1*0b57cec5SDimitry Andric //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===// 2*0b57cec5SDimitry Andric // 3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6*0b57cec5SDimitry Andric // 7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 8*0b57cec5SDimitry Andric // 9*0b57cec5SDimitry Andric // This implements the TargetLoweringBase class. 10*0b57cec5SDimitry Andric // 11*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 12*0b57cec5SDimitry Andric 13*0b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h" 14*0b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h" 15*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h" 16*0b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h" 17*0b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h" 18*0b57cec5SDimitry Andric #include "llvm/ADT/Triple.h" 19*0b57cec5SDimitry Andric #include "llvm/ADT/Twine.h" 20*0b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h" 21*0b57cec5SDimitry Andric #include "llvm/CodeGen/ISDOpcodes.h" 22*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h" 23*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h" 24*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h" 25*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h" 26*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 27*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h" 28*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h" 29*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 30*0b57cec5SDimitry Andric #include "llvm/CodeGen/RuntimeLibcalls.h" 31*0b57cec5SDimitry Andric #include "llvm/CodeGen/StackMaps.h" 32*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h" 33*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h" 34*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h" 35*0b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h" 36*0b57cec5SDimitry Andric #include "llvm/IR/Attributes.h" 37*0b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h" 38*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h" 39*0b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h" 40*0b57cec5SDimitry Andric #include "llvm/IR/Function.h" 41*0b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h" 42*0b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h" 43*0b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h" 44*0b57cec5SDimitry Andric #include "llvm/IR/Module.h" 45*0b57cec5SDimitry Andric #include "llvm/IR/Type.h" 46*0b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h" 47*0b57cec5SDimitry Andric #include "llvm/Support/Casting.h" 48*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h" 49*0b57cec5SDimitry Andric #include "llvm/Support/Compiler.h" 50*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h" 51*0b57cec5SDimitry Andric #include "llvm/Support/MachineValueType.h" 52*0b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h" 53*0b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h" 54*0b57cec5SDimitry Andric #include <algorithm> 55*0b57cec5SDimitry Andric #include <cassert> 56*0b57cec5SDimitry Andric #include <cstddef> 57*0b57cec5SDimitry Andric #include <cstdint> 58*0b57cec5SDimitry Andric #include <cstring> 59*0b57cec5SDimitry Andric #include <iterator> 60*0b57cec5SDimitry Andric #include <string> 61*0b57cec5SDimitry Andric #include <tuple> 62*0b57cec5SDimitry Andric #include <utility> 63*0b57cec5SDimitry Andric 64*0b57cec5SDimitry Andric using namespace llvm; 65*0b57cec5SDimitry Andric 66*0b57cec5SDimitry Andric static cl::opt<bool> JumpIsExpensiveOverride( 67*0b57cec5SDimitry Andric "jump-is-expensive", cl::init(false), 68*0b57cec5SDimitry Andric cl::desc("Do not create extra branches to split comparison logic."), 69*0b57cec5SDimitry Andric cl::Hidden); 70*0b57cec5SDimitry Andric 71*0b57cec5SDimitry Andric static cl::opt<unsigned> MinimumJumpTableEntries 72*0b57cec5SDimitry Andric ("min-jump-table-entries", cl::init(4), cl::Hidden, 73*0b57cec5SDimitry Andric cl::desc("Set minimum number of entries to use a jump table.")); 74*0b57cec5SDimitry Andric 75*0b57cec5SDimitry Andric static cl::opt<unsigned> MaximumJumpTableSize 76*0b57cec5SDimitry Andric ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden, 77*0b57cec5SDimitry Andric cl::desc("Set maximum size of jump tables.")); 78*0b57cec5SDimitry Andric 79*0b57cec5SDimitry Andric /// Minimum jump table density for normal functions. 80*0b57cec5SDimitry Andric static cl::opt<unsigned> 81*0b57cec5SDimitry Andric JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden, 82*0b57cec5SDimitry Andric cl::desc("Minimum density for building a jump table in " 83*0b57cec5SDimitry Andric "a normal function")); 84*0b57cec5SDimitry Andric 85*0b57cec5SDimitry Andric /// Minimum jump table density for -Os or -Oz functions. 86*0b57cec5SDimitry Andric static cl::opt<unsigned> OptsizeJumpTableDensity( 87*0b57cec5SDimitry Andric "optsize-jump-table-density", cl::init(40), cl::Hidden, 88*0b57cec5SDimitry Andric cl::desc("Minimum density for building a jump table in " 89*0b57cec5SDimitry Andric "an optsize function")); 90*0b57cec5SDimitry Andric 91*0b57cec5SDimitry Andric static bool darwinHasSinCos(const Triple &TT) { 92*0b57cec5SDimitry Andric assert(TT.isOSDarwin() && "should be called with darwin triple"); 93*0b57cec5SDimitry Andric // Don't bother with 32 bit x86. 94*0b57cec5SDimitry Andric if (TT.getArch() == Triple::x86) 95*0b57cec5SDimitry Andric return false; 96*0b57cec5SDimitry Andric // Macos < 10.9 has no sincos_stret. 97*0b57cec5SDimitry Andric if (TT.isMacOSX()) 98*0b57cec5SDimitry Andric return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit(); 99*0b57cec5SDimitry Andric // iOS < 7.0 has no sincos_stret. 100*0b57cec5SDimitry Andric if (TT.isiOS()) 101*0b57cec5SDimitry Andric return !TT.isOSVersionLT(7, 0); 102*0b57cec5SDimitry Andric // Any other darwin such as WatchOS/TvOS is new enough. 103*0b57cec5SDimitry Andric return true; 104*0b57cec5SDimitry Andric } 105*0b57cec5SDimitry Andric 106*0b57cec5SDimitry Andric // Although this default value is arbitrary, it is not random. It is assumed 107*0b57cec5SDimitry Andric // that a condition that evaluates the same way by a higher percentage than this 108*0b57cec5SDimitry Andric // is best represented as control flow. Therefore, the default value N should be 109*0b57cec5SDimitry Andric // set such that the win from N% correct executions is greater than the loss 110*0b57cec5SDimitry Andric // from (100 - N)% mispredicted executions for the majority of intended targets. 111*0b57cec5SDimitry Andric static cl::opt<int> MinPercentageForPredictableBranch( 112*0b57cec5SDimitry Andric "min-predictable-branch", cl::init(99), 113*0b57cec5SDimitry Andric cl::desc("Minimum percentage (0-100) that a condition must be either true " 114*0b57cec5SDimitry Andric "or false to assume that the condition is predictable"), 115*0b57cec5SDimitry Andric cl::Hidden); 116*0b57cec5SDimitry Andric 117*0b57cec5SDimitry Andric void TargetLoweringBase::InitLibcalls(const Triple &TT) { 118*0b57cec5SDimitry Andric #define HANDLE_LIBCALL(code, name) \ 119*0b57cec5SDimitry Andric setLibcallName(RTLIB::code, name); 120*0b57cec5SDimitry Andric #include "llvm/IR/RuntimeLibcalls.def" 121*0b57cec5SDimitry Andric #undef HANDLE_LIBCALL 122*0b57cec5SDimitry Andric // Initialize calling conventions to their default. 123*0b57cec5SDimitry Andric for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC) 124*0b57cec5SDimitry Andric setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C); 125*0b57cec5SDimitry Andric 126*0b57cec5SDimitry Andric // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf". 127*0b57cec5SDimitry Andric if (TT.getArch() == Triple::ppc || TT.isPPC64()) { 128*0b57cec5SDimitry Andric setLibcallName(RTLIB::ADD_F128, "__addkf3"); 129*0b57cec5SDimitry Andric setLibcallName(RTLIB::SUB_F128, "__subkf3"); 130*0b57cec5SDimitry Andric setLibcallName(RTLIB::MUL_F128, "__mulkf3"); 131*0b57cec5SDimitry Andric setLibcallName(RTLIB::DIV_F128, "__divkf3"); 132*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2"); 133*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2"); 134*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2"); 135*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2"); 136*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi"); 137*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi"); 138*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi"); 139*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi"); 140*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf"); 141*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf"); 142*0b57cec5SDimitry Andric setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf"); 143*0b57cec5SDimitry Andric setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf"); 144*0b57cec5SDimitry Andric setLibcallName(RTLIB::OEQ_F128, "__eqkf2"); 145*0b57cec5SDimitry Andric setLibcallName(RTLIB::UNE_F128, "__nekf2"); 146*0b57cec5SDimitry Andric setLibcallName(RTLIB::OGE_F128, "__gekf2"); 147*0b57cec5SDimitry Andric setLibcallName(RTLIB::OLT_F128, "__ltkf2"); 148*0b57cec5SDimitry Andric setLibcallName(RTLIB::OLE_F128, "__lekf2"); 149*0b57cec5SDimitry Andric setLibcallName(RTLIB::OGT_F128, "__gtkf2"); 150*0b57cec5SDimitry Andric setLibcallName(RTLIB::UO_F128, "__unordkf2"); 151*0b57cec5SDimitry Andric setLibcallName(RTLIB::O_F128, "__unordkf2"); 152*0b57cec5SDimitry Andric } 153*0b57cec5SDimitry Andric 154*0b57cec5SDimitry Andric // A few names are different on particular architectures or environments. 155*0b57cec5SDimitry Andric if (TT.isOSDarwin()) { 156*0b57cec5SDimitry Andric // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 157*0b57cec5SDimitry Andric // of the gnueabi-style __gnu_*_ieee. 158*0b57cec5SDimitry Andric // FIXME: What about other targets? 159*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2"); 160*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2"); 161*0b57cec5SDimitry Andric 162*0b57cec5SDimitry Andric // Some darwins have an optimized __bzero/bzero function. 163*0b57cec5SDimitry Andric switch (TT.getArch()) { 164*0b57cec5SDimitry Andric case Triple::x86: 165*0b57cec5SDimitry Andric case Triple::x86_64: 166*0b57cec5SDimitry Andric if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) 167*0b57cec5SDimitry Andric setLibcallName(RTLIB::BZERO, "__bzero"); 168*0b57cec5SDimitry Andric break; 169*0b57cec5SDimitry Andric case Triple::aarch64: 170*0b57cec5SDimitry Andric setLibcallName(RTLIB::BZERO, "bzero"); 171*0b57cec5SDimitry Andric break; 172*0b57cec5SDimitry Andric default: 173*0b57cec5SDimitry Andric break; 174*0b57cec5SDimitry Andric } 175*0b57cec5SDimitry Andric 176*0b57cec5SDimitry Andric if (darwinHasSinCos(TT)) { 177*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret"); 178*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret"); 179*0b57cec5SDimitry Andric if (TT.isWatchABI()) { 180*0b57cec5SDimitry Andric setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, 181*0b57cec5SDimitry Andric CallingConv::ARM_AAPCS_VFP); 182*0b57cec5SDimitry Andric setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, 183*0b57cec5SDimitry Andric CallingConv::ARM_AAPCS_VFP); 184*0b57cec5SDimitry Andric } 185*0b57cec5SDimitry Andric } 186*0b57cec5SDimitry Andric } else { 187*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee"); 188*0b57cec5SDimitry Andric setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee"); 189*0b57cec5SDimitry Andric } 190*0b57cec5SDimitry Andric 191*0b57cec5SDimitry Andric if (TT.isGNUEnvironment() || TT.isOSFuchsia() || 192*0b57cec5SDimitry Andric (TT.isAndroid() && !TT.isAndroidVersionLT(9))) { 193*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 194*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_F64, "sincos"); 195*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_F80, "sincosl"); 196*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_F128, "sincosl"); 197*0b57cec5SDimitry Andric setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl"); 198*0b57cec5SDimitry Andric } 199*0b57cec5SDimitry Andric 200*0b57cec5SDimitry Andric if (TT.isOSOpenBSD()) { 201*0b57cec5SDimitry Andric setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr); 202*0b57cec5SDimitry Andric } 203*0b57cec5SDimitry Andric } 204*0b57cec5SDimitry Andric 205*0b57cec5SDimitry Andric /// getFPEXT - Return the FPEXT_*_* value for the given types, or 206*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 207*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 208*0b57cec5SDimitry Andric if (OpVT == MVT::f16) { 209*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 210*0b57cec5SDimitry Andric return FPEXT_F16_F32; 211*0b57cec5SDimitry Andric } else if (OpVT == MVT::f32) { 212*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 213*0b57cec5SDimitry Andric return FPEXT_F32_F64; 214*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 215*0b57cec5SDimitry Andric return FPEXT_F32_F128; 216*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 217*0b57cec5SDimitry Andric return FPEXT_F32_PPCF128; 218*0b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 219*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 220*0b57cec5SDimitry Andric return FPEXT_F64_F128; 221*0b57cec5SDimitry Andric else if (RetVT == MVT::ppcf128) 222*0b57cec5SDimitry Andric return FPEXT_F64_PPCF128; 223*0b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 224*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 225*0b57cec5SDimitry Andric return FPEXT_F80_F128; 226*0b57cec5SDimitry Andric } 227*0b57cec5SDimitry Andric 228*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 229*0b57cec5SDimitry Andric } 230*0b57cec5SDimitry Andric 231*0b57cec5SDimitry Andric /// getFPROUND - Return the FPROUND_*_* value for the given types, or 232*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 233*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 234*0b57cec5SDimitry Andric if (RetVT == MVT::f16) { 235*0b57cec5SDimitry Andric if (OpVT == MVT::f32) 236*0b57cec5SDimitry Andric return FPROUND_F32_F16; 237*0b57cec5SDimitry Andric if (OpVT == MVT::f64) 238*0b57cec5SDimitry Andric return FPROUND_F64_F16; 239*0b57cec5SDimitry Andric if (OpVT == MVT::f80) 240*0b57cec5SDimitry Andric return FPROUND_F80_F16; 241*0b57cec5SDimitry Andric if (OpVT == MVT::f128) 242*0b57cec5SDimitry Andric return FPROUND_F128_F16; 243*0b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 244*0b57cec5SDimitry Andric return FPROUND_PPCF128_F16; 245*0b57cec5SDimitry Andric } else if (RetVT == MVT::f32) { 246*0b57cec5SDimitry Andric if (OpVT == MVT::f64) 247*0b57cec5SDimitry Andric return FPROUND_F64_F32; 248*0b57cec5SDimitry Andric if (OpVT == MVT::f80) 249*0b57cec5SDimitry Andric return FPROUND_F80_F32; 250*0b57cec5SDimitry Andric if (OpVT == MVT::f128) 251*0b57cec5SDimitry Andric return FPROUND_F128_F32; 252*0b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 253*0b57cec5SDimitry Andric return FPROUND_PPCF128_F32; 254*0b57cec5SDimitry Andric } else if (RetVT == MVT::f64) { 255*0b57cec5SDimitry Andric if (OpVT == MVT::f80) 256*0b57cec5SDimitry Andric return FPROUND_F80_F64; 257*0b57cec5SDimitry Andric if (OpVT == MVT::f128) 258*0b57cec5SDimitry Andric return FPROUND_F128_F64; 259*0b57cec5SDimitry Andric if (OpVT == MVT::ppcf128) 260*0b57cec5SDimitry Andric return FPROUND_PPCF128_F64; 261*0b57cec5SDimitry Andric } else if (RetVT == MVT::f80) { 262*0b57cec5SDimitry Andric if (OpVT == MVT::f128) 263*0b57cec5SDimitry Andric return FPROUND_F128_F80; 264*0b57cec5SDimitry Andric } 265*0b57cec5SDimitry Andric 266*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 267*0b57cec5SDimitry Andric } 268*0b57cec5SDimitry Andric 269*0b57cec5SDimitry Andric /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 270*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 271*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 272*0b57cec5SDimitry Andric if (OpVT == MVT::f32) { 273*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 274*0b57cec5SDimitry Andric return FPTOSINT_F32_I32; 275*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 276*0b57cec5SDimitry Andric return FPTOSINT_F32_I64; 277*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 278*0b57cec5SDimitry Andric return FPTOSINT_F32_I128; 279*0b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 280*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 281*0b57cec5SDimitry Andric return FPTOSINT_F64_I32; 282*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 283*0b57cec5SDimitry Andric return FPTOSINT_F64_I64; 284*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 285*0b57cec5SDimitry Andric return FPTOSINT_F64_I128; 286*0b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 287*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 288*0b57cec5SDimitry Andric return FPTOSINT_F80_I32; 289*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 290*0b57cec5SDimitry Andric return FPTOSINT_F80_I64; 291*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 292*0b57cec5SDimitry Andric return FPTOSINT_F80_I128; 293*0b57cec5SDimitry Andric } else if (OpVT == MVT::f128) { 294*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 295*0b57cec5SDimitry Andric return FPTOSINT_F128_I32; 296*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 297*0b57cec5SDimitry Andric return FPTOSINT_F128_I64; 298*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 299*0b57cec5SDimitry Andric return FPTOSINT_F128_I128; 300*0b57cec5SDimitry Andric } else if (OpVT == MVT::ppcf128) { 301*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 302*0b57cec5SDimitry Andric return FPTOSINT_PPCF128_I32; 303*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 304*0b57cec5SDimitry Andric return FPTOSINT_PPCF128_I64; 305*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 306*0b57cec5SDimitry Andric return FPTOSINT_PPCF128_I128; 307*0b57cec5SDimitry Andric } 308*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 309*0b57cec5SDimitry Andric } 310*0b57cec5SDimitry Andric 311*0b57cec5SDimitry Andric /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 312*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 313*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 314*0b57cec5SDimitry Andric if (OpVT == MVT::f32) { 315*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 316*0b57cec5SDimitry Andric return FPTOUINT_F32_I32; 317*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 318*0b57cec5SDimitry Andric return FPTOUINT_F32_I64; 319*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 320*0b57cec5SDimitry Andric return FPTOUINT_F32_I128; 321*0b57cec5SDimitry Andric } else if (OpVT == MVT::f64) { 322*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 323*0b57cec5SDimitry Andric return FPTOUINT_F64_I32; 324*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 325*0b57cec5SDimitry Andric return FPTOUINT_F64_I64; 326*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 327*0b57cec5SDimitry Andric return FPTOUINT_F64_I128; 328*0b57cec5SDimitry Andric } else if (OpVT == MVT::f80) { 329*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 330*0b57cec5SDimitry Andric return FPTOUINT_F80_I32; 331*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 332*0b57cec5SDimitry Andric return FPTOUINT_F80_I64; 333*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 334*0b57cec5SDimitry Andric return FPTOUINT_F80_I128; 335*0b57cec5SDimitry Andric } else if (OpVT == MVT::f128) { 336*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 337*0b57cec5SDimitry Andric return FPTOUINT_F128_I32; 338*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 339*0b57cec5SDimitry Andric return FPTOUINT_F128_I64; 340*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 341*0b57cec5SDimitry Andric return FPTOUINT_F128_I128; 342*0b57cec5SDimitry Andric } else if (OpVT == MVT::ppcf128) { 343*0b57cec5SDimitry Andric if (RetVT == MVT::i32) 344*0b57cec5SDimitry Andric return FPTOUINT_PPCF128_I32; 345*0b57cec5SDimitry Andric if (RetVT == MVT::i64) 346*0b57cec5SDimitry Andric return FPTOUINT_PPCF128_I64; 347*0b57cec5SDimitry Andric if (RetVT == MVT::i128) 348*0b57cec5SDimitry Andric return FPTOUINT_PPCF128_I128; 349*0b57cec5SDimitry Andric } 350*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 351*0b57cec5SDimitry Andric } 352*0b57cec5SDimitry Andric 353*0b57cec5SDimitry Andric /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 354*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 355*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 356*0b57cec5SDimitry Andric if (OpVT == MVT::i32) { 357*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 358*0b57cec5SDimitry Andric return SINTTOFP_I32_F32; 359*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 360*0b57cec5SDimitry Andric return SINTTOFP_I32_F64; 361*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 362*0b57cec5SDimitry Andric return SINTTOFP_I32_F80; 363*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 364*0b57cec5SDimitry Andric return SINTTOFP_I32_F128; 365*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 366*0b57cec5SDimitry Andric return SINTTOFP_I32_PPCF128; 367*0b57cec5SDimitry Andric } else if (OpVT == MVT::i64) { 368*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 369*0b57cec5SDimitry Andric return SINTTOFP_I64_F32; 370*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 371*0b57cec5SDimitry Andric return SINTTOFP_I64_F64; 372*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 373*0b57cec5SDimitry Andric return SINTTOFP_I64_F80; 374*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 375*0b57cec5SDimitry Andric return SINTTOFP_I64_F128; 376*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 377*0b57cec5SDimitry Andric return SINTTOFP_I64_PPCF128; 378*0b57cec5SDimitry Andric } else if (OpVT == MVT::i128) { 379*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 380*0b57cec5SDimitry Andric return SINTTOFP_I128_F32; 381*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 382*0b57cec5SDimitry Andric return SINTTOFP_I128_F64; 383*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 384*0b57cec5SDimitry Andric return SINTTOFP_I128_F80; 385*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 386*0b57cec5SDimitry Andric return SINTTOFP_I128_F128; 387*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 388*0b57cec5SDimitry Andric return SINTTOFP_I128_PPCF128; 389*0b57cec5SDimitry Andric } 390*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 391*0b57cec5SDimitry Andric } 392*0b57cec5SDimitry Andric 393*0b57cec5SDimitry Andric /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 394*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none. 395*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 396*0b57cec5SDimitry Andric if (OpVT == MVT::i32) { 397*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 398*0b57cec5SDimitry Andric return UINTTOFP_I32_F32; 399*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 400*0b57cec5SDimitry Andric return UINTTOFP_I32_F64; 401*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 402*0b57cec5SDimitry Andric return UINTTOFP_I32_F80; 403*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 404*0b57cec5SDimitry Andric return UINTTOFP_I32_F128; 405*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 406*0b57cec5SDimitry Andric return UINTTOFP_I32_PPCF128; 407*0b57cec5SDimitry Andric } else if (OpVT == MVT::i64) { 408*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 409*0b57cec5SDimitry Andric return UINTTOFP_I64_F32; 410*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 411*0b57cec5SDimitry Andric return UINTTOFP_I64_F64; 412*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 413*0b57cec5SDimitry Andric return UINTTOFP_I64_F80; 414*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 415*0b57cec5SDimitry Andric return UINTTOFP_I64_F128; 416*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 417*0b57cec5SDimitry Andric return UINTTOFP_I64_PPCF128; 418*0b57cec5SDimitry Andric } else if (OpVT == MVT::i128) { 419*0b57cec5SDimitry Andric if (RetVT == MVT::f32) 420*0b57cec5SDimitry Andric return UINTTOFP_I128_F32; 421*0b57cec5SDimitry Andric if (RetVT == MVT::f64) 422*0b57cec5SDimitry Andric return UINTTOFP_I128_F64; 423*0b57cec5SDimitry Andric if (RetVT == MVT::f80) 424*0b57cec5SDimitry Andric return UINTTOFP_I128_F80; 425*0b57cec5SDimitry Andric if (RetVT == MVT::f128) 426*0b57cec5SDimitry Andric return UINTTOFP_I128_F128; 427*0b57cec5SDimitry Andric if (RetVT == MVT::ppcf128) 428*0b57cec5SDimitry Andric return UINTTOFP_I128_PPCF128; 429*0b57cec5SDimitry Andric } 430*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 431*0b57cec5SDimitry Andric } 432*0b57cec5SDimitry Andric 433*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) { 434*0b57cec5SDimitry Andric #define OP_TO_LIBCALL(Name, Enum) \ 435*0b57cec5SDimitry Andric case Name: \ 436*0b57cec5SDimitry Andric switch (VT.SimpleTy) { \ 437*0b57cec5SDimitry Andric default: \ 438*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; \ 439*0b57cec5SDimitry Andric case MVT::i8: \ 440*0b57cec5SDimitry Andric return Enum##_1; \ 441*0b57cec5SDimitry Andric case MVT::i16: \ 442*0b57cec5SDimitry Andric return Enum##_2; \ 443*0b57cec5SDimitry Andric case MVT::i32: \ 444*0b57cec5SDimitry Andric return Enum##_4; \ 445*0b57cec5SDimitry Andric case MVT::i64: \ 446*0b57cec5SDimitry Andric return Enum##_8; \ 447*0b57cec5SDimitry Andric case MVT::i128: \ 448*0b57cec5SDimitry Andric return Enum##_16; \ 449*0b57cec5SDimitry Andric } 450*0b57cec5SDimitry Andric 451*0b57cec5SDimitry Andric switch (Opc) { 452*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 453*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 454*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 455*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 456*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 457*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 458*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 459*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 460*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 461*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 462*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 463*0b57cec5SDimitry Andric OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 464*0b57cec5SDimitry Andric } 465*0b57cec5SDimitry Andric 466*0b57cec5SDimitry Andric #undef OP_TO_LIBCALL 467*0b57cec5SDimitry Andric 468*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 469*0b57cec5SDimitry Andric } 470*0b57cec5SDimitry Andric 471*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 472*0b57cec5SDimitry Andric switch (ElementSize) { 473*0b57cec5SDimitry Andric case 1: 474*0b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1; 475*0b57cec5SDimitry Andric case 2: 476*0b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2; 477*0b57cec5SDimitry Andric case 4: 478*0b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4; 479*0b57cec5SDimitry Andric case 8: 480*0b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8; 481*0b57cec5SDimitry Andric case 16: 482*0b57cec5SDimitry Andric return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16; 483*0b57cec5SDimitry Andric default: 484*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 485*0b57cec5SDimitry Andric } 486*0b57cec5SDimitry Andric } 487*0b57cec5SDimitry Andric 488*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 489*0b57cec5SDimitry Andric switch (ElementSize) { 490*0b57cec5SDimitry Andric case 1: 491*0b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1; 492*0b57cec5SDimitry Andric case 2: 493*0b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2; 494*0b57cec5SDimitry Andric case 4: 495*0b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4; 496*0b57cec5SDimitry Andric case 8: 497*0b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8; 498*0b57cec5SDimitry Andric case 16: 499*0b57cec5SDimitry Andric return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16; 500*0b57cec5SDimitry Andric default: 501*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 502*0b57cec5SDimitry Andric } 503*0b57cec5SDimitry Andric } 504*0b57cec5SDimitry Andric 505*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) { 506*0b57cec5SDimitry Andric switch (ElementSize) { 507*0b57cec5SDimitry Andric case 1: 508*0b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_1; 509*0b57cec5SDimitry Andric case 2: 510*0b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_2; 511*0b57cec5SDimitry Andric case 4: 512*0b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_4; 513*0b57cec5SDimitry Andric case 8: 514*0b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_8; 515*0b57cec5SDimitry Andric case 16: 516*0b57cec5SDimitry Andric return MEMSET_ELEMENT_UNORDERED_ATOMIC_16; 517*0b57cec5SDimitry Andric default: 518*0b57cec5SDimitry Andric return UNKNOWN_LIBCALL; 519*0b57cec5SDimitry Andric } 520*0b57cec5SDimitry Andric } 521*0b57cec5SDimitry Andric 522*0b57cec5SDimitry Andric /// InitCmpLibcallCCs - Set default comparison libcall CC. 523*0b57cec5SDimitry Andric static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 524*0b57cec5SDimitry Andric memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 525*0b57cec5SDimitry Andric CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 526*0b57cec5SDimitry Andric CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 527*0b57cec5SDimitry Andric CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 528*0b57cec5SDimitry Andric CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ; 529*0b57cec5SDimitry Andric CCs[RTLIB::UNE_F32] = ISD::SETNE; 530*0b57cec5SDimitry Andric CCs[RTLIB::UNE_F64] = ISD::SETNE; 531*0b57cec5SDimitry Andric CCs[RTLIB::UNE_F128] = ISD::SETNE; 532*0b57cec5SDimitry Andric CCs[RTLIB::UNE_PPCF128] = ISD::SETNE; 533*0b57cec5SDimitry Andric CCs[RTLIB::OGE_F32] = ISD::SETGE; 534*0b57cec5SDimitry Andric CCs[RTLIB::OGE_F64] = ISD::SETGE; 535*0b57cec5SDimitry Andric CCs[RTLIB::OGE_F128] = ISD::SETGE; 536*0b57cec5SDimitry Andric CCs[RTLIB::OGE_PPCF128] = ISD::SETGE; 537*0b57cec5SDimitry Andric CCs[RTLIB::OLT_F32] = ISD::SETLT; 538*0b57cec5SDimitry Andric CCs[RTLIB::OLT_F64] = ISD::SETLT; 539*0b57cec5SDimitry Andric CCs[RTLIB::OLT_F128] = ISD::SETLT; 540*0b57cec5SDimitry Andric CCs[RTLIB::OLT_PPCF128] = ISD::SETLT; 541*0b57cec5SDimitry Andric CCs[RTLIB::OLE_F32] = ISD::SETLE; 542*0b57cec5SDimitry Andric CCs[RTLIB::OLE_F64] = ISD::SETLE; 543*0b57cec5SDimitry Andric CCs[RTLIB::OLE_F128] = ISD::SETLE; 544*0b57cec5SDimitry Andric CCs[RTLIB::OLE_PPCF128] = ISD::SETLE; 545*0b57cec5SDimitry Andric CCs[RTLIB::OGT_F32] = ISD::SETGT; 546*0b57cec5SDimitry Andric CCs[RTLIB::OGT_F64] = ISD::SETGT; 547*0b57cec5SDimitry Andric CCs[RTLIB::OGT_F128] = ISD::SETGT; 548*0b57cec5SDimitry Andric CCs[RTLIB::OGT_PPCF128] = ISD::SETGT; 549*0b57cec5SDimitry Andric CCs[RTLIB::UO_F32] = ISD::SETNE; 550*0b57cec5SDimitry Andric CCs[RTLIB::UO_F64] = ISD::SETNE; 551*0b57cec5SDimitry Andric CCs[RTLIB::UO_F128] = ISD::SETNE; 552*0b57cec5SDimitry Andric CCs[RTLIB::UO_PPCF128] = ISD::SETNE; 553*0b57cec5SDimitry Andric CCs[RTLIB::O_F32] = ISD::SETEQ; 554*0b57cec5SDimitry Andric CCs[RTLIB::O_F64] = ISD::SETEQ; 555*0b57cec5SDimitry Andric CCs[RTLIB::O_F128] = ISD::SETEQ; 556*0b57cec5SDimitry Andric CCs[RTLIB::O_PPCF128] = ISD::SETEQ; 557*0b57cec5SDimitry Andric } 558*0b57cec5SDimitry Andric 559*0b57cec5SDimitry Andric /// NOTE: The TargetMachine owns TLOF. 560*0b57cec5SDimitry Andric TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 561*0b57cec5SDimitry Andric initActions(); 562*0b57cec5SDimitry Andric 563*0b57cec5SDimitry Andric // Perform these initializations only once. 564*0b57cec5SDimitry Andric MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 565*0b57cec5SDimitry Andric MaxLoadsPerMemcmp = 8; 566*0b57cec5SDimitry Andric MaxGluedStoresPerMemcpy = 0; 567*0b57cec5SDimitry Andric MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize = 568*0b57cec5SDimitry Andric MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4; 569*0b57cec5SDimitry Andric UseUnderscoreSetJmp = false; 570*0b57cec5SDimitry Andric UseUnderscoreLongJmp = false; 571*0b57cec5SDimitry Andric HasMultipleConditionRegisters = false; 572*0b57cec5SDimitry Andric HasExtractBitsInsn = false; 573*0b57cec5SDimitry Andric JumpIsExpensive = JumpIsExpensiveOverride; 574*0b57cec5SDimitry Andric PredictableSelectIsExpensive = false; 575*0b57cec5SDimitry Andric EnableExtLdPromotion = false; 576*0b57cec5SDimitry Andric StackPointerRegisterToSaveRestore = 0; 577*0b57cec5SDimitry Andric BooleanContents = UndefinedBooleanContent; 578*0b57cec5SDimitry Andric BooleanFloatContents = UndefinedBooleanContent; 579*0b57cec5SDimitry Andric BooleanVectorContents = UndefinedBooleanContent; 580*0b57cec5SDimitry Andric SchedPreferenceInfo = Sched::ILP; 581*0b57cec5SDimitry Andric JumpBufSize = 0; 582*0b57cec5SDimitry Andric JumpBufAlignment = 0; 583*0b57cec5SDimitry Andric MinFunctionAlignment = 0; 584*0b57cec5SDimitry Andric PrefFunctionAlignment = 0; 585*0b57cec5SDimitry Andric PrefLoopAlignment = 0; 586*0b57cec5SDimitry Andric GatherAllAliasesMaxDepth = 18; 587*0b57cec5SDimitry Andric MinStackArgumentAlignment = 1; 588*0b57cec5SDimitry Andric // TODO: the default will be switched to 0 in the next commit, along 589*0b57cec5SDimitry Andric // with the Target-specific changes necessary. 590*0b57cec5SDimitry Andric MaxAtomicSizeInBitsSupported = 1024; 591*0b57cec5SDimitry Andric 592*0b57cec5SDimitry Andric MinCmpXchgSizeInBits = 0; 593*0b57cec5SDimitry Andric SupportsUnalignedAtomics = false; 594*0b57cec5SDimitry Andric 595*0b57cec5SDimitry Andric std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr); 596*0b57cec5SDimitry Andric 597*0b57cec5SDimitry Andric InitLibcalls(TM.getTargetTriple()); 598*0b57cec5SDimitry Andric InitCmpLibcallCCs(CmpLibcallCCs); 599*0b57cec5SDimitry Andric } 600*0b57cec5SDimitry Andric 601*0b57cec5SDimitry Andric void TargetLoweringBase::initActions() { 602*0b57cec5SDimitry Andric // All operations default to being supported. 603*0b57cec5SDimitry Andric memset(OpActions, 0, sizeof(OpActions)); 604*0b57cec5SDimitry Andric memset(LoadExtActions, 0, sizeof(LoadExtActions)); 605*0b57cec5SDimitry Andric memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 606*0b57cec5SDimitry Andric memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 607*0b57cec5SDimitry Andric memset(CondCodeActions, 0, sizeof(CondCodeActions)); 608*0b57cec5SDimitry Andric std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr); 609*0b57cec5SDimitry Andric std::fill(std::begin(TargetDAGCombineArray), 610*0b57cec5SDimitry Andric std::end(TargetDAGCombineArray), 0); 611*0b57cec5SDimitry Andric 612*0b57cec5SDimitry Andric for (MVT VT : MVT::fp_valuetypes()) { 613*0b57cec5SDimitry Andric MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 614*0b57cec5SDimitry Andric if (IntVT.isValid()) { 615*0b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_SWAP, VT, Promote); 616*0b57cec5SDimitry Andric AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT); 617*0b57cec5SDimitry Andric } 618*0b57cec5SDimitry Andric } 619*0b57cec5SDimitry Andric 620*0b57cec5SDimitry Andric // Set default actions for various operations. 621*0b57cec5SDimitry Andric for (MVT VT : MVT::all_valuetypes()) { 622*0b57cec5SDimitry Andric // Default all indexed load / store to expand. 623*0b57cec5SDimitry Andric for (unsigned IM = (unsigned)ISD::PRE_INC; 624*0b57cec5SDimitry Andric IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 625*0b57cec5SDimitry Andric setIndexedLoadAction(IM, VT, Expand); 626*0b57cec5SDimitry Andric setIndexedStoreAction(IM, VT, Expand); 627*0b57cec5SDimitry Andric } 628*0b57cec5SDimitry Andric 629*0b57cec5SDimitry Andric // Most backends expect to see the node which just returns the value loaded. 630*0b57cec5SDimitry Andric setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 631*0b57cec5SDimitry Andric 632*0b57cec5SDimitry Andric // These operations default to expand. 633*0b57cec5SDimitry Andric setOperationAction(ISD::FGETSIGN, VT, Expand); 634*0b57cec5SDimitry Andric setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 635*0b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM, VT, Expand); 636*0b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM, VT, Expand); 637*0b57cec5SDimitry Andric setOperationAction(ISD::FMINNUM_IEEE, VT, Expand); 638*0b57cec5SDimitry Andric setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand); 639*0b57cec5SDimitry Andric setOperationAction(ISD::FMINIMUM, VT, Expand); 640*0b57cec5SDimitry Andric setOperationAction(ISD::FMAXIMUM, VT, Expand); 641*0b57cec5SDimitry Andric setOperationAction(ISD::FMAD, VT, Expand); 642*0b57cec5SDimitry Andric setOperationAction(ISD::SMIN, VT, Expand); 643*0b57cec5SDimitry Andric setOperationAction(ISD::SMAX, VT, Expand); 644*0b57cec5SDimitry Andric setOperationAction(ISD::UMIN, VT, Expand); 645*0b57cec5SDimitry Andric setOperationAction(ISD::UMAX, VT, Expand); 646*0b57cec5SDimitry Andric setOperationAction(ISD::ABS, VT, Expand); 647*0b57cec5SDimitry Andric setOperationAction(ISD::FSHL, VT, Expand); 648*0b57cec5SDimitry Andric setOperationAction(ISD::FSHR, VT, Expand); 649*0b57cec5SDimitry Andric setOperationAction(ISD::SADDSAT, VT, Expand); 650*0b57cec5SDimitry Andric setOperationAction(ISD::UADDSAT, VT, Expand); 651*0b57cec5SDimitry Andric setOperationAction(ISD::SSUBSAT, VT, Expand); 652*0b57cec5SDimitry Andric setOperationAction(ISD::USUBSAT, VT, Expand); 653*0b57cec5SDimitry Andric setOperationAction(ISD::SMULFIX, VT, Expand); 654*0b57cec5SDimitry Andric setOperationAction(ISD::SMULFIXSAT, VT, Expand); 655*0b57cec5SDimitry Andric setOperationAction(ISD::UMULFIX, VT, Expand); 656*0b57cec5SDimitry Andric 657*0b57cec5SDimitry Andric // Overflow operations default to expand 658*0b57cec5SDimitry Andric setOperationAction(ISD::SADDO, VT, Expand); 659*0b57cec5SDimitry Andric setOperationAction(ISD::SSUBO, VT, Expand); 660*0b57cec5SDimitry Andric setOperationAction(ISD::UADDO, VT, Expand); 661*0b57cec5SDimitry Andric setOperationAction(ISD::USUBO, VT, Expand); 662*0b57cec5SDimitry Andric setOperationAction(ISD::SMULO, VT, Expand); 663*0b57cec5SDimitry Andric setOperationAction(ISD::UMULO, VT, Expand); 664*0b57cec5SDimitry Andric 665*0b57cec5SDimitry Andric // ADDCARRY operations default to expand 666*0b57cec5SDimitry Andric setOperationAction(ISD::ADDCARRY, VT, Expand); 667*0b57cec5SDimitry Andric setOperationAction(ISD::SUBCARRY, VT, Expand); 668*0b57cec5SDimitry Andric setOperationAction(ISD::SETCCCARRY, VT, Expand); 669*0b57cec5SDimitry Andric 670*0b57cec5SDimitry Andric // ADDC/ADDE/SUBC/SUBE default to expand. 671*0b57cec5SDimitry Andric setOperationAction(ISD::ADDC, VT, Expand); 672*0b57cec5SDimitry Andric setOperationAction(ISD::ADDE, VT, Expand); 673*0b57cec5SDimitry Andric setOperationAction(ISD::SUBC, VT, Expand); 674*0b57cec5SDimitry Andric setOperationAction(ISD::SUBE, VT, Expand); 675*0b57cec5SDimitry Andric 676*0b57cec5SDimitry Andric // These default to Expand so they will be expanded to CTLZ/CTTZ by default. 677*0b57cec5SDimitry Andric setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 678*0b57cec5SDimitry Andric setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 679*0b57cec5SDimitry Andric 680*0b57cec5SDimitry Andric setOperationAction(ISD::BITREVERSE, VT, Expand); 681*0b57cec5SDimitry Andric 682*0b57cec5SDimitry Andric // These library functions default to expand. 683*0b57cec5SDimitry Andric setOperationAction(ISD::FROUND, VT, Expand); 684*0b57cec5SDimitry Andric setOperationAction(ISD::FPOWI, VT, Expand); 685*0b57cec5SDimitry Andric 686*0b57cec5SDimitry Andric // These operations default to expand for vector types. 687*0b57cec5SDimitry Andric if (VT.isVector()) { 688*0b57cec5SDimitry Andric setOperationAction(ISD::FCOPYSIGN, VT, Expand); 689*0b57cec5SDimitry Andric setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 690*0b57cec5SDimitry Andric setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 691*0b57cec5SDimitry Andric setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 692*0b57cec5SDimitry Andric } 693*0b57cec5SDimitry Andric 694*0b57cec5SDimitry Andric // Constrained floating-point operations default to expand. 695*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FADD, VT, Expand); 696*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSUB, VT, Expand); 697*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMUL, VT, Expand); 698*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FDIV, VT, Expand); 699*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FREM, VT, Expand); 700*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMA, VT, Expand); 701*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSQRT, VT, Expand); 702*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FPOW, VT, Expand); 703*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FPOWI, VT, Expand); 704*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FSIN, VT, Expand); 705*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCOS, VT, Expand); 706*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FEXP, VT, Expand); 707*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FEXP2, VT, Expand); 708*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FLOG, VT, Expand); 709*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FLOG10, VT, Expand); 710*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FLOG2, VT, Expand); 711*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FRINT, VT, Expand); 712*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand); 713*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FCEIL, VT, Expand); 714*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FFLOOR, VT, Expand); 715*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FROUND, VT, Expand); 716*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FTRUNC, VT, Expand); 717*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand); 718*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FMINNUM, VT, Expand); 719*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand); 720*0b57cec5SDimitry Andric setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand); 721*0b57cec5SDimitry Andric 722*0b57cec5SDimitry Andric // For most targets @llvm.get.dynamic.area.offset just returns 0. 723*0b57cec5SDimitry Andric setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 724*0b57cec5SDimitry Andric 725*0b57cec5SDimitry Andric // Vector reduction default to expand. 726*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_FADD, VT, Expand); 727*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand); 728*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_ADD, VT, Expand); 729*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_MUL, VT, Expand); 730*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_AND, VT, Expand); 731*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_OR, VT, Expand); 732*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_XOR, VT, Expand); 733*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand); 734*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand); 735*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand); 736*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand); 737*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand); 738*0b57cec5SDimitry Andric setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand); 739*0b57cec5SDimitry Andric } 740*0b57cec5SDimitry Andric 741*0b57cec5SDimitry Andric // Most targets ignore the @llvm.prefetch intrinsic. 742*0b57cec5SDimitry Andric setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 743*0b57cec5SDimitry Andric 744*0b57cec5SDimitry Andric // Most targets also ignore the @llvm.readcyclecounter intrinsic. 745*0b57cec5SDimitry Andric setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 746*0b57cec5SDimitry Andric 747*0b57cec5SDimitry Andric // ConstantFP nodes default to expand. Targets can either change this to 748*0b57cec5SDimitry Andric // Legal, in which case all fp constants are legal, or use isFPImmLegal() 749*0b57cec5SDimitry Andric // to optimize expansions for certain constants. 750*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 751*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 752*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 753*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 754*0b57cec5SDimitry Andric setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 755*0b57cec5SDimitry Andric 756*0b57cec5SDimitry Andric // These library functions default to expand. 757*0b57cec5SDimitry Andric for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 758*0b57cec5SDimitry Andric setOperationAction(ISD::FCBRT, VT, Expand); 759*0b57cec5SDimitry Andric setOperationAction(ISD::FLOG , VT, Expand); 760*0b57cec5SDimitry Andric setOperationAction(ISD::FLOG2, VT, Expand); 761*0b57cec5SDimitry Andric setOperationAction(ISD::FLOG10, VT, Expand); 762*0b57cec5SDimitry Andric setOperationAction(ISD::FEXP , VT, Expand); 763*0b57cec5SDimitry Andric setOperationAction(ISD::FEXP2, VT, Expand); 764*0b57cec5SDimitry Andric setOperationAction(ISD::FFLOOR, VT, Expand); 765*0b57cec5SDimitry Andric setOperationAction(ISD::FNEARBYINT, VT, Expand); 766*0b57cec5SDimitry Andric setOperationAction(ISD::FCEIL, VT, Expand); 767*0b57cec5SDimitry Andric setOperationAction(ISD::FRINT, VT, Expand); 768*0b57cec5SDimitry Andric setOperationAction(ISD::FTRUNC, VT, Expand); 769*0b57cec5SDimitry Andric setOperationAction(ISD::FROUND, VT, Expand); 770*0b57cec5SDimitry Andric setOperationAction(ISD::LROUND, VT, Expand); 771*0b57cec5SDimitry Andric setOperationAction(ISD::LLROUND, VT, Expand); 772*0b57cec5SDimitry Andric setOperationAction(ISD::LRINT, VT, Expand); 773*0b57cec5SDimitry Andric setOperationAction(ISD::LLRINT, VT, Expand); 774*0b57cec5SDimitry Andric } 775*0b57cec5SDimitry Andric 776*0b57cec5SDimitry Andric // Default ISD::TRAP to expand (which turns it into abort). 777*0b57cec5SDimitry Andric setOperationAction(ISD::TRAP, MVT::Other, Expand); 778*0b57cec5SDimitry Andric 779*0b57cec5SDimitry Andric // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 780*0b57cec5SDimitry Andric // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 781*0b57cec5SDimitry Andric setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 782*0b57cec5SDimitry Andric } 783*0b57cec5SDimitry Andric 784*0b57cec5SDimitry Andric MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 785*0b57cec5SDimitry Andric EVT) const { 786*0b57cec5SDimitry Andric return MVT::getIntegerVT(DL.getPointerSizeInBits(0)); 787*0b57cec5SDimitry Andric } 788*0b57cec5SDimitry Andric 789*0b57cec5SDimitry Andric EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL, 790*0b57cec5SDimitry Andric bool LegalTypes) const { 791*0b57cec5SDimitry Andric assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 792*0b57cec5SDimitry Andric if (LHSTy.isVector()) 793*0b57cec5SDimitry Andric return LHSTy; 794*0b57cec5SDimitry Andric return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) 795*0b57cec5SDimitry Andric : getPointerTy(DL); 796*0b57cec5SDimitry Andric } 797*0b57cec5SDimitry Andric 798*0b57cec5SDimitry Andric bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 799*0b57cec5SDimitry Andric assert(isTypeLegal(VT)); 800*0b57cec5SDimitry Andric switch (Op) { 801*0b57cec5SDimitry Andric default: 802*0b57cec5SDimitry Andric return false; 803*0b57cec5SDimitry Andric case ISD::SDIV: 804*0b57cec5SDimitry Andric case ISD::UDIV: 805*0b57cec5SDimitry Andric case ISD::SREM: 806*0b57cec5SDimitry Andric case ISD::UREM: 807*0b57cec5SDimitry Andric return true; 808*0b57cec5SDimitry Andric } 809*0b57cec5SDimitry Andric } 810*0b57cec5SDimitry Andric 811*0b57cec5SDimitry Andric void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 812*0b57cec5SDimitry Andric // If the command-line option was specified, ignore this request. 813*0b57cec5SDimitry Andric if (!JumpIsExpensiveOverride.getNumOccurrences()) 814*0b57cec5SDimitry Andric JumpIsExpensive = isExpensive; 815*0b57cec5SDimitry Andric } 816*0b57cec5SDimitry Andric 817*0b57cec5SDimitry Andric TargetLoweringBase::LegalizeKind 818*0b57cec5SDimitry Andric TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 819*0b57cec5SDimitry Andric // If this is a simple type, use the ComputeRegisterProp mechanism. 820*0b57cec5SDimitry Andric if (VT.isSimple()) { 821*0b57cec5SDimitry Andric MVT SVT = VT.getSimpleVT(); 822*0b57cec5SDimitry Andric assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 823*0b57cec5SDimitry Andric MVT NVT = TransformToType[SVT.SimpleTy]; 824*0b57cec5SDimitry Andric LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 825*0b57cec5SDimitry Andric 826*0b57cec5SDimitry Andric assert((LA == TypeLegal || LA == TypeSoftenFloat || 827*0b57cec5SDimitry Andric ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && 828*0b57cec5SDimitry Andric "Promote may not follow Expand or Promote"); 829*0b57cec5SDimitry Andric 830*0b57cec5SDimitry Andric if (LA == TypeSplitVector) 831*0b57cec5SDimitry Andric return LegalizeKind(LA, 832*0b57cec5SDimitry Andric EVT::getVectorVT(Context, SVT.getVectorElementType(), 833*0b57cec5SDimitry Andric SVT.getVectorNumElements() / 2)); 834*0b57cec5SDimitry Andric if (LA == TypeScalarizeVector) 835*0b57cec5SDimitry Andric return LegalizeKind(LA, SVT.getVectorElementType()); 836*0b57cec5SDimitry Andric return LegalizeKind(LA, NVT); 837*0b57cec5SDimitry Andric } 838*0b57cec5SDimitry Andric 839*0b57cec5SDimitry Andric // Handle Extended Scalar Types. 840*0b57cec5SDimitry Andric if (!VT.isVector()) { 841*0b57cec5SDimitry Andric assert(VT.isInteger() && "Float types must be simple"); 842*0b57cec5SDimitry Andric unsigned BitSize = VT.getSizeInBits(); 843*0b57cec5SDimitry Andric // First promote to a power-of-two size, then expand if necessary. 844*0b57cec5SDimitry Andric if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 845*0b57cec5SDimitry Andric EVT NVT = VT.getRoundIntegerType(Context); 846*0b57cec5SDimitry Andric assert(NVT != VT && "Unable to round integer VT"); 847*0b57cec5SDimitry Andric LegalizeKind NextStep = getTypeConversion(Context, NVT); 848*0b57cec5SDimitry Andric // Avoid multi-step promotion. 849*0b57cec5SDimitry Andric if (NextStep.first == TypePromoteInteger) 850*0b57cec5SDimitry Andric return NextStep; 851*0b57cec5SDimitry Andric // Return rounded integer type. 852*0b57cec5SDimitry Andric return LegalizeKind(TypePromoteInteger, NVT); 853*0b57cec5SDimitry Andric } 854*0b57cec5SDimitry Andric 855*0b57cec5SDimitry Andric return LegalizeKind(TypeExpandInteger, 856*0b57cec5SDimitry Andric EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 857*0b57cec5SDimitry Andric } 858*0b57cec5SDimitry Andric 859*0b57cec5SDimitry Andric // Handle vector types. 860*0b57cec5SDimitry Andric unsigned NumElts = VT.getVectorNumElements(); 861*0b57cec5SDimitry Andric EVT EltVT = VT.getVectorElementType(); 862*0b57cec5SDimitry Andric 863*0b57cec5SDimitry Andric // Vectors with only one element are always scalarized. 864*0b57cec5SDimitry Andric if (NumElts == 1) 865*0b57cec5SDimitry Andric return LegalizeKind(TypeScalarizeVector, EltVT); 866*0b57cec5SDimitry Andric 867*0b57cec5SDimitry Andric // Try to widen vector elements until the element type is a power of two and 868*0b57cec5SDimitry Andric // promote it to a legal type later on, for example: 869*0b57cec5SDimitry Andric // <3 x i8> -> <4 x i8> -> <4 x i32> 870*0b57cec5SDimitry Andric if (EltVT.isInteger()) { 871*0b57cec5SDimitry Andric // Vectors with a number of elements that is not a power of two are always 872*0b57cec5SDimitry Andric // widened, for example <3 x i8> -> <4 x i8>. 873*0b57cec5SDimitry Andric if (!VT.isPow2VectorType()) { 874*0b57cec5SDimitry Andric NumElts = (unsigned)NextPowerOf2(NumElts); 875*0b57cec5SDimitry Andric EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 876*0b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, NVT); 877*0b57cec5SDimitry Andric } 878*0b57cec5SDimitry Andric 879*0b57cec5SDimitry Andric // Examine the element type. 880*0b57cec5SDimitry Andric LegalizeKind LK = getTypeConversion(Context, EltVT); 881*0b57cec5SDimitry Andric 882*0b57cec5SDimitry Andric // If type is to be expanded, split the vector. 883*0b57cec5SDimitry Andric // <4 x i140> -> <2 x i140> 884*0b57cec5SDimitry Andric if (LK.first == TypeExpandInteger) 885*0b57cec5SDimitry Andric return LegalizeKind(TypeSplitVector, 886*0b57cec5SDimitry Andric EVT::getVectorVT(Context, EltVT, NumElts / 2)); 887*0b57cec5SDimitry Andric 888*0b57cec5SDimitry Andric // Promote the integer element types until a legal vector type is found 889*0b57cec5SDimitry Andric // or until the element integer type is too big. If a legal type was not 890*0b57cec5SDimitry Andric // found, fallback to the usual mechanism of widening/splitting the 891*0b57cec5SDimitry Andric // vector. 892*0b57cec5SDimitry Andric EVT OldEltVT = EltVT; 893*0b57cec5SDimitry Andric while (true) { 894*0b57cec5SDimitry Andric // Increase the bitwidth of the element to the next pow-of-two 895*0b57cec5SDimitry Andric // (which is greater than 8 bits). 896*0b57cec5SDimitry Andric EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 897*0b57cec5SDimitry Andric .getRoundIntegerType(Context); 898*0b57cec5SDimitry Andric 899*0b57cec5SDimitry Andric // Stop trying when getting a non-simple element type. 900*0b57cec5SDimitry Andric // Note that vector elements may be greater than legal vector element 901*0b57cec5SDimitry Andric // types. Example: X86 XMM registers hold 64bit element on 32bit 902*0b57cec5SDimitry Andric // systems. 903*0b57cec5SDimitry Andric if (!EltVT.isSimple()) 904*0b57cec5SDimitry Andric break; 905*0b57cec5SDimitry Andric 906*0b57cec5SDimitry Andric // Build a new vector type and check if it is legal. 907*0b57cec5SDimitry Andric MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 908*0b57cec5SDimitry Andric // Found a legal promoted vector type. 909*0b57cec5SDimitry Andric if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 910*0b57cec5SDimitry Andric return LegalizeKind(TypePromoteInteger, 911*0b57cec5SDimitry Andric EVT::getVectorVT(Context, EltVT, NumElts)); 912*0b57cec5SDimitry Andric } 913*0b57cec5SDimitry Andric 914*0b57cec5SDimitry Andric // Reset the type to the unexpanded type if we did not find a legal vector 915*0b57cec5SDimitry Andric // type with a promoted vector element type. 916*0b57cec5SDimitry Andric EltVT = OldEltVT; 917*0b57cec5SDimitry Andric } 918*0b57cec5SDimitry Andric 919*0b57cec5SDimitry Andric // Try to widen the vector until a legal type is found. 920*0b57cec5SDimitry Andric // If there is no wider legal type, split the vector. 921*0b57cec5SDimitry Andric while (true) { 922*0b57cec5SDimitry Andric // Round up to the next power of 2. 923*0b57cec5SDimitry Andric NumElts = (unsigned)NextPowerOf2(NumElts); 924*0b57cec5SDimitry Andric 925*0b57cec5SDimitry Andric // If there is no simple vector type with this many elements then there 926*0b57cec5SDimitry Andric // cannot be a larger legal vector type. Note that this assumes that 927*0b57cec5SDimitry Andric // there are no skipped intermediate vector types in the simple types. 928*0b57cec5SDimitry Andric if (!EltVT.isSimple()) 929*0b57cec5SDimitry Andric break; 930*0b57cec5SDimitry Andric MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 931*0b57cec5SDimitry Andric if (LargerVector == MVT()) 932*0b57cec5SDimitry Andric break; 933*0b57cec5SDimitry Andric 934*0b57cec5SDimitry Andric // If this type is legal then widen the vector. 935*0b57cec5SDimitry Andric if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 936*0b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, LargerVector); 937*0b57cec5SDimitry Andric } 938*0b57cec5SDimitry Andric 939*0b57cec5SDimitry Andric // Widen odd vectors to next power of two. 940*0b57cec5SDimitry Andric if (!VT.isPow2VectorType()) { 941*0b57cec5SDimitry Andric EVT NVT = VT.getPow2VectorType(Context); 942*0b57cec5SDimitry Andric return LegalizeKind(TypeWidenVector, NVT); 943*0b57cec5SDimitry Andric } 944*0b57cec5SDimitry Andric 945*0b57cec5SDimitry Andric // Vectors with illegal element types are expanded. 946*0b57cec5SDimitry Andric EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 947*0b57cec5SDimitry Andric return LegalizeKind(TypeSplitVector, NVT); 948*0b57cec5SDimitry Andric } 949*0b57cec5SDimitry Andric 950*0b57cec5SDimitry Andric static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 951*0b57cec5SDimitry Andric unsigned &NumIntermediates, 952*0b57cec5SDimitry Andric MVT &RegisterVT, 953*0b57cec5SDimitry Andric TargetLoweringBase *TLI) { 954*0b57cec5SDimitry Andric // Figure out the right, legal destination reg to copy into. 955*0b57cec5SDimitry Andric unsigned NumElts = VT.getVectorNumElements(); 956*0b57cec5SDimitry Andric MVT EltTy = VT.getVectorElementType(); 957*0b57cec5SDimitry Andric 958*0b57cec5SDimitry Andric unsigned NumVectorRegs = 1; 959*0b57cec5SDimitry Andric 960*0b57cec5SDimitry Andric // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 961*0b57cec5SDimitry Andric // could break down into LHS/RHS like LegalizeDAG does. 962*0b57cec5SDimitry Andric if (!isPowerOf2_32(NumElts)) { 963*0b57cec5SDimitry Andric NumVectorRegs = NumElts; 964*0b57cec5SDimitry Andric NumElts = 1; 965*0b57cec5SDimitry Andric } 966*0b57cec5SDimitry Andric 967*0b57cec5SDimitry Andric // Divide the input until we get to a supported size. This will always 968*0b57cec5SDimitry Andric // end with a scalar if the target doesn't support vectors. 969*0b57cec5SDimitry Andric while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 970*0b57cec5SDimitry Andric NumElts >>= 1; 971*0b57cec5SDimitry Andric NumVectorRegs <<= 1; 972*0b57cec5SDimitry Andric } 973*0b57cec5SDimitry Andric 974*0b57cec5SDimitry Andric NumIntermediates = NumVectorRegs; 975*0b57cec5SDimitry Andric 976*0b57cec5SDimitry Andric MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 977*0b57cec5SDimitry Andric if (!TLI->isTypeLegal(NewVT)) 978*0b57cec5SDimitry Andric NewVT = EltTy; 979*0b57cec5SDimitry Andric IntermediateVT = NewVT; 980*0b57cec5SDimitry Andric 981*0b57cec5SDimitry Andric unsigned NewVTSize = NewVT.getSizeInBits(); 982*0b57cec5SDimitry Andric 983*0b57cec5SDimitry Andric // Convert sizes such as i33 to i64. 984*0b57cec5SDimitry Andric if (!isPowerOf2_32(NewVTSize)) 985*0b57cec5SDimitry Andric NewVTSize = NextPowerOf2(NewVTSize); 986*0b57cec5SDimitry Andric 987*0b57cec5SDimitry Andric MVT DestVT = TLI->getRegisterType(NewVT); 988*0b57cec5SDimitry Andric RegisterVT = DestVT; 989*0b57cec5SDimitry Andric if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 990*0b57cec5SDimitry Andric return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 991*0b57cec5SDimitry Andric 992*0b57cec5SDimitry Andric // Otherwise, promotion or legal types use the same number of registers as 993*0b57cec5SDimitry Andric // the vector decimated to the appropriate level. 994*0b57cec5SDimitry Andric return NumVectorRegs; 995*0b57cec5SDimitry Andric } 996*0b57cec5SDimitry Andric 997*0b57cec5SDimitry Andric /// isLegalRC - Return true if the value types that can be represented by the 998*0b57cec5SDimitry Andric /// specified register class are all legal. 999*0b57cec5SDimitry Andric bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI, 1000*0b57cec5SDimitry Andric const TargetRegisterClass &RC) const { 1001*0b57cec5SDimitry Andric for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I) 1002*0b57cec5SDimitry Andric if (isTypeLegal(*I)) 1003*0b57cec5SDimitry Andric return true; 1004*0b57cec5SDimitry Andric return false; 1005*0b57cec5SDimitry Andric } 1006*0b57cec5SDimitry Andric 1007*0b57cec5SDimitry Andric /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1008*0b57cec5SDimitry Andric /// sequence of memory operands that is recognized by PrologEpilogInserter. 1009*0b57cec5SDimitry Andric MachineBasicBlock * 1010*0b57cec5SDimitry Andric TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI, 1011*0b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 1012*0b57cec5SDimitry Andric MachineInstr *MI = &InitialMI; 1013*0b57cec5SDimitry Andric MachineFunction &MF = *MI->getMF(); 1014*0b57cec5SDimitry Andric MachineFrameInfo &MFI = MF.getFrameInfo(); 1015*0b57cec5SDimitry Andric 1016*0b57cec5SDimitry Andric // We're handling multiple types of operands here: 1017*0b57cec5SDimitry Andric // PATCHPOINT MetaArgs - live-in, read only, direct 1018*0b57cec5SDimitry Andric // STATEPOINT Deopt Spill - live-through, read only, indirect 1019*0b57cec5SDimitry Andric // STATEPOINT Deopt Alloca - live-through, read only, direct 1020*0b57cec5SDimitry Andric // (We're currently conservative and mark the deopt slots read/write in 1021*0b57cec5SDimitry Andric // practice.) 1022*0b57cec5SDimitry Andric // STATEPOINT GC Spill - live-through, read/write, indirect 1023*0b57cec5SDimitry Andric // STATEPOINT GC Alloca - live-through, read/write, direct 1024*0b57cec5SDimitry Andric // The live-in vs live-through is handled already (the live through ones are 1025*0b57cec5SDimitry Andric // all stack slots), but we need to handle the different type of stackmap 1026*0b57cec5SDimitry Andric // operands and memory effects here. 1027*0b57cec5SDimitry Andric 1028*0b57cec5SDimitry Andric // MI changes inside this loop as we grow operands. 1029*0b57cec5SDimitry Andric for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 1030*0b57cec5SDimitry Andric MachineOperand &MO = MI->getOperand(OperIdx); 1031*0b57cec5SDimitry Andric if (!MO.isFI()) 1032*0b57cec5SDimitry Andric continue; 1033*0b57cec5SDimitry Andric 1034*0b57cec5SDimitry Andric // foldMemoryOperand builds a new MI after replacing a single FI operand 1035*0b57cec5SDimitry Andric // with the canonical set of five x86 addressing-mode operands. 1036*0b57cec5SDimitry Andric int FI = MO.getIndex(); 1037*0b57cec5SDimitry Andric MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1038*0b57cec5SDimitry Andric 1039*0b57cec5SDimitry Andric // Copy operands before the frame-index. 1040*0b57cec5SDimitry Andric for (unsigned i = 0; i < OperIdx; ++i) 1041*0b57cec5SDimitry Andric MIB.add(MI->getOperand(i)); 1042*0b57cec5SDimitry Andric // Add frame index operands recognized by stackmaps.cpp 1043*0b57cec5SDimitry Andric if (MFI.isStatepointSpillSlotObjectIndex(FI)) { 1044*0b57cec5SDimitry Andric // indirect-mem-ref tag, size, #FI, offset. 1045*0b57cec5SDimitry Andric // Used for spills inserted by StatepointLowering. This codepath is not 1046*0b57cec5SDimitry Andric // used for patchpoints/stackmaps at all, for these spilling is done via 1047*0b57cec5SDimitry Andric // foldMemoryOperand callback only. 1048*0b57cec5SDimitry Andric assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity"); 1049*0b57cec5SDimitry Andric MIB.addImm(StackMaps::IndirectMemRefOp); 1050*0b57cec5SDimitry Andric MIB.addImm(MFI.getObjectSize(FI)); 1051*0b57cec5SDimitry Andric MIB.add(MI->getOperand(OperIdx)); 1052*0b57cec5SDimitry Andric MIB.addImm(0); 1053*0b57cec5SDimitry Andric } else { 1054*0b57cec5SDimitry Andric // direct-mem-ref tag, #FI, offset. 1055*0b57cec5SDimitry Andric // Used by patchpoint, and direct alloca arguments to statepoints 1056*0b57cec5SDimitry Andric MIB.addImm(StackMaps::DirectMemRefOp); 1057*0b57cec5SDimitry Andric MIB.add(MI->getOperand(OperIdx)); 1058*0b57cec5SDimitry Andric MIB.addImm(0); 1059*0b57cec5SDimitry Andric } 1060*0b57cec5SDimitry Andric // Copy the operands after the frame index. 1061*0b57cec5SDimitry Andric for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 1062*0b57cec5SDimitry Andric MIB.add(MI->getOperand(i)); 1063*0b57cec5SDimitry Andric 1064*0b57cec5SDimitry Andric // Inherit previous memory operands. 1065*0b57cec5SDimitry Andric MIB.cloneMemRefs(*MI); 1066*0b57cec5SDimitry Andric assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1067*0b57cec5SDimitry Andric 1068*0b57cec5SDimitry Andric // Add a new memory operand for this FI. 1069*0b57cec5SDimitry Andric assert(MFI.getObjectOffset(FI) != -1); 1070*0b57cec5SDimitry Andric 1071*0b57cec5SDimitry Andric // Note: STATEPOINT MMOs are added during SelectionDAG. STACKMAP, and 1072*0b57cec5SDimitry Andric // PATCHPOINT should be updated to do the same. (TODO) 1073*0b57cec5SDimitry Andric if (MI->getOpcode() != TargetOpcode::STATEPOINT) { 1074*0b57cec5SDimitry Andric auto Flags = MachineMemOperand::MOLoad; 1075*0b57cec5SDimitry Andric MachineMemOperand *MMO = MF.getMachineMemOperand( 1076*0b57cec5SDimitry Andric MachinePointerInfo::getFixedStack(MF, FI), Flags, 1077*0b57cec5SDimitry Andric MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 1078*0b57cec5SDimitry Andric MIB->addMemOperand(MF, MMO); 1079*0b57cec5SDimitry Andric } 1080*0b57cec5SDimitry Andric 1081*0b57cec5SDimitry Andric // Replace the instruction and update the operand index. 1082*0b57cec5SDimitry Andric MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1083*0b57cec5SDimitry Andric OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 1084*0b57cec5SDimitry Andric MI->eraseFromParent(); 1085*0b57cec5SDimitry Andric MI = MIB; 1086*0b57cec5SDimitry Andric } 1087*0b57cec5SDimitry Andric return MBB; 1088*0b57cec5SDimitry Andric } 1089*0b57cec5SDimitry Andric 1090*0b57cec5SDimitry Andric MachineBasicBlock * 1091*0b57cec5SDimitry Andric TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI, 1092*0b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 1093*0b57cec5SDimitry Andric assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL && 1094*0b57cec5SDimitry Andric "Called emitXRayCustomEvent on the wrong MI!"); 1095*0b57cec5SDimitry Andric auto &MF = *MI.getMF(); 1096*0b57cec5SDimitry Andric auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1097*0b57cec5SDimitry Andric for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1098*0b57cec5SDimitry Andric MIB.add(MI.getOperand(OpIdx)); 1099*0b57cec5SDimitry Andric 1100*0b57cec5SDimitry Andric MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1101*0b57cec5SDimitry Andric MI.eraseFromParent(); 1102*0b57cec5SDimitry Andric return MBB; 1103*0b57cec5SDimitry Andric } 1104*0b57cec5SDimitry Andric 1105*0b57cec5SDimitry Andric MachineBasicBlock * 1106*0b57cec5SDimitry Andric TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI, 1107*0b57cec5SDimitry Andric MachineBasicBlock *MBB) const { 1108*0b57cec5SDimitry Andric assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL && 1109*0b57cec5SDimitry Andric "Called emitXRayTypedEvent on the wrong MI!"); 1110*0b57cec5SDimitry Andric auto &MF = *MI.getMF(); 1111*0b57cec5SDimitry Andric auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc()); 1112*0b57cec5SDimitry Andric for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx) 1113*0b57cec5SDimitry Andric MIB.add(MI.getOperand(OpIdx)); 1114*0b57cec5SDimitry Andric 1115*0b57cec5SDimitry Andric MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1116*0b57cec5SDimitry Andric MI.eraseFromParent(); 1117*0b57cec5SDimitry Andric return MBB; 1118*0b57cec5SDimitry Andric } 1119*0b57cec5SDimitry Andric 1120*0b57cec5SDimitry Andric /// findRepresentativeClass - Return the largest legal super-reg register class 1121*0b57cec5SDimitry Andric /// of the register class for the specified type and its associated "cost". 1122*0b57cec5SDimitry Andric // This function is in TargetLowering because it uses RegClassForVT which would 1123*0b57cec5SDimitry Andric // need to be moved to TargetRegisterInfo and would necessitate moving 1124*0b57cec5SDimitry Andric // isTypeLegal over as well - a massive change that would just require 1125*0b57cec5SDimitry Andric // TargetLowering having a TargetRegisterInfo class member that it would use. 1126*0b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t> 1127*0b57cec5SDimitry Andric TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1128*0b57cec5SDimitry Andric MVT VT) const { 1129*0b57cec5SDimitry Andric const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1130*0b57cec5SDimitry Andric if (!RC) 1131*0b57cec5SDimitry Andric return std::make_pair(RC, 0); 1132*0b57cec5SDimitry Andric 1133*0b57cec5SDimitry Andric // Compute the set of all super-register classes. 1134*0b57cec5SDimitry Andric BitVector SuperRegRC(TRI->getNumRegClasses()); 1135*0b57cec5SDimitry Andric for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1136*0b57cec5SDimitry Andric SuperRegRC.setBitsInMask(RCI.getMask()); 1137*0b57cec5SDimitry Andric 1138*0b57cec5SDimitry Andric // Find the first legal register class with the largest spill size. 1139*0b57cec5SDimitry Andric const TargetRegisterClass *BestRC = RC; 1140*0b57cec5SDimitry Andric for (unsigned i : SuperRegRC.set_bits()) { 1141*0b57cec5SDimitry Andric const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1142*0b57cec5SDimitry Andric // We want the largest possible spill size. 1143*0b57cec5SDimitry Andric if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC)) 1144*0b57cec5SDimitry Andric continue; 1145*0b57cec5SDimitry Andric if (!isLegalRC(*TRI, *SuperRC)) 1146*0b57cec5SDimitry Andric continue; 1147*0b57cec5SDimitry Andric BestRC = SuperRC; 1148*0b57cec5SDimitry Andric } 1149*0b57cec5SDimitry Andric return std::make_pair(BestRC, 1); 1150*0b57cec5SDimitry Andric } 1151*0b57cec5SDimitry Andric 1152*0b57cec5SDimitry Andric /// computeRegisterProperties - Once all of the register classes are added, 1153*0b57cec5SDimitry Andric /// this allows us to compute derived properties we expose. 1154*0b57cec5SDimitry Andric void TargetLoweringBase::computeRegisterProperties( 1155*0b57cec5SDimitry Andric const TargetRegisterInfo *TRI) { 1156*0b57cec5SDimitry Andric static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1157*0b57cec5SDimitry Andric "Too many value types for ValueTypeActions to hold!"); 1158*0b57cec5SDimitry Andric 1159*0b57cec5SDimitry Andric // Everything defaults to needing one register. 1160*0b57cec5SDimitry Andric for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1161*0b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 1162*0b57cec5SDimitry Andric RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1163*0b57cec5SDimitry Andric } 1164*0b57cec5SDimitry Andric // ...except isVoid, which doesn't need any registers. 1165*0b57cec5SDimitry Andric NumRegistersForVT[MVT::isVoid] = 0; 1166*0b57cec5SDimitry Andric 1167*0b57cec5SDimitry Andric // Find the largest integer register class. 1168*0b57cec5SDimitry Andric unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1169*0b57cec5SDimitry Andric for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1170*0b57cec5SDimitry Andric assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1171*0b57cec5SDimitry Andric 1172*0b57cec5SDimitry Andric // Every integer value type larger than this largest register takes twice as 1173*0b57cec5SDimitry Andric // many registers to represent as the previous ValueType. 1174*0b57cec5SDimitry Andric for (unsigned ExpandedReg = LargestIntReg + 1; 1175*0b57cec5SDimitry Andric ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1176*0b57cec5SDimitry Andric NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1177*0b57cec5SDimitry Andric RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1178*0b57cec5SDimitry Andric TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1179*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1180*0b57cec5SDimitry Andric TypeExpandInteger); 1181*0b57cec5SDimitry Andric } 1182*0b57cec5SDimitry Andric 1183*0b57cec5SDimitry Andric // Inspect all of the ValueType's smaller than the largest integer 1184*0b57cec5SDimitry Andric // register to see which ones need promotion. 1185*0b57cec5SDimitry Andric unsigned LegalIntReg = LargestIntReg; 1186*0b57cec5SDimitry Andric for (unsigned IntReg = LargestIntReg - 1; 1187*0b57cec5SDimitry Andric IntReg >= (unsigned)MVT::i1; --IntReg) { 1188*0b57cec5SDimitry Andric MVT IVT = (MVT::SimpleValueType)IntReg; 1189*0b57cec5SDimitry Andric if (isTypeLegal(IVT)) { 1190*0b57cec5SDimitry Andric LegalIntReg = IntReg; 1191*0b57cec5SDimitry Andric } else { 1192*0b57cec5SDimitry Andric RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1193*0b57cec5SDimitry Andric (MVT::SimpleValueType)LegalIntReg; 1194*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1195*0b57cec5SDimitry Andric } 1196*0b57cec5SDimitry Andric } 1197*0b57cec5SDimitry Andric 1198*0b57cec5SDimitry Andric // ppcf128 type is really two f64's. 1199*0b57cec5SDimitry Andric if (!isTypeLegal(MVT::ppcf128)) { 1200*0b57cec5SDimitry Andric if (isTypeLegal(MVT::f64)) { 1201*0b57cec5SDimitry Andric NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1202*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1203*0b57cec5SDimitry Andric TransformToType[MVT::ppcf128] = MVT::f64; 1204*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1205*0b57cec5SDimitry Andric } else { 1206*0b57cec5SDimitry Andric NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128]; 1207*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128]; 1208*0b57cec5SDimitry Andric TransformToType[MVT::ppcf128] = MVT::i128; 1209*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat); 1210*0b57cec5SDimitry Andric } 1211*0b57cec5SDimitry Andric } 1212*0b57cec5SDimitry Andric 1213*0b57cec5SDimitry Andric // Decide how to handle f128. If the target does not have native f128 support, 1214*0b57cec5SDimitry Andric // expand it to i128 and we will be generating soft float library calls. 1215*0b57cec5SDimitry Andric if (!isTypeLegal(MVT::f128)) { 1216*0b57cec5SDimitry Andric NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1217*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1218*0b57cec5SDimitry Andric TransformToType[MVT::f128] = MVT::i128; 1219*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1220*0b57cec5SDimitry Andric } 1221*0b57cec5SDimitry Andric 1222*0b57cec5SDimitry Andric // Decide how to handle f64. If the target does not have native f64 support, 1223*0b57cec5SDimitry Andric // expand it to i64 and we will be generating soft float library calls. 1224*0b57cec5SDimitry Andric if (!isTypeLegal(MVT::f64)) { 1225*0b57cec5SDimitry Andric NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1226*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1227*0b57cec5SDimitry Andric TransformToType[MVT::f64] = MVT::i64; 1228*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1229*0b57cec5SDimitry Andric } 1230*0b57cec5SDimitry Andric 1231*0b57cec5SDimitry Andric // Decide how to handle f32. If the target does not have native f32 support, 1232*0b57cec5SDimitry Andric // expand it to i32 and we will be generating soft float library calls. 1233*0b57cec5SDimitry Andric if (!isTypeLegal(MVT::f32)) { 1234*0b57cec5SDimitry Andric NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1235*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1236*0b57cec5SDimitry Andric TransformToType[MVT::f32] = MVT::i32; 1237*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1238*0b57cec5SDimitry Andric } 1239*0b57cec5SDimitry Andric 1240*0b57cec5SDimitry Andric // Decide how to handle f16. If the target does not have native f16 support, 1241*0b57cec5SDimitry Andric // promote it to f32, because there are no f16 library calls (except for 1242*0b57cec5SDimitry Andric // conversions). 1243*0b57cec5SDimitry Andric if (!isTypeLegal(MVT::f16)) { 1244*0b57cec5SDimitry Andric NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1245*0b57cec5SDimitry Andric RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1246*0b57cec5SDimitry Andric TransformToType[MVT::f16] = MVT::f32; 1247*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1248*0b57cec5SDimitry Andric } 1249*0b57cec5SDimitry Andric 1250*0b57cec5SDimitry Andric // Loop over all of the vector value types to see which need transformations. 1251*0b57cec5SDimitry Andric for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1252*0b57cec5SDimitry Andric i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1253*0b57cec5SDimitry Andric MVT VT = (MVT::SimpleValueType) i; 1254*0b57cec5SDimitry Andric if (isTypeLegal(VT)) 1255*0b57cec5SDimitry Andric continue; 1256*0b57cec5SDimitry Andric 1257*0b57cec5SDimitry Andric MVT EltVT = VT.getVectorElementType(); 1258*0b57cec5SDimitry Andric unsigned NElts = VT.getVectorNumElements(); 1259*0b57cec5SDimitry Andric bool IsLegalWiderType = false; 1260*0b57cec5SDimitry Andric LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1261*0b57cec5SDimitry Andric switch (PreferredAction) { 1262*0b57cec5SDimitry Andric case TypePromoteInteger: 1263*0b57cec5SDimitry Andric // Try to promote the elements of integer vectors. If no legal 1264*0b57cec5SDimitry Andric // promotion was found, fall through to the widen-vector method. 1265*0b57cec5SDimitry Andric for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) { 1266*0b57cec5SDimitry Andric MVT SVT = (MVT::SimpleValueType) nVT; 1267*0b57cec5SDimitry Andric // Promote vectors of integers to vectors with the same number 1268*0b57cec5SDimitry Andric // of elements, with a wider element type. 1269*0b57cec5SDimitry Andric if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() && 1270*0b57cec5SDimitry Andric SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) { 1271*0b57cec5SDimitry Andric TransformToType[i] = SVT; 1272*0b57cec5SDimitry Andric RegisterTypeForVT[i] = SVT; 1273*0b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 1274*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1275*0b57cec5SDimitry Andric IsLegalWiderType = true; 1276*0b57cec5SDimitry Andric break; 1277*0b57cec5SDimitry Andric } 1278*0b57cec5SDimitry Andric } 1279*0b57cec5SDimitry Andric if (IsLegalWiderType) 1280*0b57cec5SDimitry Andric break; 1281*0b57cec5SDimitry Andric LLVM_FALLTHROUGH; 1282*0b57cec5SDimitry Andric 1283*0b57cec5SDimitry Andric case TypeWidenVector: 1284*0b57cec5SDimitry Andric // Try to widen the vector. 1285*0b57cec5SDimitry Andric for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1286*0b57cec5SDimitry Andric MVT SVT = (MVT::SimpleValueType) nVT; 1287*0b57cec5SDimitry Andric if (SVT.getVectorElementType() == EltVT 1288*0b57cec5SDimitry Andric && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { 1289*0b57cec5SDimitry Andric TransformToType[i] = SVT; 1290*0b57cec5SDimitry Andric RegisterTypeForVT[i] = SVT; 1291*0b57cec5SDimitry Andric NumRegistersForVT[i] = 1; 1292*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1293*0b57cec5SDimitry Andric IsLegalWiderType = true; 1294*0b57cec5SDimitry Andric break; 1295*0b57cec5SDimitry Andric } 1296*0b57cec5SDimitry Andric } 1297*0b57cec5SDimitry Andric if (IsLegalWiderType) 1298*0b57cec5SDimitry Andric break; 1299*0b57cec5SDimitry Andric LLVM_FALLTHROUGH; 1300*0b57cec5SDimitry Andric 1301*0b57cec5SDimitry Andric case TypeSplitVector: 1302*0b57cec5SDimitry Andric case TypeScalarizeVector: { 1303*0b57cec5SDimitry Andric MVT IntermediateVT; 1304*0b57cec5SDimitry Andric MVT RegisterVT; 1305*0b57cec5SDimitry Andric unsigned NumIntermediates; 1306*0b57cec5SDimitry Andric NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1307*0b57cec5SDimitry Andric NumIntermediates, RegisterVT, this); 1308*0b57cec5SDimitry Andric RegisterTypeForVT[i] = RegisterVT; 1309*0b57cec5SDimitry Andric 1310*0b57cec5SDimitry Andric MVT NVT = VT.getPow2VectorType(); 1311*0b57cec5SDimitry Andric if (NVT == VT) { 1312*0b57cec5SDimitry Andric // Type is already a power of 2. The default action is to split. 1313*0b57cec5SDimitry Andric TransformToType[i] = MVT::Other; 1314*0b57cec5SDimitry Andric if (PreferredAction == TypeScalarizeVector) 1315*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1316*0b57cec5SDimitry Andric else if (PreferredAction == TypeSplitVector) 1317*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1318*0b57cec5SDimitry Andric else 1319*0b57cec5SDimitry Andric // Set type action according to the number of elements. 1320*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1321*0b57cec5SDimitry Andric : TypeSplitVector); 1322*0b57cec5SDimitry Andric } else { 1323*0b57cec5SDimitry Andric TransformToType[i] = NVT; 1324*0b57cec5SDimitry Andric ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1325*0b57cec5SDimitry Andric } 1326*0b57cec5SDimitry Andric break; 1327*0b57cec5SDimitry Andric } 1328*0b57cec5SDimitry Andric default: 1329*0b57cec5SDimitry Andric llvm_unreachable("Unknown vector legalization action!"); 1330*0b57cec5SDimitry Andric } 1331*0b57cec5SDimitry Andric } 1332*0b57cec5SDimitry Andric 1333*0b57cec5SDimitry Andric // Determine the 'representative' register class for each value type. 1334*0b57cec5SDimitry Andric // An representative register class is the largest (meaning one which is 1335*0b57cec5SDimitry Andric // not a sub-register class / subreg register class) legal register class for 1336*0b57cec5SDimitry Andric // a group of value types. For example, on i386, i8, i16, and i32 1337*0b57cec5SDimitry Andric // representative would be GR32; while on x86_64 it's GR64. 1338*0b57cec5SDimitry Andric for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1339*0b57cec5SDimitry Andric const TargetRegisterClass* RRC; 1340*0b57cec5SDimitry Andric uint8_t Cost; 1341*0b57cec5SDimitry Andric std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1342*0b57cec5SDimitry Andric RepRegClassForVT[i] = RRC; 1343*0b57cec5SDimitry Andric RepRegClassCostForVT[i] = Cost; 1344*0b57cec5SDimitry Andric } 1345*0b57cec5SDimitry Andric } 1346*0b57cec5SDimitry Andric 1347*0b57cec5SDimitry Andric EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1348*0b57cec5SDimitry Andric EVT VT) const { 1349*0b57cec5SDimitry Andric assert(!VT.isVector() && "No default SetCC type for vectors!"); 1350*0b57cec5SDimitry Andric return getPointerTy(DL).SimpleTy; 1351*0b57cec5SDimitry Andric } 1352*0b57cec5SDimitry Andric 1353*0b57cec5SDimitry Andric MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1354*0b57cec5SDimitry Andric return MVT::i32; // return the default value 1355*0b57cec5SDimitry Andric } 1356*0b57cec5SDimitry Andric 1357*0b57cec5SDimitry Andric /// getVectorTypeBreakdown - Vector types are broken down into some number of 1358*0b57cec5SDimitry Andric /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1359*0b57cec5SDimitry Andric /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1360*0b57cec5SDimitry Andric /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1361*0b57cec5SDimitry Andric /// 1362*0b57cec5SDimitry Andric /// This method returns the number of registers needed, and the VT for each 1363*0b57cec5SDimitry Andric /// register. It also returns the VT and quantity of the intermediate values 1364*0b57cec5SDimitry Andric /// before they are promoted/expanded. 1365*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1366*0b57cec5SDimitry Andric EVT &IntermediateVT, 1367*0b57cec5SDimitry Andric unsigned &NumIntermediates, 1368*0b57cec5SDimitry Andric MVT &RegisterVT) const { 1369*0b57cec5SDimitry Andric unsigned NumElts = VT.getVectorNumElements(); 1370*0b57cec5SDimitry Andric 1371*0b57cec5SDimitry Andric // If there is a wider vector type with the same element type as this one, 1372*0b57cec5SDimitry Andric // or a promoted vector type that has the same number of elements which 1373*0b57cec5SDimitry Andric // are wider, then we should convert to that legal vector type. 1374*0b57cec5SDimitry Andric // This handles things like <2 x float> -> <4 x float> and 1375*0b57cec5SDimitry Andric // <4 x i1> -> <4 x i32>. 1376*0b57cec5SDimitry Andric LegalizeTypeAction TA = getTypeAction(Context, VT); 1377*0b57cec5SDimitry Andric if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1378*0b57cec5SDimitry Andric EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1379*0b57cec5SDimitry Andric if (isTypeLegal(RegisterEVT)) { 1380*0b57cec5SDimitry Andric IntermediateVT = RegisterEVT; 1381*0b57cec5SDimitry Andric RegisterVT = RegisterEVT.getSimpleVT(); 1382*0b57cec5SDimitry Andric NumIntermediates = 1; 1383*0b57cec5SDimitry Andric return 1; 1384*0b57cec5SDimitry Andric } 1385*0b57cec5SDimitry Andric } 1386*0b57cec5SDimitry Andric 1387*0b57cec5SDimitry Andric // Figure out the right, legal destination reg to copy into. 1388*0b57cec5SDimitry Andric EVT EltTy = VT.getVectorElementType(); 1389*0b57cec5SDimitry Andric 1390*0b57cec5SDimitry Andric unsigned NumVectorRegs = 1; 1391*0b57cec5SDimitry Andric 1392*0b57cec5SDimitry Andric // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1393*0b57cec5SDimitry Andric // could break down into LHS/RHS like LegalizeDAG does. 1394*0b57cec5SDimitry Andric if (!isPowerOf2_32(NumElts)) { 1395*0b57cec5SDimitry Andric NumVectorRegs = NumElts; 1396*0b57cec5SDimitry Andric NumElts = 1; 1397*0b57cec5SDimitry Andric } 1398*0b57cec5SDimitry Andric 1399*0b57cec5SDimitry Andric // Divide the input until we get to a supported size. This will always 1400*0b57cec5SDimitry Andric // end with a scalar if the target doesn't support vectors. 1401*0b57cec5SDimitry Andric while (NumElts > 1 && !isTypeLegal( 1402*0b57cec5SDimitry Andric EVT::getVectorVT(Context, EltTy, NumElts))) { 1403*0b57cec5SDimitry Andric NumElts >>= 1; 1404*0b57cec5SDimitry Andric NumVectorRegs <<= 1; 1405*0b57cec5SDimitry Andric } 1406*0b57cec5SDimitry Andric 1407*0b57cec5SDimitry Andric NumIntermediates = NumVectorRegs; 1408*0b57cec5SDimitry Andric 1409*0b57cec5SDimitry Andric EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1410*0b57cec5SDimitry Andric if (!isTypeLegal(NewVT)) 1411*0b57cec5SDimitry Andric NewVT = EltTy; 1412*0b57cec5SDimitry Andric IntermediateVT = NewVT; 1413*0b57cec5SDimitry Andric 1414*0b57cec5SDimitry Andric MVT DestVT = getRegisterType(Context, NewVT); 1415*0b57cec5SDimitry Andric RegisterVT = DestVT; 1416*0b57cec5SDimitry Andric unsigned NewVTSize = NewVT.getSizeInBits(); 1417*0b57cec5SDimitry Andric 1418*0b57cec5SDimitry Andric // Convert sizes such as i33 to i64. 1419*0b57cec5SDimitry Andric if (!isPowerOf2_32(NewVTSize)) 1420*0b57cec5SDimitry Andric NewVTSize = NextPowerOf2(NewVTSize); 1421*0b57cec5SDimitry Andric 1422*0b57cec5SDimitry Andric if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1423*0b57cec5SDimitry Andric return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1424*0b57cec5SDimitry Andric 1425*0b57cec5SDimitry Andric // Otherwise, promotion or legal types use the same number of registers as 1426*0b57cec5SDimitry Andric // the vector decimated to the appropriate level. 1427*0b57cec5SDimitry Andric return NumVectorRegs; 1428*0b57cec5SDimitry Andric } 1429*0b57cec5SDimitry Andric 1430*0b57cec5SDimitry Andric /// Get the EVTs and ArgFlags collections that represent the legalized return 1431*0b57cec5SDimitry Andric /// type of the given function. This does not require a DAG or a return value, 1432*0b57cec5SDimitry Andric /// and is suitable for use before any DAGs for the function are constructed. 1433*0b57cec5SDimitry Andric /// TODO: Move this out of TargetLowering.cpp. 1434*0b57cec5SDimitry Andric void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType, 1435*0b57cec5SDimitry Andric AttributeList attr, 1436*0b57cec5SDimitry Andric SmallVectorImpl<ISD::OutputArg> &Outs, 1437*0b57cec5SDimitry Andric const TargetLowering &TLI, const DataLayout &DL) { 1438*0b57cec5SDimitry Andric SmallVector<EVT, 4> ValueVTs; 1439*0b57cec5SDimitry Andric ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1440*0b57cec5SDimitry Andric unsigned NumValues = ValueVTs.size(); 1441*0b57cec5SDimitry Andric if (NumValues == 0) return; 1442*0b57cec5SDimitry Andric 1443*0b57cec5SDimitry Andric for (unsigned j = 0, f = NumValues; j != f; ++j) { 1444*0b57cec5SDimitry Andric EVT VT = ValueVTs[j]; 1445*0b57cec5SDimitry Andric ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1446*0b57cec5SDimitry Andric 1447*0b57cec5SDimitry Andric if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1448*0b57cec5SDimitry Andric ExtendKind = ISD::SIGN_EXTEND; 1449*0b57cec5SDimitry Andric else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1450*0b57cec5SDimitry Andric ExtendKind = ISD::ZERO_EXTEND; 1451*0b57cec5SDimitry Andric 1452*0b57cec5SDimitry Andric // FIXME: C calling convention requires the return type to be promoted to 1453*0b57cec5SDimitry Andric // at least 32-bit. But this is not necessary for non-C calling 1454*0b57cec5SDimitry Andric // conventions. The frontend should mark functions whose return values 1455*0b57cec5SDimitry Andric // require promoting with signext or zeroext attributes. 1456*0b57cec5SDimitry Andric if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1457*0b57cec5SDimitry Andric MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1458*0b57cec5SDimitry Andric if (VT.bitsLT(MinVT)) 1459*0b57cec5SDimitry Andric VT = MinVT; 1460*0b57cec5SDimitry Andric } 1461*0b57cec5SDimitry Andric 1462*0b57cec5SDimitry Andric unsigned NumParts = 1463*0b57cec5SDimitry Andric TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT); 1464*0b57cec5SDimitry Andric MVT PartVT = 1465*0b57cec5SDimitry Andric TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT); 1466*0b57cec5SDimitry Andric 1467*0b57cec5SDimitry Andric // 'inreg' on function refers to return value 1468*0b57cec5SDimitry Andric ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1469*0b57cec5SDimitry Andric if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg)) 1470*0b57cec5SDimitry Andric Flags.setInReg(); 1471*0b57cec5SDimitry Andric 1472*0b57cec5SDimitry Andric // Propagate extension type if any 1473*0b57cec5SDimitry Andric if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 1474*0b57cec5SDimitry Andric Flags.setSExt(); 1475*0b57cec5SDimitry Andric else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt)) 1476*0b57cec5SDimitry Andric Flags.setZExt(); 1477*0b57cec5SDimitry Andric 1478*0b57cec5SDimitry Andric for (unsigned i = 0; i < NumParts; ++i) 1479*0b57cec5SDimitry Andric Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0)); 1480*0b57cec5SDimitry Andric } 1481*0b57cec5SDimitry Andric } 1482*0b57cec5SDimitry Andric 1483*0b57cec5SDimitry Andric /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1484*0b57cec5SDimitry Andric /// function arguments in the caller parameter area. This is the actual 1485*0b57cec5SDimitry Andric /// alignment, not its logarithm. 1486*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1487*0b57cec5SDimitry Andric const DataLayout &DL) const { 1488*0b57cec5SDimitry Andric return DL.getABITypeAlignment(Ty); 1489*0b57cec5SDimitry Andric } 1490*0b57cec5SDimitry Andric 1491*0b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1492*0b57cec5SDimitry Andric const DataLayout &DL, EVT VT, 1493*0b57cec5SDimitry Andric unsigned AddrSpace, 1494*0b57cec5SDimitry Andric unsigned Alignment, 1495*0b57cec5SDimitry Andric MachineMemOperand::Flags Flags, 1496*0b57cec5SDimitry Andric bool *Fast) const { 1497*0b57cec5SDimitry Andric // Check if the specified alignment is sufficient based on the data layout. 1498*0b57cec5SDimitry Andric // TODO: While using the data layout works in practice, a better solution 1499*0b57cec5SDimitry Andric // would be to implement this check directly (make this a virtual function). 1500*0b57cec5SDimitry Andric // For example, the ABI alignment may change based on software platform while 1501*0b57cec5SDimitry Andric // this function should only be affected by hardware implementation. 1502*0b57cec5SDimitry Andric Type *Ty = VT.getTypeForEVT(Context); 1503*0b57cec5SDimitry Andric if (Alignment >= DL.getABITypeAlignment(Ty)) { 1504*0b57cec5SDimitry Andric // Assume that an access that meets the ABI-specified alignment is fast. 1505*0b57cec5SDimitry Andric if (Fast != nullptr) 1506*0b57cec5SDimitry Andric *Fast = true; 1507*0b57cec5SDimitry Andric return true; 1508*0b57cec5SDimitry Andric } 1509*0b57cec5SDimitry Andric 1510*0b57cec5SDimitry Andric // This is a misaligned access. 1511*0b57cec5SDimitry Andric return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast); 1512*0b57cec5SDimitry Andric } 1513*0b57cec5SDimitry Andric 1514*0b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1515*0b57cec5SDimitry Andric const DataLayout &DL, EVT VT, 1516*0b57cec5SDimitry Andric const MachineMemOperand &MMO, 1517*0b57cec5SDimitry Andric bool *Fast) const { 1518*0b57cec5SDimitry Andric return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), 1519*0b57cec5SDimitry Andric MMO.getAlignment(), MMO.getFlags(), Fast); 1520*0b57cec5SDimitry Andric } 1521*0b57cec5SDimitry Andric 1522*0b57cec5SDimitry Andric BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const { 1523*0b57cec5SDimitry Andric return BranchProbability(MinPercentageForPredictableBranch, 100); 1524*0b57cec5SDimitry Andric } 1525*0b57cec5SDimitry Andric 1526*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1527*0b57cec5SDimitry Andric // TargetTransformInfo Helpers 1528*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1529*0b57cec5SDimitry Andric 1530*0b57cec5SDimitry Andric int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1531*0b57cec5SDimitry Andric enum InstructionOpcodes { 1532*0b57cec5SDimitry Andric #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1533*0b57cec5SDimitry Andric #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1534*0b57cec5SDimitry Andric #include "llvm/IR/Instruction.def" 1535*0b57cec5SDimitry Andric }; 1536*0b57cec5SDimitry Andric switch (static_cast<InstructionOpcodes>(Opcode)) { 1537*0b57cec5SDimitry Andric case Ret: return 0; 1538*0b57cec5SDimitry Andric case Br: return 0; 1539*0b57cec5SDimitry Andric case Switch: return 0; 1540*0b57cec5SDimitry Andric case IndirectBr: return 0; 1541*0b57cec5SDimitry Andric case Invoke: return 0; 1542*0b57cec5SDimitry Andric case CallBr: return 0; 1543*0b57cec5SDimitry Andric case Resume: return 0; 1544*0b57cec5SDimitry Andric case Unreachable: return 0; 1545*0b57cec5SDimitry Andric case CleanupRet: return 0; 1546*0b57cec5SDimitry Andric case CatchRet: return 0; 1547*0b57cec5SDimitry Andric case CatchPad: return 0; 1548*0b57cec5SDimitry Andric case CatchSwitch: return 0; 1549*0b57cec5SDimitry Andric case CleanupPad: return 0; 1550*0b57cec5SDimitry Andric case FNeg: return ISD::FNEG; 1551*0b57cec5SDimitry Andric case Add: return ISD::ADD; 1552*0b57cec5SDimitry Andric case FAdd: return ISD::FADD; 1553*0b57cec5SDimitry Andric case Sub: return ISD::SUB; 1554*0b57cec5SDimitry Andric case FSub: return ISD::FSUB; 1555*0b57cec5SDimitry Andric case Mul: return ISD::MUL; 1556*0b57cec5SDimitry Andric case FMul: return ISD::FMUL; 1557*0b57cec5SDimitry Andric case UDiv: return ISD::UDIV; 1558*0b57cec5SDimitry Andric case SDiv: return ISD::SDIV; 1559*0b57cec5SDimitry Andric case FDiv: return ISD::FDIV; 1560*0b57cec5SDimitry Andric case URem: return ISD::UREM; 1561*0b57cec5SDimitry Andric case SRem: return ISD::SREM; 1562*0b57cec5SDimitry Andric case FRem: return ISD::FREM; 1563*0b57cec5SDimitry Andric case Shl: return ISD::SHL; 1564*0b57cec5SDimitry Andric case LShr: return ISD::SRL; 1565*0b57cec5SDimitry Andric case AShr: return ISD::SRA; 1566*0b57cec5SDimitry Andric case And: return ISD::AND; 1567*0b57cec5SDimitry Andric case Or: return ISD::OR; 1568*0b57cec5SDimitry Andric case Xor: return ISD::XOR; 1569*0b57cec5SDimitry Andric case Alloca: return 0; 1570*0b57cec5SDimitry Andric case Load: return ISD::LOAD; 1571*0b57cec5SDimitry Andric case Store: return ISD::STORE; 1572*0b57cec5SDimitry Andric case GetElementPtr: return 0; 1573*0b57cec5SDimitry Andric case Fence: return 0; 1574*0b57cec5SDimitry Andric case AtomicCmpXchg: return 0; 1575*0b57cec5SDimitry Andric case AtomicRMW: return 0; 1576*0b57cec5SDimitry Andric case Trunc: return ISD::TRUNCATE; 1577*0b57cec5SDimitry Andric case ZExt: return ISD::ZERO_EXTEND; 1578*0b57cec5SDimitry Andric case SExt: return ISD::SIGN_EXTEND; 1579*0b57cec5SDimitry Andric case FPToUI: return ISD::FP_TO_UINT; 1580*0b57cec5SDimitry Andric case FPToSI: return ISD::FP_TO_SINT; 1581*0b57cec5SDimitry Andric case UIToFP: return ISD::UINT_TO_FP; 1582*0b57cec5SDimitry Andric case SIToFP: return ISD::SINT_TO_FP; 1583*0b57cec5SDimitry Andric case FPTrunc: return ISD::FP_ROUND; 1584*0b57cec5SDimitry Andric case FPExt: return ISD::FP_EXTEND; 1585*0b57cec5SDimitry Andric case PtrToInt: return ISD::BITCAST; 1586*0b57cec5SDimitry Andric case IntToPtr: return ISD::BITCAST; 1587*0b57cec5SDimitry Andric case BitCast: return ISD::BITCAST; 1588*0b57cec5SDimitry Andric case AddrSpaceCast: return ISD::ADDRSPACECAST; 1589*0b57cec5SDimitry Andric case ICmp: return ISD::SETCC; 1590*0b57cec5SDimitry Andric case FCmp: return ISD::SETCC; 1591*0b57cec5SDimitry Andric case PHI: return 0; 1592*0b57cec5SDimitry Andric case Call: return 0; 1593*0b57cec5SDimitry Andric case Select: return ISD::SELECT; 1594*0b57cec5SDimitry Andric case UserOp1: return 0; 1595*0b57cec5SDimitry Andric case UserOp2: return 0; 1596*0b57cec5SDimitry Andric case VAArg: return 0; 1597*0b57cec5SDimitry Andric case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1598*0b57cec5SDimitry Andric case InsertElement: return ISD::INSERT_VECTOR_ELT; 1599*0b57cec5SDimitry Andric case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1600*0b57cec5SDimitry Andric case ExtractValue: return ISD::MERGE_VALUES; 1601*0b57cec5SDimitry Andric case InsertValue: return ISD::MERGE_VALUES; 1602*0b57cec5SDimitry Andric case LandingPad: return 0; 1603*0b57cec5SDimitry Andric } 1604*0b57cec5SDimitry Andric 1605*0b57cec5SDimitry Andric llvm_unreachable("Unknown instruction type encountered!"); 1606*0b57cec5SDimitry Andric } 1607*0b57cec5SDimitry Andric 1608*0b57cec5SDimitry Andric std::pair<int, MVT> 1609*0b57cec5SDimitry Andric TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1610*0b57cec5SDimitry Andric Type *Ty) const { 1611*0b57cec5SDimitry Andric LLVMContext &C = Ty->getContext(); 1612*0b57cec5SDimitry Andric EVT MTy = getValueType(DL, Ty); 1613*0b57cec5SDimitry Andric 1614*0b57cec5SDimitry Andric int Cost = 1; 1615*0b57cec5SDimitry Andric // We keep legalizing the type until we find a legal kind. We assume that 1616*0b57cec5SDimitry Andric // the only operation that costs anything is the split. After splitting 1617*0b57cec5SDimitry Andric // we need to handle two types. 1618*0b57cec5SDimitry Andric while (true) { 1619*0b57cec5SDimitry Andric LegalizeKind LK = getTypeConversion(C, MTy); 1620*0b57cec5SDimitry Andric 1621*0b57cec5SDimitry Andric if (LK.first == TypeLegal) 1622*0b57cec5SDimitry Andric return std::make_pair(Cost, MTy.getSimpleVT()); 1623*0b57cec5SDimitry Andric 1624*0b57cec5SDimitry Andric if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1625*0b57cec5SDimitry Andric Cost *= 2; 1626*0b57cec5SDimitry Andric 1627*0b57cec5SDimitry Andric // Do not loop with f128 type. 1628*0b57cec5SDimitry Andric if (MTy == LK.second) 1629*0b57cec5SDimitry Andric return std::make_pair(Cost, MTy.getSimpleVT()); 1630*0b57cec5SDimitry Andric 1631*0b57cec5SDimitry Andric // Keep legalizing the type. 1632*0b57cec5SDimitry Andric MTy = LK.second; 1633*0b57cec5SDimitry Andric } 1634*0b57cec5SDimitry Andric } 1635*0b57cec5SDimitry Andric 1636*0b57cec5SDimitry Andric Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, 1637*0b57cec5SDimitry Andric bool UseTLS) const { 1638*0b57cec5SDimitry Andric // compiler-rt provides a variable with a magic name. Targets that do not 1639*0b57cec5SDimitry Andric // link with compiler-rt may also provide such a variable. 1640*0b57cec5SDimitry Andric Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1641*0b57cec5SDimitry Andric const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr"; 1642*0b57cec5SDimitry Andric auto UnsafeStackPtr = 1643*0b57cec5SDimitry Andric dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar)); 1644*0b57cec5SDimitry Andric 1645*0b57cec5SDimitry Andric Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1646*0b57cec5SDimitry Andric 1647*0b57cec5SDimitry Andric if (!UnsafeStackPtr) { 1648*0b57cec5SDimitry Andric auto TLSModel = UseTLS ? 1649*0b57cec5SDimitry Andric GlobalValue::InitialExecTLSModel : 1650*0b57cec5SDimitry Andric GlobalValue::NotThreadLocal; 1651*0b57cec5SDimitry Andric // The global variable is not defined yet, define it ourselves. 1652*0b57cec5SDimitry Andric // We use the initial-exec TLS model because we do not support the 1653*0b57cec5SDimitry Andric // variable living anywhere other than in the main executable. 1654*0b57cec5SDimitry Andric UnsafeStackPtr = new GlobalVariable( 1655*0b57cec5SDimitry Andric *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr, 1656*0b57cec5SDimitry Andric UnsafeStackPtrVar, nullptr, TLSModel); 1657*0b57cec5SDimitry Andric } else { 1658*0b57cec5SDimitry Andric // The variable exists, check its type and attributes. 1659*0b57cec5SDimitry Andric if (UnsafeStackPtr->getValueType() != StackPtrTy) 1660*0b57cec5SDimitry Andric report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type"); 1661*0b57cec5SDimitry Andric if (UseTLS != UnsafeStackPtr->isThreadLocal()) 1662*0b57cec5SDimitry Andric report_fatal_error(Twine(UnsafeStackPtrVar) + " must " + 1663*0b57cec5SDimitry Andric (UseTLS ? "" : "not ") + "be thread-local"); 1664*0b57cec5SDimitry Andric } 1665*0b57cec5SDimitry Andric return UnsafeStackPtr; 1666*0b57cec5SDimitry Andric } 1667*0b57cec5SDimitry Andric 1668*0b57cec5SDimitry Andric Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1669*0b57cec5SDimitry Andric if (!TM.getTargetTriple().isAndroid()) 1670*0b57cec5SDimitry Andric return getDefaultSafeStackPointerLocation(IRB, true); 1671*0b57cec5SDimitry Andric 1672*0b57cec5SDimitry Andric // Android provides a libc function to retrieve the address of the current 1673*0b57cec5SDimitry Andric // thread's unsafe stack pointer. 1674*0b57cec5SDimitry Andric Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1675*0b57cec5SDimitry Andric Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1676*0b57cec5SDimitry Andric FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address", 1677*0b57cec5SDimitry Andric StackPtrTy->getPointerTo(0)); 1678*0b57cec5SDimitry Andric return IRB.CreateCall(Fn); 1679*0b57cec5SDimitry Andric } 1680*0b57cec5SDimitry Andric 1681*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1682*0b57cec5SDimitry Andric // Loop Strength Reduction hooks 1683*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1684*0b57cec5SDimitry Andric 1685*0b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented 1686*0b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type. 1687*0b57cec5SDimitry Andric bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1688*0b57cec5SDimitry Andric const AddrMode &AM, Type *Ty, 1689*0b57cec5SDimitry Andric unsigned AS, Instruction *I) const { 1690*0b57cec5SDimitry Andric // The default implementation of this implements a conservative RISCy, r+r and 1691*0b57cec5SDimitry Andric // r+i addr mode. 1692*0b57cec5SDimitry Andric 1693*0b57cec5SDimitry Andric // Allows a sign-extended 16-bit immediate field. 1694*0b57cec5SDimitry Andric if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1695*0b57cec5SDimitry Andric return false; 1696*0b57cec5SDimitry Andric 1697*0b57cec5SDimitry Andric // No global is ever allowed as a base. 1698*0b57cec5SDimitry Andric if (AM.BaseGV) 1699*0b57cec5SDimitry Andric return false; 1700*0b57cec5SDimitry Andric 1701*0b57cec5SDimitry Andric // Only support r+r, 1702*0b57cec5SDimitry Andric switch (AM.Scale) { 1703*0b57cec5SDimitry Andric case 0: // "r+i" or just "i", depending on HasBaseReg. 1704*0b57cec5SDimitry Andric break; 1705*0b57cec5SDimitry Andric case 1: 1706*0b57cec5SDimitry Andric if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1707*0b57cec5SDimitry Andric return false; 1708*0b57cec5SDimitry Andric // Otherwise we have r+r or r+i. 1709*0b57cec5SDimitry Andric break; 1710*0b57cec5SDimitry Andric case 2: 1711*0b57cec5SDimitry Andric if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1712*0b57cec5SDimitry Andric return false; 1713*0b57cec5SDimitry Andric // Allow 2*r as r+r. 1714*0b57cec5SDimitry Andric break; 1715*0b57cec5SDimitry Andric default: // Don't allow n * r 1716*0b57cec5SDimitry Andric return false; 1717*0b57cec5SDimitry Andric } 1718*0b57cec5SDimitry Andric 1719*0b57cec5SDimitry Andric return true; 1720*0b57cec5SDimitry Andric } 1721*0b57cec5SDimitry Andric 1722*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1723*0b57cec5SDimitry Andric // Stack Protector 1724*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1725*0b57cec5SDimitry Andric 1726*0b57cec5SDimitry Andric // For OpenBSD return its special guard variable. Otherwise return nullptr, 1727*0b57cec5SDimitry Andric // so that SelectionDAG handle SSP. 1728*0b57cec5SDimitry Andric Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const { 1729*0b57cec5SDimitry Andric if (getTargetMachine().getTargetTriple().isOSOpenBSD()) { 1730*0b57cec5SDimitry Andric Module &M = *IRB.GetInsertBlock()->getParent()->getParent(); 1731*0b57cec5SDimitry Andric PointerType *PtrTy = Type::getInt8PtrTy(M.getContext()); 1732*0b57cec5SDimitry Andric return M.getOrInsertGlobal("__guard_local", PtrTy); 1733*0b57cec5SDimitry Andric } 1734*0b57cec5SDimitry Andric return nullptr; 1735*0b57cec5SDimitry Andric } 1736*0b57cec5SDimitry Andric 1737*0b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard. 1738*0b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support. 1739*0b57cec5SDimitry Andric void TargetLoweringBase::insertSSPDeclarations(Module &M) const { 1740*0b57cec5SDimitry Andric if (!M.getNamedValue("__stack_chk_guard")) 1741*0b57cec5SDimitry Andric new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false, 1742*0b57cec5SDimitry Andric GlobalVariable::ExternalLinkage, 1743*0b57cec5SDimitry Andric nullptr, "__stack_chk_guard"); 1744*0b57cec5SDimitry Andric } 1745*0b57cec5SDimitry Andric 1746*0b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard. 1747*0b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support. 1748*0b57cec5SDimitry Andric Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const { 1749*0b57cec5SDimitry Andric return M.getNamedValue("__stack_chk_guard"); 1750*0b57cec5SDimitry Andric } 1751*0b57cec5SDimitry Andric 1752*0b57cec5SDimitry Andric Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const { 1753*0b57cec5SDimitry Andric return nullptr; 1754*0b57cec5SDimitry Andric } 1755*0b57cec5SDimitry Andric 1756*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableEntries() const { 1757*0b57cec5SDimitry Andric return MinimumJumpTableEntries; 1758*0b57cec5SDimitry Andric } 1759*0b57cec5SDimitry Andric 1760*0b57cec5SDimitry Andric void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) { 1761*0b57cec5SDimitry Andric MinimumJumpTableEntries = Val; 1762*0b57cec5SDimitry Andric } 1763*0b57cec5SDimitry Andric 1764*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const { 1765*0b57cec5SDimitry Andric return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity; 1766*0b57cec5SDimitry Andric } 1767*0b57cec5SDimitry Andric 1768*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMaximumJumpTableSize() const { 1769*0b57cec5SDimitry Andric return MaximumJumpTableSize; 1770*0b57cec5SDimitry Andric } 1771*0b57cec5SDimitry Andric 1772*0b57cec5SDimitry Andric void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) { 1773*0b57cec5SDimitry Andric MaximumJumpTableSize = Val; 1774*0b57cec5SDimitry Andric } 1775*0b57cec5SDimitry Andric 1776*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1777*0b57cec5SDimitry Andric // Reciprocal Estimates 1778*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===// 1779*0b57cec5SDimitry Andric 1780*0b57cec5SDimitry Andric /// Get the reciprocal estimate attribute string for a function that will 1781*0b57cec5SDimitry Andric /// override the target defaults. 1782*0b57cec5SDimitry Andric static StringRef getRecipEstimateForFunc(MachineFunction &MF) { 1783*0b57cec5SDimitry Andric const Function &F = MF.getFunction(); 1784*0b57cec5SDimitry Andric return F.getFnAttribute("reciprocal-estimates").getValueAsString(); 1785*0b57cec5SDimitry Andric } 1786*0b57cec5SDimitry Andric 1787*0b57cec5SDimitry Andric /// Construct a string for the given reciprocal operation of the given type. 1788*0b57cec5SDimitry Andric /// This string should match the corresponding option to the front-end's 1789*0b57cec5SDimitry Andric /// "-mrecip" flag assuming those strings have been passed through in an 1790*0b57cec5SDimitry Andric /// attribute string. For example, "vec-divf" for a division of a vXf32. 1791*0b57cec5SDimitry Andric static std::string getReciprocalOpName(bool IsSqrt, EVT VT) { 1792*0b57cec5SDimitry Andric std::string Name = VT.isVector() ? "vec-" : ""; 1793*0b57cec5SDimitry Andric 1794*0b57cec5SDimitry Andric Name += IsSqrt ? "sqrt" : "div"; 1795*0b57cec5SDimitry Andric 1796*0b57cec5SDimitry Andric // TODO: Handle "half" or other float types? 1797*0b57cec5SDimitry Andric if (VT.getScalarType() == MVT::f64) { 1798*0b57cec5SDimitry Andric Name += "d"; 1799*0b57cec5SDimitry Andric } else { 1800*0b57cec5SDimitry Andric assert(VT.getScalarType() == MVT::f32 && 1801*0b57cec5SDimitry Andric "Unexpected FP type for reciprocal estimate"); 1802*0b57cec5SDimitry Andric Name += "f"; 1803*0b57cec5SDimitry Andric } 1804*0b57cec5SDimitry Andric 1805*0b57cec5SDimitry Andric return Name; 1806*0b57cec5SDimitry Andric } 1807*0b57cec5SDimitry Andric 1808*0b57cec5SDimitry Andric /// Return the character position and value (a single numeric character) of a 1809*0b57cec5SDimitry Andric /// customized refinement operation in the input string if it exists. Return 1810*0b57cec5SDimitry Andric /// false if there is no customized refinement step count. 1811*0b57cec5SDimitry Andric static bool parseRefinementStep(StringRef In, size_t &Position, 1812*0b57cec5SDimitry Andric uint8_t &Value) { 1813*0b57cec5SDimitry Andric const char RefStepToken = ':'; 1814*0b57cec5SDimitry Andric Position = In.find(RefStepToken); 1815*0b57cec5SDimitry Andric if (Position == StringRef::npos) 1816*0b57cec5SDimitry Andric return false; 1817*0b57cec5SDimitry Andric 1818*0b57cec5SDimitry Andric StringRef RefStepString = In.substr(Position + 1); 1819*0b57cec5SDimitry Andric // Allow exactly one numeric character for the additional refinement 1820*0b57cec5SDimitry Andric // step parameter. 1821*0b57cec5SDimitry Andric if (RefStepString.size() == 1) { 1822*0b57cec5SDimitry Andric char RefStepChar = RefStepString[0]; 1823*0b57cec5SDimitry Andric if (RefStepChar >= '0' && RefStepChar <= '9') { 1824*0b57cec5SDimitry Andric Value = RefStepChar - '0'; 1825*0b57cec5SDimitry Andric return true; 1826*0b57cec5SDimitry Andric } 1827*0b57cec5SDimitry Andric } 1828*0b57cec5SDimitry Andric report_fatal_error("Invalid refinement step for -recip."); 1829*0b57cec5SDimitry Andric } 1830*0b57cec5SDimitry Andric 1831*0b57cec5SDimitry Andric /// For the input attribute string, return one of the ReciprocalEstimate enum 1832*0b57cec5SDimitry Andric /// status values (enabled, disabled, or not specified) for this operation on 1833*0b57cec5SDimitry Andric /// the specified data type. 1834*0b57cec5SDimitry Andric static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) { 1835*0b57cec5SDimitry Andric if (Override.empty()) 1836*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1837*0b57cec5SDimitry Andric 1838*0b57cec5SDimitry Andric SmallVector<StringRef, 4> OverrideVector; 1839*0b57cec5SDimitry Andric Override.split(OverrideVector, ','); 1840*0b57cec5SDimitry Andric unsigned NumArgs = OverrideVector.size(); 1841*0b57cec5SDimitry Andric 1842*0b57cec5SDimitry Andric // Check if "all", "none", or "default" was specified. 1843*0b57cec5SDimitry Andric if (NumArgs == 1) { 1844*0b57cec5SDimitry Andric // Look for an optional setting of the number of refinement steps needed 1845*0b57cec5SDimitry Andric // for this type of reciprocal operation. 1846*0b57cec5SDimitry Andric size_t RefPos; 1847*0b57cec5SDimitry Andric uint8_t RefSteps; 1848*0b57cec5SDimitry Andric if (parseRefinementStep(Override, RefPos, RefSteps)) { 1849*0b57cec5SDimitry Andric // Split the string for further processing. 1850*0b57cec5SDimitry Andric Override = Override.substr(0, RefPos); 1851*0b57cec5SDimitry Andric } 1852*0b57cec5SDimitry Andric 1853*0b57cec5SDimitry Andric // All reciprocal types are enabled. 1854*0b57cec5SDimitry Andric if (Override == "all") 1855*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Enabled; 1856*0b57cec5SDimitry Andric 1857*0b57cec5SDimitry Andric // All reciprocal types are disabled. 1858*0b57cec5SDimitry Andric if (Override == "none") 1859*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Disabled; 1860*0b57cec5SDimitry Andric 1861*0b57cec5SDimitry Andric // Target defaults for enablement are used. 1862*0b57cec5SDimitry Andric if (Override == "default") 1863*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1864*0b57cec5SDimitry Andric } 1865*0b57cec5SDimitry Andric 1866*0b57cec5SDimitry Andric // The attribute string may omit the size suffix ('f'/'d'). 1867*0b57cec5SDimitry Andric std::string VTName = getReciprocalOpName(IsSqrt, VT); 1868*0b57cec5SDimitry Andric std::string VTNameNoSize = VTName; 1869*0b57cec5SDimitry Andric VTNameNoSize.pop_back(); 1870*0b57cec5SDimitry Andric static const char DisabledPrefix = '!'; 1871*0b57cec5SDimitry Andric 1872*0b57cec5SDimitry Andric for (StringRef RecipType : OverrideVector) { 1873*0b57cec5SDimitry Andric size_t RefPos; 1874*0b57cec5SDimitry Andric uint8_t RefSteps; 1875*0b57cec5SDimitry Andric if (parseRefinementStep(RecipType, RefPos, RefSteps)) 1876*0b57cec5SDimitry Andric RecipType = RecipType.substr(0, RefPos); 1877*0b57cec5SDimitry Andric 1878*0b57cec5SDimitry Andric // Ignore the disablement token for string matching. 1879*0b57cec5SDimitry Andric bool IsDisabled = RecipType[0] == DisabledPrefix; 1880*0b57cec5SDimitry Andric if (IsDisabled) 1881*0b57cec5SDimitry Andric RecipType = RecipType.substr(1); 1882*0b57cec5SDimitry Andric 1883*0b57cec5SDimitry Andric if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1884*0b57cec5SDimitry Andric return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled 1885*0b57cec5SDimitry Andric : TargetLoweringBase::ReciprocalEstimate::Enabled; 1886*0b57cec5SDimitry Andric } 1887*0b57cec5SDimitry Andric 1888*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1889*0b57cec5SDimitry Andric } 1890*0b57cec5SDimitry Andric 1891*0b57cec5SDimitry Andric /// For the input attribute string, return the customized refinement step count 1892*0b57cec5SDimitry Andric /// for this operation on the specified data type. If the step count does not 1893*0b57cec5SDimitry Andric /// exist, return the ReciprocalEstimate enum value for unspecified. 1894*0b57cec5SDimitry Andric static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) { 1895*0b57cec5SDimitry Andric if (Override.empty()) 1896*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1897*0b57cec5SDimitry Andric 1898*0b57cec5SDimitry Andric SmallVector<StringRef, 4> OverrideVector; 1899*0b57cec5SDimitry Andric Override.split(OverrideVector, ','); 1900*0b57cec5SDimitry Andric unsigned NumArgs = OverrideVector.size(); 1901*0b57cec5SDimitry Andric 1902*0b57cec5SDimitry Andric // Check if "all", "default", or "none" was specified. 1903*0b57cec5SDimitry Andric if (NumArgs == 1) { 1904*0b57cec5SDimitry Andric // Look for an optional setting of the number of refinement steps needed 1905*0b57cec5SDimitry Andric // for this type of reciprocal operation. 1906*0b57cec5SDimitry Andric size_t RefPos; 1907*0b57cec5SDimitry Andric uint8_t RefSteps; 1908*0b57cec5SDimitry Andric if (!parseRefinementStep(Override, RefPos, RefSteps)) 1909*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1910*0b57cec5SDimitry Andric 1911*0b57cec5SDimitry Andric // Split the string for further processing. 1912*0b57cec5SDimitry Andric Override = Override.substr(0, RefPos); 1913*0b57cec5SDimitry Andric assert(Override != "none" && 1914*0b57cec5SDimitry Andric "Disabled reciprocals, but specifed refinement steps?"); 1915*0b57cec5SDimitry Andric 1916*0b57cec5SDimitry Andric // If this is a general override, return the specified number of steps. 1917*0b57cec5SDimitry Andric if (Override == "all" || Override == "default") 1918*0b57cec5SDimitry Andric return RefSteps; 1919*0b57cec5SDimitry Andric } 1920*0b57cec5SDimitry Andric 1921*0b57cec5SDimitry Andric // The attribute string may omit the size suffix ('f'/'d'). 1922*0b57cec5SDimitry Andric std::string VTName = getReciprocalOpName(IsSqrt, VT); 1923*0b57cec5SDimitry Andric std::string VTNameNoSize = VTName; 1924*0b57cec5SDimitry Andric VTNameNoSize.pop_back(); 1925*0b57cec5SDimitry Andric 1926*0b57cec5SDimitry Andric for (StringRef RecipType : OverrideVector) { 1927*0b57cec5SDimitry Andric size_t RefPos; 1928*0b57cec5SDimitry Andric uint8_t RefSteps; 1929*0b57cec5SDimitry Andric if (!parseRefinementStep(RecipType, RefPos, RefSteps)) 1930*0b57cec5SDimitry Andric continue; 1931*0b57cec5SDimitry Andric 1932*0b57cec5SDimitry Andric RecipType = RecipType.substr(0, RefPos); 1933*0b57cec5SDimitry Andric if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize)) 1934*0b57cec5SDimitry Andric return RefSteps; 1935*0b57cec5SDimitry Andric } 1936*0b57cec5SDimitry Andric 1937*0b57cec5SDimitry Andric return TargetLoweringBase::ReciprocalEstimate::Unspecified; 1938*0b57cec5SDimitry Andric } 1939*0b57cec5SDimitry Andric 1940*0b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT, 1941*0b57cec5SDimitry Andric MachineFunction &MF) const { 1942*0b57cec5SDimitry Andric return getOpEnabled(true, VT, getRecipEstimateForFunc(MF)); 1943*0b57cec5SDimitry Andric } 1944*0b57cec5SDimitry Andric 1945*0b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT, 1946*0b57cec5SDimitry Andric MachineFunction &MF) const { 1947*0b57cec5SDimitry Andric return getOpEnabled(false, VT, getRecipEstimateForFunc(MF)); 1948*0b57cec5SDimitry Andric } 1949*0b57cec5SDimitry Andric 1950*0b57cec5SDimitry Andric int TargetLoweringBase::getSqrtRefinementSteps(EVT VT, 1951*0b57cec5SDimitry Andric MachineFunction &MF) const { 1952*0b57cec5SDimitry Andric return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF)); 1953*0b57cec5SDimitry Andric } 1954*0b57cec5SDimitry Andric 1955*0b57cec5SDimitry Andric int TargetLoweringBase::getDivRefinementSteps(EVT VT, 1956*0b57cec5SDimitry Andric MachineFunction &MF) const { 1957*0b57cec5SDimitry Andric return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF)); 1958*0b57cec5SDimitry Andric } 1959*0b57cec5SDimitry Andric 1960*0b57cec5SDimitry Andric void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const { 1961*0b57cec5SDimitry Andric MF.getRegInfo().freezeReservedRegs(MF); 1962*0b57cec5SDimitry Andric } 1963