170b57cec5SDimitry Andric // Use the Babylonian method to arrive at the integer square root: 12180b57cec5SDimitry Andric for (;;) { 12190b57cec5SDimitry Andric x_new = (this->udiv(x_old) + x_old).udiv(two); 12200b57cec5SDimitry Andric if (x_old.ule(x_new)) 12210b57cec5SDimitry Andric break; 12220b57cec5SDimitry Andric x_old = x_new; 12230b57cec5SDimitry Andric } 12240b57cec5SDimitry Andric 12250b57cec5SDimitry Andric // Make sure we return the closest approximation 12260b57cec5SDimitry Andric // NOTE: The rounding calculation below is correct. It will produce an 12270b57cec5SDimitry Andric // off-by-one discrepancy with results from pari/gp. That discrepancy has been 12280b57cec5SDimitry Andric // determined to be a rounding issue with pari/gp as it begins to use a 12290b57cec5SDimitry Andric // floating point representation after 192 bits. There are no discrepancies 12300b57cec5SDimitry Andric // between this algorithm and pari/gp for bit widths < 192 bits. 12310b57cec5SDimitry Andric APInt square(x_old * x_old); 12320b57cec5SDimitry Andric APInt nextSquare((x_old + 1) * (x_old +1)); 12330b57cec5SDimitry Andric if (this->ult(square)) 12340b57cec5SDimitry Andric return x_old; 12350b57cec5SDimitry Andric assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 12360b57cec5SDimitry Andric APInt midpoint((nextSquare - square).udiv(two)); 12370b57cec5SDimitry Andric APInt offset(*this - square); 12380b57cec5SDimitry Andric if (offset.ult(midpoint)) 12390b57cec5SDimitry Andric return x_old; 12400b57cec5SDimitry Andric return x_old + 1; 12410b57cec5SDimitry Andric } 12420b57cec5SDimitry Andric 1243*0fca6ea1SDimitry Andric /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth. 1244*0fca6ea1SDimitry Andric APInt APInt::multiplicativeInverse() const { 1245*0fca6ea1SDimitry Andric assert((*this)[0] && 1246*0fca6ea1SDimitry Andric "multiplicative inverse is only defined for odd numbers!"); 12470b57cec5SDimitry Andric 1248*0fca6ea1SDimitry Andric // Use Newton's method. 1249*0fca6ea1SDimitry Andric APInt Factor = *this; 1250*0fca6ea1SDimitry Andric APInt T; 1251*0fca6ea1SDimitry Andric while (!(T = *this * Factor).isOne()) 1252*0fca6ea1SDimitry Andric Factor *= 2 - std::move(T); 1253*0fca6ea1SDimitry Andric return Factor; 12540b57cec5SDimitry Andric } 12550b57cec5SDimitry Andric 12560b57cec5SDimitry Andric /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 12570b57cec5SDimitry Andric /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 12580b57cec5SDimitry Andric /// variables here have the same names as in the algorithm. Comments explain 12590b57cec5SDimitry Andric /// the algorithm and any deviation from it. 12600b57cec5SDimitry Andric static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, 12610b57cec5SDimitry Andric unsigned m, unsigned n) { 12620b57cec5SDimitry Andric assert(u && "Must provide dividend"); 12630b57cec5SDimitry Andric assert(v && "Must provide divisor"); 12640b57cec5SDimitry Andric assert(q && "Must provide quotient"); 12650b57cec5SDimitry Andric assert(u != v && u != q && v != q && "Must use different memory"); 12660b57cec5SDimitry Andric assert(n>1 && "n must be > 1"); 12670b57cec5SDimitry Andric 12680b57cec5SDimitry Andric // b denotes the base of the number system. In our case b is 2^32. 12690b57cec5SDimitry Andric const uint64_t b = uint64_t(1) << 32; 12700b57cec5SDimitry Andric 12710b57cec5SDimitry Andric // The DEBUG macros here tend to be spam in the debug output if you're not 12720b57cec5SDimitry Andric // debugging this code. Disable them unless KNUTH_DEBUG is defined. 12730b57cec5SDimitry Andric #ifdef KNUTH_DEBUG 12740b57cec5SDimitry Andric #define DEBUG_KNUTH(X) LLVM_DEBUG(X) 12750b57cec5SDimitry Andric #else 12760b57cec5SDimitry Andric #define DEBUG_KNUTH(X) do {} while(false) 12770b57cec5SDimitry Andric #endif 12780b57cec5SDimitry Andric 12790b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 12800b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: original:"); 12810b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 12820b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << " by"); 12830b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 12840b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 12850b57cec5SDimitry Andric // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 12860b57cec5SDimitry Andric // u and v by d. Note that we have taken Knuth's advice here to use a power 12870b57cec5SDimitry Andric // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 12880b57cec5SDimitry Andric // 2 allows us to shift instead of multiply and it is easy to determine the 12890b57cec5SDimitry Andric // shift amount from the leading zeros. We are basically normalizing the u 12900b57cec5SDimitry Andric // and v so that its high bits are shifted to the top of v's range without 12910b57cec5SDimitry Andric // overflow. Note that this can require an extra word in u so that u must 12920b57cec5SDimitry Andric // be of length m+n+1. 129306c3fb27SDimitry Andric unsigned shift = llvm::countl_zero(v[n - 1]); 12940b57cec5SDimitry Andric uint32_t v_carry = 0; 12950b57cec5SDimitry Andric uint32_t u_carry = 0; 12960b57cec5SDimitry Andric if (shift) { 12970b57cec5SDimitry Andric for (unsigned i = 0; i < m+n; ++i) { 12980b57cec5SDimitry Andric uint32_t u_tmp = u[i] >> (32 - shift); 12990b57cec5SDimitry Andric u[i] = (u[i] << shift) | u_carry; 13000b57cec5SDimitry Andric u_carry = u_tmp; 13010b57cec5SDimitry Andric } 13020b57cec5SDimitry Andric for (unsigned i = 0; i < n; ++i) { 13030b57cec5SDimitry Andric uint32_t v_tmp = v[i] >> (32 - shift); 13040b57cec5SDimitry Andric v[i] = (v[i] << shift) | v_carry; 13050b57cec5SDimitry Andric v_carry = v_tmp; 13060b57cec5SDimitry Andric } 13070b57cec5SDimitry Andric } 13080b57cec5SDimitry Andric u[m+n] = u_carry; 13090b57cec5SDimitry Andric 13100b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:"); 13110b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 13120b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << " by"); 13130b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]); 13140b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 13150b57cec5SDimitry Andric 13160b57cec5SDimitry Andric // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 13170b57cec5SDimitry Andric int j = m; 13180b57cec5SDimitry Andric do { 13190b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 13200b57cec5SDimitry Andric // D3. [Calculate q'.]. 13210b57cec5SDimitry Andric // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 13220b57cec5SDimitry Andric // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 13230b57cec5SDimitry Andric // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 13240b57cec5SDimitry Andric // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test 13250b57cec5SDimitry Andric // on v[n-2] determines at high speed most of the cases in which the trial 13260b57cec5SDimitry Andric // value qp is one too large, and it eliminates all cases where qp is two 13270b57cec5SDimitry Andric // too large. 13280b57cec5SDimitry Andric uint64_t dividend = Make_64(u[j+n], u[j+n-1]); 13290b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 13300b57cec5SDimitry Andric uint64_t qp = dividend / v[n-1]; 13310b57cec5SDimitry Andric uint64_t rp = dividend % v[n-1]; 13320b57cec5SDimitry Andric if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 13330b57cec5SDimitry Andric qp--; 13340b57cec5SDimitry Andric rp += v[n-1]; 13350b57cec5SDimitry Andric if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 13360b57cec5SDimitry Andric qp--; 13370b57cec5SDimitry Andric } 13380b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 13390b57cec5SDimitry Andric 13400b57cec5SDimitry Andric // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 13410b57cec5SDimitry Andric // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 13420b57cec5SDimitry Andric // consists of a simple multiplication by a one-place number, combined with 13430b57cec5SDimitry Andric // a subtraction. 13440b57cec5SDimitry Andric // The digits (u[j+n]...u[j]) should be kept positive; if the result of 13450b57cec5SDimitry Andric // this step is actually negative, (u[j+n]...u[j]) should be left as the 13460b57cec5SDimitry Andric // true value plus b**(n+1), namely as the b's complement of 13470b57cec5SDimitry Andric // the true value, and a "borrow" to the left should be remembered. 13480b57cec5SDimitry Andric int64_t borrow = 0; 13490b57cec5SDimitry Andric for (unsigned i = 0; i < n; ++i) { 13500b57cec5SDimitry Andric uint64_t p = uint64_t(qp) * uint64_t(v[i]); 13510b57cec5SDimitry Andric int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); 13520b57cec5SDimitry Andric u[j+i] = Lo_32(subres); 13530b57cec5SDimitry Andric borrow = Hi_32(p) - Hi_32(subres); 13540b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i] 13550b57cec5SDimitry Andric << ", borrow = " << borrow << '\n'); 13560b57cec5SDimitry Andric } 13570b57cec5SDimitry Andric bool isNeg = u[j+n] < borrow; 13580b57cec5SDimitry Andric u[j+n] -= Lo_32(borrow); 13590b57cec5SDimitry Andric 13600b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:"); 13610b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 13620b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 13630b57cec5SDimitry Andric 13640b57cec5SDimitry Andric // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 13650b57cec5SDimitry Andric // negative, go to step D6; otherwise go on to step D7. 13660b57cec5SDimitry Andric q[j] = Lo_32(qp); 13670b57cec5SDimitry Andric if (isNeg) { 13680b57cec5SDimitry Andric // D6. [Add back]. The probability that this step is necessary is very 13690b57cec5SDimitry Andric // small, on the order of only 2/b. Make sure that test data accounts for 13700b57cec5SDimitry Andric // this possibility. Decrease q[j] by 1 13710b57cec5SDimitry Andric q[j]--; 13720b57cec5SDimitry Andric // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 13730b57cec5SDimitry Andric // A carry will occur to the left of u[j+n], and it should be ignored 13740b57cec5SDimitry Andric // since it cancels with the borrow that occurred in D4. 13750b57cec5SDimitry Andric bool carry = false; 13760b57cec5SDimitry Andric for (unsigned i = 0; i < n; i++) { 13770b57cec5SDimitry Andric uint32_t limit = std::min(u[j+i],v[i]); 13780b57cec5SDimitry Andric u[j+i] += v[i] + carry; 13790b57cec5SDimitry Andric carry = u[j+i] < limit || (carry && u[j+i] == limit); 13800b57cec5SDimitry Andric } 13810b57cec5SDimitry Andric u[j+n] += carry; 13820b57cec5SDimitry Andric } 13830b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:"); 13840b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]); 13850b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 13860b57cec5SDimitry Andric 13870b57cec5SDimitry Andric // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 13880b57cec5SDimitry Andric } while (--j >= 0); 13890b57cec5SDimitry Andric 13900b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:"); 13910b57cec5SDimitry Andric DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]); 13920b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 13930b57cec5SDimitry Andric 13940b57cec5SDimitry Andric // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 13950b57cec5SDimitry Andric // remainder may be obtained by dividing u[...] by d. If r is non-null we 13960b57cec5SDimitry Andric // compute the remainder (urem uses this). 13970b57cec5SDimitry Andric if (r) { 13980b57cec5SDimitry Andric // The value d is expressed by the "shift" value above since we avoided 13990b57cec5SDimitry Andric // multiplication by d by using a shift left. So, all we have to do is 14000b57cec5SDimitry Andric // shift right here. 14010b57cec5SDimitry Andric if (shift) { 14020b57cec5SDimitry Andric uint32_t carry = 0; 14030b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:"); 14040b57cec5SDimitry Andric for (int i = n-1; i >= 0; i--) { 14050b57cec5SDimitry Andric r[i] = (u[i] >> shift) | carry; 14060b57cec5SDimitry Andric carry = u[i] << (32 - shift); 14070b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << " " << r[i]); 14080b57cec5SDimitry Andric } 14090b57cec5SDimitry Andric } else { 14100b57cec5SDimitry Andric for (int i = n-1; i >= 0; i--) { 14110b57cec5SDimitry Andric r[i] = u[i]; 14120b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << " " << r[i]); 14130b57cec5SDimitry Andric } 14140b57cec5SDimitry Andric } 14150b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 14160b57cec5SDimitry Andric } 14170b57cec5SDimitry Andric DEBUG_KNUTH(dbgs() << '\n'); 14180b57cec5SDimitry Andric } 14190b57cec5SDimitry Andric 14200b57cec5SDimitry Andric void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, 14210b57cec5SDimitry Andric unsigned rhsWords, WordType *Quotient, WordType *Remainder) { 14220b57cec5SDimitry Andric assert(lhsWords >= rhsWords && "Fractional result"); 14230b57cec5SDimitry Andric 14240b57cec5SDimitry Andric // First, compose the values into an array of 32-bit words instead of 14250b57cec5SDimitry Andric // 64-bit words. This is a necessity of both the "short division" algorithm 14260b57cec5SDimitry Andric // and the Knuth "classical algorithm" which requires there to be native 14270b57cec5SDimitry Andric // operations for +, -, and * on an m bit value with an m*2 bit result. We 14280b57cec5SDimitry Andric // can't use 64-bit operands here because we don't have native results of 14290b57cec5SDimitry Andric // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 14300b57cec5SDimitry Andric // work on large-endian machines. 14310b57cec5SDimitry Andric unsigned n = rhsWords * 2; 14320b57cec5SDimitry Andric unsigned m = (lhsWords * 2) - n; 14330b57cec5SDimitry Andric 14340b57cec5SDimitry Andric // Allocate space for the temporary values we need either on the stack, if 14350b57cec5SDimitry Andric // it will fit, or on the heap if it won't. 14360b57cec5SDimitry Andric uint32_t SPACE[128]; 14370b57cec5SDimitry Andric uint32_t *U = nullptr; 14380b57cec5SDimitry Andric uint32_t *V = nullptr; 14390b57cec5SDimitry Andric uint32_t *Q = nullptr; 14400b57cec5SDimitry Andric uint32_t *R = nullptr; 14410b57cec5SDimitry Andric if ((Remainder?4:3)*n+2*m+1 <= 128) { 14420b57cec5SDimitry Andric U = &SPACE[0]; 14430b57cec5SDimitry Andric V = &SPACE[m+n+1]; 14440b57cec5SDimitry Andric Q = &SPACE[(m+n+1) + n]; 14450b57cec5SDimitry Andric if (Remainder) 14460b57cec5SDimitry Andric R = &SPACE[(m+n+1) + n + (m+n)]; 14470b57cec5SDimitry Andric } else { 14480b57cec5SDimitry Andric U = new uint32_t[m + n + 1]; 14490b57cec5SDimitry Andric V = new uint32_t[n]; 14500b57cec5SDimitry Andric Q = new uint32_t[m+n]; 14510b57cec5SDimitry Andric if (Remainder) 14520b57cec5SDimitry Andric R = new uint32_t[n]; 14530b57cec5SDimitry Andric } 14540b57cec5SDimitry Andric 14550b57cec5SDimitry Andric // Initialize the dividend 14560b57cec5SDimitry Andric memset(U, 0, (m+n+1)*sizeof(uint32_t)); 14570b57cec5SDimitry Andric for (unsigned i = 0; i < lhsWords; ++i) { 14580b57cec5SDimitry Andric uint64_t tmp = LHS[i]; 14590b57cec5SDimitry Andric U[i * 2] = Lo_32(tmp); 14600b57cec5SDimitry Andric U[i * 2 + 1] = Hi_32(tmp); 14610b57cec5SDimitry Andric } 14620b57cec5SDimitry Andric U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 14630b57cec5SDimitry Andric 14640b57cec5SDimitry Andric // Initialize the divisor 14650b57cec5SDimitry Andric memset(V, 0, (n)*sizeof(uint32_t)); 14660b57cec5SDimitry Andric for (unsigned i = 0; i < rhsWords; ++i) { 14670b57cec5SDimitry Andric uint64_t tmp = RHS[i]; 14680b57cec5SDimitry Andric V[i * 2] = Lo_32(tmp); 14690b57cec5SDimitry Andric V[i * 2 + 1] = Hi_32(tmp); 14700b57cec5SDimitry Andric } 14710b57cec5SDimitry Andric 14720b57cec5SDimitry Andric // initialize the quotient and remainder 14730b57cec5SDimitry Andric memset(Q, 0, (m+n) * sizeof(uint32_t)); 14740b57cec5SDimitry Andric if (Remainder) 14750b57cec5SDimitry Andric memset(R, 0, n * sizeof(uint32_t)); 14760b57cec5SDimitry Andric 14770b57cec5SDimitry Andric // Now, adjust m and n for the Knuth division. n is the number of words in 14780b57cec5SDimitry Andric // the divisor. m is the number of words by which the dividend exceeds the 14790b57cec5SDimitry Andric // divisor (i.e. m+n is the length of the dividend). These sizes must not 14800b57cec5SDimitry Andric // contain any zero words or the Knuth algorithm fails. 14810b57cec5SDimitry Andric for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 14820b57cec5SDimitry Andric n--; 14830b57cec5SDimitry Andric m++; 14840b57cec5SDimitry Andric } 14850b57cec5SDimitry Andric for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 14860b57cec5SDimitry Andric m--; 14870b57cec5SDimitry Andric 14880b57cec5SDimitry Andric // If we're left with only a single word for the divisor, Knuth doesn't work 14890b57cec5SDimitry Andric // so we implement the short division algorithm here. This is much simpler 14900b57cec5SDimitry Andric // and faster because we are certain that we can divide a 64-bit quantity 14910b57cec5SDimitry Andric // by a 32-bit quantity at hardware speed and short division is simply a 14920b57cec5SDimitry Andric // series of such operations. This is just like doing short division but we 14930b57cec5SDimitry Andric // are using base 2^32 instead of base 10. 14940b57cec5SDimitry Andric assert(n != 0 && "Divide by zero?"); 14950b57cec5SDimitry Andric if (n == 1) { 14960b57cec5SDimitry Andric uint32_t divisor = V[0]; 14970b57cec5SDimitry Andric uint32_t remainder = 0; 14980b57cec5SDimitry Andric for (int i = m; i >= 0; i--) { 14990b57cec5SDimitry Andric uint64_t partial_dividend = Make_64(remainder, U[i]); 15000b57cec5SDimitry Andric if (partial_dividend == 0) { 15010b57cec5SDimitry Andric Q[i] = 0; 15020b57cec5SDimitry Andric remainder = 0; 15030b57cec5SDimitry Andric } else if (partial_dividend < divisor) { 15040b57cec5SDimitry Andric Q[i] = 0; 15050b57cec5SDimitry Andric remainder = Lo_32(partial_dividend); 15060b57cec5SDimitry Andric } else if (partial_dividend == divisor) { 15070b57cec5SDimitry Andric Q[i] = 1; 15080b57cec5SDimitry Andric remainder = 0; 15090b57cec5SDimitry Andric } else { 15100b57cec5SDimitry Andric Q[i] = Lo_32(partial_dividend / divisor); 15110b57cec5SDimitry Andric remainder = Lo_32(partial_dividend - (Q[i] * divisor)); 15120b57cec5SDimitry Andric } 15130b57cec5SDimitry Andric } 15140b57cec5SDimitry Andric if (R) 15150b57cec5SDimitry Andric R[0] = remainder; 15160b57cec5SDimitry Andric } else { 15170b57cec5SDimitry Andric // Now we're ready to invoke the Knuth classical divide algorithm. In this 15180b57cec5SDimitry Andric // case n > 1. 15190b57cec5SDimitry Andric KnuthDiv(U, V, Q, R, m, n); 15200b57cec5SDimitry Andric } 15210b57cec5SDimitry Andric 15220b57cec5SDimitry Andric // If the caller wants the quotient 15230b57cec5SDimitry Andric if (Quotient) { 15240b57cec5SDimitry Andric for (unsigned i = 0; i < lhsWords; ++i) 15250b57cec5SDimitry Andric Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); 15260b57cec5SDimitry Andric } 15270b57cec5SDimitry Andric 15280b57cec5SDimitry Andric // If the caller wants the remainder 15290b57cec5SDimitry Andric if (Remainder) { 15300b57cec5SDimitry Andric for (unsigned i = 0; i < rhsWords; ++i) 15310b57cec5SDimitry Andric Remainder[i] = Make_64(R[i*2+1], R[i*2]); 15320b57cec5SDimitry Andric } 15330b57cec5SDimitry Andric 15340b57cec5SDimitry Andric // Clean up the memory we allocated. 15350b57cec5SDimitry Andric if (U != &SPACE[0]) { 15360b57cec5SDimitry Andric delete [] U; 15370b57cec5SDimitry Andric delete [] V; 15380b57cec5SDimitry Andric delete [] Q; 15390b57cec5SDimitry Andric delete [] R; 15400b57cec5SDimitry Andric } 15410b57cec5SDimitry Andric } 15420b57cec5SDimitry Andric 15430b57cec5SDimitry Andric APInt APInt::udiv(const APInt &RHS) const { 15440b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 15450b57cec5SDimitry Andric 15460b57cec5SDimitry Andric // First, deal with the easy case 15470b57cec5SDimitry Andric if (isSingleWord()) { 15480b57cec5SDimitry Andric assert(RHS.U.VAL != 0 && "Divide by zero?"); 15490b57cec5SDimitry Andric return APInt(BitWidth, U.VAL / RHS.U.VAL); 15500b57cec5SDimitry Andric } 15510b57cec5SDimitry Andric 15520b57cec5SDimitry Andric // Get some facts about the LHS and RHS number of bits and words 15530b57cec5SDimitry Andric unsigned lhsWords = getNumWords(getActiveBits()); 15540b57cec5SDimitry Andric unsigned rhsBits = RHS.getActiveBits(); 15550b57cec5SDimitry Andric unsigned rhsWords = getNumWords(rhsBits); 15560b57cec5SDimitry Andric assert(rhsWords && "Divided by zero???"); 15570b57cec5SDimitry Andric 15580b57cec5SDimitry Andric // Deal with some degenerate cases 15590b57cec5SDimitry Andric if (!lhsWords) 15600b57cec5SDimitry Andric // 0 / X ===> 0 15610b57cec5SDimitry Andric return APInt(BitWidth, 0); 15620b57cec5SDimitry Andric if (rhsBits == 1) 15630b57cec5SDimitry Andric // X / 1 ===> X 15640b57cec5SDimitry Andric return *this; 15650b57cec5SDimitry Andric if (lhsWords < rhsWords || this->ult(RHS)) 15660b57cec5SDimitry Andric // X / Y ===> 0, iff X < Y 15670b57cec5SDimitry Andric return APInt(BitWidth, 0); 15680b57cec5SDimitry Andric if (*this == RHS) 15690b57cec5SDimitry Andric // X / X ===> 1 15700b57cec5SDimitry Andric return APInt(BitWidth, 1); 15710b57cec5SDimitry Andric if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 15720b57cec5SDimitry Andric // All high words are zero, just use native divide 15730b57cec5SDimitry Andric return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); 15740b57cec5SDimitry Andric 15750b57cec5SDimitry Andric // We have to compute it the hard way. Invoke the Knuth divide algorithm. 15760b57cec5SDimitry Andric APInt Quotient(BitWidth, 0); // to hold result. 15770b57cec5SDimitry Andric divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); 15780b57cec5SDimitry Andric return Quotient; 15790b57cec5SDimitry Andric } 15800b57cec5SDimitry Andric 15810b57cec5SDimitry Andric APInt APInt::udiv(uint64_t RHS) const { 15820b57cec5SDimitry Andric assert(RHS != 0 && "Divide by zero?"); 15830b57cec5SDimitry Andric 15840b57cec5SDimitry Andric // First, deal with the easy case 15850b57cec5SDimitry Andric if (isSingleWord()) 15860b57cec5SDimitry Andric return APInt(BitWidth, U.VAL / RHS); 15870b57cec5SDimitry Andric 15880b57cec5SDimitry Andric // Get some facts about the LHS words. 15890b57cec5SDimitry Andric unsigned lhsWords = getNumWords(getActiveBits()); 15900b57cec5SDimitry Andric 15910b57cec5SDimitry Andric // Deal with some degenerate cases 15920b57cec5SDimitry Andric if (!lhsWords) 15930b57cec5SDimitry Andric // 0 / X ===> 0 15940b57cec5SDimitry Andric return APInt(BitWidth, 0); 15950b57cec5SDimitry Andric if (RHS == 1) 15960b57cec5SDimitry Andric // X / 1 ===> X 15970b57cec5SDimitry Andric return *this; 15980b57cec5SDimitry Andric if (this->ult(RHS)) 15990b57cec5SDimitry Andric // X / Y ===> 0, iff X < Y 16000b57cec5SDimitry Andric return APInt(BitWidth, 0); 16010b57cec5SDimitry Andric if (*this == RHS) 16020b57cec5SDimitry Andric // X / X ===> 1 16030b57cec5SDimitry Andric return APInt(BitWidth, 1); 16040b57cec5SDimitry Andric if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. 16050b57cec5SDimitry Andric // All high words are zero, just use native divide 16060b57cec5SDimitry Andric return APInt(BitWidth, this->U.pVal[0] / RHS); 16070b57cec5SDimitry Andric 16080b57cec5SDimitry Andric // We have to compute it the hard way. Invoke the Knuth divide algorithm. 16090b57cec5SDimitry Andric APInt Quotient(BitWidth, 0); // to hold result. 16100b57cec5SDimitry Andric divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); 16110b57cec5SDimitry Andric return Quotient; 16120b57cec5SDimitry Andric } 16130b57cec5SDimitry Andric 16140b57cec5SDimitry Andric APInt APInt::sdiv(const APInt &RHS) const { 16150b57cec5SDimitry Andric if (isNegative()) { 16160b57cec5SDimitry Andric if (RHS.isNegative()) 16170b57cec5SDimitry Andric return (-(*this)).udiv(-RHS); 16180b57cec5SDimitry Andric return -((-(*this)).udiv(RHS)); 16190b57cec5SDimitry Andric } 16200b57cec5SDimitry Andric if (RHS.isNegative()) 16210b57cec5SDimitry Andric return -(this->udiv(-RHS)); 16220b57cec5SDimitry Andric return this->udiv(RHS); 16230b57cec5SDimitry Andric } 16240b57cec5SDimitry Andric 16250b57cec5SDimitry Andric APInt APInt::sdiv(int64_t RHS) const { 16260b57cec5SDimitry Andric if (isNegative()) { 16270b57cec5SDimitry Andric if (RHS < 0) 16280b57cec5SDimitry Andric return (-(*this)).udiv(-RHS); 16290b57cec5SDimitry Andric return -((-(*this)).udiv(RHS)); 16300b57cec5SDimitry Andric } 16310b57cec5SDimitry Andric if (RHS < 0) 16320b57cec5SDimitry Andric return -(this->udiv(-RHS)); 16330b57cec5SDimitry Andric return this->udiv(RHS); 16340b57cec5SDimitry Andric } 16350b57cec5SDimitry Andric 16360b57cec5SDimitry Andric APInt APInt::urem(const APInt &RHS) const { 16370b57cec5SDimitry Andric assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 16380b57cec5SDimitry Andric if (isSingleWord()) { 16390b57cec5SDimitry Andric assert(RHS.U.VAL != 0 && "Remainder by zero?"); 16400b57cec5SDimitry Andric return APInt(BitWidth, U.VAL % RHS.U.VAL); 16410b57cec5SDimitry Andric } 16420b57cec5SDimitry Andric 16430b57cec5SDimitry Andric // Get some facts about the LHS 16440b57cec5SDimitry Andric unsigned lhsWords = getNumWords(getActiveBits()); 16450b57cec5SDimitry Andric 16460b57cec5SDimitry Andric // Get some facts about the RHS 16470b57cec5SDimitry Andric unsigned rhsBits = RHS.getActiveBits(); 16480b57cec5SDimitry Andric unsigned rhsWords = getNumWords(rhsBits); 16490b57cec5SDimitry Andric assert(rhsWords && "Performing remainder operation by zero ???"); 16500b57cec5SDimitry Andric 16510b57cec5SDimitry Andric // Check the degenerate cases 16520b57cec5SDimitry Andric if (lhsWords == 0) 16530b57cec5SDimitry Andric // 0 % Y ===> 0 16540b57cec5SDimitry Andric return APInt(BitWidth, 0); 16550b57cec5SDimitry Andric if (rhsBits == 1) 16560b57cec5SDimitry Andric // X % 1 ===> 0 16570b57cec5SDimitry Andric return APInt(BitWidth, 0); 16580b57cec5SDimitry Andric if (lhsWords < rhsWords || this->ult(RHS)) 16590b57cec5SDimitry Andric // X % Y ===> X, iff X < Y 16600b57cec5SDimitry Andric return *this; 16610b57cec5SDimitry Andric if (*this == RHS) 16620b57cec5SDimitry Andric // X % X == 0; 16630b57cec5SDimitry Andric return APInt(BitWidth, 0); 16640b57cec5SDimitry Andric if (lhsWords == 1) 16650b57cec5SDimitry Andric // All high words are zero, just use native remainder 16660b57cec5SDimitry Andric return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); 16670b57cec5SDimitry Andric 16680b57cec5SDimitry Andric // We have to compute it the hard way. Invoke the Knuth divide algorithm. 16690b57cec5SDimitry Andric APInt Remainder(BitWidth, 0); 16700b57cec5SDimitry Andric divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); 16710b57cec5SDimitry Andric return Remainder; 16720b57cec5SDimitry Andric } 16730b57cec5SDimitry Andric 16740b57cec5SDimitry Andric uint64_t APInt::urem(uint64_t RHS) const { 16750b57cec5SDimitry Andric assert(RHS != 0 && "Remainder by zero?"); 16760b57cec5SDimitry Andric 16770b57cec5SDimitry Andric if (isSingleWord()) 16780b57cec5SDimitry Andric return U.VAL % RHS; 16790b57cec5SDimitry Andric 16800b57cec5SDimitry Andric // Get some facts about the LHS 16810b57cec5SDimitry Andric unsigned lhsWords = getNumWords(getActiveBits()); 16820b57cec5SDimitry Andric 16830b57cec5SDimitry Andric // Check the degenerate cases 16840b57cec5SDimitry Andric if (lhsWords == 0) 16850b57cec5SDimitry Andric // 0 % Y ===> 0 16860b57cec5SDimitry Andric return 0; 16870b57cec5SDimitry Andric if (RHS == 1) 16880b57cec5SDimitry Andric // X % 1 ===> 0 16890b57cec5SDimitry Andric return 0; 16900b57cec5SDimitry Andric if (this->ult(RHS)) 16910b57cec5SDimitry Andric // X % Y ===> X, iff X < Y 16920b57cec5SDimitry Andric return getZExtValue(); 16930b57cec5SDimitry Andric if (*this == RHS) 16940b57cec5SDimitry Andric // X % X == 0; 16950b57cec5SDimitry Andric return 0; 16960b57cec5SDimitry Andric if (lhsWords == 1) 16970b57cec5SDimitry Andric // All high words are zero, just use native remainder 16980b57cec5SDimitry Andric return U.pVal[0] % RHS; 16990b57cec5SDimitry Andric 17000b57cec5SDimitry Andric // We have to compute it the hard way. Invoke the Knuth divide algorithm. 17010b57cec5SDimitry Andric uint64_t Remainder; 17020b57cec5SDimitry Andric divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); 17030b57cec5SDimitry Andric return Remainder; 17040b57cec5SDimitry Andric } 17050b57cec5SDimitry Andric 17060b57cec5SDimitry Andric APInt APInt::srem(const APInt &RHS) const { 17070b57cec5SDimitry Andric if (isNegative()) { 17080b57cec5SDimitry Andric if (RHS.isNegative()) 17090b57cec5SDimitry Andric return -((-(*this)).urem(-RHS)); 17100b57cec5SDimitry Andric return -((-(*this)).urem(RHS)); 17110b57cec5SDimitry Andric } 17120b57cec5SDimitry Andric if (RHS.isNegative()) 17130b57cec5SDimitry Andric return this->urem(-RHS); 17140b57cec5SDimitry Andric return this->urem(RHS); 17150b57cec5SDimitry Andric } 17160b57cec5SDimitry Andric 17170b57cec5SDimitry Andric int64_t APInt::srem(int64_t RHS) const { 17180b57cec5SDimitry Andric if (isNegative()) { 17190b57cec5SDimitry Andric if (RHS < 0) 17200b57cec5SDimitry Andric return -((-(*this)).urem(-RHS)); 17210b57cec5SDimitry Andric return -((-(*this)).urem(RHS)); 17220b57cec5SDimitry Andric } 17230b57cec5SDimitry Andric if (RHS < 0) 17240b57cec5SDimitry Andric return this->urem(-RHS); 17250b57cec5SDimitry Andric return this->urem(RHS); 17260b57cec5SDimitry Andric } 17270b57cec5SDimitry Andric 17280b57cec5SDimitry Andric void APInt::udivrem(const APInt &LHS, const APInt &RHS, 17290b57cec5SDimitry Andric APInt &Quotient, APInt &Remainder) { 17300b57cec5SDimitry Andric assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 17310b57cec5SDimitry Andric unsigned BitWidth = LHS.BitWidth; 17320b57cec5SDimitry Andric 17330b57cec5SDimitry Andric // First, deal with the easy case 17340b57cec5SDimitry Andric if (LHS.isSingleWord()) { 17350b57cec5SDimitry Andric assert(RHS.U.VAL != 0 && "Divide by zero?"); 17360b57cec5SDimitry Andric uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; 17370b57cec5SDimitry Andric uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; 17380b57cec5SDimitry Andric Quotient = APInt(BitWidth, QuotVal); 17390b57cec5SDimitry Andric Remainder = APInt(BitWidth, RemVal); 17400b57cec5SDimitry Andric return; 17410b57cec5SDimitry Andric } 17420b57cec5SDimitry Andric 17430b57cec5SDimitry Andric // Get some size facts about the dividend and divisor 17440b57cec5SDimitry Andric unsigned lhsWords = getNumWords(LHS.getActiveBits()); 17450b57cec5SDimitry Andric unsigned rhsBits = RHS.getActiveBits(); 17460b57cec5SDimitry Andric unsigned rhsWords = getNumWords(rhsBits); 17470b57cec5SDimitry Andric assert(rhsWords && "Performing divrem operation by zero ???"); 17480b57cec5SDimitry Andric 17490b57cec5SDimitry Andric // Check the degenerate cases 17500b57cec5SDimitry Andric if (lhsWords == 0) { 17510b57cec5SDimitry Andric Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 17520b57cec5SDimitry Andric Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 17530b57cec5SDimitry Andric return; 17540b57cec5SDimitry Andric } 17550b57cec5SDimitry Andric 17560b57cec5SDimitry Andric if (rhsBits == 1) { 17570b57cec5SDimitry Andric Quotient = LHS; // X / 1 ===> X 17580b57cec5SDimitry Andric Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 17590b57cec5SDimitry Andric } 17600b57cec5SDimitry Andric 17610b57cec5SDimitry Andric if (lhsWords < rhsWords || LHS.ult(RHS)) { 17620b57cec5SDimitry Andric Remainder = LHS; // X % Y ===> X, iff X < Y 17630b57cec5SDimitry Andric Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 17640b57cec5SDimitry Andric return; 17650b57cec5SDimitry Andric } 17660b57cec5SDimitry Andric 17670b57cec5SDimitry Andric if (LHS == RHS) { 17680b57cec5SDimitry Andric Quotient = APInt(BitWidth, 1); // X / X ===> 1 17690b57cec5SDimitry Andric Remainder = APInt(BitWidth, 0); // X % X ===> 0; 17700b57cec5SDimitry Andric return; 17710b57cec5SDimitry Andric } 17720b57cec5SDimitry Andric 17730b57cec5SDimitry Andric // Make sure there is enough space to hold the results. 17740b57cec5SDimitry Andric // NOTE: This assumes that reallocate won't affect any bits if it doesn't 17750b57cec5SDimitry Andric // change the size. This is necessary if Quotient or Remainder is aliased 17760b57cec5SDimitry Andric // with LHS or RHS. 17770b57cec5SDimitry Andric Quotient.reallocate(BitWidth); 17780b57cec5SDimitry Andric Remainder.reallocate(BitWidth); 17790b57cec5SDimitry Andric 17800b57cec5SDimitry Andric if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 17810b57cec5SDimitry Andric // There is only one word to consider so use the native versions. 17820b57cec5SDimitry Andric uint64_t lhsValue = LHS.U.pVal[0]; 17830b57cec5SDimitry Andric uint64_t rhsValue = RHS.U.pVal[0]; 17840b57cec5SDimitry Andric Quotient = lhsValue / rhsValue; 17850b57cec5SDimitry Andric Remainder = lhsValue % rhsValue; 17860b57cec5SDimitry Andric return; 17870b57cec5SDimitry Andric } 17880b57cec5SDimitry Andric 17890b57cec5SDimitry Andric // Okay, lets do it the long way 17900b57cec5SDimitry Andric divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, 17910b57cec5SDimitry Andric Remainder.U.pVal); 17920b57cec5SDimitry Andric // Clear the rest of the Quotient and Remainder. 17930b57cec5SDimitry Andric std::memset(Quotient.U.pVal + lhsWords, 0, 17940b57cec5SDimitry Andric (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 17950b57cec5SDimitry Andric std::memset(Remainder.U.pVal + rhsWords, 0, 17960b57cec5SDimitry Andric (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); 17970b57cec5SDimitry Andric } 17980b57cec5SDimitry Andric 17990b57cec5SDimitry Andric void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 18000b57cec5SDimitry Andric uint64_t &Remainder) { 18010b57cec5SDimitry Andric assert(RHS != 0 && "Divide by zero?"); 18020b57cec5SDimitry Andric unsigned BitWidth = LHS.BitWidth; 18030b57cec5SDimitry Andric 18040b57cec5SDimitry Andric // First, deal with the easy case 18050b57cec5SDimitry Andric if (LHS.isSingleWord()) { 18060b57cec5SDimitry Andric uint64_t QuotVal = LHS.U.VAL / RHS; 18070b57cec5SDimitry Andric Remainder = LHS.U.VAL % RHS; 18080b57cec5SDimitry Andric Quotient = APInt(BitWidth, QuotVal); 18090b57cec5SDimitry Andric return; 18100b57cec5SDimitry Andric } 18110b57cec5SDimitry Andric 18120b57cec5SDimitry Andric // Get some size facts about the dividend and divisor 18130b57cec5SDimitry Andric unsigned lhsWords = getNumWords(LHS.getActiveBits()); 18140b57cec5SDimitry Andric 18150b57cec5SDimitry Andric // Check the degenerate cases 18160b57cec5SDimitry Andric if (lhsWords == 0) { 18170b57cec5SDimitry Andric Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 18180b57cec5SDimitry Andric Remainder = 0; // 0 % Y ===> 0 18190b57cec5SDimitry Andric return; 18200b57cec5SDimitry Andric } 18210b57cec5SDimitry Andric 18220b57cec5SDimitry Andric if (RHS == 1) { 18230b57cec5SDimitry Andric Quotient = LHS; // X / 1 ===> X 18240b57cec5SDimitry Andric Remainder = 0; // X % 1 ===> 0 18250b57cec5SDimitry Andric return; 18260b57cec5SDimitry Andric } 18270b57cec5SDimitry Andric 18280b57cec5SDimitry Andric if (LHS.ult(RHS)) { 18290b57cec5SDimitry Andric Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y 18300b57cec5SDimitry Andric Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y 18310b57cec5SDimitry Andric return; 18320b57cec5SDimitry Andric } 18330b57cec5SDimitry Andric 18340b57cec5SDimitry Andric if (LHS == RHS) { 18350b57cec5SDimitry Andric Quotient = APInt(BitWidth, 1); // X / X ===> 1 18360b57cec5SDimitry Andric Remainder = 0; // X % X ===> 0; 18370b57cec5SDimitry Andric return; 18380b57cec5SDimitry Andric } 18390b57cec5SDimitry Andric 18400b57cec5SDimitry Andric // Make sure there is enough space to hold the results. 18410b57cec5SDimitry Andric // NOTE: This assumes that reallocate won't affect any bits if it doesn't 18420b57cec5SDimitry Andric // change the size. This is necessary if Quotient is aliased with LHS. 18430b57cec5SDimitry Andric Quotient.reallocate(BitWidth); 18440b57cec5SDimitry Andric 18450b57cec5SDimitry Andric if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. 18460b57cec5SDimitry Andric // There is only one word to consider so use the native versions. 18470b57cec5SDimitry Andric uint64_t lhsValue = LHS.U.pVal[0]; 18480b57cec5SDimitry Andric Quotient = lhsValue / RHS; 18490b57cec5SDimitry Andric Remainder = lhsValue % RHS; 18500b57cec5SDimitry Andric return; 18510b57cec5SDimitry Andric } 18520b57cec5SDimitry Andric 18530b57cec5SDimitry Andric // Okay, lets do it the long way 18540b57cec5SDimitry Andric divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); 18550b57cec5SDimitry Andric // Clear the rest of the Quotient. 18560b57cec5SDimitry Andric std::memset(Quotient.U.pVal + lhsWords, 0, 18570b57cec5SDimitry Andric (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); 18580b57cec5SDimitry Andric } 18590b57cec5SDimitry Andric 18600b57cec5SDimitry Andric void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 18610b57cec5SDimitry Andric APInt &Quotient, APInt &Remainder) { 18620b57cec5SDimitry Andric if (LHS.isNegative()) { 18630b57cec5SDimitry Andric if (RHS.isNegative()) 18640b57cec5SDimitry Andric APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 18650b57cec5SDimitry Andric else { 18660b57cec5SDimitry Andric APInt::udivrem(-LHS, RHS, Quotient, Remainder); 18670b57cec5SDimitry Andric Quotient.negate(); 18680b57cec5SDimitry Andric } 18690b57cec5SDimitry Andric Remainder.negate(); 18700b57cec5SDimitry Andric } else if (RHS.isNegative()) { 18710b57cec5SDimitry Andric APInt::udivrem(LHS, -RHS, Quotient, Remainder); 18720b57cec5SDimitry Andric Quotient.negate(); 18730b57cec5SDimitry Andric } else { 18740b57cec5SDimitry Andric APInt::udivrem(LHS, RHS, Quotient, Remainder); 18750b57cec5SDimitry Andric } 18760b57cec5SDimitry Andric } 18770b57cec5SDimitry Andric 18780b57cec5SDimitry Andric void APInt::sdivrem(const APInt &LHS, int64_t RHS, 18790b57cec5SDimitry Andric APInt &Quotient, int64_t &Remainder) { 18800b57cec5SDimitry Andric uint64_t R = Remainder; 18810b57cec5SDimitry Andric if (LHS.isNegative()) { 18820b57cec5SDimitry Andric if (RHS < 0) 18830b57cec5SDimitry Andric APInt::udivrem(-LHS, -RHS, Quotient, R); 18840b57cec5SDimitry Andric else { 18850b57cec5SDimitry Andric APInt::udivrem(-LHS, RHS, Quotient, R); 18860b57cec5SDimitry Andric Quotient.negate(); 18870b57cec5SDimitry Andric } 18880b57cec5SDimitry Andric R = -R; 18890b57cec5SDimitry Andric } else if (RHS < 0) { 18900b57cec5SDimitry Andric APInt::udivrem(LHS, -RHS, Quotient, R); 18910b57cec5SDimitry Andric Quotient.negate(); 18920b57cec5SDimitry Andric } else { 18930b57cec5SDimitry Andric APInt::udivrem(LHS, RHS, Quotient, R); 18940b57cec5SDimitry Andric } 18950b57cec5SDimitry Andric Remainder = R; 18960b57cec5SDimitry Andric } 18970b57cec5SDimitry Andric 18980b57cec5SDimitry Andric APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 18990b57cec5SDimitry Andric APInt Res = *this+RHS; 19000b57cec5SDimitry Andric Overflow = isNonNegative() == RHS.isNonNegative() && 19010b57cec5SDimitry Andric Res.isNonNegative() != isNonNegative(); 19020b57cec5SDimitry Andric return Res; 19030b57cec5SDimitry Andric } 19040b57cec5SDimitry Andric 19050b57cec5SDimitry Andric APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 19060b57cec5SDimitry Andric APInt Res = *this+RHS; 19070b57cec5SDimitry Andric Overflow = Res.ult(RHS); 19080b57cec5SDimitry Andric return Res; 19090b57cec5SDimitry Andric } 19100b57cec5SDimitry Andric 19110b57cec5SDimitry Andric APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 19120b57cec5SDimitry Andric APInt Res = *this - RHS; 19130b57cec5SDimitry Andric Overflow = isNonNegative() != RHS.isNonNegative() && 19140b57cec5SDimitry Andric Res.isNonNegative() != isNonNegative(); 19150b57cec5SDimitry Andric return Res; 19160b57cec5SDimitry Andric } 19170b57cec5SDimitry Andric 19180b57cec5SDimitry Andric APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 19190b57cec5SDimitry Andric APInt Res = *this-RHS; 19200b57cec5SDimitry Andric Overflow = Res.ugt(*this); 19210b57cec5SDimitry Andric return Res; 19220b57cec5SDimitry Andric } 19230b57cec5SDimitry Andric 19240b57cec5SDimitry Andric APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 19250b57cec5SDimitry Andric // MININT/-1 --> overflow. 1926349cc55cSDimitry Andric Overflow = isMinSignedValue() && RHS.isAllOnes(); 19270b57cec5SDimitry Andric return sdiv(RHS); 19280b57cec5SDimitry Andric } 19290b57cec5SDimitry Andric 19300b57cec5SDimitry Andric APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 19310b57cec5SDimitry Andric APInt Res = *this * RHS; 19320b57cec5SDimitry Andric 1933349cc55cSDimitry Andric if (RHS != 0) 1934349cc55cSDimitry Andric Overflow = Res.sdiv(RHS) != *this || 1935349cc55cSDimitry Andric (isMinSignedValue() && RHS.isAllOnes()); 19360b57cec5SDimitry Andric else 19370b57cec5SDimitry Andric Overflow = false; 19380b57cec5SDimitry Andric return Res; 19390b57cec5SDimitry Andric } 19400b57cec5SDimitry Andric 19410b57cec5SDimitry Andric APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 194206c3fb27SDimitry Andric if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) { 19430b57cec5SDimitry Andric Overflow = true; 19440b57cec5SDimitry Andric return *this * RHS; 19450b57cec5SDimitry Andric } 19460b57cec5SDimitry Andric 19470b57cec5SDimitry Andric APInt Res = lshr(1) * RHS; 19480b57cec5SDimitry Andric Overflow = Res.isNegative(); 19490b57cec5SDimitry Andric Res <<= 1; 19500b57cec5SDimitry Andric if ((*this)[0]) { 19510b57cec5SDimitry Andric Res += RHS; 19520b57cec5SDimitry Andric if (Res.ult(RHS)) 19530b57cec5SDimitry Andric Overflow = true; 19540b57cec5SDimitry Andric } 19550b57cec5SDimitry Andric return Res; 19560b57cec5SDimitry Andric } 19570b57cec5SDimitry Andric 19580b57cec5SDimitry Andric APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 195906c3fb27SDimitry Andric return sshl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); 196006c3fb27SDimitry Andric } 196106c3fb27SDimitry Andric 196206c3fb27SDimitry Andric APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 196306c3fb27SDimitry Andric Overflow = ShAmt >= getBitWidth(); 19640b57cec5SDimitry Andric if (Overflow) 19650b57cec5SDimitry Andric return APInt(BitWidth, 0); 19660b57cec5SDimitry Andric 19670b57cec5SDimitry Andric if (isNonNegative()) // Don't allow sign change. 196806c3fb27SDimitry Andric Overflow = ShAmt >= countl_zero(); 19690b57cec5SDimitry Andric else 197006c3fb27SDimitry Andric Overflow = ShAmt >= countl_one(); 19710b57cec5SDimitry Andric 19720b57cec5SDimitry Andric return *this << ShAmt; 19730b57cec5SDimitry Andric } 19740b57cec5SDimitry Andric 19750b57cec5SDimitry Andric APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 197606c3fb27SDimitry Andric return ushl_ov(ShAmt.getLimitedValue(getBitWidth()), Overflow); 197706c3fb27SDimitry Andric } 197806c3fb27SDimitry Andric 197906c3fb27SDimitry Andric APInt APInt::ushl_ov(unsigned ShAmt, bool &Overflow) const { 198006c3fb27SDimitry Andric Overflow = ShAmt >= getBitWidth(); 19810b57cec5SDimitry Andric if (Overflow) 19820b57cec5SDimitry Andric return APInt(BitWidth, 0); 19830b57cec5SDimitry Andric 198406c3fb27SDimitry Andric Overflow = ShAmt > countl_zero(); 19850b57cec5SDimitry Andric 19860b57cec5SDimitry Andric return *this << ShAmt; 19870b57cec5SDimitry Andric } 19880b57cec5SDimitry Andric 1989*0fca6ea1SDimitry Andric APInt APInt::sfloordiv_ov(const APInt &RHS, bool &Overflow) const { 1990*0fca6ea1SDimitry Andric APInt quotient = sdiv_ov(RHS, Overflow); 1991*0fca6ea1SDimitry Andric if ((quotient * RHS != *this) && (isNegative() != RHS.isNegative())) 1992*0fca6ea1SDimitry Andric return quotient - 1; 1993*0fca6ea1SDimitry Andric return quotient; 1994*0fca6ea1SDimitry Andric } 1995*0fca6ea1SDimitry Andric 19960b57cec5SDimitry Andric APInt APInt::sadd_sat(const APInt &RHS) const { 19970b57cec5SDimitry Andric bool Overflow; 19980b57cec5SDimitry Andric APInt Res = sadd_ov(RHS, Overflow); 19990b57cec5SDimitry Andric if (!Overflow) 20000b57cec5SDimitry Andric return Res; 20010b57cec5SDimitry Andric 20020b57cec5SDimitry Andric return isNegative() ? APInt::getSignedMinValue(BitWidth) 20030b57cec5SDimitry Andric : APInt::getSignedMaxValue(BitWidth); 20040b57cec5SDimitry Andric } 20050b57cec5SDimitry Andric 20060b57cec5SDimitry Andric APInt APInt::uadd_sat(const APInt &RHS) const { 20070b57cec5SDimitry Andric bool Overflow; 20080b57cec5SDimitry Andric APInt Res = uadd_ov(RHS, Overflow); 20090b57cec5SDimitry Andric if (!Overflow) 20100b57cec5SDimitry Andric return Res; 20110b57cec5SDimitry Andric 20120b57cec5SDimitry Andric return APInt::getMaxValue(BitWidth); 20130b57cec5SDimitry Andric } 20140b57cec5SDimitry Andric 20150b57cec5SDimitry Andric APInt APInt::ssub_sat(const APInt &RHS) const { 20160b57cec5SDimitry Andric bool Overflow; 20170b57cec5SDimitry Andric APInt Res = ssub_ov(RHS, Overflow); 20180b57cec5SDimitry Andric if (!Overflow) 20190b57cec5SDimitry Andric return Res; 20200b57cec5SDimitry Andric 20210b57cec5SDimitry Andric return isNegative() ? APInt::getSignedMinValue(BitWidth) 20220b57cec5SDimitry Andric : APInt::getSignedMaxValue(BitWidth); 20230b57cec5SDimitry Andric } 20240b57cec5SDimitry Andric 20250b57cec5SDimitry Andric APInt APInt::usub_sat(const APInt &RHS) const { 20260b57cec5SDimitry Andric bool Overflow; 20270b57cec5SDimitry Andric APInt Res = usub_ov(RHS, Overflow); 20280b57cec5SDimitry Andric if (!Overflow) 20290b57cec5SDimitry Andric return Res; 20300b57cec5SDimitry Andric 20310b57cec5SDimitry Andric return APInt(BitWidth, 0); 20320b57cec5SDimitry Andric } 20330b57cec5SDimitry Andric 2034480093f4SDimitry Andric APInt APInt::smul_sat(const APInt &RHS) const { 2035480093f4SDimitry Andric bool Overflow; 2036480093f4SDimitry Andric APInt Res = smul_ov(RHS, Overflow); 2037480093f4SDimitry Andric if (!Overflow) 2038480093f4SDimitry Andric return Res; 2039480093f4SDimitry Andric 2040480093f4SDimitry Andric // The result is negative if one and only one of inputs is negative. 2041480093f4SDimitry Andric bool ResIsNegative = isNegative() ^ RHS.isNegative(); 2042480093f4SDimitry Andric 2043480093f4SDimitry Andric return ResIsNegative ? APInt::getSignedMinValue(BitWidth) 2044480093f4SDimitry Andric : APInt::getSignedMaxValue(BitWidth); 2045480093f4SDimitry Andric } 2046480093f4SDimitry Andric 2047480093f4SDimitry Andric APInt APInt::umul_sat(const APInt &RHS) const { 2048480093f4SDimitry Andric bool Overflow; 2049480093f4SDimitry Andric APInt Res = umul_ov(RHS, Overflow); 2050480093f4SDimitry Andric if (!Overflow) 2051480093f4SDimitry Andric return Res; 2052480093f4SDimitry Andric 2053480093f4SDimitry Andric return APInt::getMaxValue(BitWidth); 2054480093f4SDimitry Andric } 2055480093f4SDimitry Andric 2056480093f4SDimitry Andric APInt APInt::sshl_sat(const APInt &RHS) const { 205706c3fb27SDimitry Andric return sshl_sat(RHS.getLimitedValue(getBitWidth())); 205806c3fb27SDimitry Andric } 205906c3fb27SDimitry Andric 206006c3fb27SDimitry Andric APInt APInt::sshl_sat(unsigned RHS) const { 2061480093f4SDimitry Andric bool Overflow; 2062480093f4SDimitry Andric APInt Res = sshl_ov(RHS, Overflow); 2063480093f4SDimitry Andric if (!Overflow) 2064480093f4SDimitry Andric return Res; 2065480093f4SDimitry Andric 2066480093f4SDimitry Andric return isNegative() ? APInt::getSignedMinValue(BitWidth) 2067480093f4SDimitry Andric : APInt::getSignedMaxValue(BitWidth); 2068480093f4SDimitry Andric } 2069480093f4SDimitry Andric 2070480093f4SDimitry Andric APInt APInt::ushl_sat(const APInt &RHS) const { 207106c3fb27SDimitry Andric return ushl_sat(RHS.getLimitedValue(getBitWidth())); 207206c3fb27SDimitry Andric } 207306c3fb27SDimitry Andric 207406c3fb27SDimitry Andric APInt APInt::ushl_sat(unsigned RHS) const { 2075480093f4SDimitry Andric bool Overflow; 2076480093f4SDimitry Andric APInt Res = ushl_ov(RHS, Overflow); 2077480093f4SDimitry Andric if (!Overflow) 2078480093f4SDimitry Andric return Res; 2079480093f4SDimitry Andric 2080480093f4SDimitry Andric return APInt::getMaxValue(BitWidth); 2081480093f4SDimitry Andric } 20820b57cec5SDimitry Andric 20830b57cec5SDimitry Andric void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 20840b57cec5SDimitry Andric // Check our assumptions here 20850b57cec5SDimitry Andric assert(!str.empty() && "Invalid string length"); 20860b57cec5SDimitry Andric assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 20870b57cec5SDimitry Andric radix == 36) && 20880b57cec5SDimitry Andric "Radix should be 2, 8, 10, 16, or 36!"); 20890b57cec5SDimitry Andric 20900b57cec5SDimitry Andric StringRef::iterator p = str.begin(); 20910b57cec5SDimitry Andric size_t slen = str.size(); 20920b57cec5SDimitry Andric bool isNeg = *p == '-'; 20930b57cec5SDimitry Andric if (*p == '-' || *p == '+') { 20940b57cec5SDimitry Andric p++; 20950b57cec5SDimitry Andric slen--; 20960b57cec5SDimitry Andric assert(slen && "String is only a sign, needs a value."); 20970b57cec5SDimitry Andric } 20980b57cec5SDimitry Andric assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 20990b57cec5SDimitry Andric assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 21000b57cec5SDimitry Andric assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 21010b57cec5SDimitry Andric assert((((slen-1)*64)/22 <= numbits || radix != 10) && 21020b57cec5SDimitry Andric "Insufficient bit width"); 21030b57cec5SDimitry Andric 21040b57cec5SDimitry Andric // Allocate memory if needed 21050b57cec5SDimitry Andric if (isSingleWord()) 21060b57cec5SDimitry Andric U.VAL = 0; 21070b57cec5SDimitry Andric else 21080b57cec5SDimitry Andric U.pVal = getClearedMemory(getNumWords()); 21090b57cec5SDimitry Andric 21100b57cec5SDimitry Andric // Figure out if we can shift instead of multiply 21110b57cec5SDimitry Andric unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 21120b57cec5SDimitry Andric 21130b57cec5SDimitry Andric // Enter digit traversal loop 21140b57cec5SDimitry Andric for (StringRef::iterator e = str.end(); p != e; ++p) { 21150b57cec5SDimitry Andric unsigned digit = getDigit(*p, radix); 21160b57cec5SDimitry Andric assert(digit < radix && "Invalid character in digit string"); 21170b57cec5SDimitry Andric 21180b57cec5SDimitry Andric // Shift or multiply the value by the radix 21190b57cec5SDimitry Andric if (slen > 1) { 21200b57cec5SDimitry Andric if (shift) 21210b57cec5SDimitry Andric *this <<= shift; 21220b57cec5SDimitry Andric else 21230b57cec5SDimitry Andric *this *= radix; 21240b57cec5SDimitry Andric } 21250b57cec5SDimitry Andric 21260b57cec5SDimitry Andric // Add in the digit we just interpreted 21270b57cec5SDimitry Andric *this += digit; 21280b57cec5SDimitry Andric } 21290b57cec5SDimitry Andric // If its negative, put it in two's complement form 21300b57cec5SDimitry Andric if (isNeg) 21310b57cec5SDimitry Andric this->negate(); 21320b57cec5SDimitry Andric } 21330b57cec5SDimitry Andric 213406c3fb27SDimitry Andric void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 2135*0fca6ea1SDimitry Andric bool formatAsCLiteral, bool UpperCase, 2136*0fca6ea1SDimitry Andric bool InsertSeparators) const { 21370b57cec5SDimitry Andric assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 21380b57cec5SDimitry Andric Radix == 36) && 21390b57cec5SDimitry Andric "Radix should be 2, 8, 10, 16, or 36!"); 21400b57cec5SDimitry Andric 21410b57cec5SDimitry Andric const char *Prefix = ""; 21420b57cec5SDimitry Andric if (formatAsCLiteral) { 21430b57cec5SDimitry Andric switch (Radix) { 21440b57cec5SDimitry Andric case 2: 21450b57cec5SDimitry Andric // Binary literals are a non-standard extension added in gcc 4.3: 21460b57cec5SDimitry Andric // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 21470b57cec5SDimitry Andric Prefix = "0b"; 21480b57cec5SDimitry Andric break; 21490b57cec5SDimitry Andric case 8: 21500b57cec5SDimitry Andric Prefix = "0"; 21510b57cec5SDimitry Andric break; 21520b57cec5SDimitry Andric case 10: 21530b57cec5SDimitry Andric break; // No prefix 21540b57cec5SDimitry Andric case 16: 21550b57cec5SDimitry Andric Prefix = "0x"; 21560b57cec5SDimitry Andric break; 21570b57cec5SDimitry Andric default: 21580b57cec5SDimitry Andric llvm_unreachable("Invalid radix!"); 21590b57cec5SDimitry Andric } 21600b57cec5SDimitry Andric } 21610b57cec5SDimitry Andric 2162*0fca6ea1SDimitry Andric // Number of digits in a group between separators. 2163*0fca6ea1SDimitry Andric unsigned Grouping = (Radix == 8 || Radix == 10) ? 3 : 4; 2164*0fca6ea1SDimitry Andric 21650b57cec5SDimitry Andric // First, check for a zero value and just short circuit the logic below. 2166349cc55cSDimitry Andric if (isZero()) { 21670b57cec5SDimitry Andric while (*Prefix) { 21680b57cec5SDimitry Andric Str.push_back(*Prefix); 21690b57cec5SDimitry Andric ++Prefix; 21700b57cec5SDimitry Andric }; 21710b57cec5SDimitry Andric Str.push_back('0'); 21720b57cec5SDimitry Andric return; 21730b57cec5SDimitry Andric } 21740b57cec5SDimitry Andric 217506c3fb27SDimitry Andric static const char BothDigits[] = "0123456789abcdefghijklmnopqrstuvwxyz" 217606c3fb27SDimitry Andric "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 217706c3fb27SDimitry Andric const char *Digits = BothDigits + (UpperCase ? 36 : 0); 21780b57cec5SDimitry Andric 21790b57cec5SDimitry Andric if (isSingleWord()) { 21800b57cec5SDimitry Andric char Buffer[65]; 21810b57cec5SDimitry Andric char *BufPtr = std::end(Buffer); 21820b57cec5SDimitry Andric 21830b57cec5SDimitry Andric uint64_t N; 21840b57cec5SDimitry Andric if (!Signed) { 21850b57cec5SDimitry Andric N = getZExtValue(); 21860b57cec5SDimitry Andric } else { 21870b57cec5SDimitry Andric int64_t I = getSExtValue(); 21880b57cec5SDimitry Andric if (I >= 0) { 21890b57cec5SDimitry Andric N = I; 21900b57cec5SDimitry Andric } else { 21910b57cec5SDimitry Andric Str.push_back('-'); 21920b57cec5SDimitry Andric N = -(uint64_t)I; 21930b57cec5SDimitry Andric } 21940b57cec5SDimitry Andric } 21950b57cec5SDimitry Andric 21960b57cec5SDimitry Andric while (*Prefix) { 21970b57cec5SDimitry Andric Str.push_back(*Prefix); 21980b57cec5SDimitry Andric ++Prefix; 21990b57cec5SDimitry Andric }; 22000b57cec5SDimitry Andric 2201*0fca6ea1SDimitry Andric int Pos = 0; 22020b57cec5SDimitry Andric while (N) { 2203*0fca6ea1SDimitry Andric if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) 2204*0fca6ea1SDimitry Andric *--BufPtr = '\''; 22050b57cec5SDimitry Andric *--BufPtr = Digits[N % Radix]; 22060b57cec5SDimitry Andric N /= Radix; 2207*0fca6ea1SDimitry Andric Pos++; 22080b57cec5SDimitry Andric } 22090b57cec5SDimitry Andric Str.append(BufPtr, std::end(Buffer)); 22100b57cec5SDimitry Andric return; 22110b57cec5SDimitry Andric } 22120b57cec5SDimitry Andric 22130b57cec5SDimitry Andric APInt Tmp(*this); 22140b57cec5SDimitry Andric 22150b57cec5SDimitry Andric if (Signed && isNegative()) { 22160b57cec5SDimitry Andric // They want to print the signed version and it is a negative value 22170b57cec5SDimitry Andric // Flip the bits and add one to turn it into the equivalent positive 22180b57cec5SDimitry Andric // value and put a '-' in the result. 22190b57cec5SDimitry Andric Tmp.negate(); 22200b57cec5SDimitry Andric Str.push_back('-'); 22210b57cec5SDimitry Andric } 22220b57cec5SDimitry Andric 22230b57cec5SDimitry Andric while (*Prefix) { 22240b57cec5SDimitry Andric Str.push_back(*Prefix); 22250b57cec5SDimitry Andric ++Prefix; 22260b57cec5SDimitry Andric }; 22270b57cec5SDimitry Andric 22280b57cec5SDimitry Andric // We insert the digits backward, then reverse them to get the right order. 22290b57cec5SDimitry Andric unsigned StartDig = Str.size(); 22300b57cec5SDimitry Andric 22310b57cec5SDimitry Andric // For the 2, 8 and 16 bit cases, we can just shift instead of divide 22320b57cec5SDimitry Andric // because the number of bits per digit (1, 3 and 4 respectively) divides 22330b57cec5SDimitry Andric // equally. We just shift until the value is zero. 22340b57cec5SDimitry Andric if (Radix == 2 || Radix == 8 || Radix == 16) { 22350b57cec5SDimitry Andric // Just shift tmp right for each digit width until it becomes zero 22360b57cec5SDimitry Andric unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 22370b57cec5SDimitry Andric unsigned MaskAmt = Radix - 1; 22380b57cec5SDimitry Andric 2239*0fca6ea1SDimitry Andric int Pos = 0; 22400b57cec5SDimitry Andric while (Tmp.getBoolValue()) { 22410b57cec5SDimitry Andric unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2242*0fca6ea1SDimitry Andric if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) 2243*0fca6ea1SDimitry Andric Str.push_back('\''); 2244*0fca6ea1SDimitry Andric 22450b57cec5SDimitry Andric Str.push_back(Digits[Digit]); 22460b57cec5SDimitry Andric Tmp.lshrInPlace(ShiftAmt); 2247*0fca6ea1SDimitry Andric Pos++; 22480b57cec5SDimitry Andric } 22490b57cec5SDimitry Andric } else { 2250*0fca6ea1SDimitry Andric int Pos = 0; 22510b57cec5SDimitry Andric while (Tmp.getBoolValue()) { 22520b57cec5SDimitry Andric uint64_t Digit; 22530b57cec5SDimitry Andric udivrem(Tmp, Radix, Tmp, Digit); 22540b57cec5SDimitry Andric assert(Digit < Radix && "divide failed"); 2255*0fca6ea1SDimitry Andric if (InsertSeparators && Pos % Grouping == 0 && Pos > 0) 2256*0fca6ea1SDimitry Andric Str.push_back('\''); 2257*0fca6ea1SDimitry Andric 22580b57cec5SDimitry Andric Str.push_back(Digits[Digit]); 2259*0fca6ea1SDimitry Andric Pos++; 22600b57cec5SDimitry Andric } 22610b57cec5SDimitry Andric } 22620b57cec5SDimitry Andric 22630b57cec5SDimitry Andric // Reverse the digits before returning. 22640b57cec5SDimitry Andric std::reverse(Str.begin()+StartDig, Str.end()); 22650b57cec5SDimitry Andric } 22660b57cec5SDimitry Andric 22670b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 22680b57cec5SDimitry Andric LLVM_DUMP_METHOD void APInt::dump() const { 22690b57cec5SDimitry Andric SmallString<40> S, U; 22700b57cec5SDimitry Andric this->toStringUnsigned(U); 22710b57cec5SDimitry Andric this->toStringSigned(S); 22720b57cec5SDimitry Andric dbgs() << "APInt(" << BitWidth << "b, " 22730b57cec5SDimitry Andric << U << "u " << S << "s)\n"; 22740b57cec5SDimitry Andric } 22750b57cec5SDimitry Andric #endif 22760b57cec5SDimitry Andric 22770b57cec5SDimitry Andric void APInt::print(raw_ostream &OS, bool isSigned) const { 22780b57cec5SDimitry Andric SmallString<40> S; 22790b57cec5SDimitry Andric this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 22800b57cec5SDimitry Andric OS << S; 22810b57cec5SDimitry Andric } 22820b57cec5SDimitry Andric 22830b57cec5SDimitry Andric // This implements a variety of operations on a representation of 22840b57cec5SDimitry Andric // arbitrary precision, two's-complement, bignum integer values. 22850b57cec5SDimitry Andric 22860b57cec5SDimitry Andric // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 22870b57cec5SDimitry Andric // and unrestricting assumption. 22880b57cec5SDimitry Andric static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, 22890b57cec5SDimitry Andric "Part width must be divisible by 2!"); 22900b57cec5SDimitry Andric 2291349cc55cSDimitry Andric // Returns the integer part with the least significant BITS set. 2292349cc55cSDimitry Andric // BITS cannot be zero. 22930b57cec5SDimitry Andric static inline APInt::WordType lowBitMask(unsigned bits) { 22940b57cec5SDimitry Andric assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD); 22950b57cec5SDimitry Andric return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); 22960b57cec5SDimitry Andric } 22970b57cec5SDimitry Andric 2298349cc55cSDimitry Andric /// Returns the value of the lower half of PART. 22990b57cec5SDimitry Andric static inline APInt::WordType lowHalf(APInt::WordType part) { 23000b57cec5SDimitry Andric return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); 23010b57cec5SDimitry Andric } 23020b57cec5SDimitry Andric 2303349cc55cSDimitry Andric /// Returns the value of the upper half of PART. 23040b57cec5SDimitry Andric static inline APInt::WordType highHalf(APInt::WordType part) { 23050b57cec5SDimitry Andric return part >> (APInt::APINT_BITS_PER_WORD / 2); 23060b57cec5SDimitry Andric } 23070b57cec5SDimitry Andric 2308349cc55cSDimitry Andric /// Sets the least significant part of a bignum to the input value, and zeroes 2309349cc55cSDimitry Andric /// out higher parts. 23100b57cec5SDimitry Andric void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { 23110b57cec5SDimitry Andric assert(parts > 0); 23120b57cec5SDimitry Andric dst[0] = part; 23130b57cec5SDimitry Andric for (unsigned i = 1; i < parts; i++) 23140b57cec5SDimitry Andric dst[i] = 0; 23150b57cec5SDimitry Andric } 23160b57cec5SDimitry Andric 2317349cc55cSDimitry Andric /// Assign one bignum to another. 23180b57cec5SDimitry Andric void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { 23190b57cec5SDimitry Andric for (unsigned i = 0; i < parts; i++) 23200b57cec5SDimitry Andric dst[i] = src[i]; 23210b57cec5SDimitry Andric } 23220b57cec5SDimitry Andric 2323349cc55cSDimitry Andric /// Returns true if a bignum is zero, false otherwise. 23240b57cec5SDimitry Andric bool APInt::tcIsZero(const WordType *src, unsigned parts) { 23250b57cec5SDimitry Andric for (unsigned i = 0; i < parts; i++) 23260b57cec5SDimitry Andric if (src[i]) 23270b57cec5SDimitry Andric return false; 23280b57cec5SDimitry Andric 23290b57cec5SDimitry Andric return true; 23300b57cec5SDimitry Andric } 23310b57cec5SDimitry Andric 2332349cc55cSDimitry Andric /// Extract the given bit of a bignum; returns 0 or 1. 23330b57cec5SDimitry Andric int APInt::tcExtractBit(const WordType *parts, unsigned bit) { 23340b57cec5SDimitry Andric return (parts[whichWord(bit)] & maskBit(bit)) != 0; 23350b57cec5SDimitry Andric } 23360b57cec5SDimitry Andric 2337349cc55cSDimitry Andric /// Set the given bit of a bignum. 23380b57cec5SDimitry Andric void APInt::tcSetBit(WordType *parts, unsigned bit) { 23390b57cec5SDimitry Andric parts[whichWord(bit)] |= maskBit(bit); 23400b57cec5SDimitry Andric } 23410b57cec5SDimitry Andric 2342349cc55cSDimitry Andric /// Clears the given bit of a bignum. 23430b57cec5SDimitry Andric void APInt::tcClearBit(WordType *parts, unsigned bit) { 23440b57cec5SDimitry Andric parts[whichWord(bit)] &= ~maskBit(bit); 23450b57cec5SDimitry Andric } 23460b57cec5SDimitry Andric 2347349cc55cSDimitry Andric /// Returns the bit number of the least significant set bit of a number. If the 234806c3fb27SDimitry Andric /// input number has no bits set UINT_MAX is returned. 23490b57cec5SDimitry Andric unsigned APInt::tcLSB(const WordType *parts, unsigned n) { 23500b57cec5SDimitry Andric for (unsigned i = 0; i < n; i++) { 23510b57cec5SDimitry Andric if (parts[i] != 0) { 235206c3fb27SDimitry Andric unsigned lsb = llvm::countr_zero(parts[i]); 23530b57cec5SDimitry Andric return lsb + i * APINT_BITS_PER_WORD; 23540b57cec5SDimitry Andric } 23550b57cec5SDimitry Andric } 23560b57cec5SDimitry Andric 235706c3fb27SDimitry Andric return UINT_MAX; 23580b57cec5SDimitry Andric } 23590b57cec5SDimitry Andric 2360349cc55cSDimitry Andric /// Returns the bit number of the most significant set bit of a number. 236106c3fb27SDimitry Andric /// If the input number has no bits set UINT_MAX is returned. 23620b57cec5SDimitry Andric unsigned APInt::tcMSB(const WordType *parts, unsigned n) { 23630b57cec5SDimitry Andric do { 23640b57cec5SDimitry Andric --n; 23650b57cec5SDimitry Andric 23660b57cec5SDimitry Andric if (parts[n] != 0) { 236706c3fb27SDimitry Andric static_assert(sizeof(parts[n]) <= sizeof(uint64_t)); 236806c3fb27SDimitry Andric unsigned msb = llvm::Log2_64(parts[n]); 23690b57cec5SDimitry Andric 23700b57cec5SDimitry Andric return msb + n * APINT_BITS_PER_WORD; 23710b57cec5SDimitry Andric } 23720b57cec5SDimitry Andric } while (n); 23730b57cec5SDimitry Andric 237406c3fb27SDimitry Andric return UINT_MAX; 23750b57cec5SDimitry Andric } 23760b57cec5SDimitry Andric 2377349cc55cSDimitry Andric /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 2378349cc55cSDimitry Andric /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 2379349cc55cSDimitry Andric /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. 2380349cc55cSDimitry Andric /// */ 23810b57cec5SDimitry Andric void 23820b57cec5SDimitry Andric APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, 23830b57cec5SDimitry Andric unsigned srcBits, unsigned srcLSB) { 23840b57cec5SDimitry Andric unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 23850b57cec5SDimitry Andric assert(dstParts <= dstCount); 23860b57cec5SDimitry Andric 23870b57cec5SDimitry Andric unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; 23880b57cec5SDimitry Andric tcAssign(dst, src + firstSrcPart, dstParts); 23890b57cec5SDimitry Andric 23900b57cec5SDimitry Andric unsigned shift = srcLSB % APINT_BITS_PER_WORD; 23910b57cec5SDimitry Andric tcShiftRight(dst, dstParts, shift); 23920b57cec5SDimitry Andric 2393349cc55cSDimitry Andric // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC 2394349cc55cSDimitry Andric // in DST. If this is less that srcBits, append the rest, else 2395349cc55cSDimitry Andric // clear the high bits. 23960b57cec5SDimitry Andric unsigned n = dstParts * APINT_BITS_PER_WORD - shift; 23970b57cec5SDimitry Andric if (n < srcBits) { 23980b57cec5SDimitry Andric WordType mask = lowBitMask (srcBits - n); 23990b57cec5SDimitry Andric dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 24000b57cec5SDimitry Andric << n % APINT_BITS_PER_WORD); 24010b57cec5SDimitry Andric } else if (n > srcBits) { 24020b57cec5SDimitry Andric if (srcBits % APINT_BITS_PER_WORD) 24030b57cec5SDimitry Andric dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); 24040b57cec5SDimitry Andric } 24050b57cec5SDimitry Andric 2406349cc55cSDimitry Andric // Clear high parts. 24070b57cec5SDimitry Andric while (dstParts < dstCount) 24080b57cec5SDimitry Andric dst[dstParts++] = 0; 24090b57cec5SDimitry Andric } 24100b57cec5SDimitry Andric 2411349cc55cSDimitry Andric //// DST += RHS + C where C is zero or one. Returns the carry flag. 24120b57cec5SDimitry Andric APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, 24130b57cec5SDimitry Andric WordType c, unsigned parts) { 24140b57cec5SDimitry Andric assert(c <= 1); 24150b57cec5SDimitry Andric 24160b57cec5SDimitry Andric for (unsigned i = 0; i < parts; i++) { 24170b57cec5SDimitry Andric WordType l = dst[i]; 24180b57cec5SDimitry Andric if (c) { 24190b57cec5SDimitry Andric dst[i] += rhs[i] + 1; 24200b57cec5SDimitry Andric c = (dst[i] <= l); 24210b57cec5SDimitry Andric } else { 24220b57cec5SDimitry Andric dst[i] += rhs[i]; 24230b57cec5SDimitry Andric c = (dst[i] < l); 24240b57cec5SDimitry Andric } 24250b57cec5SDimitry Andric } 24260b57cec5SDimitry Andric 24270b57cec5SDimitry Andric return c; 24280b57cec5SDimitry Andric } 24290b57cec5SDimitry Andric 24300b57cec5SDimitry Andric /// This function adds a single "word" integer, src, to the multiple 24310b57cec5SDimitry Andric /// "word" integer array, dst[]. dst[] is modified to reflect the addition and 24320b57cec5SDimitry Andric /// 1 is returned if there is a carry out, otherwise 0 is returned. 24330b57cec5SDimitry Andric /// @returns the carry of the addition. 24340b57cec5SDimitry Andric APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, 24350b57cec5SDimitry Andric unsigned parts) { 24360b57cec5SDimitry Andric for (unsigned i = 0; i < parts; ++i) { 24370b57cec5SDimitry Andric dst[i] += src; 24380b57cec5SDimitry Andric if (dst[i] >= src) 24390b57cec5SDimitry Andric return 0; // No need to carry so exit early. 24400b57cec5SDimitry Andric src = 1; // Carry one to next digit. 24410b57cec5SDimitry Andric } 24420b57cec5SDimitry Andric 24430b57cec5SDimitry Andric return 1; 24440b57cec5SDimitry Andric } 24450b57cec5SDimitry Andric 2446349cc55cSDimitry Andric /// DST -= RHS + C where C is zero or one. Returns the carry flag. 24470b57cec5SDimitry Andric APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, 24480b57cec5SDimitry Andric WordType c, unsigned parts) { 24490b57cec5SDimitry Andric assert(c <= 1); 24500b57cec5SDimitry Andric 24510b57cec5SDimitry Andric for (unsigned i = 0; i < parts; i++) { 24520b57cec5SDimitry Andric WordType l = dst[i]; 24530b57cec5SDimitry Andric if (c) { 24540b57cec5SDimitry Andric dst[i] -= rhs[i] + 1; 24550b57cec5SDimitry Andric c = (dst[i] >= l); 24560b57cec5SDimitry Andric } else { 24570b57cec5SDimitry Andric dst[i] -= rhs[i]; 24580b57cec5SDimitry Andric c = (dst[i] > l); 24590b57cec5SDimitry Andric } 24600b57cec5SDimitry Andric } 24610b57cec5SDimitry Andric 24620b57cec5SDimitry Andric return c; 24630b57cec5SDimitry Andric } 24640b57cec5SDimitry Andric 24650b57cec5SDimitry Andric /// This function subtracts a single "word" (64-bit word), src, from 24660b57cec5SDimitry Andric /// the multi-word integer array, dst[], propagating the borrowed 1 value until 24670b57cec5SDimitry Andric /// no further borrowing is needed or it runs out of "words" in dst. The result 24680b57cec5SDimitry Andric /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not 24690b57cec5SDimitry Andric /// exhausted. In other words, if src > dst then this function returns 1, 24700b57cec5SDimitry Andric /// otherwise 0. 24710b57cec5SDimitry Andric /// @returns the borrow out of the subtraction 24720b57cec5SDimitry Andric APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, 24730b57cec5SDimitry Andric unsigned parts) { 24740b57cec5SDimitry Andric for (unsigned i = 0; i < parts; ++i) { 24750b57cec5SDimitry Andric WordType Dst = dst[i]; 24760b57cec5SDimitry Andric dst[i] -= src; 24770b57cec5SDimitry Andric if (src <= Dst) 24780b57cec5SDimitry Andric return 0; // No need to borrow so exit early. 24790b57cec5SDimitry Andric src = 1; // We have to "borrow 1" from next "word" 24800b57cec5SDimitry Andric } 24810b57cec5SDimitry Andric 24820b57cec5SDimitry Andric return 1; 24830b57cec5SDimitry Andric } 24840b57cec5SDimitry Andric 2485349cc55cSDimitry Andric /// Negate a bignum in-place. 24860b57cec5SDimitry Andric void APInt::tcNegate(WordType *dst, unsigned parts) { 24870b57cec5SDimitry Andric tcComplement(dst, parts); 24880b57cec5SDimitry Andric tcIncrement(dst, parts); 24890b57cec5SDimitry Andric } 24900b57cec5SDimitry Andric 2491349cc55cSDimitry Andric /// DST += SRC * MULTIPLIER + CARRY if add is true 2492349cc55cSDimitry Andric /// DST = SRC * MULTIPLIER + CARRY if add is false 2493349cc55cSDimitry Andric /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2494349cc55cSDimitry Andric /// they must start at the same point, i.e. DST == SRC. 2495349cc55cSDimitry Andric /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2496349cc55cSDimitry Andric /// returned. Otherwise DST is filled with the least significant 2497349cc55cSDimitry Andric /// DSTPARTS parts of the result, and if all of the omitted higher 2498349cc55cSDimitry Andric /// parts were zero return zero, otherwise overflow occurred and 2499349cc55cSDimitry Andric /// return one. 25000b57cec5SDimitry Andric int APInt::tcMultiplyPart(WordType *dst, const WordType *src, 25010b57cec5SDimitry Andric WordType multiplier, WordType carry, 25020b57cec5SDimitry Andric unsigned srcParts, unsigned dstParts, 25030b57cec5SDimitry Andric bool add) { 2504349cc55cSDimitry Andric // Otherwise our writes of DST kill our later reads of SRC. 25050b57cec5SDimitry Andric assert(dst <= src || dst >= src + srcParts); 25060b57cec5SDimitry Andric assert(dstParts <= srcParts + 1); 25070b57cec5SDimitry Andric 2508349cc55cSDimitry Andric // N loops; minimum of dstParts and srcParts. 25090b57cec5SDimitry Andric unsigned n = std::min(dstParts, srcParts); 25100b57cec5SDimitry Andric 25110b57cec5SDimitry Andric for (unsigned i = 0; i < n; i++) { 2512349cc55cSDimitry Andric // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2513349cc55cSDimitry Andric // This cannot overflow, because: 2514349cc55cSDimitry Andric // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2515349cc55cSDimitry Andric // which is less than n^2. 2516349cc55cSDimitry Andric WordType srcPart = src[i]; 2517349cc55cSDimitry Andric WordType low, mid, high; 25180b57cec5SDimitry Andric if (multiplier == 0 || srcPart == 0) { 25190b57cec5SDimitry Andric low = carry; 25200b57cec5SDimitry Andric high = 0; 25210b57cec5SDimitry Andric } else { 25220b57cec5SDimitry Andric low = lowHalf(srcPart) * lowHalf(multiplier); 25230b57cec5SDimitry Andric high = highHalf(srcPart) * highHalf(multiplier); 25240b57cec5SDimitry Andric 25250b57cec5SDimitry Andric mid = lowHalf(srcPart) * highHalf(multiplier); 25260b57cec5SDimitry Andric high += highHalf(mid); 25270b57cec5SDimitry Andric mid <<= APINT_BITS_PER_WORD / 2; 25280b57cec5SDimitry Andric if (low + mid < low) 25290b57cec5SDimitry Andric high++; 25300b57cec5SDimitry Andric low += mid; 25310b57cec5SDimitry Andric 25320b57cec5SDimitry Andric mid = highHalf(srcPart) * lowHalf(multiplier); 25330b57cec5SDimitry Andric high += highHalf(mid); 25340b57cec5SDimitry Andric mid <<= APINT_BITS_PER_WORD / 2; 25350b57cec5SDimitry Andric if (low + mid < low) 25360b57cec5SDimitry Andric high++; 25370b57cec5SDimitry Andric low += mid; 25380b57cec5SDimitry Andric 2539349cc55cSDimitry Andric // Now add carry. 25400b57cec5SDimitry Andric if (low + carry < low) 25410b57cec5SDimitry Andric high++; 25420b57cec5SDimitry Andric low += carry; 25430b57cec5SDimitry Andric } 25440b57cec5SDimitry Andric 25450b57cec5SDimitry Andric if (add) { 2546349cc55cSDimitry Andric // And now DST[i], and store the new low part there. 25470b57cec5SDimitry Andric if (low + dst[i] < low) 25480b57cec5SDimitry Andric high++; 25490b57cec5SDimitry Andric dst[i] += low; 25500b57cec5SDimitry Andric } else 25510b57cec5SDimitry Andric dst[i] = low; 25520b57cec5SDimitry Andric 25530b57cec5SDimitry Andric carry = high; 25540b57cec5SDimitry Andric } 25550b57cec5SDimitry Andric 25560b57cec5SDimitry Andric if (srcParts < dstParts) { 2557349cc55cSDimitry Andric // Full multiplication, there is no overflow. 25580b57cec5SDimitry Andric assert(srcParts + 1 == dstParts); 25590b57cec5SDimitry Andric dst[srcParts] = carry; 25600b57cec5SDimitry Andric return 0; 25610b57cec5SDimitry Andric } 25620b57cec5SDimitry Andric 2563349cc55cSDimitry Andric // We overflowed if there is carry. 25640b57cec5SDimitry Andric if (carry) 25650b57cec5SDimitry Andric return 1; 25660b57cec5SDimitry Andric 2567349cc55cSDimitry Andric // We would overflow if any significant unwritten parts would be 2568349cc55cSDimitry Andric // non-zero. This is true if any remaining src parts are non-zero 2569349cc55cSDimitry Andric // and the multiplier is non-zero. 25700b57cec5SDimitry Andric if (multiplier) 25710b57cec5SDimitry Andric for (unsigned i = dstParts; i < srcParts; i++) 25720b57cec5SDimitry Andric if (src[i]) 25730b57cec5SDimitry Andric return 1; 25740b57cec5SDimitry Andric 2575349cc55cSDimitry Andric // We fitted in the narrow destination. 25760b57cec5SDimitry Andric return 0; 25770b57cec5SDimitry Andric } 25780b57cec5SDimitry Andric 2579349cc55cSDimitry Andric /// DST = LHS * RHS, where DST has the same width as the operands and 2580349cc55cSDimitry Andric /// is filled with the least significant parts of the result. Returns 2581349cc55cSDimitry Andric /// one if overflow occurred, otherwise zero. DST must be disjoint 2582349cc55cSDimitry Andric /// from both operands. 25830b57cec5SDimitry Andric int APInt::tcMultiply(WordType *dst, const WordType *lhs, 25840b57cec5SDimitry Andric const WordType *rhs, unsigned parts) { 25850b57cec5SDimitry Andric assert(dst != lhs && dst != rhs); 25860b57cec5SDimitry Andric 25870b57cec5SDimitry Andric int overflow = 0; 25880b57cec5SDimitry Andric 2589*0fca6ea1SDimitry Andric for (unsigned i = 0; i < parts; i++) { 2590*0fca6ea1SDimitry Andric // Don't accumulate on the first iteration so we don't need to initalize 2591*0fca6ea1SDimitry Andric // dst to 0. 2592*0fca6ea1SDimitry Andric overflow |= 2593*0fca6ea1SDimitry Andric tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, parts - i, i != 0); 2594*0fca6ea1SDimitry Andric } 25950b57cec5SDimitry Andric 25960b57cec5SDimitry Andric return overflow; 25970b57cec5SDimitry Andric } 25980b57cec5SDimitry Andric 25990b57cec5SDimitry Andric /// DST = LHS * RHS, where DST has width the sum of the widths of the 26000b57cec5SDimitry Andric /// operands. No overflow occurs. DST must be disjoint from both operands. 26010b57cec5SDimitry Andric void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, 26020b57cec5SDimitry Andric const WordType *rhs, unsigned lhsParts, 26030b57cec5SDimitry Andric unsigned rhsParts) { 2604349cc55cSDimitry Andric // Put the narrower number on the LHS for less loops below. 26050b57cec5SDimitry Andric if (lhsParts > rhsParts) 26060b57cec5SDimitry Andric return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 26070b57cec5SDimitry Andric 26080b57cec5SDimitry Andric assert(dst != lhs && dst != rhs); 26090b57cec5SDimitry Andric 2610*0fca6ea1SDimitry Andric for (unsigned i = 0; i < lhsParts; i++) { 2611*0fca6ea1SDimitry Andric // Don't accumulate on the first iteration so we don't need to initalize 2612*0fca6ea1SDimitry Andric // dst to 0. 2613*0fca6ea1SDimitry Andric tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, i != 0); 2614*0fca6ea1SDimitry Andric } 26150b57cec5SDimitry Andric } 26160b57cec5SDimitry Andric 2617349cc55cSDimitry Andric // If RHS is zero LHS and REMAINDER are left unchanged, return one. 2618349cc55cSDimitry Andric // Otherwise set LHS to LHS / RHS with the fractional part discarded, 2619349cc55cSDimitry Andric // set REMAINDER to the remainder, return zero. i.e. 2620349cc55cSDimitry Andric // 2621349cc55cSDimitry Andric // OLD_LHS = RHS * LHS + REMAINDER 2622349cc55cSDimitry Andric // 2623349cc55cSDimitry Andric // SCRATCH is a bignum of the same size as the operands and result for 2624349cc55cSDimitry Andric // use by the routine; its contents need not be initialized and are 2625349cc55cSDimitry Andric // destroyed. LHS, REMAINDER and SCRATCH must be distinct. 26260b57cec5SDimitry Andric int APInt::tcDivide(WordType *lhs, const WordType *rhs, 26270b57cec5SDimitry Andric WordType *remainder, WordType *srhs, 26280b57cec5SDimitry Andric unsigned parts) { 26290b57cec5SDimitry Andric assert(lhs != remainder && lhs != srhs && remainder != srhs); 26300b57cec5SDimitry Andric 26310b57cec5SDimitry Andric unsigned shiftCount = tcMSB(rhs, parts) + 1; 26320b57cec5SDimitry Andric if (shiftCount == 0) 26330b57cec5SDimitry Andric return true; 26340b57cec5SDimitry Andric 26350b57cec5SDimitry Andric shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; 26360b57cec5SDimitry Andric unsigned n = shiftCount / APINT_BITS_PER_WORD; 26370b57cec5SDimitry Andric WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); 26380b57cec5SDimitry Andric 26390b57cec5SDimitry Andric tcAssign(srhs, rhs, parts); 26400b57cec5SDimitry Andric tcShiftLeft(srhs, parts, shiftCount); 26410b57cec5SDimitry Andric tcAssign(remainder, lhs, parts); 26420b57cec5SDimitry Andric tcSet(lhs, 0, parts); 26430b57cec5SDimitry Andric 2644349cc55cSDimitry Andric // Loop, subtracting SRHS if REMAINDER is greater and adding that to the 2645349cc55cSDimitry Andric // total. 26460b57cec5SDimitry Andric for (;;) { 26470b57cec5SDimitry Andric int compare = tcCompare(remainder, srhs, parts); 26480b57cec5SDimitry Andric if (compare >= 0) { 26490b57cec5SDimitry Andric tcSubtract(remainder, srhs, 0, parts); 26500b57cec5SDimitry Andric lhs[n] |= mask; 26510b57cec5SDimitry Andric } 26520b57cec5SDimitry Andric 26530b57cec5SDimitry Andric if (shiftCount == 0) 26540b57cec5SDimitry Andric break; 26550b57cec5SDimitry Andric shiftCount--; 26560b57cec5SDimitry Andric tcShiftRight(srhs, parts, 1); 26570b57cec5SDimitry Andric if ((mask >>= 1) == 0) { 26580b57cec5SDimitry Andric mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); 26590b57cec5SDimitry Andric n--; 26600b57cec5SDimitry Andric } 26610b57cec5SDimitry Andric } 26620b57cec5SDimitry Andric 26630b57cec5SDimitry Andric return false; 26640b57cec5SDimitry Andric } 26650b57cec5SDimitry Andric 2666*0fca6ea1SDimitry Andric /// Shift a bignum left Count bits in-place. Shifted in bits are zero. There are 26670b57cec5SDimitry Andric /// no restrictions on Count. 26680b57cec5SDimitry Andric void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { 26690b57cec5SDimitry Andric // Don't bother performing a no-op shift. 26700b57cec5SDimitry Andric if (!Count) 26710b57cec5SDimitry Andric return; 26720b57cec5SDimitry Andric 26730b57cec5SDimitry Andric // WordShift is the inter-part shift; BitShift is the intra-part shift. 26740b57cec5SDimitry Andric unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 26750b57cec5SDimitry Andric unsigned BitShift = Count % APINT_BITS_PER_WORD; 26760b57cec5SDimitry Andric 26770b57cec5SDimitry Andric // Fastpath for moving by whole words. 26780b57cec5SDimitry Andric if (BitShift == 0) { 26790b57cec5SDimitry Andric std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); 26800b57cec5SDimitry Andric } else { 26810b57cec5SDimitry Andric while (Words-- > WordShift) { 26820b57cec5SDimitry Andric Dst[Words] = Dst[Words - WordShift] << BitShift; 26830b57cec5SDimitry Andric if (Words > WordShift) 26840b57cec5SDimitry Andric Dst[Words] |= 26850b57cec5SDimitry Andric Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); 26860b57cec5SDimitry Andric } 26870b57cec5SDimitry Andric } 26880b57cec5SDimitry Andric 26890b57cec5SDimitry Andric // Fill in the remainder with 0s. 26900b57cec5SDimitry Andric std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); 26910b57cec5SDimitry Andric } 26920b57cec5SDimitry Andric 26930b57cec5SDimitry Andric /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There 26940b57cec5SDimitry Andric /// are no restrictions on Count. 26950b57cec5SDimitry Andric void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { 26960b57cec5SDimitry Andric // Don't bother performing a no-op shift. 26970b57cec5SDimitry Andric if (!Count) 26980b57cec5SDimitry Andric return; 26990b57cec5SDimitry Andric 27000b57cec5SDimitry Andric // WordShift is the inter-part shift; BitShift is the intra-part shift. 27010b57cec5SDimitry Andric unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); 27020b57cec5SDimitry Andric unsigned BitShift = Count % APINT_BITS_PER_WORD; 27030b57cec5SDimitry Andric 27040b57cec5SDimitry Andric unsigned WordsToMove = Words - WordShift; 27050b57cec5SDimitry Andric // Fastpath for moving by whole words. 27060b57cec5SDimitry Andric if (BitShift == 0) { 27070b57cec5SDimitry Andric std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); 27080b57cec5SDimitry Andric } else { 27090b57cec5SDimitry Andric for (unsigned i = 0; i != WordsToMove; ++i) { 27100b57cec5SDimitry Andric Dst[i] = Dst[i + WordShift] >> BitShift; 27110b57cec5SDimitry Andric if (i + 1 != WordsToMove) 27120b57cec5SDimitry Andric Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); 27130b57cec5SDimitry Andric } 27140b57cec5SDimitry Andric } 27150b57cec5SDimitry Andric 27160b57cec5SDimitry Andric // Fill in the remainder with 0s. 27170b57cec5SDimitry Andric std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); 27180b57cec5SDimitry Andric } 27190b57cec5SDimitry Andric 2720349cc55cSDimitry Andric // Comparison (unsigned) of two bignums. 27210b57cec5SDimitry Andric int APInt::tcCompare(const WordType *lhs, const WordType *rhs, 27220b57cec5SDimitry Andric unsigned parts) { 27230b57cec5SDimitry Andric while (parts) { 27240b57cec5SDimitry Andric parts--; 27250b57cec5SDimitry Andric if (lhs[parts] != rhs[parts]) 27260b57cec5SDimitry Andric return (lhs[parts] > rhs[parts]) ? 1 : -1; 27270b57cec5SDimitry Andric } 27280b57cec5SDimitry Andric 27290b57cec5SDimitry Andric return 0; 27300b57cec5SDimitry Andric } 27310b57cec5SDimitry Andric 27320b57cec5SDimitry Andric APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, 27330b57cec5SDimitry Andric APInt::Rounding RM) { 27340b57cec5SDimitry Andric // Currently udivrem always rounds down. 27350b57cec5SDimitry Andric switch (RM) { 27360b57cec5SDimitry Andric case APInt::Rounding::DOWN: 27370b57cec5SDimitry Andric case APInt::Rounding::TOWARD_ZERO: 27380b57cec5SDimitry Andric return A.udiv(B); 27390b57cec5SDimitry Andric case APInt::Rounding::UP: { 27400b57cec5SDimitry Andric APInt Quo, Rem; 27410b57cec5SDimitry Andric APInt::udivrem(A, B, Quo, Rem); 2742349cc55cSDimitry Andric if (Rem.isZero()) 27430b57cec5SDimitry Andric return Quo; 27440b57cec5SDimitry Andric return Quo + 1; 27450b57cec5SDimitry Andric } 27460b57cec5SDimitry Andric } 27470b57cec5SDimitry Andric llvm_unreachable("Unknown APInt::Rounding enum"); 27480b57cec5SDimitry Andric } 27490b57cec5SDimitry Andric 27500b57cec5SDimitry Andric APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, 27510b57cec5SDimitry Andric APInt::Rounding RM) { 27520b57cec5SDimitry Andric switch (RM) { 27530b57cec5SDimitry Andric case APInt::Rounding::DOWN: 27540b57cec5SDimitry Andric case APInt::Rounding::UP: { 27550b57cec5SDimitry Andric APInt Quo, Rem; 27560b57cec5SDimitry Andric APInt::sdivrem(A, B, Quo, Rem); 2757349cc55cSDimitry Andric if (Rem.isZero()) 27580b57cec5SDimitry Andric return Quo; 27590b57cec5SDimitry Andric // This algorithm deals with arbitrary rounding mode used by sdivrem. 27600b57cec5SDimitry Andric // We want to check whether the non-integer part of the mathematical value 27610b57cec5SDimitry Andric // is negative or not. If the non-integer part is negative, we need to round 27620b57cec5SDimitry Andric // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's 27630b57cec5SDimitry Andric // already rounded down. 27640b57cec5SDimitry Andric if (RM == APInt::Rounding::DOWN) { 27650b57cec5SDimitry Andric if (Rem.isNegative() != B.isNegative()) 27660b57cec5SDimitry Andric return Quo - 1; 27670b57cec5SDimitry Andric return Quo; 27680b57cec5SDimitry Andric } 27690b57cec5SDimitry Andric if (Rem.isNegative() != B.isNegative()) 27700b57cec5SDimitry Andric return Quo; 27710b57cec5SDimitry Andric return Quo + 1; 27720b57cec5SDimitry Andric } 2773480093f4SDimitry Andric // Currently sdiv rounds towards zero. 27740b57cec5SDimitry Andric case APInt::Rounding::TOWARD_ZERO: 27750b57cec5SDimitry Andric return A.sdiv(B); 27760b57cec5SDimitry Andric } 27770b57cec5SDimitry Andric llvm_unreachable("Unknown APInt::Rounding enum"); 27780b57cec5SDimitry Andric } 27790b57cec5SDimitry Andric 2780bdd1243dSDimitry Andric std::optional<APInt> 27810b57cec5SDimitry Andric llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 27820b57cec5SDimitry Andric unsigned RangeWidth) { 27830b57cec5SDimitry Andric unsigned CoeffWidth = A.getBitWidth(); 27840b57cec5SDimitry Andric assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()); 27850b57cec5SDimitry Andric assert(RangeWidth <= CoeffWidth && 27860b57cec5SDimitry Andric "Value range width should be less than coefficient width"); 27870b57cec5SDimitry Andric assert(RangeWidth > 1 && "Value range bit width should be > 1"); 27880b57cec5SDimitry Andric 27890b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B 27900b57cec5SDimitry Andric << "x + " << C << ", rw:" << RangeWidth << '\n'); 27910b57cec5SDimitry Andric 27920b57cec5SDimitry Andric // Identify 0 as a (non)solution immediately. 2793349cc55cSDimitry Andric if (C.sextOrTrunc(RangeWidth).isZero()) { 27940b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n"); 27950b57cec5SDimitry Andric return APInt(CoeffWidth, 0); 27960b57cec5SDimitry Andric } 27970b57cec5SDimitry Andric 27980b57cec5SDimitry Andric // The result of APInt arithmetic has the same bit width as the operands, 27990b57cec5SDimitry Andric // so it can actually lose high bits. A product of two n-bit integers needs 28000b57cec5SDimitry Andric // 2n-1 bits to represent the full value. 28010b57cec5SDimitry Andric // The operation done below (on quadratic coefficients) that can produce 28020b57cec5SDimitry Andric // the largest value is the evaluation of the equation during bisection, 28030b57cec5SDimitry Andric // which needs 3 times the bitwidth of the coefficient, so the total number 28040b57cec5SDimitry Andric // of required bits is 3n. 28050b57cec5SDimitry Andric // 28060b57cec5SDimitry Andric // The purpose of this extension is to simulate the set Z of all integers, 28070b57cec5SDimitry Andric // where n+1 > n for all n in Z. In Z it makes sense to talk about positive 28080b57cec5SDimitry Andric // and negative numbers (not so much in a modulo arithmetic). The method 28090b57cec5SDimitry Andric // used to solve the equation is based on the standard formula for real 28100b57cec5SDimitry Andric // numbers, and uses the concepts of "positive" and "negative" with their 28110b57cec5SDimitry Andric // usual meanings. 28120b57cec5SDimitry Andric CoeffWidth *= 3; 28130b57cec5SDimitry Andric A = A.sext(CoeffWidth); 28140b57cec5SDimitry Andric B = B.sext(CoeffWidth); 28150b57cec5SDimitry Andric C = C.sext(CoeffWidth); 28160b57cec5SDimitry Andric 28170b57cec5SDimitry Andric // Make A > 0 for simplicity. Negate cannot overflow at this point because 28180b57cec5SDimitry Andric // the bit width has increased. 28190b57cec5SDimitry Andric if (A.isNegative()) { 28200b57cec5SDimitry Andric A.negate(); 28210b57cec5SDimitry Andric B.negate(); 28220b57cec5SDimitry Andric C.negate(); 28230b57cec5SDimitry Andric } 28240b57cec5SDimitry Andric 28250b57cec5SDimitry Andric // Solving an equation q(x) = 0 with coefficients in modular arithmetic 28260b57cec5SDimitry Andric // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., 28270b57cec5SDimitry Andric // and R = 2^BitWidth. 28280b57cec5SDimitry Andric // Since we're trying not only to find exact solutions, but also values 28290b57cec5SDimitry Andric // that "wrap around", such a set will always have a solution, i.e. an x 28300b57cec5SDimitry Andric // that satisfies at least one of the equations, or such that |q(x)| 28310b57cec5SDimitry Andric // exceeds kR, while |q(x-1)| for the same k does not. 28320b57cec5SDimitry Andric // 28330b57cec5SDimitry Andric // We need to find a value k, such that Ax^2 + Bx + C = kR will have a 28340b57cec5SDimitry Andric // positive solution n (in the above sense), and also such that the n 28350b57cec5SDimitry Andric // will be the least among all solutions corresponding to k = 0, 1, ... 28360b57cec5SDimitry Andric // (more precisely, the least element in the set 28370b57cec5SDimitry Andric // { n(k) | k is such that a solution n(k) exists }). 28380b57cec5SDimitry Andric // 28390b57cec5SDimitry Andric // Consider the parabola (over real numbers) that corresponds to the 28400b57cec5SDimitry Andric // quadratic equation. Since A > 0, the arms of the parabola will point 28410b57cec5SDimitry Andric // up. Picking different values of k will shift it up and down by R. 28420b57cec5SDimitry Andric // 28430b57cec5SDimitry Andric // We want to shift the parabola in such a way as to reduce the problem 28440b57cec5SDimitry Andric // of solving q(x) = kR to solving shifted_q(x) = 0. 28450b57cec5SDimitry Andric // (The interesting solutions are the ceilings of the real number 28460b57cec5SDimitry Andric // solutions.) 28470b57cec5SDimitry Andric APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); 28480b57cec5SDimitry Andric APInt TwoA = 2 * A; 28490b57cec5SDimitry Andric APInt SqrB = B * B; 28500b57cec5SDimitry Andric bool PickLow; 28510b57cec5SDimitry Andric 28520b57cec5SDimitry Andric auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { 28530b57cec5SDimitry Andric assert(A.isStrictlyPositive()); 28540b57cec5SDimitry Andric APInt T = V.abs().urem(A); 2855349cc55cSDimitry Andric if (T.isZero()) 28560b57cec5SDimitry Andric return V; 28570b57cec5SDimitry Andric return V.isNegative() ? V+T : V+(A-T); 28580b57cec5SDimitry Andric }; 28590b57cec5SDimitry Andric 28600b57cec5SDimitry Andric // The vertex of the parabola is at -B/2A, but since A > 0, it's negative 28610b57cec5SDimitry Andric // iff B is positive. 28620b57cec5SDimitry Andric if (B.isNonNegative()) { 28630b57cec5SDimitry Andric // If B >= 0, the vertex it at a negative location (or at 0), so in 28640b57cec5SDimitry Andric // order to have a non-negative solution we need to pick k that makes 28650b57cec5SDimitry Andric // C-kR negative. To satisfy all the requirements for the solution 28660b57cec5SDimitry Andric // that we are looking for, it needs to be closest to 0 of all k. 28670b57cec5SDimitry Andric C = C.srem(R); 28680b57cec5SDimitry Andric if (C.isStrictlyPositive()) 28690b57cec5SDimitry Andric C -= R; 28700b57cec5SDimitry Andric // Pick the greater solution. 28710b57cec5SDimitry Andric PickLow = false; 28720b57cec5SDimitry Andric } else { 28730b57cec5SDimitry Andric // If B < 0, the vertex is at a positive location. For any solution 28740b57cec5SDimitry Andric // to exist, the discriminant must be non-negative. This means that 28750b57cec5SDimitry Andric // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a 28760b57cec5SDimitry Andric // lower bound on values of k: kR >= C - B^2/4A. 28770b57cec5SDimitry Andric APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. 28780b57cec5SDimitry Andric // Round LowkR up (towards +inf) to the nearest kR. 28790b57cec5SDimitry Andric LowkR = RoundUp(LowkR, R); 28800b57cec5SDimitry Andric 28810b57cec5SDimitry Andric // If there exists k meeting the condition above, and such that 28820b57cec5SDimitry Andric // C-kR > 0, there will be two positive real number solutions of 28830b57cec5SDimitry Andric // q(x) = kR. Out of all such values of k, pick the one that makes 28840b57cec5SDimitry Andric // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). 28850b57cec5SDimitry Andric // In other words, find maximum k such that LowkR <= kR < C. 28860b57cec5SDimitry Andric if (C.sgt(LowkR)) { 28870b57cec5SDimitry Andric // If LowkR < C, then such a k is guaranteed to exist because 28880b57cec5SDimitry Andric // LowkR itself is a multiple of R. 28890b57cec5SDimitry Andric C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) 28900b57cec5SDimitry Andric // Pick the smaller solution. 28910b57cec5SDimitry Andric PickLow = true; 28920b57cec5SDimitry Andric } else { 28930b57cec5SDimitry Andric // If C-kR < 0 for all potential k's, it means that one solution 28940b57cec5SDimitry Andric // will be negative, while the other will be positive. The positive 28950b57cec5SDimitry Andric // solution will shift towards 0 if the parabola is moved up. 28960b57cec5SDimitry Andric // Pick the kR closest to the lower bound (i.e. make C-kR closest 28970b57cec5SDimitry Andric // to 0, or in other words, out of all parabolas that have solutions, 28980b57cec5SDimitry Andric // pick the one that is the farthest "up"). 28990b57cec5SDimitry Andric // Since LowkR is itself a multiple of R, simply take C-LowkR. 29000b57cec5SDimitry Andric C -= LowkR; 29010b57cec5SDimitry Andric // Pick the greater solution. 29020b57cec5SDimitry Andric PickLow = false; 29030b57cec5SDimitry Andric } 29040b57cec5SDimitry Andric } 29050b57cec5SDimitry Andric 29060b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " 29070b57cec5SDimitry Andric << B << "x + " << C << ", rw:" << RangeWidth << '\n'); 29080b57cec5SDimitry Andric 29090b57cec5SDimitry Andric APInt D = SqrB - 4*A*C; 29100b57cec5SDimitry Andric assert(D.isNonNegative() && "Negative discriminant"); 29110b57cec5SDimitry Andric APInt SQ = D.sqrt(); 29120b57cec5SDimitry Andric 29130b57cec5SDimitry Andric APInt Q = SQ * SQ; 29140b57cec5SDimitry Andric bool InexactSQ = Q != D; 29150b57cec5SDimitry Andric // The calculated SQ may actually be greater than the exact (non-integer) 2916480093f4SDimitry Andric // value. If that's the case, decrement SQ to get a value that is lower. 29170b57cec5SDimitry Andric if (Q.sgt(D)) 29180b57cec5SDimitry Andric SQ -= 1; 29190b57cec5SDimitry Andric 29200b57cec5SDimitry Andric APInt X; 29210b57cec5SDimitry Andric APInt Rem; 29220b57cec5SDimitry Andric 29230b57cec5SDimitry Andric // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. 29240b57cec5SDimitry Andric // When using the quadratic formula directly, the calculated low root 29250b57cec5SDimitry Andric // may be greater than the exact one, since we would be subtracting SQ. 29260b57cec5SDimitry Andric // To make sure that the calculated root is not greater than the exact 29270b57cec5SDimitry Andric // one, subtract SQ+1 when calculating the low root (for inexact value 29280b57cec5SDimitry Andric // of SQ). 29290b57cec5SDimitry Andric if (PickLow) 29300b57cec5SDimitry Andric APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); 29310b57cec5SDimitry Andric else 29320b57cec5SDimitry Andric APInt::sdivrem(-B + SQ, TwoA, X, Rem); 29330b57cec5SDimitry Andric 29340b57cec5SDimitry Andric // The updated coefficients should be such that the (exact) solution is 29350b57cec5SDimitry Andric // positive. Since APInt division rounds towards 0, the calculated one 29360b57cec5SDimitry Andric // can be 0, but cannot be negative. 29370b57cec5SDimitry Andric assert(X.isNonNegative() && "Solution should be non-negative"); 29380b57cec5SDimitry Andric 2939349cc55cSDimitry Andric if (!InexactSQ && Rem.isZero()) { 29400b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n'); 29410b57cec5SDimitry Andric return X; 29420b57cec5SDimitry Andric } 29430b57cec5SDimitry Andric 29440b57cec5SDimitry Andric assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D"); 29450b57cec5SDimitry Andric // The exact value of the square root of D should be between SQ and SQ+1. 29460b57cec5SDimitry Andric // This implies that the solution should be between that corresponding to 29470b57cec5SDimitry Andric // SQ (i.e. X) and that corresponding to SQ+1. 29480b57cec5SDimitry Andric // 29490b57cec5SDimitry Andric // The calculated X cannot be greater than the exact (real) solution. 29500b57cec5SDimitry Andric // Actually it must be strictly less than the exact solution, while 29510b57cec5SDimitry Andric // X+1 will be greater than or equal to it. 29520b57cec5SDimitry Andric 29530b57cec5SDimitry Andric APInt VX = (A*X + B)*X + C; 29540b57cec5SDimitry Andric APInt VY = VX + TwoA*X + A + B; 2955349cc55cSDimitry Andric bool SignChange = 2956349cc55cSDimitry Andric VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); 29570b57cec5SDimitry Andric // If the sign did not change between X and X+1, X is not a valid solution. 29580b57cec5SDimitry Andric // This could happen when the actual (exact) roots don't have an integer 29590b57cec5SDimitry Andric // between them, so they would both be contained between X and X+1. 29600b57cec5SDimitry Andric if (!SignChange) { 29610b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n"); 2962bdd1243dSDimitry Andric return std::nullopt; 29630b57cec5SDimitry Andric } 29640b57cec5SDimitry Andric 29650b57cec5SDimitry Andric X += 1; 29660b57cec5SDimitry Andric LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n'); 29670b57cec5SDimitry Andric return X; 29680b57cec5SDimitry Andric } 29690b57cec5SDimitry Andric 2970bdd1243dSDimitry Andric std::optional<unsigned> 2971480093f4SDimitry Andric llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { 2972480093f4SDimitry Andric assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth"); 2973480093f4SDimitry Andric if (A == B) 2974bdd1243dSDimitry Andric return std::nullopt; 297506c3fb27SDimitry Andric return A.getBitWidth() - ((A ^ B).countl_zero() + 1); 2976480093f4SDimitry Andric } 2977480093f4SDimitry Andric 297881ad6265SDimitry Andric APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, 297981ad6265SDimitry Andric bool MatchAllBits) { 2980349cc55cSDimitry Andric unsigned OldBitWidth = A.getBitWidth(); 2981349cc55cSDimitry Andric assert((((OldBitWidth % NewBitWidth) == 0) || 2982349cc55cSDimitry Andric ((NewBitWidth % OldBitWidth) == 0)) && 2983349cc55cSDimitry Andric "One size should be a multiple of the other one. " 2984349cc55cSDimitry Andric "Can't do fractional scaling."); 2985349cc55cSDimitry Andric 2986349cc55cSDimitry Andric // Check for matching bitwidths. 2987349cc55cSDimitry Andric if (OldBitWidth == NewBitWidth) 2988349cc55cSDimitry Andric return A; 2989349cc55cSDimitry Andric 2990349cc55cSDimitry Andric APInt NewA = APInt::getZero(NewBitWidth); 2991349cc55cSDimitry Andric 2992349cc55cSDimitry Andric // Check for null input. 2993349cc55cSDimitry Andric if (A.isZero()) 2994349cc55cSDimitry Andric return NewA; 2995349cc55cSDimitry Andric 2996349cc55cSDimitry Andric if (NewBitWidth > OldBitWidth) { 2997349cc55cSDimitry Andric // Repeat bits. 2998349cc55cSDimitry Andric unsigned Scale = NewBitWidth / OldBitWidth; 2999349cc55cSDimitry Andric for (unsigned i = 0; i != OldBitWidth; ++i) 3000349cc55cSDimitry Andric if (A[i]) 3001349cc55cSDimitry Andric NewA.setBits(i * Scale, (i + 1) * Scale); 3002349cc55cSDimitry Andric } else { 3003349cc55cSDimitry Andric unsigned Scale = OldBitWidth / NewBitWidth; 300481ad6265SDimitry Andric for (unsigned i = 0; i != NewBitWidth; ++i) { 300581ad6265SDimitry Andric if (MatchAllBits) { 300681ad6265SDimitry Andric if (A.extractBits(Scale, i * Scale).isAllOnes()) 300781ad6265SDimitry Andric NewA.setBit(i); 300881ad6265SDimitry Andric } else { 3009349cc55cSDimitry Andric if (!A.extractBits(Scale, i * Scale).isZero()) 3010349cc55cSDimitry Andric NewA.setBit(i); 3011349cc55cSDimitry Andric } 301281ad6265SDimitry Andric } 301381ad6265SDimitry Andric } 3014349cc55cSDimitry Andric 3015349cc55cSDimitry Andric return NewA; 3016349cc55cSDimitry Andric } 3017349cc55cSDimitry Andric 30180b57cec5SDimitry Andric /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 30190b57cec5SDimitry Andric /// with the integer held in IntVal. 30200b57cec5SDimitry Andric void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 30210b57cec5SDimitry Andric unsigned StoreBytes) { 30220b57cec5SDimitry Andric assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 30230b57cec5SDimitry Andric const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 30240b57cec5SDimitry Andric 30250b57cec5SDimitry Andric if (sys::IsLittleEndianHost) { 30260b57cec5SDimitry Andric // Little-endian host - the source is ordered from LSB to MSB. Order the 30270b57cec5SDimitry Andric // destination from LSB to MSB: Do a straight copy. 30280b57cec5SDimitry Andric memcpy(Dst, Src, StoreBytes); 30290b57cec5SDimitry Andric } else { 30300b57cec5SDimitry Andric // Big-endian host - the source is an array of 64 bit words ordered from 30310b57cec5SDimitry Andric // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 30320b57cec5SDimitry Andric // from MSB to LSB: Reverse the word order, but not the bytes in a word. 30330b57cec5SDimitry Andric while (StoreBytes > sizeof(uint64_t)) { 30340b57cec5SDimitry Andric StoreBytes -= sizeof(uint64_t); 30350b57cec5SDimitry Andric // May not be aligned so use memcpy. 30360b57cec5SDimitry Andric memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 30370b57cec5SDimitry Andric Src += sizeof(uint64_t); 30380b57cec5SDimitry Andric } 30390b57cec5SDimitry Andric 30400b57cec5SDimitry Andric memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 30410b57cec5SDimitry Andric } 30420b57cec5SDimitry Andric } 30430b57cec5SDimitry Andric 30440b57cec5SDimitry Andric /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 30450b57cec5SDimitry Andric /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 30465ffd83dbSDimitry Andric void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, 30475ffd83dbSDimitry Andric unsigned LoadBytes) { 30480b57cec5SDimitry Andric assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 30490b57cec5SDimitry Andric uint8_t *Dst = reinterpret_cast<uint8_t *>( 30500b57cec5SDimitry Andric const_cast<uint64_t *>(IntVal.getRawData())); 30510b57cec5SDimitry Andric 30520b57cec5SDimitry Andric if (sys::IsLittleEndianHost) 30530b57cec5SDimitry Andric // Little-endian host - the destination must be ordered from LSB to MSB. 30540b57cec5SDimitry Andric // The source is ordered from LSB to MSB: Do a straight copy. 30550b57cec5SDimitry Andric memcpy(Dst, Src, LoadBytes); 30560b57cec5SDimitry Andric else { 30570b57cec5SDimitry Andric // Big-endian - the destination is an array of 64 bit words ordered from 30580b57cec5SDimitry Andric // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 30590b57cec5SDimitry Andric // ordered from MSB to LSB: Reverse the word order, but not the bytes in 30600b57cec5SDimitry Andric // a word. 30610b57cec5SDimitry Andric while (LoadBytes > sizeof(uint64_t)) { 30620b57cec5SDimitry Andric LoadBytes -= sizeof(uint64_t); 30630b57cec5SDimitry Andric // May not be aligned so use memcpy. 30640b57cec5SDimitry Andric memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 30650b57cec5SDimitry Andric Dst += sizeof(uint64_t); 30660b57cec5SDimitry Andric } 30670b57cec5SDimitry Andric 30680b57cec5SDimitry Andric memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 30690b57cec5SDimitry Andric } 30700b57cec5SDimitry Andric } 3071*0fca6ea1SDimitry Andric 3072*0fca6ea1SDimitry Andric APInt APIntOps::avgFloorS(const APInt &C1, const APInt &C2) { 3073*0fca6ea1SDimitry Andric // Return floor((C1 + C2) / 2) 3074*0fca6ea1SDimitry Andric return (C1 & C2) + (C1 ^ C2).ashr(1); 3075*0fca6ea1SDimitry Andric } 3076*0fca6ea1SDimitry Andric 3077*0fca6ea1SDimitry Andric APInt APIntOps::avgFloorU(const APInt &C1, const APInt &C2) { 3078*0fca6ea1SDimitry Andric // Return floor((C1 + C2) / 2) 3079*0fca6ea1SDimitry Andric return (C1 & C2) + (C1 ^ C2).lshr(1); 3080*0fca6ea1SDimitry Andric } 3081*0fca6ea1SDimitry Andric 3082*0fca6ea1SDimitry Andric APInt APIntOps::avgCeilS(const APInt &C1, const APInt &C2) { 3083*0fca6ea1SDimitry Andric // Return ceil((C1 + C2) / 2) 3084*0fca6ea1SDimitry Andric return (C1 | C2) - (C1 ^ C2).ashr(1); 3085*0fca6ea1SDimitry Andric } 3086*0fca6ea1SDimitry Andric 3087*0fca6ea1SDimitry Andric APInt APIntOps::avgCeilU(const APInt &C1, const APInt &C2) { 3088*0fca6ea1SDimitry Andric // Return ceil((C1 + C2) / 2) 3089*0fca6ea1SDimitry Andric return (C1 | C2) - (C1 ^ C2).lshr(1); 3090*0fca6ea1SDimitry Andric } 3091*0fca6ea1SDimitry Andric 3092*0fca6ea1SDimitry Andric APInt APIntOps::mulhs(const APInt &C1, const APInt &C2) { 3093*0fca6ea1SDimitry Andric assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths"); 3094*0fca6ea1SDimitry Andric unsigned FullWidth = C1.getBitWidth() * 2; 3095*0fca6ea1SDimitry Andric APInt C1Ext = C1.sext(FullWidth); 3096*0fca6ea1SDimitry Andric APInt C2Ext = C2.sext(FullWidth); 3097*0fca6ea1SDimitry Andric return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 3098*0fca6ea1SDimitry Andric } 3099*0fca6ea1SDimitry Andric 3100*0fca6ea1SDimitry Andric APInt APIntOps::mulhu(const APInt &C1, const APInt &C2) { 3101*0fca6ea1SDimitry Andric assert(C1.getBitWidth() == C2.getBitWidth() && "Unequal bitwidths"); 3102*0fca6ea1SDimitry Andric unsigned FullWidth = C1.getBitWidth() * 2; 3103*0fca6ea1SDimitry Andric APInt C1Ext = C1.zext(FullWidth); 3104*0fca6ea1SDimitry Andric APInt C2Ext = C2.zext(FullWidth); 3105*0fca6ea1SDimitry Andric return (C1Ext * C2Ext).extractBits(C1.getBitWidth(), C1.getBitWidth()); 3106*0fca6ea1SDimitry Andric } 3107