xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 16d6b3b3da62aa5baaf3c66c8d4e6f8c8f70aeb7)
10b57cec5SDimitry Andric //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // This implements the TargetLoweringBase class.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
120b57cec5SDimitry Andric 
130b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h"
140b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
150b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
160b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
170b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
180b57cec5SDimitry Andric #include "llvm/ADT/Triple.h"
190b57cec5SDimitry Andric #include "llvm/ADT/Twine.h"
205ffd83dbSDimitry Andric #include "llvm/Analysis/Loads.h"
215ffd83dbSDimitry Andric #include "llvm/Analysis/TargetTransformInfo.h"
220b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h"
230b57cec5SDimitry Andric #include "llvm/CodeGen/ISDOpcodes.h"
240b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
250b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
260b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
270b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
280b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
290b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
300b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
310b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
320b57cec5SDimitry Andric #include "llvm/CodeGen/RuntimeLibcalls.h"
330b57cec5SDimitry Andric #include "llvm/CodeGen/StackMaps.h"
340b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
350b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
360b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
370b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h"
380b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
390b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h"
400b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
410b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
420b57cec5SDimitry Andric #include "llvm/IR/Function.h"
430b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
440b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h"
450b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
460b57cec5SDimitry Andric #include "llvm/IR/Module.h"
470b57cec5SDimitry Andric #include "llvm/IR/Type.h"
480b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h"
490b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
500b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
510b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
520b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
530b57cec5SDimitry Andric #include "llvm/Support/MachineValueType.h"
540b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
550b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h"
565ffd83dbSDimitry Andric #include "llvm/Transforms/Utils/SizeOpts.h"
570b57cec5SDimitry Andric #include <algorithm>
580b57cec5SDimitry Andric #include <cassert>
590b57cec5SDimitry Andric #include <cstddef>
600b57cec5SDimitry Andric #include <cstdint>
610b57cec5SDimitry Andric #include <cstring>
620b57cec5SDimitry Andric #include <iterator>
630b57cec5SDimitry Andric #include <string>
640b57cec5SDimitry Andric #include <tuple>
650b57cec5SDimitry Andric #include <utility>
660b57cec5SDimitry Andric 
670b57cec5SDimitry Andric using namespace llvm;
680b57cec5SDimitry Andric 
690b57cec5SDimitry Andric static cl::opt<bool> JumpIsExpensiveOverride(
700b57cec5SDimitry Andric     "jump-is-expensive", cl::init(false),
710b57cec5SDimitry Andric     cl::desc("Do not create extra branches to split comparison logic."),
720b57cec5SDimitry Andric     cl::Hidden);
730b57cec5SDimitry Andric 
740b57cec5SDimitry Andric static cl::opt<unsigned> MinimumJumpTableEntries
750b57cec5SDimitry Andric   ("min-jump-table-entries", cl::init(4), cl::Hidden,
760b57cec5SDimitry Andric    cl::desc("Set minimum number of entries to use a jump table."));
770b57cec5SDimitry Andric 
780b57cec5SDimitry Andric static cl::opt<unsigned> MaximumJumpTableSize
790b57cec5SDimitry Andric   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
800b57cec5SDimitry Andric    cl::desc("Set maximum size of jump tables."));
810b57cec5SDimitry Andric 
820b57cec5SDimitry Andric /// Minimum jump table density for normal functions.
830b57cec5SDimitry Andric static cl::opt<unsigned>
840b57cec5SDimitry Andric     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
850b57cec5SDimitry Andric                      cl::desc("Minimum density for building a jump table in "
860b57cec5SDimitry Andric                               "a normal function"));
870b57cec5SDimitry Andric 
880b57cec5SDimitry Andric /// Minimum jump table density for -Os or -Oz functions.
890b57cec5SDimitry Andric static cl::opt<unsigned> OptsizeJumpTableDensity(
900b57cec5SDimitry Andric     "optsize-jump-table-density", cl::init(40), cl::Hidden,
910b57cec5SDimitry Andric     cl::desc("Minimum density for building a jump table in "
920b57cec5SDimitry Andric              "an optsize function"));
930b57cec5SDimitry Andric 
94480093f4SDimitry Andric // FIXME: This option is only to test if the strict fp operation processed
95480093f4SDimitry Andric // correctly by preventing mutating strict fp operation to normal fp operation
96480093f4SDimitry Andric // during development. When the backend supports strict float operation, this
97480093f4SDimitry Andric // option will be meaningless.
98480093f4SDimitry Andric static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
99480093f4SDimitry Andric        cl::desc("Don't mutate strict-float node to a legalize node"),
100480093f4SDimitry Andric        cl::init(false), cl::Hidden);
101480093f4SDimitry Andric 
1020b57cec5SDimitry Andric static bool darwinHasSinCos(const Triple &TT) {
1030b57cec5SDimitry Andric   assert(TT.isOSDarwin() && "should be called with darwin triple");
1040b57cec5SDimitry Andric   // Don't bother with 32 bit x86.
1050b57cec5SDimitry Andric   if (TT.getArch() == Triple::x86)
1060b57cec5SDimitry Andric     return false;
1070b57cec5SDimitry Andric   // Macos < 10.9 has no sincos_stret.
1080b57cec5SDimitry Andric   if (TT.isMacOSX())
1090b57cec5SDimitry Andric     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
1100b57cec5SDimitry Andric   // iOS < 7.0 has no sincos_stret.
1110b57cec5SDimitry Andric   if (TT.isiOS())
1120b57cec5SDimitry Andric     return !TT.isOSVersionLT(7, 0);
1130b57cec5SDimitry Andric   // Any other darwin such as WatchOS/TvOS is new enough.
1140b57cec5SDimitry Andric   return true;
1150b57cec5SDimitry Andric }
1160b57cec5SDimitry Andric 
1170b57cec5SDimitry Andric // Although this default value is arbitrary, it is not random. It is assumed
1180b57cec5SDimitry Andric // that a condition that evaluates the same way by a higher percentage than this
1190b57cec5SDimitry Andric // is best represented as control flow. Therefore, the default value N should be
1200b57cec5SDimitry Andric // set such that the win from N% correct executions is greater than the loss
1210b57cec5SDimitry Andric // from (100 - N)% mispredicted executions for the majority of intended targets.
1220b57cec5SDimitry Andric static cl::opt<int> MinPercentageForPredictableBranch(
1230b57cec5SDimitry Andric     "min-predictable-branch", cl::init(99),
1240b57cec5SDimitry Andric     cl::desc("Minimum percentage (0-100) that a condition must be either true "
1250b57cec5SDimitry Andric              "or false to assume that the condition is predictable"),
1260b57cec5SDimitry Andric     cl::Hidden);
1270b57cec5SDimitry Andric 
1280b57cec5SDimitry Andric void TargetLoweringBase::InitLibcalls(const Triple &TT) {
1290b57cec5SDimitry Andric #define HANDLE_LIBCALL(code, name) \
1300b57cec5SDimitry Andric   setLibcallName(RTLIB::code, name);
1310b57cec5SDimitry Andric #include "llvm/IR/RuntimeLibcalls.def"
1320b57cec5SDimitry Andric #undef HANDLE_LIBCALL
1330b57cec5SDimitry Andric   // Initialize calling conventions to their default.
1340b57cec5SDimitry Andric   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
1350b57cec5SDimitry Andric     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
1360b57cec5SDimitry Andric 
1370b57cec5SDimitry Andric   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
1380b57cec5SDimitry Andric   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
1390b57cec5SDimitry Andric     setLibcallName(RTLIB::ADD_F128, "__addkf3");
1400b57cec5SDimitry Andric     setLibcallName(RTLIB::SUB_F128, "__subkf3");
1410b57cec5SDimitry Andric     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
1420b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F128, "__divkf3");
1430b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
1440b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
1450b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
1460b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
1470b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
1480b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
1490b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
1500b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
1510b57cec5SDimitry Andric     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
1520b57cec5SDimitry Andric     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
1530b57cec5SDimitry Andric     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
1540b57cec5SDimitry Andric     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
1550b57cec5SDimitry Andric     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
1560b57cec5SDimitry Andric     setLibcallName(RTLIB::UNE_F128, "__nekf2");
1570b57cec5SDimitry Andric     setLibcallName(RTLIB::OGE_F128, "__gekf2");
1580b57cec5SDimitry Andric     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
1590b57cec5SDimitry Andric     setLibcallName(RTLIB::OLE_F128, "__lekf2");
1600b57cec5SDimitry Andric     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
1610b57cec5SDimitry Andric     setLibcallName(RTLIB::UO_F128, "__unordkf2");
1620b57cec5SDimitry Andric   }
1630b57cec5SDimitry Andric 
1640b57cec5SDimitry Andric   // A few names are different on particular architectures or environments.
1650b57cec5SDimitry Andric   if (TT.isOSDarwin()) {
1660b57cec5SDimitry Andric     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
1670b57cec5SDimitry Andric     // of the gnueabi-style __gnu_*_ieee.
1680b57cec5SDimitry Andric     // FIXME: What about other targets?
1690b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1700b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1710b57cec5SDimitry Andric 
1720b57cec5SDimitry Andric     // Some darwins have an optimized __bzero/bzero function.
1730b57cec5SDimitry Andric     switch (TT.getArch()) {
1740b57cec5SDimitry Andric     case Triple::x86:
1750b57cec5SDimitry Andric     case Triple::x86_64:
1760b57cec5SDimitry Andric       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
1770b57cec5SDimitry Andric         setLibcallName(RTLIB::BZERO, "__bzero");
1780b57cec5SDimitry Andric       break;
1790b57cec5SDimitry Andric     case Triple::aarch64:
1808bcb0991SDimitry Andric     case Triple::aarch64_32:
1810b57cec5SDimitry Andric       setLibcallName(RTLIB::BZERO, "bzero");
1820b57cec5SDimitry Andric       break;
1830b57cec5SDimitry Andric     default:
1840b57cec5SDimitry Andric       break;
1850b57cec5SDimitry Andric     }
1860b57cec5SDimitry Andric 
1870b57cec5SDimitry Andric     if (darwinHasSinCos(TT)) {
1880b57cec5SDimitry Andric       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
1890b57cec5SDimitry Andric       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
1900b57cec5SDimitry Andric       if (TT.isWatchABI()) {
1910b57cec5SDimitry Andric         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
1920b57cec5SDimitry Andric                               CallingConv::ARM_AAPCS_VFP);
1930b57cec5SDimitry Andric         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
1940b57cec5SDimitry Andric                               CallingConv::ARM_AAPCS_VFP);
1950b57cec5SDimitry Andric       }
1960b57cec5SDimitry Andric     }
1970b57cec5SDimitry Andric   } else {
1980b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
1990b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
2000b57cec5SDimitry Andric   }
2010b57cec5SDimitry Andric 
2020b57cec5SDimitry Andric   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
2030b57cec5SDimitry Andric       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
2040b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
2050b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F64, "sincos");
2060b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
2070b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
2080b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
2090b57cec5SDimitry Andric   }
2100b57cec5SDimitry Andric 
2118bcb0991SDimitry Andric   if (TT.isPS4CPU()) {
2128bcb0991SDimitry Andric     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
2138bcb0991SDimitry Andric     setLibcallName(RTLIB::SINCOS_F64, "sincos");
2148bcb0991SDimitry Andric   }
2158bcb0991SDimitry Andric 
2160b57cec5SDimitry Andric   if (TT.isOSOpenBSD()) {
2170b57cec5SDimitry Andric     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
2180b57cec5SDimitry Andric   }
2190b57cec5SDimitry Andric }
2200b57cec5SDimitry Andric 
2210b57cec5SDimitry Andric /// getFPEXT - Return the FPEXT_*_* value for the given types, or
2220b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
2230b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
2240b57cec5SDimitry Andric   if (OpVT == MVT::f16) {
2250b57cec5SDimitry Andric     if (RetVT == MVT::f32)
2260b57cec5SDimitry Andric       return FPEXT_F16_F32;
2270b57cec5SDimitry Andric   } else if (OpVT == MVT::f32) {
2280b57cec5SDimitry Andric     if (RetVT == MVT::f64)
2290b57cec5SDimitry Andric       return FPEXT_F32_F64;
2300b57cec5SDimitry Andric     if (RetVT == MVT::f128)
2310b57cec5SDimitry Andric       return FPEXT_F32_F128;
2320b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
2330b57cec5SDimitry Andric       return FPEXT_F32_PPCF128;
2340b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
2350b57cec5SDimitry Andric     if (RetVT == MVT::f128)
2360b57cec5SDimitry Andric       return FPEXT_F64_F128;
2370b57cec5SDimitry Andric     else if (RetVT == MVT::ppcf128)
2380b57cec5SDimitry Andric       return FPEXT_F64_PPCF128;
2390b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
2400b57cec5SDimitry Andric     if (RetVT == MVT::f128)
2410b57cec5SDimitry Andric       return FPEXT_F80_F128;
2420b57cec5SDimitry Andric   }
2430b57cec5SDimitry Andric 
2440b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
2450b57cec5SDimitry Andric }
2460b57cec5SDimitry Andric 
2470b57cec5SDimitry Andric /// getFPROUND - Return the FPROUND_*_* value for the given types, or
2480b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
2490b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
2500b57cec5SDimitry Andric   if (RetVT == MVT::f16) {
2510b57cec5SDimitry Andric     if (OpVT == MVT::f32)
2520b57cec5SDimitry Andric       return FPROUND_F32_F16;
2530b57cec5SDimitry Andric     if (OpVT == MVT::f64)
2540b57cec5SDimitry Andric       return FPROUND_F64_F16;
2550b57cec5SDimitry Andric     if (OpVT == MVT::f80)
2560b57cec5SDimitry Andric       return FPROUND_F80_F16;
2570b57cec5SDimitry Andric     if (OpVT == MVT::f128)
2580b57cec5SDimitry Andric       return FPROUND_F128_F16;
2590b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
2600b57cec5SDimitry Andric       return FPROUND_PPCF128_F16;
2610b57cec5SDimitry Andric   } else if (RetVT == MVT::f32) {
2620b57cec5SDimitry Andric     if (OpVT == MVT::f64)
2630b57cec5SDimitry Andric       return FPROUND_F64_F32;
2640b57cec5SDimitry Andric     if (OpVT == MVT::f80)
2650b57cec5SDimitry Andric       return FPROUND_F80_F32;
2660b57cec5SDimitry Andric     if (OpVT == MVT::f128)
2670b57cec5SDimitry Andric       return FPROUND_F128_F32;
2680b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
2690b57cec5SDimitry Andric       return FPROUND_PPCF128_F32;
2700b57cec5SDimitry Andric   } else if (RetVT == MVT::f64) {
2710b57cec5SDimitry Andric     if (OpVT == MVT::f80)
2720b57cec5SDimitry Andric       return FPROUND_F80_F64;
2730b57cec5SDimitry Andric     if (OpVT == MVT::f128)
2740b57cec5SDimitry Andric       return FPROUND_F128_F64;
2750b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
2760b57cec5SDimitry Andric       return FPROUND_PPCF128_F64;
2770b57cec5SDimitry Andric   } else if (RetVT == MVT::f80) {
2780b57cec5SDimitry Andric     if (OpVT == MVT::f128)
2790b57cec5SDimitry Andric       return FPROUND_F128_F80;
2800b57cec5SDimitry Andric   }
2810b57cec5SDimitry Andric 
2820b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
2830b57cec5SDimitry Andric }
2840b57cec5SDimitry Andric 
2850b57cec5SDimitry Andric /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
2860b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
2870b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
2880b57cec5SDimitry Andric   if (OpVT == MVT::f32) {
2890b57cec5SDimitry Andric     if (RetVT == MVT::i32)
2900b57cec5SDimitry Andric       return FPTOSINT_F32_I32;
2910b57cec5SDimitry Andric     if (RetVT == MVT::i64)
2920b57cec5SDimitry Andric       return FPTOSINT_F32_I64;
2930b57cec5SDimitry Andric     if (RetVT == MVT::i128)
2940b57cec5SDimitry Andric       return FPTOSINT_F32_I128;
2950b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
2960b57cec5SDimitry Andric     if (RetVT == MVT::i32)
2970b57cec5SDimitry Andric       return FPTOSINT_F64_I32;
2980b57cec5SDimitry Andric     if (RetVT == MVT::i64)
2990b57cec5SDimitry Andric       return FPTOSINT_F64_I64;
3000b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3010b57cec5SDimitry Andric       return FPTOSINT_F64_I128;
3020b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
3030b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3040b57cec5SDimitry Andric       return FPTOSINT_F80_I32;
3050b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3060b57cec5SDimitry Andric       return FPTOSINT_F80_I64;
3070b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3080b57cec5SDimitry Andric       return FPTOSINT_F80_I128;
3090b57cec5SDimitry Andric   } else if (OpVT == MVT::f128) {
3100b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3110b57cec5SDimitry Andric       return FPTOSINT_F128_I32;
3120b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3130b57cec5SDimitry Andric       return FPTOSINT_F128_I64;
3140b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3150b57cec5SDimitry Andric       return FPTOSINT_F128_I128;
3160b57cec5SDimitry Andric   } else if (OpVT == MVT::ppcf128) {
3170b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3180b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I32;
3190b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3200b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I64;
3210b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3220b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I128;
3230b57cec5SDimitry Andric   }
3240b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
3250b57cec5SDimitry Andric }
3260b57cec5SDimitry Andric 
3270b57cec5SDimitry Andric /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
3280b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
3290b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
3300b57cec5SDimitry Andric   if (OpVT == MVT::f32) {
3310b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3320b57cec5SDimitry Andric       return FPTOUINT_F32_I32;
3330b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3340b57cec5SDimitry Andric       return FPTOUINT_F32_I64;
3350b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3360b57cec5SDimitry Andric       return FPTOUINT_F32_I128;
3370b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
3380b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3390b57cec5SDimitry Andric       return FPTOUINT_F64_I32;
3400b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3410b57cec5SDimitry Andric       return FPTOUINT_F64_I64;
3420b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3430b57cec5SDimitry Andric       return FPTOUINT_F64_I128;
3440b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
3450b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3460b57cec5SDimitry Andric       return FPTOUINT_F80_I32;
3470b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3480b57cec5SDimitry Andric       return FPTOUINT_F80_I64;
3490b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3500b57cec5SDimitry Andric       return FPTOUINT_F80_I128;
3510b57cec5SDimitry Andric   } else if (OpVT == MVT::f128) {
3520b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3530b57cec5SDimitry Andric       return FPTOUINT_F128_I32;
3540b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3550b57cec5SDimitry Andric       return FPTOUINT_F128_I64;
3560b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3570b57cec5SDimitry Andric       return FPTOUINT_F128_I128;
3580b57cec5SDimitry Andric   } else if (OpVT == MVT::ppcf128) {
3590b57cec5SDimitry Andric     if (RetVT == MVT::i32)
3600b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I32;
3610b57cec5SDimitry Andric     if (RetVT == MVT::i64)
3620b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I64;
3630b57cec5SDimitry Andric     if (RetVT == MVT::i128)
3640b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I128;
3650b57cec5SDimitry Andric   }
3660b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
3670b57cec5SDimitry Andric }
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
3700b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
3710b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
3720b57cec5SDimitry Andric   if (OpVT == MVT::i32) {
3730b57cec5SDimitry Andric     if (RetVT == MVT::f32)
3740b57cec5SDimitry Andric       return SINTTOFP_I32_F32;
3750b57cec5SDimitry Andric     if (RetVT == MVT::f64)
3760b57cec5SDimitry Andric       return SINTTOFP_I32_F64;
3770b57cec5SDimitry Andric     if (RetVT == MVT::f80)
3780b57cec5SDimitry Andric       return SINTTOFP_I32_F80;
3790b57cec5SDimitry Andric     if (RetVT == MVT::f128)
3800b57cec5SDimitry Andric       return SINTTOFP_I32_F128;
3810b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
3820b57cec5SDimitry Andric       return SINTTOFP_I32_PPCF128;
3830b57cec5SDimitry Andric   } else if (OpVT == MVT::i64) {
3840b57cec5SDimitry Andric     if (RetVT == MVT::f32)
3850b57cec5SDimitry Andric       return SINTTOFP_I64_F32;
3860b57cec5SDimitry Andric     if (RetVT == MVT::f64)
3870b57cec5SDimitry Andric       return SINTTOFP_I64_F64;
3880b57cec5SDimitry Andric     if (RetVT == MVT::f80)
3890b57cec5SDimitry Andric       return SINTTOFP_I64_F80;
3900b57cec5SDimitry Andric     if (RetVT == MVT::f128)
3910b57cec5SDimitry Andric       return SINTTOFP_I64_F128;
3920b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
3930b57cec5SDimitry Andric       return SINTTOFP_I64_PPCF128;
3940b57cec5SDimitry Andric   } else if (OpVT == MVT::i128) {
3950b57cec5SDimitry Andric     if (RetVT == MVT::f32)
3960b57cec5SDimitry Andric       return SINTTOFP_I128_F32;
3970b57cec5SDimitry Andric     if (RetVT == MVT::f64)
3980b57cec5SDimitry Andric       return SINTTOFP_I128_F64;
3990b57cec5SDimitry Andric     if (RetVT == MVT::f80)
4000b57cec5SDimitry Andric       return SINTTOFP_I128_F80;
4010b57cec5SDimitry Andric     if (RetVT == MVT::f128)
4020b57cec5SDimitry Andric       return SINTTOFP_I128_F128;
4030b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
4040b57cec5SDimitry Andric       return SINTTOFP_I128_PPCF128;
4050b57cec5SDimitry Andric   }
4060b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
4070b57cec5SDimitry Andric }
4080b57cec5SDimitry Andric 
4090b57cec5SDimitry Andric /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
4100b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
4110b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
4120b57cec5SDimitry Andric   if (OpVT == MVT::i32) {
4130b57cec5SDimitry Andric     if (RetVT == MVT::f32)
4140b57cec5SDimitry Andric       return UINTTOFP_I32_F32;
4150b57cec5SDimitry Andric     if (RetVT == MVT::f64)
4160b57cec5SDimitry Andric       return UINTTOFP_I32_F64;
4170b57cec5SDimitry Andric     if (RetVT == MVT::f80)
4180b57cec5SDimitry Andric       return UINTTOFP_I32_F80;
4190b57cec5SDimitry Andric     if (RetVT == MVT::f128)
4200b57cec5SDimitry Andric       return UINTTOFP_I32_F128;
4210b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
4220b57cec5SDimitry Andric       return UINTTOFP_I32_PPCF128;
4230b57cec5SDimitry Andric   } else if (OpVT == MVT::i64) {
4240b57cec5SDimitry Andric     if (RetVT == MVT::f32)
4250b57cec5SDimitry Andric       return UINTTOFP_I64_F32;
4260b57cec5SDimitry Andric     if (RetVT == MVT::f64)
4270b57cec5SDimitry Andric       return UINTTOFP_I64_F64;
4280b57cec5SDimitry Andric     if (RetVT == MVT::f80)
4290b57cec5SDimitry Andric       return UINTTOFP_I64_F80;
4300b57cec5SDimitry Andric     if (RetVT == MVT::f128)
4310b57cec5SDimitry Andric       return UINTTOFP_I64_F128;
4320b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
4330b57cec5SDimitry Andric       return UINTTOFP_I64_PPCF128;
4340b57cec5SDimitry Andric   } else if (OpVT == MVT::i128) {
4350b57cec5SDimitry Andric     if (RetVT == MVT::f32)
4360b57cec5SDimitry Andric       return UINTTOFP_I128_F32;
4370b57cec5SDimitry Andric     if (RetVT == MVT::f64)
4380b57cec5SDimitry Andric       return UINTTOFP_I128_F64;
4390b57cec5SDimitry Andric     if (RetVT == MVT::f80)
4400b57cec5SDimitry Andric       return UINTTOFP_I128_F80;
4410b57cec5SDimitry Andric     if (RetVT == MVT::f128)
4420b57cec5SDimitry Andric       return UINTTOFP_I128_F128;
4430b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
4440b57cec5SDimitry Andric       return UINTTOFP_I128_PPCF128;
4450b57cec5SDimitry Andric   }
4460b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
4470b57cec5SDimitry Andric }
4480b57cec5SDimitry Andric 
4490b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
4500b57cec5SDimitry Andric #define OP_TO_LIBCALL(Name, Enum)                                              \
4510b57cec5SDimitry Andric   case Name:                                                                   \
4520b57cec5SDimitry Andric     switch (VT.SimpleTy) {                                                     \
4530b57cec5SDimitry Andric     default:                                                                   \
4540b57cec5SDimitry Andric       return UNKNOWN_LIBCALL;                                                  \
4550b57cec5SDimitry Andric     case MVT::i8:                                                              \
4560b57cec5SDimitry Andric       return Enum##_1;                                                         \
4570b57cec5SDimitry Andric     case MVT::i16:                                                             \
4580b57cec5SDimitry Andric       return Enum##_2;                                                         \
4590b57cec5SDimitry Andric     case MVT::i32:                                                             \
4600b57cec5SDimitry Andric       return Enum##_4;                                                         \
4610b57cec5SDimitry Andric     case MVT::i64:                                                             \
4620b57cec5SDimitry Andric       return Enum##_8;                                                         \
4630b57cec5SDimitry Andric     case MVT::i128:                                                            \
4640b57cec5SDimitry Andric       return Enum##_16;                                                        \
4650b57cec5SDimitry Andric     }
4660b57cec5SDimitry Andric 
4670b57cec5SDimitry Andric   switch (Opc) {
4680b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
4690b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
4700b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
4710b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
4720b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
4730b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
4740b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
4750b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
4760b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
4770b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
4780b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
4790b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
4800b57cec5SDimitry Andric   }
4810b57cec5SDimitry Andric 
4820b57cec5SDimitry Andric #undef OP_TO_LIBCALL
4830b57cec5SDimitry Andric 
4840b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
4850b57cec5SDimitry Andric }
4860b57cec5SDimitry Andric 
4870b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
4880b57cec5SDimitry Andric   switch (ElementSize) {
4890b57cec5SDimitry Andric   case 1:
4900b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
4910b57cec5SDimitry Andric   case 2:
4920b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
4930b57cec5SDimitry Andric   case 4:
4940b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
4950b57cec5SDimitry Andric   case 8:
4960b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
4970b57cec5SDimitry Andric   case 16:
4980b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
4990b57cec5SDimitry Andric   default:
5000b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
5010b57cec5SDimitry Andric   }
5020b57cec5SDimitry Andric }
5030b57cec5SDimitry Andric 
5040b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
5050b57cec5SDimitry Andric   switch (ElementSize) {
5060b57cec5SDimitry Andric   case 1:
5070b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
5080b57cec5SDimitry Andric   case 2:
5090b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
5100b57cec5SDimitry Andric   case 4:
5110b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
5120b57cec5SDimitry Andric   case 8:
5130b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
5140b57cec5SDimitry Andric   case 16:
5150b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
5160b57cec5SDimitry Andric   default:
5170b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
5180b57cec5SDimitry Andric   }
5190b57cec5SDimitry Andric }
5200b57cec5SDimitry Andric 
5210b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
5220b57cec5SDimitry Andric   switch (ElementSize) {
5230b57cec5SDimitry Andric   case 1:
5240b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
5250b57cec5SDimitry Andric   case 2:
5260b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
5270b57cec5SDimitry Andric   case 4:
5280b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
5290b57cec5SDimitry Andric   case 8:
5300b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
5310b57cec5SDimitry Andric   case 16:
5320b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
5330b57cec5SDimitry Andric   default:
5340b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
5350b57cec5SDimitry Andric   }
5360b57cec5SDimitry Andric }
5370b57cec5SDimitry Andric 
5380b57cec5SDimitry Andric /// InitCmpLibcallCCs - Set default comparison libcall CC.
5390b57cec5SDimitry Andric static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
5400b57cec5SDimitry Andric   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
5410b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
5420b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
5430b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
5440b57cec5SDimitry Andric   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
5450b57cec5SDimitry Andric   CCs[RTLIB::UNE_F32] = ISD::SETNE;
5460b57cec5SDimitry Andric   CCs[RTLIB::UNE_F64] = ISD::SETNE;
5470b57cec5SDimitry Andric   CCs[RTLIB::UNE_F128] = ISD::SETNE;
5480b57cec5SDimitry Andric   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
5490b57cec5SDimitry Andric   CCs[RTLIB::OGE_F32] = ISD::SETGE;
5500b57cec5SDimitry Andric   CCs[RTLIB::OGE_F64] = ISD::SETGE;
5510b57cec5SDimitry Andric   CCs[RTLIB::OGE_F128] = ISD::SETGE;
5520b57cec5SDimitry Andric   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
5530b57cec5SDimitry Andric   CCs[RTLIB::OLT_F32] = ISD::SETLT;
5540b57cec5SDimitry Andric   CCs[RTLIB::OLT_F64] = ISD::SETLT;
5550b57cec5SDimitry Andric   CCs[RTLIB::OLT_F128] = ISD::SETLT;
5560b57cec5SDimitry Andric   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
5570b57cec5SDimitry Andric   CCs[RTLIB::OLE_F32] = ISD::SETLE;
5580b57cec5SDimitry Andric   CCs[RTLIB::OLE_F64] = ISD::SETLE;
5590b57cec5SDimitry Andric   CCs[RTLIB::OLE_F128] = ISD::SETLE;
5600b57cec5SDimitry Andric   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
5610b57cec5SDimitry Andric   CCs[RTLIB::OGT_F32] = ISD::SETGT;
5620b57cec5SDimitry Andric   CCs[RTLIB::OGT_F64] = ISD::SETGT;
5630b57cec5SDimitry Andric   CCs[RTLIB::OGT_F128] = ISD::SETGT;
5640b57cec5SDimitry Andric   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
5650b57cec5SDimitry Andric   CCs[RTLIB::UO_F32] = ISD::SETNE;
5660b57cec5SDimitry Andric   CCs[RTLIB::UO_F64] = ISD::SETNE;
5670b57cec5SDimitry Andric   CCs[RTLIB::UO_F128] = ISD::SETNE;
5680b57cec5SDimitry Andric   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
5690b57cec5SDimitry Andric }
5700b57cec5SDimitry Andric 
5710b57cec5SDimitry Andric /// NOTE: The TargetMachine owns TLOF.
5720b57cec5SDimitry Andric TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
5730b57cec5SDimitry Andric   initActions();
5740b57cec5SDimitry Andric 
5750b57cec5SDimitry Andric   // Perform these initializations only once.
5760b57cec5SDimitry Andric   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
5770b57cec5SDimitry Andric       MaxLoadsPerMemcmp = 8;
5780b57cec5SDimitry Andric   MaxGluedStoresPerMemcpy = 0;
5790b57cec5SDimitry Andric   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
5800b57cec5SDimitry Andric       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
5810b57cec5SDimitry Andric   HasMultipleConditionRegisters = false;
5820b57cec5SDimitry Andric   HasExtractBitsInsn = false;
5830b57cec5SDimitry Andric   JumpIsExpensive = JumpIsExpensiveOverride;
5840b57cec5SDimitry Andric   PredictableSelectIsExpensive = false;
5850b57cec5SDimitry Andric   EnableExtLdPromotion = false;
5860b57cec5SDimitry Andric   StackPointerRegisterToSaveRestore = 0;
5870b57cec5SDimitry Andric   BooleanContents = UndefinedBooleanContent;
5880b57cec5SDimitry Andric   BooleanFloatContents = UndefinedBooleanContent;
5890b57cec5SDimitry Andric   BooleanVectorContents = UndefinedBooleanContent;
5900b57cec5SDimitry Andric   SchedPreferenceInfo = Sched::ILP;
5910b57cec5SDimitry Andric   GatherAllAliasesMaxDepth = 18;
592480093f4SDimitry Andric   IsStrictFPEnabled = DisableStrictNodeMutation;
5930b57cec5SDimitry Andric   // TODO: the default will be switched to 0 in the next commit, along
5940b57cec5SDimitry Andric   // with the Target-specific changes necessary.
5950b57cec5SDimitry Andric   MaxAtomicSizeInBitsSupported = 1024;
5960b57cec5SDimitry Andric 
5970b57cec5SDimitry Andric   MinCmpXchgSizeInBits = 0;
5980b57cec5SDimitry Andric   SupportsUnalignedAtomics = false;
5990b57cec5SDimitry Andric 
6000b57cec5SDimitry Andric   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
6010b57cec5SDimitry Andric 
6020b57cec5SDimitry Andric   InitLibcalls(TM.getTargetTriple());
6030b57cec5SDimitry Andric   InitCmpLibcallCCs(CmpLibcallCCs);
6040b57cec5SDimitry Andric }
6050b57cec5SDimitry Andric 
6060b57cec5SDimitry Andric void TargetLoweringBase::initActions() {
6070b57cec5SDimitry Andric   // All operations default to being supported.
6080b57cec5SDimitry Andric   memset(OpActions, 0, sizeof(OpActions));
6090b57cec5SDimitry Andric   memset(LoadExtActions, 0, sizeof(LoadExtActions));
6100b57cec5SDimitry Andric   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
6110b57cec5SDimitry Andric   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
6120b57cec5SDimitry Andric   memset(CondCodeActions, 0, sizeof(CondCodeActions));
6130b57cec5SDimitry Andric   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
6140b57cec5SDimitry Andric   std::fill(std::begin(TargetDAGCombineArray),
6150b57cec5SDimitry Andric             std::end(TargetDAGCombineArray), 0);
6160b57cec5SDimitry Andric 
6170b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes()) {
6185ffd83dbSDimitry Andric     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits().getFixedSize());
6190b57cec5SDimitry Andric     if (IntVT.isValid()) {
6200b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
6210b57cec5SDimitry Andric       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
6220b57cec5SDimitry Andric     }
6230b57cec5SDimitry Andric   }
6240b57cec5SDimitry Andric 
6250b57cec5SDimitry Andric   // Set default actions for various operations.
6260b57cec5SDimitry Andric   for (MVT VT : MVT::all_valuetypes()) {
6270b57cec5SDimitry Andric     // Default all indexed load / store to expand.
6280b57cec5SDimitry Andric     for (unsigned IM = (unsigned)ISD::PRE_INC;
6290b57cec5SDimitry Andric          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
6300b57cec5SDimitry Andric       setIndexedLoadAction(IM, VT, Expand);
6310b57cec5SDimitry Andric       setIndexedStoreAction(IM, VT, Expand);
632480093f4SDimitry Andric       setIndexedMaskedLoadAction(IM, VT, Expand);
633480093f4SDimitry Andric       setIndexedMaskedStoreAction(IM, VT, Expand);
6340b57cec5SDimitry Andric     }
6350b57cec5SDimitry Andric 
6360b57cec5SDimitry Andric     // Most backends expect to see the node which just returns the value loaded.
6370b57cec5SDimitry Andric     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
6380b57cec5SDimitry Andric 
6390b57cec5SDimitry Andric     // These operations default to expand.
6400b57cec5SDimitry Andric     setOperationAction(ISD::FGETSIGN, VT, Expand);
6410b57cec5SDimitry Andric     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
6420b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, VT, Expand);
6430b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, VT, Expand);
6440b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
6450b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
6460b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, VT, Expand);
6470b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, VT, Expand);
6480b57cec5SDimitry Andric     setOperationAction(ISD::FMAD, VT, Expand);
6490b57cec5SDimitry Andric     setOperationAction(ISD::SMIN, VT, Expand);
6500b57cec5SDimitry Andric     setOperationAction(ISD::SMAX, VT, Expand);
6510b57cec5SDimitry Andric     setOperationAction(ISD::UMIN, VT, Expand);
6520b57cec5SDimitry Andric     setOperationAction(ISD::UMAX, VT, Expand);
6530b57cec5SDimitry Andric     setOperationAction(ISD::ABS, VT, Expand);
6540b57cec5SDimitry Andric     setOperationAction(ISD::FSHL, VT, Expand);
6550b57cec5SDimitry Andric     setOperationAction(ISD::FSHR, VT, Expand);
6560b57cec5SDimitry Andric     setOperationAction(ISD::SADDSAT, VT, Expand);
6570b57cec5SDimitry Andric     setOperationAction(ISD::UADDSAT, VT, Expand);
6580b57cec5SDimitry Andric     setOperationAction(ISD::SSUBSAT, VT, Expand);
6590b57cec5SDimitry Andric     setOperationAction(ISD::USUBSAT, VT, Expand);
6600b57cec5SDimitry Andric     setOperationAction(ISD::SMULFIX, VT, Expand);
6610b57cec5SDimitry Andric     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
6620b57cec5SDimitry Andric     setOperationAction(ISD::UMULFIX, VT, Expand);
6638bcb0991SDimitry Andric     setOperationAction(ISD::UMULFIXSAT, VT, Expand);
664480093f4SDimitry Andric     setOperationAction(ISD::SDIVFIX, VT, Expand);
6655ffd83dbSDimitry Andric     setOperationAction(ISD::SDIVFIXSAT, VT, Expand);
666480093f4SDimitry Andric     setOperationAction(ISD::UDIVFIX, VT, Expand);
6675ffd83dbSDimitry Andric     setOperationAction(ISD::UDIVFIXSAT, VT, Expand);
6680b57cec5SDimitry Andric 
6690b57cec5SDimitry Andric     // Overflow operations default to expand
6700b57cec5SDimitry Andric     setOperationAction(ISD::SADDO, VT, Expand);
6710b57cec5SDimitry Andric     setOperationAction(ISD::SSUBO, VT, Expand);
6720b57cec5SDimitry Andric     setOperationAction(ISD::UADDO, VT, Expand);
6730b57cec5SDimitry Andric     setOperationAction(ISD::USUBO, VT, Expand);
6740b57cec5SDimitry Andric     setOperationAction(ISD::SMULO, VT, Expand);
6750b57cec5SDimitry Andric     setOperationAction(ISD::UMULO, VT, Expand);
6760b57cec5SDimitry Andric 
6770b57cec5SDimitry Andric     // ADDCARRY operations default to expand
6780b57cec5SDimitry Andric     setOperationAction(ISD::ADDCARRY, VT, Expand);
6790b57cec5SDimitry Andric     setOperationAction(ISD::SUBCARRY, VT, Expand);
6800b57cec5SDimitry Andric     setOperationAction(ISD::SETCCCARRY, VT, Expand);
6810b57cec5SDimitry Andric 
6820b57cec5SDimitry Andric     // ADDC/ADDE/SUBC/SUBE default to expand.
6830b57cec5SDimitry Andric     setOperationAction(ISD::ADDC, VT, Expand);
6840b57cec5SDimitry Andric     setOperationAction(ISD::ADDE, VT, Expand);
6850b57cec5SDimitry Andric     setOperationAction(ISD::SUBC, VT, Expand);
6860b57cec5SDimitry Andric     setOperationAction(ISD::SUBE, VT, Expand);
6870b57cec5SDimitry Andric 
6880b57cec5SDimitry Andric     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
6890b57cec5SDimitry Andric     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
6900b57cec5SDimitry Andric     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
6910b57cec5SDimitry Andric 
6920b57cec5SDimitry Andric     setOperationAction(ISD::BITREVERSE, VT, Expand);
6930b57cec5SDimitry Andric 
6940b57cec5SDimitry Andric     // These library functions default to expand.
6950b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, VT, Expand);
6965ffd83dbSDimitry Andric     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
6970b57cec5SDimitry Andric     setOperationAction(ISD::FPOWI, VT, Expand);
6980b57cec5SDimitry Andric 
6990b57cec5SDimitry Andric     // These operations default to expand for vector types.
7000b57cec5SDimitry Andric     if (VT.isVector()) {
7010b57cec5SDimitry Andric       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
702480093f4SDimitry Andric       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
7030b57cec5SDimitry Andric       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
7040b57cec5SDimitry Andric       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
7050b57cec5SDimitry Andric       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
7068bcb0991SDimitry Andric       setOperationAction(ISD::SPLAT_VECTOR, VT, Expand);
7070b57cec5SDimitry Andric     }
7080b57cec5SDimitry Andric 
7090b57cec5SDimitry Andric     // Constrained floating-point operations default to expand.
7105ffd83dbSDimitry Andric #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
711480093f4SDimitry Andric     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
712480093f4SDimitry Andric #include "llvm/IR/ConstrainedOps.def"
7130b57cec5SDimitry Andric 
7140b57cec5SDimitry Andric     // For most targets @llvm.get.dynamic.area.offset just returns 0.
7150b57cec5SDimitry Andric     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
7160b57cec5SDimitry Andric 
7170b57cec5SDimitry Andric     // Vector reduction default to expand.
7180b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
7190b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
7200b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
7210b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
7220b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
7230b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
7240b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
7250b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
7260b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
7270b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
7280b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
7290b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
7300b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
7310b57cec5SDimitry Andric   }
7320b57cec5SDimitry Andric 
7330b57cec5SDimitry Andric   // Most targets ignore the @llvm.prefetch intrinsic.
7340b57cec5SDimitry Andric   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
7350b57cec5SDimitry Andric 
7360b57cec5SDimitry Andric   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
7370b57cec5SDimitry Andric   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
7380b57cec5SDimitry Andric 
7390b57cec5SDimitry Andric   // ConstantFP nodes default to expand.  Targets can either change this to
7400b57cec5SDimitry Andric   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
7410b57cec5SDimitry Andric   // to optimize expansions for certain constants.
7420b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
7430b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
7440b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
7450b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
7460b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
7470b57cec5SDimitry Andric 
7480b57cec5SDimitry Andric   // These library functions default to expand.
7490b57cec5SDimitry Andric   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
7500b57cec5SDimitry Andric     setOperationAction(ISD::FCBRT,      VT, Expand);
7510b57cec5SDimitry Andric     setOperationAction(ISD::FLOG ,      VT, Expand);
7520b57cec5SDimitry Andric     setOperationAction(ISD::FLOG2,      VT, Expand);
7530b57cec5SDimitry Andric     setOperationAction(ISD::FLOG10,     VT, Expand);
7540b57cec5SDimitry Andric     setOperationAction(ISD::FEXP ,      VT, Expand);
7550b57cec5SDimitry Andric     setOperationAction(ISD::FEXP2,      VT, Expand);
7560b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR,     VT, Expand);
7570b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, VT, Expand);
7580b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL,      VT, Expand);
7590b57cec5SDimitry Andric     setOperationAction(ISD::FRINT,      VT, Expand);
7600b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC,     VT, Expand);
7610b57cec5SDimitry Andric     setOperationAction(ISD::FROUND,     VT, Expand);
7625ffd83dbSDimitry Andric     setOperationAction(ISD::FROUNDEVEN, VT, Expand);
7630b57cec5SDimitry Andric     setOperationAction(ISD::LROUND,     VT, Expand);
7640b57cec5SDimitry Andric     setOperationAction(ISD::LLROUND,    VT, Expand);
7650b57cec5SDimitry Andric     setOperationAction(ISD::LRINT,      VT, Expand);
7660b57cec5SDimitry Andric     setOperationAction(ISD::LLRINT,     VT, Expand);
7670b57cec5SDimitry Andric   }
7680b57cec5SDimitry Andric 
7690b57cec5SDimitry Andric   // Default ISD::TRAP to expand (which turns it into abort).
7700b57cec5SDimitry Andric   setOperationAction(ISD::TRAP, MVT::Other, Expand);
7710b57cec5SDimitry Andric 
7720b57cec5SDimitry Andric   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
7730b57cec5SDimitry Andric   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
7740b57cec5SDimitry Andric   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
7750b57cec5SDimitry Andric }
7760b57cec5SDimitry Andric 
7770b57cec5SDimitry Andric MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
7780b57cec5SDimitry Andric                                                EVT) const {
7790b57cec5SDimitry Andric   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
7800b57cec5SDimitry Andric }
7810b57cec5SDimitry Andric 
7820b57cec5SDimitry Andric EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
7830b57cec5SDimitry Andric                                          bool LegalTypes) const {
7840b57cec5SDimitry Andric   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
7850b57cec5SDimitry Andric   if (LHSTy.isVector())
7860b57cec5SDimitry Andric     return LHSTy;
7870b57cec5SDimitry Andric   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
7880b57cec5SDimitry Andric                     : getPointerTy(DL);
7890b57cec5SDimitry Andric }
7900b57cec5SDimitry Andric 
7910b57cec5SDimitry Andric bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
7920b57cec5SDimitry Andric   assert(isTypeLegal(VT));
7930b57cec5SDimitry Andric   switch (Op) {
7940b57cec5SDimitry Andric   default:
7950b57cec5SDimitry Andric     return false;
7960b57cec5SDimitry Andric   case ISD::SDIV:
7970b57cec5SDimitry Andric   case ISD::UDIV:
7980b57cec5SDimitry Andric   case ISD::SREM:
7990b57cec5SDimitry Andric   case ISD::UREM:
8000b57cec5SDimitry Andric     return true;
8010b57cec5SDimitry Andric   }
8020b57cec5SDimitry Andric }
8030b57cec5SDimitry Andric 
8040b57cec5SDimitry Andric void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
8050b57cec5SDimitry Andric   // If the command-line option was specified, ignore this request.
8060b57cec5SDimitry Andric   if (!JumpIsExpensiveOverride.getNumOccurrences())
8070b57cec5SDimitry Andric     JumpIsExpensive = isExpensive;
8080b57cec5SDimitry Andric }
8090b57cec5SDimitry Andric 
8100b57cec5SDimitry Andric TargetLoweringBase::LegalizeKind
8110b57cec5SDimitry Andric TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
8120b57cec5SDimitry Andric   // If this is a simple type, use the ComputeRegisterProp mechanism.
8130b57cec5SDimitry Andric   if (VT.isSimple()) {
8140b57cec5SDimitry Andric     MVT SVT = VT.getSimpleVT();
8150b57cec5SDimitry Andric     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
8160b57cec5SDimitry Andric     MVT NVT = TransformToType[SVT.SimpleTy];
8170b57cec5SDimitry Andric     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
8180b57cec5SDimitry Andric 
8190b57cec5SDimitry Andric     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
8205ffd83dbSDimitry Andric             LA == TypeSoftPromoteHalf ||
8218bcb0991SDimitry Andric             (NVT.isVector() ||
8228bcb0991SDimitry Andric              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
8230b57cec5SDimitry Andric            "Promote may not follow Expand or Promote");
8240b57cec5SDimitry Andric 
8250b57cec5SDimitry Andric     if (LA == TypeSplitVector)
8260b57cec5SDimitry Andric       return LegalizeKind(LA,
8270b57cec5SDimitry Andric                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
8285ffd83dbSDimitry Andric                                            SVT.getVectorElementCount() / 2));
8290b57cec5SDimitry Andric     if (LA == TypeScalarizeVector)
8300b57cec5SDimitry Andric       return LegalizeKind(LA, SVT.getVectorElementType());
8310b57cec5SDimitry Andric     return LegalizeKind(LA, NVT);
8320b57cec5SDimitry Andric   }
8330b57cec5SDimitry Andric 
8340b57cec5SDimitry Andric   // Handle Extended Scalar Types.
8350b57cec5SDimitry Andric   if (!VT.isVector()) {
8360b57cec5SDimitry Andric     assert(VT.isInteger() && "Float types must be simple");
8370b57cec5SDimitry Andric     unsigned BitSize = VT.getSizeInBits();
8380b57cec5SDimitry Andric     // First promote to a power-of-two size, then expand if necessary.
8390b57cec5SDimitry Andric     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
8400b57cec5SDimitry Andric       EVT NVT = VT.getRoundIntegerType(Context);
8410b57cec5SDimitry Andric       assert(NVT != VT && "Unable to round integer VT");
8420b57cec5SDimitry Andric       LegalizeKind NextStep = getTypeConversion(Context, NVT);
8430b57cec5SDimitry Andric       // Avoid multi-step promotion.
8440b57cec5SDimitry Andric       if (NextStep.first == TypePromoteInteger)
8450b57cec5SDimitry Andric         return NextStep;
8460b57cec5SDimitry Andric       // Return rounded integer type.
8470b57cec5SDimitry Andric       return LegalizeKind(TypePromoteInteger, NVT);
8480b57cec5SDimitry Andric     }
8490b57cec5SDimitry Andric 
8500b57cec5SDimitry Andric     return LegalizeKind(TypeExpandInteger,
8510b57cec5SDimitry Andric                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
8520b57cec5SDimitry Andric   }
8530b57cec5SDimitry Andric 
8540b57cec5SDimitry Andric   // Handle vector types.
8555ffd83dbSDimitry Andric   ElementCount NumElts = VT.getVectorElementCount();
8560b57cec5SDimitry Andric   EVT EltVT = VT.getVectorElementType();
8570b57cec5SDimitry Andric 
8580b57cec5SDimitry Andric   // Vectors with only one element are always scalarized.
8590b57cec5SDimitry Andric   if (NumElts == 1)
8600b57cec5SDimitry Andric     return LegalizeKind(TypeScalarizeVector, EltVT);
8610b57cec5SDimitry Andric 
8625ffd83dbSDimitry Andric   if (VT.getVectorElementCount() == ElementCount(1, true))
8635ffd83dbSDimitry Andric     report_fatal_error("Cannot legalize this vector");
8645ffd83dbSDimitry Andric 
8650b57cec5SDimitry Andric   // Try to widen vector elements until the element type is a power of two and
8660b57cec5SDimitry Andric   // promote it to a legal type later on, for example:
8670b57cec5SDimitry Andric   // <3 x i8> -> <4 x i8> -> <4 x i32>
8680b57cec5SDimitry Andric   if (EltVT.isInteger()) {
8690b57cec5SDimitry Andric     // Vectors with a number of elements that is not a power of two are always
8700b57cec5SDimitry Andric     // widened, for example <3 x i8> -> <4 x i8>.
8710b57cec5SDimitry Andric     if (!VT.isPow2VectorType()) {
8725ffd83dbSDimitry Andric       NumElts = NumElts.NextPowerOf2();
8730b57cec5SDimitry Andric       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
8740b57cec5SDimitry Andric       return LegalizeKind(TypeWidenVector, NVT);
8750b57cec5SDimitry Andric     }
8760b57cec5SDimitry Andric 
8770b57cec5SDimitry Andric     // Examine the element type.
8780b57cec5SDimitry Andric     LegalizeKind LK = getTypeConversion(Context, EltVT);
8790b57cec5SDimitry Andric 
8800b57cec5SDimitry Andric     // If type is to be expanded, split the vector.
8810b57cec5SDimitry Andric     //  <4 x i140> -> <2 x i140>
8820b57cec5SDimitry Andric     if (LK.first == TypeExpandInteger)
8830b57cec5SDimitry Andric       return LegalizeKind(TypeSplitVector,
8840b57cec5SDimitry Andric                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
8850b57cec5SDimitry Andric 
8860b57cec5SDimitry Andric     // Promote the integer element types until a legal vector type is found
8870b57cec5SDimitry Andric     // or until the element integer type is too big. If a legal type was not
8880b57cec5SDimitry Andric     // found, fallback to the usual mechanism of widening/splitting the
8890b57cec5SDimitry Andric     // vector.
8900b57cec5SDimitry Andric     EVT OldEltVT = EltVT;
8910b57cec5SDimitry Andric     while (true) {
8920b57cec5SDimitry Andric       // Increase the bitwidth of the element to the next pow-of-two
8930b57cec5SDimitry Andric       // (which is greater than 8 bits).
8940b57cec5SDimitry Andric       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
8950b57cec5SDimitry Andric                   .getRoundIntegerType(Context);
8960b57cec5SDimitry Andric 
8970b57cec5SDimitry Andric       // Stop trying when getting a non-simple element type.
8980b57cec5SDimitry Andric       // Note that vector elements may be greater than legal vector element
8990b57cec5SDimitry Andric       // types. Example: X86 XMM registers hold 64bit element on 32bit
9000b57cec5SDimitry Andric       // systems.
9010b57cec5SDimitry Andric       if (!EltVT.isSimple())
9020b57cec5SDimitry Andric         break;
9030b57cec5SDimitry Andric 
9040b57cec5SDimitry Andric       // Build a new vector type and check if it is legal.
9050b57cec5SDimitry Andric       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
9060b57cec5SDimitry Andric       // Found a legal promoted vector type.
9070b57cec5SDimitry Andric       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
9080b57cec5SDimitry Andric         return LegalizeKind(TypePromoteInteger,
9090b57cec5SDimitry Andric                             EVT::getVectorVT(Context, EltVT, NumElts));
9100b57cec5SDimitry Andric     }
9110b57cec5SDimitry Andric 
9120b57cec5SDimitry Andric     // Reset the type to the unexpanded type if we did not find a legal vector
9130b57cec5SDimitry Andric     // type with a promoted vector element type.
9140b57cec5SDimitry Andric     EltVT = OldEltVT;
9150b57cec5SDimitry Andric   }
9160b57cec5SDimitry Andric 
9170b57cec5SDimitry Andric   // Try to widen the vector until a legal type is found.
9180b57cec5SDimitry Andric   // If there is no wider legal type, split the vector.
9190b57cec5SDimitry Andric   while (true) {
9200b57cec5SDimitry Andric     // Round up to the next power of 2.
9215ffd83dbSDimitry Andric     NumElts = NumElts.NextPowerOf2();
9220b57cec5SDimitry Andric 
9230b57cec5SDimitry Andric     // If there is no simple vector type with this many elements then there
9240b57cec5SDimitry Andric     // cannot be a larger legal vector type.  Note that this assumes that
9250b57cec5SDimitry Andric     // there are no skipped intermediate vector types in the simple types.
9260b57cec5SDimitry Andric     if (!EltVT.isSimple())
9270b57cec5SDimitry Andric       break;
9280b57cec5SDimitry Andric     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
9290b57cec5SDimitry Andric     if (LargerVector == MVT())
9300b57cec5SDimitry Andric       break;
9310b57cec5SDimitry Andric 
9320b57cec5SDimitry Andric     // If this type is legal then widen the vector.
9330b57cec5SDimitry Andric     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
9340b57cec5SDimitry Andric       return LegalizeKind(TypeWidenVector, LargerVector);
9350b57cec5SDimitry Andric   }
9360b57cec5SDimitry Andric 
9370b57cec5SDimitry Andric   // Widen odd vectors to next power of two.
9380b57cec5SDimitry Andric   if (!VT.isPow2VectorType()) {
9390b57cec5SDimitry Andric     EVT NVT = VT.getPow2VectorType(Context);
9400b57cec5SDimitry Andric     return LegalizeKind(TypeWidenVector, NVT);
9410b57cec5SDimitry Andric   }
9420b57cec5SDimitry Andric 
9430b57cec5SDimitry Andric   // Vectors with illegal element types are expanded.
9445ffd83dbSDimitry Andric   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorElementCount() / 2);
9450b57cec5SDimitry Andric   return LegalizeKind(TypeSplitVector, NVT);
9460b57cec5SDimitry Andric }
9470b57cec5SDimitry Andric 
9480b57cec5SDimitry Andric static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
9490b57cec5SDimitry Andric                                           unsigned &NumIntermediates,
9500b57cec5SDimitry Andric                                           MVT &RegisterVT,
9510b57cec5SDimitry Andric                                           TargetLoweringBase *TLI) {
9520b57cec5SDimitry Andric   // Figure out the right, legal destination reg to copy into.
9535ffd83dbSDimitry Andric   ElementCount EC = VT.getVectorElementCount();
9540b57cec5SDimitry Andric   MVT EltTy = VT.getVectorElementType();
9550b57cec5SDimitry Andric 
9560b57cec5SDimitry Andric   unsigned NumVectorRegs = 1;
9570b57cec5SDimitry Andric 
9585ffd83dbSDimitry Andric   // Scalable vectors cannot be scalarized, so splitting or widening is
9595ffd83dbSDimitry Andric   // required.
9605ffd83dbSDimitry Andric   if (VT.isScalableVector() && !isPowerOf2_32(EC.Min))
9615ffd83dbSDimitry Andric     llvm_unreachable(
9625ffd83dbSDimitry Andric         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
9635ffd83dbSDimitry Andric 
9645ffd83dbSDimitry Andric   // FIXME: We don't support non-power-of-2-sized vectors for now.
9655ffd83dbSDimitry Andric   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
9665ffd83dbSDimitry Andric   if (!isPowerOf2_32(EC.Min)) {
9675ffd83dbSDimitry Andric     // Split EC to unit size (scalable property is preserved).
9685ffd83dbSDimitry Andric     NumVectorRegs = EC.Min;
9695ffd83dbSDimitry Andric     EC = EC / NumVectorRegs;
9700b57cec5SDimitry Andric   }
9710b57cec5SDimitry Andric 
9725ffd83dbSDimitry Andric   // Divide the input until we get to a supported size. This will
9735ffd83dbSDimitry Andric   // always end up with an EC that represent a scalar or a scalable
9745ffd83dbSDimitry Andric   // scalar.
9755ffd83dbSDimitry Andric   while (EC.Min > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
9765ffd83dbSDimitry Andric     EC.Min >>= 1;
9770b57cec5SDimitry Andric     NumVectorRegs <<= 1;
9780b57cec5SDimitry Andric   }
9790b57cec5SDimitry Andric 
9800b57cec5SDimitry Andric   NumIntermediates = NumVectorRegs;
9810b57cec5SDimitry Andric 
9825ffd83dbSDimitry Andric   MVT NewVT = MVT::getVectorVT(EltTy, EC);
9830b57cec5SDimitry Andric   if (!TLI->isTypeLegal(NewVT))
9840b57cec5SDimitry Andric     NewVT = EltTy;
9850b57cec5SDimitry Andric   IntermediateVT = NewVT;
9860b57cec5SDimitry Andric 
9875ffd83dbSDimitry Andric   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits().getFixedSize();
9880b57cec5SDimitry Andric 
9890b57cec5SDimitry Andric   // Convert sizes such as i33 to i64.
9905ffd83dbSDimitry Andric   if (!isPowerOf2_32(LaneSizeInBits))
9915ffd83dbSDimitry Andric     LaneSizeInBits = NextPowerOf2(LaneSizeInBits);
9920b57cec5SDimitry Andric 
9930b57cec5SDimitry Andric   MVT DestVT = TLI->getRegisterType(NewVT);
9940b57cec5SDimitry Andric   RegisterVT = DestVT;
9950b57cec5SDimitry Andric   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
9965ffd83dbSDimitry Andric     return NumVectorRegs *
9975ffd83dbSDimitry Andric            (LaneSizeInBits / DestVT.getScalarSizeInBits().getFixedSize());
9980b57cec5SDimitry Andric 
9990b57cec5SDimitry Andric   // Otherwise, promotion or legal types use the same number of registers as
10000b57cec5SDimitry Andric   // the vector decimated to the appropriate level.
10010b57cec5SDimitry Andric   return NumVectorRegs;
10020b57cec5SDimitry Andric }
10030b57cec5SDimitry Andric 
10040b57cec5SDimitry Andric /// isLegalRC - Return true if the value types that can be represented by the
10050b57cec5SDimitry Andric /// specified register class are all legal.
10060b57cec5SDimitry Andric bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
10070b57cec5SDimitry Andric                                    const TargetRegisterClass &RC) const {
10080b57cec5SDimitry Andric   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
10090b57cec5SDimitry Andric     if (isTypeLegal(*I))
10100b57cec5SDimitry Andric       return true;
10110b57cec5SDimitry Andric   return false;
10120b57cec5SDimitry Andric }
10130b57cec5SDimitry Andric 
10140b57cec5SDimitry Andric /// Replace/modify any TargetFrameIndex operands with a targte-dependent
10150b57cec5SDimitry Andric /// sequence of memory operands that is recognized by PrologEpilogInserter.
10160b57cec5SDimitry Andric MachineBasicBlock *
10170b57cec5SDimitry Andric TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
10180b57cec5SDimitry Andric                                    MachineBasicBlock *MBB) const {
10190b57cec5SDimitry Andric   MachineInstr *MI = &InitialMI;
10200b57cec5SDimitry Andric   MachineFunction &MF = *MI->getMF();
10210b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
10220b57cec5SDimitry Andric 
10230b57cec5SDimitry Andric   // We're handling multiple types of operands here:
10240b57cec5SDimitry Andric   // PATCHPOINT MetaArgs - live-in, read only, direct
10250b57cec5SDimitry Andric   // STATEPOINT Deopt Spill - live-through, read only, indirect
10260b57cec5SDimitry Andric   // STATEPOINT Deopt Alloca - live-through, read only, direct
10270b57cec5SDimitry Andric   // (We're currently conservative and mark the deopt slots read/write in
10280b57cec5SDimitry Andric   // practice.)
10290b57cec5SDimitry Andric   // STATEPOINT GC Spill - live-through, read/write, indirect
10300b57cec5SDimitry Andric   // STATEPOINT GC Alloca - live-through, read/write, direct
10310b57cec5SDimitry Andric   // The live-in vs live-through is handled already (the live through ones are
10320b57cec5SDimitry Andric   // all stack slots), but we need to handle the different type of stackmap
10330b57cec5SDimitry Andric   // operands and memory effects here.
10340b57cec5SDimitry Andric 
10355ffd83dbSDimitry Andric   if (!llvm::any_of(MI->operands(),
10365ffd83dbSDimitry Andric                     [](MachineOperand &Operand) { return Operand.isFI(); }))
10375ffd83dbSDimitry Andric     return MBB;
10385ffd83dbSDimitry Andric 
10395ffd83dbSDimitry Andric   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
10405ffd83dbSDimitry Andric 
10415ffd83dbSDimitry Andric   // Inherit previous memory operands.
10425ffd83dbSDimitry Andric   MIB.cloneMemRefs(*MI);
10435ffd83dbSDimitry Andric 
10445ffd83dbSDimitry Andric   for (auto &MO : MI->operands()) {
10455ffd83dbSDimitry Andric     if (!MO.isFI()) {
10465ffd83dbSDimitry Andric       MIB.add(MO);
10470b57cec5SDimitry Andric       continue;
10485ffd83dbSDimitry Andric     }
10490b57cec5SDimitry Andric 
10500b57cec5SDimitry Andric     // foldMemoryOperand builds a new MI after replacing a single FI operand
10510b57cec5SDimitry Andric     // with the canonical set of five x86 addressing-mode operands.
10520b57cec5SDimitry Andric     int FI = MO.getIndex();
10530b57cec5SDimitry Andric 
10540b57cec5SDimitry Andric     // Add frame index operands recognized by stackmaps.cpp
10550b57cec5SDimitry Andric     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
10560b57cec5SDimitry Andric       // indirect-mem-ref tag, size, #FI, offset.
10570b57cec5SDimitry Andric       // Used for spills inserted by StatepointLowering.  This codepath is not
10580b57cec5SDimitry Andric       // used for patchpoints/stackmaps at all, for these spilling is done via
10590b57cec5SDimitry Andric       // foldMemoryOperand callback only.
10600b57cec5SDimitry Andric       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
10610b57cec5SDimitry Andric       MIB.addImm(StackMaps::IndirectMemRefOp);
10620b57cec5SDimitry Andric       MIB.addImm(MFI.getObjectSize(FI));
10635ffd83dbSDimitry Andric       MIB.add(MO);
10640b57cec5SDimitry Andric       MIB.addImm(0);
10650b57cec5SDimitry Andric     } else {
10660b57cec5SDimitry Andric       // direct-mem-ref tag, #FI, offset.
10670b57cec5SDimitry Andric       // Used by patchpoint, and direct alloca arguments to statepoints
10680b57cec5SDimitry Andric       MIB.addImm(StackMaps::DirectMemRefOp);
10695ffd83dbSDimitry Andric       MIB.add(MO);
10700b57cec5SDimitry Andric       MIB.addImm(0);
10710b57cec5SDimitry Andric     }
10720b57cec5SDimitry Andric 
10730b57cec5SDimitry Andric     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
10740b57cec5SDimitry Andric 
10750b57cec5SDimitry Andric     // Add a new memory operand for this FI.
10760b57cec5SDimitry Andric     assert(MFI.getObjectOffset(FI) != -1);
10770b57cec5SDimitry Andric 
10780b57cec5SDimitry Andric     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
10790b57cec5SDimitry Andric     // PATCHPOINT should be updated to do the same. (TODO)
10800b57cec5SDimitry Andric     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
10810b57cec5SDimitry Andric       auto Flags = MachineMemOperand::MOLoad;
10820b57cec5SDimitry Andric       MachineMemOperand *MMO = MF.getMachineMemOperand(
10830b57cec5SDimitry Andric           MachinePointerInfo::getFixedStack(MF, FI), Flags,
10845ffd83dbSDimitry Andric           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
10850b57cec5SDimitry Andric       MIB->addMemOperand(MF, MMO);
10860b57cec5SDimitry Andric     }
10870b57cec5SDimitry Andric   }
10885ffd83dbSDimitry Andric   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
10895ffd83dbSDimitry Andric   MI->eraseFromParent();
10900b57cec5SDimitry Andric   return MBB;
10910b57cec5SDimitry Andric }
10920b57cec5SDimitry Andric 
10930b57cec5SDimitry Andric MachineBasicBlock *
10940b57cec5SDimitry Andric TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
10950b57cec5SDimitry Andric                                         MachineBasicBlock *MBB) const {
10960b57cec5SDimitry Andric   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
10970b57cec5SDimitry Andric          "Called emitXRayCustomEvent on the wrong MI!");
10980b57cec5SDimitry Andric   auto &MF = *MI.getMF();
10990b57cec5SDimitry Andric   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
11000b57cec5SDimitry Andric   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
11010b57cec5SDimitry Andric     MIB.add(MI.getOperand(OpIdx));
11020b57cec5SDimitry Andric 
11030b57cec5SDimitry Andric   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
11040b57cec5SDimitry Andric   MI.eraseFromParent();
11050b57cec5SDimitry Andric   return MBB;
11060b57cec5SDimitry Andric }
11070b57cec5SDimitry Andric 
11080b57cec5SDimitry Andric MachineBasicBlock *
11090b57cec5SDimitry Andric TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
11100b57cec5SDimitry Andric                                        MachineBasicBlock *MBB) const {
11110b57cec5SDimitry Andric   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
11120b57cec5SDimitry Andric          "Called emitXRayTypedEvent on the wrong MI!");
11130b57cec5SDimitry Andric   auto &MF = *MI.getMF();
11140b57cec5SDimitry Andric   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
11150b57cec5SDimitry Andric   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
11160b57cec5SDimitry Andric     MIB.add(MI.getOperand(OpIdx));
11170b57cec5SDimitry Andric 
11180b57cec5SDimitry Andric   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
11190b57cec5SDimitry Andric   MI.eraseFromParent();
11200b57cec5SDimitry Andric   return MBB;
11210b57cec5SDimitry Andric }
11220b57cec5SDimitry Andric 
11230b57cec5SDimitry Andric /// findRepresentativeClass - Return the largest legal super-reg register class
11240b57cec5SDimitry Andric /// of the register class for the specified type and its associated "cost".
11250b57cec5SDimitry Andric // This function is in TargetLowering because it uses RegClassForVT which would
11260b57cec5SDimitry Andric // need to be moved to TargetRegisterInfo and would necessitate moving
11270b57cec5SDimitry Andric // isTypeLegal over as well - a massive change that would just require
11280b57cec5SDimitry Andric // TargetLowering having a TargetRegisterInfo class member that it would use.
11290b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t>
11300b57cec5SDimitry Andric TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
11310b57cec5SDimitry Andric                                             MVT VT) const {
11320b57cec5SDimitry Andric   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
11330b57cec5SDimitry Andric   if (!RC)
11340b57cec5SDimitry Andric     return std::make_pair(RC, 0);
11350b57cec5SDimitry Andric 
11360b57cec5SDimitry Andric   // Compute the set of all super-register classes.
11370b57cec5SDimitry Andric   BitVector SuperRegRC(TRI->getNumRegClasses());
11380b57cec5SDimitry Andric   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
11390b57cec5SDimitry Andric     SuperRegRC.setBitsInMask(RCI.getMask());
11400b57cec5SDimitry Andric 
11410b57cec5SDimitry Andric   // Find the first legal register class with the largest spill size.
11420b57cec5SDimitry Andric   const TargetRegisterClass *BestRC = RC;
11430b57cec5SDimitry Andric   for (unsigned i : SuperRegRC.set_bits()) {
11440b57cec5SDimitry Andric     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
11450b57cec5SDimitry Andric     // We want the largest possible spill size.
11460b57cec5SDimitry Andric     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
11470b57cec5SDimitry Andric       continue;
11480b57cec5SDimitry Andric     if (!isLegalRC(*TRI, *SuperRC))
11490b57cec5SDimitry Andric       continue;
11500b57cec5SDimitry Andric     BestRC = SuperRC;
11510b57cec5SDimitry Andric   }
11520b57cec5SDimitry Andric   return std::make_pair(BestRC, 1);
11530b57cec5SDimitry Andric }
11540b57cec5SDimitry Andric 
11550b57cec5SDimitry Andric /// computeRegisterProperties - Once all of the register classes are added,
11560b57cec5SDimitry Andric /// this allows us to compute derived properties we expose.
11570b57cec5SDimitry Andric void TargetLoweringBase::computeRegisterProperties(
11580b57cec5SDimitry Andric     const TargetRegisterInfo *TRI) {
11590b57cec5SDimitry Andric   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
11600b57cec5SDimitry Andric                 "Too many value types for ValueTypeActions to hold!");
11610b57cec5SDimitry Andric 
11620b57cec5SDimitry Andric   // Everything defaults to needing one register.
11630b57cec5SDimitry Andric   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
11640b57cec5SDimitry Andric     NumRegistersForVT[i] = 1;
11650b57cec5SDimitry Andric     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
11660b57cec5SDimitry Andric   }
11670b57cec5SDimitry Andric   // ...except isVoid, which doesn't need any registers.
11680b57cec5SDimitry Andric   NumRegistersForVT[MVT::isVoid] = 0;
11690b57cec5SDimitry Andric 
11700b57cec5SDimitry Andric   // Find the largest integer register class.
11710b57cec5SDimitry Andric   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
11720b57cec5SDimitry Andric   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
11730b57cec5SDimitry Andric     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
11740b57cec5SDimitry Andric 
11750b57cec5SDimitry Andric   // Every integer value type larger than this largest register takes twice as
11760b57cec5SDimitry Andric   // many registers to represent as the previous ValueType.
11770b57cec5SDimitry Andric   for (unsigned ExpandedReg = LargestIntReg + 1;
11780b57cec5SDimitry Andric        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
11790b57cec5SDimitry Andric     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
11800b57cec5SDimitry Andric     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
11810b57cec5SDimitry Andric     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
11820b57cec5SDimitry Andric     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
11830b57cec5SDimitry Andric                                    TypeExpandInteger);
11840b57cec5SDimitry Andric   }
11850b57cec5SDimitry Andric 
11860b57cec5SDimitry Andric   // Inspect all of the ValueType's smaller than the largest integer
11870b57cec5SDimitry Andric   // register to see which ones need promotion.
11880b57cec5SDimitry Andric   unsigned LegalIntReg = LargestIntReg;
11890b57cec5SDimitry Andric   for (unsigned IntReg = LargestIntReg - 1;
11900b57cec5SDimitry Andric        IntReg >= (unsigned)MVT::i1; --IntReg) {
11910b57cec5SDimitry Andric     MVT IVT = (MVT::SimpleValueType)IntReg;
11920b57cec5SDimitry Andric     if (isTypeLegal(IVT)) {
11930b57cec5SDimitry Andric       LegalIntReg = IntReg;
11940b57cec5SDimitry Andric     } else {
11950b57cec5SDimitry Andric       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
11960b57cec5SDimitry Andric         (MVT::SimpleValueType)LegalIntReg;
11970b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
11980b57cec5SDimitry Andric     }
11990b57cec5SDimitry Andric   }
12000b57cec5SDimitry Andric 
12010b57cec5SDimitry Andric   // ppcf128 type is really two f64's.
12020b57cec5SDimitry Andric   if (!isTypeLegal(MVT::ppcf128)) {
12030b57cec5SDimitry Andric     if (isTypeLegal(MVT::f64)) {
12040b57cec5SDimitry Andric       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
12050b57cec5SDimitry Andric       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
12060b57cec5SDimitry Andric       TransformToType[MVT::ppcf128] = MVT::f64;
12070b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
12080b57cec5SDimitry Andric     } else {
12090b57cec5SDimitry Andric       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
12100b57cec5SDimitry Andric       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
12110b57cec5SDimitry Andric       TransformToType[MVT::ppcf128] = MVT::i128;
12120b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
12130b57cec5SDimitry Andric     }
12140b57cec5SDimitry Andric   }
12150b57cec5SDimitry Andric 
12160b57cec5SDimitry Andric   // Decide how to handle f128. If the target does not have native f128 support,
12170b57cec5SDimitry Andric   // expand it to i128 and we will be generating soft float library calls.
12180b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f128)) {
12190b57cec5SDimitry Andric     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
12200b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
12210b57cec5SDimitry Andric     TransformToType[MVT::f128] = MVT::i128;
12220b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
12230b57cec5SDimitry Andric   }
12240b57cec5SDimitry Andric 
12250b57cec5SDimitry Andric   // Decide how to handle f64. If the target does not have native f64 support,
12260b57cec5SDimitry Andric   // expand it to i64 and we will be generating soft float library calls.
12270b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f64)) {
12280b57cec5SDimitry Andric     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
12290b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
12300b57cec5SDimitry Andric     TransformToType[MVT::f64] = MVT::i64;
12310b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
12320b57cec5SDimitry Andric   }
12330b57cec5SDimitry Andric 
12340b57cec5SDimitry Andric   // Decide how to handle f32. If the target does not have native f32 support,
12350b57cec5SDimitry Andric   // expand it to i32 and we will be generating soft float library calls.
12360b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f32)) {
12370b57cec5SDimitry Andric     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
12380b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
12390b57cec5SDimitry Andric     TransformToType[MVT::f32] = MVT::i32;
12400b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
12410b57cec5SDimitry Andric   }
12420b57cec5SDimitry Andric 
12430b57cec5SDimitry Andric   // Decide how to handle f16. If the target does not have native f16 support,
12440b57cec5SDimitry Andric   // promote it to f32, because there are no f16 library calls (except for
12450b57cec5SDimitry Andric   // conversions).
12460b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f16)) {
12475ffd83dbSDimitry Andric     // Allow targets to control how we legalize half.
12485ffd83dbSDimitry Andric     if (softPromoteHalfType()) {
12495ffd83dbSDimitry Andric       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
12505ffd83dbSDimitry Andric       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
12515ffd83dbSDimitry Andric       TransformToType[MVT::f16] = MVT::f32;
12525ffd83dbSDimitry Andric       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
12535ffd83dbSDimitry Andric     } else {
12540b57cec5SDimitry Andric       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
12550b57cec5SDimitry Andric       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
12560b57cec5SDimitry Andric       TransformToType[MVT::f16] = MVT::f32;
12570b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
12580b57cec5SDimitry Andric     }
12595ffd83dbSDimitry Andric   }
12600b57cec5SDimitry Andric 
12610b57cec5SDimitry Andric   // Loop over all of the vector value types to see which need transformations.
12620b57cec5SDimitry Andric   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
12630b57cec5SDimitry Andric        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
12640b57cec5SDimitry Andric     MVT VT = (MVT::SimpleValueType) i;
12650b57cec5SDimitry Andric     if (isTypeLegal(VT))
12660b57cec5SDimitry Andric       continue;
12670b57cec5SDimitry Andric 
12680b57cec5SDimitry Andric     MVT EltVT = VT.getVectorElementType();
12695ffd83dbSDimitry Andric     ElementCount EC = VT.getVectorElementCount();
12700b57cec5SDimitry Andric     bool IsLegalWiderType = false;
12718bcb0991SDimitry Andric     bool IsScalable = VT.isScalableVector();
12720b57cec5SDimitry Andric     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
12730b57cec5SDimitry Andric     switch (PreferredAction) {
12748bcb0991SDimitry Andric     case TypePromoteInteger: {
12758bcb0991SDimitry Andric       MVT::SimpleValueType EndVT = IsScalable ?
12768bcb0991SDimitry Andric                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
12778bcb0991SDimitry Andric                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
12780b57cec5SDimitry Andric       // Try to promote the elements of integer vectors. If no legal
12790b57cec5SDimitry Andric       // promotion was found, fall through to the widen-vector method.
12808bcb0991SDimitry Andric       for (unsigned nVT = i + 1;
12818bcb0991SDimitry Andric            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
12820b57cec5SDimitry Andric         MVT SVT = (MVT::SimpleValueType) nVT;
12830b57cec5SDimitry Andric         // Promote vectors of integers to vectors with the same number
12840b57cec5SDimitry Andric         // of elements, with a wider element type.
12850b57cec5SDimitry Andric         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
12865ffd83dbSDimitry Andric             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
12870b57cec5SDimitry Andric           TransformToType[i] = SVT;
12880b57cec5SDimitry Andric           RegisterTypeForVT[i] = SVT;
12890b57cec5SDimitry Andric           NumRegistersForVT[i] = 1;
12900b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
12910b57cec5SDimitry Andric           IsLegalWiderType = true;
12920b57cec5SDimitry Andric           break;
12930b57cec5SDimitry Andric         }
12940b57cec5SDimitry Andric       }
12950b57cec5SDimitry Andric       if (IsLegalWiderType)
12960b57cec5SDimitry Andric         break;
12970b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
12988bcb0991SDimitry Andric     }
12990b57cec5SDimitry Andric 
13000b57cec5SDimitry Andric     case TypeWidenVector:
13015ffd83dbSDimitry Andric       if (isPowerOf2_32(EC.Min)) {
13020b57cec5SDimitry Andric         // Try to widen the vector.
13030b57cec5SDimitry Andric         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
13040b57cec5SDimitry Andric           MVT SVT = (MVT::SimpleValueType) nVT;
13055ffd83dbSDimitry Andric           if (SVT.getVectorElementType() == EltVT &&
13065ffd83dbSDimitry Andric               SVT.isScalableVector() == IsScalable &&
13075ffd83dbSDimitry Andric               SVT.getVectorElementCount().Min > EC.Min && isTypeLegal(SVT)) {
13080b57cec5SDimitry Andric             TransformToType[i] = SVT;
13090b57cec5SDimitry Andric             RegisterTypeForVT[i] = SVT;
13100b57cec5SDimitry Andric             NumRegistersForVT[i] = 1;
13110b57cec5SDimitry Andric             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
13120b57cec5SDimitry Andric             IsLegalWiderType = true;
13130b57cec5SDimitry Andric             break;
13140b57cec5SDimitry Andric           }
13150b57cec5SDimitry Andric         }
13160b57cec5SDimitry Andric         if (IsLegalWiderType)
13170b57cec5SDimitry Andric           break;
13188bcb0991SDimitry Andric       } else {
13198bcb0991SDimitry Andric         // Only widen to the next power of 2 to keep consistency with EVT.
13208bcb0991SDimitry Andric         MVT NVT = VT.getPow2VectorType();
13218bcb0991SDimitry Andric         if (isTypeLegal(NVT)) {
13228bcb0991SDimitry Andric           TransformToType[i] = NVT;
13238bcb0991SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
13248bcb0991SDimitry Andric           RegisterTypeForVT[i] = NVT;
13258bcb0991SDimitry Andric           NumRegistersForVT[i] = 1;
13268bcb0991SDimitry Andric           break;
13278bcb0991SDimitry Andric         }
13288bcb0991SDimitry Andric       }
13290b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
13300b57cec5SDimitry Andric 
13310b57cec5SDimitry Andric     case TypeSplitVector:
13320b57cec5SDimitry Andric     case TypeScalarizeVector: {
13330b57cec5SDimitry Andric       MVT IntermediateVT;
13340b57cec5SDimitry Andric       MVT RegisterVT;
13350b57cec5SDimitry Andric       unsigned NumIntermediates;
1336480093f4SDimitry Andric       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
13370b57cec5SDimitry Andric           NumIntermediates, RegisterVT, this);
1338480093f4SDimitry Andric       NumRegistersForVT[i] = NumRegisters;
1339480093f4SDimitry Andric       assert(NumRegistersForVT[i] == NumRegisters &&
1340480093f4SDimitry Andric              "NumRegistersForVT size cannot represent NumRegisters!");
13410b57cec5SDimitry Andric       RegisterTypeForVT[i] = RegisterVT;
13420b57cec5SDimitry Andric 
13430b57cec5SDimitry Andric       MVT NVT = VT.getPow2VectorType();
13440b57cec5SDimitry Andric       if (NVT == VT) {
13450b57cec5SDimitry Andric         // Type is already a power of 2.  The default action is to split.
13460b57cec5SDimitry Andric         TransformToType[i] = MVT::Other;
13470b57cec5SDimitry Andric         if (PreferredAction == TypeScalarizeVector)
13480b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
13490b57cec5SDimitry Andric         else if (PreferredAction == TypeSplitVector)
13500b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
13515ffd83dbSDimitry Andric         else if (EC.Min > 1)
13525ffd83dbSDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
13530b57cec5SDimitry Andric         else
13545ffd83dbSDimitry Andric           ValueTypeActions.setTypeAction(VT, EC.Scalable
13555ffd83dbSDimitry Andric                                                  ? TypeScalarizeScalableVector
13565ffd83dbSDimitry Andric                                                  : TypeScalarizeVector);
13570b57cec5SDimitry Andric       } else {
13580b57cec5SDimitry Andric         TransformToType[i] = NVT;
13590b57cec5SDimitry Andric         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
13600b57cec5SDimitry Andric       }
13610b57cec5SDimitry Andric       break;
13620b57cec5SDimitry Andric     }
13630b57cec5SDimitry Andric     default:
13640b57cec5SDimitry Andric       llvm_unreachable("Unknown vector legalization action!");
13650b57cec5SDimitry Andric     }
13660b57cec5SDimitry Andric   }
13670b57cec5SDimitry Andric 
13680b57cec5SDimitry Andric   // Determine the 'representative' register class for each value type.
13690b57cec5SDimitry Andric   // An representative register class is the largest (meaning one which is
13700b57cec5SDimitry Andric   // not a sub-register class / subreg register class) legal register class for
13710b57cec5SDimitry Andric   // a group of value types. For example, on i386, i8, i16, and i32
13720b57cec5SDimitry Andric   // representative would be GR32; while on x86_64 it's GR64.
13730b57cec5SDimitry Andric   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
13740b57cec5SDimitry Andric     const TargetRegisterClass* RRC;
13750b57cec5SDimitry Andric     uint8_t Cost;
13760b57cec5SDimitry Andric     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
13770b57cec5SDimitry Andric     RepRegClassForVT[i] = RRC;
13780b57cec5SDimitry Andric     RepRegClassCostForVT[i] = Cost;
13790b57cec5SDimitry Andric   }
13800b57cec5SDimitry Andric }
13810b57cec5SDimitry Andric 
13820b57cec5SDimitry Andric EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
13830b57cec5SDimitry Andric                                            EVT VT) const {
13840b57cec5SDimitry Andric   assert(!VT.isVector() && "No default SetCC type for vectors!");
13850b57cec5SDimitry Andric   return getPointerTy(DL).SimpleTy;
13860b57cec5SDimitry Andric }
13870b57cec5SDimitry Andric 
13880b57cec5SDimitry Andric MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
13890b57cec5SDimitry Andric   return MVT::i32; // return the default value
13900b57cec5SDimitry Andric }
13910b57cec5SDimitry Andric 
13920b57cec5SDimitry Andric /// getVectorTypeBreakdown - Vector types are broken down into some number of
13930b57cec5SDimitry Andric /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
13940b57cec5SDimitry Andric /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
13950b57cec5SDimitry Andric /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
13960b57cec5SDimitry Andric ///
13970b57cec5SDimitry Andric /// This method returns the number of registers needed, and the VT for each
13980b57cec5SDimitry Andric /// register.  It also returns the VT and quantity of the intermediate values
13990b57cec5SDimitry Andric /// before they are promoted/expanded.
14000b57cec5SDimitry Andric unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
14010b57cec5SDimitry Andric                                                 EVT &IntermediateVT,
14020b57cec5SDimitry Andric                                                 unsigned &NumIntermediates,
14030b57cec5SDimitry Andric                                                 MVT &RegisterVT) const {
14045ffd83dbSDimitry Andric   ElementCount EltCnt = VT.getVectorElementCount();
14050b57cec5SDimitry Andric 
14060b57cec5SDimitry Andric   // If there is a wider vector type with the same element type as this one,
14070b57cec5SDimitry Andric   // or a promoted vector type that has the same number of elements which
14080b57cec5SDimitry Andric   // are wider, then we should convert to that legal vector type.
14090b57cec5SDimitry Andric   // This handles things like <2 x float> -> <4 x float> and
14100b57cec5SDimitry Andric   // <4 x i1> -> <4 x i32>.
14110b57cec5SDimitry Andric   LegalizeTypeAction TA = getTypeAction(Context, VT);
14125ffd83dbSDimitry Andric   if (EltCnt.Min != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
14130b57cec5SDimitry Andric     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
14140b57cec5SDimitry Andric     if (isTypeLegal(RegisterEVT)) {
14150b57cec5SDimitry Andric       IntermediateVT = RegisterEVT;
14160b57cec5SDimitry Andric       RegisterVT = RegisterEVT.getSimpleVT();
14170b57cec5SDimitry Andric       NumIntermediates = 1;
14180b57cec5SDimitry Andric       return 1;
14190b57cec5SDimitry Andric     }
14200b57cec5SDimitry Andric   }
14210b57cec5SDimitry Andric 
14220b57cec5SDimitry Andric   // Figure out the right, legal destination reg to copy into.
14230b57cec5SDimitry Andric   EVT EltTy = VT.getVectorElementType();
14240b57cec5SDimitry Andric 
14250b57cec5SDimitry Andric   unsigned NumVectorRegs = 1;
14260b57cec5SDimitry Andric 
14275ffd83dbSDimitry Andric   // Scalable vectors cannot be scalarized, so handle the legalisation of the
14285ffd83dbSDimitry Andric   // types like done elsewhere in SelectionDAG.
14295ffd83dbSDimitry Andric   if (VT.isScalableVector() && !isPowerOf2_32(EltCnt.Min)) {
14305ffd83dbSDimitry Andric     LegalizeKind LK;
14315ffd83dbSDimitry Andric     EVT PartVT = VT;
14325ffd83dbSDimitry Andric     do {
14335ffd83dbSDimitry Andric       // Iterate until we've found a legal (part) type to hold VT.
14345ffd83dbSDimitry Andric       LK = getTypeConversion(Context, PartVT);
14355ffd83dbSDimitry Andric       PartVT = LK.second;
14365ffd83dbSDimitry Andric     } while (LK.first != TypeLegal);
14375ffd83dbSDimitry Andric 
14385ffd83dbSDimitry Andric     NumIntermediates =
14395ffd83dbSDimitry Andric         VT.getVectorElementCount().Min / PartVT.getVectorElementCount().Min;
14405ffd83dbSDimitry Andric 
14415ffd83dbSDimitry Andric     // FIXME: This code needs to be extended to handle more complex vector
14425ffd83dbSDimitry Andric     // breakdowns, like nxv7i64 -> nxv8i64 -> 4 x nxv2i64. Currently the only
14435ffd83dbSDimitry Andric     // supported cases are vectors that are broken down into equal parts
14445ffd83dbSDimitry Andric     // such as nxv6i64 -> 3 x nxv2i64.
14455ffd83dbSDimitry Andric     assert(NumIntermediates * PartVT.getVectorElementCount().Min ==
14465ffd83dbSDimitry Andric                VT.getVectorElementCount().Min &&
14475ffd83dbSDimitry Andric            "Expected an integer multiple of PartVT");
14485ffd83dbSDimitry Andric     IntermediateVT = PartVT;
14495ffd83dbSDimitry Andric     RegisterVT = getRegisterType(Context, IntermediateVT);
14505ffd83dbSDimitry Andric     return NumIntermediates;
14515ffd83dbSDimitry Andric   }
14525ffd83dbSDimitry Andric 
14535ffd83dbSDimitry Andric   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
14545ffd83dbSDimitry Andric   // we could break down into LHS/RHS like LegalizeDAG does.
14555ffd83dbSDimitry Andric   if (!isPowerOf2_32(EltCnt.Min)) {
14565ffd83dbSDimitry Andric     NumVectorRegs = EltCnt.Min;
14575ffd83dbSDimitry Andric     EltCnt.Min = 1;
14580b57cec5SDimitry Andric   }
14590b57cec5SDimitry Andric 
14600b57cec5SDimitry Andric   // Divide the input until we get to a supported size.  This will always
14610b57cec5SDimitry Andric   // end with a scalar if the target doesn't support vectors.
14625ffd83dbSDimitry Andric   while (EltCnt.Min > 1 &&
14635ffd83dbSDimitry Andric          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
14645ffd83dbSDimitry Andric     EltCnt.Min >>= 1;
14650b57cec5SDimitry Andric     NumVectorRegs <<= 1;
14660b57cec5SDimitry Andric   }
14670b57cec5SDimitry Andric 
14680b57cec5SDimitry Andric   NumIntermediates = NumVectorRegs;
14690b57cec5SDimitry Andric 
14705ffd83dbSDimitry Andric   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
14710b57cec5SDimitry Andric   if (!isTypeLegal(NewVT))
14720b57cec5SDimitry Andric     NewVT = EltTy;
14730b57cec5SDimitry Andric   IntermediateVT = NewVT;
14740b57cec5SDimitry Andric 
14750b57cec5SDimitry Andric   MVT DestVT = getRegisterType(Context, NewVT);
14760b57cec5SDimitry Andric   RegisterVT = DestVT;
14770b57cec5SDimitry Andric 
14785ffd83dbSDimitry Andric   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
14795ffd83dbSDimitry Andric     TypeSize NewVTSize = NewVT.getSizeInBits();
14800b57cec5SDimitry Andric     // Convert sizes such as i33 to i64.
14815ffd83dbSDimitry Andric     if (!isPowerOf2_32(NewVTSize.getKnownMinSize()))
14825ffd83dbSDimitry Andric       NewVTSize = NewVTSize.NextPowerOf2();
14830b57cec5SDimitry Andric     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
14845ffd83dbSDimitry Andric   }
14850b57cec5SDimitry Andric 
14860b57cec5SDimitry Andric   // Otherwise, promotion or legal types use the same number of registers as
14870b57cec5SDimitry Andric   // the vector decimated to the appropriate level.
14880b57cec5SDimitry Andric   return NumVectorRegs;
14890b57cec5SDimitry Andric }
14900b57cec5SDimitry Andric 
1491480093f4SDimitry Andric bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1492480093f4SDimitry Andric                                                 uint64_t NumCases,
1493480093f4SDimitry Andric                                                 uint64_t Range,
1494480093f4SDimitry Andric                                                 ProfileSummaryInfo *PSI,
1495480093f4SDimitry Andric                                                 BlockFrequencyInfo *BFI) const {
1496480093f4SDimitry Andric   // FIXME: This function check the maximum table size and density, but the
1497480093f4SDimitry Andric   // minimum size is not checked. It would be nice if the minimum size is
1498480093f4SDimitry Andric   // also combined within this function. Currently, the minimum size check is
1499480093f4SDimitry Andric   // performed in findJumpTable() in SelectionDAGBuiler and
1500480093f4SDimitry Andric   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1501480093f4SDimitry Andric   const bool OptForSize =
1502480093f4SDimitry Andric       SI->getParent()->getParent()->hasOptSize() ||
1503480093f4SDimitry Andric       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1504480093f4SDimitry Andric   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1505480093f4SDimitry Andric   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1506480093f4SDimitry Andric 
1507480093f4SDimitry Andric   // Check whether the number of cases is small enough and
1508480093f4SDimitry Andric   // the range is dense enough for a jump table.
1509480093f4SDimitry Andric   return (OptForSize || Range <= MaxJumpTableSize) &&
1510480093f4SDimitry Andric          (NumCases * 100 >= Range * MinDensity);
1511480093f4SDimitry Andric }
1512480093f4SDimitry Andric 
15130b57cec5SDimitry Andric /// Get the EVTs and ArgFlags collections that represent the legalized return
15140b57cec5SDimitry Andric /// type of the given function.  This does not require a DAG or a return value,
15150b57cec5SDimitry Andric /// and is suitable for use before any DAGs for the function are constructed.
15160b57cec5SDimitry Andric /// TODO: Move this out of TargetLowering.cpp.
15170b57cec5SDimitry Andric void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
15180b57cec5SDimitry Andric                          AttributeList attr,
15190b57cec5SDimitry Andric                          SmallVectorImpl<ISD::OutputArg> &Outs,
15200b57cec5SDimitry Andric                          const TargetLowering &TLI, const DataLayout &DL) {
15210b57cec5SDimitry Andric   SmallVector<EVT, 4> ValueVTs;
15220b57cec5SDimitry Andric   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
15230b57cec5SDimitry Andric   unsigned NumValues = ValueVTs.size();
15240b57cec5SDimitry Andric   if (NumValues == 0) return;
15250b57cec5SDimitry Andric 
15260b57cec5SDimitry Andric   for (unsigned j = 0, f = NumValues; j != f; ++j) {
15270b57cec5SDimitry Andric     EVT VT = ValueVTs[j];
15280b57cec5SDimitry Andric     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
15290b57cec5SDimitry Andric 
15300b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
15310b57cec5SDimitry Andric       ExtendKind = ISD::SIGN_EXTEND;
15320b57cec5SDimitry Andric     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
15330b57cec5SDimitry Andric       ExtendKind = ISD::ZERO_EXTEND;
15340b57cec5SDimitry Andric 
15350b57cec5SDimitry Andric     // FIXME: C calling convention requires the return type to be promoted to
15360b57cec5SDimitry Andric     // at least 32-bit. But this is not necessary for non-C calling
15370b57cec5SDimitry Andric     // conventions. The frontend should mark functions whose return values
15380b57cec5SDimitry Andric     // require promoting with signext or zeroext attributes.
15390b57cec5SDimitry Andric     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
15400b57cec5SDimitry Andric       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
15410b57cec5SDimitry Andric       if (VT.bitsLT(MinVT))
15420b57cec5SDimitry Andric         VT = MinVT;
15430b57cec5SDimitry Andric     }
15440b57cec5SDimitry Andric 
15450b57cec5SDimitry Andric     unsigned NumParts =
15460b57cec5SDimitry Andric         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
15470b57cec5SDimitry Andric     MVT PartVT =
15480b57cec5SDimitry Andric         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
15490b57cec5SDimitry Andric 
15500b57cec5SDimitry Andric     // 'inreg' on function refers to return value
15510b57cec5SDimitry Andric     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
15520b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
15530b57cec5SDimitry Andric       Flags.setInReg();
15540b57cec5SDimitry Andric 
15550b57cec5SDimitry Andric     // Propagate extension type if any
15560b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
15570b57cec5SDimitry Andric       Flags.setSExt();
15580b57cec5SDimitry Andric     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
15590b57cec5SDimitry Andric       Flags.setZExt();
15600b57cec5SDimitry Andric 
15610b57cec5SDimitry Andric     for (unsigned i = 0; i < NumParts; ++i)
15620b57cec5SDimitry Andric       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
15630b57cec5SDimitry Andric   }
15640b57cec5SDimitry Andric }
15650b57cec5SDimitry Andric 
15660b57cec5SDimitry Andric /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
15670b57cec5SDimitry Andric /// function arguments in the caller parameter area.  This is the actual
15680b57cec5SDimitry Andric /// alignment, not its logarithm.
15690b57cec5SDimitry Andric unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
15700b57cec5SDimitry Andric                                                    const DataLayout &DL) const {
15715ffd83dbSDimitry Andric   return DL.getABITypeAlign(Ty).value();
15720b57cec5SDimitry Andric }
15730b57cec5SDimitry Andric 
15748bcb0991SDimitry Andric bool TargetLoweringBase::allowsMemoryAccessForAlignment(
15758bcb0991SDimitry Andric     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
15765ffd83dbSDimitry Andric     Align Alignment, MachineMemOperand::Flags Flags, bool *Fast) const {
15770b57cec5SDimitry Andric   // Check if the specified alignment is sufficient based on the data layout.
15780b57cec5SDimitry Andric   // TODO: While using the data layout works in practice, a better solution
15790b57cec5SDimitry Andric   // would be to implement this check directly (make this a virtual function).
15800b57cec5SDimitry Andric   // For example, the ABI alignment may change based on software platform while
15810b57cec5SDimitry Andric   // this function should only be affected by hardware implementation.
15820b57cec5SDimitry Andric   Type *Ty = VT.getTypeForEVT(Context);
15835ffd83dbSDimitry Andric   if (Alignment >= DL.getABITypeAlign(Ty)) {
15840b57cec5SDimitry Andric     // Assume that an access that meets the ABI-specified alignment is fast.
15850b57cec5SDimitry Andric     if (Fast != nullptr)
15860b57cec5SDimitry Andric       *Fast = true;
15870b57cec5SDimitry Andric     return true;
15880b57cec5SDimitry Andric   }
15890b57cec5SDimitry Andric 
15900b57cec5SDimitry Andric   // This is a misaligned access.
15915ffd83dbSDimitry Andric   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment.value(), Flags,
15925ffd83dbSDimitry Andric                                         Fast);
15930b57cec5SDimitry Andric }
15940b57cec5SDimitry Andric 
15958bcb0991SDimitry Andric bool TargetLoweringBase::allowsMemoryAccessForAlignment(
15968bcb0991SDimitry Andric     LLVMContext &Context, const DataLayout &DL, EVT VT,
15978bcb0991SDimitry Andric     const MachineMemOperand &MMO, bool *Fast) const {
15988bcb0991SDimitry Andric   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
15995ffd83dbSDimitry Andric                                         MMO.getAlign(), MMO.getFlags(), Fast);
16008bcb0991SDimitry Andric }
16018bcb0991SDimitry Andric 
16025ffd83dbSDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
16035ffd83dbSDimitry Andric                                             const DataLayout &DL, EVT VT,
16045ffd83dbSDimitry Andric                                             unsigned AddrSpace, Align Alignment,
16055ffd83dbSDimitry Andric                                             MachineMemOperand::Flags Flags,
16065ffd83dbSDimitry Andric                                             bool *Fast) const {
16078bcb0991SDimitry Andric   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
16088bcb0991SDimitry Andric                                         Flags, Fast);
16098bcb0991SDimitry Andric }
16108bcb0991SDimitry Andric 
16110b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
16120b57cec5SDimitry Andric                                             const DataLayout &DL, EVT VT,
16130b57cec5SDimitry Andric                                             const MachineMemOperand &MMO,
16140b57cec5SDimitry Andric                                             bool *Fast) const {
16155ffd83dbSDimitry Andric   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
16165ffd83dbSDimitry Andric                             MMO.getFlags(), Fast);
16170b57cec5SDimitry Andric }
16180b57cec5SDimitry Andric 
16190b57cec5SDimitry Andric BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
16200b57cec5SDimitry Andric   return BranchProbability(MinPercentageForPredictableBranch, 100);
16210b57cec5SDimitry Andric }
16220b57cec5SDimitry Andric 
16230b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
16240b57cec5SDimitry Andric //  TargetTransformInfo Helpers
16250b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
16260b57cec5SDimitry Andric 
16270b57cec5SDimitry Andric int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
16280b57cec5SDimitry Andric   enum InstructionOpcodes {
16290b57cec5SDimitry Andric #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
16300b57cec5SDimitry Andric #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
16310b57cec5SDimitry Andric #include "llvm/IR/Instruction.def"
16320b57cec5SDimitry Andric   };
16330b57cec5SDimitry Andric   switch (static_cast<InstructionOpcodes>(Opcode)) {
16340b57cec5SDimitry Andric   case Ret:            return 0;
16350b57cec5SDimitry Andric   case Br:             return 0;
16360b57cec5SDimitry Andric   case Switch:         return 0;
16370b57cec5SDimitry Andric   case IndirectBr:     return 0;
16380b57cec5SDimitry Andric   case Invoke:         return 0;
16390b57cec5SDimitry Andric   case CallBr:         return 0;
16400b57cec5SDimitry Andric   case Resume:         return 0;
16410b57cec5SDimitry Andric   case Unreachable:    return 0;
16420b57cec5SDimitry Andric   case CleanupRet:     return 0;
16430b57cec5SDimitry Andric   case CatchRet:       return 0;
16440b57cec5SDimitry Andric   case CatchPad:       return 0;
16450b57cec5SDimitry Andric   case CatchSwitch:    return 0;
16460b57cec5SDimitry Andric   case CleanupPad:     return 0;
16470b57cec5SDimitry Andric   case FNeg:           return ISD::FNEG;
16480b57cec5SDimitry Andric   case Add:            return ISD::ADD;
16490b57cec5SDimitry Andric   case FAdd:           return ISD::FADD;
16500b57cec5SDimitry Andric   case Sub:            return ISD::SUB;
16510b57cec5SDimitry Andric   case FSub:           return ISD::FSUB;
16520b57cec5SDimitry Andric   case Mul:            return ISD::MUL;
16530b57cec5SDimitry Andric   case FMul:           return ISD::FMUL;
16540b57cec5SDimitry Andric   case UDiv:           return ISD::UDIV;
16550b57cec5SDimitry Andric   case SDiv:           return ISD::SDIV;
16560b57cec5SDimitry Andric   case FDiv:           return ISD::FDIV;
16570b57cec5SDimitry Andric   case URem:           return ISD::UREM;
16580b57cec5SDimitry Andric   case SRem:           return ISD::SREM;
16590b57cec5SDimitry Andric   case FRem:           return ISD::FREM;
16600b57cec5SDimitry Andric   case Shl:            return ISD::SHL;
16610b57cec5SDimitry Andric   case LShr:           return ISD::SRL;
16620b57cec5SDimitry Andric   case AShr:           return ISD::SRA;
16630b57cec5SDimitry Andric   case And:            return ISD::AND;
16640b57cec5SDimitry Andric   case Or:             return ISD::OR;
16650b57cec5SDimitry Andric   case Xor:            return ISD::XOR;
16660b57cec5SDimitry Andric   case Alloca:         return 0;
16670b57cec5SDimitry Andric   case Load:           return ISD::LOAD;
16680b57cec5SDimitry Andric   case Store:          return ISD::STORE;
16690b57cec5SDimitry Andric   case GetElementPtr:  return 0;
16700b57cec5SDimitry Andric   case Fence:          return 0;
16710b57cec5SDimitry Andric   case AtomicCmpXchg:  return 0;
16720b57cec5SDimitry Andric   case AtomicRMW:      return 0;
16730b57cec5SDimitry Andric   case Trunc:          return ISD::TRUNCATE;
16740b57cec5SDimitry Andric   case ZExt:           return ISD::ZERO_EXTEND;
16750b57cec5SDimitry Andric   case SExt:           return ISD::SIGN_EXTEND;
16760b57cec5SDimitry Andric   case FPToUI:         return ISD::FP_TO_UINT;
16770b57cec5SDimitry Andric   case FPToSI:         return ISD::FP_TO_SINT;
16780b57cec5SDimitry Andric   case UIToFP:         return ISD::UINT_TO_FP;
16790b57cec5SDimitry Andric   case SIToFP:         return ISD::SINT_TO_FP;
16800b57cec5SDimitry Andric   case FPTrunc:        return ISD::FP_ROUND;
16810b57cec5SDimitry Andric   case FPExt:          return ISD::FP_EXTEND;
16820b57cec5SDimitry Andric   case PtrToInt:       return ISD::BITCAST;
16830b57cec5SDimitry Andric   case IntToPtr:       return ISD::BITCAST;
16840b57cec5SDimitry Andric   case BitCast:        return ISD::BITCAST;
16850b57cec5SDimitry Andric   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
16860b57cec5SDimitry Andric   case ICmp:           return ISD::SETCC;
16870b57cec5SDimitry Andric   case FCmp:           return ISD::SETCC;
16880b57cec5SDimitry Andric   case PHI:            return 0;
16890b57cec5SDimitry Andric   case Call:           return 0;
16900b57cec5SDimitry Andric   case Select:         return ISD::SELECT;
16910b57cec5SDimitry Andric   case UserOp1:        return 0;
16920b57cec5SDimitry Andric   case UserOp2:        return 0;
16930b57cec5SDimitry Andric   case VAArg:          return 0;
16940b57cec5SDimitry Andric   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
16950b57cec5SDimitry Andric   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
16960b57cec5SDimitry Andric   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
16970b57cec5SDimitry Andric   case ExtractValue:   return ISD::MERGE_VALUES;
16980b57cec5SDimitry Andric   case InsertValue:    return ISD::MERGE_VALUES;
16990b57cec5SDimitry Andric   case LandingPad:     return 0;
17005ffd83dbSDimitry Andric   case Freeze:         return ISD::FREEZE;
17010b57cec5SDimitry Andric   }
17020b57cec5SDimitry Andric 
17030b57cec5SDimitry Andric   llvm_unreachable("Unknown instruction type encountered!");
17040b57cec5SDimitry Andric }
17050b57cec5SDimitry Andric 
17060b57cec5SDimitry Andric std::pair<int, MVT>
17070b57cec5SDimitry Andric TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
17080b57cec5SDimitry Andric                                             Type *Ty) const {
17090b57cec5SDimitry Andric   LLVMContext &C = Ty->getContext();
17100b57cec5SDimitry Andric   EVT MTy = getValueType(DL, Ty);
17110b57cec5SDimitry Andric 
17120b57cec5SDimitry Andric   int Cost = 1;
17130b57cec5SDimitry Andric   // We keep legalizing the type until we find a legal kind. We assume that
17140b57cec5SDimitry Andric   // the only operation that costs anything is the split. After splitting
17150b57cec5SDimitry Andric   // we need to handle two types.
17160b57cec5SDimitry Andric   while (true) {
17170b57cec5SDimitry Andric     LegalizeKind LK = getTypeConversion(C, MTy);
17180b57cec5SDimitry Andric 
17190b57cec5SDimitry Andric     if (LK.first == TypeLegal)
17200b57cec5SDimitry Andric       return std::make_pair(Cost, MTy.getSimpleVT());
17210b57cec5SDimitry Andric 
17220b57cec5SDimitry Andric     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
17230b57cec5SDimitry Andric       Cost *= 2;
17240b57cec5SDimitry Andric 
17250b57cec5SDimitry Andric     // Do not loop with f128 type.
17260b57cec5SDimitry Andric     if (MTy == LK.second)
17270b57cec5SDimitry Andric       return std::make_pair(Cost, MTy.getSimpleVT());
17280b57cec5SDimitry Andric 
17290b57cec5SDimitry Andric     // Keep legalizing the type.
17300b57cec5SDimitry Andric     MTy = LK.second;
17310b57cec5SDimitry Andric   }
17320b57cec5SDimitry Andric }
17330b57cec5SDimitry Andric 
17340b57cec5SDimitry Andric Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
17350b57cec5SDimitry Andric                                                               bool UseTLS) const {
17360b57cec5SDimitry Andric   // compiler-rt provides a variable with a magic name.  Targets that do not
17370b57cec5SDimitry Andric   // link with compiler-rt may also provide such a variable.
17380b57cec5SDimitry Andric   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
17390b57cec5SDimitry Andric   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
17400b57cec5SDimitry Andric   auto UnsafeStackPtr =
17410b57cec5SDimitry Andric       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
17420b57cec5SDimitry Andric 
17430b57cec5SDimitry Andric   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
17440b57cec5SDimitry Andric 
17450b57cec5SDimitry Andric   if (!UnsafeStackPtr) {
17460b57cec5SDimitry Andric     auto TLSModel = UseTLS ?
17470b57cec5SDimitry Andric         GlobalValue::InitialExecTLSModel :
17480b57cec5SDimitry Andric         GlobalValue::NotThreadLocal;
17490b57cec5SDimitry Andric     // The global variable is not defined yet, define it ourselves.
17500b57cec5SDimitry Andric     // We use the initial-exec TLS model because we do not support the
17510b57cec5SDimitry Andric     // variable living anywhere other than in the main executable.
17520b57cec5SDimitry Andric     UnsafeStackPtr = new GlobalVariable(
17530b57cec5SDimitry Andric         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
17540b57cec5SDimitry Andric         UnsafeStackPtrVar, nullptr, TLSModel);
17550b57cec5SDimitry Andric   } else {
17560b57cec5SDimitry Andric     // The variable exists, check its type and attributes.
17570b57cec5SDimitry Andric     if (UnsafeStackPtr->getValueType() != StackPtrTy)
17580b57cec5SDimitry Andric       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
17590b57cec5SDimitry Andric     if (UseTLS != UnsafeStackPtr->isThreadLocal())
17600b57cec5SDimitry Andric       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
17610b57cec5SDimitry Andric                          (UseTLS ? "" : "not ") + "be thread-local");
17620b57cec5SDimitry Andric   }
17630b57cec5SDimitry Andric   return UnsafeStackPtr;
17640b57cec5SDimitry Andric }
17650b57cec5SDimitry Andric 
17660b57cec5SDimitry Andric Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
17670b57cec5SDimitry Andric   if (!TM.getTargetTriple().isAndroid())
17680b57cec5SDimitry Andric     return getDefaultSafeStackPointerLocation(IRB, true);
17690b57cec5SDimitry Andric 
17700b57cec5SDimitry Andric   // Android provides a libc function to retrieve the address of the current
17710b57cec5SDimitry Andric   // thread's unsafe stack pointer.
17720b57cec5SDimitry Andric   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
17730b57cec5SDimitry Andric   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
17740b57cec5SDimitry Andric   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
17750b57cec5SDimitry Andric                                              StackPtrTy->getPointerTo(0));
17760b57cec5SDimitry Andric   return IRB.CreateCall(Fn);
17770b57cec5SDimitry Andric }
17780b57cec5SDimitry Andric 
17790b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
17800b57cec5SDimitry Andric //  Loop Strength Reduction hooks
17810b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
17820b57cec5SDimitry Andric 
17830b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented
17840b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type.
17850b57cec5SDimitry Andric bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
17860b57cec5SDimitry Andric                                                const AddrMode &AM, Type *Ty,
17870b57cec5SDimitry Andric                                                unsigned AS, Instruction *I) const {
17880b57cec5SDimitry Andric   // The default implementation of this implements a conservative RISCy, r+r and
17890b57cec5SDimitry Andric   // r+i addr mode.
17900b57cec5SDimitry Andric 
17910b57cec5SDimitry Andric   // Allows a sign-extended 16-bit immediate field.
17920b57cec5SDimitry Andric   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
17930b57cec5SDimitry Andric     return false;
17940b57cec5SDimitry Andric 
17950b57cec5SDimitry Andric   // No global is ever allowed as a base.
17960b57cec5SDimitry Andric   if (AM.BaseGV)
17970b57cec5SDimitry Andric     return false;
17980b57cec5SDimitry Andric 
17990b57cec5SDimitry Andric   // Only support r+r,
18000b57cec5SDimitry Andric   switch (AM.Scale) {
18010b57cec5SDimitry Andric   case 0:  // "r+i" or just "i", depending on HasBaseReg.
18020b57cec5SDimitry Andric     break;
18030b57cec5SDimitry Andric   case 1:
18040b57cec5SDimitry Andric     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
18050b57cec5SDimitry Andric       return false;
18060b57cec5SDimitry Andric     // Otherwise we have r+r or r+i.
18070b57cec5SDimitry Andric     break;
18080b57cec5SDimitry Andric   case 2:
18090b57cec5SDimitry Andric     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
18100b57cec5SDimitry Andric       return false;
18110b57cec5SDimitry Andric     // Allow 2*r as r+r.
18120b57cec5SDimitry Andric     break;
18130b57cec5SDimitry Andric   default: // Don't allow n * r
18140b57cec5SDimitry Andric     return false;
18150b57cec5SDimitry Andric   }
18160b57cec5SDimitry Andric 
18170b57cec5SDimitry Andric   return true;
18180b57cec5SDimitry Andric }
18190b57cec5SDimitry Andric 
18200b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
18210b57cec5SDimitry Andric //  Stack Protector
18220b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
18230b57cec5SDimitry Andric 
18240b57cec5SDimitry Andric // For OpenBSD return its special guard variable. Otherwise return nullptr,
18250b57cec5SDimitry Andric // so that SelectionDAG handle SSP.
18260b57cec5SDimitry Andric Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
18270b57cec5SDimitry Andric   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
18280b57cec5SDimitry Andric     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
18290b57cec5SDimitry Andric     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1830*16d6b3b3SDimitry Andric     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1831*16d6b3b3SDimitry Andric     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1832*16d6b3b3SDimitry Andric       G->setVisibility(GlobalValue::HiddenVisibility);
1833*16d6b3b3SDimitry Andric     return C;
18340b57cec5SDimitry Andric   }
18350b57cec5SDimitry Andric   return nullptr;
18360b57cec5SDimitry Andric }
18370b57cec5SDimitry Andric 
18380b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard.
18390b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support.
18400b57cec5SDimitry Andric void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
18410b57cec5SDimitry Andric   if (!M.getNamedValue("__stack_chk_guard"))
18420b57cec5SDimitry Andric     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
18430b57cec5SDimitry Andric                        GlobalVariable::ExternalLinkage,
18440b57cec5SDimitry Andric                        nullptr, "__stack_chk_guard");
18450b57cec5SDimitry Andric }
18460b57cec5SDimitry Andric 
18470b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard.
18480b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support.
18490b57cec5SDimitry Andric Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
18500b57cec5SDimitry Andric   return M.getNamedValue("__stack_chk_guard");
18510b57cec5SDimitry Andric }
18520b57cec5SDimitry Andric 
18530b57cec5SDimitry Andric Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
18540b57cec5SDimitry Andric   return nullptr;
18550b57cec5SDimitry Andric }
18560b57cec5SDimitry Andric 
18570b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
18580b57cec5SDimitry Andric   return MinimumJumpTableEntries;
18590b57cec5SDimitry Andric }
18600b57cec5SDimitry Andric 
18610b57cec5SDimitry Andric void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
18620b57cec5SDimitry Andric   MinimumJumpTableEntries = Val;
18630b57cec5SDimitry Andric }
18640b57cec5SDimitry Andric 
18650b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
18660b57cec5SDimitry Andric   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
18670b57cec5SDimitry Andric }
18680b57cec5SDimitry Andric 
18690b57cec5SDimitry Andric unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
18700b57cec5SDimitry Andric   return MaximumJumpTableSize;
18710b57cec5SDimitry Andric }
18720b57cec5SDimitry Andric 
18730b57cec5SDimitry Andric void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
18740b57cec5SDimitry Andric   MaximumJumpTableSize = Val;
18750b57cec5SDimitry Andric }
18760b57cec5SDimitry Andric 
18775ffd83dbSDimitry Andric bool TargetLoweringBase::isJumpTableRelative() const {
18785ffd83dbSDimitry Andric   return getTargetMachine().isPositionIndependent();
18795ffd83dbSDimitry Andric }
18805ffd83dbSDimitry Andric 
18810b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
18820b57cec5SDimitry Andric //  Reciprocal Estimates
18830b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
18840b57cec5SDimitry Andric 
18850b57cec5SDimitry Andric /// Get the reciprocal estimate attribute string for a function that will
18860b57cec5SDimitry Andric /// override the target defaults.
18870b57cec5SDimitry Andric static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
18880b57cec5SDimitry Andric   const Function &F = MF.getFunction();
18890b57cec5SDimitry Andric   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
18900b57cec5SDimitry Andric }
18910b57cec5SDimitry Andric 
18920b57cec5SDimitry Andric /// Construct a string for the given reciprocal operation of the given type.
18930b57cec5SDimitry Andric /// This string should match the corresponding option to the front-end's
18940b57cec5SDimitry Andric /// "-mrecip" flag assuming those strings have been passed through in an
18950b57cec5SDimitry Andric /// attribute string. For example, "vec-divf" for a division of a vXf32.
18960b57cec5SDimitry Andric static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
18970b57cec5SDimitry Andric   std::string Name = VT.isVector() ? "vec-" : "";
18980b57cec5SDimitry Andric 
18990b57cec5SDimitry Andric   Name += IsSqrt ? "sqrt" : "div";
19000b57cec5SDimitry Andric 
19010b57cec5SDimitry Andric   // TODO: Handle "half" or other float types?
19020b57cec5SDimitry Andric   if (VT.getScalarType() == MVT::f64) {
19030b57cec5SDimitry Andric     Name += "d";
19040b57cec5SDimitry Andric   } else {
19050b57cec5SDimitry Andric     assert(VT.getScalarType() == MVT::f32 &&
19060b57cec5SDimitry Andric            "Unexpected FP type for reciprocal estimate");
19070b57cec5SDimitry Andric     Name += "f";
19080b57cec5SDimitry Andric   }
19090b57cec5SDimitry Andric 
19100b57cec5SDimitry Andric   return Name;
19110b57cec5SDimitry Andric }
19120b57cec5SDimitry Andric 
19130b57cec5SDimitry Andric /// Return the character position and value (a single numeric character) of a
19140b57cec5SDimitry Andric /// customized refinement operation in the input string if it exists. Return
19150b57cec5SDimitry Andric /// false if there is no customized refinement step count.
19160b57cec5SDimitry Andric static bool parseRefinementStep(StringRef In, size_t &Position,
19170b57cec5SDimitry Andric                                 uint8_t &Value) {
19180b57cec5SDimitry Andric   const char RefStepToken = ':';
19190b57cec5SDimitry Andric   Position = In.find(RefStepToken);
19200b57cec5SDimitry Andric   if (Position == StringRef::npos)
19210b57cec5SDimitry Andric     return false;
19220b57cec5SDimitry Andric 
19230b57cec5SDimitry Andric   StringRef RefStepString = In.substr(Position + 1);
19240b57cec5SDimitry Andric   // Allow exactly one numeric character for the additional refinement
19250b57cec5SDimitry Andric   // step parameter.
19260b57cec5SDimitry Andric   if (RefStepString.size() == 1) {
19270b57cec5SDimitry Andric     char RefStepChar = RefStepString[0];
19280b57cec5SDimitry Andric     if (RefStepChar >= '0' && RefStepChar <= '9') {
19290b57cec5SDimitry Andric       Value = RefStepChar - '0';
19300b57cec5SDimitry Andric       return true;
19310b57cec5SDimitry Andric     }
19320b57cec5SDimitry Andric   }
19330b57cec5SDimitry Andric   report_fatal_error("Invalid refinement step for -recip.");
19340b57cec5SDimitry Andric }
19350b57cec5SDimitry Andric 
19360b57cec5SDimitry Andric /// For the input attribute string, return one of the ReciprocalEstimate enum
19370b57cec5SDimitry Andric /// status values (enabled, disabled, or not specified) for this operation on
19380b57cec5SDimitry Andric /// the specified data type.
19390b57cec5SDimitry Andric static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
19400b57cec5SDimitry Andric   if (Override.empty())
19410b57cec5SDimitry Andric     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
19420b57cec5SDimitry Andric 
19430b57cec5SDimitry Andric   SmallVector<StringRef, 4> OverrideVector;
19440b57cec5SDimitry Andric   Override.split(OverrideVector, ',');
19450b57cec5SDimitry Andric   unsigned NumArgs = OverrideVector.size();
19460b57cec5SDimitry Andric 
19470b57cec5SDimitry Andric   // Check if "all", "none", or "default" was specified.
19480b57cec5SDimitry Andric   if (NumArgs == 1) {
19490b57cec5SDimitry Andric     // Look for an optional setting of the number of refinement steps needed
19500b57cec5SDimitry Andric     // for this type of reciprocal operation.
19510b57cec5SDimitry Andric     size_t RefPos;
19520b57cec5SDimitry Andric     uint8_t RefSteps;
19530b57cec5SDimitry Andric     if (parseRefinementStep(Override, RefPos, RefSteps)) {
19540b57cec5SDimitry Andric       // Split the string for further processing.
19550b57cec5SDimitry Andric       Override = Override.substr(0, RefPos);
19560b57cec5SDimitry Andric     }
19570b57cec5SDimitry Andric 
19580b57cec5SDimitry Andric     // All reciprocal types are enabled.
19590b57cec5SDimitry Andric     if (Override == "all")
19600b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Enabled;
19610b57cec5SDimitry Andric 
19620b57cec5SDimitry Andric     // All reciprocal types are disabled.
19630b57cec5SDimitry Andric     if (Override == "none")
19640b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Disabled;
19650b57cec5SDimitry Andric 
19660b57cec5SDimitry Andric     // Target defaults for enablement are used.
19670b57cec5SDimitry Andric     if (Override == "default")
19680b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
19690b57cec5SDimitry Andric   }
19700b57cec5SDimitry Andric 
19710b57cec5SDimitry Andric   // The attribute string may omit the size suffix ('f'/'d').
19720b57cec5SDimitry Andric   std::string VTName = getReciprocalOpName(IsSqrt, VT);
19730b57cec5SDimitry Andric   std::string VTNameNoSize = VTName;
19740b57cec5SDimitry Andric   VTNameNoSize.pop_back();
19750b57cec5SDimitry Andric   static const char DisabledPrefix = '!';
19760b57cec5SDimitry Andric 
19770b57cec5SDimitry Andric   for (StringRef RecipType : OverrideVector) {
19780b57cec5SDimitry Andric     size_t RefPos;
19790b57cec5SDimitry Andric     uint8_t RefSteps;
19800b57cec5SDimitry Andric     if (parseRefinementStep(RecipType, RefPos, RefSteps))
19810b57cec5SDimitry Andric       RecipType = RecipType.substr(0, RefPos);
19820b57cec5SDimitry Andric 
19830b57cec5SDimitry Andric     // Ignore the disablement token for string matching.
19840b57cec5SDimitry Andric     bool IsDisabled = RecipType[0] == DisabledPrefix;
19850b57cec5SDimitry Andric     if (IsDisabled)
19860b57cec5SDimitry Andric       RecipType = RecipType.substr(1);
19870b57cec5SDimitry Andric 
19880b57cec5SDimitry Andric     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
19890b57cec5SDimitry Andric       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
19900b57cec5SDimitry Andric                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
19910b57cec5SDimitry Andric   }
19920b57cec5SDimitry Andric 
19930b57cec5SDimitry Andric   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
19940b57cec5SDimitry Andric }
19950b57cec5SDimitry Andric 
19960b57cec5SDimitry Andric /// For the input attribute string, return the customized refinement step count
19970b57cec5SDimitry Andric /// for this operation on the specified data type. If the step count does not
19980b57cec5SDimitry Andric /// exist, return the ReciprocalEstimate enum value for unspecified.
19990b57cec5SDimitry Andric static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
20000b57cec5SDimitry Andric   if (Override.empty())
20010b57cec5SDimitry Andric     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
20020b57cec5SDimitry Andric 
20030b57cec5SDimitry Andric   SmallVector<StringRef, 4> OverrideVector;
20040b57cec5SDimitry Andric   Override.split(OverrideVector, ',');
20050b57cec5SDimitry Andric   unsigned NumArgs = OverrideVector.size();
20060b57cec5SDimitry Andric 
20070b57cec5SDimitry Andric   // Check if "all", "default", or "none" was specified.
20080b57cec5SDimitry Andric   if (NumArgs == 1) {
20090b57cec5SDimitry Andric     // Look for an optional setting of the number of refinement steps needed
20100b57cec5SDimitry Andric     // for this type of reciprocal operation.
20110b57cec5SDimitry Andric     size_t RefPos;
20120b57cec5SDimitry Andric     uint8_t RefSteps;
20130b57cec5SDimitry Andric     if (!parseRefinementStep(Override, RefPos, RefSteps))
20140b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
20150b57cec5SDimitry Andric 
20160b57cec5SDimitry Andric     // Split the string for further processing.
20170b57cec5SDimitry Andric     Override = Override.substr(0, RefPos);
20180b57cec5SDimitry Andric     assert(Override != "none" &&
20190b57cec5SDimitry Andric            "Disabled reciprocals, but specifed refinement steps?");
20200b57cec5SDimitry Andric 
20210b57cec5SDimitry Andric     // If this is a general override, return the specified number of steps.
20220b57cec5SDimitry Andric     if (Override == "all" || Override == "default")
20230b57cec5SDimitry Andric       return RefSteps;
20240b57cec5SDimitry Andric   }
20250b57cec5SDimitry Andric 
20260b57cec5SDimitry Andric   // The attribute string may omit the size suffix ('f'/'d').
20270b57cec5SDimitry Andric   std::string VTName = getReciprocalOpName(IsSqrt, VT);
20280b57cec5SDimitry Andric   std::string VTNameNoSize = VTName;
20290b57cec5SDimitry Andric   VTNameNoSize.pop_back();
20300b57cec5SDimitry Andric 
20310b57cec5SDimitry Andric   for (StringRef RecipType : OverrideVector) {
20320b57cec5SDimitry Andric     size_t RefPos;
20330b57cec5SDimitry Andric     uint8_t RefSteps;
20340b57cec5SDimitry Andric     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
20350b57cec5SDimitry Andric       continue;
20360b57cec5SDimitry Andric 
20370b57cec5SDimitry Andric     RecipType = RecipType.substr(0, RefPos);
20380b57cec5SDimitry Andric     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
20390b57cec5SDimitry Andric       return RefSteps;
20400b57cec5SDimitry Andric   }
20410b57cec5SDimitry Andric 
20420b57cec5SDimitry Andric   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
20430b57cec5SDimitry Andric }
20440b57cec5SDimitry Andric 
20450b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
20460b57cec5SDimitry Andric                                                     MachineFunction &MF) const {
20470b57cec5SDimitry Andric   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
20480b57cec5SDimitry Andric }
20490b57cec5SDimitry Andric 
20500b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
20510b57cec5SDimitry Andric                                                    MachineFunction &MF) const {
20520b57cec5SDimitry Andric   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
20530b57cec5SDimitry Andric }
20540b57cec5SDimitry Andric 
20550b57cec5SDimitry Andric int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
20560b57cec5SDimitry Andric                                                MachineFunction &MF) const {
20570b57cec5SDimitry Andric   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
20580b57cec5SDimitry Andric }
20590b57cec5SDimitry Andric 
20600b57cec5SDimitry Andric int TargetLoweringBase::getDivRefinementSteps(EVT VT,
20610b57cec5SDimitry Andric                                               MachineFunction &MF) const {
20620b57cec5SDimitry Andric   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
20630b57cec5SDimitry Andric }
20640b57cec5SDimitry Andric 
20650b57cec5SDimitry Andric void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
20660b57cec5SDimitry Andric   MF.getRegInfo().freezeReservedRegs(MF);
20670b57cec5SDimitry Andric }
20685ffd83dbSDimitry Andric 
20695ffd83dbSDimitry Andric MachineMemOperand::Flags
20705ffd83dbSDimitry Andric TargetLoweringBase::getLoadMemOperandFlags(const LoadInst &LI,
20715ffd83dbSDimitry Andric                                            const DataLayout &DL) const {
20725ffd83dbSDimitry Andric   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
20735ffd83dbSDimitry Andric   if (LI.isVolatile())
20745ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MOVolatile;
20755ffd83dbSDimitry Andric 
20765ffd83dbSDimitry Andric   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
20775ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MONonTemporal;
20785ffd83dbSDimitry Andric 
20795ffd83dbSDimitry Andric   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
20805ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MOInvariant;
20815ffd83dbSDimitry Andric 
20825ffd83dbSDimitry Andric   if (isDereferenceablePointer(LI.getPointerOperand(), LI.getType(), DL))
20835ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MODereferenceable;
20845ffd83dbSDimitry Andric 
20855ffd83dbSDimitry Andric   Flags |= getTargetMMOFlags(LI);
20865ffd83dbSDimitry Andric   return Flags;
20875ffd83dbSDimitry Andric }
20885ffd83dbSDimitry Andric 
20895ffd83dbSDimitry Andric MachineMemOperand::Flags
20905ffd83dbSDimitry Andric TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
20915ffd83dbSDimitry Andric                                             const DataLayout &DL) const {
20925ffd83dbSDimitry Andric   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
20935ffd83dbSDimitry Andric 
20945ffd83dbSDimitry Andric   if (SI.isVolatile())
20955ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MOVolatile;
20965ffd83dbSDimitry Andric 
20975ffd83dbSDimitry Andric   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
20985ffd83dbSDimitry Andric     Flags |= MachineMemOperand::MONonTemporal;
20995ffd83dbSDimitry Andric 
21005ffd83dbSDimitry Andric   // FIXME: Not preserving dereferenceable
21015ffd83dbSDimitry Andric   Flags |= getTargetMMOFlags(SI);
21025ffd83dbSDimitry Andric   return Flags;
21035ffd83dbSDimitry Andric }
21045ffd83dbSDimitry Andric 
21055ffd83dbSDimitry Andric MachineMemOperand::Flags
21065ffd83dbSDimitry Andric TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
21075ffd83dbSDimitry Andric                                              const DataLayout &DL) const {
21085ffd83dbSDimitry Andric   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
21095ffd83dbSDimitry Andric 
21105ffd83dbSDimitry Andric   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
21115ffd83dbSDimitry Andric     if (RMW->isVolatile())
21125ffd83dbSDimitry Andric       Flags |= MachineMemOperand::MOVolatile;
21135ffd83dbSDimitry Andric   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
21145ffd83dbSDimitry Andric     if (CmpX->isVolatile())
21155ffd83dbSDimitry Andric       Flags |= MachineMemOperand::MOVolatile;
21165ffd83dbSDimitry Andric   } else
21175ffd83dbSDimitry Andric     llvm_unreachable("not an atomic instruction");
21185ffd83dbSDimitry Andric 
21195ffd83dbSDimitry Andric   // FIXME: Not preserving dereferenceable
21205ffd83dbSDimitry Andric   Flags |= getTargetMMOFlags(AI);
21215ffd83dbSDimitry Andric   return Flags;
21225ffd83dbSDimitry Andric }
21235ffd83dbSDimitry Andric 
21245ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
21255ffd83dbSDimitry Andric //  GlobalISel Hooks
21265ffd83dbSDimitry Andric //===----------------------------------------------------------------------===//
21275ffd83dbSDimitry Andric 
21285ffd83dbSDimitry Andric bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
21295ffd83dbSDimitry Andric                                         const TargetTransformInfo *TTI) const {
21305ffd83dbSDimitry Andric   auto &MF = *MI.getMF();
21315ffd83dbSDimitry Andric   auto &MRI = MF.getRegInfo();
21325ffd83dbSDimitry Andric   // Assuming a spill and reload of a value has a cost of 1 instruction each,
21335ffd83dbSDimitry Andric   // this helper function computes the maximum number of uses we should consider
21345ffd83dbSDimitry Andric   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
21355ffd83dbSDimitry Andric   // break even in terms of code size when the original MI has 2 users vs
21365ffd83dbSDimitry Andric   // choosing to potentially spill. Any more than 2 users we we have a net code
21375ffd83dbSDimitry Andric   // size increase. This doesn't take into account register pressure though.
21385ffd83dbSDimitry Andric   auto maxUses = [](unsigned RematCost) {
21395ffd83dbSDimitry Andric     // A cost of 1 means remats are basically free.
21405ffd83dbSDimitry Andric     if (RematCost == 1)
21415ffd83dbSDimitry Andric       return UINT_MAX;
21425ffd83dbSDimitry Andric     if (RematCost == 2)
21435ffd83dbSDimitry Andric       return 2U;
21445ffd83dbSDimitry Andric 
21455ffd83dbSDimitry Andric     // Remat is too expensive, only sink if there's one user.
21465ffd83dbSDimitry Andric     if (RematCost > 2)
21475ffd83dbSDimitry Andric       return 1U;
21485ffd83dbSDimitry Andric     llvm_unreachable("Unexpected remat cost");
21495ffd83dbSDimitry Andric   };
21505ffd83dbSDimitry Andric 
21515ffd83dbSDimitry Andric   // Helper to walk through uses and terminate if we've reached a limit. Saves
21525ffd83dbSDimitry Andric   // us spending time traversing uses if all we want to know is if it's >= min.
21535ffd83dbSDimitry Andric   auto isUsesAtMost = [&](unsigned Reg, unsigned MaxUses) {
21545ffd83dbSDimitry Andric     unsigned NumUses = 0;
21555ffd83dbSDimitry Andric     auto UI = MRI.use_instr_nodbg_begin(Reg), UE = MRI.use_instr_nodbg_end();
21565ffd83dbSDimitry Andric     for (; UI != UE && NumUses < MaxUses; ++UI) {
21575ffd83dbSDimitry Andric       NumUses++;
21585ffd83dbSDimitry Andric     }
21595ffd83dbSDimitry Andric     // If we haven't reached the end yet then there are more than MaxUses users.
21605ffd83dbSDimitry Andric     return UI == UE;
21615ffd83dbSDimitry Andric   };
21625ffd83dbSDimitry Andric 
21635ffd83dbSDimitry Andric   switch (MI.getOpcode()) {
21645ffd83dbSDimitry Andric   default:
21655ffd83dbSDimitry Andric     return false;
21665ffd83dbSDimitry Andric   // Constants-like instructions should be close to their users.
21675ffd83dbSDimitry Andric   // We don't want long live-ranges for them.
21685ffd83dbSDimitry Andric   case TargetOpcode::G_CONSTANT:
21695ffd83dbSDimitry Andric   case TargetOpcode::G_FCONSTANT:
21705ffd83dbSDimitry Andric   case TargetOpcode::G_FRAME_INDEX:
21715ffd83dbSDimitry Andric   case TargetOpcode::G_INTTOPTR:
21725ffd83dbSDimitry Andric     return true;
21735ffd83dbSDimitry Andric   case TargetOpcode::G_GLOBAL_VALUE: {
21745ffd83dbSDimitry Andric     unsigned RematCost = TTI->getGISelRematGlobalCost();
21755ffd83dbSDimitry Andric     Register Reg = MI.getOperand(0).getReg();
21765ffd83dbSDimitry Andric     unsigned MaxUses = maxUses(RematCost);
21775ffd83dbSDimitry Andric     if (MaxUses == UINT_MAX)
21785ffd83dbSDimitry Andric       return true; // Remats are "free" so always localize.
21795ffd83dbSDimitry Andric     bool B = isUsesAtMost(Reg, MaxUses);
21805ffd83dbSDimitry Andric     return B;
21815ffd83dbSDimitry Andric   }
21825ffd83dbSDimitry Andric   }
21835ffd83dbSDimitry Andric }
2184