xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 0b57cec536236d46e3dba9bd041533462f33dbb7)
1*0b57cec5SDimitry Andric //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2*0b57cec5SDimitry Andric //
3*0b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4*0b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
5*0b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6*0b57cec5SDimitry Andric //
7*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
8*0b57cec5SDimitry Andric //
9*0b57cec5SDimitry Andric // This implements the TargetLoweringBase class.
10*0b57cec5SDimitry Andric //
11*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
12*0b57cec5SDimitry Andric 
13*0b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h"
14*0b57cec5SDimitry Andric #include "llvm/ADT/STLExtras.h"
15*0b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
16*0b57cec5SDimitry Andric #include "llvm/ADT/StringExtras.h"
17*0b57cec5SDimitry Andric #include "llvm/ADT/StringRef.h"
18*0b57cec5SDimitry Andric #include "llvm/ADT/Triple.h"
19*0b57cec5SDimitry Andric #include "llvm/ADT/Twine.h"
20*0b57cec5SDimitry Andric #include "llvm/CodeGen/Analysis.h"
21*0b57cec5SDimitry Andric #include "llvm/CodeGen/ISDOpcodes.h"
22*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
23*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFrameInfo.h"
24*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
25*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
26*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
27*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
28*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
29*0b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
30*0b57cec5SDimitry Andric #include "llvm/CodeGen/RuntimeLibcalls.h"
31*0b57cec5SDimitry Andric #include "llvm/CodeGen/StackMaps.h"
32*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetLowering.h"
33*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
34*0b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
35*0b57cec5SDimitry Andric #include "llvm/CodeGen/ValueTypes.h"
36*0b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
37*0b57cec5SDimitry Andric #include "llvm/IR/CallingConv.h"
38*0b57cec5SDimitry Andric #include "llvm/IR/DataLayout.h"
39*0b57cec5SDimitry Andric #include "llvm/IR/DerivedTypes.h"
40*0b57cec5SDimitry Andric #include "llvm/IR/Function.h"
41*0b57cec5SDimitry Andric #include "llvm/IR/GlobalValue.h"
42*0b57cec5SDimitry Andric #include "llvm/IR/GlobalVariable.h"
43*0b57cec5SDimitry Andric #include "llvm/IR/IRBuilder.h"
44*0b57cec5SDimitry Andric #include "llvm/IR/Module.h"
45*0b57cec5SDimitry Andric #include "llvm/IR/Type.h"
46*0b57cec5SDimitry Andric #include "llvm/Support/BranchProbability.h"
47*0b57cec5SDimitry Andric #include "llvm/Support/Casting.h"
48*0b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
49*0b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
50*0b57cec5SDimitry Andric #include "llvm/Support/ErrorHandling.h"
51*0b57cec5SDimitry Andric #include "llvm/Support/MachineValueType.h"
52*0b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
53*0b57cec5SDimitry Andric #include "llvm/Target/TargetMachine.h"
54*0b57cec5SDimitry Andric #include <algorithm>
55*0b57cec5SDimitry Andric #include <cassert>
56*0b57cec5SDimitry Andric #include <cstddef>
57*0b57cec5SDimitry Andric #include <cstdint>
58*0b57cec5SDimitry Andric #include <cstring>
59*0b57cec5SDimitry Andric #include <iterator>
60*0b57cec5SDimitry Andric #include <string>
61*0b57cec5SDimitry Andric #include <tuple>
62*0b57cec5SDimitry Andric #include <utility>
63*0b57cec5SDimitry Andric 
64*0b57cec5SDimitry Andric using namespace llvm;
65*0b57cec5SDimitry Andric 
66*0b57cec5SDimitry Andric static cl::opt<bool> JumpIsExpensiveOverride(
67*0b57cec5SDimitry Andric     "jump-is-expensive", cl::init(false),
68*0b57cec5SDimitry Andric     cl::desc("Do not create extra branches to split comparison logic."),
69*0b57cec5SDimitry Andric     cl::Hidden);
70*0b57cec5SDimitry Andric 
71*0b57cec5SDimitry Andric static cl::opt<unsigned> MinimumJumpTableEntries
72*0b57cec5SDimitry Andric   ("min-jump-table-entries", cl::init(4), cl::Hidden,
73*0b57cec5SDimitry Andric    cl::desc("Set minimum number of entries to use a jump table."));
74*0b57cec5SDimitry Andric 
75*0b57cec5SDimitry Andric static cl::opt<unsigned> MaximumJumpTableSize
76*0b57cec5SDimitry Andric   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
77*0b57cec5SDimitry Andric    cl::desc("Set maximum size of jump tables."));
78*0b57cec5SDimitry Andric 
79*0b57cec5SDimitry Andric /// Minimum jump table density for normal functions.
80*0b57cec5SDimitry Andric static cl::opt<unsigned>
81*0b57cec5SDimitry Andric     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
82*0b57cec5SDimitry Andric                      cl::desc("Minimum density for building a jump table in "
83*0b57cec5SDimitry Andric                               "a normal function"));
84*0b57cec5SDimitry Andric 
85*0b57cec5SDimitry Andric /// Minimum jump table density for -Os or -Oz functions.
86*0b57cec5SDimitry Andric static cl::opt<unsigned> OptsizeJumpTableDensity(
87*0b57cec5SDimitry Andric     "optsize-jump-table-density", cl::init(40), cl::Hidden,
88*0b57cec5SDimitry Andric     cl::desc("Minimum density for building a jump table in "
89*0b57cec5SDimitry Andric              "an optsize function"));
90*0b57cec5SDimitry Andric 
91*0b57cec5SDimitry Andric static bool darwinHasSinCos(const Triple &TT) {
92*0b57cec5SDimitry Andric   assert(TT.isOSDarwin() && "should be called with darwin triple");
93*0b57cec5SDimitry Andric   // Don't bother with 32 bit x86.
94*0b57cec5SDimitry Andric   if (TT.getArch() == Triple::x86)
95*0b57cec5SDimitry Andric     return false;
96*0b57cec5SDimitry Andric   // Macos < 10.9 has no sincos_stret.
97*0b57cec5SDimitry Andric   if (TT.isMacOSX())
98*0b57cec5SDimitry Andric     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
99*0b57cec5SDimitry Andric   // iOS < 7.0 has no sincos_stret.
100*0b57cec5SDimitry Andric   if (TT.isiOS())
101*0b57cec5SDimitry Andric     return !TT.isOSVersionLT(7, 0);
102*0b57cec5SDimitry Andric   // Any other darwin such as WatchOS/TvOS is new enough.
103*0b57cec5SDimitry Andric   return true;
104*0b57cec5SDimitry Andric }
105*0b57cec5SDimitry Andric 
106*0b57cec5SDimitry Andric // Although this default value is arbitrary, it is not random. It is assumed
107*0b57cec5SDimitry Andric // that a condition that evaluates the same way by a higher percentage than this
108*0b57cec5SDimitry Andric // is best represented as control flow. Therefore, the default value N should be
109*0b57cec5SDimitry Andric // set such that the win from N% correct executions is greater than the loss
110*0b57cec5SDimitry Andric // from (100 - N)% mispredicted executions for the majority of intended targets.
111*0b57cec5SDimitry Andric static cl::opt<int> MinPercentageForPredictableBranch(
112*0b57cec5SDimitry Andric     "min-predictable-branch", cl::init(99),
113*0b57cec5SDimitry Andric     cl::desc("Minimum percentage (0-100) that a condition must be either true "
114*0b57cec5SDimitry Andric              "or false to assume that the condition is predictable"),
115*0b57cec5SDimitry Andric     cl::Hidden);
116*0b57cec5SDimitry Andric 
117*0b57cec5SDimitry Andric void TargetLoweringBase::InitLibcalls(const Triple &TT) {
118*0b57cec5SDimitry Andric #define HANDLE_LIBCALL(code, name) \
119*0b57cec5SDimitry Andric   setLibcallName(RTLIB::code, name);
120*0b57cec5SDimitry Andric #include "llvm/IR/RuntimeLibcalls.def"
121*0b57cec5SDimitry Andric #undef HANDLE_LIBCALL
122*0b57cec5SDimitry Andric   // Initialize calling conventions to their default.
123*0b57cec5SDimitry Andric   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
124*0b57cec5SDimitry Andric     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
125*0b57cec5SDimitry Andric 
126*0b57cec5SDimitry Andric   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
127*0b57cec5SDimitry Andric   if (TT.getArch() == Triple::ppc || TT.isPPC64()) {
128*0b57cec5SDimitry Andric     setLibcallName(RTLIB::ADD_F128, "__addkf3");
129*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SUB_F128, "__subkf3");
130*0b57cec5SDimitry Andric     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
131*0b57cec5SDimitry Andric     setLibcallName(RTLIB::DIV_F128, "__divkf3");
132*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
133*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
134*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
135*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
136*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
137*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
138*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
139*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
140*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
141*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
142*0b57cec5SDimitry Andric     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
143*0b57cec5SDimitry Andric     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
144*0b57cec5SDimitry Andric     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
145*0b57cec5SDimitry Andric     setLibcallName(RTLIB::UNE_F128, "__nekf2");
146*0b57cec5SDimitry Andric     setLibcallName(RTLIB::OGE_F128, "__gekf2");
147*0b57cec5SDimitry Andric     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
148*0b57cec5SDimitry Andric     setLibcallName(RTLIB::OLE_F128, "__lekf2");
149*0b57cec5SDimitry Andric     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
150*0b57cec5SDimitry Andric     setLibcallName(RTLIB::UO_F128, "__unordkf2");
151*0b57cec5SDimitry Andric     setLibcallName(RTLIB::O_F128, "__unordkf2");
152*0b57cec5SDimitry Andric   }
153*0b57cec5SDimitry Andric 
154*0b57cec5SDimitry Andric   // A few names are different on particular architectures or environments.
155*0b57cec5SDimitry Andric   if (TT.isOSDarwin()) {
156*0b57cec5SDimitry Andric     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
157*0b57cec5SDimitry Andric     // of the gnueabi-style __gnu_*_ieee.
158*0b57cec5SDimitry Andric     // FIXME: What about other targets?
159*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
160*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
161*0b57cec5SDimitry Andric 
162*0b57cec5SDimitry Andric     // Some darwins have an optimized __bzero/bzero function.
163*0b57cec5SDimitry Andric     switch (TT.getArch()) {
164*0b57cec5SDimitry Andric     case Triple::x86:
165*0b57cec5SDimitry Andric     case Triple::x86_64:
166*0b57cec5SDimitry Andric       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
167*0b57cec5SDimitry Andric         setLibcallName(RTLIB::BZERO, "__bzero");
168*0b57cec5SDimitry Andric       break;
169*0b57cec5SDimitry Andric     case Triple::aarch64:
170*0b57cec5SDimitry Andric       setLibcallName(RTLIB::BZERO, "bzero");
171*0b57cec5SDimitry Andric       break;
172*0b57cec5SDimitry Andric     default:
173*0b57cec5SDimitry Andric       break;
174*0b57cec5SDimitry Andric     }
175*0b57cec5SDimitry Andric 
176*0b57cec5SDimitry Andric     if (darwinHasSinCos(TT)) {
177*0b57cec5SDimitry Andric       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
178*0b57cec5SDimitry Andric       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
179*0b57cec5SDimitry Andric       if (TT.isWatchABI()) {
180*0b57cec5SDimitry Andric         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
181*0b57cec5SDimitry Andric                               CallingConv::ARM_AAPCS_VFP);
182*0b57cec5SDimitry Andric         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
183*0b57cec5SDimitry Andric                               CallingConv::ARM_AAPCS_VFP);
184*0b57cec5SDimitry Andric       }
185*0b57cec5SDimitry Andric     }
186*0b57cec5SDimitry Andric   } else {
187*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
188*0b57cec5SDimitry Andric     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
189*0b57cec5SDimitry Andric   }
190*0b57cec5SDimitry Andric 
191*0b57cec5SDimitry Andric   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
192*0b57cec5SDimitry Andric       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
193*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
194*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F64, "sincos");
195*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
196*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
197*0b57cec5SDimitry Andric     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
198*0b57cec5SDimitry Andric   }
199*0b57cec5SDimitry Andric 
200*0b57cec5SDimitry Andric   if (TT.isOSOpenBSD()) {
201*0b57cec5SDimitry Andric     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
202*0b57cec5SDimitry Andric   }
203*0b57cec5SDimitry Andric }
204*0b57cec5SDimitry Andric 
205*0b57cec5SDimitry Andric /// getFPEXT - Return the FPEXT_*_* value for the given types, or
206*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
207*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
208*0b57cec5SDimitry Andric   if (OpVT == MVT::f16) {
209*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
210*0b57cec5SDimitry Andric       return FPEXT_F16_F32;
211*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f32) {
212*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
213*0b57cec5SDimitry Andric       return FPEXT_F32_F64;
214*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
215*0b57cec5SDimitry Andric       return FPEXT_F32_F128;
216*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
217*0b57cec5SDimitry Andric       return FPEXT_F32_PPCF128;
218*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
219*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
220*0b57cec5SDimitry Andric       return FPEXT_F64_F128;
221*0b57cec5SDimitry Andric     else if (RetVT == MVT::ppcf128)
222*0b57cec5SDimitry Andric       return FPEXT_F64_PPCF128;
223*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
224*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
225*0b57cec5SDimitry Andric       return FPEXT_F80_F128;
226*0b57cec5SDimitry Andric   }
227*0b57cec5SDimitry Andric 
228*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
229*0b57cec5SDimitry Andric }
230*0b57cec5SDimitry Andric 
231*0b57cec5SDimitry Andric /// getFPROUND - Return the FPROUND_*_* value for the given types, or
232*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
233*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
234*0b57cec5SDimitry Andric   if (RetVT == MVT::f16) {
235*0b57cec5SDimitry Andric     if (OpVT == MVT::f32)
236*0b57cec5SDimitry Andric       return FPROUND_F32_F16;
237*0b57cec5SDimitry Andric     if (OpVT == MVT::f64)
238*0b57cec5SDimitry Andric       return FPROUND_F64_F16;
239*0b57cec5SDimitry Andric     if (OpVT == MVT::f80)
240*0b57cec5SDimitry Andric       return FPROUND_F80_F16;
241*0b57cec5SDimitry Andric     if (OpVT == MVT::f128)
242*0b57cec5SDimitry Andric       return FPROUND_F128_F16;
243*0b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
244*0b57cec5SDimitry Andric       return FPROUND_PPCF128_F16;
245*0b57cec5SDimitry Andric   } else if (RetVT == MVT::f32) {
246*0b57cec5SDimitry Andric     if (OpVT == MVT::f64)
247*0b57cec5SDimitry Andric       return FPROUND_F64_F32;
248*0b57cec5SDimitry Andric     if (OpVT == MVT::f80)
249*0b57cec5SDimitry Andric       return FPROUND_F80_F32;
250*0b57cec5SDimitry Andric     if (OpVT == MVT::f128)
251*0b57cec5SDimitry Andric       return FPROUND_F128_F32;
252*0b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
253*0b57cec5SDimitry Andric       return FPROUND_PPCF128_F32;
254*0b57cec5SDimitry Andric   } else if (RetVT == MVT::f64) {
255*0b57cec5SDimitry Andric     if (OpVT == MVT::f80)
256*0b57cec5SDimitry Andric       return FPROUND_F80_F64;
257*0b57cec5SDimitry Andric     if (OpVT == MVT::f128)
258*0b57cec5SDimitry Andric       return FPROUND_F128_F64;
259*0b57cec5SDimitry Andric     if (OpVT == MVT::ppcf128)
260*0b57cec5SDimitry Andric       return FPROUND_PPCF128_F64;
261*0b57cec5SDimitry Andric   } else if (RetVT == MVT::f80) {
262*0b57cec5SDimitry Andric     if (OpVT == MVT::f128)
263*0b57cec5SDimitry Andric       return FPROUND_F128_F80;
264*0b57cec5SDimitry Andric   }
265*0b57cec5SDimitry Andric 
266*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
267*0b57cec5SDimitry Andric }
268*0b57cec5SDimitry Andric 
269*0b57cec5SDimitry Andric /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
270*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
271*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
272*0b57cec5SDimitry Andric   if (OpVT == MVT::f32) {
273*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
274*0b57cec5SDimitry Andric       return FPTOSINT_F32_I32;
275*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
276*0b57cec5SDimitry Andric       return FPTOSINT_F32_I64;
277*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
278*0b57cec5SDimitry Andric       return FPTOSINT_F32_I128;
279*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
280*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
281*0b57cec5SDimitry Andric       return FPTOSINT_F64_I32;
282*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
283*0b57cec5SDimitry Andric       return FPTOSINT_F64_I64;
284*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
285*0b57cec5SDimitry Andric       return FPTOSINT_F64_I128;
286*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
287*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
288*0b57cec5SDimitry Andric       return FPTOSINT_F80_I32;
289*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
290*0b57cec5SDimitry Andric       return FPTOSINT_F80_I64;
291*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
292*0b57cec5SDimitry Andric       return FPTOSINT_F80_I128;
293*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f128) {
294*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
295*0b57cec5SDimitry Andric       return FPTOSINT_F128_I32;
296*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
297*0b57cec5SDimitry Andric       return FPTOSINT_F128_I64;
298*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
299*0b57cec5SDimitry Andric       return FPTOSINT_F128_I128;
300*0b57cec5SDimitry Andric   } else if (OpVT == MVT::ppcf128) {
301*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
302*0b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I32;
303*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
304*0b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I64;
305*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
306*0b57cec5SDimitry Andric       return FPTOSINT_PPCF128_I128;
307*0b57cec5SDimitry Andric   }
308*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
309*0b57cec5SDimitry Andric }
310*0b57cec5SDimitry Andric 
311*0b57cec5SDimitry Andric /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
312*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
313*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
314*0b57cec5SDimitry Andric   if (OpVT == MVT::f32) {
315*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
316*0b57cec5SDimitry Andric       return FPTOUINT_F32_I32;
317*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
318*0b57cec5SDimitry Andric       return FPTOUINT_F32_I64;
319*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
320*0b57cec5SDimitry Andric       return FPTOUINT_F32_I128;
321*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f64) {
322*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
323*0b57cec5SDimitry Andric       return FPTOUINT_F64_I32;
324*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
325*0b57cec5SDimitry Andric       return FPTOUINT_F64_I64;
326*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
327*0b57cec5SDimitry Andric       return FPTOUINT_F64_I128;
328*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f80) {
329*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
330*0b57cec5SDimitry Andric       return FPTOUINT_F80_I32;
331*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
332*0b57cec5SDimitry Andric       return FPTOUINT_F80_I64;
333*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
334*0b57cec5SDimitry Andric       return FPTOUINT_F80_I128;
335*0b57cec5SDimitry Andric   } else if (OpVT == MVT::f128) {
336*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
337*0b57cec5SDimitry Andric       return FPTOUINT_F128_I32;
338*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
339*0b57cec5SDimitry Andric       return FPTOUINT_F128_I64;
340*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
341*0b57cec5SDimitry Andric       return FPTOUINT_F128_I128;
342*0b57cec5SDimitry Andric   } else if (OpVT == MVT::ppcf128) {
343*0b57cec5SDimitry Andric     if (RetVT == MVT::i32)
344*0b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I32;
345*0b57cec5SDimitry Andric     if (RetVT == MVT::i64)
346*0b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I64;
347*0b57cec5SDimitry Andric     if (RetVT == MVT::i128)
348*0b57cec5SDimitry Andric       return FPTOUINT_PPCF128_I128;
349*0b57cec5SDimitry Andric   }
350*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
351*0b57cec5SDimitry Andric }
352*0b57cec5SDimitry Andric 
353*0b57cec5SDimitry Andric /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
354*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
355*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
356*0b57cec5SDimitry Andric   if (OpVT == MVT::i32) {
357*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
358*0b57cec5SDimitry Andric       return SINTTOFP_I32_F32;
359*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
360*0b57cec5SDimitry Andric       return SINTTOFP_I32_F64;
361*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
362*0b57cec5SDimitry Andric       return SINTTOFP_I32_F80;
363*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
364*0b57cec5SDimitry Andric       return SINTTOFP_I32_F128;
365*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
366*0b57cec5SDimitry Andric       return SINTTOFP_I32_PPCF128;
367*0b57cec5SDimitry Andric   } else if (OpVT == MVT::i64) {
368*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
369*0b57cec5SDimitry Andric       return SINTTOFP_I64_F32;
370*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
371*0b57cec5SDimitry Andric       return SINTTOFP_I64_F64;
372*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
373*0b57cec5SDimitry Andric       return SINTTOFP_I64_F80;
374*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
375*0b57cec5SDimitry Andric       return SINTTOFP_I64_F128;
376*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
377*0b57cec5SDimitry Andric       return SINTTOFP_I64_PPCF128;
378*0b57cec5SDimitry Andric   } else if (OpVT == MVT::i128) {
379*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
380*0b57cec5SDimitry Andric       return SINTTOFP_I128_F32;
381*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
382*0b57cec5SDimitry Andric       return SINTTOFP_I128_F64;
383*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
384*0b57cec5SDimitry Andric       return SINTTOFP_I128_F80;
385*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
386*0b57cec5SDimitry Andric       return SINTTOFP_I128_F128;
387*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
388*0b57cec5SDimitry Andric       return SINTTOFP_I128_PPCF128;
389*0b57cec5SDimitry Andric   }
390*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
391*0b57cec5SDimitry Andric }
392*0b57cec5SDimitry Andric 
393*0b57cec5SDimitry Andric /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
394*0b57cec5SDimitry Andric /// UNKNOWN_LIBCALL if there is none.
395*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
396*0b57cec5SDimitry Andric   if (OpVT == MVT::i32) {
397*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
398*0b57cec5SDimitry Andric       return UINTTOFP_I32_F32;
399*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
400*0b57cec5SDimitry Andric       return UINTTOFP_I32_F64;
401*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
402*0b57cec5SDimitry Andric       return UINTTOFP_I32_F80;
403*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
404*0b57cec5SDimitry Andric       return UINTTOFP_I32_F128;
405*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
406*0b57cec5SDimitry Andric       return UINTTOFP_I32_PPCF128;
407*0b57cec5SDimitry Andric   } else if (OpVT == MVT::i64) {
408*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
409*0b57cec5SDimitry Andric       return UINTTOFP_I64_F32;
410*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
411*0b57cec5SDimitry Andric       return UINTTOFP_I64_F64;
412*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
413*0b57cec5SDimitry Andric       return UINTTOFP_I64_F80;
414*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
415*0b57cec5SDimitry Andric       return UINTTOFP_I64_F128;
416*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
417*0b57cec5SDimitry Andric       return UINTTOFP_I64_PPCF128;
418*0b57cec5SDimitry Andric   } else if (OpVT == MVT::i128) {
419*0b57cec5SDimitry Andric     if (RetVT == MVT::f32)
420*0b57cec5SDimitry Andric       return UINTTOFP_I128_F32;
421*0b57cec5SDimitry Andric     if (RetVT == MVT::f64)
422*0b57cec5SDimitry Andric       return UINTTOFP_I128_F64;
423*0b57cec5SDimitry Andric     if (RetVT == MVT::f80)
424*0b57cec5SDimitry Andric       return UINTTOFP_I128_F80;
425*0b57cec5SDimitry Andric     if (RetVT == MVT::f128)
426*0b57cec5SDimitry Andric       return UINTTOFP_I128_F128;
427*0b57cec5SDimitry Andric     if (RetVT == MVT::ppcf128)
428*0b57cec5SDimitry Andric       return UINTTOFP_I128_PPCF128;
429*0b57cec5SDimitry Andric   }
430*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
431*0b57cec5SDimitry Andric }
432*0b57cec5SDimitry Andric 
433*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
434*0b57cec5SDimitry Andric #define OP_TO_LIBCALL(Name, Enum)                                              \
435*0b57cec5SDimitry Andric   case Name:                                                                   \
436*0b57cec5SDimitry Andric     switch (VT.SimpleTy) {                                                     \
437*0b57cec5SDimitry Andric     default:                                                                   \
438*0b57cec5SDimitry Andric       return UNKNOWN_LIBCALL;                                                  \
439*0b57cec5SDimitry Andric     case MVT::i8:                                                              \
440*0b57cec5SDimitry Andric       return Enum##_1;                                                         \
441*0b57cec5SDimitry Andric     case MVT::i16:                                                             \
442*0b57cec5SDimitry Andric       return Enum##_2;                                                         \
443*0b57cec5SDimitry Andric     case MVT::i32:                                                             \
444*0b57cec5SDimitry Andric       return Enum##_4;                                                         \
445*0b57cec5SDimitry Andric     case MVT::i64:                                                             \
446*0b57cec5SDimitry Andric       return Enum##_8;                                                         \
447*0b57cec5SDimitry Andric     case MVT::i128:                                                            \
448*0b57cec5SDimitry Andric       return Enum##_16;                                                        \
449*0b57cec5SDimitry Andric     }
450*0b57cec5SDimitry Andric 
451*0b57cec5SDimitry Andric   switch (Opc) {
452*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
453*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
454*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
455*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
456*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
457*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
458*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
459*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
460*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
461*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
462*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
463*0b57cec5SDimitry Andric     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
464*0b57cec5SDimitry Andric   }
465*0b57cec5SDimitry Andric 
466*0b57cec5SDimitry Andric #undef OP_TO_LIBCALL
467*0b57cec5SDimitry Andric 
468*0b57cec5SDimitry Andric   return UNKNOWN_LIBCALL;
469*0b57cec5SDimitry Andric }
470*0b57cec5SDimitry Andric 
471*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
472*0b57cec5SDimitry Andric   switch (ElementSize) {
473*0b57cec5SDimitry Andric   case 1:
474*0b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
475*0b57cec5SDimitry Andric   case 2:
476*0b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
477*0b57cec5SDimitry Andric   case 4:
478*0b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
479*0b57cec5SDimitry Andric   case 8:
480*0b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
481*0b57cec5SDimitry Andric   case 16:
482*0b57cec5SDimitry Andric     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
483*0b57cec5SDimitry Andric   default:
484*0b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
485*0b57cec5SDimitry Andric   }
486*0b57cec5SDimitry Andric }
487*0b57cec5SDimitry Andric 
488*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
489*0b57cec5SDimitry Andric   switch (ElementSize) {
490*0b57cec5SDimitry Andric   case 1:
491*0b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
492*0b57cec5SDimitry Andric   case 2:
493*0b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
494*0b57cec5SDimitry Andric   case 4:
495*0b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
496*0b57cec5SDimitry Andric   case 8:
497*0b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
498*0b57cec5SDimitry Andric   case 16:
499*0b57cec5SDimitry Andric     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
500*0b57cec5SDimitry Andric   default:
501*0b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
502*0b57cec5SDimitry Andric   }
503*0b57cec5SDimitry Andric }
504*0b57cec5SDimitry Andric 
505*0b57cec5SDimitry Andric RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
506*0b57cec5SDimitry Andric   switch (ElementSize) {
507*0b57cec5SDimitry Andric   case 1:
508*0b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
509*0b57cec5SDimitry Andric   case 2:
510*0b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
511*0b57cec5SDimitry Andric   case 4:
512*0b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
513*0b57cec5SDimitry Andric   case 8:
514*0b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
515*0b57cec5SDimitry Andric   case 16:
516*0b57cec5SDimitry Andric     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
517*0b57cec5SDimitry Andric   default:
518*0b57cec5SDimitry Andric     return UNKNOWN_LIBCALL;
519*0b57cec5SDimitry Andric   }
520*0b57cec5SDimitry Andric }
521*0b57cec5SDimitry Andric 
522*0b57cec5SDimitry Andric /// InitCmpLibcallCCs - Set default comparison libcall CC.
523*0b57cec5SDimitry Andric static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
524*0b57cec5SDimitry Andric   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
525*0b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
526*0b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
527*0b57cec5SDimitry Andric   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
528*0b57cec5SDimitry Andric   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
529*0b57cec5SDimitry Andric   CCs[RTLIB::UNE_F32] = ISD::SETNE;
530*0b57cec5SDimitry Andric   CCs[RTLIB::UNE_F64] = ISD::SETNE;
531*0b57cec5SDimitry Andric   CCs[RTLIB::UNE_F128] = ISD::SETNE;
532*0b57cec5SDimitry Andric   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
533*0b57cec5SDimitry Andric   CCs[RTLIB::OGE_F32] = ISD::SETGE;
534*0b57cec5SDimitry Andric   CCs[RTLIB::OGE_F64] = ISD::SETGE;
535*0b57cec5SDimitry Andric   CCs[RTLIB::OGE_F128] = ISD::SETGE;
536*0b57cec5SDimitry Andric   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
537*0b57cec5SDimitry Andric   CCs[RTLIB::OLT_F32] = ISD::SETLT;
538*0b57cec5SDimitry Andric   CCs[RTLIB::OLT_F64] = ISD::SETLT;
539*0b57cec5SDimitry Andric   CCs[RTLIB::OLT_F128] = ISD::SETLT;
540*0b57cec5SDimitry Andric   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
541*0b57cec5SDimitry Andric   CCs[RTLIB::OLE_F32] = ISD::SETLE;
542*0b57cec5SDimitry Andric   CCs[RTLIB::OLE_F64] = ISD::SETLE;
543*0b57cec5SDimitry Andric   CCs[RTLIB::OLE_F128] = ISD::SETLE;
544*0b57cec5SDimitry Andric   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
545*0b57cec5SDimitry Andric   CCs[RTLIB::OGT_F32] = ISD::SETGT;
546*0b57cec5SDimitry Andric   CCs[RTLIB::OGT_F64] = ISD::SETGT;
547*0b57cec5SDimitry Andric   CCs[RTLIB::OGT_F128] = ISD::SETGT;
548*0b57cec5SDimitry Andric   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
549*0b57cec5SDimitry Andric   CCs[RTLIB::UO_F32] = ISD::SETNE;
550*0b57cec5SDimitry Andric   CCs[RTLIB::UO_F64] = ISD::SETNE;
551*0b57cec5SDimitry Andric   CCs[RTLIB::UO_F128] = ISD::SETNE;
552*0b57cec5SDimitry Andric   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
553*0b57cec5SDimitry Andric   CCs[RTLIB::O_F32] = ISD::SETEQ;
554*0b57cec5SDimitry Andric   CCs[RTLIB::O_F64] = ISD::SETEQ;
555*0b57cec5SDimitry Andric   CCs[RTLIB::O_F128] = ISD::SETEQ;
556*0b57cec5SDimitry Andric   CCs[RTLIB::O_PPCF128] = ISD::SETEQ;
557*0b57cec5SDimitry Andric }
558*0b57cec5SDimitry Andric 
559*0b57cec5SDimitry Andric /// NOTE: The TargetMachine owns TLOF.
560*0b57cec5SDimitry Andric TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
561*0b57cec5SDimitry Andric   initActions();
562*0b57cec5SDimitry Andric 
563*0b57cec5SDimitry Andric   // Perform these initializations only once.
564*0b57cec5SDimitry Andric   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
565*0b57cec5SDimitry Andric       MaxLoadsPerMemcmp = 8;
566*0b57cec5SDimitry Andric   MaxGluedStoresPerMemcpy = 0;
567*0b57cec5SDimitry Andric   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
568*0b57cec5SDimitry Andric       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
569*0b57cec5SDimitry Andric   UseUnderscoreSetJmp = false;
570*0b57cec5SDimitry Andric   UseUnderscoreLongJmp = false;
571*0b57cec5SDimitry Andric   HasMultipleConditionRegisters = false;
572*0b57cec5SDimitry Andric   HasExtractBitsInsn = false;
573*0b57cec5SDimitry Andric   JumpIsExpensive = JumpIsExpensiveOverride;
574*0b57cec5SDimitry Andric   PredictableSelectIsExpensive = false;
575*0b57cec5SDimitry Andric   EnableExtLdPromotion = false;
576*0b57cec5SDimitry Andric   StackPointerRegisterToSaveRestore = 0;
577*0b57cec5SDimitry Andric   BooleanContents = UndefinedBooleanContent;
578*0b57cec5SDimitry Andric   BooleanFloatContents = UndefinedBooleanContent;
579*0b57cec5SDimitry Andric   BooleanVectorContents = UndefinedBooleanContent;
580*0b57cec5SDimitry Andric   SchedPreferenceInfo = Sched::ILP;
581*0b57cec5SDimitry Andric   JumpBufSize = 0;
582*0b57cec5SDimitry Andric   JumpBufAlignment = 0;
583*0b57cec5SDimitry Andric   MinFunctionAlignment = 0;
584*0b57cec5SDimitry Andric   PrefFunctionAlignment = 0;
585*0b57cec5SDimitry Andric   PrefLoopAlignment = 0;
586*0b57cec5SDimitry Andric   GatherAllAliasesMaxDepth = 18;
587*0b57cec5SDimitry Andric   MinStackArgumentAlignment = 1;
588*0b57cec5SDimitry Andric   // TODO: the default will be switched to 0 in the next commit, along
589*0b57cec5SDimitry Andric   // with the Target-specific changes necessary.
590*0b57cec5SDimitry Andric   MaxAtomicSizeInBitsSupported = 1024;
591*0b57cec5SDimitry Andric 
592*0b57cec5SDimitry Andric   MinCmpXchgSizeInBits = 0;
593*0b57cec5SDimitry Andric   SupportsUnalignedAtomics = false;
594*0b57cec5SDimitry Andric 
595*0b57cec5SDimitry Andric   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
596*0b57cec5SDimitry Andric 
597*0b57cec5SDimitry Andric   InitLibcalls(TM.getTargetTriple());
598*0b57cec5SDimitry Andric   InitCmpLibcallCCs(CmpLibcallCCs);
599*0b57cec5SDimitry Andric }
600*0b57cec5SDimitry Andric 
601*0b57cec5SDimitry Andric void TargetLoweringBase::initActions() {
602*0b57cec5SDimitry Andric   // All operations default to being supported.
603*0b57cec5SDimitry Andric   memset(OpActions, 0, sizeof(OpActions));
604*0b57cec5SDimitry Andric   memset(LoadExtActions, 0, sizeof(LoadExtActions));
605*0b57cec5SDimitry Andric   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
606*0b57cec5SDimitry Andric   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
607*0b57cec5SDimitry Andric   memset(CondCodeActions, 0, sizeof(CondCodeActions));
608*0b57cec5SDimitry Andric   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
609*0b57cec5SDimitry Andric   std::fill(std::begin(TargetDAGCombineArray),
610*0b57cec5SDimitry Andric             std::end(TargetDAGCombineArray), 0);
611*0b57cec5SDimitry Andric 
612*0b57cec5SDimitry Andric   for (MVT VT : MVT::fp_valuetypes()) {
613*0b57cec5SDimitry Andric     MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
614*0b57cec5SDimitry Andric     if (IntVT.isValid()) {
615*0b57cec5SDimitry Andric       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
616*0b57cec5SDimitry Andric       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
617*0b57cec5SDimitry Andric     }
618*0b57cec5SDimitry Andric   }
619*0b57cec5SDimitry Andric 
620*0b57cec5SDimitry Andric   // Set default actions for various operations.
621*0b57cec5SDimitry Andric   for (MVT VT : MVT::all_valuetypes()) {
622*0b57cec5SDimitry Andric     // Default all indexed load / store to expand.
623*0b57cec5SDimitry Andric     for (unsigned IM = (unsigned)ISD::PRE_INC;
624*0b57cec5SDimitry Andric          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
625*0b57cec5SDimitry Andric       setIndexedLoadAction(IM, VT, Expand);
626*0b57cec5SDimitry Andric       setIndexedStoreAction(IM, VT, Expand);
627*0b57cec5SDimitry Andric     }
628*0b57cec5SDimitry Andric 
629*0b57cec5SDimitry Andric     // Most backends expect to see the node which just returns the value loaded.
630*0b57cec5SDimitry Andric     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
631*0b57cec5SDimitry Andric 
632*0b57cec5SDimitry Andric     // These operations default to expand.
633*0b57cec5SDimitry Andric     setOperationAction(ISD::FGETSIGN, VT, Expand);
634*0b57cec5SDimitry Andric     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
635*0b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM, VT, Expand);
636*0b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM, VT, Expand);
637*0b57cec5SDimitry Andric     setOperationAction(ISD::FMINNUM_IEEE, VT, Expand);
638*0b57cec5SDimitry Andric     setOperationAction(ISD::FMAXNUM_IEEE, VT, Expand);
639*0b57cec5SDimitry Andric     setOperationAction(ISD::FMINIMUM, VT, Expand);
640*0b57cec5SDimitry Andric     setOperationAction(ISD::FMAXIMUM, VT, Expand);
641*0b57cec5SDimitry Andric     setOperationAction(ISD::FMAD, VT, Expand);
642*0b57cec5SDimitry Andric     setOperationAction(ISD::SMIN, VT, Expand);
643*0b57cec5SDimitry Andric     setOperationAction(ISD::SMAX, VT, Expand);
644*0b57cec5SDimitry Andric     setOperationAction(ISD::UMIN, VT, Expand);
645*0b57cec5SDimitry Andric     setOperationAction(ISD::UMAX, VT, Expand);
646*0b57cec5SDimitry Andric     setOperationAction(ISD::ABS, VT, Expand);
647*0b57cec5SDimitry Andric     setOperationAction(ISD::FSHL, VT, Expand);
648*0b57cec5SDimitry Andric     setOperationAction(ISD::FSHR, VT, Expand);
649*0b57cec5SDimitry Andric     setOperationAction(ISD::SADDSAT, VT, Expand);
650*0b57cec5SDimitry Andric     setOperationAction(ISD::UADDSAT, VT, Expand);
651*0b57cec5SDimitry Andric     setOperationAction(ISD::SSUBSAT, VT, Expand);
652*0b57cec5SDimitry Andric     setOperationAction(ISD::USUBSAT, VT, Expand);
653*0b57cec5SDimitry Andric     setOperationAction(ISD::SMULFIX, VT, Expand);
654*0b57cec5SDimitry Andric     setOperationAction(ISD::SMULFIXSAT, VT, Expand);
655*0b57cec5SDimitry Andric     setOperationAction(ISD::UMULFIX, VT, Expand);
656*0b57cec5SDimitry Andric 
657*0b57cec5SDimitry Andric     // Overflow operations default to expand
658*0b57cec5SDimitry Andric     setOperationAction(ISD::SADDO, VT, Expand);
659*0b57cec5SDimitry Andric     setOperationAction(ISD::SSUBO, VT, Expand);
660*0b57cec5SDimitry Andric     setOperationAction(ISD::UADDO, VT, Expand);
661*0b57cec5SDimitry Andric     setOperationAction(ISD::USUBO, VT, Expand);
662*0b57cec5SDimitry Andric     setOperationAction(ISD::SMULO, VT, Expand);
663*0b57cec5SDimitry Andric     setOperationAction(ISD::UMULO, VT, Expand);
664*0b57cec5SDimitry Andric 
665*0b57cec5SDimitry Andric     // ADDCARRY operations default to expand
666*0b57cec5SDimitry Andric     setOperationAction(ISD::ADDCARRY, VT, Expand);
667*0b57cec5SDimitry Andric     setOperationAction(ISD::SUBCARRY, VT, Expand);
668*0b57cec5SDimitry Andric     setOperationAction(ISD::SETCCCARRY, VT, Expand);
669*0b57cec5SDimitry Andric 
670*0b57cec5SDimitry Andric     // ADDC/ADDE/SUBC/SUBE default to expand.
671*0b57cec5SDimitry Andric     setOperationAction(ISD::ADDC, VT, Expand);
672*0b57cec5SDimitry Andric     setOperationAction(ISD::ADDE, VT, Expand);
673*0b57cec5SDimitry Andric     setOperationAction(ISD::SUBC, VT, Expand);
674*0b57cec5SDimitry Andric     setOperationAction(ISD::SUBE, VT, Expand);
675*0b57cec5SDimitry Andric 
676*0b57cec5SDimitry Andric     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
677*0b57cec5SDimitry Andric     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
678*0b57cec5SDimitry Andric     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
679*0b57cec5SDimitry Andric 
680*0b57cec5SDimitry Andric     setOperationAction(ISD::BITREVERSE, VT, Expand);
681*0b57cec5SDimitry Andric 
682*0b57cec5SDimitry Andric     // These library functions default to expand.
683*0b57cec5SDimitry Andric     setOperationAction(ISD::FROUND, VT, Expand);
684*0b57cec5SDimitry Andric     setOperationAction(ISD::FPOWI, VT, Expand);
685*0b57cec5SDimitry Andric 
686*0b57cec5SDimitry Andric     // These operations default to expand for vector types.
687*0b57cec5SDimitry Andric     if (VT.isVector()) {
688*0b57cec5SDimitry Andric       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
689*0b57cec5SDimitry Andric       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
690*0b57cec5SDimitry Andric       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
691*0b57cec5SDimitry Andric       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
692*0b57cec5SDimitry Andric     }
693*0b57cec5SDimitry Andric 
694*0b57cec5SDimitry Andric     // Constrained floating-point operations default to expand.
695*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FADD, VT, Expand);
696*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSUB, VT, Expand);
697*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMUL, VT, Expand);
698*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FDIV, VT, Expand);
699*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FREM, VT, Expand);
700*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMA, VT, Expand);
701*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSQRT, VT, Expand);
702*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FPOW, VT, Expand);
703*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FPOWI, VT, Expand);
704*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FSIN, VT, Expand);
705*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCOS, VT, Expand);
706*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FEXP, VT, Expand);
707*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FEXP2, VT, Expand);
708*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FLOG, VT, Expand);
709*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FLOG10, VT, Expand);
710*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FLOG2, VT, Expand);
711*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FRINT, VT, Expand);
712*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FNEARBYINT, VT, Expand);
713*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FCEIL, VT, Expand);
714*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FFLOOR, VT, Expand);
715*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FROUND, VT, Expand);
716*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FTRUNC, VT, Expand);
717*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMAXNUM, VT, Expand);
718*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FMINNUM, VT, Expand);
719*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FP_ROUND, VT, Expand);
720*0b57cec5SDimitry Andric     setOperationAction(ISD::STRICT_FP_EXTEND, VT, Expand);
721*0b57cec5SDimitry Andric 
722*0b57cec5SDimitry Andric     // For most targets @llvm.get.dynamic.area.offset just returns 0.
723*0b57cec5SDimitry Andric     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
724*0b57cec5SDimitry Andric 
725*0b57cec5SDimitry Andric     // Vector reduction default to expand.
726*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FADD, VT, Expand);
727*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMUL, VT, Expand);
728*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_ADD, VT, Expand);
729*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_MUL, VT, Expand);
730*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_AND, VT, Expand);
731*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_OR, VT, Expand);
732*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_XOR, VT, Expand);
733*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_SMAX, VT, Expand);
734*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_SMIN, VT, Expand);
735*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_UMAX, VT, Expand);
736*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_UMIN, VT, Expand);
737*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMAX, VT, Expand);
738*0b57cec5SDimitry Andric     setOperationAction(ISD::VECREDUCE_FMIN, VT, Expand);
739*0b57cec5SDimitry Andric   }
740*0b57cec5SDimitry Andric 
741*0b57cec5SDimitry Andric   // Most targets ignore the @llvm.prefetch intrinsic.
742*0b57cec5SDimitry Andric   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
743*0b57cec5SDimitry Andric 
744*0b57cec5SDimitry Andric   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
745*0b57cec5SDimitry Andric   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
746*0b57cec5SDimitry Andric 
747*0b57cec5SDimitry Andric   // ConstantFP nodes default to expand.  Targets can either change this to
748*0b57cec5SDimitry Andric   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
749*0b57cec5SDimitry Andric   // to optimize expansions for certain constants.
750*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
751*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
752*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
753*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
754*0b57cec5SDimitry Andric   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
755*0b57cec5SDimitry Andric 
756*0b57cec5SDimitry Andric   // These library functions default to expand.
757*0b57cec5SDimitry Andric   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
758*0b57cec5SDimitry Andric     setOperationAction(ISD::FCBRT,      VT, Expand);
759*0b57cec5SDimitry Andric     setOperationAction(ISD::FLOG ,      VT, Expand);
760*0b57cec5SDimitry Andric     setOperationAction(ISD::FLOG2,      VT, Expand);
761*0b57cec5SDimitry Andric     setOperationAction(ISD::FLOG10,     VT, Expand);
762*0b57cec5SDimitry Andric     setOperationAction(ISD::FEXP ,      VT, Expand);
763*0b57cec5SDimitry Andric     setOperationAction(ISD::FEXP2,      VT, Expand);
764*0b57cec5SDimitry Andric     setOperationAction(ISD::FFLOOR,     VT, Expand);
765*0b57cec5SDimitry Andric     setOperationAction(ISD::FNEARBYINT, VT, Expand);
766*0b57cec5SDimitry Andric     setOperationAction(ISD::FCEIL,      VT, Expand);
767*0b57cec5SDimitry Andric     setOperationAction(ISD::FRINT,      VT, Expand);
768*0b57cec5SDimitry Andric     setOperationAction(ISD::FTRUNC,     VT, Expand);
769*0b57cec5SDimitry Andric     setOperationAction(ISD::FROUND,     VT, Expand);
770*0b57cec5SDimitry Andric     setOperationAction(ISD::LROUND,     VT, Expand);
771*0b57cec5SDimitry Andric     setOperationAction(ISD::LLROUND,    VT, Expand);
772*0b57cec5SDimitry Andric     setOperationAction(ISD::LRINT,      VT, Expand);
773*0b57cec5SDimitry Andric     setOperationAction(ISD::LLRINT,     VT, Expand);
774*0b57cec5SDimitry Andric   }
775*0b57cec5SDimitry Andric 
776*0b57cec5SDimitry Andric   // Default ISD::TRAP to expand (which turns it into abort).
777*0b57cec5SDimitry Andric   setOperationAction(ISD::TRAP, MVT::Other, Expand);
778*0b57cec5SDimitry Andric 
779*0b57cec5SDimitry Andric   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
780*0b57cec5SDimitry Andric   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
781*0b57cec5SDimitry Andric   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
782*0b57cec5SDimitry Andric }
783*0b57cec5SDimitry Andric 
784*0b57cec5SDimitry Andric MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
785*0b57cec5SDimitry Andric                                                EVT) const {
786*0b57cec5SDimitry Andric   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
787*0b57cec5SDimitry Andric }
788*0b57cec5SDimitry Andric 
789*0b57cec5SDimitry Andric EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
790*0b57cec5SDimitry Andric                                          bool LegalTypes) const {
791*0b57cec5SDimitry Andric   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
792*0b57cec5SDimitry Andric   if (LHSTy.isVector())
793*0b57cec5SDimitry Andric     return LHSTy;
794*0b57cec5SDimitry Andric   return LegalTypes ? getScalarShiftAmountTy(DL, LHSTy)
795*0b57cec5SDimitry Andric                     : getPointerTy(DL);
796*0b57cec5SDimitry Andric }
797*0b57cec5SDimitry Andric 
798*0b57cec5SDimitry Andric bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
799*0b57cec5SDimitry Andric   assert(isTypeLegal(VT));
800*0b57cec5SDimitry Andric   switch (Op) {
801*0b57cec5SDimitry Andric   default:
802*0b57cec5SDimitry Andric     return false;
803*0b57cec5SDimitry Andric   case ISD::SDIV:
804*0b57cec5SDimitry Andric   case ISD::UDIV:
805*0b57cec5SDimitry Andric   case ISD::SREM:
806*0b57cec5SDimitry Andric   case ISD::UREM:
807*0b57cec5SDimitry Andric     return true;
808*0b57cec5SDimitry Andric   }
809*0b57cec5SDimitry Andric }
810*0b57cec5SDimitry Andric 
811*0b57cec5SDimitry Andric void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
812*0b57cec5SDimitry Andric   // If the command-line option was specified, ignore this request.
813*0b57cec5SDimitry Andric   if (!JumpIsExpensiveOverride.getNumOccurrences())
814*0b57cec5SDimitry Andric     JumpIsExpensive = isExpensive;
815*0b57cec5SDimitry Andric }
816*0b57cec5SDimitry Andric 
817*0b57cec5SDimitry Andric TargetLoweringBase::LegalizeKind
818*0b57cec5SDimitry Andric TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
819*0b57cec5SDimitry Andric   // If this is a simple type, use the ComputeRegisterProp mechanism.
820*0b57cec5SDimitry Andric   if (VT.isSimple()) {
821*0b57cec5SDimitry Andric     MVT SVT = VT.getSimpleVT();
822*0b57cec5SDimitry Andric     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
823*0b57cec5SDimitry Andric     MVT NVT = TransformToType[SVT.SimpleTy];
824*0b57cec5SDimitry Andric     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
825*0b57cec5SDimitry Andric 
826*0b57cec5SDimitry Andric     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
827*0b57cec5SDimitry Andric             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
828*0b57cec5SDimitry Andric            "Promote may not follow Expand or Promote");
829*0b57cec5SDimitry Andric 
830*0b57cec5SDimitry Andric     if (LA == TypeSplitVector)
831*0b57cec5SDimitry Andric       return LegalizeKind(LA,
832*0b57cec5SDimitry Andric                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
833*0b57cec5SDimitry Andric                                            SVT.getVectorNumElements() / 2));
834*0b57cec5SDimitry Andric     if (LA == TypeScalarizeVector)
835*0b57cec5SDimitry Andric       return LegalizeKind(LA, SVT.getVectorElementType());
836*0b57cec5SDimitry Andric     return LegalizeKind(LA, NVT);
837*0b57cec5SDimitry Andric   }
838*0b57cec5SDimitry Andric 
839*0b57cec5SDimitry Andric   // Handle Extended Scalar Types.
840*0b57cec5SDimitry Andric   if (!VT.isVector()) {
841*0b57cec5SDimitry Andric     assert(VT.isInteger() && "Float types must be simple");
842*0b57cec5SDimitry Andric     unsigned BitSize = VT.getSizeInBits();
843*0b57cec5SDimitry Andric     // First promote to a power-of-two size, then expand if necessary.
844*0b57cec5SDimitry Andric     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
845*0b57cec5SDimitry Andric       EVT NVT = VT.getRoundIntegerType(Context);
846*0b57cec5SDimitry Andric       assert(NVT != VT && "Unable to round integer VT");
847*0b57cec5SDimitry Andric       LegalizeKind NextStep = getTypeConversion(Context, NVT);
848*0b57cec5SDimitry Andric       // Avoid multi-step promotion.
849*0b57cec5SDimitry Andric       if (NextStep.first == TypePromoteInteger)
850*0b57cec5SDimitry Andric         return NextStep;
851*0b57cec5SDimitry Andric       // Return rounded integer type.
852*0b57cec5SDimitry Andric       return LegalizeKind(TypePromoteInteger, NVT);
853*0b57cec5SDimitry Andric     }
854*0b57cec5SDimitry Andric 
855*0b57cec5SDimitry Andric     return LegalizeKind(TypeExpandInteger,
856*0b57cec5SDimitry Andric                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
857*0b57cec5SDimitry Andric   }
858*0b57cec5SDimitry Andric 
859*0b57cec5SDimitry Andric   // Handle vector types.
860*0b57cec5SDimitry Andric   unsigned NumElts = VT.getVectorNumElements();
861*0b57cec5SDimitry Andric   EVT EltVT = VT.getVectorElementType();
862*0b57cec5SDimitry Andric 
863*0b57cec5SDimitry Andric   // Vectors with only one element are always scalarized.
864*0b57cec5SDimitry Andric   if (NumElts == 1)
865*0b57cec5SDimitry Andric     return LegalizeKind(TypeScalarizeVector, EltVT);
866*0b57cec5SDimitry Andric 
867*0b57cec5SDimitry Andric   // Try to widen vector elements until the element type is a power of two and
868*0b57cec5SDimitry Andric   // promote it to a legal type later on, for example:
869*0b57cec5SDimitry Andric   // <3 x i8> -> <4 x i8> -> <4 x i32>
870*0b57cec5SDimitry Andric   if (EltVT.isInteger()) {
871*0b57cec5SDimitry Andric     // Vectors with a number of elements that is not a power of two are always
872*0b57cec5SDimitry Andric     // widened, for example <3 x i8> -> <4 x i8>.
873*0b57cec5SDimitry Andric     if (!VT.isPow2VectorType()) {
874*0b57cec5SDimitry Andric       NumElts = (unsigned)NextPowerOf2(NumElts);
875*0b57cec5SDimitry Andric       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
876*0b57cec5SDimitry Andric       return LegalizeKind(TypeWidenVector, NVT);
877*0b57cec5SDimitry Andric     }
878*0b57cec5SDimitry Andric 
879*0b57cec5SDimitry Andric     // Examine the element type.
880*0b57cec5SDimitry Andric     LegalizeKind LK = getTypeConversion(Context, EltVT);
881*0b57cec5SDimitry Andric 
882*0b57cec5SDimitry Andric     // If type is to be expanded, split the vector.
883*0b57cec5SDimitry Andric     //  <4 x i140> -> <2 x i140>
884*0b57cec5SDimitry Andric     if (LK.first == TypeExpandInteger)
885*0b57cec5SDimitry Andric       return LegalizeKind(TypeSplitVector,
886*0b57cec5SDimitry Andric                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
887*0b57cec5SDimitry Andric 
888*0b57cec5SDimitry Andric     // Promote the integer element types until a legal vector type is found
889*0b57cec5SDimitry Andric     // or until the element integer type is too big. If a legal type was not
890*0b57cec5SDimitry Andric     // found, fallback to the usual mechanism of widening/splitting the
891*0b57cec5SDimitry Andric     // vector.
892*0b57cec5SDimitry Andric     EVT OldEltVT = EltVT;
893*0b57cec5SDimitry Andric     while (true) {
894*0b57cec5SDimitry Andric       // Increase the bitwidth of the element to the next pow-of-two
895*0b57cec5SDimitry Andric       // (which is greater than 8 bits).
896*0b57cec5SDimitry Andric       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
897*0b57cec5SDimitry Andric                   .getRoundIntegerType(Context);
898*0b57cec5SDimitry Andric 
899*0b57cec5SDimitry Andric       // Stop trying when getting a non-simple element type.
900*0b57cec5SDimitry Andric       // Note that vector elements may be greater than legal vector element
901*0b57cec5SDimitry Andric       // types. Example: X86 XMM registers hold 64bit element on 32bit
902*0b57cec5SDimitry Andric       // systems.
903*0b57cec5SDimitry Andric       if (!EltVT.isSimple())
904*0b57cec5SDimitry Andric         break;
905*0b57cec5SDimitry Andric 
906*0b57cec5SDimitry Andric       // Build a new vector type and check if it is legal.
907*0b57cec5SDimitry Andric       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
908*0b57cec5SDimitry Andric       // Found a legal promoted vector type.
909*0b57cec5SDimitry Andric       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
910*0b57cec5SDimitry Andric         return LegalizeKind(TypePromoteInteger,
911*0b57cec5SDimitry Andric                             EVT::getVectorVT(Context, EltVT, NumElts));
912*0b57cec5SDimitry Andric     }
913*0b57cec5SDimitry Andric 
914*0b57cec5SDimitry Andric     // Reset the type to the unexpanded type if we did not find a legal vector
915*0b57cec5SDimitry Andric     // type with a promoted vector element type.
916*0b57cec5SDimitry Andric     EltVT = OldEltVT;
917*0b57cec5SDimitry Andric   }
918*0b57cec5SDimitry Andric 
919*0b57cec5SDimitry Andric   // Try to widen the vector until a legal type is found.
920*0b57cec5SDimitry Andric   // If there is no wider legal type, split the vector.
921*0b57cec5SDimitry Andric   while (true) {
922*0b57cec5SDimitry Andric     // Round up to the next power of 2.
923*0b57cec5SDimitry Andric     NumElts = (unsigned)NextPowerOf2(NumElts);
924*0b57cec5SDimitry Andric 
925*0b57cec5SDimitry Andric     // If there is no simple vector type with this many elements then there
926*0b57cec5SDimitry Andric     // cannot be a larger legal vector type.  Note that this assumes that
927*0b57cec5SDimitry Andric     // there are no skipped intermediate vector types in the simple types.
928*0b57cec5SDimitry Andric     if (!EltVT.isSimple())
929*0b57cec5SDimitry Andric       break;
930*0b57cec5SDimitry Andric     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
931*0b57cec5SDimitry Andric     if (LargerVector == MVT())
932*0b57cec5SDimitry Andric       break;
933*0b57cec5SDimitry Andric 
934*0b57cec5SDimitry Andric     // If this type is legal then widen the vector.
935*0b57cec5SDimitry Andric     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
936*0b57cec5SDimitry Andric       return LegalizeKind(TypeWidenVector, LargerVector);
937*0b57cec5SDimitry Andric   }
938*0b57cec5SDimitry Andric 
939*0b57cec5SDimitry Andric   // Widen odd vectors to next power of two.
940*0b57cec5SDimitry Andric   if (!VT.isPow2VectorType()) {
941*0b57cec5SDimitry Andric     EVT NVT = VT.getPow2VectorType(Context);
942*0b57cec5SDimitry Andric     return LegalizeKind(TypeWidenVector, NVT);
943*0b57cec5SDimitry Andric   }
944*0b57cec5SDimitry Andric 
945*0b57cec5SDimitry Andric   // Vectors with illegal element types are expanded.
946*0b57cec5SDimitry Andric   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
947*0b57cec5SDimitry Andric   return LegalizeKind(TypeSplitVector, NVT);
948*0b57cec5SDimitry Andric }
949*0b57cec5SDimitry Andric 
950*0b57cec5SDimitry Andric static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
951*0b57cec5SDimitry Andric                                           unsigned &NumIntermediates,
952*0b57cec5SDimitry Andric                                           MVT &RegisterVT,
953*0b57cec5SDimitry Andric                                           TargetLoweringBase *TLI) {
954*0b57cec5SDimitry Andric   // Figure out the right, legal destination reg to copy into.
955*0b57cec5SDimitry Andric   unsigned NumElts = VT.getVectorNumElements();
956*0b57cec5SDimitry Andric   MVT EltTy = VT.getVectorElementType();
957*0b57cec5SDimitry Andric 
958*0b57cec5SDimitry Andric   unsigned NumVectorRegs = 1;
959*0b57cec5SDimitry Andric 
960*0b57cec5SDimitry Andric   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
961*0b57cec5SDimitry Andric   // could break down into LHS/RHS like LegalizeDAG does.
962*0b57cec5SDimitry Andric   if (!isPowerOf2_32(NumElts)) {
963*0b57cec5SDimitry Andric     NumVectorRegs = NumElts;
964*0b57cec5SDimitry Andric     NumElts = 1;
965*0b57cec5SDimitry Andric   }
966*0b57cec5SDimitry Andric 
967*0b57cec5SDimitry Andric   // Divide the input until we get to a supported size.  This will always
968*0b57cec5SDimitry Andric   // end with a scalar if the target doesn't support vectors.
969*0b57cec5SDimitry Andric   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
970*0b57cec5SDimitry Andric     NumElts >>= 1;
971*0b57cec5SDimitry Andric     NumVectorRegs <<= 1;
972*0b57cec5SDimitry Andric   }
973*0b57cec5SDimitry Andric 
974*0b57cec5SDimitry Andric   NumIntermediates = NumVectorRegs;
975*0b57cec5SDimitry Andric 
976*0b57cec5SDimitry Andric   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
977*0b57cec5SDimitry Andric   if (!TLI->isTypeLegal(NewVT))
978*0b57cec5SDimitry Andric     NewVT = EltTy;
979*0b57cec5SDimitry Andric   IntermediateVT = NewVT;
980*0b57cec5SDimitry Andric 
981*0b57cec5SDimitry Andric   unsigned NewVTSize = NewVT.getSizeInBits();
982*0b57cec5SDimitry Andric 
983*0b57cec5SDimitry Andric   // Convert sizes such as i33 to i64.
984*0b57cec5SDimitry Andric   if (!isPowerOf2_32(NewVTSize))
985*0b57cec5SDimitry Andric     NewVTSize = NextPowerOf2(NewVTSize);
986*0b57cec5SDimitry Andric 
987*0b57cec5SDimitry Andric   MVT DestVT = TLI->getRegisterType(NewVT);
988*0b57cec5SDimitry Andric   RegisterVT = DestVT;
989*0b57cec5SDimitry Andric   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
990*0b57cec5SDimitry Andric     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
991*0b57cec5SDimitry Andric 
992*0b57cec5SDimitry Andric   // Otherwise, promotion or legal types use the same number of registers as
993*0b57cec5SDimitry Andric   // the vector decimated to the appropriate level.
994*0b57cec5SDimitry Andric   return NumVectorRegs;
995*0b57cec5SDimitry Andric }
996*0b57cec5SDimitry Andric 
997*0b57cec5SDimitry Andric /// isLegalRC - Return true if the value types that can be represented by the
998*0b57cec5SDimitry Andric /// specified register class are all legal.
999*0b57cec5SDimitry Andric bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1000*0b57cec5SDimitry Andric                                    const TargetRegisterClass &RC) const {
1001*0b57cec5SDimitry Andric   for (auto I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1002*0b57cec5SDimitry Andric     if (isTypeLegal(*I))
1003*0b57cec5SDimitry Andric       return true;
1004*0b57cec5SDimitry Andric   return false;
1005*0b57cec5SDimitry Andric }
1006*0b57cec5SDimitry Andric 
1007*0b57cec5SDimitry Andric /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1008*0b57cec5SDimitry Andric /// sequence of memory operands that is recognized by PrologEpilogInserter.
1009*0b57cec5SDimitry Andric MachineBasicBlock *
1010*0b57cec5SDimitry Andric TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1011*0b57cec5SDimitry Andric                                    MachineBasicBlock *MBB) const {
1012*0b57cec5SDimitry Andric   MachineInstr *MI = &InitialMI;
1013*0b57cec5SDimitry Andric   MachineFunction &MF = *MI->getMF();
1014*0b57cec5SDimitry Andric   MachineFrameInfo &MFI = MF.getFrameInfo();
1015*0b57cec5SDimitry Andric 
1016*0b57cec5SDimitry Andric   // We're handling multiple types of operands here:
1017*0b57cec5SDimitry Andric   // PATCHPOINT MetaArgs - live-in, read only, direct
1018*0b57cec5SDimitry Andric   // STATEPOINT Deopt Spill - live-through, read only, indirect
1019*0b57cec5SDimitry Andric   // STATEPOINT Deopt Alloca - live-through, read only, direct
1020*0b57cec5SDimitry Andric   // (We're currently conservative and mark the deopt slots read/write in
1021*0b57cec5SDimitry Andric   // practice.)
1022*0b57cec5SDimitry Andric   // STATEPOINT GC Spill - live-through, read/write, indirect
1023*0b57cec5SDimitry Andric   // STATEPOINT GC Alloca - live-through, read/write, direct
1024*0b57cec5SDimitry Andric   // The live-in vs live-through is handled already (the live through ones are
1025*0b57cec5SDimitry Andric   // all stack slots), but we need to handle the different type of stackmap
1026*0b57cec5SDimitry Andric   // operands and memory effects here.
1027*0b57cec5SDimitry Andric 
1028*0b57cec5SDimitry Andric   // MI changes inside this loop as we grow operands.
1029*0b57cec5SDimitry Andric   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1030*0b57cec5SDimitry Andric     MachineOperand &MO = MI->getOperand(OperIdx);
1031*0b57cec5SDimitry Andric     if (!MO.isFI())
1032*0b57cec5SDimitry Andric       continue;
1033*0b57cec5SDimitry Andric 
1034*0b57cec5SDimitry Andric     // foldMemoryOperand builds a new MI after replacing a single FI operand
1035*0b57cec5SDimitry Andric     // with the canonical set of five x86 addressing-mode operands.
1036*0b57cec5SDimitry Andric     int FI = MO.getIndex();
1037*0b57cec5SDimitry Andric     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1038*0b57cec5SDimitry Andric 
1039*0b57cec5SDimitry Andric     // Copy operands before the frame-index.
1040*0b57cec5SDimitry Andric     for (unsigned i = 0; i < OperIdx; ++i)
1041*0b57cec5SDimitry Andric       MIB.add(MI->getOperand(i));
1042*0b57cec5SDimitry Andric     // Add frame index operands recognized by stackmaps.cpp
1043*0b57cec5SDimitry Andric     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1044*0b57cec5SDimitry Andric       // indirect-mem-ref tag, size, #FI, offset.
1045*0b57cec5SDimitry Andric       // Used for spills inserted by StatepointLowering.  This codepath is not
1046*0b57cec5SDimitry Andric       // used for patchpoints/stackmaps at all, for these spilling is done via
1047*0b57cec5SDimitry Andric       // foldMemoryOperand callback only.
1048*0b57cec5SDimitry Andric       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1049*0b57cec5SDimitry Andric       MIB.addImm(StackMaps::IndirectMemRefOp);
1050*0b57cec5SDimitry Andric       MIB.addImm(MFI.getObjectSize(FI));
1051*0b57cec5SDimitry Andric       MIB.add(MI->getOperand(OperIdx));
1052*0b57cec5SDimitry Andric       MIB.addImm(0);
1053*0b57cec5SDimitry Andric     } else {
1054*0b57cec5SDimitry Andric       // direct-mem-ref tag, #FI, offset.
1055*0b57cec5SDimitry Andric       // Used by patchpoint, and direct alloca arguments to statepoints
1056*0b57cec5SDimitry Andric       MIB.addImm(StackMaps::DirectMemRefOp);
1057*0b57cec5SDimitry Andric       MIB.add(MI->getOperand(OperIdx));
1058*0b57cec5SDimitry Andric       MIB.addImm(0);
1059*0b57cec5SDimitry Andric     }
1060*0b57cec5SDimitry Andric     // Copy the operands after the frame index.
1061*0b57cec5SDimitry Andric     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1062*0b57cec5SDimitry Andric       MIB.add(MI->getOperand(i));
1063*0b57cec5SDimitry Andric 
1064*0b57cec5SDimitry Andric     // Inherit previous memory operands.
1065*0b57cec5SDimitry Andric     MIB.cloneMemRefs(*MI);
1066*0b57cec5SDimitry Andric     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1067*0b57cec5SDimitry Andric 
1068*0b57cec5SDimitry Andric     // Add a new memory operand for this FI.
1069*0b57cec5SDimitry Andric     assert(MFI.getObjectOffset(FI) != -1);
1070*0b57cec5SDimitry Andric 
1071*0b57cec5SDimitry Andric     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1072*0b57cec5SDimitry Andric     // PATCHPOINT should be updated to do the same. (TODO)
1073*0b57cec5SDimitry Andric     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1074*0b57cec5SDimitry Andric       auto Flags = MachineMemOperand::MOLoad;
1075*0b57cec5SDimitry Andric       MachineMemOperand *MMO = MF.getMachineMemOperand(
1076*0b57cec5SDimitry Andric           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1077*0b57cec5SDimitry Andric           MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
1078*0b57cec5SDimitry Andric       MIB->addMemOperand(MF, MMO);
1079*0b57cec5SDimitry Andric     }
1080*0b57cec5SDimitry Andric 
1081*0b57cec5SDimitry Andric     // Replace the instruction and update the operand index.
1082*0b57cec5SDimitry Andric     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1083*0b57cec5SDimitry Andric     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1084*0b57cec5SDimitry Andric     MI->eraseFromParent();
1085*0b57cec5SDimitry Andric     MI = MIB;
1086*0b57cec5SDimitry Andric   }
1087*0b57cec5SDimitry Andric   return MBB;
1088*0b57cec5SDimitry Andric }
1089*0b57cec5SDimitry Andric 
1090*0b57cec5SDimitry Andric MachineBasicBlock *
1091*0b57cec5SDimitry Andric TargetLoweringBase::emitXRayCustomEvent(MachineInstr &MI,
1092*0b57cec5SDimitry Andric                                         MachineBasicBlock *MBB) const {
1093*0b57cec5SDimitry Andric   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_EVENT_CALL &&
1094*0b57cec5SDimitry Andric          "Called emitXRayCustomEvent on the wrong MI!");
1095*0b57cec5SDimitry Andric   auto &MF = *MI.getMF();
1096*0b57cec5SDimitry Andric   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1097*0b57cec5SDimitry Andric   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1098*0b57cec5SDimitry Andric     MIB.add(MI.getOperand(OpIdx));
1099*0b57cec5SDimitry Andric 
1100*0b57cec5SDimitry Andric   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1101*0b57cec5SDimitry Andric   MI.eraseFromParent();
1102*0b57cec5SDimitry Andric   return MBB;
1103*0b57cec5SDimitry Andric }
1104*0b57cec5SDimitry Andric 
1105*0b57cec5SDimitry Andric MachineBasicBlock *
1106*0b57cec5SDimitry Andric TargetLoweringBase::emitXRayTypedEvent(MachineInstr &MI,
1107*0b57cec5SDimitry Andric                                        MachineBasicBlock *MBB) const {
1108*0b57cec5SDimitry Andric   assert(MI.getOpcode() == TargetOpcode::PATCHABLE_TYPED_EVENT_CALL &&
1109*0b57cec5SDimitry Andric          "Called emitXRayTypedEvent on the wrong MI!");
1110*0b57cec5SDimitry Andric   auto &MF = *MI.getMF();
1111*0b57cec5SDimitry Andric   auto MIB = BuildMI(MF, MI.getDebugLoc(), MI.getDesc());
1112*0b57cec5SDimitry Andric   for (unsigned OpIdx = 0; OpIdx != MI.getNumOperands(); ++OpIdx)
1113*0b57cec5SDimitry Andric     MIB.add(MI.getOperand(OpIdx));
1114*0b57cec5SDimitry Andric 
1115*0b57cec5SDimitry Andric   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1116*0b57cec5SDimitry Andric   MI.eraseFromParent();
1117*0b57cec5SDimitry Andric   return MBB;
1118*0b57cec5SDimitry Andric }
1119*0b57cec5SDimitry Andric 
1120*0b57cec5SDimitry Andric /// findRepresentativeClass - Return the largest legal super-reg register class
1121*0b57cec5SDimitry Andric /// of the register class for the specified type and its associated "cost".
1122*0b57cec5SDimitry Andric // This function is in TargetLowering because it uses RegClassForVT which would
1123*0b57cec5SDimitry Andric // need to be moved to TargetRegisterInfo and would necessitate moving
1124*0b57cec5SDimitry Andric // isTypeLegal over as well - a massive change that would just require
1125*0b57cec5SDimitry Andric // TargetLowering having a TargetRegisterInfo class member that it would use.
1126*0b57cec5SDimitry Andric std::pair<const TargetRegisterClass *, uint8_t>
1127*0b57cec5SDimitry Andric TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1128*0b57cec5SDimitry Andric                                             MVT VT) const {
1129*0b57cec5SDimitry Andric   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1130*0b57cec5SDimitry Andric   if (!RC)
1131*0b57cec5SDimitry Andric     return std::make_pair(RC, 0);
1132*0b57cec5SDimitry Andric 
1133*0b57cec5SDimitry Andric   // Compute the set of all super-register classes.
1134*0b57cec5SDimitry Andric   BitVector SuperRegRC(TRI->getNumRegClasses());
1135*0b57cec5SDimitry Andric   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1136*0b57cec5SDimitry Andric     SuperRegRC.setBitsInMask(RCI.getMask());
1137*0b57cec5SDimitry Andric 
1138*0b57cec5SDimitry Andric   // Find the first legal register class with the largest spill size.
1139*0b57cec5SDimitry Andric   const TargetRegisterClass *BestRC = RC;
1140*0b57cec5SDimitry Andric   for (unsigned i : SuperRegRC.set_bits()) {
1141*0b57cec5SDimitry Andric     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1142*0b57cec5SDimitry Andric     // We want the largest possible spill size.
1143*0b57cec5SDimitry Andric     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1144*0b57cec5SDimitry Andric       continue;
1145*0b57cec5SDimitry Andric     if (!isLegalRC(*TRI, *SuperRC))
1146*0b57cec5SDimitry Andric       continue;
1147*0b57cec5SDimitry Andric     BestRC = SuperRC;
1148*0b57cec5SDimitry Andric   }
1149*0b57cec5SDimitry Andric   return std::make_pair(BestRC, 1);
1150*0b57cec5SDimitry Andric }
1151*0b57cec5SDimitry Andric 
1152*0b57cec5SDimitry Andric /// computeRegisterProperties - Once all of the register classes are added,
1153*0b57cec5SDimitry Andric /// this allows us to compute derived properties we expose.
1154*0b57cec5SDimitry Andric void TargetLoweringBase::computeRegisterProperties(
1155*0b57cec5SDimitry Andric     const TargetRegisterInfo *TRI) {
1156*0b57cec5SDimitry Andric   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1157*0b57cec5SDimitry Andric                 "Too many value types for ValueTypeActions to hold!");
1158*0b57cec5SDimitry Andric 
1159*0b57cec5SDimitry Andric   // Everything defaults to needing one register.
1160*0b57cec5SDimitry Andric   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1161*0b57cec5SDimitry Andric     NumRegistersForVT[i] = 1;
1162*0b57cec5SDimitry Andric     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1163*0b57cec5SDimitry Andric   }
1164*0b57cec5SDimitry Andric   // ...except isVoid, which doesn't need any registers.
1165*0b57cec5SDimitry Andric   NumRegistersForVT[MVT::isVoid] = 0;
1166*0b57cec5SDimitry Andric 
1167*0b57cec5SDimitry Andric   // Find the largest integer register class.
1168*0b57cec5SDimitry Andric   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1169*0b57cec5SDimitry Andric   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1170*0b57cec5SDimitry Andric     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1171*0b57cec5SDimitry Andric 
1172*0b57cec5SDimitry Andric   // Every integer value type larger than this largest register takes twice as
1173*0b57cec5SDimitry Andric   // many registers to represent as the previous ValueType.
1174*0b57cec5SDimitry Andric   for (unsigned ExpandedReg = LargestIntReg + 1;
1175*0b57cec5SDimitry Andric        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1176*0b57cec5SDimitry Andric     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1177*0b57cec5SDimitry Andric     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1178*0b57cec5SDimitry Andric     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1179*0b57cec5SDimitry Andric     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1180*0b57cec5SDimitry Andric                                    TypeExpandInteger);
1181*0b57cec5SDimitry Andric   }
1182*0b57cec5SDimitry Andric 
1183*0b57cec5SDimitry Andric   // Inspect all of the ValueType's smaller than the largest integer
1184*0b57cec5SDimitry Andric   // register to see which ones need promotion.
1185*0b57cec5SDimitry Andric   unsigned LegalIntReg = LargestIntReg;
1186*0b57cec5SDimitry Andric   for (unsigned IntReg = LargestIntReg - 1;
1187*0b57cec5SDimitry Andric        IntReg >= (unsigned)MVT::i1; --IntReg) {
1188*0b57cec5SDimitry Andric     MVT IVT = (MVT::SimpleValueType)IntReg;
1189*0b57cec5SDimitry Andric     if (isTypeLegal(IVT)) {
1190*0b57cec5SDimitry Andric       LegalIntReg = IntReg;
1191*0b57cec5SDimitry Andric     } else {
1192*0b57cec5SDimitry Andric       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1193*0b57cec5SDimitry Andric         (MVT::SimpleValueType)LegalIntReg;
1194*0b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1195*0b57cec5SDimitry Andric     }
1196*0b57cec5SDimitry Andric   }
1197*0b57cec5SDimitry Andric 
1198*0b57cec5SDimitry Andric   // ppcf128 type is really two f64's.
1199*0b57cec5SDimitry Andric   if (!isTypeLegal(MVT::ppcf128)) {
1200*0b57cec5SDimitry Andric     if (isTypeLegal(MVT::f64)) {
1201*0b57cec5SDimitry Andric       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1202*0b57cec5SDimitry Andric       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1203*0b57cec5SDimitry Andric       TransformToType[MVT::ppcf128] = MVT::f64;
1204*0b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1205*0b57cec5SDimitry Andric     } else {
1206*0b57cec5SDimitry Andric       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1207*0b57cec5SDimitry Andric       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1208*0b57cec5SDimitry Andric       TransformToType[MVT::ppcf128] = MVT::i128;
1209*0b57cec5SDimitry Andric       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1210*0b57cec5SDimitry Andric     }
1211*0b57cec5SDimitry Andric   }
1212*0b57cec5SDimitry Andric 
1213*0b57cec5SDimitry Andric   // Decide how to handle f128. If the target does not have native f128 support,
1214*0b57cec5SDimitry Andric   // expand it to i128 and we will be generating soft float library calls.
1215*0b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f128)) {
1216*0b57cec5SDimitry Andric     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1217*0b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1218*0b57cec5SDimitry Andric     TransformToType[MVT::f128] = MVT::i128;
1219*0b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1220*0b57cec5SDimitry Andric   }
1221*0b57cec5SDimitry Andric 
1222*0b57cec5SDimitry Andric   // Decide how to handle f64. If the target does not have native f64 support,
1223*0b57cec5SDimitry Andric   // expand it to i64 and we will be generating soft float library calls.
1224*0b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f64)) {
1225*0b57cec5SDimitry Andric     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1226*0b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1227*0b57cec5SDimitry Andric     TransformToType[MVT::f64] = MVT::i64;
1228*0b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1229*0b57cec5SDimitry Andric   }
1230*0b57cec5SDimitry Andric 
1231*0b57cec5SDimitry Andric   // Decide how to handle f32. If the target does not have native f32 support,
1232*0b57cec5SDimitry Andric   // expand it to i32 and we will be generating soft float library calls.
1233*0b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f32)) {
1234*0b57cec5SDimitry Andric     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1235*0b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1236*0b57cec5SDimitry Andric     TransformToType[MVT::f32] = MVT::i32;
1237*0b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1238*0b57cec5SDimitry Andric   }
1239*0b57cec5SDimitry Andric 
1240*0b57cec5SDimitry Andric   // Decide how to handle f16. If the target does not have native f16 support,
1241*0b57cec5SDimitry Andric   // promote it to f32, because there are no f16 library calls (except for
1242*0b57cec5SDimitry Andric   // conversions).
1243*0b57cec5SDimitry Andric   if (!isTypeLegal(MVT::f16)) {
1244*0b57cec5SDimitry Andric     NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1245*0b57cec5SDimitry Andric     RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1246*0b57cec5SDimitry Andric     TransformToType[MVT::f16] = MVT::f32;
1247*0b57cec5SDimitry Andric     ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1248*0b57cec5SDimitry Andric   }
1249*0b57cec5SDimitry Andric 
1250*0b57cec5SDimitry Andric   // Loop over all of the vector value types to see which need transformations.
1251*0b57cec5SDimitry Andric   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1252*0b57cec5SDimitry Andric        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1253*0b57cec5SDimitry Andric     MVT VT = (MVT::SimpleValueType) i;
1254*0b57cec5SDimitry Andric     if (isTypeLegal(VT))
1255*0b57cec5SDimitry Andric       continue;
1256*0b57cec5SDimitry Andric 
1257*0b57cec5SDimitry Andric     MVT EltVT = VT.getVectorElementType();
1258*0b57cec5SDimitry Andric     unsigned NElts = VT.getVectorNumElements();
1259*0b57cec5SDimitry Andric     bool IsLegalWiderType = false;
1260*0b57cec5SDimitry Andric     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1261*0b57cec5SDimitry Andric     switch (PreferredAction) {
1262*0b57cec5SDimitry Andric     case TypePromoteInteger:
1263*0b57cec5SDimitry Andric       // Try to promote the elements of integer vectors. If no legal
1264*0b57cec5SDimitry Andric       // promotion was found, fall through to the widen-vector method.
1265*0b57cec5SDimitry Andric       for (unsigned nVT = i + 1; nVT <= MVT::LAST_INTEGER_VECTOR_VALUETYPE; ++nVT) {
1266*0b57cec5SDimitry Andric         MVT SVT = (MVT::SimpleValueType) nVT;
1267*0b57cec5SDimitry Andric         // Promote vectors of integers to vectors with the same number
1268*0b57cec5SDimitry Andric         // of elements, with a wider element type.
1269*0b57cec5SDimitry Andric         if (SVT.getScalarSizeInBits() > EltVT.getSizeInBits() &&
1270*0b57cec5SDimitry Andric             SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)) {
1271*0b57cec5SDimitry Andric           TransformToType[i] = SVT;
1272*0b57cec5SDimitry Andric           RegisterTypeForVT[i] = SVT;
1273*0b57cec5SDimitry Andric           NumRegistersForVT[i] = 1;
1274*0b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1275*0b57cec5SDimitry Andric           IsLegalWiderType = true;
1276*0b57cec5SDimitry Andric           break;
1277*0b57cec5SDimitry Andric         }
1278*0b57cec5SDimitry Andric       }
1279*0b57cec5SDimitry Andric       if (IsLegalWiderType)
1280*0b57cec5SDimitry Andric         break;
1281*0b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
1282*0b57cec5SDimitry Andric 
1283*0b57cec5SDimitry Andric     case TypeWidenVector:
1284*0b57cec5SDimitry Andric       // Try to widen the vector.
1285*0b57cec5SDimitry Andric       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1286*0b57cec5SDimitry Andric         MVT SVT = (MVT::SimpleValueType) nVT;
1287*0b57cec5SDimitry Andric         if (SVT.getVectorElementType() == EltVT
1288*0b57cec5SDimitry Andric             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1289*0b57cec5SDimitry Andric           TransformToType[i] = SVT;
1290*0b57cec5SDimitry Andric           RegisterTypeForVT[i] = SVT;
1291*0b57cec5SDimitry Andric           NumRegistersForVT[i] = 1;
1292*0b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1293*0b57cec5SDimitry Andric           IsLegalWiderType = true;
1294*0b57cec5SDimitry Andric           break;
1295*0b57cec5SDimitry Andric         }
1296*0b57cec5SDimitry Andric       }
1297*0b57cec5SDimitry Andric       if (IsLegalWiderType)
1298*0b57cec5SDimitry Andric         break;
1299*0b57cec5SDimitry Andric       LLVM_FALLTHROUGH;
1300*0b57cec5SDimitry Andric 
1301*0b57cec5SDimitry Andric     case TypeSplitVector:
1302*0b57cec5SDimitry Andric     case TypeScalarizeVector: {
1303*0b57cec5SDimitry Andric       MVT IntermediateVT;
1304*0b57cec5SDimitry Andric       MVT RegisterVT;
1305*0b57cec5SDimitry Andric       unsigned NumIntermediates;
1306*0b57cec5SDimitry Andric       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1307*0b57cec5SDimitry Andric           NumIntermediates, RegisterVT, this);
1308*0b57cec5SDimitry Andric       RegisterTypeForVT[i] = RegisterVT;
1309*0b57cec5SDimitry Andric 
1310*0b57cec5SDimitry Andric       MVT NVT = VT.getPow2VectorType();
1311*0b57cec5SDimitry Andric       if (NVT == VT) {
1312*0b57cec5SDimitry Andric         // Type is already a power of 2.  The default action is to split.
1313*0b57cec5SDimitry Andric         TransformToType[i] = MVT::Other;
1314*0b57cec5SDimitry Andric         if (PreferredAction == TypeScalarizeVector)
1315*0b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1316*0b57cec5SDimitry Andric         else if (PreferredAction == TypeSplitVector)
1317*0b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1318*0b57cec5SDimitry Andric         else
1319*0b57cec5SDimitry Andric           // Set type action according to the number of elements.
1320*0b57cec5SDimitry Andric           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1321*0b57cec5SDimitry Andric                                                         : TypeSplitVector);
1322*0b57cec5SDimitry Andric       } else {
1323*0b57cec5SDimitry Andric         TransformToType[i] = NVT;
1324*0b57cec5SDimitry Andric         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1325*0b57cec5SDimitry Andric       }
1326*0b57cec5SDimitry Andric       break;
1327*0b57cec5SDimitry Andric     }
1328*0b57cec5SDimitry Andric     default:
1329*0b57cec5SDimitry Andric       llvm_unreachable("Unknown vector legalization action!");
1330*0b57cec5SDimitry Andric     }
1331*0b57cec5SDimitry Andric   }
1332*0b57cec5SDimitry Andric 
1333*0b57cec5SDimitry Andric   // Determine the 'representative' register class for each value type.
1334*0b57cec5SDimitry Andric   // An representative register class is the largest (meaning one which is
1335*0b57cec5SDimitry Andric   // not a sub-register class / subreg register class) legal register class for
1336*0b57cec5SDimitry Andric   // a group of value types. For example, on i386, i8, i16, and i32
1337*0b57cec5SDimitry Andric   // representative would be GR32; while on x86_64 it's GR64.
1338*0b57cec5SDimitry Andric   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1339*0b57cec5SDimitry Andric     const TargetRegisterClass* RRC;
1340*0b57cec5SDimitry Andric     uint8_t Cost;
1341*0b57cec5SDimitry Andric     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1342*0b57cec5SDimitry Andric     RepRegClassForVT[i] = RRC;
1343*0b57cec5SDimitry Andric     RepRegClassCostForVT[i] = Cost;
1344*0b57cec5SDimitry Andric   }
1345*0b57cec5SDimitry Andric }
1346*0b57cec5SDimitry Andric 
1347*0b57cec5SDimitry Andric EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1348*0b57cec5SDimitry Andric                                            EVT VT) const {
1349*0b57cec5SDimitry Andric   assert(!VT.isVector() && "No default SetCC type for vectors!");
1350*0b57cec5SDimitry Andric   return getPointerTy(DL).SimpleTy;
1351*0b57cec5SDimitry Andric }
1352*0b57cec5SDimitry Andric 
1353*0b57cec5SDimitry Andric MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1354*0b57cec5SDimitry Andric   return MVT::i32; // return the default value
1355*0b57cec5SDimitry Andric }
1356*0b57cec5SDimitry Andric 
1357*0b57cec5SDimitry Andric /// getVectorTypeBreakdown - Vector types are broken down into some number of
1358*0b57cec5SDimitry Andric /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1359*0b57cec5SDimitry Andric /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1360*0b57cec5SDimitry Andric /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1361*0b57cec5SDimitry Andric ///
1362*0b57cec5SDimitry Andric /// This method returns the number of registers needed, and the VT for each
1363*0b57cec5SDimitry Andric /// register.  It also returns the VT and quantity of the intermediate values
1364*0b57cec5SDimitry Andric /// before they are promoted/expanded.
1365*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1366*0b57cec5SDimitry Andric                                                 EVT &IntermediateVT,
1367*0b57cec5SDimitry Andric                                                 unsigned &NumIntermediates,
1368*0b57cec5SDimitry Andric                                                 MVT &RegisterVT) const {
1369*0b57cec5SDimitry Andric   unsigned NumElts = VT.getVectorNumElements();
1370*0b57cec5SDimitry Andric 
1371*0b57cec5SDimitry Andric   // If there is a wider vector type with the same element type as this one,
1372*0b57cec5SDimitry Andric   // or a promoted vector type that has the same number of elements which
1373*0b57cec5SDimitry Andric   // are wider, then we should convert to that legal vector type.
1374*0b57cec5SDimitry Andric   // This handles things like <2 x float> -> <4 x float> and
1375*0b57cec5SDimitry Andric   // <4 x i1> -> <4 x i32>.
1376*0b57cec5SDimitry Andric   LegalizeTypeAction TA = getTypeAction(Context, VT);
1377*0b57cec5SDimitry Andric   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1378*0b57cec5SDimitry Andric     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1379*0b57cec5SDimitry Andric     if (isTypeLegal(RegisterEVT)) {
1380*0b57cec5SDimitry Andric       IntermediateVT = RegisterEVT;
1381*0b57cec5SDimitry Andric       RegisterVT = RegisterEVT.getSimpleVT();
1382*0b57cec5SDimitry Andric       NumIntermediates = 1;
1383*0b57cec5SDimitry Andric       return 1;
1384*0b57cec5SDimitry Andric     }
1385*0b57cec5SDimitry Andric   }
1386*0b57cec5SDimitry Andric 
1387*0b57cec5SDimitry Andric   // Figure out the right, legal destination reg to copy into.
1388*0b57cec5SDimitry Andric   EVT EltTy = VT.getVectorElementType();
1389*0b57cec5SDimitry Andric 
1390*0b57cec5SDimitry Andric   unsigned NumVectorRegs = 1;
1391*0b57cec5SDimitry Andric 
1392*0b57cec5SDimitry Andric   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1393*0b57cec5SDimitry Andric   // could break down into LHS/RHS like LegalizeDAG does.
1394*0b57cec5SDimitry Andric   if (!isPowerOf2_32(NumElts)) {
1395*0b57cec5SDimitry Andric     NumVectorRegs = NumElts;
1396*0b57cec5SDimitry Andric     NumElts = 1;
1397*0b57cec5SDimitry Andric   }
1398*0b57cec5SDimitry Andric 
1399*0b57cec5SDimitry Andric   // Divide the input until we get to a supported size.  This will always
1400*0b57cec5SDimitry Andric   // end with a scalar if the target doesn't support vectors.
1401*0b57cec5SDimitry Andric   while (NumElts > 1 && !isTypeLegal(
1402*0b57cec5SDimitry Andric                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1403*0b57cec5SDimitry Andric     NumElts >>= 1;
1404*0b57cec5SDimitry Andric     NumVectorRegs <<= 1;
1405*0b57cec5SDimitry Andric   }
1406*0b57cec5SDimitry Andric 
1407*0b57cec5SDimitry Andric   NumIntermediates = NumVectorRegs;
1408*0b57cec5SDimitry Andric 
1409*0b57cec5SDimitry Andric   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1410*0b57cec5SDimitry Andric   if (!isTypeLegal(NewVT))
1411*0b57cec5SDimitry Andric     NewVT = EltTy;
1412*0b57cec5SDimitry Andric   IntermediateVT = NewVT;
1413*0b57cec5SDimitry Andric 
1414*0b57cec5SDimitry Andric   MVT DestVT = getRegisterType(Context, NewVT);
1415*0b57cec5SDimitry Andric   RegisterVT = DestVT;
1416*0b57cec5SDimitry Andric   unsigned NewVTSize = NewVT.getSizeInBits();
1417*0b57cec5SDimitry Andric 
1418*0b57cec5SDimitry Andric   // Convert sizes such as i33 to i64.
1419*0b57cec5SDimitry Andric   if (!isPowerOf2_32(NewVTSize))
1420*0b57cec5SDimitry Andric     NewVTSize = NextPowerOf2(NewVTSize);
1421*0b57cec5SDimitry Andric 
1422*0b57cec5SDimitry Andric   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1423*0b57cec5SDimitry Andric     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1424*0b57cec5SDimitry Andric 
1425*0b57cec5SDimitry Andric   // Otherwise, promotion or legal types use the same number of registers as
1426*0b57cec5SDimitry Andric   // the vector decimated to the appropriate level.
1427*0b57cec5SDimitry Andric   return NumVectorRegs;
1428*0b57cec5SDimitry Andric }
1429*0b57cec5SDimitry Andric 
1430*0b57cec5SDimitry Andric /// Get the EVTs and ArgFlags collections that represent the legalized return
1431*0b57cec5SDimitry Andric /// type of the given function.  This does not require a DAG or a return value,
1432*0b57cec5SDimitry Andric /// and is suitable for use before any DAGs for the function are constructed.
1433*0b57cec5SDimitry Andric /// TODO: Move this out of TargetLowering.cpp.
1434*0b57cec5SDimitry Andric void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1435*0b57cec5SDimitry Andric                          AttributeList attr,
1436*0b57cec5SDimitry Andric                          SmallVectorImpl<ISD::OutputArg> &Outs,
1437*0b57cec5SDimitry Andric                          const TargetLowering &TLI, const DataLayout &DL) {
1438*0b57cec5SDimitry Andric   SmallVector<EVT, 4> ValueVTs;
1439*0b57cec5SDimitry Andric   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1440*0b57cec5SDimitry Andric   unsigned NumValues = ValueVTs.size();
1441*0b57cec5SDimitry Andric   if (NumValues == 0) return;
1442*0b57cec5SDimitry Andric 
1443*0b57cec5SDimitry Andric   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1444*0b57cec5SDimitry Andric     EVT VT = ValueVTs[j];
1445*0b57cec5SDimitry Andric     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1446*0b57cec5SDimitry Andric 
1447*0b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1448*0b57cec5SDimitry Andric       ExtendKind = ISD::SIGN_EXTEND;
1449*0b57cec5SDimitry Andric     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1450*0b57cec5SDimitry Andric       ExtendKind = ISD::ZERO_EXTEND;
1451*0b57cec5SDimitry Andric 
1452*0b57cec5SDimitry Andric     // FIXME: C calling convention requires the return type to be promoted to
1453*0b57cec5SDimitry Andric     // at least 32-bit. But this is not necessary for non-C calling
1454*0b57cec5SDimitry Andric     // conventions. The frontend should mark functions whose return values
1455*0b57cec5SDimitry Andric     // require promoting with signext or zeroext attributes.
1456*0b57cec5SDimitry Andric     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1457*0b57cec5SDimitry Andric       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1458*0b57cec5SDimitry Andric       if (VT.bitsLT(MinVT))
1459*0b57cec5SDimitry Andric         VT = MinVT;
1460*0b57cec5SDimitry Andric     }
1461*0b57cec5SDimitry Andric 
1462*0b57cec5SDimitry Andric     unsigned NumParts =
1463*0b57cec5SDimitry Andric         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1464*0b57cec5SDimitry Andric     MVT PartVT =
1465*0b57cec5SDimitry Andric         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1466*0b57cec5SDimitry Andric 
1467*0b57cec5SDimitry Andric     // 'inreg' on function refers to return value
1468*0b57cec5SDimitry Andric     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1469*0b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::InReg))
1470*0b57cec5SDimitry Andric       Flags.setInReg();
1471*0b57cec5SDimitry Andric 
1472*0b57cec5SDimitry Andric     // Propagate extension type if any
1473*0b57cec5SDimitry Andric     if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
1474*0b57cec5SDimitry Andric       Flags.setSExt();
1475*0b57cec5SDimitry Andric     else if (attr.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt))
1476*0b57cec5SDimitry Andric       Flags.setZExt();
1477*0b57cec5SDimitry Andric 
1478*0b57cec5SDimitry Andric     for (unsigned i = 0; i < NumParts; ++i)
1479*0b57cec5SDimitry Andric       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1480*0b57cec5SDimitry Andric   }
1481*0b57cec5SDimitry Andric }
1482*0b57cec5SDimitry Andric 
1483*0b57cec5SDimitry Andric /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1484*0b57cec5SDimitry Andric /// function arguments in the caller parameter area.  This is the actual
1485*0b57cec5SDimitry Andric /// alignment, not its logarithm.
1486*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1487*0b57cec5SDimitry Andric                                                    const DataLayout &DL) const {
1488*0b57cec5SDimitry Andric   return DL.getABITypeAlignment(Ty);
1489*0b57cec5SDimitry Andric }
1490*0b57cec5SDimitry Andric 
1491*0b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1492*0b57cec5SDimitry Andric                                             const DataLayout &DL, EVT VT,
1493*0b57cec5SDimitry Andric                                             unsigned AddrSpace,
1494*0b57cec5SDimitry Andric                                             unsigned Alignment,
1495*0b57cec5SDimitry Andric                                             MachineMemOperand::Flags Flags,
1496*0b57cec5SDimitry Andric                                             bool *Fast) const {
1497*0b57cec5SDimitry Andric   // Check if the specified alignment is sufficient based on the data layout.
1498*0b57cec5SDimitry Andric   // TODO: While using the data layout works in practice, a better solution
1499*0b57cec5SDimitry Andric   // would be to implement this check directly (make this a virtual function).
1500*0b57cec5SDimitry Andric   // For example, the ABI alignment may change based on software platform while
1501*0b57cec5SDimitry Andric   // this function should only be affected by hardware implementation.
1502*0b57cec5SDimitry Andric   Type *Ty = VT.getTypeForEVT(Context);
1503*0b57cec5SDimitry Andric   if (Alignment >= DL.getABITypeAlignment(Ty)) {
1504*0b57cec5SDimitry Andric     // Assume that an access that meets the ABI-specified alignment is fast.
1505*0b57cec5SDimitry Andric     if (Fast != nullptr)
1506*0b57cec5SDimitry Andric       *Fast = true;
1507*0b57cec5SDimitry Andric     return true;
1508*0b57cec5SDimitry Andric   }
1509*0b57cec5SDimitry Andric 
1510*0b57cec5SDimitry Andric   // This is a misaligned access.
1511*0b57cec5SDimitry Andric   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1512*0b57cec5SDimitry Andric }
1513*0b57cec5SDimitry Andric 
1514*0b57cec5SDimitry Andric bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1515*0b57cec5SDimitry Andric                                             const DataLayout &DL, EVT VT,
1516*0b57cec5SDimitry Andric                                             const MachineMemOperand &MMO,
1517*0b57cec5SDimitry Andric                                             bool *Fast) const {
1518*0b57cec5SDimitry Andric   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
1519*0b57cec5SDimitry Andric                             MMO.getAlignment(), MMO.getFlags(), Fast);
1520*0b57cec5SDimitry Andric }
1521*0b57cec5SDimitry Andric 
1522*0b57cec5SDimitry Andric BranchProbability TargetLoweringBase::getPredictableBranchThreshold() const {
1523*0b57cec5SDimitry Andric   return BranchProbability(MinPercentageForPredictableBranch, 100);
1524*0b57cec5SDimitry Andric }
1525*0b57cec5SDimitry Andric 
1526*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1527*0b57cec5SDimitry Andric //  TargetTransformInfo Helpers
1528*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1529*0b57cec5SDimitry Andric 
1530*0b57cec5SDimitry Andric int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1531*0b57cec5SDimitry Andric   enum InstructionOpcodes {
1532*0b57cec5SDimitry Andric #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1533*0b57cec5SDimitry Andric #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1534*0b57cec5SDimitry Andric #include "llvm/IR/Instruction.def"
1535*0b57cec5SDimitry Andric   };
1536*0b57cec5SDimitry Andric   switch (static_cast<InstructionOpcodes>(Opcode)) {
1537*0b57cec5SDimitry Andric   case Ret:            return 0;
1538*0b57cec5SDimitry Andric   case Br:             return 0;
1539*0b57cec5SDimitry Andric   case Switch:         return 0;
1540*0b57cec5SDimitry Andric   case IndirectBr:     return 0;
1541*0b57cec5SDimitry Andric   case Invoke:         return 0;
1542*0b57cec5SDimitry Andric   case CallBr:         return 0;
1543*0b57cec5SDimitry Andric   case Resume:         return 0;
1544*0b57cec5SDimitry Andric   case Unreachable:    return 0;
1545*0b57cec5SDimitry Andric   case CleanupRet:     return 0;
1546*0b57cec5SDimitry Andric   case CatchRet:       return 0;
1547*0b57cec5SDimitry Andric   case CatchPad:       return 0;
1548*0b57cec5SDimitry Andric   case CatchSwitch:    return 0;
1549*0b57cec5SDimitry Andric   case CleanupPad:     return 0;
1550*0b57cec5SDimitry Andric   case FNeg:           return ISD::FNEG;
1551*0b57cec5SDimitry Andric   case Add:            return ISD::ADD;
1552*0b57cec5SDimitry Andric   case FAdd:           return ISD::FADD;
1553*0b57cec5SDimitry Andric   case Sub:            return ISD::SUB;
1554*0b57cec5SDimitry Andric   case FSub:           return ISD::FSUB;
1555*0b57cec5SDimitry Andric   case Mul:            return ISD::MUL;
1556*0b57cec5SDimitry Andric   case FMul:           return ISD::FMUL;
1557*0b57cec5SDimitry Andric   case UDiv:           return ISD::UDIV;
1558*0b57cec5SDimitry Andric   case SDiv:           return ISD::SDIV;
1559*0b57cec5SDimitry Andric   case FDiv:           return ISD::FDIV;
1560*0b57cec5SDimitry Andric   case URem:           return ISD::UREM;
1561*0b57cec5SDimitry Andric   case SRem:           return ISD::SREM;
1562*0b57cec5SDimitry Andric   case FRem:           return ISD::FREM;
1563*0b57cec5SDimitry Andric   case Shl:            return ISD::SHL;
1564*0b57cec5SDimitry Andric   case LShr:           return ISD::SRL;
1565*0b57cec5SDimitry Andric   case AShr:           return ISD::SRA;
1566*0b57cec5SDimitry Andric   case And:            return ISD::AND;
1567*0b57cec5SDimitry Andric   case Or:             return ISD::OR;
1568*0b57cec5SDimitry Andric   case Xor:            return ISD::XOR;
1569*0b57cec5SDimitry Andric   case Alloca:         return 0;
1570*0b57cec5SDimitry Andric   case Load:           return ISD::LOAD;
1571*0b57cec5SDimitry Andric   case Store:          return ISD::STORE;
1572*0b57cec5SDimitry Andric   case GetElementPtr:  return 0;
1573*0b57cec5SDimitry Andric   case Fence:          return 0;
1574*0b57cec5SDimitry Andric   case AtomicCmpXchg:  return 0;
1575*0b57cec5SDimitry Andric   case AtomicRMW:      return 0;
1576*0b57cec5SDimitry Andric   case Trunc:          return ISD::TRUNCATE;
1577*0b57cec5SDimitry Andric   case ZExt:           return ISD::ZERO_EXTEND;
1578*0b57cec5SDimitry Andric   case SExt:           return ISD::SIGN_EXTEND;
1579*0b57cec5SDimitry Andric   case FPToUI:         return ISD::FP_TO_UINT;
1580*0b57cec5SDimitry Andric   case FPToSI:         return ISD::FP_TO_SINT;
1581*0b57cec5SDimitry Andric   case UIToFP:         return ISD::UINT_TO_FP;
1582*0b57cec5SDimitry Andric   case SIToFP:         return ISD::SINT_TO_FP;
1583*0b57cec5SDimitry Andric   case FPTrunc:        return ISD::FP_ROUND;
1584*0b57cec5SDimitry Andric   case FPExt:          return ISD::FP_EXTEND;
1585*0b57cec5SDimitry Andric   case PtrToInt:       return ISD::BITCAST;
1586*0b57cec5SDimitry Andric   case IntToPtr:       return ISD::BITCAST;
1587*0b57cec5SDimitry Andric   case BitCast:        return ISD::BITCAST;
1588*0b57cec5SDimitry Andric   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1589*0b57cec5SDimitry Andric   case ICmp:           return ISD::SETCC;
1590*0b57cec5SDimitry Andric   case FCmp:           return ISD::SETCC;
1591*0b57cec5SDimitry Andric   case PHI:            return 0;
1592*0b57cec5SDimitry Andric   case Call:           return 0;
1593*0b57cec5SDimitry Andric   case Select:         return ISD::SELECT;
1594*0b57cec5SDimitry Andric   case UserOp1:        return 0;
1595*0b57cec5SDimitry Andric   case UserOp2:        return 0;
1596*0b57cec5SDimitry Andric   case VAArg:          return 0;
1597*0b57cec5SDimitry Andric   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1598*0b57cec5SDimitry Andric   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1599*0b57cec5SDimitry Andric   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1600*0b57cec5SDimitry Andric   case ExtractValue:   return ISD::MERGE_VALUES;
1601*0b57cec5SDimitry Andric   case InsertValue:    return ISD::MERGE_VALUES;
1602*0b57cec5SDimitry Andric   case LandingPad:     return 0;
1603*0b57cec5SDimitry Andric   }
1604*0b57cec5SDimitry Andric 
1605*0b57cec5SDimitry Andric   llvm_unreachable("Unknown instruction type encountered!");
1606*0b57cec5SDimitry Andric }
1607*0b57cec5SDimitry Andric 
1608*0b57cec5SDimitry Andric std::pair<int, MVT>
1609*0b57cec5SDimitry Andric TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
1610*0b57cec5SDimitry Andric                                             Type *Ty) const {
1611*0b57cec5SDimitry Andric   LLVMContext &C = Ty->getContext();
1612*0b57cec5SDimitry Andric   EVT MTy = getValueType(DL, Ty);
1613*0b57cec5SDimitry Andric 
1614*0b57cec5SDimitry Andric   int Cost = 1;
1615*0b57cec5SDimitry Andric   // We keep legalizing the type until we find a legal kind. We assume that
1616*0b57cec5SDimitry Andric   // the only operation that costs anything is the split. After splitting
1617*0b57cec5SDimitry Andric   // we need to handle two types.
1618*0b57cec5SDimitry Andric   while (true) {
1619*0b57cec5SDimitry Andric     LegalizeKind LK = getTypeConversion(C, MTy);
1620*0b57cec5SDimitry Andric 
1621*0b57cec5SDimitry Andric     if (LK.first == TypeLegal)
1622*0b57cec5SDimitry Andric       return std::make_pair(Cost, MTy.getSimpleVT());
1623*0b57cec5SDimitry Andric 
1624*0b57cec5SDimitry Andric     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1625*0b57cec5SDimitry Andric       Cost *= 2;
1626*0b57cec5SDimitry Andric 
1627*0b57cec5SDimitry Andric     // Do not loop with f128 type.
1628*0b57cec5SDimitry Andric     if (MTy == LK.second)
1629*0b57cec5SDimitry Andric       return std::make_pair(Cost, MTy.getSimpleVT());
1630*0b57cec5SDimitry Andric 
1631*0b57cec5SDimitry Andric     // Keep legalizing the type.
1632*0b57cec5SDimitry Andric     MTy = LK.second;
1633*0b57cec5SDimitry Andric   }
1634*0b57cec5SDimitry Andric }
1635*0b57cec5SDimitry Andric 
1636*0b57cec5SDimitry Andric Value *TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilder<> &IRB,
1637*0b57cec5SDimitry Andric                                                               bool UseTLS) const {
1638*0b57cec5SDimitry Andric   // compiler-rt provides a variable with a magic name.  Targets that do not
1639*0b57cec5SDimitry Andric   // link with compiler-rt may also provide such a variable.
1640*0b57cec5SDimitry Andric   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1641*0b57cec5SDimitry Andric   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1642*0b57cec5SDimitry Andric   auto UnsafeStackPtr =
1643*0b57cec5SDimitry Andric       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1644*0b57cec5SDimitry Andric 
1645*0b57cec5SDimitry Andric   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1646*0b57cec5SDimitry Andric 
1647*0b57cec5SDimitry Andric   if (!UnsafeStackPtr) {
1648*0b57cec5SDimitry Andric     auto TLSModel = UseTLS ?
1649*0b57cec5SDimitry Andric         GlobalValue::InitialExecTLSModel :
1650*0b57cec5SDimitry Andric         GlobalValue::NotThreadLocal;
1651*0b57cec5SDimitry Andric     // The global variable is not defined yet, define it ourselves.
1652*0b57cec5SDimitry Andric     // We use the initial-exec TLS model because we do not support the
1653*0b57cec5SDimitry Andric     // variable living anywhere other than in the main executable.
1654*0b57cec5SDimitry Andric     UnsafeStackPtr = new GlobalVariable(
1655*0b57cec5SDimitry Andric         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1656*0b57cec5SDimitry Andric         UnsafeStackPtrVar, nullptr, TLSModel);
1657*0b57cec5SDimitry Andric   } else {
1658*0b57cec5SDimitry Andric     // The variable exists, check its type and attributes.
1659*0b57cec5SDimitry Andric     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1660*0b57cec5SDimitry Andric       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1661*0b57cec5SDimitry Andric     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1662*0b57cec5SDimitry Andric       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1663*0b57cec5SDimitry Andric                          (UseTLS ? "" : "not ") + "be thread-local");
1664*0b57cec5SDimitry Andric   }
1665*0b57cec5SDimitry Andric   return UnsafeStackPtr;
1666*0b57cec5SDimitry Andric }
1667*0b57cec5SDimitry Andric 
1668*0b57cec5SDimitry Andric Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
1669*0b57cec5SDimitry Andric   if (!TM.getTargetTriple().isAndroid())
1670*0b57cec5SDimitry Andric     return getDefaultSafeStackPointerLocation(IRB, true);
1671*0b57cec5SDimitry Andric 
1672*0b57cec5SDimitry Andric   // Android provides a libc function to retrieve the address of the current
1673*0b57cec5SDimitry Andric   // thread's unsafe stack pointer.
1674*0b57cec5SDimitry Andric   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1675*0b57cec5SDimitry Andric   Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
1676*0b57cec5SDimitry Andric   FunctionCallee Fn = M->getOrInsertFunction("__safestack_pointer_address",
1677*0b57cec5SDimitry Andric                                              StackPtrTy->getPointerTo(0));
1678*0b57cec5SDimitry Andric   return IRB.CreateCall(Fn);
1679*0b57cec5SDimitry Andric }
1680*0b57cec5SDimitry Andric 
1681*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1682*0b57cec5SDimitry Andric //  Loop Strength Reduction hooks
1683*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1684*0b57cec5SDimitry Andric 
1685*0b57cec5SDimitry Andric /// isLegalAddressingMode - Return true if the addressing mode represented
1686*0b57cec5SDimitry Andric /// by AM is legal for this target, for a load/store of the specified type.
1687*0b57cec5SDimitry Andric bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1688*0b57cec5SDimitry Andric                                                const AddrMode &AM, Type *Ty,
1689*0b57cec5SDimitry Andric                                                unsigned AS, Instruction *I) const {
1690*0b57cec5SDimitry Andric   // The default implementation of this implements a conservative RISCy, r+r and
1691*0b57cec5SDimitry Andric   // r+i addr mode.
1692*0b57cec5SDimitry Andric 
1693*0b57cec5SDimitry Andric   // Allows a sign-extended 16-bit immediate field.
1694*0b57cec5SDimitry Andric   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1695*0b57cec5SDimitry Andric     return false;
1696*0b57cec5SDimitry Andric 
1697*0b57cec5SDimitry Andric   // No global is ever allowed as a base.
1698*0b57cec5SDimitry Andric   if (AM.BaseGV)
1699*0b57cec5SDimitry Andric     return false;
1700*0b57cec5SDimitry Andric 
1701*0b57cec5SDimitry Andric   // Only support r+r,
1702*0b57cec5SDimitry Andric   switch (AM.Scale) {
1703*0b57cec5SDimitry Andric   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1704*0b57cec5SDimitry Andric     break;
1705*0b57cec5SDimitry Andric   case 1:
1706*0b57cec5SDimitry Andric     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1707*0b57cec5SDimitry Andric       return false;
1708*0b57cec5SDimitry Andric     // Otherwise we have r+r or r+i.
1709*0b57cec5SDimitry Andric     break;
1710*0b57cec5SDimitry Andric   case 2:
1711*0b57cec5SDimitry Andric     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1712*0b57cec5SDimitry Andric       return false;
1713*0b57cec5SDimitry Andric     // Allow 2*r as r+r.
1714*0b57cec5SDimitry Andric     break;
1715*0b57cec5SDimitry Andric   default: // Don't allow n * r
1716*0b57cec5SDimitry Andric     return false;
1717*0b57cec5SDimitry Andric   }
1718*0b57cec5SDimitry Andric 
1719*0b57cec5SDimitry Andric   return true;
1720*0b57cec5SDimitry Andric }
1721*0b57cec5SDimitry Andric 
1722*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1723*0b57cec5SDimitry Andric //  Stack Protector
1724*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1725*0b57cec5SDimitry Andric 
1726*0b57cec5SDimitry Andric // For OpenBSD return its special guard variable. Otherwise return nullptr,
1727*0b57cec5SDimitry Andric // so that SelectionDAG handle SSP.
1728*0b57cec5SDimitry Andric Value *TargetLoweringBase::getIRStackGuard(IRBuilder<> &IRB) const {
1729*0b57cec5SDimitry Andric   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1730*0b57cec5SDimitry Andric     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1731*0b57cec5SDimitry Andric     PointerType *PtrTy = Type::getInt8PtrTy(M.getContext());
1732*0b57cec5SDimitry Andric     return M.getOrInsertGlobal("__guard_local", PtrTy);
1733*0b57cec5SDimitry Andric   }
1734*0b57cec5SDimitry Andric   return nullptr;
1735*0b57cec5SDimitry Andric }
1736*0b57cec5SDimitry Andric 
1737*0b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard.
1738*0b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support.
1739*0b57cec5SDimitry Andric void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1740*0b57cec5SDimitry Andric   if (!M.getNamedValue("__stack_chk_guard"))
1741*0b57cec5SDimitry Andric     new GlobalVariable(M, Type::getInt8PtrTy(M.getContext()), false,
1742*0b57cec5SDimitry Andric                        GlobalVariable::ExternalLinkage,
1743*0b57cec5SDimitry Andric                        nullptr, "__stack_chk_guard");
1744*0b57cec5SDimitry Andric }
1745*0b57cec5SDimitry Andric 
1746*0b57cec5SDimitry Andric // Currently only support "standard" __stack_chk_guard.
1747*0b57cec5SDimitry Andric // TODO: add LOAD_STACK_GUARD support.
1748*0b57cec5SDimitry Andric Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1749*0b57cec5SDimitry Andric   return M.getNamedValue("__stack_chk_guard");
1750*0b57cec5SDimitry Andric }
1751*0b57cec5SDimitry Andric 
1752*0b57cec5SDimitry Andric Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1753*0b57cec5SDimitry Andric   return nullptr;
1754*0b57cec5SDimitry Andric }
1755*0b57cec5SDimitry Andric 
1756*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1757*0b57cec5SDimitry Andric   return MinimumJumpTableEntries;
1758*0b57cec5SDimitry Andric }
1759*0b57cec5SDimitry Andric 
1760*0b57cec5SDimitry Andric void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1761*0b57cec5SDimitry Andric   MinimumJumpTableEntries = Val;
1762*0b57cec5SDimitry Andric }
1763*0b57cec5SDimitry Andric 
1764*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1765*0b57cec5SDimitry Andric   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1766*0b57cec5SDimitry Andric }
1767*0b57cec5SDimitry Andric 
1768*0b57cec5SDimitry Andric unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1769*0b57cec5SDimitry Andric   return MaximumJumpTableSize;
1770*0b57cec5SDimitry Andric }
1771*0b57cec5SDimitry Andric 
1772*0b57cec5SDimitry Andric void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1773*0b57cec5SDimitry Andric   MaximumJumpTableSize = Val;
1774*0b57cec5SDimitry Andric }
1775*0b57cec5SDimitry Andric 
1776*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1777*0b57cec5SDimitry Andric //  Reciprocal Estimates
1778*0b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
1779*0b57cec5SDimitry Andric 
1780*0b57cec5SDimitry Andric /// Get the reciprocal estimate attribute string for a function that will
1781*0b57cec5SDimitry Andric /// override the target defaults.
1782*0b57cec5SDimitry Andric static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
1783*0b57cec5SDimitry Andric   const Function &F = MF.getFunction();
1784*0b57cec5SDimitry Andric   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
1785*0b57cec5SDimitry Andric }
1786*0b57cec5SDimitry Andric 
1787*0b57cec5SDimitry Andric /// Construct a string for the given reciprocal operation of the given type.
1788*0b57cec5SDimitry Andric /// This string should match the corresponding option to the front-end's
1789*0b57cec5SDimitry Andric /// "-mrecip" flag assuming those strings have been passed through in an
1790*0b57cec5SDimitry Andric /// attribute string. For example, "vec-divf" for a division of a vXf32.
1791*0b57cec5SDimitry Andric static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
1792*0b57cec5SDimitry Andric   std::string Name = VT.isVector() ? "vec-" : "";
1793*0b57cec5SDimitry Andric 
1794*0b57cec5SDimitry Andric   Name += IsSqrt ? "sqrt" : "div";
1795*0b57cec5SDimitry Andric 
1796*0b57cec5SDimitry Andric   // TODO: Handle "half" or other float types?
1797*0b57cec5SDimitry Andric   if (VT.getScalarType() == MVT::f64) {
1798*0b57cec5SDimitry Andric     Name += "d";
1799*0b57cec5SDimitry Andric   } else {
1800*0b57cec5SDimitry Andric     assert(VT.getScalarType() == MVT::f32 &&
1801*0b57cec5SDimitry Andric            "Unexpected FP type for reciprocal estimate");
1802*0b57cec5SDimitry Andric     Name += "f";
1803*0b57cec5SDimitry Andric   }
1804*0b57cec5SDimitry Andric 
1805*0b57cec5SDimitry Andric   return Name;
1806*0b57cec5SDimitry Andric }
1807*0b57cec5SDimitry Andric 
1808*0b57cec5SDimitry Andric /// Return the character position and value (a single numeric character) of a
1809*0b57cec5SDimitry Andric /// customized refinement operation in the input string if it exists. Return
1810*0b57cec5SDimitry Andric /// false if there is no customized refinement step count.
1811*0b57cec5SDimitry Andric static bool parseRefinementStep(StringRef In, size_t &Position,
1812*0b57cec5SDimitry Andric                                 uint8_t &Value) {
1813*0b57cec5SDimitry Andric   const char RefStepToken = ':';
1814*0b57cec5SDimitry Andric   Position = In.find(RefStepToken);
1815*0b57cec5SDimitry Andric   if (Position == StringRef::npos)
1816*0b57cec5SDimitry Andric     return false;
1817*0b57cec5SDimitry Andric 
1818*0b57cec5SDimitry Andric   StringRef RefStepString = In.substr(Position + 1);
1819*0b57cec5SDimitry Andric   // Allow exactly one numeric character for the additional refinement
1820*0b57cec5SDimitry Andric   // step parameter.
1821*0b57cec5SDimitry Andric   if (RefStepString.size() == 1) {
1822*0b57cec5SDimitry Andric     char RefStepChar = RefStepString[0];
1823*0b57cec5SDimitry Andric     if (RefStepChar >= '0' && RefStepChar <= '9') {
1824*0b57cec5SDimitry Andric       Value = RefStepChar - '0';
1825*0b57cec5SDimitry Andric       return true;
1826*0b57cec5SDimitry Andric     }
1827*0b57cec5SDimitry Andric   }
1828*0b57cec5SDimitry Andric   report_fatal_error("Invalid refinement step for -recip.");
1829*0b57cec5SDimitry Andric }
1830*0b57cec5SDimitry Andric 
1831*0b57cec5SDimitry Andric /// For the input attribute string, return one of the ReciprocalEstimate enum
1832*0b57cec5SDimitry Andric /// status values (enabled, disabled, or not specified) for this operation on
1833*0b57cec5SDimitry Andric /// the specified data type.
1834*0b57cec5SDimitry Andric static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
1835*0b57cec5SDimitry Andric   if (Override.empty())
1836*0b57cec5SDimitry Andric     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1837*0b57cec5SDimitry Andric 
1838*0b57cec5SDimitry Andric   SmallVector<StringRef, 4> OverrideVector;
1839*0b57cec5SDimitry Andric   Override.split(OverrideVector, ',');
1840*0b57cec5SDimitry Andric   unsigned NumArgs = OverrideVector.size();
1841*0b57cec5SDimitry Andric 
1842*0b57cec5SDimitry Andric   // Check if "all", "none", or "default" was specified.
1843*0b57cec5SDimitry Andric   if (NumArgs == 1) {
1844*0b57cec5SDimitry Andric     // Look for an optional setting of the number of refinement steps needed
1845*0b57cec5SDimitry Andric     // for this type of reciprocal operation.
1846*0b57cec5SDimitry Andric     size_t RefPos;
1847*0b57cec5SDimitry Andric     uint8_t RefSteps;
1848*0b57cec5SDimitry Andric     if (parseRefinementStep(Override, RefPos, RefSteps)) {
1849*0b57cec5SDimitry Andric       // Split the string for further processing.
1850*0b57cec5SDimitry Andric       Override = Override.substr(0, RefPos);
1851*0b57cec5SDimitry Andric     }
1852*0b57cec5SDimitry Andric 
1853*0b57cec5SDimitry Andric     // All reciprocal types are enabled.
1854*0b57cec5SDimitry Andric     if (Override == "all")
1855*0b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Enabled;
1856*0b57cec5SDimitry Andric 
1857*0b57cec5SDimitry Andric     // All reciprocal types are disabled.
1858*0b57cec5SDimitry Andric     if (Override == "none")
1859*0b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Disabled;
1860*0b57cec5SDimitry Andric 
1861*0b57cec5SDimitry Andric     // Target defaults for enablement are used.
1862*0b57cec5SDimitry Andric     if (Override == "default")
1863*0b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1864*0b57cec5SDimitry Andric   }
1865*0b57cec5SDimitry Andric 
1866*0b57cec5SDimitry Andric   // The attribute string may omit the size suffix ('f'/'d').
1867*0b57cec5SDimitry Andric   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1868*0b57cec5SDimitry Andric   std::string VTNameNoSize = VTName;
1869*0b57cec5SDimitry Andric   VTNameNoSize.pop_back();
1870*0b57cec5SDimitry Andric   static const char DisabledPrefix = '!';
1871*0b57cec5SDimitry Andric 
1872*0b57cec5SDimitry Andric   for (StringRef RecipType : OverrideVector) {
1873*0b57cec5SDimitry Andric     size_t RefPos;
1874*0b57cec5SDimitry Andric     uint8_t RefSteps;
1875*0b57cec5SDimitry Andric     if (parseRefinementStep(RecipType, RefPos, RefSteps))
1876*0b57cec5SDimitry Andric       RecipType = RecipType.substr(0, RefPos);
1877*0b57cec5SDimitry Andric 
1878*0b57cec5SDimitry Andric     // Ignore the disablement token for string matching.
1879*0b57cec5SDimitry Andric     bool IsDisabled = RecipType[0] == DisabledPrefix;
1880*0b57cec5SDimitry Andric     if (IsDisabled)
1881*0b57cec5SDimitry Andric       RecipType = RecipType.substr(1);
1882*0b57cec5SDimitry Andric 
1883*0b57cec5SDimitry Andric     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1884*0b57cec5SDimitry Andric       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
1885*0b57cec5SDimitry Andric                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
1886*0b57cec5SDimitry Andric   }
1887*0b57cec5SDimitry Andric 
1888*0b57cec5SDimitry Andric   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1889*0b57cec5SDimitry Andric }
1890*0b57cec5SDimitry Andric 
1891*0b57cec5SDimitry Andric /// For the input attribute string, return the customized refinement step count
1892*0b57cec5SDimitry Andric /// for this operation on the specified data type. If the step count does not
1893*0b57cec5SDimitry Andric /// exist, return the ReciprocalEstimate enum value for unspecified.
1894*0b57cec5SDimitry Andric static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
1895*0b57cec5SDimitry Andric   if (Override.empty())
1896*0b57cec5SDimitry Andric     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1897*0b57cec5SDimitry Andric 
1898*0b57cec5SDimitry Andric   SmallVector<StringRef, 4> OverrideVector;
1899*0b57cec5SDimitry Andric   Override.split(OverrideVector, ',');
1900*0b57cec5SDimitry Andric   unsigned NumArgs = OverrideVector.size();
1901*0b57cec5SDimitry Andric 
1902*0b57cec5SDimitry Andric   // Check if "all", "default", or "none" was specified.
1903*0b57cec5SDimitry Andric   if (NumArgs == 1) {
1904*0b57cec5SDimitry Andric     // Look for an optional setting of the number of refinement steps needed
1905*0b57cec5SDimitry Andric     // for this type of reciprocal operation.
1906*0b57cec5SDimitry Andric     size_t RefPos;
1907*0b57cec5SDimitry Andric     uint8_t RefSteps;
1908*0b57cec5SDimitry Andric     if (!parseRefinementStep(Override, RefPos, RefSteps))
1909*0b57cec5SDimitry Andric       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1910*0b57cec5SDimitry Andric 
1911*0b57cec5SDimitry Andric     // Split the string for further processing.
1912*0b57cec5SDimitry Andric     Override = Override.substr(0, RefPos);
1913*0b57cec5SDimitry Andric     assert(Override != "none" &&
1914*0b57cec5SDimitry Andric            "Disabled reciprocals, but specifed refinement steps?");
1915*0b57cec5SDimitry Andric 
1916*0b57cec5SDimitry Andric     // If this is a general override, return the specified number of steps.
1917*0b57cec5SDimitry Andric     if (Override == "all" || Override == "default")
1918*0b57cec5SDimitry Andric       return RefSteps;
1919*0b57cec5SDimitry Andric   }
1920*0b57cec5SDimitry Andric 
1921*0b57cec5SDimitry Andric   // The attribute string may omit the size suffix ('f'/'d').
1922*0b57cec5SDimitry Andric   std::string VTName = getReciprocalOpName(IsSqrt, VT);
1923*0b57cec5SDimitry Andric   std::string VTNameNoSize = VTName;
1924*0b57cec5SDimitry Andric   VTNameNoSize.pop_back();
1925*0b57cec5SDimitry Andric 
1926*0b57cec5SDimitry Andric   for (StringRef RecipType : OverrideVector) {
1927*0b57cec5SDimitry Andric     size_t RefPos;
1928*0b57cec5SDimitry Andric     uint8_t RefSteps;
1929*0b57cec5SDimitry Andric     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
1930*0b57cec5SDimitry Andric       continue;
1931*0b57cec5SDimitry Andric 
1932*0b57cec5SDimitry Andric     RecipType = RecipType.substr(0, RefPos);
1933*0b57cec5SDimitry Andric     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
1934*0b57cec5SDimitry Andric       return RefSteps;
1935*0b57cec5SDimitry Andric   }
1936*0b57cec5SDimitry Andric 
1937*0b57cec5SDimitry Andric   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
1938*0b57cec5SDimitry Andric }
1939*0b57cec5SDimitry Andric 
1940*0b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
1941*0b57cec5SDimitry Andric                                                     MachineFunction &MF) const {
1942*0b57cec5SDimitry Andric   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
1943*0b57cec5SDimitry Andric }
1944*0b57cec5SDimitry Andric 
1945*0b57cec5SDimitry Andric int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
1946*0b57cec5SDimitry Andric                                                    MachineFunction &MF) const {
1947*0b57cec5SDimitry Andric   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
1948*0b57cec5SDimitry Andric }
1949*0b57cec5SDimitry Andric 
1950*0b57cec5SDimitry Andric int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
1951*0b57cec5SDimitry Andric                                                MachineFunction &MF) const {
1952*0b57cec5SDimitry Andric   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
1953*0b57cec5SDimitry Andric }
1954*0b57cec5SDimitry Andric 
1955*0b57cec5SDimitry Andric int TargetLoweringBase::getDivRefinementSteps(EVT VT,
1956*0b57cec5SDimitry Andric                                               MachineFunction &MF) const {
1957*0b57cec5SDimitry Andric   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
1958*0b57cec5SDimitry Andric }
1959*0b57cec5SDimitry Andric 
1960*0b57cec5SDimitry Andric void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
1961*0b57cec5SDimitry Andric   MF.getRegInfo().freezeReservedRegs(MF);
1962*0b57cec5SDimitry Andric }
1963