xref: /freebsd-src/contrib/llvm-project/llvm/lib/IR/Function.cpp (revision 753f127f3ace09432b2baeffd71a308760641a62)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 uint64_t Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 MaybeAlign Argument::getParamStackAlign() const {
202   return getParent()->getParamStackAlign(getArgNo());
203 }
204 
205 Type *Argument::getParamByValType() const {
206   assert(getType()->isPointerTy() && "Only pointers have byval types");
207   return getParent()->getParamByValType(getArgNo());
208 }
209 
210 Type *Argument::getParamStructRetType() const {
211   assert(getType()->isPointerTy() && "Only pointers have sret types");
212   return getParent()->getParamStructRetType(getArgNo());
213 }
214 
215 Type *Argument::getParamByRefType() const {
216   assert(getType()->isPointerTy() && "Only pointers have byref types");
217   return getParent()->getParamByRefType(getArgNo());
218 }
219 
220 Type *Argument::getParamInAllocaType() const {
221   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
222   return getParent()->getParamInAllocaType(getArgNo());
223 }
224 
225 uint64_t Argument::getDereferenceableBytes() const {
226   assert(getType()->isPointerTy() &&
227          "Only pointers have dereferenceable bytes");
228   return getParent()->getParamDereferenceableBytes(getArgNo());
229 }
230 
231 uint64_t Argument::getDereferenceableOrNullBytes() const {
232   assert(getType()->isPointerTy() &&
233          "Only pointers have dereferenceable bytes");
234   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
235 }
236 
237 bool Argument::hasNestAttr() const {
238   if (!getType()->isPointerTy()) return false;
239   return hasAttribute(Attribute::Nest);
240 }
241 
242 bool Argument::hasNoAliasAttr() const {
243   if (!getType()->isPointerTy()) return false;
244   return hasAttribute(Attribute::NoAlias);
245 }
246 
247 bool Argument::hasNoCaptureAttr() const {
248   if (!getType()->isPointerTy()) return false;
249   return hasAttribute(Attribute::NoCapture);
250 }
251 
252 bool Argument::hasNoFreeAttr() const {
253   if (!getType()->isPointerTy()) return false;
254   return hasAttribute(Attribute::NoFree);
255 }
256 
257 bool Argument::hasStructRetAttr() const {
258   if (!getType()->isPointerTy()) return false;
259   return hasAttribute(Attribute::StructRet);
260 }
261 
262 bool Argument::hasInRegAttr() const {
263   return hasAttribute(Attribute::InReg);
264 }
265 
266 bool Argument::hasReturnedAttr() const {
267   return hasAttribute(Attribute::Returned);
268 }
269 
270 bool Argument::hasZExtAttr() const {
271   return hasAttribute(Attribute::ZExt);
272 }
273 
274 bool Argument::hasSExtAttr() const {
275   return hasAttribute(Attribute::SExt);
276 }
277 
278 bool Argument::onlyReadsMemory() const {
279   AttributeList Attrs = getParent()->getAttributes();
280   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
282 }
283 
284 void Argument::addAttrs(AttrBuilder &B) {
285   AttributeList AL = getParent()->getAttributes();
286   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287   getParent()->setAttributes(AL);
288 }
289 
290 void Argument::addAttr(Attribute::AttrKind Kind) {
291   getParent()->addParamAttr(getArgNo(), Kind);
292 }
293 
294 void Argument::addAttr(Attribute Attr) {
295   getParent()->addParamAttr(getArgNo(), Attr);
296 }
297 
298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299   getParent()->removeParamAttr(getArgNo(), Kind);
300 }
301 
302 void Argument::removeAttrs(const AttributeMask &AM) {
303   AttributeList AL = getParent()->getAttributes();
304   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305   getParent()->setAttributes(AL);
306 }
307 
308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->hasParamAttribute(getArgNo(), Kind);
310 }
311 
312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313   return getParent()->getParamAttribute(getArgNo(), Kind);
314 }
315 
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
319 
320 LLVMContext &Function::getContext() const {
321   return getType()->getContext();
322 }
323 
324 unsigned Function::getInstructionCount() const {
325   unsigned NumInstrs = 0;
326   for (const BasicBlock &BB : BasicBlocks)
327     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328                                BB.instructionsWithoutDebug().end());
329   return NumInstrs;
330 }
331 
332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333                            const Twine &N, Module &M) {
334   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
335 }
336 
337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338                                           LinkageTypes Linkage,
339                                           unsigned AddrSpace, const Twine &N,
340                                           Module *M) {
341   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342   AttrBuilder B(F->getContext());
343   UWTableKind UWTable = M->getUwtable();
344   if (UWTable != UWTableKind::None)
345     B.addUWTableAttr(UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addRetAttr(Attribute Attr) {
557   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
558 }
559 
560 void Function::addRetAttrs(const AttrBuilder &Attrs) {
561   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
562 }
563 
564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
565   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
566 }
567 
568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
569   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
570 }
571 
572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
573   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
574 }
575 
576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
578 }
579 
580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
581   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
582 }
583 
584 void Function::removeFnAttr(Attribute::AttrKind Kind) {
585   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
586 }
587 
588 void Function::removeFnAttr(StringRef Kind) {
589   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeFnAttrs(const AttributeMask &AM) {
593   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
594 }
595 
596 void Function::removeRetAttr(Attribute::AttrKind Kind) {
597   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
598 }
599 
600 void Function::removeRetAttr(StringRef Kind) {
601   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
602 }
603 
604 void Function::removeRetAttrs(const AttributeMask &Attrs) {
605   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
606 }
607 
608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
609   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
610 }
611 
612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
613   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
614 }
615 
616 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
617   AttributeSets =
618       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
619 }
620 
621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
622   AttributeSets =
623       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
624 }
625 
626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasFnAttr(Kind);
628 }
629 
630 bool Function::hasFnAttribute(StringRef Kind) const {
631   return AttributeSets.hasFnAttr(Kind);
632 }
633 
634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
635   return AttributeSets.hasRetAttr(Kind);
636 }
637 
638 bool Function::hasParamAttribute(unsigned ArgNo,
639                                  Attribute::AttrKind Kind) const {
640   return AttributeSets.hasParamAttr(ArgNo, Kind);
641 }
642 
643 Attribute Function::getAttributeAtIndex(unsigned i,
644                                         Attribute::AttrKind Kind) const {
645   return AttributeSets.getAttributeAtIndex(i, Kind);
646 }
647 
648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
649   return AttributeSets.getAttributeAtIndex(i, Kind);
650 }
651 
652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.getFnAttr(Kind);
654 }
655 
656 Attribute Function::getFnAttribute(StringRef Kind) const {
657   return AttributeSets.getFnAttr(Kind);
658 }
659 
660 /// gets the specified attribute from the list of attributes.
661 Attribute Function::getParamAttribute(unsigned ArgNo,
662                                       Attribute::AttrKind Kind) const {
663   return AttributeSets.getParamAttr(ArgNo, Kind);
664 }
665 
666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
667                                                  uint64_t Bytes) {
668   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
669                                                                   ArgNo, Bytes);
670 }
671 
672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
673   if (&FPType == &APFloat::IEEEsingle()) {
674     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
675     StringRef Val = Attr.getValueAsString();
676     if (!Val.empty())
677       return parseDenormalFPAttribute(Val);
678 
679     // If the f32 variant of the attribute isn't specified, try to use the
680     // generic one.
681   }
682 
683   Attribute Attr = getFnAttribute("denormal-fp-math");
684   return parseDenormalFPAttribute(Attr.getValueAsString());
685 }
686 
687 const std::string &Function::getGC() const {
688   assert(hasGC() && "Function has no collector");
689   return getContext().getGC(*this);
690 }
691 
692 void Function::setGC(std::string Str) {
693   setValueSubclassDataBit(14, !Str.empty());
694   getContext().setGC(*this, std::move(Str));
695 }
696 
697 void Function::clearGC() {
698   if (!hasGC())
699     return;
700   getContext().deleteGC(*this);
701   setValueSubclassDataBit(14, false);
702 }
703 
704 bool Function::hasStackProtectorFnAttr() const {
705   return hasFnAttribute(Attribute::StackProtect) ||
706          hasFnAttribute(Attribute::StackProtectStrong) ||
707          hasFnAttribute(Attribute::StackProtectReq);
708 }
709 
710 /// Copy all additional attributes (those not needed to create a Function) from
711 /// the Function Src to this one.
712 void Function::copyAttributesFrom(const Function *Src) {
713   GlobalObject::copyAttributesFrom(Src);
714   setCallingConv(Src->getCallingConv());
715   setAttributes(Src->getAttributes());
716   if (Src->hasGC())
717     setGC(Src->getGC());
718   else
719     clearGC();
720   if (Src->hasPersonalityFn())
721     setPersonalityFn(Src->getPersonalityFn());
722   if (Src->hasPrefixData())
723     setPrefixData(Src->getPrefixData());
724   if (Src->hasPrologueData())
725     setPrologueData(Src->getPrologueData());
726 }
727 
728 /// Table of string intrinsic names indexed by enum value.
729 static const char * const IntrinsicNameTable[] = {
730   "not_intrinsic",
731 #define GET_INTRINSIC_NAME_TABLE
732 #include "llvm/IR/IntrinsicImpl.inc"
733 #undef GET_INTRINSIC_NAME_TABLE
734 };
735 
736 /// Table of per-target intrinsic name tables.
737 #define GET_INTRINSIC_TARGET_DATA
738 #include "llvm/IR/IntrinsicImpl.inc"
739 #undef GET_INTRINSIC_TARGET_DATA
740 
741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
742   return IID > TargetInfos[0].Count;
743 }
744 
745 bool Function::isTargetIntrinsic() const {
746   return isTargetIntrinsic(IntID);
747 }
748 
749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
750 /// target as \c Name, or the generic table if \c Name is not target specific.
751 ///
752 /// Returns the relevant slice of \c IntrinsicNameTable
753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
754   assert(Name.startswith("llvm."));
755 
756   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
757   // Drop "llvm." and take the first dotted component. That will be the target
758   // if this is target specific.
759   StringRef Target = Name.drop_front(5).split('.').first;
760   auto It = partition_point(
761       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
762   // We've either found the target or just fall back to the generic set, which
763   // is always first.
764   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
765   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
766 }
767 
768 /// This does the actual lookup of an intrinsic ID which
769 /// matches the given function name.
770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
771   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
772   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
773   if (Idx == -1)
774     return Intrinsic::not_intrinsic;
775 
776   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
777   // an index into a sub-table.
778   int Adjust = NameTable.data() - IntrinsicNameTable;
779   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
780 
781   // If the intrinsic is not overloaded, require an exact match. If it is
782   // overloaded, require either exact or prefix match.
783   const auto MatchSize = strlen(NameTable[Idx]);
784   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
785   bool IsExactMatch = Name.size() == MatchSize;
786   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
787                                                      : Intrinsic::not_intrinsic;
788 }
789 
790 void Function::recalculateIntrinsicID() {
791   StringRef Name = getName();
792   if (!Name.startswith("llvm.")) {
793     HasLLVMReservedName = false;
794     IntID = Intrinsic::not_intrinsic;
795     return;
796   }
797   HasLLVMReservedName = true;
798   IntID = lookupIntrinsicID(Name);
799 }
800 
801 /// Returns a stable mangling for the type specified for use in the name
802 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
803 /// of named types is simply their name.  Manglings for unnamed types consist
804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
805 /// combined with the mangling of their component types.  A vararg function
806 /// type will have a suffix of 'vararg'.  Since function types can contain
807 /// other function types, we close a function type mangling with suffix 'f'
808 /// which can't be confused with it's prefix.  This ensures we don't have
809 /// collisions between two unrelated function types. Otherwise, you might
810 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
811 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
812 /// indicating that extra care must be taken to ensure a unique name.
813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
814   std::string Result;
815   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
816     Result += "p" + utostr(PTyp->getAddressSpace());
817     // Opaque pointer doesn't have pointee type information, so we just mangle
818     // address space for opaque pointer.
819     if (!PTyp->isOpaque())
820       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
821                                   HasUnnamedType);
822   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
823     Result += "a" + utostr(ATyp->getNumElements()) +
824               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
825   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
826     if (!STyp->isLiteral()) {
827       Result += "s_";
828       if (STyp->hasName())
829         Result += STyp->getName();
830       else
831         HasUnnamedType = true;
832     } else {
833       Result += "sl_";
834       for (auto Elem : STyp->elements())
835         Result += getMangledTypeStr(Elem, HasUnnamedType);
836     }
837     // Ensure nested structs are distinguishable.
838     Result += "s";
839   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
840     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
841     for (size_t i = 0; i < FT->getNumParams(); i++)
842       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
843     if (FT->isVarArg())
844       Result += "vararg";
845     // Ensure nested function types are distinguishable.
846     Result += "f";
847   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
848     ElementCount EC = VTy->getElementCount();
849     if (EC.isScalable())
850       Result += "nx";
851     Result += "v" + utostr(EC.getKnownMinValue()) +
852               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
853   } else if (Ty) {
854     switch (Ty->getTypeID()) {
855     default: llvm_unreachable("Unhandled type");
856     case Type::VoidTyID:      Result += "isVoid";   break;
857     case Type::MetadataTyID:  Result += "Metadata"; break;
858     case Type::HalfTyID:      Result += "f16";      break;
859     case Type::BFloatTyID:    Result += "bf16";     break;
860     case Type::FloatTyID:     Result += "f32";      break;
861     case Type::DoubleTyID:    Result += "f64";      break;
862     case Type::X86_FP80TyID:  Result += "f80";      break;
863     case Type::FP128TyID:     Result += "f128";     break;
864     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
865     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
866     case Type::X86_AMXTyID:   Result += "x86amx";   break;
867     case Type::IntegerTyID:
868       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
869       break;
870     }
871   }
872   return Result;
873 }
874 
875 StringRef Intrinsic::getBaseName(ID id) {
876   assert(id < num_intrinsics && "Invalid intrinsic ID!");
877   return IntrinsicNameTable[id];
878 }
879 
880 StringRef Intrinsic::getName(ID id) {
881   assert(id < num_intrinsics && "Invalid intrinsic ID!");
882   assert(!Intrinsic::isOverloaded(id) &&
883          "This version of getName does not support overloading");
884   return getBaseName(id);
885 }
886 
887 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
888                                         Module *M, FunctionType *FT,
889                                         bool EarlyModuleCheck) {
890 
891   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
892   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
893          "This version of getName is for overloaded intrinsics only");
894   (void)EarlyModuleCheck;
895   assert((!EarlyModuleCheck || M ||
896           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
897          "Intrinsic overloading on pointer types need to provide a Module");
898   bool HasUnnamedType = false;
899   std::string Result(Intrinsic::getBaseName(Id));
900   for (Type *Ty : Tys)
901     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
902   if (HasUnnamedType) {
903     assert(M && "unnamed types need a module");
904     if (!FT)
905       FT = Intrinsic::getType(M->getContext(), Id, Tys);
906     else
907       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
908              "Provided FunctionType must match arguments");
909     return M->getUniqueIntrinsicName(Result, Id, FT);
910   }
911   return Result;
912 }
913 
914 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
915                                FunctionType *FT) {
916   assert(M && "We need to have a Module");
917   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
918 }
919 
920 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
921   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
922 }
923 
924 /// IIT_Info - These are enumerators that describe the entries returned by the
925 /// getIntrinsicInfoTableEntries function.
926 ///
927 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
928 enum IIT_Info {
929   // Common values should be encoded with 0-15.
930   IIT_Done = 0,
931   IIT_I1 = 1,
932   IIT_I8 = 2,
933   IIT_I16 = 3,
934   IIT_I32 = 4,
935   IIT_I64 = 5,
936   IIT_F16 = 6,
937   IIT_F32 = 7,
938   IIT_F64 = 8,
939   IIT_V2 = 9,
940   IIT_V4 = 10,
941   IIT_V8 = 11,
942   IIT_V16 = 12,
943   IIT_V32 = 13,
944   IIT_PTR = 14,
945   IIT_ARG = 15,
946 
947   // Values from 16+ are only encodable with the inefficient encoding.
948   IIT_V64 = 16,
949   IIT_MMX = 17,
950   IIT_TOKEN = 18,
951   IIT_METADATA = 19,
952   IIT_EMPTYSTRUCT = 20,
953   IIT_STRUCT2 = 21,
954   IIT_STRUCT3 = 22,
955   IIT_STRUCT4 = 23,
956   IIT_STRUCT5 = 24,
957   IIT_EXTEND_ARG = 25,
958   IIT_TRUNC_ARG = 26,
959   IIT_ANYPTR = 27,
960   IIT_V1 = 28,
961   IIT_VARARG = 29,
962   IIT_HALF_VEC_ARG = 30,
963   IIT_SAME_VEC_WIDTH_ARG = 31,
964   IIT_PTR_TO_ARG = 32,
965   IIT_PTR_TO_ELT = 33,
966   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
967   IIT_I128 = 35,
968   IIT_V512 = 36,
969   IIT_V1024 = 37,
970   IIT_STRUCT6 = 38,
971   IIT_STRUCT7 = 39,
972   IIT_STRUCT8 = 40,
973   IIT_F128 = 41,
974   IIT_VEC_ELEMENT = 42,
975   IIT_SCALABLE_VEC = 43,
976   IIT_SUBDIVIDE2_ARG = 44,
977   IIT_SUBDIVIDE4_ARG = 45,
978   IIT_VEC_OF_BITCASTS_TO_INT = 46,
979   IIT_V128 = 47,
980   IIT_BF16 = 48,
981   IIT_STRUCT9 = 49,
982   IIT_V256 = 50,
983   IIT_AMX = 51,
984   IIT_PPCF128 = 52,
985   IIT_V3 = 53,
986   IIT_EXTERNREF = 54,
987   IIT_FUNCREF = 55,
988   IIT_ANYPTR_TO_ELT = 56,
989   IIT_I2 = 57,
990   IIT_I4 = 58,
991 };
992 
993 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
994                       IIT_Info LastInfo,
995                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
996   using namespace Intrinsic;
997 
998   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
999 
1000   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1001   unsigned StructElts = 2;
1002 
1003   switch (Info) {
1004   case IIT_Done:
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1006     return;
1007   case IIT_VARARG:
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1009     return;
1010   case IIT_MMX:
1011     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1012     return;
1013   case IIT_AMX:
1014     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1015     return;
1016   case IIT_TOKEN:
1017     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1018     return;
1019   case IIT_METADATA:
1020     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1021     return;
1022   case IIT_F16:
1023     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1024     return;
1025   case IIT_BF16:
1026     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1027     return;
1028   case IIT_F32:
1029     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1030     return;
1031   case IIT_F64:
1032     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1033     return;
1034   case IIT_F128:
1035     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1036     return;
1037   case IIT_PPCF128:
1038     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1039     return;
1040   case IIT_I1:
1041     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1042     return;
1043   case IIT_I2:
1044     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1045     return;
1046   case IIT_I4:
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1048     return;
1049   case IIT_I8:
1050     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1051     return;
1052   case IIT_I16:
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1054     return;
1055   case IIT_I32:
1056     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1057     return;
1058   case IIT_I64:
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1060     return;
1061   case IIT_I128:
1062     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1063     return;
1064   case IIT_V1:
1065     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1066     DecodeIITType(NextElt, Infos, Info, OutputTable);
1067     return;
1068   case IIT_V2:
1069     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1070     DecodeIITType(NextElt, Infos, Info, OutputTable);
1071     return;
1072   case IIT_V3:
1073     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1074     DecodeIITType(NextElt, Infos, Info, OutputTable);
1075     return;
1076   case IIT_V4:
1077     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1078     DecodeIITType(NextElt, Infos, Info, OutputTable);
1079     return;
1080   case IIT_V8:
1081     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1082     DecodeIITType(NextElt, Infos, Info, OutputTable);
1083     return;
1084   case IIT_V16:
1085     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1086     DecodeIITType(NextElt, Infos, Info, OutputTable);
1087     return;
1088   case IIT_V32:
1089     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1090     DecodeIITType(NextElt, Infos, Info, OutputTable);
1091     return;
1092   case IIT_V64:
1093     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1094     DecodeIITType(NextElt, Infos, Info, OutputTable);
1095     return;
1096   case IIT_V128:
1097     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1098     DecodeIITType(NextElt, Infos, Info, OutputTable);
1099     return;
1100   case IIT_V256:
1101     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1102     DecodeIITType(NextElt, Infos, Info, OutputTable);
1103     return;
1104   case IIT_V512:
1105     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1106     DecodeIITType(NextElt, Infos, Info, OutputTable);
1107     return;
1108   case IIT_V1024:
1109     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1110     DecodeIITType(NextElt, Infos, Info, OutputTable);
1111     return;
1112   case IIT_EXTERNREF:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1115     return;
1116   case IIT_FUNCREF:
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1119     return;
1120   case IIT_PTR:
1121     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1122     DecodeIITType(NextElt, Infos, Info, OutputTable);
1123     return;
1124   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1125     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1126                                              Infos[NextElt++]));
1127     DecodeIITType(NextElt, Infos, Info, OutputTable);
1128     return;
1129   }
1130   case IIT_ARG: {
1131     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1133     return;
1134   }
1135   case IIT_EXTEND_ARG: {
1136     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1137     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1138                                              ArgInfo));
1139     return;
1140   }
1141   case IIT_TRUNC_ARG: {
1142     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1143     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1144                                              ArgInfo));
1145     return;
1146   }
1147   case IIT_HALF_VEC_ARG: {
1148     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1150                                              ArgInfo));
1151     return;
1152   }
1153   case IIT_SAME_VEC_WIDTH_ARG: {
1154     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1155     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1156                                              ArgInfo));
1157     return;
1158   }
1159   case IIT_PTR_TO_ARG: {
1160     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1161     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1162                                              ArgInfo));
1163     return;
1164   }
1165   case IIT_PTR_TO_ELT: {
1166     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1167     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1168     return;
1169   }
1170   case IIT_ANYPTR_TO_ELT: {
1171     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1172     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1173     OutputTable.push_back(
1174         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1175     return;
1176   }
1177   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1178     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1179     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1180     OutputTable.push_back(
1181         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1182     return;
1183   }
1184   case IIT_EMPTYSTRUCT:
1185     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1186     return;
1187   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1188   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1189   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1190   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1191   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1192   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1193   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1194   case IIT_STRUCT2: {
1195     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1196 
1197     for (unsigned i = 0; i != StructElts; ++i)
1198       DecodeIITType(NextElt, Infos, Info, OutputTable);
1199     return;
1200   }
1201   case IIT_SUBDIVIDE2_ARG: {
1202     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1203     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1204                                              ArgInfo));
1205     return;
1206   }
1207   case IIT_SUBDIVIDE4_ARG: {
1208     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1209     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1210                                              ArgInfo));
1211     return;
1212   }
1213   case IIT_VEC_ELEMENT: {
1214     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1215     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1216                                              ArgInfo));
1217     return;
1218   }
1219   case IIT_SCALABLE_VEC: {
1220     DecodeIITType(NextElt, Infos, Info, OutputTable);
1221     return;
1222   }
1223   case IIT_VEC_OF_BITCASTS_TO_INT: {
1224     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1225     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1226                                              ArgInfo));
1227     return;
1228   }
1229   }
1230   llvm_unreachable("unhandled");
1231 }
1232 
1233 #define GET_INTRINSIC_GENERATOR_GLOBAL
1234 #include "llvm/IR/IntrinsicImpl.inc"
1235 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1236 
1237 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1238                                              SmallVectorImpl<IITDescriptor> &T){
1239   // Check to see if the intrinsic's type was expressible by the table.
1240   unsigned TableVal = IIT_Table[id-1];
1241 
1242   // Decode the TableVal into an array of IITValues.
1243   SmallVector<unsigned char, 8> IITValues;
1244   ArrayRef<unsigned char> IITEntries;
1245   unsigned NextElt = 0;
1246   if ((TableVal >> 31) != 0) {
1247     // This is an offset into the IIT_LongEncodingTable.
1248     IITEntries = IIT_LongEncodingTable;
1249 
1250     // Strip sentinel bit.
1251     NextElt = (TableVal << 1) >> 1;
1252   } else {
1253     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1254     // into a single word in the table itself, decode it now.
1255     do {
1256       IITValues.push_back(TableVal & 0xF);
1257       TableVal >>= 4;
1258     } while (TableVal);
1259 
1260     IITEntries = IITValues;
1261     NextElt = 0;
1262   }
1263 
1264   // Okay, decode the table into the output vector of IITDescriptors.
1265   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1266   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1267     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1268 }
1269 
1270 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1271                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1272   using namespace Intrinsic;
1273 
1274   IITDescriptor D = Infos.front();
1275   Infos = Infos.slice(1);
1276 
1277   switch (D.Kind) {
1278   case IITDescriptor::Void: return Type::getVoidTy(Context);
1279   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1280   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1281   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1282   case IITDescriptor::Token: return Type::getTokenTy(Context);
1283   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1284   case IITDescriptor::Half: return Type::getHalfTy(Context);
1285   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1286   case IITDescriptor::Float: return Type::getFloatTy(Context);
1287   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1288   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1289   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1290 
1291   case IITDescriptor::Integer:
1292     return IntegerType::get(Context, D.Integer_Width);
1293   case IITDescriptor::Vector:
1294     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1295                            D.Vector_Width);
1296   case IITDescriptor::Pointer:
1297     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1298                             D.Pointer_AddressSpace);
1299   case IITDescriptor::Struct: {
1300     SmallVector<Type *, 8> Elts;
1301     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1302       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1303     return StructType::get(Context, Elts);
1304   }
1305   case IITDescriptor::Argument:
1306     return Tys[D.getArgumentNumber()];
1307   case IITDescriptor::ExtendArgument: {
1308     Type *Ty = Tys[D.getArgumentNumber()];
1309     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1310       return VectorType::getExtendedElementVectorType(VTy);
1311 
1312     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1313   }
1314   case IITDescriptor::TruncArgument: {
1315     Type *Ty = Tys[D.getArgumentNumber()];
1316     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1317       return VectorType::getTruncatedElementVectorType(VTy);
1318 
1319     IntegerType *ITy = cast<IntegerType>(Ty);
1320     assert(ITy->getBitWidth() % 2 == 0);
1321     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1322   }
1323   case IITDescriptor::Subdivide2Argument:
1324   case IITDescriptor::Subdivide4Argument: {
1325     Type *Ty = Tys[D.getArgumentNumber()];
1326     VectorType *VTy = dyn_cast<VectorType>(Ty);
1327     assert(VTy && "Expected an argument of Vector Type");
1328     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1329     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1330   }
1331   case IITDescriptor::HalfVecArgument:
1332     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1333                                                   Tys[D.getArgumentNumber()]));
1334   case IITDescriptor::SameVecWidthArgument: {
1335     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1336     Type *Ty = Tys[D.getArgumentNumber()];
1337     if (auto *VTy = dyn_cast<VectorType>(Ty))
1338       return VectorType::get(EltTy, VTy->getElementCount());
1339     return EltTy;
1340   }
1341   case IITDescriptor::PtrToArgument: {
1342     Type *Ty = Tys[D.getArgumentNumber()];
1343     return PointerType::getUnqual(Ty);
1344   }
1345   case IITDescriptor::PtrToElt: {
1346     Type *Ty = Tys[D.getArgumentNumber()];
1347     VectorType *VTy = dyn_cast<VectorType>(Ty);
1348     if (!VTy)
1349       llvm_unreachable("Expected an argument of Vector Type");
1350     Type *EltTy = VTy->getElementType();
1351     return PointerType::getUnqual(EltTy);
1352   }
1353   case IITDescriptor::VecElementArgument: {
1354     Type *Ty = Tys[D.getArgumentNumber()];
1355     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1356       return VTy->getElementType();
1357     llvm_unreachable("Expected an argument of Vector Type");
1358   }
1359   case IITDescriptor::VecOfBitcastsToInt: {
1360     Type *Ty = Tys[D.getArgumentNumber()];
1361     VectorType *VTy = dyn_cast<VectorType>(Ty);
1362     assert(VTy && "Expected an argument of Vector Type");
1363     return VectorType::getInteger(VTy);
1364   }
1365   case IITDescriptor::VecOfAnyPtrsToElt:
1366     // Return the overloaded type (which determines the pointers address space)
1367     return Tys[D.getOverloadArgNumber()];
1368   case IITDescriptor::AnyPtrToElt:
1369     // Return the overloaded type (which determines the pointers address space)
1370     return Tys[D.getOverloadArgNumber()];
1371   }
1372   llvm_unreachable("unhandled");
1373 }
1374 
1375 FunctionType *Intrinsic::getType(LLVMContext &Context,
1376                                  ID id, ArrayRef<Type*> Tys) {
1377   SmallVector<IITDescriptor, 8> Table;
1378   getIntrinsicInfoTableEntries(id, Table);
1379 
1380   ArrayRef<IITDescriptor> TableRef = Table;
1381   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1382 
1383   SmallVector<Type*, 8> ArgTys;
1384   while (!TableRef.empty())
1385     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1386 
1387   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1388   // If we see void type as the type of the last argument, it is vararg intrinsic
1389   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1390     ArgTys.pop_back();
1391     return FunctionType::get(ResultTy, ArgTys, true);
1392   }
1393   return FunctionType::get(ResultTy, ArgTys, false);
1394 }
1395 
1396 bool Intrinsic::isOverloaded(ID id) {
1397 #define GET_INTRINSIC_OVERLOAD_TABLE
1398 #include "llvm/IR/IntrinsicImpl.inc"
1399 #undef GET_INTRINSIC_OVERLOAD_TABLE
1400 }
1401 
1402 bool Intrinsic::isLeaf(ID id) {
1403   switch (id) {
1404   default:
1405     return true;
1406 
1407   case Intrinsic::experimental_gc_statepoint:
1408   case Intrinsic::experimental_patchpoint_void:
1409   case Intrinsic::experimental_patchpoint_i64:
1410     return false;
1411   }
1412 }
1413 
1414 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1415 #define GET_INTRINSIC_ATTRIBUTES
1416 #include "llvm/IR/IntrinsicImpl.inc"
1417 #undef GET_INTRINSIC_ATTRIBUTES
1418 
1419 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1420   // There can never be multiple globals with the same name of different types,
1421   // because intrinsics must be a specific type.
1422   auto *FT = getType(M->getContext(), id, Tys);
1423   return cast<Function>(
1424       M->getOrInsertFunction(Tys.empty() ? getName(id)
1425                                          : getName(id, Tys, M, FT),
1426                              getType(M->getContext(), id, Tys))
1427           .getCallee());
1428 }
1429 
1430 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1431 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1432 #include "llvm/IR/IntrinsicImpl.inc"
1433 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1434 
1435 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1436 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1437 #include "llvm/IR/IntrinsicImpl.inc"
1438 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1439 
1440 using DeferredIntrinsicMatchPair =
1441     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1442 
1443 static bool matchIntrinsicType(
1444     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1445     SmallVectorImpl<Type *> &ArgTys,
1446     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1447     bool IsDeferredCheck) {
1448   using namespace Intrinsic;
1449 
1450   // If we ran out of descriptors, there are too many arguments.
1451   if (Infos.empty()) return true;
1452 
1453   // Do this before slicing off the 'front' part
1454   auto InfosRef = Infos;
1455   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1456     DeferredChecks.emplace_back(T, InfosRef);
1457     return false;
1458   };
1459 
1460   IITDescriptor D = Infos.front();
1461   Infos = Infos.slice(1);
1462 
1463   switch (D.Kind) {
1464     case IITDescriptor::Void: return !Ty->isVoidTy();
1465     case IITDescriptor::VarArg: return true;
1466     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1467     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1468     case IITDescriptor::Token: return !Ty->isTokenTy();
1469     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1470     case IITDescriptor::Half: return !Ty->isHalfTy();
1471     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1472     case IITDescriptor::Float: return !Ty->isFloatTy();
1473     case IITDescriptor::Double: return !Ty->isDoubleTy();
1474     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1475     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1476     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1477     case IITDescriptor::Vector: {
1478       VectorType *VT = dyn_cast<VectorType>(Ty);
1479       return !VT || VT->getElementCount() != D.Vector_Width ||
1480              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1481                                 DeferredChecks, IsDeferredCheck);
1482     }
1483     case IITDescriptor::Pointer: {
1484       PointerType *PT = dyn_cast<PointerType>(Ty);
1485       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1486         return true;
1487       if (!PT->isOpaque()) {
1488         /* Manually consume a pointer to empty struct descriptor, which is
1489          * used for externref. We don't want to enforce that the struct is
1490          * anonymous in this case. (This renders externref intrinsics
1491          * non-unique, but this will go away with opaque pointers anyway.) */
1492         if (Infos.front().Kind == IITDescriptor::Struct &&
1493             Infos.front().Struct_NumElements == 0) {
1494           Infos = Infos.slice(1);
1495           return false;
1496         }
1497         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1498                                   ArgTys, DeferredChecks, IsDeferredCheck);
1499       }
1500       // Consume IIT descriptors relating to the pointer element type.
1501       // FIXME: Intrinsic type matching of nested single value types or even
1502       // aggregates doesn't work properly with opaque pointers but hopefully
1503       // doesn't happen in practice.
1504       while (Infos.front().Kind == IITDescriptor::Pointer ||
1505              Infos.front().Kind == IITDescriptor::Vector)
1506         Infos = Infos.slice(1);
1507       assert((Infos.front().Kind != IITDescriptor::Argument ||
1508               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1509              "Unsupported polymorphic pointer type with opaque pointer");
1510       Infos = Infos.slice(1);
1511       return false;
1512     }
1513 
1514     case IITDescriptor::Struct: {
1515       StructType *ST = dyn_cast<StructType>(Ty);
1516       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1517           ST->getNumElements() != D.Struct_NumElements)
1518         return true;
1519 
1520       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1521         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1522                                DeferredChecks, IsDeferredCheck))
1523           return true;
1524       return false;
1525     }
1526 
1527     case IITDescriptor::Argument:
1528       // If this is the second occurrence of an argument,
1529       // verify that the later instance matches the previous instance.
1530       if (D.getArgumentNumber() < ArgTys.size())
1531         return Ty != ArgTys[D.getArgumentNumber()];
1532 
1533       if (D.getArgumentNumber() > ArgTys.size() ||
1534           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1535         return IsDeferredCheck || DeferCheck(Ty);
1536 
1537       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1538              "Table consistency error");
1539       ArgTys.push_back(Ty);
1540 
1541       switch (D.getArgumentKind()) {
1542         case IITDescriptor::AK_Any:        return false; // Success
1543         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1544         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1545         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1546         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1547         default:                           break;
1548       }
1549       llvm_unreachable("all argument kinds not covered");
1550 
1551     case IITDescriptor::ExtendArgument: {
1552       // If this is a forward reference, defer the check for later.
1553       if (D.getArgumentNumber() >= ArgTys.size())
1554         return IsDeferredCheck || DeferCheck(Ty);
1555 
1556       Type *NewTy = ArgTys[D.getArgumentNumber()];
1557       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1558         NewTy = VectorType::getExtendedElementVectorType(VTy);
1559       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1560         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1561       else
1562         return true;
1563 
1564       return Ty != NewTy;
1565     }
1566     case IITDescriptor::TruncArgument: {
1567       // If this is a forward reference, defer the check for later.
1568       if (D.getArgumentNumber() >= ArgTys.size())
1569         return IsDeferredCheck || DeferCheck(Ty);
1570 
1571       Type *NewTy = ArgTys[D.getArgumentNumber()];
1572       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1573         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1574       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1575         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1576       else
1577         return true;
1578 
1579       return Ty != NewTy;
1580     }
1581     case IITDescriptor::HalfVecArgument:
1582       // If this is a forward reference, defer the check for later.
1583       if (D.getArgumentNumber() >= ArgTys.size())
1584         return IsDeferredCheck || DeferCheck(Ty);
1585       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1586              VectorType::getHalfElementsVectorType(
1587                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1588     case IITDescriptor::SameVecWidthArgument: {
1589       if (D.getArgumentNumber() >= ArgTys.size()) {
1590         // Defer check and subsequent check for the vector element type.
1591         Infos = Infos.slice(1);
1592         return IsDeferredCheck || DeferCheck(Ty);
1593       }
1594       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1595       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1596       // Both must be vectors of the same number of elements or neither.
1597       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1598         return true;
1599       Type *EltTy = Ty;
1600       if (ThisArgType) {
1601         if (ReferenceType->getElementCount() !=
1602             ThisArgType->getElementCount())
1603           return true;
1604         EltTy = ThisArgType->getElementType();
1605       }
1606       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1607                                 IsDeferredCheck);
1608     }
1609     case IITDescriptor::PtrToArgument: {
1610       if (D.getArgumentNumber() >= ArgTys.size())
1611         return IsDeferredCheck || DeferCheck(Ty);
1612       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1613       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1614       return (!ThisArgType ||
1615               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1616     }
1617     case IITDescriptor::PtrToElt: {
1618       if (D.getArgumentNumber() >= ArgTys.size())
1619         return IsDeferredCheck || DeferCheck(Ty);
1620       VectorType * ReferenceType =
1621         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1622       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1623 
1624       if (!ThisArgType || !ReferenceType)
1625         return true;
1626       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1627           ReferenceType->getElementType());
1628     }
1629     case IITDescriptor::AnyPtrToElt: {
1630       unsigned RefArgNumber = D.getRefArgNumber();
1631       if (RefArgNumber >= ArgTys.size()) {
1632         if (IsDeferredCheck)
1633           return true;
1634         // If forward referencing, already add the pointer type and
1635         // defer the checks for later.
1636         ArgTys.push_back(Ty);
1637         return DeferCheck(Ty);
1638       }
1639 
1640       if (!IsDeferredCheck) {
1641         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1642                "Table consistency error");
1643         ArgTys.push_back(Ty);
1644       }
1645 
1646       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1647       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1648       if (!ThisArgType || !ReferenceType)
1649         return true;
1650       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1651           ReferenceType->getElementType());
1652     }
1653     case IITDescriptor::VecOfAnyPtrsToElt: {
1654       unsigned RefArgNumber = D.getRefArgNumber();
1655       if (RefArgNumber >= ArgTys.size()) {
1656         if (IsDeferredCheck)
1657           return true;
1658         // If forward referencing, already add the pointer-vector type and
1659         // defer the checks for later.
1660         ArgTys.push_back(Ty);
1661         return DeferCheck(Ty);
1662       }
1663 
1664       if (!IsDeferredCheck){
1665         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1666                "Table consistency error");
1667         ArgTys.push_back(Ty);
1668       }
1669 
1670       // Verify the overloaded type "matches" the Ref type.
1671       // i.e. Ty is a vector with the same width as Ref.
1672       // Composed of pointers to the same element type as Ref.
1673       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1674       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1675       if (!ThisArgVecTy || !ReferenceType ||
1676           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1677         return true;
1678       PointerType *ThisArgEltTy =
1679           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1680       if (!ThisArgEltTy)
1681         return true;
1682       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1683           ReferenceType->getElementType());
1684     }
1685     case IITDescriptor::VecElementArgument: {
1686       if (D.getArgumentNumber() >= ArgTys.size())
1687         return IsDeferredCheck ? true : DeferCheck(Ty);
1688       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1689       return !ReferenceType || Ty != ReferenceType->getElementType();
1690     }
1691     case IITDescriptor::Subdivide2Argument:
1692     case IITDescriptor::Subdivide4Argument: {
1693       // If this is a forward reference, defer the check for later.
1694       if (D.getArgumentNumber() >= ArgTys.size())
1695         return IsDeferredCheck || DeferCheck(Ty);
1696 
1697       Type *NewTy = ArgTys[D.getArgumentNumber()];
1698       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1699         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1700         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1701         return Ty != NewTy;
1702       }
1703       return true;
1704     }
1705     case IITDescriptor::VecOfBitcastsToInt: {
1706       if (D.getArgumentNumber() >= ArgTys.size())
1707         return IsDeferredCheck || DeferCheck(Ty);
1708       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1709       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1710       if (!ThisArgVecTy || !ReferenceType)
1711         return true;
1712       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1713     }
1714   }
1715   llvm_unreachable("unhandled");
1716 }
1717 
1718 Intrinsic::MatchIntrinsicTypesResult
1719 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1720                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1721                                    SmallVectorImpl<Type *> &ArgTys) {
1722   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1723   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1724                          false))
1725     return MatchIntrinsicTypes_NoMatchRet;
1726 
1727   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1728 
1729   for (auto Ty : FTy->params())
1730     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1731       return MatchIntrinsicTypes_NoMatchArg;
1732 
1733   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1734     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1735     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1736                            true))
1737       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1738                                          : MatchIntrinsicTypes_NoMatchArg;
1739   }
1740 
1741   return MatchIntrinsicTypes_Match;
1742 }
1743 
1744 bool
1745 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1746                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1747   // If there are no descriptors left, then it can't be a vararg.
1748   if (Infos.empty())
1749     return isVarArg;
1750 
1751   // There should be only one descriptor remaining at this point.
1752   if (Infos.size() != 1)
1753     return true;
1754 
1755   // Check and verify the descriptor.
1756   IITDescriptor D = Infos.front();
1757   Infos = Infos.slice(1);
1758   if (D.Kind == IITDescriptor::VarArg)
1759     return !isVarArg;
1760 
1761   return true;
1762 }
1763 
1764 bool Intrinsic::getIntrinsicSignature(Function *F,
1765                                       SmallVectorImpl<Type *> &ArgTys) {
1766   Intrinsic::ID ID = F->getIntrinsicID();
1767   if (!ID)
1768     return false;
1769 
1770   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1771   getIntrinsicInfoTableEntries(ID, Table);
1772   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1773 
1774   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1775                                          ArgTys) !=
1776       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1777     return false;
1778   }
1779   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1780                                       TableRef))
1781     return false;
1782   return true;
1783 }
1784 
1785 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1786   SmallVector<Type *, 4> ArgTys;
1787   if (!getIntrinsicSignature(F, ArgTys))
1788     return None;
1789 
1790   Intrinsic::ID ID = F->getIntrinsicID();
1791   StringRef Name = F->getName();
1792   std::string WantedName =
1793       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1794   if (Name == WantedName)
1795     return None;
1796 
1797   Function *NewDecl = [&] {
1798     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1799       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1800         if (ExistingF->getFunctionType() == F->getFunctionType())
1801           return ExistingF;
1802 
1803       // The name already exists, but is not a function or has the wrong
1804       // prototype. Make place for the new one by renaming the old version.
1805       // Either this old version will be removed later on or the module is
1806       // invalid and we'll get an error.
1807       ExistingGV->setName(WantedName + ".renamed");
1808     }
1809     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1810   }();
1811 
1812   NewDecl->setCallingConv(F->getCallingConv());
1813   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1814          "Shouldn't change the signature");
1815   return NewDecl;
1816 }
1817 
1818 /// hasAddressTaken - returns true if there are any uses of this function
1819 /// other than direct calls or invokes to it. Optionally ignores callback
1820 /// uses, assume like pointer annotation calls, and references in llvm.used
1821 /// and llvm.compiler.used variables.
1822 bool Function::hasAddressTaken(const User **PutOffender,
1823                                bool IgnoreCallbackUses,
1824                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1825                                bool IgnoreARCAttachedCall) const {
1826   for (const Use &U : uses()) {
1827     const User *FU = U.getUser();
1828     if (isa<BlockAddress>(FU))
1829       continue;
1830 
1831     if (IgnoreCallbackUses) {
1832       AbstractCallSite ACS(&U);
1833       if (ACS && ACS.isCallbackCall())
1834         continue;
1835     }
1836 
1837     const auto *Call = dyn_cast<CallBase>(FU);
1838     if (!Call) {
1839       if (IgnoreAssumeLikeCalls) {
1840         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1841           if (FI->isCast() && !FI->user_empty() &&
1842               llvm::all_of(FU->users(), [](const User *U) {
1843                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1844                   return I->isAssumeLikeIntrinsic();
1845                 return false;
1846               }))
1847             continue;
1848         }
1849       }
1850       if (IgnoreLLVMUsed && !FU->user_empty()) {
1851         const User *FUU = FU;
1852         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1853             !FU->user_begin()->user_empty())
1854           FUU = *FU->user_begin();
1855         if (llvm::all_of(FUU->users(), [](const User *U) {
1856               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1857                 return GV->hasName() &&
1858                        (GV->getName().equals("llvm.compiler.used") ||
1859                         GV->getName().equals("llvm.used"));
1860               return false;
1861             }))
1862           continue;
1863       }
1864       if (PutOffender)
1865         *PutOffender = FU;
1866       return true;
1867     }
1868     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1869       if (IgnoreARCAttachedCall &&
1870           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1871                                       U.getOperandNo()))
1872         continue;
1873 
1874       if (PutOffender)
1875         *PutOffender = FU;
1876       return true;
1877     }
1878   }
1879   return false;
1880 }
1881 
1882 bool Function::isDefTriviallyDead() const {
1883   // Check the linkage
1884   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1885       !hasAvailableExternallyLinkage())
1886     return false;
1887 
1888   // Check if the function is used by anything other than a blockaddress.
1889   for (const User *U : users())
1890     if (!isa<BlockAddress>(U))
1891       return false;
1892 
1893   return true;
1894 }
1895 
1896 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1897 /// setjmp or other function that gcc recognizes as "returning twice".
1898 bool Function::callsFunctionThatReturnsTwice() const {
1899   for (const Instruction &I : instructions(this))
1900     if (const auto *Call = dyn_cast<CallBase>(&I))
1901       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1902         return true;
1903 
1904   return false;
1905 }
1906 
1907 Constant *Function::getPersonalityFn() const {
1908   assert(hasPersonalityFn() && getNumOperands());
1909   return cast<Constant>(Op<0>());
1910 }
1911 
1912 void Function::setPersonalityFn(Constant *Fn) {
1913   setHungoffOperand<0>(Fn);
1914   setValueSubclassDataBit(3, Fn != nullptr);
1915 }
1916 
1917 Constant *Function::getPrefixData() const {
1918   assert(hasPrefixData() && getNumOperands());
1919   return cast<Constant>(Op<1>());
1920 }
1921 
1922 void Function::setPrefixData(Constant *PrefixData) {
1923   setHungoffOperand<1>(PrefixData);
1924   setValueSubclassDataBit(1, PrefixData != nullptr);
1925 }
1926 
1927 Constant *Function::getPrologueData() const {
1928   assert(hasPrologueData() && getNumOperands());
1929   return cast<Constant>(Op<2>());
1930 }
1931 
1932 void Function::setPrologueData(Constant *PrologueData) {
1933   setHungoffOperand<2>(PrologueData);
1934   setValueSubclassDataBit(2, PrologueData != nullptr);
1935 }
1936 
1937 void Function::allocHungoffUselist() {
1938   // If we've already allocated a uselist, stop here.
1939   if (getNumOperands())
1940     return;
1941 
1942   allocHungoffUses(3, /*IsPhi=*/ false);
1943   setNumHungOffUseOperands(3);
1944 
1945   // Initialize the uselist with placeholder operands to allow traversal.
1946   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1947   Op<0>().set(CPN);
1948   Op<1>().set(CPN);
1949   Op<2>().set(CPN);
1950 }
1951 
1952 template <int Idx>
1953 void Function::setHungoffOperand(Constant *C) {
1954   if (C) {
1955     allocHungoffUselist();
1956     Op<Idx>().set(C);
1957   } else if (getNumOperands()) {
1958     Op<Idx>().set(
1959         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1960   }
1961 }
1962 
1963 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1964   assert(Bit < 16 && "SubclassData contains only 16 bits");
1965   if (On)
1966     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1967   else
1968     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1969 }
1970 
1971 void Function::setEntryCount(ProfileCount Count,
1972                              const DenseSet<GlobalValue::GUID> *S) {
1973 #if !defined(NDEBUG)
1974   auto PrevCount = getEntryCount();
1975   assert(!PrevCount || PrevCount->getType() == Count.getType());
1976 #endif
1977 
1978   auto ImportGUIDs = getImportGUIDs();
1979   if (S == nullptr && ImportGUIDs.size())
1980     S = &ImportGUIDs;
1981 
1982   MDBuilder MDB(getContext());
1983   setMetadata(
1984       LLVMContext::MD_prof,
1985       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1986 }
1987 
1988 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1989                              const DenseSet<GlobalValue::GUID> *Imports) {
1990   setEntryCount(ProfileCount(Count, Type), Imports);
1991 }
1992 
1993 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1994   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1995   if (MD && MD->getOperand(0))
1996     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1997       if (MDS->getString().equals("function_entry_count")) {
1998         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1999         uint64_t Count = CI->getValue().getZExtValue();
2000         // A value of -1 is used for SamplePGO when there were no samples.
2001         // Treat this the same as unknown.
2002         if (Count == (uint64_t)-1)
2003           return None;
2004         return ProfileCount(Count, PCT_Real);
2005       } else if (AllowSynthetic &&
2006                  MDS->getString().equals("synthetic_function_entry_count")) {
2007         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2008         uint64_t Count = CI->getValue().getZExtValue();
2009         return ProfileCount(Count, PCT_Synthetic);
2010       }
2011     }
2012   return None;
2013 }
2014 
2015 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2016   DenseSet<GlobalValue::GUID> R;
2017   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2018     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2019       if (MDS->getString().equals("function_entry_count"))
2020         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2021           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2022                        ->getValue()
2023                        .getZExtValue());
2024   return R;
2025 }
2026 
2027 void Function::setSectionPrefix(StringRef Prefix) {
2028   MDBuilder MDB(getContext());
2029   setMetadata(LLVMContext::MD_section_prefix,
2030               MDB.createFunctionSectionPrefix(Prefix));
2031 }
2032 
2033 Optional<StringRef> Function::getSectionPrefix() const {
2034   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2035     assert(cast<MDString>(MD->getOperand(0))
2036                ->getString()
2037                .equals("function_section_prefix") &&
2038            "Metadata not match");
2039     return cast<MDString>(MD->getOperand(1))->getString();
2040   }
2041   return None;
2042 }
2043 
2044 bool Function::nullPointerIsDefined() const {
2045   return hasFnAttribute(Attribute::NullPointerIsValid);
2046 }
2047 
2048 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2049   if (F && F->nullPointerIsDefined())
2050     return true;
2051 
2052   if (AS != 0)
2053     return true;
2054 
2055   return false;
2056 }
2057