xref: /freebsd-src/contrib/llvm-project/llvm/lib/Object/IRSymtab.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/MC/StringTableBuilder.h"
27 #include "llvm/Object/IRObjectFile.h"
28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Object/SymbolicFile.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/VCSRevision.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <string>
38 #include <utility>
39 #include <vector>
40 
41 using namespace llvm;
42 using namespace irsymtab;
43 
44 static const char *PreservedSymbols[] = {
45 #define HANDLE_LIBCALL(code, name) name,
46 #include "llvm/IR/RuntimeLibcalls.def"
47 #undef HANDLE_LIBCALL
48     // There are global variables, so put it here instead of in
49     // RuntimeLibcalls.def.
50     // TODO: Are there similar such variables?
51     "__ssp_canary_word",
52     "__stack_chk_guard",
53 };
54 
55 namespace {
56 
57 const char *getExpectedProducerName() {
58   static char DefaultName[] = LLVM_VERSION_STRING
59 #ifdef LLVM_REVISION
60       " " LLVM_REVISION
61 #endif
62       ;
63   // Allows for testing of the irsymtab writer and upgrade mechanism. This
64   // environment variable should not be set by users.
65   if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
66     return OverrideName;
67   return DefaultName;
68 }
69 
70 const char *kExpectedProducerName = getExpectedProducerName();
71 
72 /// Stores the temporary state that is required to build an IR symbol table.
73 struct Builder {
74   SmallVector<char, 0> &Symtab;
75   StringTableBuilder &StrtabBuilder;
76   StringSaver Saver;
77 
78   // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
79   // The StringTableBuilder does not create a copy of any strings added to it,
80   // so this provides somewhere to store any strings that we create.
81   Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
82           BumpPtrAllocator &Alloc)
83       : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
84 
85   DenseMap<const Comdat *, int> ComdatMap;
86   Mangler Mang;
87   Triple TT;
88 
89   std::vector<storage::Comdat> Comdats;
90   std::vector<storage::Module> Mods;
91   std::vector<storage::Symbol> Syms;
92   std::vector<storage::Uncommon> Uncommons;
93 
94   std::string COFFLinkerOpts;
95   raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
96 
97   std::vector<storage::Str> DependentLibraries;
98 
99   void setStr(storage::Str &S, StringRef Value) {
100     S.Offset = StrtabBuilder.add(Value);
101     S.Size = Value.size();
102   }
103 
104   template <typename T>
105   void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
106     R.Offset = Symtab.size();
107     R.Size = Objs.size();
108     Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
109                   reinterpret_cast<const char *>(Objs.data() + Objs.size()));
110   }
111 
112   Expected<int> getComdatIndex(const Comdat *C, const Module *M);
113 
114   Error addModule(Module *M);
115   Error addSymbol(const ModuleSymbolTable &Msymtab,
116                   const SmallPtrSet<GlobalValue *, 4> &Used,
117                   ModuleSymbolTable::Symbol Sym);
118 
119   Error build(ArrayRef<Module *> Mods);
120 };
121 
122 Error Builder::addModule(Module *M) {
123   if (M->getDataLayoutStr().empty())
124     return make_error<StringError>("input module has no datalayout",
125                                    inconvertibleErrorCode());
126 
127   // Symbols in the llvm.used list will get the FB_Used bit and will not be
128   // internalized. We do this for llvm.compiler.used as well:
129   //
130   // IR symbol table tracks module-level asm symbol references but not inline
131   // asm. A symbol only referenced by inline asm is not in the IR symbol table,
132   // so we may not know that the definition (in another translation unit) is
133   // referenced. That definition may have __attribute__((used)) (which lowers to
134   // llvm.compiler.used on ELF targets) to communicate to the compiler that it
135   // may be used by inline asm. The usage is perfectly fine, so we treat
136   // llvm.compiler.used conservatively as llvm.used to work around our own
137   // limitation.
138   SmallVector<GlobalValue *, 4> UsedV;
139   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
140   collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
141   SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
142 
143   ModuleSymbolTable Msymtab;
144   Msymtab.addModule(M);
145 
146   storage::Module Mod;
147   Mod.Begin = Syms.size();
148   Mod.End = Syms.size() + Msymtab.symbols().size();
149   Mod.UncBegin = Uncommons.size();
150   Mods.push_back(Mod);
151 
152   if (TT.isOSBinFormatCOFF()) {
153     if (auto E = M->materializeMetadata())
154       return E;
155     if (NamedMDNode *LinkerOptions =
156             M->getNamedMetadata("llvm.linker.options")) {
157       for (MDNode *MDOptions : LinkerOptions->operands())
158         for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
159           COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
160     }
161   }
162 
163   if (TT.isOSBinFormatELF()) {
164     if (auto E = M->materializeMetadata())
165       return E;
166     if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
167       for (MDNode *MDOptions : N->operands()) {
168         const auto OperandStr =
169             cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
170         storage::Str Specifier;
171         setStr(Specifier, OperandStr);
172         DependentLibraries.emplace_back(Specifier);
173       }
174     }
175   }
176 
177   for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
178     if (Error Err = addSymbol(Msymtab, Used, Msym))
179       return Err;
180 
181   return Error::success();
182 }
183 
184 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
185   auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
186   if (P.second) {
187     std::string Name;
188     if (TT.isOSBinFormatCOFF()) {
189       const GlobalValue *GV = M->getNamedValue(C->getName());
190       if (!GV)
191         return make_error<StringError>("Could not find leader",
192                                        inconvertibleErrorCode());
193       // Internal leaders do not affect symbol resolution, therefore they do not
194       // appear in the symbol table.
195       if (GV->hasLocalLinkage()) {
196         P.first->second = -1;
197         return -1;
198       }
199       llvm::raw_string_ostream OS(Name);
200       Mang.getNameWithPrefix(OS, GV, false);
201     } else {
202       Name = std::string(C->getName());
203     }
204 
205     storage::Comdat Comdat;
206     setStr(Comdat.Name, Saver.save(Name));
207     Comdat.SelectionKind = C->getSelectionKind();
208     Comdats.push_back(Comdat);
209   }
210 
211   return P.first->second;
212 }
213 
214 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
215                          const SmallPtrSet<GlobalValue *, 4> &Used,
216                          ModuleSymbolTable::Symbol Msym) {
217   Syms.emplace_back();
218   storage::Symbol &Sym = Syms.back();
219   Sym = {};
220 
221   storage::Uncommon *Unc = nullptr;
222   auto Uncommon = [&]() -> storage::Uncommon & {
223     if (Unc)
224       return *Unc;
225     Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
226     Uncommons.emplace_back();
227     Unc = &Uncommons.back();
228     *Unc = {};
229     setStr(Unc->COFFWeakExternFallbackName, "");
230     setStr(Unc->SectionName, "");
231     return *Unc;
232   };
233 
234   SmallString<64> Name;
235   {
236     raw_svector_ostream OS(Name);
237     Msymtab.printSymbolName(OS, Msym);
238   }
239   setStr(Sym.Name, Saver.save(Name.str()));
240 
241   auto Flags = Msymtab.getSymbolFlags(Msym);
242   if (Flags & object::BasicSymbolRef::SF_Undefined)
243     Sym.Flags |= 1 << storage::Symbol::FB_undefined;
244   if (Flags & object::BasicSymbolRef::SF_Weak)
245     Sym.Flags |= 1 << storage::Symbol::FB_weak;
246   if (Flags & object::BasicSymbolRef::SF_Common)
247     Sym.Flags |= 1 << storage::Symbol::FB_common;
248   if (Flags & object::BasicSymbolRef::SF_Indirect)
249     Sym.Flags |= 1 << storage::Symbol::FB_indirect;
250   if (Flags & object::BasicSymbolRef::SF_Global)
251     Sym.Flags |= 1 << storage::Symbol::FB_global;
252   if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
253     Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
254   if (Flags & object::BasicSymbolRef::SF_Executable)
255     Sym.Flags |= 1 << storage::Symbol::FB_executable;
256 
257   Sym.ComdatIndex = -1;
258   auto *GV = Msym.dyn_cast<GlobalValue *>();
259   if (!GV) {
260     // Undefined module asm symbols act as GC roots and are implicitly used.
261     if (Flags & object::BasicSymbolRef::SF_Undefined)
262       Sym.Flags |= 1 << storage::Symbol::FB_used;
263     setStr(Sym.IRName, "");
264     return Error::success();
265   }
266 
267   setStr(Sym.IRName, GV->getName());
268 
269   bool IsPreservedSymbol = llvm::is_contained(PreservedSymbols, GV->getName());
270 
271   if (Used.count(GV) || IsPreservedSymbol)
272     Sym.Flags |= 1 << storage::Symbol::FB_used;
273   if (GV->isThreadLocal())
274     Sym.Flags |= 1 << storage::Symbol::FB_tls;
275   if (GV->hasGlobalUnnamedAddr())
276     Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
277   if (GV->canBeOmittedFromSymbolTable())
278     Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
279   Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
280 
281   if (Flags & object::BasicSymbolRef::SF_Common) {
282     auto *GVar = dyn_cast<GlobalVariable>(GV);
283     if (!GVar)
284       return make_error<StringError>("Only variables can have common linkage!",
285                                      inconvertibleErrorCode());
286     Uncommon().CommonSize =
287         GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType());
288     Uncommon().CommonAlign = GVar->getAlignment();
289   }
290 
291   const GlobalObject *GO = GV->getAliaseeObject();
292   if (!GO) {
293     if (isa<GlobalIFunc>(GV))
294       GO = cast<GlobalIFunc>(GV)->getResolverFunction();
295     if (!GO)
296       return make_error<StringError>("Unable to determine comdat of alias!",
297                                      inconvertibleErrorCode());
298   }
299   if (const Comdat *C = GO->getComdat()) {
300     Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
301     if (!ComdatIndexOrErr)
302       return ComdatIndexOrErr.takeError();
303     Sym.ComdatIndex = *ComdatIndexOrErr;
304   }
305 
306   if (TT.isOSBinFormatCOFF()) {
307     emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
308 
309     if ((Flags & object::BasicSymbolRef::SF_Weak) &&
310         (Flags & object::BasicSymbolRef::SF_Indirect)) {
311       auto *Fallback = dyn_cast<GlobalValue>(
312           cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
313       if (!Fallback)
314         return make_error<StringError>("Invalid weak external",
315                                        inconvertibleErrorCode());
316       std::string FallbackName;
317       raw_string_ostream OS(FallbackName);
318       Msymtab.printSymbolName(OS, Fallback);
319       OS.flush();
320       setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
321     }
322   }
323 
324   if (!GO->getSection().empty())
325     setStr(Uncommon().SectionName, Saver.save(GO->getSection()));
326 
327   return Error::success();
328 }
329 
330 Error Builder::build(ArrayRef<Module *> IRMods) {
331   storage::Header Hdr;
332 
333   assert(!IRMods.empty());
334   Hdr.Version = storage::Header::kCurrentVersion;
335   setStr(Hdr.Producer, kExpectedProducerName);
336   setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
337   setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
338   TT = Triple(IRMods[0]->getTargetTriple());
339 
340   for (auto *M : IRMods)
341     if (Error Err = addModule(M))
342       return Err;
343 
344   COFFLinkerOptsOS.flush();
345   setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
346 
347   // We are about to fill in the header's range fields, so reserve space for it
348   // and copy it in afterwards.
349   Symtab.resize(sizeof(storage::Header));
350   writeRange(Hdr.Modules, Mods);
351   writeRange(Hdr.Comdats, Comdats);
352   writeRange(Hdr.Symbols, Syms);
353   writeRange(Hdr.Uncommons, Uncommons);
354   writeRange(Hdr.DependentLibraries, DependentLibraries);
355   *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
356   return Error::success();
357 }
358 
359 } // end anonymous namespace
360 
361 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
362                       StringTableBuilder &StrtabBuilder,
363                       BumpPtrAllocator &Alloc) {
364   return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
365 }
366 
367 // Upgrade a vector of bitcode modules created by an old version of LLVM by
368 // creating an irsymtab for them in the current format.
369 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
370   FileContents FC;
371 
372   LLVMContext Ctx;
373   std::vector<Module *> Mods;
374   std::vector<std::unique_ptr<Module>> OwnedMods;
375   for (auto BM : BMs) {
376     Expected<std::unique_ptr<Module>> MOrErr =
377         BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
378                          /*IsImporting*/ false);
379     if (!MOrErr)
380       return MOrErr.takeError();
381 
382     Mods.push_back(MOrErr->get());
383     OwnedMods.push_back(std::move(*MOrErr));
384   }
385 
386   StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
387   BumpPtrAllocator Alloc;
388   if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
389     return std::move(E);
390 
391   StrtabBuilder.finalizeInOrder();
392   FC.Strtab.resize(StrtabBuilder.getSize());
393   StrtabBuilder.write((uint8_t *)FC.Strtab.data());
394 
395   FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
396                   {FC.Strtab.data(), FC.Strtab.size()}};
397   return std::move(FC);
398 }
399 
400 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
401   if (BFC.Mods.empty())
402     return make_error<StringError>("Bitcode file does not contain any modules",
403                                    inconvertibleErrorCode());
404 
405   if (BFC.StrtabForSymtab.empty() ||
406       BFC.Symtab.size() < sizeof(storage::Header))
407     return upgrade(BFC.Mods);
408 
409   // We cannot use the regular reader to read the version and producer, because
410   // it will expect the header to be in the current format. The only thing we
411   // can rely on is that the version and producer will be present as the first
412   // struct elements.
413   auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
414   unsigned Version = Hdr->Version;
415   StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
416   if (Version != storage::Header::kCurrentVersion ||
417       Producer != kExpectedProducerName)
418     return upgrade(BFC.Mods);
419 
420   FileContents FC;
421   FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
422                   {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
423 
424   // Finally, make sure that the number of modules in the symbol table matches
425   // the number of modules in the bitcode file. If they differ, it may mean that
426   // the bitcode file was created by binary concatenation, so we need to create
427   // a new symbol table from scratch.
428   if (FC.TheReader.getNumModules() != BFC.Mods.size())
429     return upgrade(std::move(BFC.Mods));
430 
431   return std::move(FC);
432 }
433