xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "stack-protector"
56 
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59                         " taken.");
60 
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62                                           cl::init(true), cl::Hidden);
63 
64 char StackProtector::ID = 0;
65 
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 }
69 
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71                       "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75                     "Insert stack protectors", false, true)
76 
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
78 
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.addRequired<TargetPassConfig>();
81   AU.addPreserved<DominatorTreeWrapperPass>();
82 }
83 
84 bool StackProtector::runOnFunction(Function &Fn) {
85   F = &Fn;
86   M = F->getParent();
87   DominatorTreeWrapperPass *DTWP =
88       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
89   DT = DTWP ? &DTWP->getDomTree() : nullptr;
90   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
91   Trip = TM->getTargetTriple();
92   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
93   HasPrologue = false;
94   HasIRCheck = false;
95 
96   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
97   if (Attr.isStringAttribute() &&
98       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
99     return false; // Invalid integer string
100 
101   if (!RequiresStackProtector())
102     return false;
103 
104   // TODO(etienneb): Functions with funclets are not correctly supported now.
105   // Do nothing if this is funclet-based personality.
106   if (Fn.hasPersonalityFn()) {
107     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
108     if (isFuncletEHPersonality(Personality))
109       return false;
110   }
111 
112   ++NumFunProtected;
113   return InsertStackProtectors();
114 }
115 
116 /// \param [out] IsLarge is set to true if a protectable array is found and
117 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
118 /// multiple arrays, this gets set if any of them is large.
119 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
120                                               bool Strong,
121                                               bool InStruct) const {
122   if (!Ty)
123     return false;
124   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
125     if (!AT->getElementType()->isIntegerTy(8)) {
126       // If we're on a non-Darwin platform or we're inside of a structure, don't
127       // add stack protectors unless the array is a character array.
128       // However, in strong mode any array, regardless of type and size,
129       // triggers a protector.
130       if (!Strong && (InStruct || !Trip.isOSDarwin()))
131         return false;
132     }
133 
134     // If an array has more than SSPBufferSize bytes of allocated space, then we
135     // emit stack protectors.
136     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
137       IsLarge = true;
138       return true;
139     }
140 
141     if (Strong)
142       // Require a protector for all arrays in strong mode
143       return true;
144   }
145 
146   const StructType *ST = dyn_cast<StructType>(Ty);
147   if (!ST)
148     return false;
149 
150   bool NeedsProtector = false;
151   for (Type *ET : ST->elements())
152     if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
153       // If the element is a protectable array and is large (>= SSPBufferSize)
154       // then we are done.  If the protectable array is not large, then
155       // keep looking in case a subsequent element is a large array.
156       if (IsLarge)
157         return true;
158       NeedsProtector = true;
159     }
160 
161   return NeedsProtector;
162 }
163 
164 bool StackProtector::HasAddressTaken(const Instruction *AI,
165                                      uint64_t AllocSize) {
166   const DataLayout &DL = M->getDataLayout();
167   for (const User *U : AI->users()) {
168     const auto *I = cast<Instruction>(U);
169     // If this instruction accesses memory make sure it doesn't access beyond
170     // the bounds of the allocated object.
171     Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
172     if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
173         MemLoc->Size.getValue() > AllocSize)
174       return true;
175     switch (I->getOpcode()) {
176     case Instruction::Store:
177       if (AI == cast<StoreInst>(I)->getValueOperand())
178         return true;
179       break;
180     case Instruction::AtomicCmpXchg:
181       // cmpxchg conceptually includes both a load and store from the same
182       // location. So, like store, the value being stored is what matters.
183       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
184         return true;
185       break;
186     case Instruction::PtrToInt:
187       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
188         return true;
189       break;
190     case Instruction::Call: {
191       // Ignore intrinsics that do not become real instructions.
192       // TODO: Narrow this to intrinsics that have store-like effects.
193       const auto *CI = cast<CallInst>(I);
194       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
195         return true;
196       break;
197     }
198     case Instruction::Invoke:
199       return true;
200     case Instruction::GetElementPtr: {
201       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
202       // assumed to be potentially out-of-bounds, then any memory access that
203       // would use it could also be out-of-bounds meaning stack protection is
204       // required.
205       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
206       unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
207       APInt Offset(TypeSize, 0);
208       APInt MaxOffset(TypeSize, AllocSize);
209       if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
210         return true;
211       // Adjust AllocSize to be the space remaining after this offset.
212       if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
213         return true;
214       break;
215     }
216     case Instruction::BitCast:
217     case Instruction::Select:
218     case Instruction::AddrSpaceCast:
219       if (HasAddressTaken(I, AllocSize))
220         return true;
221       break;
222     case Instruction::PHI: {
223       // Keep track of what PHI nodes we have already visited to ensure
224       // they are only visited once.
225       const auto *PN = cast<PHINode>(I);
226       if (VisitedPHIs.insert(PN).second)
227         if (HasAddressTaken(PN, AllocSize))
228           return true;
229       break;
230     }
231     case Instruction::Load:
232     case Instruction::AtomicRMW:
233     case Instruction::Ret:
234       // These instructions take an address operand, but have load-like or
235       // other innocuous behavior that should not trigger a stack protector.
236       // atomicrmw conceptually has both load and store semantics, but the
237       // value being stored must be integer; so if a pointer is being stored,
238       // we'll catch it in the PtrToInt case above.
239       break;
240     default:
241       // Conservatively return true for any instruction that takes an address
242       // operand, but is not handled above.
243       return true;
244     }
245   }
246   return false;
247 }
248 
249 /// Search for the first call to the llvm.stackprotector intrinsic and return it
250 /// if present.
251 static const CallInst *findStackProtectorIntrinsic(Function &F) {
252   for (const BasicBlock &BB : F)
253     for (const Instruction &I : BB)
254       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
255         if (II->getIntrinsicID() == Intrinsic::stackprotector)
256           return II;
257   return nullptr;
258 }
259 
260 /// Check whether or not this function needs a stack protector based
261 /// upon the stack protector level.
262 ///
263 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
264 /// The standard heuristic which will add a guard variable to functions that
265 /// call alloca with a either a variable size or a size >= SSPBufferSize,
266 /// functions with character buffers larger than SSPBufferSize, and functions
267 /// with aggregates containing character buffers larger than SSPBufferSize. The
268 /// strong heuristic will add a guard variables to functions that call alloca
269 /// regardless of size, functions with any buffer regardless of type and size,
270 /// functions with aggregates that contain any buffer regardless of type and
271 /// size, and functions that contain stack-based variables that have had their
272 /// address taken.
273 bool StackProtector::RequiresStackProtector() {
274   bool Strong = false;
275   bool NeedsProtector = false;
276 
277   if (F->hasFnAttribute(Attribute::SafeStack))
278     return false;
279 
280   // We are constructing the OptimizationRemarkEmitter on the fly rather than
281   // using the analysis pass to avoid building DominatorTree and LoopInfo which
282   // are not available this late in the IR pipeline.
283   OptimizationRemarkEmitter ORE(F);
284 
285   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
286     ORE.emit([&]() {
287       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
288              << "Stack protection applied to function "
289              << ore::NV("Function", F)
290              << " due to a function attribute or command-line switch";
291     });
292     NeedsProtector = true;
293     Strong = true; // Use the same heuristic as strong to determine SSPLayout
294   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
295     Strong = true;
296   else if (!F->hasFnAttribute(Attribute::StackProtect))
297     return false;
298 
299   for (const BasicBlock &BB : *F) {
300     for (const Instruction &I : BB) {
301       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
302         if (AI->isArrayAllocation()) {
303           auto RemarkBuilder = [&]() {
304             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
305                                       &I)
306                    << "Stack protection applied to function "
307                    << ore::NV("Function", F)
308                    << " due to a call to alloca or use of a variable length "
309                       "array";
310           };
311           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
312             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
313               // A call to alloca with size >= SSPBufferSize requires
314               // stack protectors.
315               Layout.insert(std::make_pair(AI,
316                                            MachineFrameInfo::SSPLK_LargeArray));
317               ORE.emit(RemarkBuilder);
318               NeedsProtector = true;
319             } else if (Strong) {
320               // Require protectors for all alloca calls in strong mode.
321               Layout.insert(std::make_pair(AI,
322                                            MachineFrameInfo::SSPLK_SmallArray));
323               ORE.emit(RemarkBuilder);
324               NeedsProtector = true;
325             }
326           } else {
327             // A call to alloca with a variable size requires protectors.
328             Layout.insert(std::make_pair(AI,
329                                          MachineFrameInfo::SSPLK_LargeArray));
330             ORE.emit(RemarkBuilder);
331             NeedsProtector = true;
332           }
333           continue;
334         }
335 
336         bool IsLarge = false;
337         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
338           Layout.insert(std::make_pair(AI, IsLarge
339                                        ? MachineFrameInfo::SSPLK_LargeArray
340                                        : MachineFrameInfo::SSPLK_SmallArray));
341           ORE.emit([&]() {
342             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
343                    << "Stack protection applied to function "
344                    << ore::NV("Function", F)
345                    << " due to a stack allocated buffer or struct containing a "
346                       "buffer";
347           });
348           NeedsProtector = true;
349           continue;
350         }
351 
352         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
353                                               AI->getAllocatedType()))) {
354           ++NumAddrTaken;
355           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
356           ORE.emit([&]() {
357             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
358                                       &I)
359                    << "Stack protection applied to function "
360                    << ore::NV("Function", F)
361                    << " due to the address of a local variable being taken";
362           });
363           NeedsProtector = true;
364         }
365         // Clear any PHIs that we visited, to make sure we examine all uses of
366         // any subsequent allocas that we look at.
367         VisitedPHIs.clear();
368       }
369     }
370   }
371 
372   return NeedsProtector;
373 }
374 
375 /// Create a stack guard loading and populate whether SelectionDAG SSP is
376 /// supported.
377 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
378                             IRBuilder<> &B,
379                             bool *SupportsSelectionDAGSP = nullptr) {
380   Value *Guard = TLI->getIRStackGuard(B);
381   StringRef GuardMode = M->getStackProtectorGuard();
382   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
383     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
384 
385   // Use SelectionDAG SSP handling, since there isn't an IR guard.
386   //
387   // This is more or less weird, since we optionally output whether we
388   // should perform a SelectionDAG SP here. The reason is that it's strictly
389   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
390   // mutating. There is no way to get this bit without mutating the IR, so
391   // getting this bit has to happen in this right time.
392   //
393   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
394   // will put more burden on the backends' overriding work, especially when it
395   // actually conveys the same information getIRStackGuard() already gives.
396   if (SupportsSelectionDAGSP)
397     *SupportsSelectionDAGSP = true;
398   TLI->insertSSPDeclarations(*M);
399   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
400 }
401 
402 /// Insert code into the entry block that stores the stack guard
403 /// variable onto the stack:
404 ///
405 ///   entry:
406 ///     StackGuardSlot = alloca i8*
407 ///     StackGuard = <stack guard>
408 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
409 ///
410 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
411 /// node.
412 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
413                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
414   bool SupportsSelectionDAGSP = false;
415   IRBuilder<> B(&F->getEntryBlock().front());
416   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
417   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
418 
419   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
420   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
421                {GuardSlot, AI});
422   return SupportsSelectionDAGSP;
423 }
424 
425 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
426 /// function.
427 ///
428 ///  - The prologue code loads and stores the stack guard onto the stack.
429 ///  - The epilogue checks the value stored in the prologue against the original
430 ///    value. It calls __stack_chk_fail if they differ.
431 bool StackProtector::InsertStackProtectors() {
432   // If the target wants to XOR the frame pointer into the guard value, it's
433   // impossible to emit the check in IR, so the target *must* support stack
434   // protection in SDAG.
435   bool SupportsSelectionDAGSP =
436       TLI->useStackGuardXorFP() ||
437       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
438   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
439 
440   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
441     ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator());
442     if (!RI)
443       continue;
444 
445     // Generate prologue instrumentation if not already generated.
446     if (!HasPrologue) {
447       HasPrologue = true;
448       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
449     }
450 
451     // SelectionDAG based code generation. Nothing else needs to be done here.
452     // The epilogue instrumentation is postponed to SelectionDAG.
453     if (SupportsSelectionDAGSP)
454       break;
455 
456     // Find the stack guard slot if the prologue was not created by this pass
457     // itself via a previous call to CreatePrologue().
458     if (!AI) {
459       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
460       assert(SPCall && "Call to llvm.stackprotector is missing");
461       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
462     }
463 
464     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
465     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
466     // instrumentation has already been generated.
467     HasIRCheck = true;
468 
469     // If we're instrumenting a block with a musttail call, the check has to be
470     // inserted before the call rather than between it and the return. The
471     // verifier guarantees that a musttail call is either directly before the
472     // return or with a single correct bitcast of the return value in between so
473     // we don't need to worry about many situations here.
474     Instruction *CheckLoc = RI;
475     Instruction *Prev = RI->getPrevNonDebugInstruction();
476     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
477       CheckLoc = Prev;
478     else if (Prev) {
479       Prev = Prev->getPrevNonDebugInstruction();
480       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
481         CheckLoc = Prev;
482     }
483 
484     // Generate epilogue instrumentation. The epilogue intrumentation can be
485     // function-based or inlined depending on which mechanism the target is
486     // providing.
487     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
488       // Generate the function-based epilogue instrumentation.
489       // The target provides a guard check function, generate a call to it.
490       IRBuilder<> B(CheckLoc);
491       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
492       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
493       Call->setAttributes(GuardCheck->getAttributes());
494       Call->setCallingConv(GuardCheck->getCallingConv());
495     } else {
496       // Generate the epilogue with inline instrumentation.
497       // If we do not support SelectionDAG based calls, generate IR level
498       // calls.
499       //
500       // For each block with a return instruction, convert this:
501       //
502       //   return:
503       //     ...
504       //     ret ...
505       //
506       // into this:
507       //
508       //   return:
509       //     ...
510       //     %1 = <stack guard>
511       //     %2 = load StackGuardSlot
512       //     %3 = cmp i1 %1, %2
513       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
514       //
515       //   SP_return:
516       //     ret ...
517       //
518       //   CallStackCheckFailBlk:
519       //     call void @__stack_chk_fail()
520       //     unreachable
521 
522       // Create the FailBB. We duplicate the BB every time since the MI tail
523       // merge pass will merge together all of the various BB into one including
524       // fail BB generated by the stack protector pseudo instruction.
525       BasicBlock *FailBB = CreateFailBB();
526 
527       // Split the basic block before the return instruction.
528       BasicBlock *NewBB =
529           BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
530 
531       // Update the dominator tree if we need to.
532       if (DT && DT->isReachableFromEntry(&BB)) {
533         DT->addNewBlock(NewBB, &BB);
534         DT->addNewBlock(FailBB, &BB);
535       }
536 
537       // Remove default branch instruction to the new BB.
538       BB.getTerminator()->eraseFromParent();
539 
540       // Move the newly created basic block to the point right after the old
541       // basic block so that it's in the "fall through" position.
542       NewBB->moveAfter(&BB);
543 
544       // Generate the stack protector instructions in the old basic block.
545       IRBuilder<> B(&BB);
546       Value *Guard = getStackGuard(TLI, M, B);
547       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
548       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
549       auto SuccessProb =
550           BranchProbabilityInfo::getBranchProbStackProtector(true);
551       auto FailureProb =
552           BranchProbabilityInfo::getBranchProbStackProtector(false);
553       MDNode *Weights = MDBuilder(F->getContext())
554                             .createBranchWeights(SuccessProb.getNumerator(),
555                                                  FailureProb.getNumerator());
556       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
557     }
558   }
559 
560   // Return if we didn't modify any basic blocks. i.e., there are no return
561   // statements in the function.
562   return HasPrologue;
563 }
564 
565 /// CreateFailBB - Create a basic block to jump to when the stack protector
566 /// check fails.
567 BasicBlock *StackProtector::CreateFailBB() {
568   LLVMContext &Context = F->getContext();
569   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
570   IRBuilder<> B(FailBB);
571   if (F->getSubprogram())
572     B.SetCurrentDebugLocation(
573         DILocation::get(Context, 0, 0, F->getSubprogram()));
574   if (Trip.isOSOpenBSD()) {
575     FunctionCallee StackChkFail = M->getOrInsertFunction(
576         "__stack_smash_handler", Type::getVoidTy(Context),
577         Type::getInt8PtrTy(Context));
578 
579     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
580   } else {
581     FunctionCallee StackChkFail =
582         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
583 
584     B.CreateCall(StackChkFail, {});
585   }
586   B.CreateUnreachable();
587   return FailBB;
588 }
589 
590 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
591   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
592 }
593 
594 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
595   if (Layout.empty())
596     return;
597 
598   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
599     if (MFI.isDeadObjectIndex(I))
600       continue;
601 
602     const AllocaInst *AI = MFI.getObjectAllocation(I);
603     if (!AI)
604       continue;
605 
606     SSPLayoutMap::const_iterator LI = Layout.find(AI);
607     if (LI == Layout.end())
608       continue;
609 
610     MFI.setObjectSSPLayout(I, LI->second);
611   }
612 }
613