10b57cec5SDimitry Andric //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 20b57cec5SDimitry Andric // 30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 60b57cec5SDimitry Andric // 70b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 80b57cec5SDimitry Andric // 90b57cec5SDimitry Andric // This file implements folding of constants for LLVM. This implements the 100b57cec5SDimitry Andric // (internal) ConstantFold.h interface, which is used by the 110b57cec5SDimitry Andric // ConstantExpr::get* methods to automatically fold constants when possible. 120b57cec5SDimitry Andric // 130b57cec5SDimitry Andric // The current constant folding implementation is implemented in two pieces: the 140b57cec5SDimitry Andric // pieces that don't need DataLayout, and the pieces that do. This is to avoid 150b57cec5SDimitry Andric // a dependence in IR on Target. 160b57cec5SDimitry Andric // 170b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 180b57cec5SDimitry Andric 1981ad6265SDimitry Andric #include "llvm/IR/ConstantFold.h" 200b57cec5SDimitry Andric #include "llvm/ADT/APSInt.h" 210b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 220b57cec5SDimitry Andric #include "llvm/IR/Constants.h" 230b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 240b57cec5SDimitry Andric #include "llvm/IR/Function.h" 250b57cec5SDimitry Andric #include "llvm/IR/GetElementPtrTypeIterator.h" 260b57cec5SDimitry Andric #include "llvm/IR/GlobalAlias.h" 270b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 280b57cec5SDimitry Andric #include "llvm/IR/Instructions.h" 290b57cec5SDimitry Andric #include "llvm/IR/Module.h" 300b57cec5SDimitry Andric #include "llvm/IR/Operator.h" 310b57cec5SDimitry Andric #include "llvm/IR/PatternMatch.h" 320b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 330b57cec5SDimitry Andric using namespace llvm; 340b57cec5SDimitry Andric using namespace llvm::PatternMatch; 350b57cec5SDimitry Andric 360b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 370b57cec5SDimitry Andric // ConstantFold*Instruction Implementations 380b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 390b57cec5SDimitry Andric 400b57cec5SDimitry Andric /// This function determines which opcode to use to fold two constant cast 410b57cec5SDimitry Andric /// expressions together. It uses CastInst::isEliminableCastPair to determine 420b57cec5SDimitry Andric /// the opcode. Consequently its just a wrapper around that function. 430b57cec5SDimitry Andric /// Determine if it is valid to fold a cast of a cast 440b57cec5SDimitry Andric static unsigned 450b57cec5SDimitry Andric foldConstantCastPair( 460b57cec5SDimitry Andric unsigned opc, ///< opcode of the second cast constant expression 470b57cec5SDimitry Andric ConstantExpr *Op, ///< the first cast constant expression 480b57cec5SDimitry Andric Type *DstTy ///< destination type of the first cast 490b57cec5SDimitry Andric ) { 500b57cec5SDimitry Andric assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 510b57cec5SDimitry Andric assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 520b57cec5SDimitry Andric assert(CastInst::isCast(opc) && "Invalid cast opcode"); 530b57cec5SDimitry Andric 540b57cec5SDimitry Andric // The types and opcodes for the two Cast constant expressions 550b57cec5SDimitry Andric Type *SrcTy = Op->getOperand(0)->getType(); 560b57cec5SDimitry Andric Type *MidTy = Op->getType(); 570b57cec5SDimitry Andric Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 580b57cec5SDimitry Andric Instruction::CastOps secondOp = Instruction::CastOps(opc); 590b57cec5SDimitry Andric 600b57cec5SDimitry Andric // Assume that pointers are never more than 64 bits wide, and only use this 610b57cec5SDimitry Andric // for the middle type. Otherwise we could end up folding away illegal 620b57cec5SDimitry Andric // bitcasts between address spaces with different sizes. 630b57cec5SDimitry Andric IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 640b57cec5SDimitry Andric 650b57cec5SDimitry Andric // Let CastInst::isEliminableCastPair do the heavy lifting. 660b57cec5SDimitry Andric return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 670b57cec5SDimitry Andric nullptr, FakeIntPtrTy, nullptr); 680b57cec5SDimitry Andric } 690b57cec5SDimitry Andric 700b57cec5SDimitry Andric static Constant *FoldBitCast(Constant *V, Type *DestTy) { 710b57cec5SDimitry Andric Type *SrcTy = V->getType(); 720b57cec5SDimitry Andric if (SrcTy == DestTy) 730b57cec5SDimitry Andric return V; // no-op cast 740b57cec5SDimitry Andric 750b57cec5SDimitry Andric // Handle casts from one vector constant to another. We know that the src 760b57cec5SDimitry Andric // and dest type have the same size (otherwise its an illegal cast). 770b57cec5SDimitry Andric if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 785f757f3fSDimitry Andric if (V->isAllOnesValue()) 795f757f3fSDimitry Andric return Constant::getAllOnesValue(DestTy); 800b57cec5SDimitry Andric 810b57cec5SDimitry Andric // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 820b57cec5SDimitry Andric // This allows for other simplifications (although some of them 830b57cec5SDimitry Andric // can only be handled by Analysis/ConstantFolding.cpp). 840b57cec5SDimitry Andric if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 850b57cec5SDimitry Andric return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 865f757f3fSDimitry Andric return nullptr; 870b57cec5SDimitry Andric } 880b57cec5SDimitry Andric 890b57cec5SDimitry Andric // Handle integral constant input. 900b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 910b57cec5SDimitry Andric // See note below regarding the PPC_FP128 restriction. 920b57cec5SDimitry Andric if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 930b57cec5SDimitry Andric return ConstantFP::get(DestTy->getContext(), 940b57cec5SDimitry Andric APFloat(DestTy->getFltSemantics(), 950b57cec5SDimitry Andric CI->getValue())); 960b57cec5SDimitry Andric 970b57cec5SDimitry Andric // Otherwise, can't fold this (vector?) 980b57cec5SDimitry Andric return nullptr; 990b57cec5SDimitry Andric } 1000b57cec5SDimitry Andric 1010b57cec5SDimitry Andric // Handle ConstantFP input: FP -> Integral. 1020b57cec5SDimitry Andric if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 1030b57cec5SDimitry Andric // PPC_FP128 is really the sum of two consecutive doubles, where the first 1040b57cec5SDimitry Andric // double is always stored first in memory, regardless of the target 1050b57cec5SDimitry Andric // endianness. The memory layout of i128, however, depends on the target 1060b57cec5SDimitry Andric // endianness, and so we can't fold this without target endianness 1070b57cec5SDimitry Andric // information. This should instead be handled by 1080b57cec5SDimitry Andric // Analysis/ConstantFolding.cpp 1090b57cec5SDimitry Andric if (FP->getType()->isPPC_FP128Ty()) 1100b57cec5SDimitry Andric return nullptr; 1110b57cec5SDimitry Andric 1120b57cec5SDimitry Andric // Make sure dest type is compatible with the folded integer constant. 1130b57cec5SDimitry Andric if (!DestTy->isIntegerTy()) 1140b57cec5SDimitry Andric return nullptr; 1150b57cec5SDimitry Andric 1160b57cec5SDimitry Andric return ConstantInt::get(FP->getContext(), 1170b57cec5SDimitry Andric FP->getValueAPF().bitcastToAPInt()); 1180b57cec5SDimitry Andric } 1190b57cec5SDimitry Andric 1200b57cec5SDimitry Andric return nullptr; 1210b57cec5SDimitry Andric } 1220b57cec5SDimitry Andric 1235f757f3fSDimitry Andric static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, 1245f757f3fSDimitry Andric Type *DestTy) { 1255f757f3fSDimitry Andric return ConstantExpr::isDesirableCastOp(opc) 1265f757f3fSDimitry Andric ? ConstantExpr::getCast(opc, V, DestTy) 1275f757f3fSDimitry Andric : ConstantFoldCastInstruction(opc, V, DestTy); 1280b57cec5SDimitry Andric } 1290b57cec5SDimitry Andric 1300b57cec5SDimitry Andric Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 1310b57cec5SDimitry Andric Type *DestTy) { 132e8d8bef9SDimitry Andric if (isa<PoisonValue>(V)) 133e8d8bef9SDimitry Andric return PoisonValue::get(DestTy); 134e8d8bef9SDimitry Andric 1350b57cec5SDimitry Andric if (isa<UndefValue>(V)) { 1360b57cec5SDimitry Andric // zext(undef) = 0, because the top bits will be zero. 1370b57cec5SDimitry Andric // sext(undef) = 0, because the top bits will all be the same. 1380b57cec5SDimitry Andric // [us]itofp(undef) = 0, because the result value is bounded. 1390b57cec5SDimitry Andric if (opc == Instruction::ZExt || opc == Instruction::SExt || 1400b57cec5SDimitry Andric opc == Instruction::UIToFP || opc == Instruction::SIToFP) 1410b57cec5SDimitry Andric return Constant::getNullValue(DestTy); 1420b57cec5SDimitry Andric return UndefValue::get(DestTy); 1430b57cec5SDimitry Andric } 1440b57cec5SDimitry Andric 145e8d8bef9SDimitry Andric if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 1460b57cec5SDimitry Andric opc != Instruction::AddrSpaceCast) 1470b57cec5SDimitry Andric return Constant::getNullValue(DestTy); 1480b57cec5SDimitry Andric 1490b57cec5SDimitry Andric // If the cast operand is a constant expression, there's a few things we can 1500b57cec5SDimitry Andric // do to try to simplify it. 1510b57cec5SDimitry Andric if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1520b57cec5SDimitry Andric if (CE->isCast()) { 1530b57cec5SDimitry Andric // Try hard to fold cast of cast because they are often eliminable. 1540b57cec5SDimitry Andric if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 1555f757f3fSDimitry Andric return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); 1560b57cec5SDimitry Andric } 1570b57cec5SDimitry Andric } 1580b57cec5SDimitry Andric 1590b57cec5SDimitry Andric // If the cast operand is a constant vector, perform the cast by 1600b57cec5SDimitry Andric // operating on each element. In the cast of bitcasts, the element 1610b57cec5SDimitry Andric // count may be mismatched; don't attempt to handle that here. 1620b57cec5SDimitry Andric if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 1630b57cec5SDimitry Andric DestTy->isVectorTy() && 1645ffd83dbSDimitry Andric cast<FixedVectorType>(DestTy)->getNumElements() == 1655ffd83dbSDimitry Andric cast<FixedVectorType>(V->getType())->getNumElements()) { 1660b57cec5SDimitry Andric VectorType *DestVecTy = cast<VectorType>(DestTy); 1670b57cec5SDimitry Andric Type *DstEltTy = DestVecTy->getElementType(); 1685ffd83dbSDimitry Andric // Fast path for splatted constants. 1695ffd83dbSDimitry Andric if (Constant *Splat = V->getSplatValue()) { 1705f757f3fSDimitry Andric Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); 1715f757f3fSDimitry Andric if (!Res) 1725f757f3fSDimitry Andric return nullptr; 1735ffd83dbSDimitry Andric return ConstantVector::getSplat( 1745f757f3fSDimitry Andric cast<VectorType>(DestTy)->getElementCount(), Res); 1755ffd83dbSDimitry Andric } 1765ffd83dbSDimitry Andric SmallVector<Constant *, 16> res; 1770b57cec5SDimitry Andric Type *Ty = IntegerType::get(V->getContext(), 32); 1785ffd83dbSDimitry Andric for (unsigned i = 0, 1795ffd83dbSDimitry Andric e = cast<FixedVectorType>(V->getType())->getNumElements(); 1805ffd83dbSDimitry Andric i != e; ++i) { 1815f757f3fSDimitry Andric Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 1825f757f3fSDimitry Andric Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); 1835f757f3fSDimitry Andric if (!Casted) 1845f757f3fSDimitry Andric return nullptr; 1855f757f3fSDimitry Andric res.push_back(Casted); 1860b57cec5SDimitry Andric } 1870b57cec5SDimitry Andric return ConstantVector::get(res); 1880b57cec5SDimitry Andric } 1890b57cec5SDimitry Andric 1900b57cec5SDimitry Andric // We actually have to do a cast now. Perform the cast according to the 1910b57cec5SDimitry Andric // opcode specified. 1920b57cec5SDimitry Andric switch (opc) { 1930b57cec5SDimitry Andric default: 1940b57cec5SDimitry Andric llvm_unreachable("Failed to cast constant expression"); 1950b57cec5SDimitry Andric case Instruction::FPTrunc: 1960b57cec5SDimitry Andric case Instruction::FPExt: 1970b57cec5SDimitry Andric if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 1980b57cec5SDimitry Andric bool ignored; 1990b57cec5SDimitry Andric APFloat Val = FPC->getValueAPF(); 20081ad6265SDimitry Andric Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven, 20181ad6265SDimitry Andric &ignored); 2020b57cec5SDimitry Andric return ConstantFP::get(V->getContext(), Val); 2030b57cec5SDimitry Andric } 2040b57cec5SDimitry Andric return nullptr; // Can't fold. 2050b57cec5SDimitry Andric case Instruction::FPToUI: 2060b57cec5SDimitry Andric case Instruction::FPToSI: 2070b57cec5SDimitry Andric if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 2080b57cec5SDimitry Andric const APFloat &V = FPC->getValueAPF(); 2090b57cec5SDimitry Andric bool ignored; 2100b57cec5SDimitry Andric uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 2110b57cec5SDimitry Andric APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 2120b57cec5SDimitry Andric if (APFloat::opInvalidOp == 2130b57cec5SDimitry Andric V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 2140b57cec5SDimitry Andric // Undefined behavior invoked - the destination type can't represent 2150b57cec5SDimitry Andric // the input constant. 21628a41182SDimitry Andric return PoisonValue::get(DestTy); 2170b57cec5SDimitry Andric } 2180b57cec5SDimitry Andric return ConstantInt::get(FPC->getContext(), IntVal); 2190b57cec5SDimitry Andric } 2200b57cec5SDimitry Andric return nullptr; // Can't fold. 2210b57cec5SDimitry Andric case Instruction::UIToFP: 2220b57cec5SDimitry Andric case Instruction::SIToFP: 2230b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2240b57cec5SDimitry Andric const APInt &api = CI->getValue(); 2250b57cec5SDimitry Andric APFloat apf(DestTy->getFltSemantics(), 226349cc55cSDimitry Andric APInt::getZero(DestTy->getPrimitiveSizeInBits())); 2270b57cec5SDimitry Andric apf.convertFromAPInt(api, opc==Instruction::SIToFP, 2280b57cec5SDimitry Andric APFloat::rmNearestTiesToEven); 2290b57cec5SDimitry Andric return ConstantFP::get(V->getContext(), apf); 2300b57cec5SDimitry Andric } 2310b57cec5SDimitry Andric return nullptr; 2320b57cec5SDimitry Andric case Instruction::ZExt: 2330b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2340b57cec5SDimitry Andric uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 2350b57cec5SDimitry Andric return ConstantInt::get(V->getContext(), 2360b57cec5SDimitry Andric CI->getValue().zext(BitWidth)); 2370b57cec5SDimitry Andric } 2380b57cec5SDimitry Andric return nullptr; 2390b57cec5SDimitry Andric case Instruction::SExt: 2400b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2410b57cec5SDimitry Andric uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 2420b57cec5SDimitry Andric return ConstantInt::get(V->getContext(), 2430b57cec5SDimitry Andric CI->getValue().sext(BitWidth)); 2440b57cec5SDimitry Andric } 2450b57cec5SDimitry Andric return nullptr; 2460b57cec5SDimitry Andric case Instruction::Trunc: { 2470b57cec5SDimitry Andric if (V->getType()->isVectorTy()) 2480b57cec5SDimitry Andric return nullptr; 2490b57cec5SDimitry Andric 2500b57cec5SDimitry Andric uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 2510b57cec5SDimitry Andric if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2520b57cec5SDimitry Andric return ConstantInt::get(V->getContext(), 2530b57cec5SDimitry Andric CI->getValue().trunc(DestBitWidth)); 2540b57cec5SDimitry Andric } 2550b57cec5SDimitry Andric 2560b57cec5SDimitry Andric return nullptr; 2570b57cec5SDimitry Andric } 2580b57cec5SDimitry Andric case Instruction::BitCast: 2590b57cec5SDimitry Andric return FoldBitCast(V, DestTy); 2600b57cec5SDimitry Andric case Instruction::AddrSpaceCast: 2615f757f3fSDimitry Andric case Instruction::IntToPtr: 2625f757f3fSDimitry Andric case Instruction::PtrToInt: 2630b57cec5SDimitry Andric return nullptr; 2640b57cec5SDimitry Andric } 2650b57cec5SDimitry Andric } 2660b57cec5SDimitry Andric 2670b57cec5SDimitry Andric Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 2680b57cec5SDimitry Andric Constant *V1, Constant *V2) { 2690b57cec5SDimitry Andric // Check for i1 and vector true/false conditions. 2700b57cec5SDimitry Andric if (Cond->isNullValue()) return V2; 2710b57cec5SDimitry Andric if (Cond->isAllOnesValue()) return V1; 2720b57cec5SDimitry Andric 2730b57cec5SDimitry Andric // If the condition is a vector constant, fold the result elementwise. 2740b57cec5SDimitry Andric if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 2755ffd83dbSDimitry Andric auto *V1VTy = CondV->getType(); 2760b57cec5SDimitry Andric SmallVector<Constant*, 16> Result; 2770b57cec5SDimitry Andric Type *Ty = IntegerType::get(CondV->getContext(), 32); 2785ffd83dbSDimitry Andric for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 2790b57cec5SDimitry Andric Constant *V; 2800b57cec5SDimitry Andric Constant *V1Element = ConstantExpr::getExtractElement(V1, 2810b57cec5SDimitry Andric ConstantInt::get(Ty, i)); 2820b57cec5SDimitry Andric Constant *V2Element = ConstantExpr::getExtractElement(V2, 2830b57cec5SDimitry Andric ConstantInt::get(Ty, i)); 2848bcb0991SDimitry Andric auto *Cond = cast<Constant>(CondV->getOperand(i)); 285e8d8bef9SDimitry Andric if (isa<PoisonValue>(Cond)) { 286e8d8bef9SDimitry Andric V = PoisonValue::get(V1Element->getType()); 287e8d8bef9SDimitry Andric } else if (V1Element == V2Element) { 2880b57cec5SDimitry Andric V = V1Element; 2890b57cec5SDimitry Andric } else if (isa<UndefValue>(Cond)) { 2900b57cec5SDimitry Andric V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 2910b57cec5SDimitry Andric } else { 2920b57cec5SDimitry Andric if (!isa<ConstantInt>(Cond)) break; 2930b57cec5SDimitry Andric V = Cond->isNullValue() ? V2Element : V1Element; 2940b57cec5SDimitry Andric } 2950b57cec5SDimitry Andric Result.push_back(V); 2960b57cec5SDimitry Andric } 2970b57cec5SDimitry Andric 2980b57cec5SDimitry Andric // If we were able to build the vector, return it. 2995ffd83dbSDimitry Andric if (Result.size() == V1VTy->getNumElements()) 3000b57cec5SDimitry Andric return ConstantVector::get(Result); 3010b57cec5SDimitry Andric } 3020b57cec5SDimitry Andric 303e8d8bef9SDimitry Andric if (isa<PoisonValue>(Cond)) 304e8d8bef9SDimitry Andric return PoisonValue::get(V1->getType()); 305e8d8bef9SDimitry Andric 3060b57cec5SDimitry Andric if (isa<UndefValue>(Cond)) { 3070b57cec5SDimitry Andric if (isa<UndefValue>(V1)) return V1; 3080b57cec5SDimitry Andric return V2; 3090b57cec5SDimitry Andric } 310e8d8bef9SDimitry Andric 3110b57cec5SDimitry Andric if (V1 == V2) return V1; 3120b57cec5SDimitry Andric 313e8d8bef9SDimitry Andric if (isa<PoisonValue>(V1)) 314e8d8bef9SDimitry Andric return V2; 315e8d8bef9SDimitry Andric if (isa<PoisonValue>(V2)) 316e8d8bef9SDimitry Andric return V1; 317e8d8bef9SDimitry Andric 318e8d8bef9SDimitry Andric // If the true or false value is undef, we can fold to the other value as 319e8d8bef9SDimitry Andric // long as the other value isn't poison. 320e8d8bef9SDimitry Andric auto NotPoison = [](Constant *C) { 321e8d8bef9SDimitry Andric if (isa<PoisonValue>(C)) 322e8d8bef9SDimitry Andric return false; 323e8d8bef9SDimitry Andric 324e8d8bef9SDimitry Andric // TODO: We can analyze ConstExpr by opcode to determine if there is any 325e8d8bef9SDimitry Andric // possibility of poison. 326e8d8bef9SDimitry Andric if (isa<ConstantExpr>(C)) 327e8d8bef9SDimitry Andric return false; 328e8d8bef9SDimitry Andric 329e8d8bef9SDimitry Andric if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 330e8d8bef9SDimitry Andric isa<ConstantPointerNull>(C) || isa<Function>(C)) 331e8d8bef9SDimitry Andric return true; 332e8d8bef9SDimitry Andric 333e8d8bef9SDimitry Andric if (C->getType()->isVectorTy()) 334e8d8bef9SDimitry Andric return !C->containsPoisonElement() && !C->containsConstantExpression(); 335e8d8bef9SDimitry Andric 336e8d8bef9SDimitry Andric // TODO: Recursively analyze aggregates or other constants. 337e8d8bef9SDimitry Andric return false; 338e8d8bef9SDimitry Andric }; 339e8d8bef9SDimitry Andric if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 340e8d8bef9SDimitry Andric if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 341e8d8bef9SDimitry Andric 3420b57cec5SDimitry Andric return nullptr; 3430b57cec5SDimitry Andric } 3440b57cec5SDimitry Andric 3450b57cec5SDimitry Andric Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 3460b57cec5SDimitry Andric Constant *Idx) { 3475ffd83dbSDimitry Andric auto *ValVTy = cast<VectorType>(Val->getType()); 3485ffd83dbSDimitry Andric 349e8d8bef9SDimitry Andric // extractelt poison, C -> poison 350e8d8bef9SDimitry Andric // extractelt C, undef -> poison 351e8d8bef9SDimitry Andric if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 352e8d8bef9SDimitry Andric return PoisonValue::get(ValVTy->getElementType()); 353e8d8bef9SDimitry Andric 3548bcb0991SDimitry Andric // extractelt undef, C -> undef 355e8d8bef9SDimitry Andric if (isa<UndefValue>(Val)) 3565ffd83dbSDimitry Andric return UndefValue::get(ValVTy->getElementType()); 3570b57cec5SDimitry Andric 358480093f4SDimitry Andric auto *CIdx = dyn_cast<ConstantInt>(Idx); 359480093f4SDimitry Andric if (!CIdx) 360480093f4SDimitry Andric return nullptr; 361480093f4SDimitry Andric 3625ffd83dbSDimitry Andric if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 363e8d8bef9SDimitry Andric // ee({w,x,y,z}, wrong_value) -> poison 3645ffd83dbSDimitry Andric if (CIdx->uge(ValFVTy->getNumElements())) 365e8d8bef9SDimitry Andric return PoisonValue::get(ValFVTy->getElementType()); 3665ffd83dbSDimitry Andric } 367480093f4SDimitry Andric 368480093f4SDimitry Andric // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 369480093f4SDimitry Andric if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 370fe6060f1SDimitry Andric if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 371480093f4SDimitry Andric SmallVector<Constant *, 8> Ops; 372480093f4SDimitry Andric Ops.reserve(CE->getNumOperands()); 373480093f4SDimitry Andric for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 374480093f4SDimitry Andric Constant *Op = CE->getOperand(i); 375480093f4SDimitry Andric if (Op->getType()->isVectorTy()) { 376480093f4SDimitry Andric Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 377480093f4SDimitry Andric if (!ScalarOp) 3780b57cec5SDimitry Andric return nullptr; 379480093f4SDimitry Andric Ops.push_back(ScalarOp); 380480093f4SDimitry Andric } else 381480093f4SDimitry Andric Ops.push_back(Op); 382480093f4SDimitry Andric } 3835ffd83dbSDimitry Andric return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 384fe6060f1SDimitry Andric GEP->getSourceElementType()); 385e8d8bef9SDimitry Andric } else if (CE->getOpcode() == Instruction::InsertElement) { 386e8d8bef9SDimitry Andric if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 387e8d8bef9SDimitry Andric if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 388e8d8bef9SDimitry Andric APSInt(CIdx->getValue()))) { 389e8d8bef9SDimitry Andric return CE->getOperand(1); 390e8d8bef9SDimitry Andric } else { 391e8d8bef9SDimitry Andric return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 392e8d8bef9SDimitry Andric } 393e8d8bef9SDimitry Andric } 394480093f4SDimitry Andric } 395480093f4SDimitry Andric } 396480093f4SDimitry Andric 397349cc55cSDimitry Andric if (Constant *C = Val->getAggregateElement(CIdx)) 398349cc55cSDimitry Andric return C; 399349cc55cSDimitry Andric 400fe6060f1SDimitry Andric // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 401fe6060f1SDimitry Andric if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 402fe6060f1SDimitry Andric if (Constant *SplatVal = Val->getSplatValue()) 403fe6060f1SDimitry Andric return SplatVal; 4045ffd83dbSDimitry Andric } 4055ffd83dbSDimitry Andric 406349cc55cSDimitry Andric return nullptr; 4070b57cec5SDimitry Andric } 4080b57cec5SDimitry Andric 4090b57cec5SDimitry Andric Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 4100b57cec5SDimitry Andric Constant *Elt, 4110b57cec5SDimitry Andric Constant *Idx) { 4120b57cec5SDimitry Andric if (isa<UndefValue>(Idx)) 413e8d8bef9SDimitry Andric return PoisonValue::get(Val->getType()); 4140b57cec5SDimitry Andric 41581ad6265SDimitry Andric // Inserting null into all zeros is still all zeros. 41681ad6265SDimitry Andric // TODO: This is true for undef and poison splats too. 41781ad6265SDimitry Andric if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) 41881ad6265SDimitry Andric return Val; 41981ad6265SDimitry Andric 4200b57cec5SDimitry Andric ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 4210b57cec5SDimitry Andric if (!CIdx) return nullptr; 4220b57cec5SDimitry Andric 423480093f4SDimitry Andric // Do not iterate on scalable vector. The num of elements is unknown at 424480093f4SDimitry Andric // compile-time. 4255ffd83dbSDimitry Andric if (isa<ScalableVectorType>(Val->getType())) 426480093f4SDimitry Andric return nullptr; 427480093f4SDimitry Andric 4285ffd83dbSDimitry Andric auto *ValTy = cast<FixedVectorType>(Val->getType()); 4295ffd83dbSDimitry Andric 4305ffd83dbSDimitry Andric unsigned NumElts = ValTy->getNumElements(); 4310b57cec5SDimitry Andric if (CIdx->uge(NumElts)) 43228a41182SDimitry Andric return PoisonValue::get(Val->getType()); 4330b57cec5SDimitry Andric 4340b57cec5SDimitry Andric SmallVector<Constant*, 16> Result; 4350b57cec5SDimitry Andric Result.reserve(NumElts); 4360b57cec5SDimitry Andric auto *Ty = Type::getInt32Ty(Val->getContext()); 4370b57cec5SDimitry Andric uint64_t IdxVal = CIdx->getZExtValue(); 4380b57cec5SDimitry Andric for (unsigned i = 0; i != NumElts; ++i) { 4390b57cec5SDimitry Andric if (i == IdxVal) { 4400b57cec5SDimitry Andric Result.push_back(Elt); 4410b57cec5SDimitry Andric continue; 4420b57cec5SDimitry Andric } 4430b57cec5SDimitry Andric 4440b57cec5SDimitry Andric Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 4450b57cec5SDimitry Andric Result.push_back(C); 4460b57cec5SDimitry Andric } 4470b57cec5SDimitry Andric 4480b57cec5SDimitry Andric return ConstantVector::get(Result); 4490b57cec5SDimitry Andric } 4500b57cec5SDimitry Andric 4515ffd83dbSDimitry Andric Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 4525ffd83dbSDimitry Andric ArrayRef<int> Mask) { 4535ffd83dbSDimitry Andric auto *V1VTy = cast<VectorType>(V1->getType()); 4545ffd83dbSDimitry Andric unsigned MaskNumElts = Mask.size(); 455e8d8bef9SDimitry Andric auto MaskEltCount = 456e8d8bef9SDimitry Andric ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 4575ffd83dbSDimitry Andric Type *EltTy = V1VTy->getElementType(); 4580b57cec5SDimitry Andric 45906c3fb27SDimitry Andric // Poison shuffle mask -> poison value. 46006c3fb27SDimitry Andric if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 46106c3fb27SDimitry Andric return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); 4625ffd83dbSDimitry Andric } 4630b57cec5SDimitry Andric 4645ffd83dbSDimitry Andric // If the mask is all zeros this is a splat, no need to go through all 4655ffd83dbSDimitry Andric // elements. 466349cc55cSDimitry Andric if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 4675ffd83dbSDimitry Andric Type *Ty = IntegerType::get(V1->getContext(), 32); 4685ffd83dbSDimitry Andric Constant *Elt = 4695ffd83dbSDimitry Andric ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 470349cc55cSDimitry Andric 471349cc55cSDimitry Andric if (Elt->isNullValue()) { 472349cc55cSDimitry Andric auto *VTy = VectorType::get(EltTy, MaskEltCount); 473349cc55cSDimitry Andric return ConstantAggregateZero::get(VTy); 474349cc55cSDimitry Andric } else if (!MaskEltCount.isScalable()) 4755ffd83dbSDimitry Andric return ConstantVector::getSplat(MaskEltCount, Elt); 4765ffd83dbSDimitry Andric } 477*0fca6ea1SDimitry Andric 478480093f4SDimitry Andric // Do not iterate on scalable vector. The num of elements is unknown at 479480093f4SDimitry Andric // compile-time. 4805ffd83dbSDimitry Andric if (isa<ScalableVectorType>(V1VTy)) 481480093f4SDimitry Andric return nullptr; 482480093f4SDimitry Andric 483e8d8bef9SDimitry Andric unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 4840b57cec5SDimitry Andric 4850b57cec5SDimitry Andric // Loop over the shuffle mask, evaluating each element. 4860b57cec5SDimitry Andric SmallVector<Constant*, 32> Result; 4870b57cec5SDimitry Andric for (unsigned i = 0; i != MaskNumElts; ++i) { 4885ffd83dbSDimitry Andric int Elt = Mask[i]; 4890b57cec5SDimitry Andric if (Elt == -1) { 4900b57cec5SDimitry Andric Result.push_back(UndefValue::get(EltTy)); 4910b57cec5SDimitry Andric continue; 4920b57cec5SDimitry Andric } 4930b57cec5SDimitry Andric Constant *InElt; 4940b57cec5SDimitry Andric if (unsigned(Elt) >= SrcNumElts*2) 4950b57cec5SDimitry Andric InElt = UndefValue::get(EltTy); 4960b57cec5SDimitry Andric else if (unsigned(Elt) >= SrcNumElts) { 4970b57cec5SDimitry Andric Type *Ty = IntegerType::get(V2->getContext(), 32); 4980b57cec5SDimitry Andric InElt = 4990b57cec5SDimitry Andric ConstantExpr::getExtractElement(V2, 5000b57cec5SDimitry Andric ConstantInt::get(Ty, Elt - SrcNumElts)); 5010b57cec5SDimitry Andric } else { 5020b57cec5SDimitry Andric Type *Ty = IntegerType::get(V1->getContext(), 32); 5030b57cec5SDimitry Andric InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 5040b57cec5SDimitry Andric } 5050b57cec5SDimitry Andric Result.push_back(InElt); 5060b57cec5SDimitry Andric } 5070b57cec5SDimitry Andric 5080b57cec5SDimitry Andric return ConstantVector::get(Result); 5090b57cec5SDimitry Andric } 5100b57cec5SDimitry Andric 5110b57cec5SDimitry Andric Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 5120b57cec5SDimitry Andric ArrayRef<unsigned> Idxs) { 5130b57cec5SDimitry Andric // Base case: no indices, so return the entire value. 5140b57cec5SDimitry Andric if (Idxs.empty()) 5150b57cec5SDimitry Andric return Agg; 5160b57cec5SDimitry Andric 5170b57cec5SDimitry Andric if (Constant *C = Agg->getAggregateElement(Idxs[0])) 5180b57cec5SDimitry Andric return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 5190b57cec5SDimitry Andric 5200b57cec5SDimitry Andric return nullptr; 5210b57cec5SDimitry Andric } 5220b57cec5SDimitry Andric 5230b57cec5SDimitry Andric Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 5240b57cec5SDimitry Andric Constant *Val, 5250b57cec5SDimitry Andric ArrayRef<unsigned> Idxs) { 5260b57cec5SDimitry Andric // Base case: no indices, so replace the entire value. 5270b57cec5SDimitry Andric if (Idxs.empty()) 5280b57cec5SDimitry Andric return Val; 5290b57cec5SDimitry Andric 5300b57cec5SDimitry Andric unsigned NumElts; 5310b57cec5SDimitry Andric if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 5320b57cec5SDimitry Andric NumElts = ST->getNumElements(); 5330b57cec5SDimitry Andric else 5345ffd83dbSDimitry Andric NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 5350b57cec5SDimitry Andric 5360b57cec5SDimitry Andric SmallVector<Constant*, 32> Result; 5370b57cec5SDimitry Andric for (unsigned i = 0; i != NumElts; ++i) { 5380b57cec5SDimitry Andric Constant *C = Agg->getAggregateElement(i); 5390b57cec5SDimitry Andric if (!C) return nullptr; 5400b57cec5SDimitry Andric 5410b57cec5SDimitry Andric if (Idxs[0] == i) 5420b57cec5SDimitry Andric C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 5430b57cec5SDimitry Andric 5440b57cec5SDimitry Andric Result.push_back(C); 5450b57cec5SDimitry Andric } 5460b57cec5SDimitry Andric 5470b57cec5SDimitry Andric if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 5480b57cec5SDimitry Andric return ConstantStruct::get(ST, Result); 5495ffd83dbSDimitry Andric return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 5500b57cec5SDimitry Andric } 5510b57cec5SDimitry Andric 5520b57cec5SDimitry Andric Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 5530b57cec5SDimitry Andric assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 5540b57cec5SDimitry Andric 5555ffd83dbSDimitry Andric // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 5565ffd83dbSDimitry Andric // vectors are always evaluated per element. 5575ffd83dbSDimitry Andric bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 5585ffd83dbSDimitry Andric bool HasScalarUndefOrScalableVectorUndef = 5595ffd83dbSDimitry Andric (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 5600b57cec5SDimitry Andric 5615ffd83dbSDimitry Andric if (HasScalarUndefOrScalableVectorUndef) { 5620b57cec5SDimitry Andric switch (static_cast<Instruction::UnaryOps>(Opcode)) { 5630b57cec5SDimitry Andric case Instruction::FNeg: 5640b57cec5SDimitry Andric return C; // -undef -> undef 5650b57cec5SDimitry Andric case Instruction::UnaryOpsEnd: 5660b57cec5SDimitry Andric llvm_unreachable("Invalid UnaryOp"); 5670b57cec5SDimitry Andric } 5680b57cec5SDimitry Andric } 5690b57cec5SDimitry Andric 5700b57cec5SDimitry Andric // Constant should not be UndefValue, unless these are vector constants. 5715ffd83dbSDimitry Andric assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 5720b57cec5SDimitry Andric // We only have FP UnaryOps right now. 5730b57cec5SDimitry Andric assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 5740b57cec5SDimitry Andric 5750b57cec5SDimitry Andric if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 5760b57cec5SDimitry Andric const APFloat &CV = CFP->getValueAPF(); 5770b57cec5SDimitry Andric switch (Opcode) { 5780b57cec5SDimitry Andric default: 5790b57cec5SDimitry Andric break; 5800b57cec5SDimitry Andric case Instruction::FNeg: 5810b57cec5SDimitry Andric return ConstantFP::get(C->getContext(), neg(CV)); 5820b57cec5SDimitry Andric } 5835ffd83dbSDimitry Andric } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 5845ffd83dbSDimitry Andric 5855ffd83dbSDimitry Andric Type *Ty = IntegerType::get(VTy->getContext(), 32); 5865ffd83dbSDimitry Andric // Fast path for splatted constants. 587bdd1243dSDimitry Andric if (Constant *Splat = C->getSplatValue()) 588bdd1243dSDimitry Andric if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) 5895ffd83dbSDimitry Andric return ConstantVector::getSplat(VTy->getElementCount(), Elt); 5905ffd83dbSDimitry Andric 5910b57cec5SDimitry Andric // Fold each element and create a vector constant from those constants. 5920b57cec5SDimitry Andric SmallVector<Constant *, 16> Result; 5930b57cec5SDimitry Andric for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 5940b57cec5SDimitry Andric Constant *ExtractIdx = ConstantInt::get(Ty, i); 5950b57cec5SDimitry Andric Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 596bdd1243dSDimitry Andric Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); 597bdd1243dSDimitry Andric if (!Res) 598bdd1243dSDimitry Andric return nullptr; 599bdd1243dSDimitry Andric Result.push_back(Res); 6000b57cec5SDimitry Andric } 6010b57cec5SDimitry Andric 6020b57cec5SDimitry Andric return ConstantVector::get(Result); 6030b57cec5SDimitry Andric } 6040b57cec5SDimitry Andric 6050b57cec5SDimitry Andric // We don't know how to fold this. 6060b57cec5SDimitry Andric return nullptr; 6070b57cec5SDimitry Andric } 6080b57cec5SDimitry Andric 6090b57cec5SDimitry Andric Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 6100b57cec5SDimitry Andric Constant *C2) { 6110b57cec5SDimitry Andric assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 6120b57cec5SDimitry Andric 613480093f4SDimitry Andric // Simplify BinOps with their identity values first. They are no-ops and we 614480093f4SDimitry Andric // can always return the other value, including undef or poison values. 6157a6dacacSDimitry Andric if (Constant *Identity = ConstantExpr::getBinOpIdentity( 6167a6dacacSDimitry Andric Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) { 617480093f4SDimitry Andric if (C1 == Identity) 618480093f4SDimitry Andric return C2; 619480093f4SDimitry Andric if (C2 == Identity) 620480093f4SDimitry Andric return C1; 6217a6dacacSDimitry Andric } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( 6227a6dacacSDimitry Andric Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) { 6237a6dacacSDimitry Andric if (C2 == Identity) 6247a6dacacSDimitry Andric return C1; 625480093f4SDimitry Andric } 626480093f4SDimitry Andric 627e8d8bef9SDimitry Andric // Binary operations propagate poison. 628fe6060f1SDimitry Andric if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 629e8d8bef9SDimitry Andric return PoisonValue::get(C1->getType()); 630e8d8bef9SDimitry Andric 6315ffd83dbSDimitry Andric // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 6325ffd83dbSDimitry Andric // vectors are always evaluated per element. 6335ffd83dbSDimitry Andric bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 6345ffd83dbSDimitry Andric bool HasScalarUndefOrScalableVectorUndef = 6355ffd83dbSDimitry Andric (!C1->getType()->isVectorTy() || IsScalableVector) && 6360b57cec5SDimitry Andric (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 6375ffd83dbSDimitry Andric if (HasScalarUndefOrScalableVectorUndef) { 6380b57cec5SDimitry Andric switch (static_cast<Instruction::BinaryOps>(Opcode)) { 6390b57cec5SDimitry Andric case Instruction::Xor: 6400b57cec5SDimitry Andric if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 6410b57cec5SDimitry Andric // Handle undef ^ undef -> 0 special case. This is a common 6420b57cec5SDimitry Andric // idiom (misuse). 6430b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 644bdd1243dSDimitry Andric [[fallthrough]]; 6450b57cec5SDimitry Andric case Instruction::Add: 6460b57cec5SDimitry Andric case Instruction::Sub: 6470b57cec5SDimitry Andric return UndefValue::get(C1->getType()); 6480b57cec5SDimitry Andric case Instruction::And: 6490b57cec5SDimitry Andric if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 6500b57cec5SDimitry Andric return C1; 6510b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); // undef & X -> 0 6520b57cec5SDimitry Andric case Instruction::Mul: { 6530b57cec5SDimitry Andric // undef * undef -> undef 6540b57cec5SDimitry Andric if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 6550b57cec5SDimitry Andric return C1; 6560b57cec5SDimitry Andric const APInt *CV; 6570b57cec5SDimitry Andric // X * undef -> undef if X is odd 6580b57cec5SDimitry Andric if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 6590b57cec5SDimitry Andric if ((*CV)[0]) 6600b57cec5SDimitry Andric return UndefValue::get(C1->getType()); 6610b57cec5SDimitry Andric 6620b57cec5SDimitry Andric // X * undef -> 0 otherwise 6630b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 6640b57cec5SDimitry Andric } 6650b57cec5SDimitry Andric case Instruction::SDiv: 6660b57cec5SDimitry Andric case Instruction::UDiv: 66728a41182SDimitry Andric // X / undef -> poison 66828a41182SDimitry Andric // X / 0 -> poison 66928a41182SDimitry Andric if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 67028a41182SDimitry Andric return PoisonValue::get(C2->getType()); 6710b57cec5SDimitry Andric // undef / X -> 0 otherwise 6720b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 6730b57cec5SDimitry Andric case Instruction::URem: 6740b57cec5SDimitry Andric case Instruction::SRem: 67528a41182SDimitry Andric // X % undef -> poison 67628a41182SDimitry Andric // X % 0 -> poison 67728a41182SDimitry Andric if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 67828a41182SDimitry Andric return PoisonValue::get(C2->getType()); 6790b57cec5SDimitry Andric // undef % X -> 0 otherwise 6800b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 6810b57cec5SDimitry Andric case Instruction::Or: // X | undef -> -1 6820b57cec5SDimitry Andric if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 6830b57cec5SDimitry Andric return C1; 6840b57cec5SDimitry Andric return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 6850b57cec5SDimitry Andric case Instruction::LShr: 68628a41182SDimitry Andric // X >>l undef -> poison 6870b57cec5SDimitry Andric if (isa<UndefValue>(C2)) 68828a41182SDimitry Andric return PoisonValue::get(C2->getType()); 6890b57cec5SDimitry Andric // undef >>l X -> 0 6900b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 6910b57cec5SDimitry Andric case Instruction::AShr: 69228a41182SDimitry Andric // X >>a undef -> poison 6930b57cec5SDimitry Andric if (isa<UndefValue>(C2)) 69428a41182SDimitry Andric return PoisonValue::get(C2->getType()); 69528a41182SDimitry Andric // TODO: undef >>a X -> poison if the shift is exact 6960b57cec5SDimitry Andric // undef >>a X -> 0 6970b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 6980b57cec5SDimitry Andric case Instruction::Shl: 6990b57cec5SDimitry Andric // X << undef -> undef 7000b57cec5SDimitry Andric if (isa<UndefValue>(C2)) 70128a41182SDimitry Andric return PoisonValue::get(C2->getType()); 7020b57cec5SDimitry Andric // undef << X -> 0 7030b57cec5SDimitry Andric return Constant::getNullValue(C1->getType()); 7040b57cec5SDimitry Andric case Instruction::FSub: 7055ffd83dbSDimitry Andric // -0.0 - undef --> undef (consistent with "fneg undef") 7065ffd83dbSDimitry Andric if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 7075ffd83dbSDimitry Andric return C2; 708bdd1243dSDimitry Andric [[fallthrough]]; 7095ffd83dbSDimitry Andric case Instruction::FAdd: 7100b57cec5SDimitry Andric case Instruction::FMul: 7110b57cec5SDimitry Andric case Instruction::FDiv: 7120b57cec5SDimitry Andric case Instruction::FRem: 7130b57cec5SDimitry Andric // [any flop] undef, undef -> undef 7140b57cec5SDimitry Andric if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 7150b57cec5SDimitry Andric return C1; 7160b57cec5SDimitry Andric // [any flop] C, undef -> NaN 7170b57cec5SDimitry Andric // [any flop] undef, C -> NaN 7180b57cec5SDimitry Andric // We could potentially specialize NaN/Inf constants vs. 'normal' 7190b57cec5SDimitry Andric // constants (possibly differently depending on opcode and operand). This 7200b57cec5SDimitry Andric // would allow returning undef sometimes. But it is always safe to fold to 7210b57cec5SDimitry Andric // NaN because we can choose the undef operand as NaN, and any FP opcode 7220b57cec5SDimitry Andric // with a NaN operand will propagate NaN. 7230b57cec5SDimitry Andric return ConstantFP::getNaN(C1->getType()); 7240b57cec5SDimitry Andric case Instruction::BinaryOpsEnd: 7250b57cec5SDimitry Andric llvm_unreachable("Invalid BinaryOp"); 7260b57cec5SDimitry Andric } 7270b57cec5SDimitry Andric } 7280b57cec5SDimitry Andric 7290b57cec5SDimitry Andric // Neither constant should be UndefValue, unless these are vector constants. 7305ffd83dbSDimitry Andric assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 7310b57cec5SDimitry Andric 7320b57cec5SDimitry Andric // Handle simplifications when the RHS is a constant int. 7330b57cec5SDimitry Andric if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 7340b57cec5SDimitry Andric switch (Opcode) { 7350b57cec5SDimitry Andric case Instruction::Mul: 7367a6dacacSDimitry Andric if (CI2->isZero()) 7377a6dacacSDimitry Andric return C2; // X * 0 == 0 7380b57cec5SDimitry Andric break; 7390b57cec5SDimitry Andric case Instruction::UDiv: 7400b57cec5SDimitry Andric case Instruction::SDiv: 7410b57cec5SDimitry Andric if (CI2->isZero()) 74228a41182SDimitry Andric return PoisonValue::get(CI2->getType()); // X / 0 == poison 7430b57cec5SDimitry Andric break; 7440b57cec5SDimitry Andric case Instruction::URem: 7450b57cec5SDimitry Andric case Instruction::SRem: 7460b57cec5SDimitry Andric if (CI2->isOne()) 7470b57cec5SDimitry Andric return Constant::getNullValue(CI2->getType()); // X % 1 == 0 7480b57cec5SDimitry Andric if (CI2->isZero()) 74928a41182SDimitry Andric return PoisonValue::get(CI2->getType()); // X % 0 == poison 7500b57cec5SDimitry Andric break; 7510b57cec5SDimitry Andric case Instruction::And: 7527a6dacacSDimitry Andric if (CI2->isZero()) 7537a6dacacSDimitry Andric return C2; // X & 0 == 0 7540b57cec5SDimitry Andric 7550b57cec5SDimitry Andric if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 7560b57cec5SDimitry Andric // If and'ing the address of a global with a constant, fold it. 7570b57cec5SDimitry Andric if (CE1->getOpcode() == Instruction::PtrToInt && 7580b57cec5SDimitry Andric isa<GlobalValue>(CE1->getOperand(0))) { 7590b57cec5SDimitry Andric GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 7600b57cec5SDimitry Andric 76106c3fb27SDimitry Andric Align GVAlign; // defaults to 1 7620b57cec5SDimitry Andric 7630b57cec5SDimitry Andric if (Module *TheModule = GV->getParent()) { 7645ffd83dbSDimitry Andric const DataLayout &DL = TheModule->getDataLayout(); 7655ffd83dbSDimitry Andric GVAlign = GV->getPointerAlignment(DL); 7660b57cec5SDimitry Andric 7670b57cec5SDimitry Andric // If the function alignment is not specified then assume that it 7680b57cec5SDimitry Andric // is 4. 7690b57cec5SDimitry Andric // This is dangerous; on x86, the alignment of the pointer 7700b57cec5SDimitry Andric // corresponds to the alignment of the function, but might be less 7710b57cec5SDimitry Andric // than 4 if it isn't explicitly specified. 7720b57cec5SDimitry Andric // However, a fix for this behaviour was reverted because it 7730b57cec5SDimitry Andric // increased code size (see https://reviews.llvm.org/D55115) 7740b57cec5SDimitry Andric // FIXME: This code should be deleted once existing targets have 7750b57cec5SDimitry Andric // appropriate defaults 7765ffd83dbSDimitry Andric if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 7778bcb0991SDimitry Andric GVAlign = Align(4); 7785ffd83dbSDimitry Andric } else if (isa<GlobalVariable>(GV)) { 77906c3fb27SDimitry Andric GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); 7800b57cec5SDimitry Andric } 7810b57cec5SDimitry Andric 78206c3fb27SDimitry Andric if (GVAlign > 1) { 783cb14a3feSDimitry Andric unsigned DstWidth = CI2->getBitWidth(); 78406c3fb27SDimitry Andric unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); 7850b57cec5SDimitry Andric APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 7860b57cec5SDimitry Andric 7870b57cec5SDimitry Andric // If checking bits we know are clear, return zero. 7880b57cec5SDimitry Andric if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 7890b57cec5SDimitry Andric return Constant::getNullValue(CI2->getType()); 7900b57cec5SDimitry Andric } 7910b57cec5SDimitry Andric } 7920b57cec5SDimitry Andric } 7930b57cec5SDimitry Andric break; 7940b57cec5SDimitry Andric case Instruction::Or: 7950b57cec5SDimitry Andric if (CI2->isMinusOne()) 7960b57cec5SDimitry Andric return C2; // X | -1 == -1 7970b57cec5SDimitry Andric break; 7980b57cec5SDimitry Andric } 7990b57cec5SDimitry Andric } else if (isa<ConstantInt>(C1)) { 8000b57cec5SDimitry Andric // If C1 is a ConstantInt and C2 is not, swap the operands. 8010b57cec5SDimitry Andric if (Instruction::isCommutative(Opcode)) 8025f757f3fSDimitry Andric return ConstantExpr::isDesirableBinOp(Opcode) 8035f757f3fSDimitry Andric ? ConstantExpr::get(Opcode, C2, C1) 8045f757f3fSDimitry Andric : ConstantFoldBinaryInstruction(Opcode, C2, C1); 8050b57cec5SDimitry Andric } 8060b57cec5SDimitry Andric 8070b57cec5SDimitry Andric if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 8080b57cec5SDimitry Andric if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 8090b57cec5SDimitry Andric const APInt &C1V = CI1->getValue(); 8100b57cec5SDimitry Andric const APInt &C2V = CI2->getValue(); 8110b57cec5SDimitry Andric switch (Opcode) { 8120b57cec5SDimitry Andric default: 8130b57cec5SDimitry Andric break; 8140b57cec5SDimitry Andric case Instruction::Add: 8150b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V + C2V); 8160b57cec5SDimitry Andric case Instruction::Sub: 8170b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V - C2V); 8180b57cec5SDimitry Andric case Instruction::Mul: 8190b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V * C2V); 8200b57cec5SDimitry Andric case Instruction::UDiv: 8210b57cec5SDimitry Andric assert(!CI2->isZero() && "Div by zero handled above"); 8220b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 8230b57cec5SDimitry Andric case Instruction::SDiv: 8240b57cec5SDimitry Andric assert(!CI2->isZero() && "Div by zero handled above"); 825349cc55cSDimitry Andric if (C2V.isAllOnes() && C1V.isMinSignedValue()) 82628a41182SDimitry Andric return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 8270b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 8280b57cec5SDimitry Andric case Instruction::URem: 8290b57cec5SDimitry Andric assert(!CI2->isZero() && "Div by zero handled above"); 8300b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 8310b57cec5SDimitry Andric case Instruction::SRem: 8320b57cec5SDimitry Andric assert(!CI2->isZero() && "Div by zero handled above"); 833349cc55cSDimitry Andric if (C2V.isAllOnes() && C1V.isMinSignedValue()) 83428a41182SDimitry Andric return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison 8350b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 8360b57cec5SDimitry Andric case Instruction::And: 8370b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V & C2V); 8380b57cec5SDimitry Andric case Instruction::Or: 8390b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V | C2V); 8400b57cec5SDimitry Andric case Instruction::Xor: 8410b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 8420b57cec5SDimitry Andric case Instruction::Shl: 8430b57cec5SDimitry Andric if (C2V.ult(C1V.getBitWidth())) 8440b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 84528a41182SDimitry Andric return PoisonValue::get(C1->getType()); // too big shift is poison 8460b57cec5SDimitry Andric case Instruction::LShr: 8470b57cec5SDimitry Andric if (C2V.ult(C1V.getBitWidth())) 8480b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 84928a41182SDimitry Andric return PoisonValue::get(C1->getType()); // too big shift is poison 8500b57cec5SDimitry Andric case Instruction::AShr: 8510b57cec5SDimitry Andric if (C2V.ult(C1V.getBitWidth())) 8520b57cec5SDimitry Andric return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 85328a41182SDimitry Andric return PoisonValue::get(C1->getType()); // too big shift is poison 8540b57cec5SDimitry Andric } 8550b57cec5SDimitry Andric } 8560b57cec5SDimitry Andric 8570b57cec5SDimitry Andric switch (Opcode) { 8580b57cec5SDimitry Andric case Instruction::SDiv: 8590b57cec5SDimitry Andric case Instruction::UDiv: 8600b57cec5SDimitry Andric case Instruction::URem: 8610b57cec5SDimitry Andric case Instruction::SRem: 8620b57cec5SDimitry Andric case Instruction::LShr: 8630b57cec5SDimitry Andric case Instruction::AShr: 8640b57cec5SDimitry Andric case Instruction::Shl: 8650b57cec5SDimitry Andric if (CI1->isZero()) return C1; 8660b57cec5SDimitry Andric break; 8670b57cec5SDimitry Andric default: 8680b57cec5SDimitry Andric break; 8690b57cec5SDimitry Andric } 8700b57cec5SDimitry Andric } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 8710b57cec5SDimitry Andric if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 8720b57cec5SDimitry Andric const APFloat &C1V = CFP1->getValueAPF(); 8730b57cec5SDimitry Andric const APFloat &C2V = CFP2->getValueAPF(); 8740b57cec5SDimitry Andric APFloat C3V = C1V; // copy for modification 8750b57cec5SDimitry Andric switch (Opcode) { 8760b57cec5SDimitry Andric default: 8770b57cec5SDimitry Andric break; 8780b57cec5SDimitry Andric case Instruction::FAdd: 8790b57cec5SDimitry Andric (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 8800b57cec5SDimitry Andric return ConstantFP::get(C1->getContext(), C3V); 8810b57cec5SDimitry Andric case Instruction::FSub: 8820b57cec5SDimitry Andric (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 8830b57cec5SDimitry Andric return ConstantFP::get(C1->getContext(), C3V); 8840b57cec5SDimitry Andric case Instruction::FMul: 8850b57cec5SDimitry Andric (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 8860b57cec5SDimitry Andric return ConstantFP::get(C1->getContext(), C3V); 8870b57cec5SDimitry Andric case Instruction::FDiv: 8880b57cec5SDimitry Andric (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 8890b57cec5SDimitry Andric return ConstantFP::get(C1->getContext(), C3V); 8900b57cec5SDimitry Andric case Instruction::FRem: 8910b57cec5SDimitry Andric (void)C3V.mod(C2V); 8920b57cec5SDimitry Andric return ConstantFP::get(C1->getContext(), C3V); 8930b57cec5SDimitry Andric } 8940b57cec5SDimitry Andric } 895e8d8bef9SDimitry Andric } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 8965ffd83dbSDimitry Andric // Fast path for splatted constants. 8975ffd83dbSDimitry Andric if (Constant *C2Splat = C2->getSplatValue()) { 8985ffd83dbSDimitry Andric if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 89928a41182SDimitry Andric return PoisonValue::get(VTy); 9005ffd83dbSDimitry Andric if (Constant *C1Splat = C1->getSplatValue()) { 901753f127fSDimitry Andric Constant *Res = 902753f127fSDimitry Andric ConstantExpr::isDesirableBinOp(Opcode) 903753f127fSDimitry Andric ? ConstantExpr::get(Opcode, C1Splat, C2Splat) 904753f127fSDimitry Andric : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); 905753f127fSDimitry Andric if (!Res) 906753f127fSDimitry Andric return nullptr; 907753f127fSDimitry Andric return ConstantVector::getSplat(VTy->getElementCount(), Res); 9085ffd83dbSDimitry Andric } 9095ffd83dbSDimitry Andric } 9105ffd83dbSDimitry Andric 911e8d8bef9SDimitry Andric if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 9120b57cec5SDimitry Andric // Fold each element and create a vector constant from those constants. 9130b57cec5SDimitry Andric SmallVector<Constant*, 16> Result; 914e8d8bef9SDimitry Andric Type *Ty = IntegerType::get(FVTy->getContext(), 32); 915e8d8bef9SDimitry Andric for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 9160b57cec5SDimitry Andric Constant *ExtractIdx = ConstantInt::get(Ty, i); 9170b57cec5SDimitry Andric Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 9180b57cec5SDimitry Andric Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 9190b57cec5SDimitry Andric 92028a41182SDimitry Andric // If any element of a divisor vector is zero, the whole op is poison. 9210b57cec5SDimitry Andric if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 92228a41182SDimitry Andric return PoisonValue::get(VTy); 9230b57cec5SDimitry Andric 924753f127fSDimitry Andric Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) 925753f127fSDimitry Andric ? ConstantExpr::get(Opcode, LHS, RHS) 926753f127fSDimitry Andric : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 927753f127fSDimitry Andric if (!Res) 928753f127fSDimitry Andric return nullptr; 929753f127fSDimitry Andric Result.push_back(Res); 9300b57cec5SDimitry Andric } 9310b57cec5SDimitry Andric 9320b57cec5SDimitry Andric return ConstantVector::get(Result); 9330b57cec5SDimitry Andric } 934e8d8bef9SDimitry Andric } 9350b57cec5SDimitry Andric 9360b57cec5SDimitry Andric if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 9370b57cec5SDimitry Andric // There are many possible foldings we could do here. We should probably 9380b57cec5SDimitry Andric // at least fold add of a pointer with an integer into the appropriate 9390b57cec5SDimitry Andric // getelementptr. This will improve alias analysis a bit. 9400b57cec5SDimitry Andric 9410b57cec5SDimitry Andric // Given ((a + b) + c), if (b + c) folds to something interesting, return 9420b57cec5SDimitry Andric // (a + (b + c)). 9430b57cec5SDimitry Andric if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 9440b57cec5SDimitry Andric Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 9450b57cec5SDimitry Andric if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 9460b57cec5SDimitry Andric return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 9470b57cec5SDimitry Andric } 9480b57cec5SDimitry Andric } else if (isa<ConstantExpr>(C2)) { 9490b57cec5SDimitry Andric // If C2 is a constant expr and C1 isn't, flop them around and fold the 9500b57cec5SDimitry Andric // other way if possible. 9510b57cec5SDimitry Andric if (Instruction::isCommutative(Opcode)) 9520b57cec5SDimitry Andric return ConstantFoldBinaryInstruction(Opcode, C2, C1); 9530b57cec5SDimitry Andric } 9540b57cec5SDimitry Andric 9550b57cec5SDimitry Andric // i1 can be simplified in many cases. 9560b57cec5SDimitry Andric if (C1->getType()->isIntegerTy(1)) { 9570b57cec5SDimitry Andric switch (Opcode) { 9580b57cec5SDimitry Andric case Instruction::Add: 9590b57cec5SDimitry Andric case Instruction::Sub: 9600b57cec5SDimitry Andric return ConstantExpr::getXor(C1, C2); 9610b57cec5SDimitry Andric case Instruction::Shl: 9620b57cec5SDimitry Andric case Instruction::LShr: 9630b57cec5SDimitry Andric case Instruction::AShr: 9640b57cec5SDimitry Andric // We can assume that C2 == 0. If it were one the result would be 9650b57cec5SDimitry Andric // undefined because the shift value is as large as the bitwidth. 9660b57cec5SDimitry Andric return C1; 9670b57cec5SDimitry Andric case Instruction::SDiv: 9680b57cec5SDimitry Andric case Instruction::UDiv: 9690b57cec5SDimitry Andric // We can assume that C2 == 1. If it were zero the result would be 9700b57cec5SDimitry Andric // undefined through division by zero. 9710b57cec5SDimitry Andric return C1; 9720b57cec5SDimitry Andric case Instruction::URem: 9730b57cec5SDimitry Andric case Instruction::SRem: 9740b57cec5SDimitry Andric // We can assume that C2 == 1. If it were zero the result would be 9750b57cec5SDimitry Andric // undefined through division by zero. 9760b57cec5SDimitry Andric return ConstantInt::getFalse(C1->getContext()); 9770b57cec5SDimitry Andric default: 9780b57cec5SDimitry Andric break; 9790b57cec5SDimitry Andric } 9800b57cec5SDimitry Andric } 9810b57cec5SDimitry Andric 9820b57cec5SDimitry Andric // We don't know how to fold this. 9830b57cec5SDimitry Andric return nullptr; 9840b57cec5SDimitry Andric } 9850b57cec5SDimitry Andric 9860b57cec5SDimitry Andric static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 9870b57cec5SDimitry Andric const GlobalValue *GV2) { 9880b57cec5SDimitry Andric auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 989eaeb601bSDimitry Andric if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 9900b57cec5SDimitry Andric return true; 9910b57cec5SDimitry Andric if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 9920b57cec5SDimitry Andric Type *Ty = GVar->getValueType(); 9930b57cec5SDimitry Andric // A global with opaque type might end up being zero sized. 9940b57cec5SDimitry Andric if (!Ty->isSized()) 9950b57cec5SDimitry Andric return true; 9960b57cec5SDimitry Andric // A global with an empty type might lie at the address of any other 9970b57cec5SDimitry Andric // global. 9980b57cec5SDimitry Andric if (Ty->isEmptyTy()) 9990b57cec5SDimitry Andric return true; 10000b57cec5SDimitry Andric } 10010b57cec5SDimitry Andric return false; 10020b57cec5SDimitry Andric }; 10030b57cec5SDimitry Andric // Don't try to decide equality of aliases. 10040b57cec5SDimitry Andric if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 10050b57cec5SDimitry Andric if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 10060b57cec5SDimitry Andric return ICmpInst::ICMP_NE; 10070b57cec5SDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 10080b57cec5SDimitry Andric } 10090b57cec5SDimitry Andric 10100b57cec5SDimitry Andric /// This function determines if there is anything we can decide about the two 10110b57cec5SDimitry Andric /// constants provided. This doesn't need to handle simple things like integer 10120b57cec5SDimitry Andric /// comparisons, but should instead handle ConstantExprs and GlobalValues. 10130b57cec5SDimitry Andric /// If we can determine that the two constants have a particular relation to 10140b57cec5SDimitry Andric /// each other, we should return the corresponding ICmp predicate, otherwise 10150b57cec5SDimitry Andric /// return ICmpInst::BAD_ICMP_PREDICATE. 10165f757f3fSDimitry Andric static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { 10170b57cec5SDimitry Andric assert(V1->getType() == V2->getType() && 10180b57cec5SDimitry Andric "Cannot compare different types of values!"); 10190b57cec5SDimitry Andric if (V1 == V2) return ICmpInst::ICMP_EQ; 10200b57cec5SDimitry Andric 10215f757f3fSDimitry Andric // The following folds only apply to pointers. 10225f757f3fSDimitry Andric if (!V1->getType()->isPointerTy()) 10235f757f3fSDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 10240b57cec5SDimitry Andric 10255f757f3fSDimitry Andric // To simplify this code we canonicalize the relation so that the first 10265f757f3fSDimitry Andric // operand is always the most "complex" of the two. We consider simple 10275f757f3fSDimitry Andric // constants (like ConstantPointerNull) to be the simplest, followed by 10285f757f3fSDimitry Andric // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). 10295f757f3fSDimitry Andric auto GetComplexity = [](Constant *V) { 10305f757f3fSDimitry Andric if (isa<ConstantExpr>(V)) 10315f757f3fSDimitry Andric return 3; 10325f757f3fSDimitry Andric if (isa<GlobalValue>(V)) 10335f757f3fSDimitry Andric return 2; 10345f757f3fSDimitry Andric if (isa<BlockAddress>(V)) 10355f757f3fSDimitry Andric return 1; 10365f757f3fSDimitry Andric return 0; 10375f757f3fSDimitry Andric }; 10385f757f3fSDimitry Andric if (GetComplexity(V1) < GetComplexity(V2)) { 10395f757f3fSDimitry Andric ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); 10405f757f3fSDimitry Andric if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 10415f757f3fSDimitry Andric return ICmpInst::getSwappedPredicate(SwappedRelation); 10420b57cec5SDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 10430b57cec5SDimitry Andric } 10440b57cec5SDimitry Andric 10455f757f3fSDimitry Andric if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 10465f757f3fSDimitry Andric // Now we know that the RHS is a BlockAddress or simple constant. 10475f757f3fSDimitry Andric if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 10485f757f3fSDimitry Andric // Block address in another function can't equal this one, but block 10495f757f3fSDimitry Andric // addresses in the current function might be the same if blocks are 10505f757f3fSDimitry Andric // empty. 10515f757f3fSDimitry Andric if (BA2->getFunction() != BA->getFunction()) 10525f757f3fSDimitry Andric return ICmpInst::ICMP_NE; 10535f757f3fSDimitry Andric } else if (isa<ConstantPointerNull>(V2)) { 10545f757f3fSDimitry Andric return ICmpInst::ICMP_NE; 10555f757f3fSDimitry Andric } 10560b57cec5SDimitry Andric } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 10570b57cec5SDimitry Andric // Now we know that the RHS is a GlobalValue, BlockAddress or simple 10585f757f3fSDimitry Andric // constant. 10590b57cec5SDimitry Andric if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 10600b57cec5SDimitry Andric return areGlobalsPotentiallyEqual(GV, GV2); 10610b57cec5SDimitry Andric } else if (isa<BlockAddress>(V2)) { 10620b57cec5SDimitry Andric return ICmpInst::ICMP_NE; // Globals never equal labels. 10635f757f3fSDimitry Andric } else if (isa<ConstantPointerNull>(V2)) { 10640b57cec5SDimitry Andric // GlobalVals can never be null unless they have external weak linkage. 10650b57cec5SDimitry Andric // We don't try to evaluate aliases here. 10660b57cec5SDimitry Andric // NOTE: We should not be doing this constant folding if null pointer 10670b57cec5SDimitry Andric // is considered valid for the function. But currently there is no way to 10680b57cec5SDimitry Andric // query it from the Constant type. 10690b57cec5SDimitry Andric if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 10700b57cec5SDimitry Andric !NullPointerIsDefined(nullptr /* F */, 10710b57cec5SDimitry Andric GV->getType()->getAddressSpace())) 1072fe6060f1SDimitry Andric return ICmpInst::ICMP_UGT; 10730b57cec5SDimitry Andric } 1074*0fca6ea1SDimitry Andric } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) { 10750b57cec5SDimitry Andric // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 10760b57cec5SDimitry Andric // constantexpr, a global, block address, or a simple constant. 10770b57cec5SDimitry Andric Constant *CE1Op0 = CE1->getOperand(0); 10780b57cec5SDimitry Andric 10790b57cec5SDimitry Andric switch (CE1->getOpcode()) { 10800b57cec5SDimitry Andric case Instruction::GetElementPtr: { 10810b57cec5SDimitry Andric GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 10820b57cec5SDimitry Andric // Ok, since this is a getelementptr, we know that the constant has a 10830b57cec5SDimitry Andric // pointer type. Check the various cases. 10840b57cec5SDimitry Andric if (isa<ConstantPointerNull>(V2)) { 10850b57cec5SDimitry Andric // If we are comparing a GEP to a null pointer, check to see if the base 10860b57cec5SDimitry Andric // of the GEP equals the null pointer. 10870b57cec5SDimitry Andric if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 10880b57cec5SDimitry Andric // If its not weak linkage, the GVal must have a non-zero address 10890b57cec5SDimitry Andric // so the result is greater-than 109004eeddc0SDimitry Andric if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) 1091fe6060f1SDimitry Andric return ICmpInst::ICMP_UGT; 10920b57cec5SDimitry Andric } 10930b57cec5SDimitry Andric } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 109404eeddc0SDimitry Andric if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 109504eeddc0SDimitry Andric if (GV != GV2) { 10960b57cec5SDimitry Andric if (CE1GEP->hasAllZeroIndices()) 10970b57cec5SDimitry Andric return areGlobalsPotentiallyEqual(GV, GV2); 10980b57cec5SDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 10990b57cec5SDimitry Andric } 11000b57cec5SDimitry Andric } 110104eeddc0SDimitry Andric } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { 11020b57cec5SDimitry Andric // By far the most common case to handle is when the base pointers are 11030b57cec5SDimitry Andric // obviously to the same global. 110404eeddc0SDimitry Andric const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); 11050b57cec5SDimitry Andric if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 11060b57cec5SDimitry Andric // Don't know relative ordering, but check for inequality. 11070b57cec5SDimitry Andric if (CE1Op0 != CE2Op0) { 11080b57cec5SDimitry Andric if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 11090b57cec5SDimitry Andric return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 11100b57cec5SDimitry Andric cast<GlobalValue>(CE2Op0)); 11110b57cec5SDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 11120b57cec5SDimitry Andric } 11130b57cec5SDimitry Andric } 11140b57cec5SDimitry Andric } 11150b57cec5SDimitry Andric break; 11160b57cec5SDimitry Andric } 11170b57cec5SDimitry Andric default: 11180b57cec5SDimitry Andric break; 11190b57cec5SDimitry Andric } 11200b57cec5SDimitry Andric } 11210b57cec5SDimitry Andric 11220b57cec5SDimitry Andric return ICmpInst::BAD_ICMP_PREDICATE; 11230b57cec5SDimitry Andric } 11240b57cec5SDimitry Andric 112504eeddc0SDimitry Andric Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, 11260b57cec5SDimitry Andric Constant *C1, Constant *C2) { 11270b57cec5SDimitry Andric Type *ResultTy; 11280b57cec5SDimitry Andric if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 11290b57cec5SDimitry Andric ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 11305ffd83dbSDimitry Andric VT->getElementCount()); 11310b57cec5SDimitry Andric else 11320b57cec5SDimitry Andric ResultTy = Type::getInt1Ty(C1->getContext()); 11330b57cec5SDimitry Andric 11340b57cec5SDimitry Andric // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 113504eeddc0SDimitry Andric if (Predicate == FCmpInst::FCMP_FALSE) 11360b57cec5SDimitry Andric return Constant::getNullValue(ResultTy); 11370b57cec5SDimitry Andric 113804eeddc0SDimitry Andric if (Predicate == FCmpInst::FCMP_TRUE) 11390b57cec5SDimitry Andric return Constant::getAllOnesValue(ResultTy); 11400b57cec5SDimitry Andric 11410b57cec5SDimitry Andric // Handle some degenerate cases first 1142e8d8bef9SDimitry Andric if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1143e8d8bef9SDimitry Andric return PoisonValue::get(ResultTy); 1144e8d8bef9SDimitry Andric 11450b57cec5SDimitry Andric if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 11460b57cec5SDimitry Andric bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 11470b57cec5SDimitry Andric // For EQ and NE, we can always pick a value for the undef to make the 11480b57cec5SDimitry Andric // predicate pass or fail, so we can return undef. 11490b57cec5SDimitry Andric // Also, if both operands are undef, we can return undef for int comparison. 11500b57cec5SDimitry Andric if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 11510b57cec5SDimitry Andric return UndefValue::get(ResultTy); 11520b57cec5SDimitry Andric 11530b57cec5SDimitry Andric // Otherwise, for integer compare, pick the same value as the non-undef 11540b57cec5SDimitry Andric // operand, and fold it to true or false. 11550b57cec5SDimitry Andric if (isIntegerPredicate) 11560b57cec5SDimitry Andric return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 11570b57cec5SDimitry Andric 11580b57cec5SDimitry Andric // Choosing NaN for the undef will always make unordered comparison succeed 11590b57cec5SDimitry Andric // and ordered comparison fails. 11600b57cec5SDimitry Andric return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 11610b57cec5SDimitry Andric } 11620b57cec5SDimitry Andric 1163bdd1243dSDimitry Andric if (C2->isNullValue()) { 1164fe6060f1SDimitry Andric // The caller is expected to commute the operands if the constant expression 1165fe6060f1SDimitry Andric // is C2. 1166fe6060f1SDimitry Andric // C1 >= 0 --> true 116704eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_UGE) 1168fe6060f1SDimitry Andric return Constant::getAllOnesValue(ResultTy); 1169fe6060f1SDimitry Andric // C1 < 0 --> false 117004eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_ULT) 1171fe6060f1SDimitry Andric return Constant::getNullValue(ResultTy); 1172fe6060f1SDimitry Andric } 1173fe6060f1SDimitry Andric 11740b57cec5SDimitry Andric // If the comparison is a comparison between two i1's, simplify it. 11750b57cec5SDimitry Andric if (C1->getType()->isIntegerTy(1)) { 117604eeddc0SDimitry Andric switch (Predicate) { 11770b57cec5SDimitry Andric case ICmpInst::ICMP_EQ: 11780b57cec5SDimitry Andric if (isa<ConstantInt>(C2)) 11790b57cec5SDimitry Andric return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 11800b57cec5SDimitry Andric return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 11810b57cec5SDimitry Andric case ICmpInst::ICMP_NE: 11820b57cec5SDimitry Andric return ConstantExpr::getXor(C1, C2); 11830b57cec5SDimitry Andric default: 11840b57cec5SDimitry Andric break; 11850b57cec5SDimitry Andric } 11860b57cec5SDimitry Andric } 11870b57cec5SDimitry Andric 11880b57cec5SDimitry Andric if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 11890b57cec5SDimitry Andric const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 11900b57cec5SDimitry Andric const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 119104eeddc0SDimitry Andric return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); 11920b57cec5SDimitry Andric } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 11930b57cec5SDimitry Andric const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 11940b57cec5SDimitry Andric const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 11950eae32dcSDimitry Andric return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); 11965ffd83dbSDimitry Andric } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 11975ffd83dbSDimitry Andric 11985ffd83dbSDimitry Andric // Fast path for splatted constants. 11995ffd83dbSDimitry Andric if (Constant *C1Splat = C1->getSplatValue()) 12005ffd83dbSDimitry Andric if (Constant *C2Splat = C2->getSplatValue()) 1201*0fca6ea1SDimitry Andric if (Constant *Elt = 1202*0fca6ea1SDimitry Andric ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat)) 1203*0fca6ea1SDimitry Andric return ConstantVector::getSplat(C1VTy->getElementCount(), Elt); 12045ffd83dbSDimitry Andric 1205e8d8bef9SDimitry Andric // Do not iterate on scalable vector. The number of elements is unknown at 1206e8d8bef9SDimitry Andric // compile-time. 1207e8d8bef9SDimitry Andric if (isa<ScalableVectorType>(C1VTy)) 1208e8d8bef9SDimitry Andric return nullptr; 1209e8d8bef9SDimitry Andric 12100b57cec5SDimitry Andric // If we can constant fold the comparison of each element, constant fold 12110b57cec5SDimitry Andric // the whole vector comparison. 12120b57cec5SDimitry Andric SmallVector<Constant*, 4> ResElts; 12130b57cec5SDimitry Andric Type *Ty = IntegerType::get(C1->getContext(), 32); 12140b57cec5SDimitry Andric // Compare the elements, producing an i1 result or constant expr. 1215e8d8bef9SDimitry Andric for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1216e8d8bef9SDimitry Andric I != E; ++I) { 12170b57cec5SDimitry Andric Constant *C1E = 1218e8d8bef9SDimitry Andric ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 12190b57cec5SDimitry Andric Constant *C2E = 1220e8d8bef9SDimitry Andric ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1221*0fca6ea1SDimitry Andric Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E); 1222*0fca6ea1SDimitry Andric if (!Elt) 1223*0fca6ea1SDimitry Andric return nullptr; 12240b57cec5SDimitry Andric 1225*0fca6ea1SDimitry Andric ResElts.push_back(Elt); 12260b57cec5SDimitry Andric } 12270b57cec5SDimitry Andric 12280b57cec5SDimitry Andric return ConstantVector::get(ResElts); 12290b57cec5SDimitry Andric } 12300b57cec5SDimitry Andric 12315f757f3fSDimitry Andric if (C1->getType()->isFPOrFPVectorTy()) { 12325f757f3fSDimitry Andric if (C1 == C2) { 12335f757f3fSDimitry Andric // We know that C1 == C2 || isUnordered(C1, C2). 123404eeddc0SDimitry Andric if (Predicate == FCmpInst::FCMP_ONE) 12355f757f3fSDimitry Andric return ConstantInt::getFalse(ResultTy); 123604eeddc0SDimitry Andric else if (Predicate == FCmpInst::FCMP_UEQ) 12375f757f3fSDimitry Andric return ConstantInt::getTrue(ResultTy); 12380b57cec5SDimitry Andric } 12390b57cec5SDimitry Andric } else { 12400b57cec5SDimitry Andric // Evaluate the relation between the two constants, per the predicate. 12410b57cec5SDimitry Andric int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 12425f757f3fSDimitry Andric switch (evaluateICmpRelation(C1, C2)) { 12430b57cec5SDimitry Andric default: llvm_unreachable("Unknown relational!"); 12440b57cec5SDimitry Andric case ICmpInst::BAD_ICMP_PREDICATE: 12450b57cec5SDimitry Andric break; // Couldn't determine anything about these constants. 12460b57cec5SDimitry Andric case ICmpInst::ICMP_EQ: // We know the constants are equal! 12470b57cec5SDimitry Andric // If we know the constants are equal, we can decide the result of this 12480b57cec5SDimitry Andric // computation precisely. 124904eeddc0SDimitry Andric Result = ICmpInst::isTrueWhenEqual(Predicate); 12500b57cec5SDimitry Andric break; 12510b57cec5SDimitry Andric case ICmpInst::ICMP_ULT: 125204eeddc0SDimitry Andric switch (Predicate) { 12530b57cec5SDimitry Andric case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 12540b57cec5SDimitry Andric Result = 1; break; 12550b57cec5SDimitry Andric case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 12560b57cec5SDimitry Andric Result = 0; break; 125704eeddc0SDimitry Andric default: 125804eeddc0SDimitry Andric break; 12590b57cec5SDimitry Andric } 12600b57cec5SDimitry Andric break; 12610b57cec5SDimitry Andric case ICmpInst::ICMP_SLT: 126204eeddc0SDimitry Andric switch (Predicate) { 12630b57cec5SDimitry Andric case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 12640b57cec5SDimitry Andric Result = 1; break; 12650b57cec5SDimitry Andric case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 12660b57cec5SDimitry Andric Result = 0; break; 126704eeddc0SDimitry Andric default: 126804eeddc0SDimitry Andric break; 12690b57cec5SDimitry Andric } 12700b57cec5SDimitry Andric break; 12710b57cec5SDimitry Andric case ICmpInst::ICMP_UGT: 127204eeddc0SDimitry Andric switch (Predicate) { 12730b57cec5SDimitry Andric case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 12740b57cec5SDimitry Andric Result = 1; break; 12750b57cec5SDimitry Andric case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 12760b57cec5SDimitry Andric Result = 0; break; 127704eeddc0SDimitry Andric default: 127804eeddc0SDimitry Andric break; 12790b57cec5SDimitry Andric } 12800b57cec5SDimitry Andric break; 12810b57cec5SDimitry Andric case ICmpInst::ICMP_SGT: 128204eeddc0SDimitry Andric switch (Predicate) { 12830b57cec5SDimitry Andric case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 12840b57cec5SDimitry Andric Result = 1; break; 12850b57cec5SDimitry Andric case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 12860b57cec5SDimitry Andric Result = 0; break; 128704eeddc0SDimitry Andric default: 128804eeddc0SDimitry Andric break; 12890b57cec5SDimitry Andric } 12900b57cec5SDimitry Andric break; 12910b57cec5SDimitry Andric case ICmpInst::ICMP_ULE: 129204eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_UGT) 129304eeddc0SDimitry Andric Result = 0; 129404eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) 129504eeddc0SDimitry Andric Result = 1; 12960b57cec5SDimitry Andric break; 12970b57cec5SDimitry Andric case ICmpInst::ICMP_SLE: 129804eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_SGT) 129904eeddc0SDimitry Andric Result = 0; 130004eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) 130104eeddc0SDimitry Andric Result = 1; 13020b57cec5SDimitry Andric break; 13030b57cec5SDimitry Andric case ICmpInst::ICMP_UGE: 130404eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_ULT) 130504eeddc0SDimitry Andric Result = 0; 130604eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) 130704eeddc0SDimitry Andric Result = 1; 13080b57cec5SDimitry Andric break; 13090b57cec5SDimitry Andric case ICmpInst::ICMP_SGE: 131004eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_SLT) 131104eeddc0SDimitry Andric Result = 0; 131204eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) 131304eeddc0SDimitry Andric Result = 1; 13140b57cec5SDimitry Andric break; 13150b57cec5SDimitry Andric case ICmpInst::ICMP_NE: 131604eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_EQ) 131704eeddc0SDimitry Andric Result = 0; 131804eeddc0SDimitry Andric if (Predicate == ICmpInst::ICMP_NE) 131904eeddc0SDimitry Andric Result = 1; 13200b57cec5SDimitry Andric break; 13210b57cec5SDimitry Andric } 13220b57cec5SDimitry Andric 13230b57cec5SDimitry Andric // If we evaluated the result, return it now. 13240b57cec5SDimitry Andric if (Result != -1) 13250b57cec5SDimitry Andric return ConstantInt::get(ResultTy, Result); 13260b57cec5SDimitry Andric 13270b57cec5SDimitry Andric if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 13280b57cec5SDimitry Andric (C1->isNullValue() && !C2->isNullValue())) { 13290b57cec5SDimitry Andric // If C2 is a constant expr and C1 isn't, flip them around and fold the 13300b57cec5SDimitry Andric // other way if possible. 13310b57cec5SDimitry Andric // Also, if C1 is null and C2 isn't, flip them around. 133204eeddc0SDimitry Andric Predicate = ICmpInst::getSwappedPredicate(Predicate); 1333*0fca6ea1SDimitry Andric return ConstantFoldCompareInstruction(Predicate, C2, C1); 13340b57cec5SDimitry Andric } 13350b57cec5SDimitry Andric } 13360b57cec5SDimitry Andric return nullptr; 13370b57cec5SDimitry Andric } 13380b57cec5SDimitry Andric 13390b57cec5SDimitry Andric Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 1340*0fca6ea1SDimitry Andric std::optional<ConstantRange> InRange, 13410b57cec5SDimitry Andric ArrayRef<Value *> Idxs) { 13420b57cec5SDimitry Andric if (Idxs.empty()) return C; 13430b57cec5SDimitry Andric 13440b57cec5SDimitry Andric Type *GEPTy = GetElementPtrInst::getGEPReturnType( 134506c3fb27SDimitry Andric C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); 13460b57cec5SDimitry Andric 1347e8d8bef9SDimitry Andric if (isa<PoisonValue>(C)) 1348e8d8bef9SDimitry Andric return PoisonValue::get(GEPTy); 1349e8d8bef9SDimitry Andric 13500b57cec5SDimitry Andric if (isa<UndefValue>(C)) 1351*0fca6ea1SDimitry Andric return UndefValue::get(GEPTy); 13520b57cec5SDimitry Andric 135381ad6265SDimitry Andric auto IsNoOp = [&]() { 1354bdd1243dSDimitry Andric // Avoid losing inrange information. 1355*0fca6ea1SDimitry Andric if (InRange) 1356bdd1243dSDimitry Andric return false; 1357bdd1243dSDimitry Andric 135881ad6265SDimitry Andric return all_of(Idxs, [](Value *Idx) { 135981ad6265SDimitry Andric Constant *IdxC = cast<Constant>(Idx); 136081ad6265SDimitry Andric return IdxC->isNullValue() || isa<UndefValue>(IdxC); 136181ad6265SDimitry Andric }); 136281ad6265SDimitry Andric }; 136381ad6265SDimitry Andric if (IsNoOp()) 13640b57cec5SDimitry Andric return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 13650b57cec5SDimitry Andric ? ConstantVector::getSplat( 13665ffd83dbSDimitry Andric cast<VectorType>(GEPTy)->getElementCount(), C) 13670b57cec5SDimitry Andric : C; 13680b57cec5SDimitry Andric 13690b57cec5SDimitry Andric return nullptr; 13700b57cec5SDimitry Andric } 1371