1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Object/IRSymtab.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/DenseMap.h" 12 #include "llvm/ADT/SmallPtrSet.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Config/llvm-config.h" 18 #include "llvm/IR/Comdat.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalObject.h" 22 #include "llvm/IR/Mangler.h" 23 #include "llvm/IR/Metadata.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/Bitcode/BitcodeReader.h" 26 #include "llvm/MC/StringTableBuilder.h" 27 #include "llvm/Object/IRObjectFile.h" 28 #include "llvm/Object/ModuleSymbolTable.h" 29 #include "llvm/Object/SymbolicFile.h" 30 #include "llvm/Support/Allocator.h" 31 #include "llvm/Support/Casting.h" 32 #include "llvm/Support/Error.h" 33 #include "llvm/Support/StringSaver.h" 34 #include "llvm/Support/VCSRevision.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <cassert> 37 #include <string> 38 #include <utility> 39 #include <vector> 40 41 using namespace llvm; 42 using namespace irsymtab; 43 44 static const char *PreservedSymbols[] = { 45 #define HANDLE_LIBCALL(code, name) name, 46 #include "llvm/IR/RuntimeLibcalls.def" 47 #undef HANDLE_LIBCALL 48 // There are global variables, so put it here instead of in 49 // RuntimeLibcalls.def. 50 // TODO: Are there similar such variables? 51 "__ssp_canary_word", 52 "__stack_chk_guard", 53 }; 54 55 namespace { 56 57 const char *getExpectedProducerName() { 58 static char DefaultName[] = LLVM_VERSION_STRING 59 #ifdef LLVM_REVISION 60 " " LLVM_REVISION 61 #endif 62 ; 63 // Allows for testing of the irsymtab writer and upgrade mechanism. This 64 // environment variable should not be set by users. 65 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER")) 66 return OverrideName; 67 return DefaultName; 68 } 69 70 const char *kExpectedProducerName = getExpectedProducerName(); 71 72 /// Stores the temporary state that is required to build an IR symbol table. 73 struct Builder { 74 SmallVector<char, 0> &Symtab; 75 StringTableBuilder &StrtabBuilder; 76 StringSaver Saver; 77 78 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator. 79 // The StringTableBuilder does not create a copy of any strings added to it, 80 // so this provides somewhere to store any strings that we create. 81 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder, 82 BumpPtrAllocator &Alloc) 83 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {} 84 85 DenseMap<const Comdat *, int> ComdatMap; 86 Mangler Mang; 87 Triple TT; 88 89 std::vector<storage::Comdat> Comdats; 90 std::vector<storage::Module> Mods; 91 std::vector<storage::Symbol> Syms; 92 std::vector<storage::Uncommon> Uncommons; 93 94 std::string COFFLinkerOpts; 95 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts}; 96 97 std::vector<storage::Str> DependentLibraries; 98 99 void setStr(storage::Str &S, StringRef Value) { 100 S.Offset = StrtabBuilder.add(Value); 101 S.Size = Value.size(); 102 } 103 104 template <typename T> 105 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) { 106 R.Offset = Symtab.size(); 107 R.Size = Objs.size(); 108 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()), 109 reinterpret_cast<const char *>(Objs.data() + Objs.size())); 110 } 111 112 Expected<int> getComdatIndex(const Comdat *C, const Module *M); 113 114 Error addModule(Module *M); 115 Error addSymbol(const ModuleSymbolTable &Msymtab, 116 const SmallPtrSet<GlobalValue *, 4> &Used, 117 ModuleSymbolTable::Symbol Sym); 118 119 Error build(ArrayRef<Module *> Mods); 120 }; 121 122 Error Builder::addModule(Module *M) { 123 if (M->getDataLayoutStr().empty()) 124 return make_error<StringError>("input module has no datalayout", 125 inconvertibleErrorCode()); 126 127 // Symbols in the llvm.used list will get the FB_Used bit and will not be 128 // internalized. We do this for llvm.compiler.used as well: 129 // 130 // IR symbol table tracks module-level asm symbol references but not inline 131 // asm. A symbol only referenced by inline asm is not in the IR symbol table, 132 // so we may not know that the definition (in another translation unit) is 133 // referenced. That definition may have __attribute__((used)) (which lowers to 134 // llvm.compiler.used on ELF targets) to communicate to the compiler that it 135 // may be used by inline asm. The usage is perfectly fine, so we treat 136 // llvm.compiler.used conservatively as llvm.used to work around our own 137 // limitation. 138 SmallVector<GlobalValue *, 4> UsedV; 139 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false); 140 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true); 141 SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end()); 142 143 ModuleSymbolTable Msymtab; 144 Msymtab.addModule(M); 145 146 storage::Module Mod; 147 Mod.Begin = Syms.size(); 148 Mod.End = Syms.size() + Msymtab.symbols().size(); 149 Mod.UncBegin = Uncommons.size(); 150 Mods.push_back(Mod); 151 152 if (TT.isOSBinFormatCOFF()) { 153 if (auto E = M->materializeMetadata()) 154 return E; 155 if (NamedMDNode *LinkerOptions = 156 M->getNamedMetadata("llvm.linker.options")) { 157 for (MDNode *MDOptions : LinkerOptions->operands()) 158 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands()) 159 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString(); 160 } 161 } 162 163 if (TT.isOSBinFormatELF()) { 164 if (auto E = M->materializeMetadata()) 165 return E; 166 if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) { 167 for (MDNode *MDOptions : N->operands()) { 168 const auto OperandStr = 169 cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString(); 170 storage::Str Specifier; 171 setStr(Specifier, OperandStr); 172 DependentLibraries.emplace_back(Specifier); 173 } 174 } 175 } 176 177 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols()) 178 if (Error Err = addSymbol(Msymtab, Used, Msym)) 179 return Err; 180 181 return Error::success(); 182 } 183 184 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) { 185 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size())); 186 if (P.second) { 187 std::string Name; 188 if (TT.isOSBinFormatCOFF()) { 189 const GlobalValue *GV = M->getNamedValue(C->getName()); 190 if (!GV) 191 return make_error<StringError>("Could not find leader", 192 inconvertibleErrorCode()); 193 // Internal leaders do not affect symbol resolution, therefore they do not 194 // appear in the symbol table. 195 if (GV->hasLocalLinkage()) { 196 P.first->second = -1; 197 return -1; 198 } 199 llvm::raw_string_ostream OS(Name); 200 Mang.getNameWithPrefix(OS, GV, false); 201 } else { 202 Name = std::string(C->getName()); 203 } 204 205 storage::Comdat Comdat; 206 setStr(Comdat.Name, Saver.save(Name)); 207 Comdat.SelectionKind = C->getSelectionKind(); 208 Comdats.push_back(Comdat); 209 } 210 211 return P.first->second; 212 } 213 214 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab, 215 const SmallPtrSet<GlobalValue *, 4> &Used, 216 ModuleSymbolTable::Symbol Msym) { 217 Syms.emplace_back(); 218 storage::Symbol &Sym = Syms.back(); 219 Sym = {}; 220 221 storage::Uncommon *Unc = nullptr; 222 auto Uncommon = [&]() -> storage::Uncommon & { 223 if (Unc) 224 return *Unc; 225 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon; 226 Uncommons.emplace_back(); 227 Unc = &Uncommons.back(); 228 *Unc = {}; 229 setStr(Unc->COFFWeakExternFallbackName, ""); 230 setStr(Unc->SectionName, ""); 231 return *Unc; 232 }; 233 234 SmallString<64> Name; 235 { 236 raw_svector_ostream OS(Name); 237 Msymtab.printSymbolName(OS, Msym); 238 } 239 setStr(Sym.Name, Saver.save(Name.str())); 240 241 auto Flags = Msymtab.getSymbolFlags(Msym); 242 if (Flags & object::BasicSymbolRef::SF_Undefined) 243 Sym.Flags |= 1 << storage::Symbol::FB_undefined; 244 if (Flags & object::BasicSymbolRef::SF_Weak) 245 Sym.Flags |= 1 << storage::Symbol::FB_weak; 246 if (Flags & object::BasicSymbolRef::SF_Common) 247 Sym.Flags |= 1 << storage::Symbol::FB_common; 248 if (Flags & object::BasicSymbolRef::SF_Indirect) 249 Sym.Flags |= 1 << storage::Symbol::FB_indirect; 250 if (Flags & object::BasicSymbolRef::SF_Global) 251 Sym.Flags |= 1 << storage::Symbol::FB_global; 252 if (Flags & object::BasicSymbolRef::SF_FormatSpecific) 253 Sym.Flags |= 1 << storage::Symbol::FB_format_specific; 254 if (Flags & object::BasicSymbolRef::SF_Executable) 255 Sym.Flags |= 1 << storage::Symbol::FB_executable; 256 257 Sym.ComdatIndex = -1; 258 auto *GV = Msym.dyn_cast<GlobalValue *>(); 259 if (!GV) { 260 // Undefined module asm symbols act as GC roots and are implicitly used. 261 if (Flags & object::BasicSymbolRef::SF_Undefined) 262 Sym.Flags |= 1 << storage::Symbol::FB_used; 263 setStr(Sym.IRName, ""); 264 return Error::success(); 265 } 266 267 setStr(Sym.IRName, GV->getName()); 268 269 bool IsPreservedSymbol = llvm::is_contained(PreservedSymbols, GV->getName()); 270 271 if (Used.count(GV) || IsPreservedSymbol) 272 Sym.Flags |= 1 << storage::Symbol::FB_used; 273 if (GV->isThreadLocal()) 274 Sym.Flags |= 1 << storage::Symbol::FB_tls; 275 if (GV->hasGlobalUnnamedAddr()) 276 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr; 277 if (GV->canBeOmittedFromSymbolTable()) 278 Sym.Flags |= 1 << storage::Symbol::FB_may_omit; 279 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility; 280 281 if (Flags & object::BasicSymbolRef::SF_Common) { 282 auto *GVar = dyn_cast<GlobalVariable>(GV); 283 if (!GVar) 284 return make_error<StringError>("Only variables can have common linkage!", 285 inconvertibleErrorCode()); 286 Uncommon().CommonSize = 287 GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType()); 288 Uncommon().CommonAlign = GVar->getAlignment(); 289 } 290 291 const GlobalObject *GO = GV->getAliaseeObject(); 292 if (!GO) { 293 if (isa<GlobalIFunc>(GV)) 294 GO = cast<GlobalIFunc>(GV)->getResolverFunction(); 295 if (!GO) 296 return make_error<StringError>("Unable to determine comdat of alias!", 297 inconvertibleErrorCode()); 298 } 299 if (const Comdat *C = GO->getComdat()) { 300 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent()); 301 if (!ComdatIndexOrErr) 302 return ComdatIndexOrErr.takeError(); 303 Sym.ComdatIndex = *ComdatIndexOrErr; 304 } 305 306 if (TT.isOSBinFormatCOFF()) { 307 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang); 308 309 if ((Flags & object::BasicSymbolRef::SF_Weak) && 310 (Flags & object::BasicSymbolRef::SF_Indirect)) { 311 auto *Fallback = dyn_cast<GlobalValue>( 312 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts()); 313 if (!Fallback) 314 return make_error<StringError>("Invalid weak external", 315 inconvertibleErrorCode()); 316 std::string FallbackName; 317 raw_string_ostream OS(FallbackName); 318 Msymtab.printSymbolName(OS, Fallback); 319 OS.flush(); 320 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName)); 321 } 322 } 323 324 if (!GO->getSection().empty()) 325 setStr(Uncommon().SectionName, Saver.save(GO->getSection())); 326 327 return Error::success(); 328 } 329 330 Error Builder::build(ArrayRef<Module *> IRMods) { 331 storage::Header Hdr; 332 333 assert(!IRMods.empty()); 334 Hdr.Version = storage::Header::kCurrentVersion; 335 setStr(Hdr.Producer, kExpectedProducerName); 336 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple()); 337 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName()); 338 TT = Triple(IRMods[0]->getTargetTriple()); 339 340 for (auto *M : IRMods) 341 if (Error Err = addModule(M)) 342 return Err; 343 344 COFFLinkerOptsOS.flush(); 345 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts)); 346 347 // We are about to fill in the header's range fields, so reserve space for it 348 // and copy it in afterwards. 349 Symtab.resize(sizeof(storage::Header)); 350 writeRange(Hdr.Modules, Mods); 351 writeRange(Hdr.Comdats, Comdats); 352 writeRange(Hdr.Symbols, Syms); 353 writeRange(Hdr.Uncommons, Uncommons); 354 writeRange(Hdr.DependentLibraries, DependentLibraries); 355 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr; 356 return Error::success(); 357 } 358 359 } // end anonymous namespace 360 361 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab, 362 StringTableBuilder &StrtabBuilder, 363 BumpPtrAllocator &Alloc) { 364 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods); 365 } 366 367 // Upgrade a vector of bitcode modules created by an old version of LLVM by 368 // creating an irsymtab for them in the current format. 369 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) { 370 FileContents FC; 371 372 LLVMContext Ctx; 373 std::vector<Module *> Mods; 374 std::vector<std::unique_ptr<Module>> OwnedMods; 375 for (auto BM : BMs) { 376 Expected<std::unique_ptr<Module>> MOrErr = 377 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true, 378 /*IsImporting*/ false); 379 if (!MOrErr) 380 return MOrErr.takeError(); 381 382 Mods.push_back(MOrErr->get()); 383 OwnedMods.push_back(std::move(*MOrErr)); 384 } 385 386 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW); 387 BumpPtrAllocator Alloc; 388 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc)) 389 return std::move(E); 390 391 StrtabBuilder.finalizeInOrder(); 392 FC.Strtab.resize(StrtabBuilder.getSize()); 393 StrtabBuilder.write((uint8_t *)FC.Strtab.data()); 394 395 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()}, 396 {FC.Strtab.data(), FC.Strtab.size()}}; 397 return std::move(FC); 398 } 399 400 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) { 401 if (BFC.Mods.empty()) 402 return make_error<StringError>("Bitcode file does not contain any modules", 403 inconvertibleErrorCode()); 404 405 if (BFC.StrtabForSymtab.empty() || 406 BFC.Symtab.size() < sizeof(storage::Header)) 407 return upgrade(BFC.Mods); 408 409 // We cannot use the regular reader to read the version and producer, because 410 // it will expect the header to be in the current format. The only thing we 411 // can rely on is that the version and producer will be present as the first 412 // struct elements. 413 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data()); 414 unsigned Version = Hdr->Version; 415 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab); 416 if (Version != storage::Header::kCurrentVersion || 417 Producer != kExpectedProducerName) 418 return upgrade(BFC.Mods); 419 420 FileContents FC; 421 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()}, 422 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}}; 423 424 // Finally, make sure that the number of modules in the symbol table matches 425 // the number of modules in the bitcode file. If they differ, it may mean that 426 // the bitcode file was created by binary concatenation, so we need to create 427 // a new symbol table from scratch. 428 if (FC.TheReader.getNumModules() != BFC.Mods.size()) 429 return upgrade(std::move(BFC.Mods)); 430 431 return std::move(FC); 432 } 433