1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervals.h" 38 #include "llvm/CodeGen/LiveVariables.h" 39 #include "llvm/CodeGen/MachineBasicBlock.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/Passes.h" 47 #include "llvm/CodeGen/SlotIndexes.h" 48 #include "llvm/CodeGen/TargetInstrInfo.h" 49 #include "llvm/CodeGen/TargetOpcodes.h" 50 #include "llvm/CodeGen/TargetRegisterInfo.h" 51 #include "llvm/CodeGen/TargetSubtargetInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/CodeGen.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include "llvm/Target/TargetMachine.h" 61 #include <cassert> 62 #include <iterator> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "twoaddressinstruction" 68 69 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 70 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 71 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 72 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 73 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 74 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 75 76 // Temporary flag to disable rescheduling. 77 static cl::opt<bool> 78 EnableRescheduling("twoaddr-reschedule", 79 cl::desc("Coalesce copies by rescheduling (default=true)"), 80 cl::init(true), cl::Hidden); 81 82 // Limit the number of dataflow edges to traverse when evaluating the benefit 83 // of commuting operands. 84 static cl::opt<unsigned> MaxDataFlowEdge( 85 "dataflow-edge-limit", cl::Hidden, cl::init(3), 86 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 87 "the benefit of commuting operands")); 88 89 namespace { 90 91 class TwoAddressInstructionPass : public MachineFunctionPass { 92 MachineFunction *MF; 93 const TargetInstrInfo *TII; 94 const TargetRegisterInfo *TRI; 95 const InstrItineraryData *InstrItins; 96 MachineRegisterInfo *MRI; 97 LiveVariables *LV; 98 LiveIntervals *LIS; 99 AliasAnalysis *AA; 100 CodeGenOpt::Level OptLevel; 101 102 // The current basic block being processed. 103 MachineBasicBlock *MBB; 104 105 // Keep track the distance of a MI from the start of the current basic block. 106 DenseMap<MachineInstr*, unsigned> DistanceMap; 107 108 // Set of already processed instructions in the current block. 109 SmallPtrSet<MachineInstr*, 8> Processed; 110 111 // A map from virtual registers to physical registers which are likely targets 112 // to be coalesced to due to copies from physical registers to virtual 113 // registers. e.g. v1024 = move r0. 114 DenseMap<Register, Register> SrcRegMap; 115 116 // A map from virtual registers to physical registers which are likely targets 117 // to be coalesced to due to copies to physical registers from virtual 118 // registers. e.g. r1 = move v1024. 119 DenseMap<Register, Register> DstRegMap; 120 121 void removeClobberedSrcRegMap(MachineInstr *MI); 122 123 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 124 125 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 126 127 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 128 MachineInstr *MI, unsigned Dist); 129 130 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 131 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 132 133 bool isProfitableToConv3Addr(Register RegA, Register RegB); 134 135 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 136 MachineBasicBlock::iterator &nmi, Register RegA, 137 Register RegB, unsigned &Dist); 138 139 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 140 141 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 144 MachineBasicBlock::iterator &nmi, Register Reg); 145 146 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 147 MachineBasicBlock::iterator &nmi, 148 unsigned SrcIdx, unsigned DstIdx, 149 unsigned &Dist, bool shouldOnlyCommute); 150 151 bool tryInstructionCommute(MachineInstr *MI, 152 unsigned DstOpIdx, 153 unsigned BaseOpIdx, 154 bool BaseOpKilled, 155 unsigned Dist); 156 void scanUses(Register DstReg); 157 158 void processCopy(MachineInstr *MI); 159 160 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 161 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 162 163 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 164 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 165 void eliminateRegSequence(MachineBasicBlock::iterator&); 166 167 public: 168 static char ID; // Pass identification, replacement for typeid 169 170 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 171 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 172 } 173 174 void getAnalysisUsage(AnalysisUsage &AU) const override { 175 AU.setPreservesCFG(); 176 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 177 AU.addUsedIfAvailable<LiveVariables>(); 178 AU.addPreserved<LiveVariables>(); 179 AU.addPreserved<SlotIndexes>(); 180 AU.addPreserved<LiveIntervals>(); 181 AU.addPreservedID(MachineLoopInfoID); 182 AU.addPreservedID(MachineDominatorsID); 183 MachineFunctionPass::getAnalysisUsage(AU); 184 } 185 186 /// Pass entry point. 187 bool runOnMachineFunction(MachineFunction&) override; 188 }; 189 190 } // end anonymous namespace 191 192 char TwoAddressInstructionPass::ID = 0; 193 194 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 195 196 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 197 "Two-Address instruction pass", false, false) 198 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 199 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 200 "Two-Address instruction pass", false, false) 201 202 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 203 204 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 205 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 206 const MachineRegisterInfo *MRI) { 207 MachineInstr *Ret = nullptr; 208 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 209 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 210 continue; 211 if (!Ret) 212 Ret = &DefMI; 213 else if (Ret != &DefMI) 214 return nullptr; 215 } 216 return Ret; 217 } 218 219 /// Check if there is a reversed copy chain from FromReg to ToReg: 220 /// %Tmp1 = copy %Tmp2; 221 /// %FromReg = copy %Tmp1; 222 /// %ToReg = add %FromReg ... 223 /// %Tmp2 = copy %ToReg; 224 /// MaxLen specifies the maximum length of the copy chain the func 225 /// can walk through. 226 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 227 int Maxlen) { 228 Register TmpReg = FromReg; 229 for (int i = 0; i < Maxlen; i++) { 230 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 231 if (!Def || !Def->isCopy()) 232 return false; 233 234 TmpReg = Def->getOperand(1).getReg(); 235 236 if (TmpReg == ToReg) 237 return true; 238 } 239 return false; 240 } 241 242 /// Return true if there are no intervening uses between the last instruction 243 /// in the MBB that defines the specified register and the two-address 244 /// instruction which is being processed. It also returns the last def location 245 /// by reference. 246 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 247 unsigned &LastDef) { 248 LastDef = 0; 249 unsigned LastUse = Dist; 250 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 251 MachineInstr *MI = MO.getParent(); 252 if (MI->getParent() != MBB || MI->isDebugValue()) 253 continue; 254 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 255 if (DI == DistanceMap.end()) 256 continue; 257 if (MO.isUse() && DI->second < LastUse) 258 LastUse = DI->second; 259 if (MO.isDef() && DI->second > LastDef) 260 LastDef = DI->second; 261 } 262 263 return !(LastUse > LastDef && LastUse < Dist); 264 } 265 266 /// Return true if the specified MI is a copy instruction or an extract_subreg 267 /// instruction. It also returns the source and destination registers and 268 /// whether they are physical registers by reference. 269 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 270 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 271 bool &IsDstPhys) { 272 SrcReg = 0; 273 DstReg = 0; 274 if (MI.isCopy()) { 275 DstReg = MI.getOperand(0).getReg(); 276 SrcReg = MI.getOperand(1).getReg(); 277 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 278 DstReg = MI.getOperand(0).getReg(); 279 SrcReg = MI.getOperand(2).getReg(); 280 } else { 281 return false; 282 } 283 284 IsSrcPhys = SrcReg.isPhysical(); 285 IsDstPhys = DstReg.isPhysical(); 286 return true; 287 } 288 289 /// Test if the given register value, which is used by the 290 /// given instruction, is killed by the given instruction. 291 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 292 LiveIntervals *LIS) { 293 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 294 // FIXME: Sometimes tryInstructionTransform() will add instructions and 295 // test whether they can be folded before keeping them. In this case it 296 // sets a kill before recursively calling tryInstructionTransform() again. 297 // If there is no interval available, we assume that this instruction is 298 // one of those. A kill flag is manually inserted on the operand so the 299 // check below will handle it. 300 LiveInterval &LI = LIS->getInterval(Reg); 301 // This is to match the kill flag version where undefs don't have kill 302 // flags. 303 if (!LI.hasAtLeastOneValue()) 304 return false; 305 306 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 307 LiveInterval::const_iterator I = LI.find(useIdx); 308 assert(I != LI.end() && "Reg must be live-in to use."); 309 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 310 } 311 312 return MI->killsRegister(Reg); 313 } 314 315 /// Test if the given register value, which is used by the given 316 /// instruction, is killed by the given instruction. This looks through 317 /// coalescable copies to see if the original value is potentially not killed. 318 /// 319 /// For example, in this code: 320 /// 321 /// %reg1034 = copy %reg1024 322 /// %reg1035 = copy killed %reg1025 323 /// %reg1036 = add killed %reg1034, killed %reg1035 324 /// 325 /// %reg1034 is not considered to be killed, since it is copied from a 326 /// register which is not killed. Treating it as not killed lets the 327 /// normal heuristics commute the (two-address) add, which lets 328 /// coalescing eliminate the extra copy. 329 /// 330 /// If allowFalsePositives is true then likely kills are treated as kills even 331 /// if it can't be proven that they are kills. 332 static bool isKilled(MachineInstr &MI, Register Reg, 333 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 334 LiveIntervals *LIS, bool allowFalsePositives) { 335 MachineInstr *DefMI = &MI; 336 while (true) { 337 // All uses of physical registers are likely to be kills. 338 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 339 return true; 340 if (!isPlainlyKilled(DefMI, Reg, LIS)) 341 return false; 342 if (Reg.isPhysical()) 343 return true; 344 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 345 // If there are multiple defs, we can't do a simple analysis, so just 346 // go with what the kill flag says. 347 if (std::next(Begin) != MRI->def_end()) 348 return true; 349 DefMI = Begin->getParent(); 350 bool IsSrcPhys, IsDstPhys; 351 Register SrcReg, DstReg; 352 // If the def is something other than a copy, then it isn't going to 353 // be coalesced, so follow the kill flag. 354 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 355 return true; 356 Reg = SrcReg; 357 } 358 } 359 360 /// Return true if the specified MI uses the specified register as a two-address 361 /// use. If so, return the destination register by reference. 362 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 363 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 364 const MachineOperand &MO = MI.getOperand(i); 365 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 366 continue; 367 unsigned ti; 368 if (MI.isRegTiedToDefOperand(i, &ti)) { 369 DstReg = MI.getOperand(ti).getReg(); 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /// Given a register, if has a single in-basic block use, return the use 377 /// instruction if it's a copy or a two-address use. 378 static MachineInstr * 379 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 380 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 381 bool &IsCopy, Register &DstReg, bool &IsDstPhys) { 382 if (!MRI->hasOneNonDBGUse(Reg)) 383 // None or more than one use. 384 return nullptr; 385 MachineOperand &UseOp = *MRI->use_nodbg_begin(Reg); 386 MachineInstr &UseMI = *UseOp.getParent(); 387 if (UseMI.getParent() != MBB) 388 return nullptr; 389 Register SrcReg; 390 bool IsSrcPhys; 391 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 392 IsCopy = true; 393 return &UseMI; 394 } 395 IsDstPhys = false; 396 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 397 IsDstPhys = DstReg.isPhysical(); 398 return &UseMI; 399 } 400 if (UseMI.isCommutable()) { 401 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 402 unsigned Src2 = UseMI.getOperandNo(&UseOp); 403 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 404 MachineOperand &MO = UseMI.getOperand(Src1); 405 if (MO.isReg() && MO.isUse() && 406 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 407 IsDstPhys = DstReg.isPhysical(); 408 return &UseMI; 409 } 410 } 411 } 412 return nullptr; 413 } 414 415 /// Return the physical register the specified virtual register might be mapped 416 /// to. 417 static MCRegister getMappedReg(Register Reg, 418 DenseMap<Register, Register> &RegMap) { 419 while (Reg.isVirtual()) { 420 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 421 if (SI == RegMap.end()) 422 return 0; 423 Reg = SI->second; 424 } 425 if (Reg.isPhysical()) 426 return Reg; 427 return 0; 428 } 429 430 /// Return true if the two registers are equal or aliased. 431 static bool regsAreCompatible(Register RegA, Register RegB, 432 const TargetRegisterInfo *TRI) { 433 if (RegA == RegB) 434 return true; 435 if (!RegA || !RegB) 436 return false; 437 return TRI->regsOverlap(RegA, RegB); 438 } 439 440 /// From RegMap remove entries mapped to a physical register which overlaps MO. 441 static void removeMapRegEntry(const MachineOperand &MO, 442 DenseMap<Register, Register> &RegMap, 443 const TargetRegisterInfo *TRI) { 444 assert( 445 (MO.isReg() || MO.isRegMask()) && 446 "removeMapRegEntry must be called with a register or regmask operand."); 447 448 SmallVector<Register, 2> Srcs; 449 for (auto SI : RegMap) { 450 Register ToReg = SI.second; 451 if (ToReg.isVirtual()) 452 continue; 453 454 if (MO.isReg()) { 455 Register Reg = MO.getReg(); 456 if (TRI->regsOverlap(ToReg, Reg)) 457 Srcs.push_back(SI.first); 458 } else if (MO.clobbersPhysReg(ToReg)) 459 Srcs.push_back(SI.first); 460 } 461 462 for (auto SrcReg : Srcs) 463 RegMap.erase(SrcReg); 464 } 465 466 /// If a physical register is clobbered, old entries mapped to it should be 467 /// deleted. For example 468 /// 469 /// %2:gr64 = COPY killed $rdx 470 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 471 /// 472 /// After the MUL instruction, $rdx contains different value than in the COPY 473 /// instruction. So %2 should not map to $rdx after MUL. 474 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 475 if (MI->isCopy()) { 476 // If a virtual register is copied to its mapped physical register, it 477 // doesn't change the potential coalescing between them, so we don't remove 478 // entries mapped to the physical register. For example 479 // 480 // %100 = COPY $r8 481 // ... 482 // $r8 = COPY %100 483 // 484 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 485 // destroy the content of $r8, and should not impact SrcRegMap. 486 Register Dst = MI->getOperand(0).getReg(); 487 if (!Dst || Dst.isVirtual()) 488 return; 489 490 Register Src = MI->getOperand(1).getReg(); 491 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 492 return; 493 } 494 495 for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) { 496 const MachineOperand &MO = MI->getOperand(i); 497 if (MO.isRegMask()) { 498 removeMapRegEntry(MO, SrcRegMap, TRI); 499 continue; 500 } 501 if (!MO.isReg() || !MO.isDef()) 502 continue; 503 Register Reg = MO.getReg(); 504 if (!Reg || Reg.isVirtual()) 505 continue; 506 removeMapRegEntry(MO, SrcRegMap, TRI); 507 } 508 } 509 510 // Returns true if Reg is equal or aliased to at least one register in Set. 511 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 512 const TargetRegisterInfo *TRI) { 513 for (unsigned R : Set) 514 if (TRI->regsOverlap(R, Reg)) 515 return true; 516 517 return false; 518 } 519 520 /// Return true if it's potentially profitable to commute the two-address 521 /// instruction that's being processed. 522 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 523 Register RegB, 524 Register RegC, 525 MachineInstr *MI, 526 unsigned Dist) { 527 if (OptLevel == CodeGenOpt::None) 528 return false; 529 530 // Determine if it's profitable to commute this two address instruction. In 531 // general, we want no uses between this instruction and the definition of 532 // the two-address register. 533 // e.g. 534 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 535 // %reg1029 = COPY %reg1028 536 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 537 // insert => %reg1030 = COPY %reg1028 538 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 539 // In this case, it might not be possible to coalesce the second COPY 540 // instruction if the first one is coalesced. So it would be profitable to 541 // commute it: 542 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 543 // %reg1029 = COPY %reg1028 544 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 545 // insert => %reg1030 = COPY %reg1029 546 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 547 548 if (!isPlainlyKilled(MI, RegC, LIS)) 549 return false; 550 551 // Ok, we have something like: 552 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 553 // let's see if it's worth commuting it. 554 555 // Look for situations like this: 556 // %reg1024 = MOV r1 557 // %reg1025 = MOV r0 558 // %reg1026 = ADD %reg1024, %reg1025 559 // r0 = MOV %reg1026 560 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 561 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 562 if (ToRegA) { 563 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 564 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 565 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 566 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 567 568 // Compute if any of the following are true: 569 // -RegB is not tied to a register and RegC is compatible with RegA. 570 // -RegB is tied to the wrong physical register, but RegC is. 571 // -RegB is tied to the wrong physical register, and RegC isn't tied. 572 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 573 return true; 574 // Don't compute if any of the following are true: 575 // -RegC is not tied to a register and RegB is compatible with RegA. 576 // -RegC is tied to the wrong physical register, but RegB is. 577 // -RegC is tied to the wrong physical register, and RegB isn't tied. 578 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 579 return false; 580 } 581 582 // If there is a use of RegC between its last def (could be livein) and this 583 // instruction, then bail. 584 unsigned LastDefC = 0; 585 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 586 return false; 587 588 // If there is a use of RegB between its last def (could be livein) and this 589 // instruction, then go ahead and make this transformation. 590 unsigned LastDefB = 0; 591 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 592 return true; 593 594 // Look for situation like this: 595 // %reg101 = MOV %reg100 596 // %reg102 = ... 597 // %reg103 = ADD %reg102, %reg101 598 // ... = %reg103 ... 599 // %reg100 = MOV %reg103 600 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 601 // to eliminate an otherwise unavoidable copy. 602 // FIXME: 603 // We can extend the logic further: If an pair of operands in an insn has 604 // been merged, the insn could be regarded as a virtual copy, and the virtual 605 // copy could also be used to construct a copy chain. 606 // To more generally minimize register copies, ideally the logic of two addr 607 // instruction pass should be integrated with register allocation pass where 608 // interference graph is available. 609 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 610 return true; 611 612 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 613 return false; 614 615 // Look for other target specific commute preference. 616 bool Commute; 617 if (TII->hasCommutePreference(*MI, Commute)) 618 return Commute; 619 620 // Since there are no intervening uses for both registers, then commute 621 // if the def of RegC is closer. Its live interval is shorter. 622 return LastDefB && LastDefC && LastDefC > LastDefB; 623 } 624 625 /// Commute a two-address instruction and update the basic block, distance map, 626 /// and live variables if needed. Return true if it is successful. 627 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 628 unsigned DstIdx, 629 unsigned RegBIdx, 630 unsigned RegCIdx, 631 unsigned Dist) { 632 Register RegC = MI->getOperand(RegCIdx).getReg(); 633 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 634 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 635 636 if (NewMI == nullptr) { 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 638 return false; 639 } 640 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 642 assert(NewMI == MI && 643 "TargetInstrInfo::commuteInstruction() should not return a new " 644 "instruction unless it was requested."); 645 646 // Update source register map. 647 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 648 if (FromRegC) { 649 Register RegA = MI->getOperand(DstIdx).getReg(); 650 SrcRegMap[RegA] = FromRegC; 651 } 652 653 return true; 654 } 655 656 /// Return true if it is profitable to convert the given 2-address instruction 657 /// to a 3-address one. 658 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 659 Register RegB) { 660 // Look for situations like this: 661 // %reg1024 = MOV r1 662 // %reg1025 = MOV r0 663 // %reg1026 = ADD %reg1024, %reg1025 664 // r2 = MOV %reg1026 665 // Turn ADD into a 3-address instruction to avoid a copy. 666 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 667 if (!FromRegB) 668 return false; 669 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 670 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 671 } 672 673 /// Convert the specified two-address instruction into a three address one. 674 /// Return true if this transformation was successful. 675 bool TwoAddressInstructionPass::convertInstTo3Addr( 676 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 677 Register RegA, Register RegB, unsigned &Dist) { 678 MachineInstrSpan MIS(mi, MBB); 679 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 680 if (!NewMI) 681 return false; 682 683 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 684 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 685 686 // If the old instruction is debug value tracked, an update is required. 687 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 688 // Sanity check. 689 assert(mi->getNumExplicitDefs() == 1); 690 assert(NewMI->getNumExplicitDefs() == 1); 691 692 // Find the old and new def location. 693 auto OldIt = mi->defs().begin(); 694 auto NewIt = NewMI->defs().begin(); 695 unsigned OldIdx = mi->getOperandNo(OldIt); 696 unsigned NewIdx = NewMI->getOperandNo(NewIt); 697 698 // Record that one def has been replaced by the other. 699 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 700 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 701 std::make_pair(NewInstrNum, NewIdx)); 702 } 703 704 MBB->erase(mi); // Nuke the old inst. 705 706 for (MachineInstr &MI : MIS) 707 DistanceMap.insert(std::make_pair(&MI, Dist++)); 708 Dist--; 709 mi = NewMI; 710 nmi = std::next(mi); 711 712 // Update source and destination register maps. 713 SrcRegMap.erase(RegA); 714 DstRegMap.erase(RegB); 715 return true; 716 } 717 718 /// Scan forward recursively for only uses, update maps if the use is a copy or 719 /// a two-address instruction. 720 void TwoAddressInstructionPass::scanUses(Register DstReg) { 721 SmallVector<Register, 4> VirtRegPairs; 722 bool IsDstPhys; 723 bool IsCopy = false; 724 Register NewReg; 725 Register Reg = DstReg; 726 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 727 NewReg, IsDstPhys)) { 728 if (IsCopy && !Processed.insert(UseMI).second) 729 break; 730 731 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 732 if (DI != DistanceMap.end()) 733 // Earlier in the same MBB.Reached via a back edge. 734 break; 735 736 if (IsDstPhys) { 737 VirtRegPairs.push_back(NewReg); 738 break; 739 } 740 SrcRegMap[NewReg] = Reg; 741 VirtRegPairs.push_back(NewReg); 742 Reg = NewReg; 743 } 744 745 if (!VirtRegPairs.empty()) { 746 unsigned ToReg = VirtRegPairs.back(); 747 VirtRegPairs.pop_back(); 748 while (!VirtRegPairs.empty()) { 749 unsigned FromReg = VirtRegPairs.pop_back_val(); 750 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 751 if (!isNew) 752 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 753 ToReg = FromReg; 754 } 755 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 756 if (!isNew) 757 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 758 } 759 } 760 761 /// If the specified instruction is not yet processed, process it if it's a 762 /// copy. For a copy instruction, we find the physical registers the 763 /// source and destination registers might be mapped to. These are kept in 764 /// point-to maps used to determine future optimizations. e.g. 765 /// v1024 = mov r0 766 /// v1025 = mov r1 767 /// v1026 = add v1024, v1025 768 /// r1 = mov r1026 769 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 770 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 771 /// potentially joined with r1 on the output side. It's worthwhile to commute 772 /// 'add' to eliminate a copy. 773 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 774 if (Processed.count(MI)) 775 return; 776 777 bool IsSrcPhys, IsDstPhys; 778 Register SrcReg, DstReg; 779 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 780 return; 781 782 if (IsDstPhys && !IsSrcPhys) { 783 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 784 } else if (!IsDstPhys && IsSrcPhys) { 785 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 786 if (!isNew) 787 assert(SrcRegMap[DstReg] == SrcReg && 788 "Can't map to two src physical registers!"); 789 790 scanUses(DstReg); 791 } 792 793 Processed.insert(MI); 794 } 795 796 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 797 /// consider moving the instruction below the kill instruction in order to 798 /// eliminate the need for the copy. 799 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 800 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 801 Register Reg) { 802 // Bail immediately if we don't have LV or LIS available. We use them to find 803 // kills efficiently. 804 if (!LV && !LIS) 805 return false; 806 807 MachineInstr *MI = &*mi; 808 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 809 if (DI == DistanceMap.end()) 810 // Must be created from unfolded load. Don't waste time trying this. 811 return false; 812 813 MachineInstr *KillMI = nullptr; 814 if (LIS) { 815 LiveInterval &LI = LIS->getInterval(Reg); 816 assert(LI.end() != LI.begin() && 817 "Reg should not have empty live interval."); 818 819 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 820 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 821 if (I != LI.end() && I->start < MBBEndIdx) 822 return false; 823 824 --I; 825 KillMI = LIS->getInstructionFromIndex(I->end); 826 } else { 827 KillMI = LV->getVarInfo(Reg).findKill(MBB); 828 } 829 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 830 // Don't mess with copies, they may be coalesced later. 831 return false; 832 833 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 834 KillMI->isBranch() || KillMI->isTerminator()) 835 // Don't move pass calls, etc. 836 return false; 837 838 Register DstReg; 839 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 840 return false; 841 842 bool SeenStore = true; 843 if (!MI->isSafeToMove(AA, SeenStore)) 844 return false; 845 846 if (TII->getInstrLatency(InstrItins, *MI) > 1) 847 // FIXME: Needs more sophisticated heuristics. 848 return false; 849 850 SmallVector<Register, 2> Uses; 851 SmallVector<Register, 2> Kills; 852 SmallVector<Register, 2> Defs; 853 for (const MachineOperand &MO : MI->operands()) { 854 if (!MO.isReg()) 855 continue; 856 Register MOReg = MO.getReg(); 857 if (!MOReg) 858 continue; 859 if (MO.isDef()) 860 Defs.push_back(MOReg); 861 else { 862 Uses.push_back(MOReg); 863 if (MOReg != Reg && (MO.isKill() || 864 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 865 Kills.push_back(MOReg); 866 } 867 } 868 869 // Move the copies connected to MI down as well. 870 MachineBasicBlock::iterator Begin = MI; 871 MachineBasicBlock::iterator AfterMI = std::next(Begin); 872 MachineBasicBlock::iterator End = AfterMI; 873 while (End != MBB->end()) { 874 End = skipDebugInstructionsForward(End, MBB->end()); 875 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 876 Defs.push_back(End->getOperand(0).getReg()); 877 else 878 break; 879 ++End; 880 } 881 882 // Check if the reschedule will not break dependencies. 883 unsigned NumVisited = 0; 884 MachineBasicBlock::iterator KillPos = KillMI; 885 ++KillPos; 886 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 887 // Debug or pseudo instructions cannot be counted against the limit. 888 if (OtherMI.isDebugOrPseudoInstr()) 889 continue; 890 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 891 return false; 892 ++NumVisited; 893 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 894 OtherMI.isBranch() || OtherMI.isTerminator()) 895 // Don't move pass calls, etc. 896 return false; 897 for (const MachineOperand &MO : OtherMI.operands()) { 898 if (!MO.isReg()) 899 continue; 900 Register MOReg = MO.getReg(); 901 if (!MOReg) 902 continue; 903 if (MO.isDef()) { 904 if (regOverlapsSet(Uses, MOReg, TRI)) 905 // Physical register use would be clobbered. 906 return false; 907 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 908 // May clobber a physical register def. 909 // FIXME: This may be too conservative. It's ok if the instruction 910 // is sunken completely below the use. 911 return false; 912 } else { 913 if (regOverlapsSet(Defs, MOReg, TRI)) 914 return false; 915 bool isKill = 916 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 917 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 918 regOverlapsSet(Kills, MOReg, TRI))) 919 // Don't want to extend other live ranges and update kills. 920 return false; 921 if (MOReg == Reg && !isKill) 922 // We can't schedule across a use of the register in question. 923 return false; 924 // Ensure that if this is register in question, its the kill we expect. 925 assert((MOReg != Reg || &OtherMI == KillMI) && 926 "Found multiple kills of a register in a basic block"); 927 } 928 } 929 } 930 931 // Move debug info as well. 932 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 933 --Begin; 934 935 nmi = End; 936 MachineBasicBlock::iterator InsertPos = KillPos; 937 if (LIS) { 938 // We have to move the copies (and any interleaved debug instructions) 939 // first so that the MBB is still well-formed when calling handleMove(). 940 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 941 auto CopyMI = MBBI++; 942 MBB->splice(InsertPos, MBB, CopyMI); 943 if (!CopyMI->isDebugOrPseudoInstr()) 944 LIS->handleMove(*CopyMI); 945 InsertPos = CopyMI; 946 } 947 End = std::next(MachineBasicBlock::iterator(MI)); 948 } 949 950 // Copies following MI may have been moved as well. 951 MBB->splice(InsertPos, MBB, Begin, End); 952 DistanceMap.erase(DI); 953 954 // Update live variables 955 if (LIS) { 956 LIS->handleMove(*MI); 957 } else { 958 LV->removeVirtualRegisterKilled(Reg, *KillMI); 959 LV->addVirtualRegisterKilled(Reg, *MI); 960 } 961 962 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 963 return true; 964 } 965 966 /// Return true if the re-scheduling will put the given instruction too close 967 /// to the defs of its register dependencies. 968 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 969 MachineInstr *MI) { 970 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 971 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 972 continue; 973 if (&DefMI == MI) 974 return true; // MI is defining something KillMI uses 975 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 976 if (DDI == DistanceMap.end()) 977 return true; // Below MI 978 unsigned DefDist = DDI->second; 979 assert(Dist > DefDist && "Visited def already?"); 980 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 981 return true; 982 } 983 return false; 984 } 985 986 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 987 /// consider moving the kill instruction above the current two-address 988 /// instruction in order to eliminate the need for the copy. 989 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 990 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 991 Register Reg) { 992 // Bail immediately if we don't have LV or LIS available. We use them to find 993 // kills efficiently. 994 if (!LV && !LIS) 995 return false; 996 997 MachineInstr *MI = &*mi; 998 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 999 if (DI == DistanceMap.end()) 1000 // Must be created from unfolded load. Don't waste time trying this. 1001 return false; 1002 1003 MachineInstr *KillMI = nullptr; 1004 if (LIS) { 1005 LiveInterval &LI = LIS->getInterval(Reg); 1006 assert(LI.end() != LI.begin() && 1007 "Reg should not have empty live interval."); 1008 1009 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1010 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1011 if (I != LI.end() && I->start < MBBEndIdx) 1012 return false; 1013 1014 --I; 1015 KillMI = LIS->getInstructionFromIndex(I->end); 1016 } else { 1017 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1018 } 1019 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1020 // Don't mess with copies, they may be coalesced later. 1021 return false; 1022 1023 Register DstReg; 1024 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1025 return false; 1026 1027 bool SeenStore = true; 1028 if (!KillMI->isSafeToMove(AA, SeenStore)) 1029 return false; 1030 1031 SmallVector<Register, 2> Uses; 1032 SmallVector<Register, 2> Kills; 1033 SmallVector<Register, 2> Defs; 1034 SmallVector<Register, 2> LiveDefs; 1035 for (const MachineOperand &MO : KillMI->operands()) { 1036 if (!MO.isReg()) 1037 continue; 1038 Register MOReg = MO.getReg(); 1039 if (MO.isUse()) { 1040 if (!MOReg) 1041 continue; 1042 if (isDefTooClose(MOReg, DI->second, MI)) 1043 return false; 1044 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1045 if (MOReg == Reg && !isKill) 1046 return false; 1047 Uses.push_back(MOReg); 1048 if (isKill && MOReg != Reg) 1049 Kills.push_back(MOReg); 1050 } else if (MOReg.isPhysical()) { 1051 Defs.push_back(MOReg); 1052 if (!MO.isDead()) 1053 LiveDefs.push_back(MOReg); 1054 } 1055 } 1056 1057 // Check if the reschedule will not break depedencies. 1058 unsigned NumVisited = 0; 1059 for (MachineInstr &OtherMI : 1060 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1061 // Debug or pseudo instructions cannot be counted against the limit. 1062 if (OtherMI.isDebugOrPseudoInstr()) 1063 continue; 1064 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1065 return false; 1066 ++NumVisited; 1067 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1068 OtherMI.isBranch() || OtherMI.isTerminator()) 1069 // Don't move pass calls, etc. 1070 return false; 1071 SmallVector<Register, 2> OtherDefs; 1072 for (const MachineOperand &MO : OtherMI.operands()) { 1073 if (!MO.isReg()) 1074 continue; 1075 Register MOReg = MO.getReg(); 1076 if (!MOReg) 1077 continue; 1078 if (MO.isUse()) { 1079 if (regOverlapsSet(Defs, MOReg, TRI)) 1080 // Moving KillMI can clobber the physical register if the def has 1081 // not been seen. 1082 return false; 1083 if (regOverlapsSet(Kills, MOReg, TRI)) 1084 // Don't want to extend other live ranges and update kills. 1085 return false; 1086 if (&OtherMI != MI && MOReg == Reg && 1087 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1088 // We can't schedule across a use of the register in question. 1089 return false; 1090 } else { 1091 OtherDefs.push_back(MOReg); 1092 } 1093 } 1094 1095 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1096 Register MOReg = OtherDefs[i]; 1097 if (regOverlapsSet(Uses, MOReg, TRI)) 1098 return false; 1099 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1100 return false; 1101 // Physical register def is seen. 1102 llvm::erase_value(Defs, MOReg); 1103 } 1104 } 1105 1106 // Move the old kill above MI, don't forget to move debug info as well. 1107 MachineBasicBlock::iterator InsertPos = mi; 1108 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1109 --InsertPos; 1110 MachineBasicBlock::iterator From = KillMI; 1111 MachineBasicBlock::iterator To = std::next(From); 1112 while (std::prev(From)->isDebugInstr()) 1113 --From; 1114 MBB->splice(InsertPos, MBB, From, To); 1115 1116 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1117 DistanceMap.erase(DI); 1118 1119 // Update live variables 1120 if (LIS) { 1121 LIS->handleMove(*KillMI); 1122 } else { 1123 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1124 LV->addVirtualRegisterKilled(Reg, *MI); 1125 } 1126 1127 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1128 return true; 1129 } 1130 1131 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1132 /// given machine instruction to improve opportunities for coalescing and 1133 /// elimination of a register to register copy. 1134 /// 1135 /// 'DstOpIdx' specifies the index of MI def operand. 1136 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1137 /// operand is killed by the given instruction. 1138 /// The 'Dist' arguments provides the distance of MI from the start of the 1139 /// current basic block and it is used to determine if it is profitable 1140 /// to commute operands in the instruction. 1141 /// 1142 /// Returns true if the transformation happened. Otherwise, returns false. 1143 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1144 unsigned DstOpIdx, 1145 unsigned BaseOpIdx, 1146 bool BaseOpKilled, 1147 unsigned Dist) { 1148 if (!MI->isCommutable()) 1149 return false; 1150 1151 bool MadeChange = false; 1152 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1153 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1154 unsigned OpsNum = MI->getDesc().getNumOperands(); 1155 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1156 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1157 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1158 // and OtherOpIdx are commutable, it does not really search for 1159 // other commutable operands and does not change the values of passed 1160 // variables. 1161 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1162 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1163 continue; 1164 1165 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1166 bool AggressiveCommute = false; 1167 1168 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1169 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1170 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1171 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1172 1173 if (!DoCommute && 1174 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1175 DoCommute = true; 1176 AggressiveCommute = true; 1177 } 1178 1179 // If it's profitable to commute, try to do so. 1180 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1181 Dist)) { 1182 MadeChange = true; 1183 ++NumCommuted; 1184 if (AggressiveCommute) 1185 ++NumAggrCommuted; 1186 1187 // There might be more than two commutable operands, update BaseOp and 1188 // continue scanning. 1189 // FIXME: This assumes that the new instruction's operands are in the 1190 // same positions and were simply swapped. 1191 BaseOpReg = OtherOpReg; 1192 BaseOpKilled = OtherOpKilled; 1193 // Resamples OpsNum in case the number of operands was reduced. This 1194 // happens with X86. 1195 OpsNum = MI->getDesc().getNumOperands(); 1196 } 1197 } 1198 return MadeChange; 1199 } 1200 1201 /// For the case where an instruction has a single pair of tied register 1202 /// operands, attempt some transformations that may either eliminate the tied 1203 /// operands or improve the opportunities for coalescing away the register copy. 1204 /// Returns true if no copy needs to be inserted to untie mi's operands 1205 /// (either because they were untied, or because mi was rescheduled, and will 1206 /// be visited again later). If the shouldOnlyCommute flag is true, only 1207 /// instruction commutation is attempted. 1208 bool TwoAddressInstructionPass:: 1209 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1210 MachineBasicBlock::iterator &nmi, 1211 unsigned SrcIdx, unsigned DstIdx, 1212 unsigned &Dist, bool shouldOnlyCommute) { 1213 if (OptLevel == CodeGenOpt::None) 1214 return false; 1215 1216 MachineInstr &MI = *mi; 1217 Register regA = MI.getOperand(DstIdx).getReg(); 1218 Register regB = MI.getOperand(SrcIdx).getReg(); 1219 1220 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1221 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1222 1223 if (regA.isVirtual()) 1224 scanUses(regA); 1225 1226 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1227 1228 // If the instruction is convertible to 3 Addr, instead 1229 // of returning try 3 Addr transformation aggressively and 1230 // use this variable to check later. Because it might be better. 1231 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1232 // instead of the following code. 1233 // addl %esi, %edi 1234 // movl %edi, %eax 1235 // ret 1236 if (Commuted && !MI.isConvertibleTo3Addr()) 1237 return false; 1238 1239 if (shouldOnlyCommute) 1240 return false; 1241 1242 // If there is one more use of regB later in the same MBB, consider 1243 // re-schedule this MI below it. 1244 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1245 ++NumReSchedDowns; 1246 return true; 1247 } 1248 1249 // If we commuted, regB may have changed so we should re-sample it to avoid 1250 // confusing the three address conversion below. 1251 if (Commuted) { 1252 regB = MI.getOperand(SrcIdx).getReg(); 1253 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1254 } 1255 1256 if (MI.isConvertibleTo3Addr()) { 1257 // This instruction is potentially convertible to a true 1258 // three-address instruction. Check if it is profitable. 1259 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1260 // Try to convert it. 1261 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1262 ++NumConvertedTo3Addr; 1263 return true; // Done with this instruction. 1264 } 1265 } 1266 } 1267 1268 // Return if it is commuted but 3 addr conversion is failed. 1269 if (Commuted) 1270 return false; 1271 1272 // If there is one more use of regB later in the same MBB, consider 1273 // re-schedule it before this MI if it's legal. 1274 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1275 ++NumReSchedUps; 1276 return true; 1277 } 1278 1279 // If this is an instruction with a load folded into it, try unfolding 1280 // the load, e.g. avoid this: 1281 // movq %rdx, %rcx 1282 // addq (%rax), %rcx 1283 // in favor of this: 1284 // movq (%rax), %rcx 1285 // addq %rdx, %rcx 1286 // because it's preferable to schedule a load than a register copy. 1287 if (MI.mayLoad() && !regBKilled) { 1288 // Determine if a load can be unfolded. 1289 unsigned LoadRegIndex; 1290 unsigned NewOpc = 1291 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1292 /*UnfoldLoad=*/true, 1293 /*UnfoldStore=*/false, 1294 &LoadRegIndex); 1295 if (NewOpc != 0) { 1296 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1297 if (UnfoldMCID.getNumDefs() == 1) { 1298 // Unfold the load. 1299 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1300 const TargetRegisterClass *RC = 1301 TRI->getAllocatableClass( 1302 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1303 Register Reg = MRI->createVirtualRegister(RC); 1304 SmallVector<MachineInstr *, 2> NewMIs; 1305 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1306 /*UnfoldLoad=*/true, 1307 /*UnfoldStore=*/false, NewMIs)) { 1308 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1309 return false; 1310 } 1311 assert(NewMIs.size() == 2 && 1312 "Unfolded a load into multiple instructions!"); 1313 // The load was previously folded, so this is the only use. 1314 NewMIs[1]->addRegisterKilled(Reg, TRI); 1315 1316 // Tentatively insert the instructions into the block so that they 1317 // look "normal" to the transformation logic. 1318 MBB->insert(mi, NewMIs[0]); 1319 MBB->insert(mi, NewMIs[1]); 1320 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1321 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1322 1323 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1324 << "2addr: NEW INST: " << *NewMIs[1]); 1325 1326 // Transform the instruction, now that it no longer has a load. 1327 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1328 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1329 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1330 bool TransformResult = 1331 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1332 (void)TransformResult; 1333 assert(!TransformResult && 1334 "tryInstructionTransform() should return false."); 1335 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1336 // Success, or at least we made an improvement. Keep the unfolded 1337 // instructions and discard the original. 1338 if (LV) { 1339 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1340 MachineOperand &MO = MI.getOperand(i); 1341 if (MO.isReg() && MO.getReg().isVirtual()) { 1342 if (MO.isUse()) { 1343 if (MO.isKill()) { 1344 if (NewMIs[0]->killsRegister(MO.getReg())) 1345 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1346 else { 1347 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1348 "Kill missing after load unfold!"); 1349 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1350 } 1351 } 1352 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1353 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1354 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1355 else { 1356 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1357 "Dead flag missing after load unfold!"); 1358 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1359 } 1360 } 1361 } 1362 } 1363 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1364 } 1365 1366 SmallVector<Register, 4> OrigRegs; 1367 if (LIS) { 1368 for (const MachineOperand &MO : MI.operands()) { 1369 if (MO.isReg()) 1370 OrigRegs.push_back(MO.getReg()); 1371 } 1372 1373 LIS->RemoveMachineInstrFromMaps(MI); 1374 } 1375 1376 MI.eraseFromParent(); 1377 DistanceMap.erase(&MI); 1378 1379 // Update LiveIntervals. 1380 if (LIS) { 1381 MachineBasicBlock::iterator Begin(NewMIs[0]); 1382 MachineBasicBlock::iterator End(NewMIs[1]); 1383 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1384 } 1385 1386 mi = NewMIs[1]; 1387 } else { 1388 // Transforming didn't eliminate the tie and didn't lead to an 1389 // improvement. Clean up the unfolded instructions and keep the 1390 // original. 1391 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1392 NewMIs[0]->eraseFromParent(); 1393 NewMIs[1]->eraseFromParent(); 1394 DistanceMap.erase(NewMIs[0]); 1395 DistanceMap.erase(NewMIs[1]); 1396 Dist--; 1397 } 1398 } 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 // Collect tied operands of MI that need to be handled. 1406 // Rewrite trivial cases immediately. 1407 // Return true if any tied operands where found, including the trivial ones. 1408 bool TwoAddressInstructionPass:: 1409 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1410 bool AnyOps = false; 1411 unsigned NumOps = MI->getNumOperands(); 1412 1413 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1414 unsigned DstIdx = 0; 1415 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1416 continue; 1417 AnyOps = true; 1418 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1419 MachineOperand &DstMO = MI->getOperand(DstIdx); 1420 Register SrcReg = SrcMO.getReg(); 1421 Register DstReg = DstMO.getReg(); 1422 // Tied constraint already satisfied? 1423 if (SrcReg == DstReg) 1424 continue; 1425 1426 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1427 1428 // Deal with undef uses immediately - simply rewrite the src operand. 1429 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1430 // Constrain the DstReg register class if required. 1431 if (DstReg.isVirtual()) { 1432 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1433 MRI->constrainRegClass(DstReg, RC); 1434 } 1435 SrcMO.setReg(DstReg); 1436 SrcMO.setSubReg(0); 1437 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1438 continue; 1439 } 1440 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1441 } 1442 return AnyOps; 1443 } 1444 1445 // Process a list of tied MI operands that all use the same source register. 1446 // The tied pairs are of the form (SrcIdx, DstIdx). 1447 void 1448 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1449 TiedPairList &TiedPairs, 1450 unsigned &Dist) { 1451 bool IsEarlyClobber = llvm::find_if(TiedPairs, [MI](auto const &TP) { 1452 return MI->getOperand(TP.second).isEarlyClobber(); 1453 }) != TiedPairs.end(); 1454 1455 bool RemovedKillFlag = false; 1456 bool AllUsesCopied = true; 1457 unsigned LastCopiedReg = 0; 1458 SlotIndex LastCopyIdx; 1459 Register RegB = 0; 1460 unsigned SubRegB = 0; 1461 for (auto &TP : TiedPairs) { 1462 unsigned SrcIdx = TP.first; 1463 unsigned DstIdx = TP.second; 1464 1465 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1466 Register RegA = DstMO.getReg(); 1467 1468 // Grab RegB from the instruction because it may have changed if the 1469 // instruction was commuted. 1470 RegB = MI->getOperand(SrcIdx).getReg(); 1471 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1472 1473 if (RegA == RegB) { 1474 // The register is tied to multiple destinations (or else we would 1475 // not have continued this far), but this use of the register 1476 // already matches the tied destination. Leave it. 1477 AllUsesCopied = false; 1478 continue; 1479 } 1480 LastCopiedReg = RegA; 1481 1482 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1483 1484 #ifndef NDEBUG 1485 // First, verify that we don't have a use of "a" in the instruction 1486 // (a = b + a for example) because our transformation will not 1487 // work. This should never occur because we are in SSA form. 1488 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1489 assert(i == DstIdx || 1490 !MI->getOperand(i).isReg() || 1491 MI->getOperand(i).getReg() != RegA); 1492 #endif 1493 1494 // Emit a copy. 1495 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1496 TII->get(TargetOpcode::COPY), RegA); 1497 // If this operand is folding a truncation, the truncation now moves to the 1498 // copy so that the register classes remain valid for the operands. 1499 MIB.addReg(RegB, 0, SubRegB); 1500 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1501 if (SubRegB) { 1502 if (RegA.isVirtual()) { 1503 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1504 SubRegB) && 1505 "tied subregister must be a truncation"); 1506 // The superreg class will not be used to constrain the subreg class. 1507 RC = nullptr; 1508 } else { 1509 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1510 && "tied subregister must be a truncation"); 1511 } 1512 } 1513 1514 // Update DistanceMap. 1515 MachineBasicBlock::iterator PrevMI = MI; 1516 --PrevMI; 1517 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1518 DistanceMap[MI] = ++Dist; 1519 1520 if (LIS) { 1521 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1522 1523 SlotIndex endIdx = 1524 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1525 if (RegA.isVirtual()) { 1526 LiveInterval &LI = LIS->getInterval(RegA); 1527 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1528 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1529 for (auto &S : LI.subranges()) { 1530 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1531 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1532 } 1533 } else { 1534 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1535 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1536 VNInfo *VNI = 1537 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1538 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1539 } 1540 } 1541 } 1542 } 1543 1544 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1545 1546 MachineOperand &MO = MI->getOperand(SrcIdx); 1547 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1548 "inconsistent operand info for 2-reg pass"); 1549 if (MO.isKill()) { 1550 MO.setIsKill(false); 1551 RemovedKillFlag = true; 1552 } 1553 1554 // Make sure regA is a legal regclass for the SrcIdx operand. 1555 if (RegA.isVirtual() && RegB.isVirtual()) 1556 MRI->constrainRegClass(RegA, RC); 1557 MO.setReg(RegA); 1558 // The getMatchingSuper asserts guarantee that the register class projected 1559 // by SubRegB is compatible with RegA with no subregister. So regardless of 1560 // whether the dest oper writes a subreg, the source oper should not. 1561 MO.setSubReg(0); 1562 } 1563 1564 if (AllUsesCopied) { 1565 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1566 // Replace other (un-tied) uses of regB with LastCopiedReg. 1567 for (MachineOperand &MO : MI->operands()) { 1568 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1569 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1570 if (MO.isKill()) { 1571 MO.setIsKill(false); 1572 RemovedKillFlag = true; 1573 } 1574 MO.setReg(LastCopiedReg); 1575 MO.setSubReg(0); 1576 } else { 1577 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1578 } 1579 } 1580 } 1581 1582 // Update live variables for regB. 1583 if (RemovedKillFlag && RemainingUses.none() && LV && 1584 LV->getVarInfo(RegB).removeKill(*MI)) { 1585 MachineBasicBlock::iterator PrevMI = MI; 1586 --PrevMI; 1587 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1588 } 1589 1590 if (RemovedKillFlag && RemainingUses.none()) 1591 SrcRegMap[LastCopiedReg] = RegB; 1592 1593 // Update LiveIntervals. 1594 if (LIS) { 1595 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1596 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1597 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1598 if (!S) 1599 return true; 1600 if ((LaneMask & RemainingUses).any()) 1601 return false; 1602 if (S->end.getBaseIndex() != UseIdx) 1603 return false; 1604 S->end = LastCopyIdx; 1605 return true; 1606 }; 1607 1608 LiveInterval &LI = LIS->getInterval(RegB); 1609 bool ShrinkLI = true; 1610 for (auto &S : LI.subranges()) 1611 ShrinkLI &= Shrink(S, S.LaneMask); 1612 if (ShrinkLI) 1613 Shrink(LI, LaneBitmask::getAll()); 1614 } 1615 } else if (RemovedKillFlag) { 1616 // Some tied uses of regB matched their destination registers, so 1617 // regB is still used in this instruction, but a kill flag was 1618 // removed from a different tied use of regB, so now we need to add 1619 // a kill flag to one of the remaining uses of regB. 1620 for (MachineOperand &MO : MI->operands()) { 1621 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1622 MO.setIsKill(true); 1623 break; 1624 } 1625 } 1626 } 1627 } 1628 1629 /// Reduce two-address instructions to two operands. 1630 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1631 MF = &Func; 1632 const TargetMachine &TM = MF->getTarget(); 1633 MRI = &MF->getRegInfo(); 1634 TII = MF->getSubtarget().getInstrInfo(); 1635 TRI = MF->getSubtarget().getRegisterInfo(); 1636 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1637 LV = getAnalysisIfAvailable<LiveVariables>(); 1638 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1639 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1640 AA = &AAPass->getAAResults(); 1641 else 1642 AA = nullptr; 1643 OptLevel = TM.getOptLevel(); 1644 // Disable optimizations if requested. We cannot skip the whole pass as some 1645 // fixups are necessary for correctness. 1646 if (skipFunction(Func.getFunction())) 1647 OptLevel = CodeGenOpt::None; 1648 1649 bool MadeChange = false; 1650 1651 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1652 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1653 1654 // This pass takes the function out of SSA form. 1655 MRI->leaveSSA(); 1656 1657 // This pass will rewrite the tied-def to meet the RegConstraint. 1658 MF->getProperties() 1659 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1660 1661 TiedOperandMap TiedOperands; 1662 for (MachineBasicBlock &MBBI : *MF) { 1663 MBB = &MBBI; 1664 unsigned Dist = 0; 1665 DistanceMap.clear(); 1666 SrcRegMap.clear(); 1667 DstRegMap.clear(); 1668 Processed.clear(); 1669 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1670 mi != me; ) { 1671 MachineBasicBlock::iterator nmi = std::next(mi); 1672 // Skip debug instructions. 1673 if (mi->isDebugInstr()) { 1674 mi = nmi; 1675 continue; 1676 } 1677 1678 // Expand REG_SEQUENCE instructions. This will position mi at the first 1679 // expanded instruction. 1680 if (mi->isRegSequence()) 1681 eliminateRegSequence(mi); 1682 1683 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1684 1685 processCopy(&*mi); 1686 1687 // First scan through all the tied register uses in this instruction 1688 // and record a list of pairs of tied operands for each register. 1689 if (!collectTiedOperands(&*mi, TiedOperands)) { 1690 removeClobberedSrcRegMap(&*mi); 1691 mi = nmi; 1692 continue; 1693 } 1694 1695 ++NumTwoAddressInstrs; 1696 MadeChange = true; 1697 LLVM_DEBUG(dbgs() << '\t' << *mi); 1698 1699 // If the instruction has a single pair of tied operands, try some 1700 // transformations that may either eliminate the tied operands or 1701 // improve the opportunities for coalescing away the register copy. 1702 if (TiedOperands.size() == 1) { 1703 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1704 = TiedOperands.begin()->second; 1705 if (TiedPairs.size() == 1) { 1706 unsigned SrcIdx = TiedPairs[0].first; 1707 unsigned DstIdx = TiedPairs[0].second; 1708 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1709 Register DstReg = mi->getOperand(DstIdx).getReg(); 1710 if (SrcReg != DstReg && 1711 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1712 // The tied operands have been eliminated or shifted further down 1713 // the block to ease elimination. Continue processing with 'nmi'. 1714 TiedOperands.clear(); 1715 removeClobberedSrcRegMap(&*mi); 1716 mi = nmi; 1717 continue; 1718 } 1719 } 1720 } 1721 1722 // Now iterate over the information collected above. 1723 for (auto &TO : TiedOperands) { 1724 processTiedPairs(&*mi, TO.second, Dist); 1725 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1726 } 1727 1728 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1729 if (mi->isInsertSubreg()) { 1730 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1731 // To %reg:subidx = COPY %subreg 1732 unsigned SubIdx = mi->getOperand(3).getImm(); 1733 mi->RemoveOperand(3); 1734 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1735 mi->getOperand(0).setSubReg(SubIdx); 1736 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1737 mi->RemoveOperand(1); 1738 mi->setDesc(TII->get(TargetOpcode::COPY)); 1739 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1740 1741 // Update LiveIntervals. 1742 if (LIS) { 1743 Register Reg = mi->getOperand(0).getReg(); 1744 LiveInterval &LI = LIS->getInterval(Reg); 1745 if (LI.hasSubRanges()) { 1746 // The COPY no longer defines subregs of %reg except for 1747 // %reg.subidx. 1748 LaneBitmask LaneMask = 1749 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1750 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1751 for (auto &S : LI.subranges()) { 1752 if ((S.LaneMask & LaneMask).none()) { 1753 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1754 LiveRange::iterator DefSeg = std::next(UseSeg); 1755 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1756 } 1757 } 1758 1759 // The COPY no longer has a use of %reg. 1760 LIS->shrinkToUses(&LI); 1761 } else { 1762 // The live interval for Reg did not have subranges but now it needs 1763 // them because we have introduced a subreg def. Recompute it. 1764 LIS->removeInterval(Reg); 1765 LIS->createAndComputeVirtRegInterval(Reg); 1766 } 1767 } 1768 } 1769 1770 // Clear TiedOperands here instead of at the top of the loop 1771 // since most instructions do not have tied operands. 1772 TiedOperands.clear(); 1773 removeClobberedSrcRegMap(&*mi); 1774 mi = nmi; 1775 } 1776 } 1777 1778 return MadeChange; 1779 } 1780 1781 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1782 /// 1783 /// The instruction is turned into a sequence of sub-register copies: 1784 /// 1785 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1786 /// 1787 /// Becomes: 1788 /// 1789 /// undef %dst:ssub0 = COPY %v1 1790 /// %dst:ssub1 = COPY %v2 1791 void TwoAddressInstructionPass:: 1792 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1793 MachineInstr &MI = *MBBI; 1794 Register DstReg = MI.getOperand(0).getReg(); 1795 if (MI.getOperand(0).getSubReg() || DstReg.isPhysical() || 1796 !(MI.getNumOperands() & 1)) { 1797 LLVM_DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); 1798 llvm_unreachable(nullptr); 1799 } 1800 1801 SmallVector<Register, 4> OrigRegs; 1802 if (LIS) { 1803 OrigRegs.push_back(MI.getOperand(0).getReg()); 1804 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1805 OrigRegs.push_back(MI.getOperand(i).getReg()); 1806 } 1807 1808 bool DefEmitted = false; 1809 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1810 MachineOperand &UseMO = MI.getOperand(i); 1811 Register SrcReg = UseMO.getReg(); 1812 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1813 // Nothing needs to be inserted for undef operands. 1814 if (UseMO.isUndef()) 1815 continue; 1816 1817 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1818 // might insert a COPY that uses SrcReg after is was killed. 1819 bool isKill = UseMO.isKill(); 1820 if (isKill) 1821 for (unsigned j = i + 2; j < e; j += 2) 1822 if (MI.getOperand(j).getReg() == SrcReg) { 1823 MI.getOperand(j).setIsKill(); 1824 UseMO.setIsKill(false); 1825 isKill = false; 1826 break; 1827 } 1828 1829 // Insert the sub-register copy. 1830 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1831 TII->get(TargetOpcode::COPY)) 1832 .addReg(DstReg, RegState::Define, SubIdx) 1833 .add(UseMO); 1834 1835 // The first def needs an undef flag because there is no live register 1836 // before it. 1837 if (!DefEmitted) { 1838 CopyMI->getOperand(0).setIsUndef(true); 1839 // Return an iterator pointing to the first inserted instr. 1840 MBBI = CopyMI; 1841 } 1842 DefEmitted = true; 1843 1844 // Update LiveVariables' kill info. 1845 if (LV && isKill && !SrcReg.isPhysical()) 1846 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1847 1848 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1849 } 1850 1851 MachineBasicBlock::iterator EndMBBI = 1852 std::next(MachineBasicBlock::iterator(MI)); 1853 1854 if (!DefEmitted) { 1855 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1856 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1857 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1858 MI.RemoveOperand(j); 1859 } else { 1860 if (LIS) 1861 LIS->RemoveMachineInstrFromMaps(MI); 1862 1863 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1864 MI.eraseFromParent(); 1865 } 1866 1867 // Udpate LiveIntervals. 1868 if (LIS) 1869 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1870 } 1871