1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 31 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCMetadata.h" 39 #include "llvm/CodeGen/ISDOpcodes.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineFunctionPass.h" 44 #include "llvm/CodeGen/MachineInstr.h" 45 #include "llvm/CodeGen/MachineInstrBuilder.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachinePassRegistry.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/SchedulerRegistry.h" 52 #include "llvm/CodeGen/SelectionDAG.h" 53 #include "llvm/CodeGen/SelectionDAGNodes.h" 54 #include "llvm/CodeGen/StackProtector.h" 55 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetLowering.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/ValueTypes.h" 61 #include "llvm/IR/BasicBlock.h" 62 #include "llvm/IR/Constants.h" 63 #include "llvm/IR/DataLayout.h" 64 #include "llvm/IR/DebugInfoMetadata.h" 65 #include "llvm/IR/DebugLoc.h" 66 #include "llvm/IR/DiagnosticInfo.h" 67 #include "llvm/IR/Dominators.h" 68 #include "llvm/IR/Function.h" 69 #include "llvm/IR/InlineAsm.h" 70 #include "llvm/IR/InstIterator.h" 71 #include "llvm/IR/InstrTypes.h" 72 #include "llvm/IR/Instruction.h" 73 #include "llvm/IR/Instructions.h" 74 #include "llvm/IR/IntrinsicInst.h" 75 #include "llvm/IR/Intrinsics.h" 76 #include "llvm/IR/IntrinsicsWebAssembly.h" 77 #include "llvm/IR/Metadata.h" 78 #include "llvm/IR/Statepoint.h" 79 #include "llvm/IR/Type.h" 80 #include "llvm/IR/User.h" 81 #include "llvm/IR/Value.h" 82 #include "llvm/InitializePasses.h" 83 #include "llvm/MC/MCInstrDesc.h" 84 #include "llvm/MC/MCRegisterInfo.h" 85 #include "llvm/Pass.h" 86 #include "llvm/Support/BranchProbability.h" 87 #include "llvm/Support/Casting.h" 88 #include "llvm/Support/CodeGen.h" 89 #include "llvm/Support/CommandLine.h" 90 #include "llvm/Support/Compiler.h" 91 #include "llvm/Support/Debug.h" 92 #include "llvm/Support/ErrorHandling.h" 93 #include "llvm/Support/KnownBits.h" 94 #include "llvm/Support/MachineValueType.h" 95 #include "llvm/Support/Timer.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 101 #include <algorithm> 102 #include <cassert> 103 #include <cstdint> 104 #include <iterator> 105 #include <limits> 106 #include <memory> 107 #include <string> 108 #include <utility> 109 #include <vector> 110 111 using namespace llvm; 112 113 #define DEBUG_TYPE "isel" 114 115 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 116 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 117 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 118 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 119 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 120 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 121 STATISTIC(NumFastIselFailLowerArguments, 122 "Number of entry blocks where fast isel failed to lower arguments"); 123 124 static cl::opt<int> EnableFastISelAbort( 125 "fast-isel-abort", cl::Hidden, 126 cl::desc("Enable abort calls when \"fast\" instruction selection " 127 "fails to lower an instruction: 0 disable the abort, 1 will " 128 "abort but for args, calls and terminators, 2 will also " 129 "abort for argument lowering, and 3 will never fallback " 130 "to SelectionDAG.")); 131 132 static cl::opt<bool> EnableFastISelFallbackReport( 133 "fast-isel-report-on-fallback", cl::Hidden, 134 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 135 "falls back to SelectionDAG.")); 136 137 static cl::opt<bool> 138 UseMBPI("use-mbpi", 139 cl::desc("use Machine Branch Probability Info"), 140 cl::init(true), cl::Hidden); 141 142 #ifndef NDEBUG 143 static cl::opt<std::string> 144 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 145 cl::desc("Only display the basic block whose name " 146 "matches this for all view-*-dags options")); 147 static cl::opt<bool> 148 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 149 cl::desc("Pop up a window to show dags before the first " 150 "dag combine pass")); 151 static cl::opt<bool> 152 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 153 cl::desc("Pop up a window to show dags before legalize types")); 154 static cl::opt<bool> 155 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 156 cl::desc("Pop up a window to show dags before the post " 157 "legalize types dag combine pass")); 158 static cl::opt<bool> 159 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 160 cl::desc("Pop up a window to show dags before legalize")); 161 static cl::opt<bool> 162 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 163 cl::desc("Pop up a window to show dags before the second " 164 "dag combine pass")); 165 static cl::opt<bool> 166 ViewISelDAGs("view-isel-dags", cl::Hidden, 167 cl::desc("Pop up a window to show isel dags as they are selected")); 168 static cl::opt<bool> 169 ViewSchedDAGs("view-sched-dags", cl::Hidden, 170 cl::desc("Pop up a window to show sched dags as they are processed")); 171 static cl::opt<bool> 172 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 173 cl::desc("Pop up a window to show SUnit dags after they are processed")); 174 #else 175 static const bool ViewDAGCombine1 = false, ViewLegalizeTypesDAGs = false, 176 ViewDAGCombineLT = false, ViewLegalizeDAGs = false, 177 ViewDAGCombine2 = false, ViewISelDAGs = false, 178 ViewSchedDAGs = false, ViewSUnitDAGs = false; 179 #endif 180 181 //===---------------------------------------------------------------------===// 182 /// 183 /// RegisterScheduler class - Track the registration of instruction schedulers. 184 /// 185 //===---------------------------------------------------------------------===// 186 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 187 RegisterScheduler::Registry; 188 189 //===---------------------------------------------------------------------===// 190 /// 191 /// ISHeuristic command line option for instruction schedulers. 192 /// 193 //===---------------------------------------------------------------------===// 194 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 195 RegisterPassParser<RegisterScheduler>> 196 ISHeuristic("pre-RA-sched", 197 cl::init(&createDefaultScheduler), cl::Hidden, 198 cl::desc("Instruction schedulers available (before register" 199 " allocation):")); 200 201 static RegisterScheduler 202 defaultListDAGScheduler("default", "Best scheduler for the target", 203 createDefaultScheduler); 204 205 namespace llvm { 206 207 //===--------------------------------------------------------------------===// 208 /// This class is used by SelectionDAGISel to temporarily override 209 /// the optimization level on a per-function basis. 210 class OptLevelChanger { 211 SelectionDAGISel &IS; 212 CodeGenOpt::Level SavedOptLevel; 213 bool SavedFastISel; 214 215 public: 216 OptLevelChanger(SelectionDAGISel &ISel, 217 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 218 SavedOptLevel = IS.OptLevel; 219 SavedFastISel = IS.TM.Options.EnableFastISel; 220 if (NewOptLevel == SavedOptLevel) 221 return; 222 IS.OptLevel = NewOptLevel; 223 IS.TM.setOptLevel(NewOptLevel); 224 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 225 << IS.MF->getFunction().getName() << "\n"); 226 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 227 << NewOptLevel << "\n"); 228 if (NewOptLevel == CodeGenOpt::None) { 229 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 230 LLVM_DEBUG( 231 dbgs() << "\tFastISel is " 232 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 233 << "\n"); 234 } 235 } 236 237 ~OptLevelChanger() { 238 if (IS.OptLevel == SavedOptLevel) 239 return; 240 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 241 << IS.MF->getFunction().getName() << "\n"); 242 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 243 << SavedOptLevel << "\n"); 244 IS.OptLevel = SavedOptLevel; 245 IS.TM.setOptLevel(SavedOptLevel); 246 IS.TM.setFastISel(SavedFastISel); 247 } 248 }; 249 250 //===--------------------------------------------------------------------===// 251 /// createDefaultScheduler - This creates an instruction scheduler appropriate 252 /// for the target. 253 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 254 CodeGenOpt::Level OptLevel) { 255 const TargetLowering *TLI = IS->TLI; 256 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 257 258 // Try first to see if the Target has its own way of selecting a scheduler 259 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 260 return SchedulerCtor(IS, OptLevel); 261 } 262 263 if (OptLevel == CodeGenOpt::None || 264 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 265 TLI->getSchedulingPreference() == Sched::Source) 266 return createSourceListDAGScheduler(IS, OptLevel); 267 if (TLI->getSchedulingPreference() == Sched::RegPressure) 268 return createBURRListDAGScheduler(IS, OptLevel); 269 if (TLI->getSchedulingPreference() == Sched::Hybrid) 270 return createHybridListDAGScheduler(IS, OptLevel); 271 if (TLI->getSchedulingPreference() == Sched::VLIW) 272 return createVLIWDAGScheduler(IS, OptLevel); 273 assert(TLI->getSchedulingPreference() == Sched::ILP && 274 "Unknown sched type!"); 275 return createILPListDAGScheduler(IS, OptLevel); 276 } 277 278 } // end namespace llvm 279 280 // EmitInstrWithCustomInserter - This method should be implemented by targets 281 // that mark instructions with the 'usesCustomInserter' flag. These 282 // instructions are special in various ways, which require special support to 283 // insert. The specified MachineInstr is created but not inserted into any 284 // basic blocks, and this method is called to expand it into a sequence of 285 // instructions, potentially also creating new basic blocks and control flow. 286 // When new basic blocks are inserted and the edges from MBB to its successors 287 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 288 // DenseMap. 289 MachineBasicBlock * 290 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 291 MachineBasicBlock *MBB) const { 292 #ifndef NDEBUG 293 dbgs() << "If a target marks an instruction with " 294 "'usesCustomInserter', it must implement " 295 "TargetLowering::EmitInstrWithCustomInserter!"; 296 #endif 297 llvm_unreachable(nullptr); 298 } 299 300 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 301 SDNode *Node) const { 302 assert(!MI.hasPostISelHook() && 303 "If a target marks an instruction with 'hasPostISelHook', " 304 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 305 } 306 307 //===----------------------------------------------------------------------===// 308 // SelectionDAGISel code 309 //===----------------------------------------------------------------------===// 310 311 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) 312 : MachineFunctionPass(ID), TM(tm), FuncInfo(new FunctionLoweringInfo()), 313 SwiftError(new SwiftErrorValueTracking()), 314 CurDAG(new SelectionDAG(tm, OL)), 315 SDB(std::make_unique<SelectionDAGBuilder>(*CurDAG, *FuncInfo, *SwiftError, 316 OL)), 317 AA(), GFI(), OptLevel(OL), DAGSize(0) { 318 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 319 initializeBranchProbabilityInfoWrapperPassPass( 320 *PassRegistry::getPassRegistry()); 321 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 322 initializeTargetLibraryInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 323 } 324 325 SelectionDAGISel::~SelectionDAGISel() { 326 delete CurDAG; 327 delete SwiftError; 328 } 329 330 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 331 if (OptLevel != CodeGenOpt::None) 332 AU.addRequired<AAResultsWrapperPass>(); 333 AU.addRequired<GCModuleInfo>(); 334 AU.addRequired<StackProtector>(); 335 AU.addPreserved<GCModuleInfo>(); 336 AU.addRequired<TargetLibraryInfoWrapperPass>(); 337 AU.addRequired<TargetTransformInfoWrapperPass>(); 338 if (UseMBPI && OptLevel != CodeGenOpt::None) 339 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 340 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 341 if (OptLevel != CodeGenOpt::None) 342 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 343 MachineFunctionPass::getAnalysisUsage(AU); 344 } 345 346 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 347 /// may trap on it. In this case we have to split the edge so that the path 348 /// through the predecessor block that doesn't go to the phi block doesn't 349 /// execute the possibly trapping instruction. If available, we pass domtree 350 /// and loop info to be updated when we split critical edges. This is because 351 /// SelectionDAGISel preserves these analyses. 352 /// This is required for correctness, so it must be done at -O0. 353 /// 354 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 355 LoopInfo *LI) { 356 // Loop for blocks with phi nodes. 357 for (BasicBlock &BB : Fn) { 358 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 359 if (!PN) continue; 360 361 ReprocessBlock: 362 // For each block with a PHI node, check to see if any of the input values 363 // are potentially trapping constant expressions. Constant expressions are 364 // the only potentially trapping value that can occur as the argument to a 365 // PHI. 366 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 367 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 368 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 369 if (!CE || !CE->canTrap()) continue; 370 371 // The only case we have to worry about is when the edge is critical. 372 // Since this block has a PHI Node, we assume it has multiple input 373 // edges: check to see if the pred has multiple successors. 374 BasicBlock *Pred = PN->getIncomingBlock(i); 375 if (Pred->getTerminator()->getNumSuccessors() == 1) 376 continue; 377 378 // Okay, we have to split this edge. 379 SplitCriticalEdge( 380 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 381 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 382 goto ReprocessBlock; 383 } 384 } 385 } 386 387 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 388 MachineModuleInfo &MMI) { 389 // Only needed for MSVC 390 if (!TT.isWindowsMSVCEnvironment()) 391 return; 392 393 // If it's already set, nothing to do. 394 if (MMI.usesMSVCFloatingPoint()) 395 return; 396 397 for (const Instruction &I : instructions(F)) { 398 if (I.getType()->isFPOrFPVectorTy()) { 399 MMI.setUsesMSVCFloatingPoint(true); 400 return; 401 } 402 for (const auto &Op : I.operands()) { 403 if (Op->getType()->isFPOrFPVectorTy()) { 404 MMI.setUsesMSVCFloatingPoint(true); 405 return; 406 } 407 } 408 } 409 } 410 411 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 412 // If we already selected that function, we do not need to run SDISel. 413 if (mf.getProperties().hasProperty( 414 MachineFunctionProperties::Property::Selected)) 415 return false; 416 // Do some sanity-checking on the command-line options. 417 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 418 "-fast-isel-abort > 0 requires -fast-isel"); 419 420 const Function &Fn = mf.getFunction(); 421 MF = &mf; 422 423 // Reset the target options before resetting the optimization 424 // level below. 425 // FIXME: This is a horrible hack and should be processed via 426 // codegen looking at the optimization level explicitly when 427 // it wants to look at it. 428 TM.resetTargetOptions(Fn); 429 // Reset OptLevel to None for optnone functions. 430 CodeGenOpt::Level NewOptLevel = OptLevel; 431 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 432 NewOptLevel = CodeGenOpt::None; 433 OptLevelChanger OLC(*this, NewOptLevel); 434 435 TII = MF->getSubtarget().getInstrInfo(); 436 TLI = MF->getSubtarget().getTargetLowering(); 437 RegInfo = &MF->getRegInfo(); 438 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 439 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 440 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 441 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 442 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 443 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 444 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 445 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 446 BlockFrequencyInfo *BFI = nullptr; 447 if (PSI && PSI->hasProfileSummary() && OptLevel != CodeGenOpt::None) 448 BFI = &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI(); 449 450 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 451 452 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 453 454 CurDAG->init(*MF, *ORE, this, LibInfo, 455 getAnalysisIfAvailable<LegacyDivergenceAnalysis>(), PSI, BFI); 456 FuncInfo->set(Fn, *MF, CurDAG); 457 SwiftError->setFunction(*MF); 458 459 // Now get the optional analyzes if we want to. 460 // This is based on the possibly changed OptLevel (after optnone is taken 461 // into account). That's unfortunate but OK because it just means we won't 462 // ask for passes that have been required anyway. 463 464 if (UseMBPI && OptLevel != CodeGenOpt::None) 465 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 466 else 467 FuncInfo->BPI = nullptr; 468 469 if (OptLevel != CodeGenOpt::None) 470 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 471 else 472 AA = nullptr; 473 474 SDB->init(GFI, AA, LibInfo); 475 476 MF->setHasInlineAsm(false); 477 478 FuncInfo->SplitCSR = false; 479 480 // We split CSR if the target supports it for the given function 481 // and the function has only return exits. 482 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 483 FuncInfo->SplitCSR = true; 484 485 // Collect all the return blocks. 486 for (const BasicBlock &BB : Fn) { 487 if (!succ_empty(&BB)) 488 continue; 489 490 const Instruction *Term = BB.getTerminator(); 491 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 492 continue; 493 494 // Bail out if the exit block is not Return nor Unreachable. 495 FuncInfo->SplitCSR = false; 496 break; 497 } 498 } 499 500 MachineBasicBlock *EntryMBB = &MF->front(); 501 if (FuncInfo->SplitCSR) 502 // This performs initialization so lowering for SplitCSR will be correct. 503 TLI->initializeSplitCSR(EntryMBB); 504 505 SelectAllBasicBlocks(Fn); 506 if (FastISelFailed && EnableFastISelFallbackReport) { 507 DiagnosticInfoISelFallback DiagFallback(Fn); 508 Fn.getContext().diagnose(DiagFallback); 509 } 510 511 // Replace forward-declared registers with the registers containing 512 // the desired value. 513 // Note: it is important that this happens **before** the call to 514 // EmitLiveInCopies, since implementations can skip copies of unused 515 // registers. If we don't apply the reg fixups before, some registers may 516 // appear as unused and will be skipped, resulting in bad MI. 517 MachineRegisterInfo &MRI = MF->getRegInfo(); 518 for (DenseMap<Register, Register>::iterator I = FuncInfo->RegFixups.begin(), 519 E = FuncInfo->RegFixups.end(); 520 I != E; ++I) { 521 Register From = I->first; 522 Register To = I->second; 523 // If To is also scheduled to be replaced, find what its ultimate 524 // replacement is. 525 while (true) { 526 DenseMap<Register, Register>::iterator J = FuncInfo->RegFixups.find(To); 527 if (J == E) 528 break; 529 To = J->second; 530 } 531 // Make sure the new register has a sufficiently constrained register class. 532 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 533 MRI.constrainRegClass(To, MRI.getRegClass(From)); 534 // Replace it. 535 536 // Replacing one register with another won't touch the kill flags. 537 // We need to conservatively clear the kill flags as a kill on the old 538 // register might dominate existing uses of the new register. 539 if (!MRI.use_empty(To)) 540 MRI.clearKillFlags(From); 541 MRI.replaceRegWith(From, To); 542 } 543 544 // If the first basic block in the function has live ins that need to be 545 // copied into vregs, emit the copies into the top of the block before 546 // emitting the code for the block. 547 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 548 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 549 550 // Insert copies in the entry block and the return blocks. 551 if (FuncInfo->SplitCSR) { 552 SmallVector<MachineBasicBlock*, 4> Returns; 553 // Collect all the return blocks. 554 for (MachineBasicBlock &MBB : mf) { 555 if (!MBB.succ_empty()) 556 continue; 557 558 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 559 if (Term != MBB.end() && Term->isReturn()) { 560 Returns.push_back(&MBB); 561 continue; 562 } 563 } 564 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 565 } 566 567 DenseMap<unsigned, unsigned> LiveInMap; 568 if (!FuncInfo->ArgDbgValues.empty()) 569 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 570 if (LI.second) 571 LiveInMap.insert(LI); 572 573 // Insert DBG_VALUE instructions for function arguments to the entry block. 574 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 575 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 576 bool hasFI = MI->getOperand(0).isFI(); 577 Register Reg = 578 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 579 if (Register::isPhysicalRegister(Reg)) 580 EntryMBB->insert(EntryMBB->begin(), MI); 581 else { 582 MachineInstr *Def = RegInfo->getVRegDef(Reg); 583 if (Def) { 584 MachineBasicBlock::iterator InsertPos = Def; 585 // FIXME: VR def may not be in entry block. 586 Def->getParent()->insert(std::next(InsertPos), MI); 587 } else 588 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 589 << Register::virtReg2Index(Reg) << "\n"); 590 } 591 592 // If Reg is live-in then update debug info to track its copy in a vreg. 593 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 594 if (LDI != LiveInMap.end()) { 595 assert(!hasFI && "There's no handling of frame pointer updating here yet " 596 "- add if needed"); 597 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 598 MachineBasicBlock::iterator InsertPos = Def; 599 const MDNode *Variable = MI->getDebugVariable(); 600 const MDNode *Expr = MI->getDebugExpression(); 601 DebugLoc DL = MI->getDebugLoc(); 602 bool IsIndirect = MI->isIndirectDebugValue(); 603 if (IsIndirect) 604 assert(MI->getOperand(1).getImm() == 0 && 605 "DBG_VALUE with nonzero offset"); 606 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 607 "Expected inlined-at fields to agree"); 608 // Def is never a terminator here, so it is ok to increment InsertPos. 609 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 610 IsIndirect, LDI->second, Variable, Expr); 611 612 // If this vreg is directly copied into an exported register then 613 // that COPY instructions also need DBG_VALUE, if it is the only 614 // user of LDI->second. 615 MachineInstr *CopyUseMI = nullptr; 616 for (MachineRegisterInfo::use_instr_iterator 617 UI = RegInfo->use_instr_begin(LDI->second), 618 E = RegInfo->use_instr_end(); UI != E; ) { 619 MachineInstr *UseMI = &*(UI++); 620 if (UseMI->isDebugValue()) continue; 621 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 622 CopyUseMI = UseMI; continue; 623 } 624 // Otherwise this is another use or second copy use. 625 CopyUseMI = nullptr; break; 626 } 627 if (CopyUseMI && 628 TRI.getRegSizeInBits(LDI->second, MRI) == 629 TRI.getRegSizeInBits(CopyUseMI->getOperand(0).getReg(), MRI)) { 630 // Use MI's debug location, which describes where Variable was 631 // declared, rather than whatever is attached to CopyUseMI. 632 MachineInstr *NewMI = 633 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 634 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 635 MachineBasicBlock::iterator Pos = CopyUseMI; 636 EntryMBB->insertAfter(Pos, NewMI); 637 } 638 } 639 } 640 641 // Determine if there are any calls in this machine function. 642 MachineFrameInfo &MFI = MF->getFrameInfo(); 643 for (const auto &MBB : *MF) { 644 if (MFI.hasCalls() && MF->hasInlineAsm()) 645 break; 646 647 for (const auto &MI : MBB) { 648 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 649 if ((MCID.isCall() && !MCID.isReturn()) || 650 MI.isStackAligningInlineAsm()) { 651 MFI.setHasCalls(true); 652 } 653 if (MI.isInlineAsm()) { 654 MF->setHasInlineAsm(true); 655 } 656 } 657 } 658 659 // Determine if there is a call to setjmp in the machine function. 660 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 661 662 // Determine if floating point is used for msvc 663 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 664 665 // Release function-specific state. SDB and CurDAG are already cleared 666 // at this point. 667 FuncInfo->clear(); 668 669 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 670 LLVM_DEBUG(MF->print(dbgs())); 671 672 return true; 673 } 674 675 static void reportFastISelFailure(MachineFunction &MF, 676 OptimizationRemarkEmitter &ORE, 677 OptimizationRemarkMissed &R, 678 bool ShouldAbort) { 679 // Print the function name explicitly if we don't have a debug location (which 680 // makes the diagnostic less useful) or if we're going to emit a raw error. 681 if (!R.getLocation().isValid() || ShouldAbort) 682 R << (" (in function: " + MF.getName() + ")").str(); 683 684 if (ShouldAbort) 685 report_fatal_error(R.getMsg()); 686 687 ORE.emit(R); 688 } 689 690 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 691 BasicBlock::const_iterator End, 692 bool &HadTailCall) { 693 // Allow creating illegal types during DAG building for the basic block. 694 CurDAG->NewNodesMustHaveLegalTypes = false; 695 696 // Lower the instructions. If a call is emitted as a tail call, cease emitting 697 // nodes for this block. 698 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 699 if (!ElidedArgCopyInstrs.count(&*I)) 700 SDB->visit(*I); 701 } 702 703 // Make sure the root of the DAG is up-to-date. 704 CurDAG->setRoot(SDB->getControlRoot()); 705 HadTailCall = SDB->HasTailCall; 706 SDB->resolveOrClearDbgInfo(); 707 SDB->clear(); 708 709 // Final step, emit the lowered DAG as machine code. 710 CodeGenAndEmitDAG(); 711 } 712 713 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 714 SmallPtrSet<SDNode *, 16> Added; 715 SmallVector<SDNode*, 128> Worklist; 716 717 Worklist.push_back(CurDAG->getRoot().getNode()); 718 Added.insert(CurDAG->getRoot().getNode()); 719 720 KnownBits Known; 721 722 do { 723 SDNode *N = Worklist.pop_back_val(); 724 725 // Otherwise, add all chain operands to the worklist. 726 for (const SDValue &Op : N->op_values()) 727 if (Op.getValueType() == MVT::Other && Added.insert(Op.getNode()).second) 728 Worklist.push_back(Op.getNode()); 729 730 // If this is a CopyToReg with a vreg dest, process it. 731 if (N->getOpcode() != ISD::CopyToReg) 732 continue; 733 734 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 735 if (!Register::isVirtualRegister(DestReg)) 736 continue; 737 738 // Ignore non-integer values. 739 SDValue Src = N->getOperand(2); 740 EVT SrcVT = Src.getValueType(); 741 if (!SrcVT.isInteger()) 742 continue; 743 744 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 745 Known = CurDAG->computeKnownBits(Src); 746 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 747 } while (!Worklist.empty()); 748 } 749 750 void SelectionDAGISel::CodeGenAndEmitDAG() { 751 StringRef GroupName = "sdag"; 752 StringRef GroupDescription = "Instruction Selection and Scheduling"; 753 std::string BlockName; 754 bool MatchFilterBB = false; (void)MatchFilterBB; 755 #ifndef NDEBUG 756 TargetTransformInfo &TTI = 757 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 758 #endif 759 760 // Pre-type legalization allow creation of any node types. 761 CurDAG->NewNodesMustHaveLegalTypes = false; 762 763 #ifndef NDEBUG 764 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 765 FilterDAGBasicBlockName == 766 FuncInfo->MBB->getBasicBlock()->getName()); 767 #endif 768 #ifdef NDEBUG 769 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewDAGCombineLT || 770 ViewLegalizeDAGs || ViewDAGCombine2 || ViewISelDAGs || ViewSchedDAGs || 771 ViewSUnitDAGs) 772 #endif 773 { 774 BlockName = 775 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 776 } 777 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 778 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 779 << "'\n"; 780 CurDAG->dump()); 781 782 #ifndef NDEBUG 783 if (TTI.hasBranchDivergence()) 784 CurDAG->VerifyDAGDiverence(); 785 #endif 786 787 if (ViewDAGCombine1 && MatchFilterBB) 788 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 789 790 // Run the DAG combiner in pre-legalize mode. 791 { 792 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 793 GroupDescription, TimePassesIsEnabled); 794 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 795 } 796 797 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 798 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 799 << "'\n"; 800 CurDAG->dump()); 801 802 #ifndef NDEBUG 803 if (TTI.hasBranchDivergence()) 804 CurDAG->VerifyDAGDiverence(); 805 #endif 806 807 // Second step, hack on the DAG until it only uses operations and types that 808 // the target supports. 809 if (ViewLegalizeTypesDAGs && MatchFilterBB) 810 CurDAG->viewGraph("legalize-types input for " + BlockName); 811 812 bool Changed; 813 { 814 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 815 GroupDescription, TimePassesIsEnabled); 816 Changed = CurDAG->LegalizeTypes(); 817 } 818 819 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 820 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 821 << "'\n"; 822 CurDAG->dump()); 823 824 #ifndef NDEBUG 825 if (TTI.hasBranchDivergence()) 826 CurDAG->VerifyDAGDiverence(); 827 #endif 828 829 // Only allow creation of legal node types. 830 CurDAG->NewNodesMustHaveLegalTypes = true; 831 832 if (Changed) { 833 if (ViewDAGCombineLT && MatchFilterBB) 834 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 835 836 // Run the DAG combiner in post-type-legalize mode. 837 { 838 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 839 GroupName, GroupDescription, TimePassesIsEnabled); 840 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 841 } 842 843 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 844 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 845 << "'\n"; 846 CurDAG->dump()); 847 848 #ifndef NDEBUG 849 if (TTI.hasBranchDivergence()) 850 CurDAG->VerifyDAGDiverence(); 851 #endif 852 } 853 854 { 855 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 856 GroupDescription, TimePassesIsEnabled); 857 Changed = CurDAG->LegalizeVectors(); 858 } 859 860 if (Changed) { 861 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 862 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 863 << "'\n"; 864 CurDAG->dump()); 865 866 #ifndef NDEBUG 867 if (TTI.hasBranchDivergence()) 868 CurDAG->VerifyDAGDiverence(); 869 #endif 870 871 { 872 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 873 GroupDescription, TimePassesIsEnabled); 874 CurDAG->LegalizeTypes(); 875 } 876 877 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 878 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 879 << "'\n"; 880 CurDAG->dump()); 881 882 #ifndef NDEBUG 883 if (TTI.hasBranchDivergence()) 884 CurDAG->VerifyDAGDiverence(); 885 #endif 886 887 if (ViewDAGCombineLT && MatchFilterBB) 888 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 889 890 // Run the DAG combiner in post-type-legalize mode. 891 { 892 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 893 GroupName, GroupDescription, TimePassesIsEnabled); 894 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 895 } 896 897 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 898 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 899 << "'\n"; 900 CurDAG->dump()); 901 902 #ifndef NDEBUG 903 if (TTI.hasBranchDivergence()) 904 CurDAG->VerifyDAGDiverence(); 905 #endif 906 } 907 908 if (ViewLegalizeDAGs && MatchFilterBB) 909 CurDAG->viewGraph("legalize input for " + BlockName); 910 911 { 912 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 913 GroupDescription, TimePassesIsEnabled); 914 CurDAG->Legalize(); 915 } 916 917 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 918 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 919 << "'\n"; 920 CurDAG->dump()); 921 922 #ifndef NDEBUG 923 if (TTI.hasBranchDivergence()) 924 CurDAG->VerifyDAGDiverence(); 925 #endif 926 927 if (ViewDAGCombine2 && MatchFilterBB) 928 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 929 930 // Run the DAG combiner in post-legalize mode. 931 { 932 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 933 GroupDescription, TimePassesIsEnabled); 934 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 935 } 936 937 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 938 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 939 << "'\n"; 940 CurDAG->dump()); 941 942 #ifndef NDEBUG 943 if (TTI.hasBranchDivergence()) 944 CurDAG->VerifyDAGDiverence(); 945 #endif 946 947 if (OptLevel != CodeGenOpt::None) 948 ComputeLiveOutVRegInfo(); 949 950 if (ViewISelDAGs && MatchFilterBB) 951 CurDAG->viewGraph("isel input for " + BlockName); 952 953 // Third, instruction select all of the operations to machine code, adding the 954 // code to the MachineBasicBlock. 955 { 956 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 957 GroupDescription, TimePassesIsEnabled); 958 DoInstructionSelection(); 959 } 960 961 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 962 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 963 << "'\n"; 964 CurDAG->dump()); 965 966 if (ViewSchedDAGs && MatchFilterBB) 967 CurDAG->viewGraph("scheduler input for " + BlockName); 968 969 // Schedule machine code. 970 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 971 { 972 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 973 GroupDescription, TimePassesIsEnabled); 974 Scheduler->Run(CurDAG, FuncInfo->MBB); 975 } 976 977 if (ViewSUnitDAGs && MatchFilterBB) 978 Scheduler->viewGraph(); 979 980 // Emit machine code to BB. This can change 'BB' to the last block being 981 // inserted into. 982 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 983 { 984 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 985 GroupDescription, TimePassesIsEnabled); 986 987 // FuncInfo->InsertPt is passed by reference and set to the end of the 988 // scheduled instructions. 989 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 990 } 991 992 // If the block was split, make sure we update any references that are used to 993 // update PHI nodes later on. 994 if (FirstMBB != LastMBB) 995 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 996 997 // Free the scheduler state. 998 { 999 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1000 GroupDescription, TimePassesIsEnabled); 1001 delete Scheduler; 1002 } 1003 1004 // Free the SelectionDAG state, now that we're finished with it. 1005 CurDAG->clear(); 1006 } 1007 1008 namespace { 1009 1010 /// ISelUpdater - helper class to handle updates of the instruction selection 1011 /// graph. 1012 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1013 SelectionDAG::allnodes_iterator &ISelPosition; 1014 1015 public: 1016 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1017 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1018 1019 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1020 /// deleted is the current ISelPosition node, update ISelPosition. 1021 /// 1022 void NodeDeleted(SDNode *N, SDNode *E) override { 1023 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1024 ++ISelPosition; 1025 } 1026 }; 1027 1028 } // end anonymous namespace 1029 1030 // This function is used to enforce the topological node id property 1031 // property leveraged during Instruction selection. Before selection all 1032 // nodes are given a non-negative id such that all nodes have a larger id than 1033 // their operands. As this holds transitively we can prune checks that a node N 1034 // is a predecessor of M another by not recursively checking through M's 1035 // operands if N's ID is larger than M's ID. This is significantly improves 1036 // performance of for various legality checks (e.g. IsLegalToFold / 1037 // UpdateChains). 1038 1039 // However, when we fuse multiple nodes into a single node 1040 // during selection we may induce a predecessor relationship between inputs and 1041 // outputs of distinct nodes being merged violating the topological property. 1042 // Should a fused node have a successor which has yet to be selected, our 1043 // legality checks would be incorrect. To avoid this we mark all unselected 1044 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1045 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1046 // We use bit-negation to more clearly enforce that node id -1 can only be 1047 // achieved by selected nodes). As the conversion is reversable the original Id, 1048 // topological pruning can still be leveraged when looking for unselected nodes. 1049 // This method is call internally in all ISel replacement calls. 1050 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1051 SmallVector<SDNode *, 4> Nodes; 1052 Nodes.push_back(Node); 1053 1054 while (!Nodes.empty()) { 1055 SDNode *N = Nodes.pop_back_val(); 1056 for (auto *U : N->uses()) { 1057 auto UId = U->getNodeId(); 1058 if (UId > 0) { 1059 InvalidateNodeId(U); 1060 Nodes.push_back(U); 1061 } 1062 } 1063 } 1064 } 1065 1066 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1067 // NodeId with the equivalent node id which is invalid for topological 1068 // pruning. 1069 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1070 int InvalidId = -(N->getNodeId() + 1); 1071 N->setNodeId(InvalidId); 1072 } 1073 1074 // getUninvalidatedNodeId - get original uninvalidated node id. 1075 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1076 int Id = N->getNodeId(); 1077 if (Id < -1) 1078 return -(Id + 1); 1079 return Id; 1080 } 1081 1082 void SelectionDAGISel::DoInstructionSelection() { 1083 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1084 << printMBBReference(*FuncInfo->MBB) << " '" 1085 << FuncInfo->MBB->getName() << "'\n"); 1086 1087 PreprocessISelDAG(); 1088 1089 // Select target instructions for the DAG. 1090 { 1091 // Number all nodes with a topological order and set DAGSize. 1092 DAGSize = CurDAG->AssignTopologicalOrder(); 1093 1094 // Create a dummy node (which is not added to allnodes), that adds 1095 // a reference to the root node, preventing it from being deleted, 1096 // and tracking any changes of the root. 1097 HandleSDNode Dummy(CurDAG->getRoot()); 1098 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1099 ++ISelPosition; 1100 1101 // Make sure that ISelPosition gets properly updated when nodes are deleted 1102 // in calls made from this function. 1103 ISelUpdater ISU(*CurDAG, ISelPosition); 1104 1105 // The AllNodes list is now topological-sorted. Visit the 1106 // nodes by starting at the end of the list (the root of the 1107 // graph) and preceding back toward the beginning (the entry 1108 // node). 1109 while (ISelPosition != CurDAG->allnodes_begin()) { 1110 SDNode *Node = &*--ISelPosition; 1111 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1112 // but there are currently some corner cases that it misses. Also, this 1113 // makes it theoretically possible to disable the DAGCombiner. 1114 if (Node->use_empty()) 1115 continue; 1116 1117 #ifndef NDEBUG 1118 SmallVector<SDNode *, 4> Nodes; 1119 Nodes.push_back(Node); 1120 1121 while (!Nodes.empty()) { 1122 auto N = Nodes.pop_back_val(); 1123 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1124 continue; 1125 for (const SDValue &Op : N->op_values()) { 1126 if (Op->getOpcode() == ISD::TokenFactor) 1127 Nodes.push_back(Op.getNode()); 1128 else { 1129 // We rely on topological ordering of node ids for checking for 1130 // cycles when fusing nodes during selection. All unselected nodes 1131 // successors of an already selected node should have a negative id. 1132 // This assertion will catch such cases. If this assertion triggers 1133 // it is likely you using DAG-level Value/Node replacement functions 1134 // (versus equivalent ISEL replacement) in backend-specific 1135 // selections. See comment in EnforceNodeIdInvariant for more 1136 // details. 1137 assert(Op->getNodeId() != -1 && 1138 "Node has already selected predecessor node"); 1139 } 1140 } 1141 } 1142 #endif 1143 1144 // When we are using non-default rounding modes or FP exception behavior 1145 // FP operations are represented by StrictFP pseudo-operations. For 1146 // targets that do not (yet) understand strict FP operations directly, 1147 // we convert them to normal FP opcodes instead at this point. This 1148 // will allow them to be handled by existing target-specific instruction 1149 // selectors. 1150 if (!TLI->isStrictFPEnabled() && Node->isStrictFPOpcode()) { 1151 // For some opcodes, we need to call TLI->getOperationAction using 1152 // the first operand type instead of the result type. Note that this 1153 // must match what SelectionDAGLegalize::LegalizeOp is doing. 1154 EVT ActionVT; 1155 switch (Node->getOpcode()) { 1156 case ISD::STRICT_SINT_TO_FP: 1157 case ISD::STRICT_UINT_TO_FP: 1158 case ISD::STRICT_LRINT: 1159 case ISD::STRICT_LLRINT: 1160 case ISD::STRICT_LROUND: 1161 case ISD::STRICT_LLROUND: 1162 case ISD::STRICT_FSETCC: 1163 case ISD::STRICT_FSETCCS: 1164 ActionVT = Node->getOperand(1).getValueType(); 1165 break; 1166 default: 1167 ActionVT = Node->getValueType(0); 1168 break; 1169 } 1170 if (TLI->getOperationAction(Node->getOpcode(), ActionVT) 1171 == TargetLowering::Expand) 1172 Node = CurDAG->mutateStrictFPToFP(Node); 1173 } 1174 1175 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1176 Node->dump(CurDAG)); 1177 1178 Select(Node); 1179 } 1180 1181 CurDAG->setRoot(Dummy.getValue()); 1182 } 1183 1184 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1185 1186 PostprocessISelDAG(); 1187 } 1188 1189 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1190 for (const User *U : CPI->users()) { 1191 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1192 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1193 if (IID == Intrinsic::eh_exceptionpointer || 1194 IID == Intrinsic::eh_exceptioncode) 1195 return true; 1196 } 1197 } 1198 return false; 1199 } 1200 1201 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1202 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1203 // and store the mapping in the function. 1204 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1205 const CatchPadInst *CPI) { 1206 MachineFunction *MF = MBB->getParent(); 1207 // In case of single catch (...), we don't emit LSDA, so we don't need 1208 // this information. 1209 bool IsSingleCatchAllClause = 1210 CPI->getNumArgOperands() == 1 && 1211 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1212 if (!IsSingleCatchAllClause) { 1213 // Create a mapping from landing pad label to landing pad index. 1214 bool IntrFound = false; 1215 for (const User *U : CPI->users()) { 1216 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1217 Intrinsic::ID IID = Call->getIntrinsicID(); 1218 if (IID == Intrinsic::wasm_landingpad_index) { 1219 Value *IndexArg = Call->getArgOperand(1); 1220 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1221 MF->setWasmLandingPadIndex(MBB, Index); 1222 IntrFound = true; 1223 break; 1224 } 1225 } 1226 } 1227 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1228 (void)IntrFound; 1229 } 1230 } 1231 1232 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1233 /// do other setup for EH landing-pad blocks. 1234 bool SelectionDAGISel::PrepareEHLandingPad() { 1235 MachineBasicBlock *MBB = FuncInfo->MBB; 1236 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1237 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1238 const TargetRegisterClass *PtrRC = 1239 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1240 1241 auto Pers = classifyEHPersonality(PersonalityFn); 1242 1243 // Catchpads have one live-in register, which typically holds the exception 1244 // pointer or code. 1245 if (isFuncletEHPersonality(Pers)) { 1246 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1247 if (hasExceptionPointerOrCodeUser(CPI)) { 1248 // Get or create the virtual register to hold the pointer or code. Mark 1249 // the live in physreg and copy into the vreg. 1250 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1251 assert(EHPhysReg && "target lacks exception pointer register"); 1252 MBB->addLiveIn(EHPhysReg); 1253 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1254 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1255 TII->get(TargetOpcode::COPY), VReg) 1256 .addReg(EHPhysReg, RegState::Kill); 1257 } 1258 } 1259 return true; 1260 } 1261 1262 // Add a label to mark the beginning of the landing pad. Deletion of the 1263 // landing pad can thus be detected via the MachineModuleInfo. 1264 MCSymbol *Label = MF->addLandingPad(MBB); 1265 1266 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1267 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1268 .addSym(Label); 1269 1270 // If the unwinder does not preserve all registers, ensure that the 1271 // function marks the clobbered registers as used. 1272 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 1273 if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF)) 1274 MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask); 1275 1276 if (Pers == EHPersonality::Wasm_CXX) { 1277 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1278 mapWasmLandingPadIndex(MBB, CPI); 1279 } else { 1280 // Assign the call site to the landing pad's begin label. 1281 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1282 // Mark exception register as live in. 1283 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1284 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1285 // Mark exception selector register as live in. 1286 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1287 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1288 } 1289 1290 return true; 1291 } 1292 1293 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1294 /// side-effect free and is either dead or folded into a generated instruction. 1295 /// Return false if it needs to be emitted. 1296 static bool isFoldedOrDeadInstruction(const Instruction *I, 1297 const FunctionLoweringInfo &FuncInfo) { 1298 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1299 !I->isTerminator() && // Terminators aren't folded. 1300 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1301 !I->isEHPad() && // EH pad instructions aren't folded. 1302 !FuncInfo.isExportedInst(I); // Exported instrs must be computed. 1303 } 1304 1305 /// Collect llvm.dbg.declare information. This is done after argument lowering 1306 /// in case the declarations refer to arguments. 1307 static void processDbgDeclares(FunctionLoweringInfo &FuncInfo) { 1308 MachineFunction *MF = FuncInfo.MF; 1309 const DataLayout &DL = MF->getDataLayout(); 1310 for (const BasicBlock &BB : *FuncInfo.Fn) { 1311 for (const Instruction &I : BB) { 1312 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1313 if (!DI) 1314 continue; 1315 1316 assert(DI->getVariable() && "Missing variable"); 1317 assert(DI->getDebugLoc() && "Missing location"); 1318 const Value *Address = DI->getAddress(); 1319 if (!Address) { 1320 LLVM_DEBUG(dbgs() << "processDbgDeclares skipping " << *DI 1321 << " (bad address)\n"); 1322 continue; 1323 } 1324 1325 // Look through casts and constant offset GEPs. These mostly come from 1326 // inalloca. 1327 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1328 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1329 1330 // Check if the variable is a static alloca or a byval or inalloca 1331 // argument passed in memory. If it is not, then we will ignore this 1332 // intrinsic and handle this during isel like dbg.value. 1333 int FI = std::numeric_limits<int>::max(); 1334 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1335 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1336 if (SI != FuncInfo.StaticAllocaMap.end()) 1337 FI = SI->second; 1338 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1339 FI = FuncInfo.getArgumentFrameIndex(Arg); 1340 1341 if (FI == std::numeric_limits<int>::max()) 1342 continue; 1343 1344 DIExpression *Expr = DI->getExpression(); 1345 if (Offset.getBoolValue()) 1346 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1347 Offset.getZExtValue()); 1348 LLVM_DEBUG(dbgs() << "processDbgDeclares: setVariableDbgInfo FI=" << FI 1349 << ", " << *DI << "\n"); 1350 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1351 } 1352 } 1353 } 1354 1355 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1356 FastISelFailed = false; 1357 // Initialize the Fast-ISel state, if needed. 1358 FastISel *FastIS = nullptr; 1359 if (TM.Options.EnableFastISel) { 1360 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1361 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1362 } 1363 1364 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1365 1366 // Lower arguments up front. An RPO iteration always visits the entry block 1367 // first. 1368 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1369 ++NumEntryBlocks; 1370 1371 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1372 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1373 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1374 1375 CurDAG->setFunctionLoweringInfo(FuncInfo.get()); 1376 1377 if (!FastIS) { 1378 LowerArguments(Fn); 1379 } else { 1380 // See if fast isel can lower the arguments. 1381 FastIS->startNewBlock(); 1382 if (!FastIS->lowerArguments()) { 1383 FastISelFailed = true; 1384 // Fast isel failed to lower these arguments 1385 ++NumFastIselFailLowerArguments; 1386 1387 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1388 Fn.getSubprogram(), 1389 &Fn.getEntryBlock()); 1390 R << "FastISel didn't lower all arguments: " 1391 << ore::NV("Prototype", Fn.getType()); 1392 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1393 1394 // Use SelectionDAG argument lowering 1395 LowerArguments(Fn); 1396 CurDAG->setRoot(SDB->getControlRoot()); 1397 SDB->clear(); 1398 CodeGenAndEmitDAG(); 1399 } 1400 1401 // If we inserted any instructions at the beginning, make a note of 1402 // where they are, so we can be sure to emit subsequent instructions 1403 // after them. 1404 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1405 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1406 else 1407 FastIS->setLastLocalValue(nullptr); 1408 } 1409 1410 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1411 1412 if (FastIS && Inserted) 1413 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1414 1415 processDbgDeclares(*FuncInfo); 1416 1417 // Iterate over all basic blocks in the function. 1418 StackProtector &SP = getAnalysis<StackProtector>(); 1419 for (const BasicBlock *LLVMBB : RPOT) { 1420 if (OptLevel != CodeGenOpt::None) { 1421 bool AllPredsVisited = true; 1422 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1423 PI != PE; ++PI) { 1424 if (!FuncInfo->VisitedBBs.count(*PI)) { 1425 AllPredsVisited = false; 1426 break; 1427 } 1428 } 1429 1430 if (AllPredsVisited) { 1431 for (const PHINode &PN : LLVMBB->phis()) 1432 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1433 } else { 1434 for (const PHINode &PN : LLVMBB->phis()) 1435 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1436 } 1437 1438 FuncInfo->VisitedBBs.insert(LLVMBB); 1439 } 1440 1441 BasicBlock::const_iterator const Begin = 1442 LLVMBB->getFirstNonPHI()->getIterator(); 1443 BasicBlock::const_iterator const End = LLVMBB->end(); 1444 BasicBlock::const_iterator BI = End; 1445 1446 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1447 if (!FuncInfo->MBB) 1448 continue; // Some blocks like catchpads have no code or MBB. 1449 1450 // Insert new instructions after any phi or argument setup code. 1451 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1452 1453 // Setup an EH landing-pad block. 1454 FuncInfo->ExceptionPointerVirtReg = 0; 1455 FuncInfo->ExceptionSelectorVirtReg = 0; 1456 if (LLVMBB->isEHPad()) 1457 if (!PrepareEHLandingPad()) 1458 continue; 1459 1460 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1461 if (FastIS) { 1462 if (LLVMBB != &Fn.getEntryBlock()) 1463 FastIS->startNewBlock(); 1464 1465 unsigned NumFastIselRemaining = std::distance(Begin, End); 1466 1467 // Pre-assign swifterror vregs. 1468 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1469 1470 // Do FastISel on as many instructions as possible. 1471 for (; BI != Begin; --BI) { 1472 const Instruction *Inst = &*std::prev(BI); 1473 1474 // If we no longer require this instruction, skip it. 1475 if (isFoldedOrDeadInstruction(Inst, *FuncInfo) || 1476 ElidedArgCopyInstrs.count(Inst)) { 1477 --NumFastIselRemaining; 1478 continue; 1479 } 1480 1481 // Bottom-up: reset the insert pos at the top, after any local-value 1482 // instructions. 1483 FastIS->recomputeInsertPt(); 1484 1485 // Try to select the instruction with FastISel. 1486 if (FastIS->selectInstruction(Inst)) { 1487 --NumFastIselRemaining; 1488 ++NumFastIselSuccess; 1489 // If fast isel succeeded, skip over all the folded instructions, and 1490 // then see if there is a load right before the selected instructions. 1491 // Try to fold the load if so. 1492 const Instruction *BeforeInst = Inst; 1493 while (BeforeInst != &*Begin) { 1494 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1495 if (!isFoldedOrDeadInstruction(BeforeInst, *FuncInfo)) 1496 break; 1497 } 1498 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1499 BeforeInst->hasOneUse() && 1500 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1501 // If we succeeded, don't re-select the load. 1502 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1503 --NumFastIselRemaining; 1504 ++NumFastIselSuccess; 1505 } 1506 continue; 1507 } 1508 1509 FastISelFailed = true; 1510 1511 // Then handle certain instructions as single-LLVM-Instruction blocks. 1512 // We cannot separate out GCrelocates to their own blocks since we need 1513 // to keep track of gc-relocates for a particular gc-statepoint. This is 1514 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1515 // visitGCRelocate. 1516 if (isa<CallInst>(Inst) && !isa<GCStatepointInst>(Inst) && 1517 !isa<GCRelocateInst>(Inst) && !isa<GCResultInst>(Inst)) { 1518 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1519 Inst->getDebugLoc(), LLVMBB); 1520 1521 R << "FastISel missed call"; 1522 1523 if (R.isEnabled() || EnableFastISelAbort) { 1524 std::string InstStrStorage; 1525 raw_string_ostream InstStr(InstStrStorage); 1526 InstStr << *Inst; 1527 1528 R << ": " << InstStr.str(); 1529 } 1530 1531 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1532 1533 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1534 !Inst->use_empty()) { 1535 Register &R = FuncInfo->ValueMap[Inst]; 1536 if (!R) 1537 R = FuncInfo->CreateRegs(Inst); 1538 } 1539 1540 bool HadTailCall = false; 1541 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1542 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1543 1544 // If the call was emitted as a tail call, we're done with the block. 1545 // We also need to delete any previously emitted instructions. 1546 if (HadTailCall) { 1547 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1548 --BI; 1549 break; 1550 } 1551 1552 // Recompute NumFastIselRemaining as Selection DAG instruction 1553 // selection may have handled the call, input args, etc. 1554 unsigned RemainingNow = std::distance(Begin, BI); 1555 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1556 NumFastIselRemaining = RemainingNow; 1557 continue; 1558 } 1559 1560 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1561 Inst->getDebugLoc(), LLVMBB); 1562 1563 bool ShouldAbort = EnableFastISelAbort; 1564 if (Inst->isTerminator()) { 1565 // Use a different message for terminator misses. 1566 R << "FastISel missed terminator"; 1567 // Don't abort for terminator unless the level is really high 1568 ShouldAbort = (EnableFastISelAbort > 2); 1569 } else { 1570 R << "FastISel missed"; 1571 } 1572 1573 if (R.isEnabled() || EnableFastISelAbort) { 1574 std::string InstStrStorage; 1575 raw_string_ostream InstStr(InstStrStorage); 1576 InstStr << *Inst; 1577 R << ": " << InstStr.str(); 1578 } 1579 1580 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1581 1582 NumFastIselFailures += NumFastIselRemaining; 1583 break; 1584 } 1585 1586 FastIS->recomputeInsertPt(); 1587 } 1588 1589 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1590 bool FunctionBasedInstrumentation = 1591 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1592 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1593 FunctionBasedInstrumentation); 1594 } 1595 1596 if (Begin != BI) 1597 ++NumDAGBlocks; 1598 else 1599 ++NumFastIselBlocks; 1600 1601 if (Begin != BI) { 1602 // Run SelectionDAG instruction selection on the remainder of the block 1603 // not handled by FastISel. If FastISel is not run, this is the entire 1604 // block. 1605 bool HadTailCall; 1606 SelectBasicBlock(Begin, BI, HadTailCall); 1607 1608 // But if FastISel was run, we already selected some of the block. 1609 // If we emitted a tail-call, we need to delete any previously emitted 1610 // instruction that follows it. 1611 if (FastIS && HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1612 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1613 } 1614 1615 if (FastIS) 1616 FastIS->finishBasicBlock(); 1617 FinishBasicBlock(); 1618 FuncInfo->PHINodesToUpdate.clear(); 1619 ElidedArgCopyInstrs.clear(); 1620 } 1621 1622 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1623 1624 SwiftError->propagateVRegs(); 1625 1626 delete FastIS; 1627 SDB->clearDanglingDebugInfo(); 1628 SDB->SPDescriptor.resetPerFunctionState(); 1629 } 1630 1631 /// Given that the input MI is before a partial terminator sequence TSeq, return 1632 /// true if M + TSeq also a partial terminator sequence. 1633 /// 1634 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1635 /// lowering copy vregs into physical registers, which are then passed into 1636 /// terminator instructors so we can satisfy ABI constraints. A partial 1637 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1638 /// may be the whole terminator sequence). 1639 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1640 // If we do not have a copy or an implicit def, we return true if and only if 1641 // MI is a debug value. 1642 if (!MI.isCopy() && !MI.isImplicitDef()) 1643 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1644 // physical registers if there is debug info associated with the terminator 1645 // of our mbb. We want to include said debug info in our terminator 1646 // sequence, so we return true in that case. 1647 return MI.isDebugValue(); 1648 1649 // We have left the terminator sequence if we are not doing one of the 1650 // following: 1651 // 1652 // 1. Copying a vreg into a physical register. 1653 // 2. Copying a vreg into a vreg. 1654 // 3. Defining a register via an implicit def. 1655 1656 // OPI should always be a register definition... 1657 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1658 if (!OPI->isReg() || !OPI->isDef()) 1659 return false; 1660 1661 // Defining any register via an implicit def is always ok. 1662 if (MI.isImplicitDef()) 1663 return true; 1664 1665 // Grab the copy source... 1666 MachineInstr::const_mop_iterator OPI2 = OPI; 1667 ++OPI2; 1668 assert(OPI2 != MI.operands_end() 1669 && "Should have a copy implying we should have 2 arguments."); 1670 1671 // Make sure that the copy dest is not a vreg when the copy source is a 1672 // physical register. 1673 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1674 Register::isPhysicalRegister(OPI2->getReg()))) 1675 return false; 1676 1677 return true; 1678 } 1679 1680 /// Find the split point at which to splice the end of BB into its success stack 1681 /// protector check machine basic block. 1682 /// 1683 /// On many platforms, due to ABI constraints, terminators, even before register 1684 /// allocation, use physical registers. This creates an issue for us since 1685 /// physical registers at this point can not travel across basic 1686 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1687 /// when they enter functions and moves them through a sequence of copies back 1688 /// into the physical registers right before the terminator creating a 1689 /// ``Terminator Sequence''. This function is searching for the beginning of the 1690 /// terminator sequence so that we can ensure that we splice off not just the 1691 /// terminator, but additionally the copies that move the vregs into the 1692 /// physical registers. 1693 static MachineBasicBlock::iterator 1694 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1695 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1696 // 1697 if (SplitPoint == BB->begin()) 1698 return SplitPoint; 1699 1700 MachineBasicBlock::iterator Start = BB->begin(); 1701 MachineBasicBlock::iterator Previous = SplitPoint; 1702 --Previous; 1703 1704 while (MIIsInTerminatorSequence(*Previous)) { 1705 SplitPoint = Previous; 1706 if (Previous == Start) 1707 break; 1708 --Previous; 1709 } 1710 1711 return SplitPoint; 1712 } 1713 1714 void 1715 SelectionDAGISel::FinishBasicBlock() { 1716 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1717 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1718 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1719 ++i) dbgs() 1720 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1721 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1722 1723 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1724 // PHI nodes in successors. 1725 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1726 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1727 assert(PHI->isPHI() && 1728 "This is not a machine PHI node that we are updating!"); 1729 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1730 continue; 1731 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1732 } 1733 1734 // Handle stack protector. 1735 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1736 // The target provides a guard check function. There is no need to 1737 // generate error handling code or to split current basic block. 1738 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1739 1740 // Add load and check to the basicblock. 1741 FuncInfo->MBB = ParentMBB; 1742 FuncInfo->InsertPt = 1743 FindSplitPointForStackProtector(ParentMBB); 1744 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1745 CurDAG->setRoot(SDB->getRoot()); 1746 SDB->clear(); 1747 CodeGenAndEmitDAG(); 1748 1749 // Clear the Per-BB State. 1750 SDB->SPDescriptor.resetPerBBState(); 1751 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1752 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1753 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1754 1755 // Find the split point to split the parent mbb. At the same time copy all 1756 // physical registers used in the tail of parent mbb into virtual registers 1757 // before the split point and back into physical registers after the split 1758 // point. This prevents us needing to deal with Live-ins and many other 1759 // register allocation issues caused by us splitting the parent mbb. The 1760 // register allocator will clean up said virtual copies later on. 1761 MachineBasicBlock::iterator SplitPoint = 1762 FindSplitPointForStackProtector(ParentMBB); 1763 1764 // Splice the terminator of ParentMBB into SuccessMBB. 1765 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1766 SplitPoint, 1767 ParentMBB->end()); 1768 1769 // Add compare/jump on neq/jump to the parent BB. 1770 FuncInfo->MBB = ParentMBB; 1771 FuncInfo->InsertPt = ParentMBB->end(); 1772 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1773 CurDAG->setRoot(SDB->getRoot()); 1774 SDB->clear(); 1775 CodeGenAndEmitDAG(); 1776 1777 // CodeGen Failure MBB if we have not codegened it yet. 1778 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1779 if (FailureMBB->empty()) { 1780 FuncInfo->MBB = FailureMBB; 1781 FuncInfo->InsertPt = FailureMBB->end(); 1782 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1783 CurDAG->setRoot(SDB->getRoot()); 1784 SDB->clear(); 1785 CodeGenAndEmitDAG(); 1786 } 1787 1788 // Clear the Per-BB State. 1789 SDB->SPDescriptor.resetPerBBState(); 1790 } 1791 1792 // Lower each BitTestBlock. 1793 for (auto &BTB : SDB->SL->BitTestCases) { 1794 // Lower header first, if it wasn't already lowered 1795 if (!BTB.Emitted) { 1796 // Set the current basic block to the mbb we wish to insert the code into 1797 FuncInfo->MBB = BTB.Parent; 1798 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1799 // Emit the code 1800 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1801 CurDAG->setRoot(SDB->getRoot()); 1802 SDB->clear(); 1803 CodeGenAndEmitDAG(); 1804 } 1805 1806 BranchProbability UnhandledProb = BTB.Prob; 1807 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1808 UnhandledProb -= BTB.Cases[j].ExtraProb; 1809 // Set the current basic block to the mbb we wish to insert the code into 1810 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1811 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1812 // Emit the code 1813 1814 // If all cases cover a contiguous range, it is not necessary to jump to 1815 // the default block after the last bit test fails. This is because the 1816 // range check during bit test header creation has guaranteed that every 1817 // case here doesn't go outside the range. In this case, there is no need 1818 // to perform the last bit test, as it will always be true. Instead, make 1819 // the second-to-last bit-test fall through to the target of the last bit 1820 // test, and delete the last bit test. 1821 1822 MachineBasicBlock *NextMBB; 1823 if (BTB.ContiguousRange && j + 2 == ej) { 1824 // Second-to-last bit-test with contiguous range: fall through to the 1825 // target of the final bit test. 1826 NextMBB = BTB.Cases[j + 1].TargetBB; 1827 } else if (j + 1 == ej) { 1828 // For the last bit test, fall through to Default. 1829 NextMBB = BTB.Default; 1830 } else { 1831 // Otherwise, fall through to the next bit test. 1832 NextMBB = BTB.Cases[j + 1].ThisBB; 1833 } 1834 1835 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1836 FuncInfo->MBB); 1837 1838 CurDAG->setRoot(SDB->getRoot()); 1839 SDB->clear(); 1840 CodeGenAndEmitDAG(); 1841 1842 if (BTB.ContiguousRange && j + 2 == ej) { 1843 // Since we're not going to use the final bit test, remove it. 1844 BTB.Cases.pop_back(); 1845 break; 1846 } 1847 } 1848 1849 // Update PHI Nodes 1850 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1851 pi != pe; ++pi) { 1852 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1853 MachineBasicBlock *PHIBB = PHI->getParent(); 1854 assert(PHI->isPHI() && 1855 "This is not a machine PHI node that we are updating!"); 1856 // This is "default" BB. We have two jumps to it. From "header" BB and 1857 // from last "case" BB, unless the latter was skipped. 1858 if (PHIBB == BTB.Default) { 1859 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1860 if (!BTB.ContiguousRange) { 1861 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1862 .addMBB(BTB.Cases.back().ThisBB); 1863 } 1864 } 1865 // One of "cases" BB. 1866 for (unsigned j = 0, ej = BTB.Cases.size(); 1867 j != ej; ++j) { 1868 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1869 if (cBB->isSuccessor(PHIBB)) 1870 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1871 } 1872 } 1873 } 1874 SDB->SL->BitTestCases.clear(); 1875 1876 // If the JumpTable record is filled in, then we need to emit a jump table. 1877 // Updating the PHI nodes is tricky in this case, since we need to determine 1878 // whether the PHI is a successor of the range check MBB or the jump table MBB 1879 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1880 // Lower header first, if it wasn't already lowered 1881 if (!SDB->SL->JTCases[i].first.Emitted) { 1882 // Set the current basic block to the mbb we wish to insert the code into 1883 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1884 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1885 // Emit the code 1886 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1887 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1888 CurDAG->setRoot(SDB->getRoot()); 1889 SDB->clear(); 1890 CodeGenAndEmitDAG(); 1891 } 1892 1893 // Set the current basic block to the mbb we wish to insert the code into 1894 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1895 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1896 // Emit the code 1897 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1898 CurDAG->setRoot(SDB->getRoot()); 1899 SDB->clear(); 1900 CodeGenAndEmitDAG(); 1901 1902 // Update PHI Nodes 1903 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1904 pi != pe; ++pi) { 1905 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1906 MachineBasicBlock *PHIBB = PHI->getParent(); 1907 assert(PHI->isPHI() && 1908 "This is not a machine PHI node that we are updating!"); 1909 // "default" BB. We can go there only from header BB. 1910 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1911 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1912 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1913 // JT BB. Just iterate over successors here 1914 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1915 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1916 } 1917 } 1918 SDB->SL->JTCases.clear(); 1919 1920 // If we generated any switch lowering information, build and codegen any 1921 // additional DAGs necessary. 1922 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1923 // Set the current basic block to the mbb we wish to insert the code into 1924 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1925 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1926 1927 // Determine the unique successors. 1928 SmallVector<MachineBasicBlock *, 2> Succs; 1929 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1930 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1931 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1932 1933 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1934 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1935 CurDAG->setRoot(SDB->getRoot()); 1936 SDB->clear(); 1937 CodeGenAndEmitDAG(); 1938 1939 // Remember the last block, now that any splitting is done, for use in 1940 // populating PHI nodes in successors. 1941 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1942 1943 // Handle any PHI nodes in successors of this chunk, as if we were coming 1944 // from the original BB before switch expansion. Note that PHI nodes can 1945 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1946 // handle them the right number of times. 1947 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1948 FuncInfo->MBB = Succs[i]; 1949 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1950 // FuncInfo->MBB may have been removed from the CFG if a branch was 1951 // constant folded. 1952 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1953 for (MachineBasicBlock::iterator 1954 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1955 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1956 MachineInstrBuilder PHI(*MF, MBBI); 1957 // This value for this PHI node is recorded in PHINodesToUpdate. 1958 for (unsigned pn = 0; ; ++pn) { 1959 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1960 "Didn't find PHI entry!"); 1961 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1962 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1963 break; 1964 } 1965 } 1966 } 1967 } 1968 } 1969 } 1970 SDB->SL->SwitchCases.clear(); 1971 } 1972 1973 /// Create the scheduler. If a specific scheduler was specified 1974 /// via the SchedulerRegistry, use it, otherwise select the 1975 /// one preferred by the target. 1976 /// 1977 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1978 return ISHeuristic(this, OptLevel); 1979 } 1980 1981 //===----------------------------------------------------------------------===// 1982 // Helper functions used by the generated instruction selector. 1983 //===----------------------------------------------------------------------===// 1984 // Calls to these methods are generated by tblgen. 1985 1986 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1987 /// the dag combiner simplified the 255, we still want to match. RHS is the 1988 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1989 /// specified in the .td file (e.g. 255). 1990 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1991 int64_t DesiredMaskS) const { 1992 const APInt &ActualMask = RHS->getAPIntValue(); 1993 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1994 1995 // If the actual mask exactly matches, success! 1996 if (ActualMask == DesiredMask) 1997 return true; 1998 1999 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2000 if (!ActualMask.isSubsetOf(DesiredMask)) 2001 return false; 2002 2003 // Otherwise, the DAG Combiner may have proven that the value coming in is 2004 // either already zero or is not demanded. Check for known zero input bits. 2005 APInt NeededMask = DesiredMask & ~ActualMask; 2006 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 2007 return true; 2008 2009 // TODO: check to see if missing bits are just not demanded. 2010 2011 // Otherwise, this pattern doesn't match. 2012 return false; 2013 } 2014 2015 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 2016 /// the dag combiner simplified the 255, we still want to match. RHS is the 2017 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 2018 /// specified in the .td file (e.g. 255). 2019 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2020 int64_t DesiredMaskS) const { 2021 const APInt &ActualMask = RHS->getAPIntValue(); 2022 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2023 2024 // If the actual mask exactly matches, success! 2025 if (ActualMask == DesiredMask) 2026 return true; 2027 2028 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2029 if (!ActualMask.isSubsetOf(DesiredMask)) 2030 return false; 2031 2032 // Otherwise, the DAG Combiner may have proven that the value coming in is 2033 // either already zero or is not demanded. Check for known zero input bits. 2034 APInt NeededMask = DesiredMask & ~ActualMask; 2035 KnownBits Known = CurDAG->computeKnownBits(LHS); 2036 2037 // If all the missing bits in the or are already known to be set, match! 2038 if (NeededMask.isSubsetOf(Known.One)) 2039 return true; 2040 2041 // TODO: check to see if missing bits are just not demanded. 2042 2043 // Otherwise, this pattern doesn't match. 2044 return false; 2045 } 2046 2047 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2048 /// by tblgen. Others should not call it. 2049 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2050 const SDLoc &DL) { 2051 std::vector<SDValue> InOps; 2052 std::swap(InOps, Ops); 2053 2054 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2055 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2056 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2057 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2058 2059 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2060 if (InOps[e-1].getValueType() == MVT::Glue) 2061 --e; // Don't process a glue operand if it is here. 2062 2063 while (i != e) { 2064 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2065 if (!InlineAsm::isMemKind(Flags)) { 2066 // Just skip over this operand, copying the operands verbatim. 2067 Ops.insert(Ops.end(), InOps.begin()+i, 2068 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2069 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2070 } else { 2071 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2072 "Memory operand with multiple values?"); 2073 2074 unsigned TiedToOperand; 2075 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2076 // We need the constraint ID from the operand this is tied to. 2077 unsigned CurOp = InlineAsm::Op_FirstOperand; 2078 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2079 for (; TiedToOperand; --TiedToOperand) { 2080 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2081 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2082 } 2083 } 2084 2085 // Otherwise, this is a memory operand. Ask the target to select it. 2086 std::vector<SDValue> SelOps; 2087 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2088 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2089 report_fatal_error("Could not match memory address. Inline asm" 2090 " failure!"); 2091 2092 // Add this to the output node. 2093 unsigned NewFlags = 2094 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2095 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2096 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2097 llvm::append_range(Ops, SelOps); 2098 i += 2; 2099 } 2100 } 2101 2102 // Add the glue input back if present. 2103 if (e != InOps.size()) 2104 Ops.push_back(InOps.back()); 2105 } 2106 2107 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2108 /// SDNode. 2109 /// 2110 static SDNode *findGlueUse(SDNode *N) { 2111 unsigned FlagResNo = N->getNumValues()-1; 2112 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2113 SDUse &Use = I.getUse(); 2114 if (Use.getResNo() == FlagResNo) 2115 return Use.getUser(); 2116 } 2117 return nullptr; 2118 } 2119 2120 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2121 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2122 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2123 bool IgnoreChains) { 2124 SmallPtrSet<const SDNode *, 16> Visited; 2125 SmallVector<const SDNode *, 16> WorkList; 2126 // Only check if we have non-immediate uses of Def. 2127 if (ImmedUse->isOnlyUserOf(Def)) 2128 return false; 2129 2130 // We don't care about paths to Def that go through ImmedUse so mark it 2131 // visited and mark non-def operands as used. 2132 Visited.insert(ImmedUse); 2133 for (const SDValue &Op : ImmedUse->op_values()) { 2134 SDNode *N = Op.getNode(); 2135 // Ignore chain deps (they are validated by 2136 // HandleMergeInputChains) and immediate uses 2137 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2138 continue; 2139 if (!Visited.insert(N).second) 2140 continue; 2141 WorkList.push_back(N); 2142 } 2143 2144 // Initialize worklist to operands of Root. 2145 if (Root != ImmedUse) { 2146 for (const SDValue &Op : Root->op_values()) { 2147 SDNode *N = Op.getNode(); 2148 // Ignore chains (they are validated by HandleMergeInputChains) 2149 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2150 continue; 2151 if (!Visited.insert(N).second) 2152 continue; 2153 WorkList.push_back(N); 2154 } 2155 } 2156 2157 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2158 } 2159 2160 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2161 /// operand node N of U during instruction selection that starts at Root. 2162 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2163 SDNode *Root) const { 2164 if (OptLevel == CodeGenOpt::None) return false; 2165 return N.hasOneUse(); 2166 } 2167 2168 /// IsLegalToFold - Returns true if the specific operand node N of 2169 /// U can be folded during instruction selection that starts at Root. 2170 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2171 CodeGenOpt::Level OptLevel, 2172 bool IgnoreChains) { 2173 if (OptLevel == CodeGenOpt::None) return false; 2174 2175 // If Root use can somehow reach N through a path that that doesn't contain 2176 // U then folding N would create a cycle. e.g. In the following 2177 // diagram, Root can reach N through X. If N is folded into Root, then 2178 // X is both a predecessor and a successor of U. 2179 // 2180 // [N*] // 2181 // ^ ^ // 2182 // / \ // 2183 // [U*] [X]? // 2184 // ^ ^ // 2185 // \ / // 2186 // \ / // 2187 // [Root*] // 2188 // 2189 // * indicates nodes to be folded together. 2190 // 2191 // If Root produces glue, then it gets (even more) interesting. Since it 2192 // will be "glued" together with its glue use in the scheduler, we need to 2193 // check if it might reach N. 2194 // 2195 // [N*] // 2196 // ^ ^ // 2197 // / \ // 2198 // [U*] [X]? // 2199 // ^ ^ // 2200 // \ \ // 2201 // \ | // 2202 // [Root*] | // 2203 // ^ | // 2204 // f | // 2205 // | / // 2206 // [Y] / // 2207 // ^ / // 2208 // f / // 2209 // | / // 2210 // [GU] // 2211 // 2212 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2213 // (call it Fold), then X is a predecessor of GU and a successor of 2214 // Fold. But since Fold and GU are glued together, this will create 2215 // a cycle in the scheduling graph. 2216 2217 // If the node has glue, walk down the graph to the "lowest" node in the 2218 // glueged set. 2219 EVT VT = Root->getValueType(Root->getNumValues()-1); 2220 while (VT == MVT::Glue) { 2221 SDNode *GU = findGlueUse(Root); 2222 if (!GU) 2223 break; 2224 Root = GU; 2225 VT = Root->getValueType(Root->getNumValues()-1); 2226 2227 // If our query node has a glue result with a use, we've walked up it. If 2228 // the user (which has already been selected) has a chain or indirectly uses 2229 // the chain, HandleMergeInputChains will not consider it. Because of 2230 // this, we cannot ignore chains in this predicate. 2231 IgnoreChains = false; 2232 } 2233 2234 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2235 } 2236 2237 void SelectionDAGISel::Select_INLINEASM(SDNode *N) { 2238 SDLoc DL(N); 2239 2240 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2241 SelectInlineAsmMemoryOperands(Ops, DL); 2242 2243 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2244 SDValue New = CurDAG->getNode(N->getOpcode(), DL, VTs, Ops); 2245 New->setNodeId(-1); 2246 ReplaceUses(N, New.getNode()); 2247 CurDAG->RemoveDeadNode(N); 2248 } 2249 2250 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2251 SDLoc dl(Op); 2252 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2253 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2254 2255 EVT VT = Op->getValueType(0); 2256 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2257 Register Reg = 2258 TLI->getRegisterByName(RegStr->getString().data(), Ty, 2259 CurDAG->getMachineFunction()); 2260 SDValue New = CurDAG->getCopyFromReg( 2261 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2262 New->setNodeId(-1); 2263 ReplaceUses(Op, New.getNode()); 2264 CurDAG->RemoveDeadNode(Op); 2265 } 2266 2267 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2268 SDLoc dl(Op); 2269 MDNodeSDNode *MD = cast<MDNodeSDNode>(Op->getOperand(1)); 2270 const MDString *RegStr = cast<MDString>(MD->getMD()->getOperand(0)); 2271 2272 EVT VT = Op->getOperand(2).getValueType(); 2273 LLT Ty = VT.isSimple() ? getLLTForMVT(VT.getSimpleVT()) : LLT(); 2274 2275 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), Ty, 2276 CurDAG->getMachineFunction()); 2277 SDValue New = CurDAG->getCopyToReg( 2278 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2279 New->setNodeId(-1); 2280 ReplaceUses(Op, New.getNode()); 2281 CurDAG->RemoveDeadNode(Op); 2282 } 2283 2284 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2285 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2286 } 2287 2288 void SelectionDAGISel::Select_FREEZE(SDNode *N) { 2289 // TODO: We don't have FREEZE pseudo-instruction in MachineInstr-level now. 2290 // If FREEZE instruction is added later, the code below must be changed as 2291 // well. 2292 CurDAG->SelectNodeTo(N, TargetOpcode::COPY, N->getValueType(0), 2293 N->getOperand(0)); 2294 } 2295 2296 /// GetVBR - decode a vbr encoding whose top bit is set. 2297 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t 2298 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2299 assert(Val >= 128 && "Not a VBR"); 2300 Val &= 127; // Remove first vbr bit. 2301 2302 unsigned Shift = 7; 2303 uint64_t NextBits; 2304 do { 2305 NextBits = MatcherTable[Idx++]; 2306 Val |= (NextBits&127) << Shift; 2307 Shift += 7; 2308 } while (NextBits & 128); 2309 2310 return Val; 2311 } 2312 2313 /// When a match is complete, this method updates uses of interior chain results 2314 /// to use the new results. 2315 void SelectionDAGISel::UpdateChains( 2316 SDNode *NodeToMatch, SDValue InputChain, 2317 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2318 SmallVector<SDNode*, 4> NowDeadNodes; 2319 2320 // Now that all the normal results are replaced, we replace the chain and 2321 // glue results if present. 2322 if (!ChainNodesMatched.empty()) { 2323 assert(InputChain.getNode() && 2324 "Matched input chains but didn't produce a chain"); 2325 // Loop over all of the nodes we matched that produced a chain result. 2326 // Replace all the chain results with the final chain we ended up with. 2327 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2328 SDNode *ChainNode = ChainNodesMatched[i]; 2329 // If ChainNode is null, it's because we replaced it on a previous 2330 // iteration and we cleared it out of the map. Just skip it. 2331 if (!ChainNode) 2332 continue; 2333 2334 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2335 "Deleted node left in chain"); 2336 2337 // Don't replace the results of the root node if we're doing a 2338 // MorphNodeTo. 2339 if (ChainNode == NodeToMatch && isMorphNodeTo) 2340 continue; 2341 2342 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2343 if (ChainVal.getValueType() == MVT::Glue) 2344 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2345 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2346 SelectionDAG::DAGNodeDeletedListener NDL( 2347 *CurDAG, [&](SDNode *N, SDNode *E) { 2348 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2349 static_cast<SDNode *>(nullptr)); 2350 }); 2351 if (ChainNode->getOpcode() != ISD::TokenFactor) 2352 ReplaceUses(ChainVal, InputChain); 2353 2354 // If the node became dead and we haven't already seen it, delete it. 2355 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2356 !llvm::is_contained(NowDeadNodes, ChainNode)) 2357 NowDeadNodes.push_back(ChainNode); 2358 } 2359 } 2360 2361 if (!NowDeadNodes.empty()) 2362 CurDAG->RemoveDeadNodes(NowDeadNodes); 2363 2364 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2365 } 2366 2367 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2368 /// operation for when the pattern matched at least one node with a chains. The 2369 /// input vector contains a list of all of the chained nodes that we match. We 2370 /// must determine if this is a valid thing to cover (i.e. matching it won't 2371 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2372 /// be used as the input node chain for the generated nodes. 2373 static SDValue 2374 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2375 SelectionDAG *CurDAG) { 2376 2377 SmallPtrSet<const SDNode *, 16> Visited; 2378 SmallVector<const SDNode *, 8> Worklist; 2379 SmallVector<SDValue, 3> InputChains; 2380 unsigned int Max = 8192; 2381 2382 // Quick exit on trivial merge. 2383 if (ChainNodesMatched.size() == 1) 2384 return ChainNodesMatched[0]->getOperand(0); 2385 2386 // Add chains that aren't already added (internal). Peek through 2387 // token factors. 2388 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2389 if (V.getValueType() != MVT::Other) 2390 return; 2391 if (V->getOpcode() == ISD::EntryToken) 2392 return; 2393 if (!Visited.insert(V.getNode()).second) 2394 return; 2395 if (V->getOpcode() == ISD::TokenFactor) { 2396 for (const SDValue &Op : V->op_values()) 2397 AddChains(Op); 2398 } else 2399 InputChains.push_back(V); 2400 }; 2401 2402 for (auto *N : ChainNodesMatched) { 2403 Worklist.push_back(N); 2404 Visited.insert(N); 2405 } 2406 2407 while (!Worklist.empty()) 2408 AddChains(Worklist.pop_back_val()->getOperand(0)); 2409 2410 // Skip the search if there are no chain dependencies. 2411 if (InputChains.size() == 0) 2412 return CurDAG->getEntryNode(); 2413 2414 // If one of these chains is a successor of input, we must have a 2415 // node that is both the predecessor and successor of the 2416 // to-be-merged nodes. Fail. 2417 Visited.clear(); 2418 for (SDValue V : InputChains) 2419 Worklist.push_back(V.getNode()); 2420 2421 for (auto *N : ChainNodesMatched) 2422 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2423 return SDValue(); 2424 2425 // Return merged chain. 2426 if (InputChains.size() == 1) 2427 return InputChains[0]; 2428 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2429 MVT::Other, InputChains); 2430 } 2431 2432 /// MorphNode - Handle morphing a node in place for the selector. 2433 SDNode *SelectionDAGISel:: 2434 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2435 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2436 // It is possible we're using MorphNodeTo to replace a node with no 2437 // normal results with one that has a normal result (or we could be 2438 // adding a chain) and the input could have glue and chains as well. 2439 // In this case we need to shift the operands down. 2440 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2441 // than the old isel though. 2442 int OldGlueResultNo = -1, OldChainResultNo = -1; 2443 2444 unsigned NTMNumResults = Node->getNumValues(); 2445 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2446 OldGlueResultNo = NTMNumResults-1; 2447 if (NTMNumResults != 1 && 2448 Node->getValueType(NTMNumResults-2) == MVT::Other) 2449 OldChainResultNo = NTMNumResults-2; 2450 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2451 OldChainResultNo = NTMNumResults-1; 2452 2453 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2454 // that this deletes operands of the old node that become dead. 2455 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2456 2457 // MorphNodeTo can operate in two ways: if an existing node with the 2458 // specified operands exists, it can just return it. Otherwise, it 2459 // updates the node in place to have the requested operands. 2460 if (Res == Node) { 2461 // If we updated the node in place, reset the node ID. To the isel, 2462 // this should be just like a newly allocated machine node. 2463 Res->setNodeId(-1); 2464 } 2465 2466 unsigned ResNumResults = Res->getNumValues(); 2467 // Move the glue if needed. 2468 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2469 (unsigned)OldGlueResultNo != ResNumResults-1) 2470 ReplaceUses(SDValue(Node, OldGlueResultNo), 2471 SDValue(Res, ResNumResults - 1)); 2472 2473 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2474 --ResNumResults; 2475 2476 // Move the chain reference if needed. 2477 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2478 (unsigned)OldChainResultNo != ResNumResults-1) 2479 ReplaceUses(SDValue(Node, OldChainResultNo), 2480 SDValue(Res, ResNumResults - 1)); 2481 2482 // Otherwise, no replacement happened because the node already exists. Replace 2483 // Uses of the old node with the new one. 2484 if (Res != Node) { 2485 ReplaceNode(Node, Res); 2486 } else { 2487 EnforceNodeIdInvariant(Res); 2488 } 2489 2490 return Res; 2491 } 2492 2493 /// CheckSame - Implements OP_CheckSame. 2494 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2495 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2496 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes) { 2497 // Accept if it is exactly the same as a previously recorded node. 2498 unsigned RecNo = MatcherTable[MatcherIndex++]; 2499 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2500 return N == RecordedNodes[RecNo].first; 2501 } 2502 2503 /// CheckChildSame - Implements OP_CheckChildXSame. 2504 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool CheckChildSame( 2505 const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2506 const SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes, 2507 unsigned ChildNo) { 2508 if (ChildNo >= N.getNumOperands()) 2509 return false; // Match fails if out of range child #. 2510 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2511 RecordedNodes); 2512 } 2513 2514 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2515 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2516 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2517 const SelectionDAGISel &SDISel) { 2518 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2519 } 2520 2521 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2522 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2523 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2524 const SelectionDAGISel &SDISel, SDNode *N) { 2525 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2526 } 2527 2528 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2529 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2530 SDNode *N) { 2531 uint16_t Opc = MatcherTable[MatcherIndex++]; 2532 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2533 return N->getOpcode() == Opc; 2534 } 2535 2536 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2537 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2538 const TargetLowering *TLI, const DataLayout &DL) { 2539 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2540 if (N.getValueType() == VT) return true; 2541 2542 // Handle the case when VT is iPTR. 2543 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2544 } 2545 2546 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2547 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2548 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2549 unsigned ChildNo) { 2550 if (ChildNo >= N.getNumOperands()) 2551 return false; // Match fails if out of range child #. 2552 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2553 DL); 2554 } 2555 2556 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2557 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2558 SDValue N) { 2559 return cast<CondCodeSDNode>(N)->get() == 2560 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2561 } 2562 2563 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2564 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2565 SDValue N) { 2566 if (2 >= N.getNumOperands()) 2567 return false; 2568 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2569 } 2570 2571 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2572 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2573 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2574 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2575 if (cast<VTSDNode>(N)->getVT() == VT) 2576 return true; 2577 2578 // Handle the case when VT is iPTR. 2579 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2580 } 2581 2582 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2583 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2584 SDValue N) { 2585 int64_t Val = MatcherTable[MatcherIndex++]; 2586 if (Val & 128) 2587 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2588 2589 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2590 return C && C->getSExtValue() == Val; 2591 } 2592 2593 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2594 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2595 SDValue N, unsigned ChildNo) { 2596 if (ChildNo >= N.getNumOperands()) 2597 return false; // Match fails if out of range child #. 2598 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2599 } 2600 2601 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2602 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2603 SDValue N, const SelectionDAGISel &SDISel) { 2604 int64_t Val = MatcherTable[MatcherIndex++]; 2605 if (Val & 128) 2606 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2607 2608 if (N->getOpcode() != ISD::AND) return false; 2609 2610 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2611 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2612 } 2613 2614 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool 2615 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2616 const SelectionDAGISel &SDISel) { 2617 int64_t Val = MatcherTable[MatcherIndex++]; 2618 if (Val & 128) 2619 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2620 2621 if (N->getOpcode() != ISD::OR) return false; 2622 2623 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2624 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2625 } 2626 2627 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2628 /// scope, evaluate the current node. If the current predicate is known to 2629 /// fail, set Result=true and return anything. If the current predicate is 2630 /// known to pass, set Result=false and return the MatcherIndex to continue 2631 /// with. If the current predicate is unknown, set Result=false and return the 2632 /// MatcherIndex to continue with. 2633 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2634 unsigned Index, SDValue N, 2635 bool &Result, 2636 const SelectionDAGISel &SDISel, 2637 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2638 switch (Table[Index++]) { 2639 default: 2640 Result = false; 2641 return Index-1; // Could not evaluate this predicate. 2642 case SelectionDAGISel::OPC_CheckSame: 2643 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2644 return Index; 2645 case SelectionDAGISel::OPC_CheckChild0Same: 2646 case SelectionDAGISel::OPC_CheckChild1Same: 2647 case SelectionDAGISel::OPC_CheckChild2Same: 2648 case SelectionDAGISel::OPC_CheckChild3Same: 2649 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2650 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2651 return Index; 2652 case SelectionDAGISel::OPC_CheckPatternPredicate: 2653 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2654 return Index; 2655 case SelectionDAGISel::OPC_CheckPredicate: 2656 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2657 return Index; 2658 case SelectionDAGISel::OPC_CheckOpcode: 2659 Result = !::CheckOpcode(Table, Index, N.getNode()); 2660 return Index; 2661 case SelectionDAGISel::OPC_CheckType: 2662 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2663 SDISel.CurDAG->getDataLayout()); 2664 return Index; 2665 case SelectionDAGISel::OPC_CheckTypeRes: { 2666 unsigned Res = Table[Index++]; 2667 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2668 SDISel.CurDAG->getDataLayout()); 2669 return Index; 2670 } 2671 case SelectionDAGISel::OPC_CheckChild0Type: 2672 case SelectionDAGISel::OPC_CheckChild1Type: 2673 case SelectionDAGISel::OPC_CheckChild2Type: 2674 case SelectionDAGISel::OPC_CheckChild3Type: 2675 case SelectionDAGISel::OPC_CheckChild4Type: 2676 case SelectionDAGISel::OPC_CheckChild5Type: 2677 case SelectionDAGISel::OPC_CheckChild6Type: 2678 case SelectionDAGISel::OPC_CheckChild7Type: 2679 Result = !::CheckChildType( 2680 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2681 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2682 return Index; 2683 case SelectionDAGISel::OPC_CheckCondCode: 2684 Result = !::CheckCondCode(Table, Index, N); 2685 return Index; 2686 case SelectionDAGISel::OPC_CheckChild2CondCode: 2687 Result = !::CheckChild2CondCode(Table, Index, N); 2688 return Index; 2689 case SelectionDAGISel::OPC_CheckValueType: 2690 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2691 SDISel.CurDAG->getDataLayout()); 2692 return Index; 2693 case SelectionDAGISel::OPC_CheckInteger: 2694 Result = !::CheckInteger(Table, Index, N); 2695 return Index; 2696 case SelectionDAGISel::OPC_CheckChild0Integer: 2697 case SelectionDAGISel::OPC_CheckChild1Integer: 2698 case SelectionDAGISel::OPC_CheckChild2Integer: 2699 case SelectionDAGISel::OPC_CheckChild3Integer: 2700 case SelectionDAGISel::OPC_CheckChild4Integer: 2701 Result = !::CheckChildInteger(Table, Index, N, 2702 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2703 return Index; 2704 case SelectionDAGISel::OPC_CheckAndImm: 2705 Result = !::CheckAndImm(Table, Index, N, SDISel); 2706 return Index; 2707 case SelectionDAGISel::OPC_CheckOrImm: 2708 Result = !::CheckOrImm(Table, Index, N, SDISel); 2709 return Index; 2710 } 2711 } 2712 2713 namespace { 2714 2715 struct MatchScope { 2716 /// FailIndex - If this match fails, this is the index to continue with. 2717 unsigned FailIndex; 2718 2719 /// NodeStack - The node stack when the scope was formed. 2720 SmallVector<SDValue, 4> NodeStack; 2721 2722 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2723 unsigned NumRecordedNodes; 2724 2725 /// NumMatchedMemRefs - The number of matched memref entries. 2726 unsigned NumMatchedMemRefs; 2727 2728 /// InputChain/InputGlue - The current chain/glue 2729 SDValue InputChain, InputGlue; 2730 2731 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2732 bool HasChainNodesMatched; 2733 }; 2734 2735 /// \A DAG update listener to keep the matching state 2736 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2737 /// change the DAG while matching. X86 addressing mode matcher is an example 2738 /// for this. 2739 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2740 { 2741 SDNode **NodeToMatch; 2742 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2743 SmallVectorImpl<MatchScope> &MatchScopes; 2744 2745 public: 2746 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2747 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2748 SmallVectorImpl<MatchScope> &MS) 2749 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2750 RecordedNodes(RN), MatchScopes(MS) {} 2751 2752 void NodeDeleted(SDNode *N, SDNode *E) override { 2753 // Some early-returns here to avoid the search if we deleted the node or 2754 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2755 // do, so it's unnecessary to update matching state at that point). 2756 // Neither of these can occur currently because we only install this 2757 // update listener during matching a complex patterns. 2758 if (!E || E->isMachineOpcode()) 2759 return; 2760 // Check if NodeToMatch was updated. 2761 if (N == *NodeToMatch) 2762 *NodeToMatch = E; 2763 // Performing linear search here does not matter because we almost never 2764 // run this code. You'd have to have a CSE during complex pattern 2765 // matching. 2766 for (auto &I : RecordedNodes) 2767 if (I.first.getNode() == N) 2768 I.first.setNode(E); 2769 2770 for (auto &I : MatchScopes) 2771 for (auto &J : I.NodeStack) 2772 if (J.getNode() == N) 2773 J.setNode(E); 2774 } 2775 }; 2776 2777 } // end anonymous namespace 2778 2779 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2780 const unsigned char *MatcherTable, 2781 unsigned TableSize) { 2782 // FIXME: Should these even be selected? Handle these cases in the caller? 2783 switch (NodeToMatch->getOpcode()) { 2784 default: 2785 break; 2786 case ISD::EntryToken: // These nodes remain the same. 2787 case ISD::BasicBlock: 2788 case ISD::Register: 2789 case ISD::RegisterMask: 2790 case ISD::HANDLENODE: 2791 case ISD::MDNODE_SDNODE: 2792 case ISD::TargetConstant: 2793 case ISD::TargetConstantFP: 2794 case ISD::TargetConstantPool: 2795 case ISD::TargetFrameIndex: 2796 case ISD::TargetExternalSymbol: 2797 case ISD::MCSymbol: 2798 case ISD::TargetBlockAddress: 2799 case ISD::TargetJumpTable: 2800 case ISD::TargetGlobalTLSAddress: 2801 case ISD::TargetGlobalAddress: 2802 case ISD::TokenFactor: 2803 case ISD::CopyFromReg: 2804 case ISD::CopyToReg: 2805 case ISD::EH_LABEL: 2806 case ISD::ANNOTATION_LABEL: 2807 case ISD::LIFETIME_START: 2808 case ISD::LIFETIME_END: 2809 case ISD::PSEUDO_PROBE: 2810 NodeToMatch->setNodeId(-1); // Mark selected. 2811 return; 2812 case ISD::AssertSext: 2813 case ISD::AssertZext: 2814 case ISD::AssertAlign: 2815 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2816 CurDAG->RemoveDeadNode(NodeToMatch); 2817 return; 2818 case ISD::INLINEASM: 2819 case ISD::INLINEASM_BR: 2820 Select_INLINEASM(NodeToMatch); 2821 return; 2822 case ISD::READ_REGISTER: 2823 Select_READ_REGISTER(NodeToMatch); 2824 return; 2825 case ISD::WRITE_REGISTER: 2826 Select_WRITE_REGISTER(NodeToMatch); 2827 return; 2828 case ISD::UNDEF: 2829 Select_UNDEF(NodeToMatch); 2830 return; 2831 case ISD::FREEZE: 2832 Select_FREEZE(NodeToMatch); 2833 return; 2834 } 2835 2836 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2837 2838 // Set up the node stack with NodeToMatch as the only node on the stack. 2839 SmallVector<SDValue, 8> NodeStack; 2840 SDValue N = SDValue(NodeToMatch, 0); 2841 NodeStack.push_back(N); 2842 2843 // MatchScopes - Scopes used when matching, if a match failure happens, this 2844 // indicates where to continue checking. 2845 SmallVector<MatchScope, 8> MatchScopes; 2846 2847 // RecordedNodes - This is the set of nodes that have been recorded by the 2848 // state machine. The second value is the parent of the node, or null if the 2849 // root is recorded. 2850 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2851 2852 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2853 // pattern. 2854 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2855 2856 // These are the current input chain and glue for use when generating nodes. 2857 // Various Emit operations change these. For example, emitting a copytoreg 2858 // uses and updates these. 2859 SDValue InputChain, InputGlue; 2860 2861 // ChainNodesMatched - If a pattern matches nodes that have input/output 2862 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2863 // which ones they are. The result is captured into this list so that we can 2864 // update the chain results when the pattern is complete. 2865 SmallVector<SDNode*, 3> ChainNodesMatched; 2866 2867 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2868 2869 // Determine where to start the interpreter. Normally we start at opcode #0, 2870 // but if the state machine starts with an OPC_SwitchOpcode, then we 2871 // accelerate the first lookup (which is guaranteed to be hot) with the 2872 // OpcodeOffset table. 2873 unsigned MatcherIndex = 0; 2874 2875 if (!OpcodeOffset.empty()) { 2876 // Already computed the OpcodeOffset table, just index into it. 2877 if (N.getOpcode() < OpcodeOffset.size()) 2878 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2879 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2880 2881 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2882 // Otherwise, the table isn't computed, but the state machine does start 2883 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2884 // is the first time we're selecting an instruction. 2885 unsigned Idx = 1; 2886 while (true) { 2887 // Get the size of this case. 2888 unsigned CaseSize = MatcherTable[Idx++]; 2889 if (CaseSize & 128) 2890 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2891 if (CaseSize == 0) break; 2892 2893 // Get the opcode, add the index to the table. 2894 uint16_t Opc = MatcherTable[Idx++]; 2895 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2896 if (Opc >= OpcodeOffset.size()) 2897 OpcodeOffset.resize((Opc+1)*2); 2898 OpcodeOffset[Opc] = Idx; 2899 Idx += CaseSize; 2900 } 2901 2902 // Okay, do the lookup for the first opcode. 2903 if (N.getOpcode() < OpcodeOffset.size()) 2904 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2905 } 2906 2907 while (true) { 2908 assert(MatcherIndex < TableSize && "Invalid index"); 2909 #ifndef NDEBUG 2910 unsigned CurrentOpcodeIndex = MatcherIndex; 2911 #endif 2912 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2913 switch (Opcode) { 2914 case OPC_Scope: { 2915 // Okay, the semantics of this operation are that we should push a scope 2916 // then evaluate the first child. However, pushing a scope only to have 2917 // the first check fail (which then pops it) is inefficient. If we can 2918 // determine immediately that the first check (or first several) will 2919 // immediately fail, don't even bother pushing a scope for them. 2920 unsigned FailIndex; 2921 2922 while (true) { 2923 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2924 if (NumToSkip & 128) 2925 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2926 // Found the end of the scope with no match. 2927 if (NumToSkip == 0) { 2928 FailIndex = 0; 2929 break; 2930 } 2931 2932 FailIndex = MatcherIndex+NumToSkip; 2933 2934 unsigned MatcherIndexOfPredicate = MatcherIndex; 2935 (void)MatcherIndexOfPredicate; // silence warning. 2936 2937 // If we can't evaluate this predicate without pushing a scope (e.g. if 2938 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2939 // push the scope and evaluate the full predicate chain. 2940 bool Result; 2941 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2942 Result, *this, RecordedNodes); 2943 if (!Result) 2944 break; 2945 2946 LLVM_DEBUG( 2947 dbgs() << " Skipped scope entry (due to false predicate) at " 2948 << "index " << MatcherIndexOfPredicate << ", continuing at " 2949 << FailIndex << "\n"); 2950 ++NumDAGIselRetries; 2951 2952 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2953 // move to the next case. 2954 MatcherIndex = FailIndex; 2955 } 2956 2957 // If the whole scope failed to match, bail. 2958 if (FailIndex == 0) break; 2959 2960 // Push a MatchScope which indicates where to go if the first child fails 2961 // to match. 2962 MatchScope NewEntry; 2963 NewEntry.FailIndex = FailIndex; 2964 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2965 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2966 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2967 NewEntry.InputChain = InputChain; 2968 NewEntry.InputGlue = InputGlue; 2969 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2970 MatchScopes.push_back(NewEntry); 2971 continue; 2972 } 2973 case OPC_RecordNode: { 2974 // Remember this node, it may end up being an operand in the pattern. 2975 SDNode *Parent = nullptr; 2976 if (NodeStack.size() > 1) 2977 Parent = NodeStack[NodeStack.size()-2].getNode(); 2978 RecordedNodes.push_back(std::make_pair(N, Parent)); 2979 continue; 2980 } 2981 2982 case OPC_RecordChild0: case OPC_RecordChild1: 2983 case OPC_RecordChild2: case OPC_RecordChild3: 2984 case OPC_RecordChild4: case OPC_RecordChild5: 2985 case OPC_RecordChild6: case OPC_RecordChild7: { 2986 unsigned ChildNo = Opcode-OPC_RecordChild0; 2987 if (ChildNo >= N.getNumOperands()) 2988 break; // Match fails if out of range child #. 2989 2990 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2991 N.getNode())); 2992 continue; 2993 } 2994 case OPC_RecordMemRef: 2995 if (auto *MN = dyn_cast<MemSDNode>(N)) 2996 MatchedMemRefs.push_back(MN->getMemOperand()); 2997 else { 2998 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2999 dbgs() << '\n'); 3000 } 3001 3002 continue; 3003 3004 case OPC_CaptureGlueInput: 3005 // If the current node has an input glue, capture it in InputGlue. 3006 if (N->getNumOperands() != 0 && 3007 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 3008 InputGlue = N->getOperand(N->getNumOperands()-1); 3009 continue; 3010 3011 case OPC_MoveChild: { 3012 unsigned ChildNo = MatcherTable[MatcherIndex++]; 3013 if (ChildNo >= N.getNumOperands()) 3014 break; // Match fails if out of range child #. 3015 N = N.getOperand(ChildNo); 3016 NodeStack.push_back(N); 3017 continue; 3018 } 3019 3020 case OPC_MoveChild0: case OPC_MoveChild1: 3021 case OPC_MoveChild2: case OPC_MoveChild3: 3022 case OPC_MoveChild4: case OPC_MoveChild5: 3023 case OPC_MoveChild6: case OPC_MoveChild7: { 3024 unsigned ChildNo = Opcode-OPC_MoveChild0; 3025 if (ChildNo >= N.getNumOperands()) 3026 break; // Match fails if out of range child #. 3027 N = N.getOperand(ChildNo); 3028 NodeStack.push_back(N); 3029 continue; 3030 } 3031 3032 case OPC_MoveParent: 3033 // Pop the current node off the NodeStack. 3034 NodeStack.pop_back(); 3035 assert(!NodeStack.empty() && "Node stack imbalance!"); 3036 N = NodeStack.back(); 3037 continue; 3038 3039 case OPC_CheckSame: 3040 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3041 continue; 3042 3043 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3044 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3045 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3046 Opcode-OPC_CheckChild0Same)) 3047 break; 3048 continue; 3049 3050 case OPC_CheckPatternPredicate: 3051 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3052 continue; 3053 case OPC_CheckPredicate: 3054 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3055 N.getNode())) 3056 break; 3057 continue; 3058 case OPC_CheckPredicateWithOperands: { 3059 unsigned OpNum = MatcherTable[MatcherIndex++]; 3060 SmallVector<SDValue, 8> Operands; 3061 3062 for (unsigned i = 0; i < OpNum; ++i) 3063 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3064 3065 unsigned PredNo = MatcherTable[MatcherIndex++]; 3066 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3067 break; 3068 continue; 3069 } 3070 case OPC_CheckComplexPat: { 3071 unsigned CPNum = MatcherTable[MatcherIndex++]; 3072 unsigned RecNo = MatcherTable[MatcherIndex++]; 3073 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3074 3075 // If target can modify DAG during matching, keep the matching state 3076 // consistent. 3077 std::unique_ptr<MatchStateUpdater> MSU; 3078 if (ComplexPatternFuncMutatesDAG()) 3079 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3080 MatchScopes)); 3081 3082 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3083 RecordedNodes[RecNo].first, CPNum, 3084 RecordedNodes)) 3085 break; 3086 continue; 3087 } 3088 case OPC_CheckOpcode: 3089 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3090 continue; 3091 3092 case OPC_CheckType: 3093 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3094 CurDAG->getDataLayout())) 3095 break; 3096 continue; 3097 3098 case OPC_CheckTypeRes: { 3099 unsigned Res = MatcherTable[MatcherIndex++]; 3100 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3101 CurDAG->getDataLayout())) 3102 break; 3103 continue; 3104 } 3105 3106 case OPC_SwitchOpcode: { 3107 unsigned CurNodeOpcode = N.getOpcode(); 3108 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3109 unsigned CaseSize; 3110 while (true) { 3111 // Get the size of this case. 3112 CaseSize = MatcherTable[MatcherIndex++]; 3113 if (CaseSize & 128) 3114 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3115 if (CaseSize == 0) break; 3116 3117 uint16_t Opc = MatcherTable[MatcherIndex++]; 3118 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3119 3120 // If the opcode matches, then we will execute this case. 3121 if (CurNodeOpcode == Opc) 3122 break; 3123 3124 // Otherwise, skip over this case. 3125 MatcherIndex += CaseSize; 3126 } 3127 3128 // If no cases matched, bail out. 3129 if (CaseSize == 0) break; 3130 3131 // Otherwise, execute the case we found. 3132 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3133 << MatcherIndex << "\n"); 3134 continue; 3135 } 3136 3137 case OPC_SwitchType: { 3138 MVT CurNodeVT = N.getSimpleValueType(); 3139 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3140 unsigned CaseSize; 3141 while (true) { 3142 // Get the size of this case. 3143 CaseSize = MatcherTable[MatcherIndex++]; 3144 if (CaseSize & 128) 3145 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3146 if (CaseSize == 0) break; 3147 3148 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3149 if (CaseVT == MVT::iPTR) 3150 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3151 3152 // If the VT matches, then we will execute this case. 3153 if (CurNodeVT == CaseVT) 3154 break; 3155 3156 // Otherwise, skip over this case. 3157 MatcherIndex += CaseSize; 3158 } 3159 3160 // If no cases matched, bail out. 3161 if (CaseSize == 0) break; 3162 3163 // Otherwise, execute the case we found. 3164 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3165 << "] from " << SwitchStart << " to " << MatcherIndex 3166 << '\n'); 3167 continue; 3168 } 3169 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3170 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3171 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3172 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3173 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3174 CurDAG->getDataLayout(), 3175 Opcode - OPC_CheckChild0Type)) 3176 break; 3177 continue; 3178 case OPC_CheckCondCode: 3179 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3180 continue; 3181 case OPC_CheckChild2CondCode: 3182 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3183 continue; 3184 case OPC_CheckValueType: 3185 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3186 CurDAG->getDataLayout())) 3187 break; 3188 continue; 3189 case OPC_CheckInteger: 3190 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3191 continue; 3192 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3193 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3194 case OPC_CheckChild4Integer: 3195 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3196 Opcode-OPC_CheckChild0Integer)) break; 3197 continue; 3198 case OPC_CheckAndImm: 3199 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3200 continue; 3201 case OPC_CheckOrImm: 3202 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3203 continue; 3204 case OPC_CheckImmAllOnesV: 3205 if (!ISD::isConstantSplatVectorAllOnes(N.getNode())) 3206 break; 3207 continue; 3208 case OPC_CheckImmAllZerosV: 3209 if (!ISD::isConstantSplatVectorAllZeros(N.getNode())) 3210 break; 3211 continue; 3212 3213 case OPC_CheckFoldableChainNode: { 3214 assert(NodeStack.size() != 1 && "No parent node"); 3215 // Verify that all intermediate nodes between the root and this one have 3216 // a single use (ignoring chains, which are handled in UpdateChains). 3217 bool HasMultipleUses = false; 3218 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) { 3219 unsigned NNonChainUses = 0; 3220 SDNode *NS = NodeStack[i].getNode(); 3221 for (auto UI = NS->use_begin(), UE = NS->use_end(); UI != UE; ++UI) 3222 if (UI.getUse().getValueType() != MVT::Other) 3223 if (++NNonChainUses > 1) { 3224 HasMultipleUses = true; 3225 break; 3226 } 3227 if (HasMultipleUses) break; 3228 } 3229 if (HasMultipleUses) break; 3230 3231 // Check to see that the target thinks this is profitable to fold and that 3232 // we can fold it without inducing cycles in the graph. 3233 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3234 NodeToMatch) || 3235 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3236 NodeToMatch, OptLevel, 3237 true/*We validate our own chains*/)) 3238 break; 3239 3240 continue; 3241 } 3242 case OPC_EmitInteger: { 3243 MVT::SimpleValueType VT = 3244 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3245 int64_t Val = MatcherTable[MatcherIndex++]; 3246 if (Val & 128) 3247 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3248 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3249 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3250 VT), nullptr)); 3251 continue; 3252 } 3253 case OPC_EmitRegister: { 3254 MVT::SimpleValueType VT = 3255 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3256 unsigned RegNo = MatcherTable[MatcherIndex++]; 3257 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3258 CurDAG->getRegister(RegNo, VT), nullptr)); 3259 continue; 3260 } 3261 case OPC_EmitRegister2: { 3262 // For targets w/ more than 256 register names, the register enum 3263 // values are stored in two bytes in the matcher table (just like 3264 // opcodes). 3265 MVT::SimpleValueType VT = 3266 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3267 unsigned RegNo = MatcherTable[MatcherIndex++]; 3268 RegNo |= MatcherTable[MatcherIndex++] << 8; 3269 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3270 CurDAG->getRegister(RegNo, VT), nullptr)); 3271 continue; 3272 } 3273 3274 case OPC_EmitConvertToTarget: { 3275 // Convert from IMM/FPIMM to target version. 3276 unsigned RecNo = MatcherTable[MatcherIndex++]; 3277 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3278 SDValue Imm = RecordedNodes[RecNo].first; 3279 3280 if (Imm->getOpcode() == ISD::Constant) { 3281 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3282 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3283 Imm.getValueType()); 3284 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3285 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3286 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3287 Imm.getValueType()); 3288 } 3289 3290 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3291 continue; 3292 } 3293 3294 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3295 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3296 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3297 // These are space-optimized forms of OPC_EmitMergeInputChains. 3298 assert(!InputChain.getNode() && 3299 "EmitMergeInputChains should be the first chain producing node"); 3300 assert(ChainNodesMatched.empty() && 3301 "Should only have one EmitMergeInputChains per match"); 3302 3303 // Read all of the chained nodes. 3304 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3305 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3306 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3307 3308 // FIXME: What if other value results of the node have uses not matched 3309 // by this pattern? 3310 if (ChainNodesMatched.back() != NodeToMatch && 3311 !RecordedNodes[RecNo].first.hasOneUse()) { 3312 ChainNodesMatched.clear(); 3313 break; 3314 } 3315 3316 // Merge the input chains if they are not intra-pattern references. 3317 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3318 3319 if (!InputChain.getNode()) 3320 break; // Failed to merge. 3321 continue; 3322 } 3323 3324 case OPC_EmitMergeInputChains: { 3325 assert(!InputChain.getNode() && 3326 "EmitMergeInputChains should be the first chain producing node"); 3327 // This node gets a list of nodes we matched in the input that have 3328 // chains. We want to token factor all of the input chains to these nodes 3329 // together. However, if any of the input chains is actually one of the 3330 // nodes matched in this pattern, then we have an intra-match reference. 3331 // Ignore these because the newly token factored chain should not refer to 3332 // the old nodes. 3333 unsigned NumChains = MatcherTable[MatcherIndex++]; 3334 assert(NumChains != 0 && "Can't TF zero chains"); 3335 3336 assert(ChainNodesMatched.empty() && 3337 "Should only have one EmitMergeInputChains per match"); 3338 3339 // Read all of the chained nodes. 3340 for (unsigned i = 0; i != NumChains; ++i) { 3341 unsigned RecNo = MatcherTable[MatcherIndex++]; 3342 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3343 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3344 3345 // FIXME: What if other value results of the node have uses not matched 3346 // by this pattern? 3347 if (ChainNodesMatched.back() != NodeToMatch && 3348 !RecordedNodes[RecNo].first.hasOneUse()) { 3349 ChainNodesMatched.clear(); 3350 break; 3351 } 3352 } 3353 3354 // If the inner loop broke out, the match fails. 3355 if (ChainNodesMatched.empty()) 3356 break; 3357 3358 // Merge the input chains if they are not intra-pattern references. 3359 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3360 3361 if (!InputChain.getNode()) 3362 break; // Failed to merge. 3363 3364 continue; 3365 } 3366 3367 case OPC_EmitCopyToReg: 3368 case OPC_EmitCopyToReg2: { 3369 unsigned RecNo = MatcherTable[MatcherIndex++]; 3370 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3371 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3372 if (Opcode == OPC_EmitCopyToReg2) 3373 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3374 3375 if (!InputChain.getNode()) 3376 InputChain = CurDAG->getEntryNode(); 3377 3378 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3379 DestPhysReg, RecordedNodes[RecNo].first, 3380 InputGlue); 3381 3382 InputGlue = InputChain.getValue(1); 3383 continue; 3384 } 3385 3386 case OPC_EmitNodeXForm: { 3387 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3388 unsigned RecNo = MatcherTable[MatcherIndex++]; 3389 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3390 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3391 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3392 continue; 3393 } 3394 case OPC_Coverage: { 3395 // This is emitted right before MorphNode/EmitNode. 3396 // So it should be safe to assume that this node has been selected 3397 unsigned index = MatcherTable[MatcherIndex++]; 3398 index |= (MatcherTable[MatcherIndex++] << 8); 3399 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3400 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3401 continue; 3402 } 3403 3404 case OPC_EmitNode: case OPC_MorphNodeTo: 3405 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3406 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3407 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3408 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3409 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3410 // Get the result VT list. 3411 unsigned NumVTs; 3412 // If this is one of the compressed forms, get the number of VTs based 3413 // on the Opcode. Otherwise read the next byte from the table. 3414 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3415 NumVTs = Opcode - OPC_MorphNodeTo0; 3416 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3417 NumVTs = Opcode - OPC_EmitNode0; 3418 else 3419 NumVTs = MatcherTable[MatcherIndex++]; 3420 SmallVector<EVT, 4> VTs; 3421 for (unsigned i = 0; i != NumVTs; ++i) { 3422 MVT::SimpleValueType VT = 3423 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3424 if (VT == MVT::iPTR) 3425 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3426 VTs.push_back(VT); 3427 } 3428 3429 if (EmitNodeInfo & OPFL_Chain) 3430 VTs.push_back(MVT::Other); 3431 if (EmitNodeInfo & OPFL_GlueOutput) 3432 VTs.push_back(MVT::Glue); 3433 3434 // This is hot code, so optimize the two most common cases of 1 and 2 3435 // results. 3436 SDVTList VTList; 3437 if (VTs.size() == 1) 3438 VTList = CurDAG->getVTList(VTs[0]); 3439 else if (VTs.size() == 2) 3440 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3441 else 3442 VTList = CurDAG->getVTList(VTs); 3443 3444 // Get the operand list. 3445 unsigned NumOps = MatcherTable[MatcherIndex++]; 3446 SmallVector<SDValue, 8> Ops; 3447 for (unsigned i = 0; i != NumOps; ++i) { 3448 unsigned RecNo = MatcherTable[MatcherIndex++]; 3449 if (RecNo & 128) 3450 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3451 3452 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3453 Ops.push_back(RecordedNodes[RecNo].first); 3454 } 3455 3456 // If there are variadic operands to add, handle them now. 3457 if (EmitNodeInfo & OPFL_VariadicInfo) { 3458 // Determine the start index to copy from. 3459 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3460 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3461 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3462 "Invalid variadic node"); 3463 // Copy all of the variadic operands, not including a potential glue 3464 // input. 3465 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3466 i != e; ++i) { 3467 SDValue V = NodeToMatch->getOperand(i); 3468 if (V.getValueType() == MVT::Glue) break; 3469 Ops.push_back(V); 3470 } 3471 } 3472 3473 // If this has chain/glue inputs, add them. 3474 if (EmitNodeInfo & OPFL_Chain) 3475 Ops.push_back(InputChain); 3476 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3477 Ops.push_back(InputGlue); 3478 3479 // Check whether any matched node could raise an FP exception. Since all 3480 // such nodes must have a chain, it suffices to check ChainNodesMatched. 3481 // We need to perform this check before potentially modifying one of the 3482 // nodes via MorphNode. 3483 bool MayRaiseFPException = false; 3484 for (auto *N : ChainNodesMatched) 3485 if (mayRaiseFPException(N) && !N->getFlags().hasNoFPExcept()) { 3486 MayRaiseFPException = true; 3487 break; 3488 } 3489 3490 // Create the node. 3491 MachineSDNode *Res = nullptr; 3492 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3493 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3494 if (!IsMorphNodeTo) { 3495 // If this is a normal EmitNode command, just create the new node and 3496 // add the results to the RecordedNodes list. 3497 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3498 VTList, Ops); 3499 3500 // Add all the non-glue/non-chain results to the RecordedNodes list. 3501 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3502 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3503 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3504 nullptr)); 3505 } 3506 } else { 3507 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3508 "NodeToMatch was removed partway through selection"); 3509 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3510 SDNode *E) { 3511 CurDAG->salvageDebugInfo(*N); 3512 auto &Chain = ChainNodesMatched; 3513 assert((!E || !is_contained(Chain, N)) && 3514 "Chain node replaced during MorphNode"); 3515 llvm::erase_value(Chain, N); 3516 }); 3517 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3518 Ops, EmitNodeInfo)); 3519 } 3520 3521 // Set the NoFPExcept flag when no original matched node could 3522 // raise an FP exception, but the new node potentially might. 3523 if (!MayRaiseFPException && mayRaiseFPException(Res)) { 3524 SDNodeFlags Flags = Res->getFlags(); 3525 Flags.setNoFPExcept(true); 3526 Res->setFlags(Flags); 3527 } 3528 3529 // If the node had chain/glue results, update our notion of the current 3530 // chain and glue. 3531 if (EmitNodeInfo & OPFL_GlueOutput) { 3532 InputGlue = SDValue(Res, VTs.size()-1); 3533 if (EmitNodeInfo & OPFL_Chain) 3534 InputChain = SDValue(Res, VTs.size()-2); 3535 } else if (EmitNodeInfo & OPFL_Chain) 3536 InputChain = SDValue(Res, VTs.size()-1); 3537 3538 // If the OPFL_MemRefs glue is set on this node, slap all of the 3539 // accumulated memrefs onto it. 3540 // 3541 // FIXME: This is vastly incorrect for patterns with multiple outputs 3542 // instructions that access memory and for ComplexPatterns that match 3543 // loads. 3544 if (EmitNodeInfo & OPFL_MemRefs) { 3545 // Only attach load or store memory operands if the generated 3546 // instruction may load or store. 3547 const MCInstrDesc &MCID = TII->get(TargetOpc); 3548 bool mayLoad = MCID.mayLoad(); 3549 bool mayStore = MCID.mayStore(); 3550 3551 // We expect to have relatively few of these so just filter them into a 3552 // temporary buffer so that we can easily add them to the instruction. 3553 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3554 for (MachineMemOperand *MMO : MatchedMemRefs) { 3555 if (MMO->isLoad()) { 3556 if (mayLoad) 3557 FilteredMemRefs.push_back(MMO); 3558 } else if (MMO->isStore()) { 3559 if (mayStore) 3560 FilteredMemRefs.push_back(MMO); 3561 } else { 3562 FilteredMemRefs.push_back(MMO); 3563 } 3564 } 3565 3566 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3567 } 3568 3569 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3570 << " Dropping mem operands\n"; 3571 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3572 << " node: "; 3573 Res->dump(CurDAG);); 3574 3575 // If this was a MorphNodeTo then we're completely done! 3576 if (IsMorphNodeTo) { 3577 // Update chain uses. 3578 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3579 return; 3580 } 3581 continue; 3582 } 3583 3584 case OPC_CompleteMatch: { 3585 // The match has been completed, and any new nodes (if any) have been 3586 // created. Patch up references to the matched dag to use the newly 3587 // created nodes. 3588 unsigned NumResults = MatcherTable[MatcherIndex++]; 3589 3590 for (unsigned i = 0; i != NumResults; ++i) { 3591 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3592 if (ResSlot & 128) 3593 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3594 3595 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3596 SDValue Res = RecordedNodes[ResSlot].first; 3597 3598 assert(i < NodeToMatch->getNumValues() && 3599 NodeToMatch->getValueType(i) != MVT::Other && 3600 NodeToMatch->getValueType(i) != MVT::Glue && 3601 "Invalid number of results to complete!"); 3602 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3603 NodeToMatch->getValueType(i) == MVT::iPTR || 3604 Res.getValueType() == MVT::iPTR || 3605 NodeToMatch->getValueType(i).getSizeInBits() == 3606 Res.getValueSizeInBits()) && 3607 "invalid replacement"); 3608 ReplaceUses(SDValue(NodeToMatch, i), Res); 3609 } 3610 3611 // Update chain uses. 3612 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3613 3614 // If the root node defines glue, we need to update it to the glue result. 3615 // TODO: This never happens in our tests and I think it can be removed / 3616 // replaced with an assert, but if we do it this the way the change is 3617 // NFC. 3618 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3619 MVT::Glue && 3620 InputGlue.getNode()) 3621 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3622 InputGlue); 3623 3624 assert(NodeToMatch->use_empty() && 3625 "Didn't replace all uses of the node?"); 3626 CurDAG->RemoveDeadNode(NodeToMatch); 3627 3628 return; 3629 } 3630 } 3631 3632 // If the code reached this point, then the match failed. See if there is 3633 // another child to try in the current 'Scope', otherwise pop it until we 3634 // find a case to check. 3635 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3636 << "\n"); 3637 ++NumDAGIselRetries; 3638 while (true) { 3639 if (MatchScopes.empty()) { 3640 CannotYetSelect(NodeToMatch); 3641 return; 3642 } 3643 3644 // Restore the interpreter state back to the point where the scope was 3645 // formed. 3646 MatchScope &LastScope = MatchScopes.back(); 3647 RecordedNodes.resize(LastScope.NumRecordedNodes); 3648 NodeStack.clear(); 3649 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3650 N = NodeStack.back(); 3651 3652 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3653 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3654 MatcherIndex = LastScope.FailIndex; 3655 3656 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3657 3658 InputChain = LastScope.InputChain; 3659 InputGlue = LastScope.InputGlue; 3660 if (!LastScope.HasChainNodesMatched) 3661 ChainNodesMatched.clear(); 3662 3663 // Check to see what the offset is at the new MatcherIndex. If it is zero 3664 // we have reached the end of this scope, otherwise we have another child 3665 // in the current scope to try. 3666 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3667 if (NumToSkip & 128) 3668 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3669 3670 // If we have another child in this scope to match, update FailIndex and 3671 // try it. 3672 if (NumToSkip != 0) { 3673 LastScope.FailIndex = MatcherIndex+NumToSkip; 3674 break; 3675 } 3676 3677 // End of this scope, pop it and try the next child in the containing 3678 // scope. 3679 MatchScopes.pop_back(); 3680 } 3681 } 3682 } 3683 3684 /// Return whether the node may raise an FP exception. 3685 bool SelectionDAGISel::mayRaiseFPException(SDNode *N) const { 3686 // For machine opcodes, consult the MCID flag. 3687 if (N->isMachineOpcode()) { 3688 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 3689 return MCID.mayRaiseFPException(); 3690 } 3691 3692 // For ISD opcodes, only StrictFP opcodes may raise an FP 3693 // exception. 3694 if (N->isTargetOpcode()) 3695 return N->isTargetStrictFPOpcode(); 3696 return N->isStrictFPOpcode(); 3697 } 3698 3699 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3700 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3701 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3702 if (!C) 3703 return false; 3704 3705 // Detect when "or" is used to add an offset to a stack object. 3706 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3707 MachineFrameInfo &MFI = MF->getFrameInfo(); 3708 Align A = MFI.getObjectAlign(FN->getIndex()); 3709 int32_t Off = C->getSExtValue(); 3710 // If the alleged offset fits in the zero bits guaranteed by 3711 // the alignment, then this or is really an add. 3712 return (Off >= 0) && (((A.value() - 1) & Off) == unsigned(Off)); 3713 } 3714 return false; 3715 } 3716 3717 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3718 std::string msg; 3719 raw_string_ostream Msg(msg); 3720 Msg << "Cannot select: "; 3721 3722 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3723 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3724 N->getOpcode() != ISD::INTRINSIC_VOID) { 3725 N->printrFull(Msg, CurDAG); 3726 Msg << "\nIn function: " << MF->getName(); 3727 } else { 3728 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3729 unsigned iid = 3730 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3731 if (iid < Intrinsic::num_intrinsics) 3732 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3733 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3734 Msg << "target intrinsic %" << TII->getName(iid); 3735 else 3736 Msg << "unknown intrinsic #" << iid; 3737 } 3738 report_fatal_error(Msg.str()); 3739 } 3740 3741 char SelectionDAGISel::ID = 0; 3742