1 //===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the SelectionDAGISel class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/SelectionDAGISel.h" 14 #include "ScheduleDAGSDNodes.h" 15 #include "SelectionDAGBuilder.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/PostOrderIterator.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BranchProbabilityInfo.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/LegacyDivergenceAnalysis.h" 31 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/TargetTransformInfo.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCMetadata.h" 37 #include "llvm/CodeGen/ISDOpcodes.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFunctionPass.h" 42 #include "llvm/CodeGen/MachineInstr.h" 43 #include "llvm/CodeGen/MachineInstrBuilder.h" 44 #include "llvm/CodeGen/MachineMemOperand.h" 45 #include "llvm/CodeGen/MachineModuleInfo.h" 46 #include "llvm/CodeGen/MachineOperand.h" 47 #include "llvm/CodeGen/MachinePassRegistry.h" 48 #include "llvm/CodeGen/MachineRegisterInfo.h" 49 #include "llvm/CodeGen/SchedulerRegistry.h" 50 #include "llvm/CodeGen/SelectionDAG.h" 51 #include "llvm/CodeGen/SelectionDAGNodes.h" 52 #include "llvm/CodeGen/StackProtector.h" 53 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetLowering.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/CodeGen/ValueTypes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DebugInfoMetadata.h" 63 #include "llvm/IR/DebugLoc.h" 64 #include "llvm/IR/DiagnosticInfo.h" 65 #include "llvm/IR/Dominators.h" 66 #include "llvm/IR/Function.h" 67 #include "llvm/IR/InlineAsm.h" 68 #include "llvm/IR/InstIterator.h" 69 #include "llvm/IR/InstrTypes.h" 70 #include "llvm/IR/Instruction.h" 71 #include "llvm/IR/Instructions.h" 72 #include "llvm/IR/IntrinsicInst.h" 73 #include "llvm/IR/Intrinsics.h" 74 #include "llvm/IR/Metadata.h" 75 #include "llvm/IR/Type.h" 76 #include "llvm/IR/User.h" 77 #include "llvm/IR/Value.h" 78 #include "llvm/MC/MCInstrDesc.h" 79 #include "llvm/MC/MCRegisterInfo.h" 80 #include "llvm/Pass.h" 81 #include "llvm/Support/BranchProbability.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/CodeGen.h" 84 #include "llvm/Support/CommandLine.h" 85 #include "llvm/Support/Compiler.h" 86 #include "llvm/Support/Debug.h" 87 #include "llvm/Support/ErrorHandling.h" 88 #include "llvm/Support/KnownBits.h" 89 #include "llvm/Support/MachineValueType.h" 90 #include "llvm/Support/Timer.h" 91 #include "llvm/Support/raw_ostream.h" 92 #include "llvm/Target/TargetIntrinsicInfo.h" 93 #include "llvm/Target/TargetMachine.h" 94 #include "llvm/Target/TargetOptions.h" 95 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 96 #include <algorithm> 97 #include <cassert> 98 #include <cstdint> 99 #include <iterator> 100 #include <limits> 101 #include <memory> 102 #include <string> 103 #include <utility> 104 #include <vector> 105 106 using namespace llvm; 107 108 #define DEBUG_TYPE "isel" 109 110 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); 111 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected"); 112 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel"); 113 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG"); 114 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path"); 115 STATISTIC(NumEntryBlocks, "Number of entry blocks encountered"); 116 STATISTIC(NumFastIselFailLowerArguments, 117 "Number of entry blocks where fast isel failed to lower arguments"); 118 119 static cl::opt<int> EnableFastISelAbort( 120 "fast-isel-abort", cl::Hidden, 121 cl::desc("Enable abort calls when \"fast\" instruction selection " 122 "fails to lower an instruction: 0 disable the abort, 1 will " 123 "abort but for args, calls and terminators, 2 will also " 124 "abort for argument lowering, and 3 will never fallback " 125 "to SelectionDAG.")); 126 127 static cl::opt<bool> EnableFastISelFallbackReport( 128 "fast-isel-report-on-fallback", cl::Hidden, 129 cl::desc("Emit a diagnostic when \"fast\" instruction selection " 130 "falls back to SelectionDAG.")); 131 132 static cl::opt<bool> 133 UseMBPI("use-mbpi", 134 cl::desc("use Machine Branch Probability Info"), 135 cl::init(true), cl::Hidden); 136 137 #ifndef NDEBUG 138 static cl::opt<std::string> 139 FilterDAGBasicBlockName("filter-view-dags", cl::Hidden, 140 cl::desc("Only display the basic block whose name " 141 "matches this for all view-*-dags options")); 142 static cl::opt<bool> 143 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, 144 cl::desc("Pop up a window to show dags before the first " 145 "dag combine pass")); 146 static cl::opt<bool> 147 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, 148 cl::desc("Pop up a window to show dags before legalize types")); 149 static cl::opt<bool> 150 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, 151 cl::desc("Pop up a window to show dags before legalize")); 152 static cl::opt<bool> 153 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, 154 cl::desc("Pop up a window to show dags before the second " 155 "dag combine pass")); 156 static cl::opt<bool> 157 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, 158 cl::desc("Pop up a window to show dags before the post legalize types" 159 " dag combine pass")); 160 static cl::opt<bool> 161 ViewISelDAGs("view-isel-dags", cl::Hidden, 162 cl::desc("Pop up a window to show isel dags as they are selected")); 163 static cl::opt<bool> 164 ViewSchedDAGs("view-sched-dags", cl::Hidden, 165 cl::desc("Pop up a window to show sched dags as they are processed")); 166 static cl::opt<bool> 167 ViewSUnitDAGs("view-sunit-dags", cl::Hidden, 168 cl::desc("Pop up a window to show SUnit dags after they are processed")); 169 #else 170 static const bool ViewDAGCombine1 = false, 171 ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, 172 ViewDAGCombine2 = false, 173 ViewDAGCombineLT = false, 174 ViewISelDAGs = false, ViewSchedDAGs = false, 175 ViewSUnitDAGs = false; 176 #endif 177 178 //===---------------------------------------------------------------------===// 179 /// 180 /// RegisterScheduler class - Track the registration of instruction schedulers. 181 /// 182 //===---------------------------------------------------------------------===// 183 MachinePassRegistry<RegisterScheduler::FunctionPassCtor> 184 RegisterScheduler::Registry; 185 186 //===---------------------------------------------------------------------===// 187 /// 188 /// ISHeuristic command line option for instruction schedulers. 189 /// 190 //===---------------------------------------------------------------------===// 191 static cl::opt<RegisterScheduler::FunctionPassCtor, false, 192 RegisterPassParser<RegisterScheduler>> 193 ISHeuristic("pre-RA-sched", 194 cl::init(&createDefaultScheduler), cl::Hidden, 195 cl::desc("Instruction schedulers available (before register" 196 " allocation):")); 197 198 static RegisterScheduler 199 defaultListDAGScheduler("default", "Best scheduler for the target", 200 createDefaultScheduler); 201 202 namespace llvm { 203 204 //===--------------------------------------------------------------------===// 205 /// This class is used by SelectionDAGISel to temporarily override 206 /// the optimization level on a per-function basis. 207 class OptLevelChanger { 208 SelectionDAGISel &IS; 209 CodeGenOpt::Level SavedOptLevel; 210 bool SavedFastISel; 211 212 public: 213 OptLevelChanger(SelectionDAGISel &ISel, 214 CodeGenOpt::Level NewOptLevel) : IS(ISel) { 215 SavedOptLevel = IS.OptLevel; 216 if (NewOptLevel == SavedOptLevel) 217 return; 218 IS.OptLevel = NewOptLevel; 219 IS.TM.setOptLevel(NewOptLevel); 220 LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function " 221 << IS.MF->getFunction().getName() << "\n"); 222 LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O" 223 << NewOptLevel << "\n"); 224 SavedFastISel = IS.TM.Options.EnableFastISel; 225 if (NewOptLevel == CodeGenOpt::None) { 226 IS.TM.setFastISel(IS.TM.getO0WantsFastISel()); 227 LLVM_DEBUG( 228 dbgs() << "\tFastISel is " 229 << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled") 230 << "\n"); 231 } 232 } 233 234 ~OptLevelChanger() { 235 if (IS.OptLevel == SavedOptLevel) 236 return; 237 LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function " 238 << IS.MF->getFunction().getName() << "\n"); 239 LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O" 240 << SavedOptLevel << "\n"); 241 IS.OptLevel = SavedOptLevel; 242 IS.TM.setOptLevel(SavedOptLevel); 243 IS.TM.setFastISel(SavedFastISel); 244 } 245 }; 246 247 //===--------------------------------------------------------------------===// 248 /// createDefaultScheduler - This creates an instruction scheduler appropriate 249 /// for the target. 250 ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, 251 CodeGenOpt::Level OptLevel) { 252 const TargetLowering *TLI = IS->TLI; 253 const TargetSubtargetInfo &ST = IS->MF->getSubtarget(); 254 255 // Try first to see if the Target has its own way of selecting a scheduler 256 if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) { 257 return SchedulerCtor(IS, OptLevel); 258 } 259 260 if (OptLevel == CodeGenOpt::None || 261 (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) || 262 TLI->getSchedulingPreference() == Sched::Source) 263 return createSourceListDAGScheduler(IS, OptLevel); 264 if (TLI->getSchedulingPreference() == Sched::RegPressure) 265 return createBURRListDAGScheduler(IS, OptLevel); 266 if (TLI->getSchedulingPreference() == Sched::Hybrid) 267 return createHybridListDAGScheduler(IS, OptLevel); 268 if (TLI->getSchedulingPreference() == Sched::VLIW) 269 return createVLIWDAGScheduler(IS, OptLevel); 270 assert(TLI->getSchedulingPreference() == Sched::ILP && 271 "Unknown sched type!"); 272 return createILPListDAGScheduler(IS, OptLevel); 273 } 274 275 } // end namespace llvm 276 277 // EmitInstrWithCustomInserter - This method should be implemented by targets 278 // that mark instructions with the 'usesCustomInserter' flag. These 279 // instructions are special in various ways, which require special support to 280 // insert. The specified MachineInstr is created but not inserted into any 281 // basic blocks, and this method is called to expand it into a sequence of 282 // instructions, potentially also creating new basic blocks and control flow. 283 // When new basic blocks are inserted and the edges from MBB to its successors 284 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the 285 // DenseMap. 286 MachineBasicBlock * 287 TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, 288 MachineBasicBlock *MBB) const { 289 #ifndef NDEBUG 290 dbgs() << "If a target marks an instruction with " 291 "'usesCustomInserter', it must implement " 292 "TargetLowering::EmitInstrWithCustomInserter!"; 293 #endif 294 llvm_unreachable(nullptr); 295 } 296 297 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI, 298 SDNode *Node) const { 299 assert(!MI.hasPostISelHook() && 300 "If a target marks an instruction with 'hasPostISelHook', " 301 "it must implement TargetLowering::AdjustInstrPostInstrSelection!"); 302 } 303 304 //===----------------------------------------------------------------------===// 305 // SelectionDAGISel code 306 //===----------------------------------------------------------------------===// 307 308 SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, 309 CodeGenOpt::Level OL) : 310 MachineFunctionPass(ID), TM(tm), 311 FuncInfo(new FunctionLoweringInfo()), 312 SwiftError(new SwiftErrorValueTracking()), 313 CurDAG(new SelectionDAG(tm, OL)), 314 SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)), 315 AA(), GFI(), 316 OptLevel(OL), 317 DAGSize(0) { 318 initializeGCModuleInfoPass(*PassRegistry::getPassRegistry()); 319 initializeBranchProbabilityInfoWrapperPassPass( 320 *PassRegistry::getPassRegistry()); 321 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 322 initializeTargetLibraryInfoWrapperPassPass( 323 *PassRegistry::getPassRegistry()); 324 } 325 326 SelectionDAGISel::~SelectionDAGISel() { 327 delete SDB; 328 delete CurDAG; 329 delete FuncInfo; 330 delete SwiftError; 331 } 332 333 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { 334 if (OptLevel != CodeGenOpt::None) 335 AU.addRequired<AAResultsWrapperPass>(); 336 AU.addRequired<GCModuleInfo>(); 337 AU.addRequired<StackProtector>(); 338 AU.addPreserved<GCModuleInfo>(); 339 AU.addRequired<TargetLibraryInfoWrapperPass>(); 340 AU.addRequired<TargetTransformInfoWrapperPass>(); 341 if (UseMBPI && OptLevel != CodeGenOpt::None) 342 AU.addRequired<BranchProbabilityInfoWrapperPass>(); 343 MachineFunctionPass::getAnalysisUsage(AU); 344 } 345 346 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that 347 /// may trap on it. In this case we have to split the edge so that the path 348 /// through the predecessor block that doesn't go to the phi block doesn't 349 /// execute the possibly trapping instruction. If available, we pass domtree 350 /// and loop info to be updated when we split critical edges. This is because 351 /// SelectionDAGISel preserves these analyses. 352 /// This is required for correctness, so it must be done at -O0. 353 /// 354 static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT, 355 LoopInfo *LI) { 356 // Loop for blocks with phi nodes. 357 for (BasicBlock &BB : Fn) { 358 PHINode *PN = dyn_cast<PHINode>(BB.begin()); 359 if (!PN) continue; 360 361 ReprocessBlock: 362 // For each block with a PHI node, check to see if any of the input values 363 // are potentially trapping constant expressions. Constant expressions are 364 // the only potentially trapping value that can occur as the argument to a 365 // PHI. 366 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I) 367 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 368 ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i)); 369 if (!CE || !CE->canTrap()) continue; 370 371 // The only case we have to worry about is when the edge is critical. 372 // Since this block has a PHI Node, we assume it has multiple input 373 // edges: check to see if the pred has multiple successors. 374 BasicBlock *Pred = PN->getIncomingBlock(i); 375 if (Pred->getTerminator()->getNumSuccessors() == 1) 376 continue; 377 378 // Okay, we have to split this edge. 379 SplitCriticalEdge( 380 Pred->getTerminator(), GetSuccessorNumber(Pred, &BB), 381 CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges()); 382 goto ReprocessBlock; 383 } 384 } 385 } 386 387 static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F, 388 MachineModuleInfo &MMI) { 389 // Only needed for MSVC 390 if (!TT.isWindowsMSVCEnvironment()) 391 return; 392 393 // If it's already set, nothing to do. 394 if (MMI.usesMSVCFloatingPoint()) 395 return; 396 397 for (const Instruction &I : instructions(F)) { 398 if (I.getType()->isFPOrFPVectorTy()) { 399 MMI.setUsesMSVCFloatingPoint(true); 400 return; 401 } 402 for (const auto &Op : I.operands()) { 403 if (Op->getType()->isFPOrFPVectorTy()) { 404 MMI.setUsesMSVCFloatingPoint(true); 405 return; 406 } 407 } 408 } 409 } 410 411 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { 412 // If we already selected that function, we do not need to run SDISel. 413 if (mf.getProperties().hasProperty( 414 MachineFunctionProperties::Property::Selected)) 415 return false; 416 // Do some sanity-checking on the command-line options. 417 assert((!EnableFastISelAbort || TM.Options.EnableFastISel) && 418 "-fast-isel-abort > 0 requires -fast-isel"); 419 420 const Function &Fn = mf.getFunction(); 421 MF = &mf; 422 423 // Reset the target options before resetting the optimization 424 // level below. 425 // FIXME: This is a horrible hack and should be processed via 426 // codegen looking at the optimization level explicitly when 427 // it wants to look at it. 428 TM.resetTargetOptions(Fn); 429 // Reset OptLevel to None for optnone functions. 430 CodeGenOpt::Level NewOptLevel = OptLevel; 431 if (OptLevel != CodeGenOpt::None && skipFunction(Fn)) 432 NewOptLevel = CodeGenOpt::None; 433 OptLevelChanger OLC(*this, NewOptLevel); 434 435 TII = MF->getSubtarget().getInstrInfo(); 436 TLI = MF->getSubtarget().getTargetLowering(); 437 RegInfo = &MF->getRegInfo(); 438 LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(Fn); 439 GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr; 440 ORE = std::make_unique<OptimizationRemarkEmitter>(&Fn); 441 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 442 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; 443 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 444 LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 445 446 LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); 447 448 SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI); 449 450 CurDAG->init(*MF, *ORE, this, LibInfo, 451 getAnalysisIfAvailable<LegacyDivergenceAnalysis>()); 452 FuncInfo->set(Fn, *MF, CurDAG); 453 SwiftError->setFunction(*MF); 454 455 // Now get the optional analyzes if we want to. 456 // This is based on the possibly changed OptLevel (after optnone is taken 457 // into account). That's unfortunate but OK because it just means we won't 458 // ask for passes that have been required anyway. 459 460 if (UseMBPI && OptLevel != CodeGenOpt::None) 461 FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI(); 462 else 463 FuncInfo->BPI = nullptr; 464 465 if (OptLevel != CodeGenOpt::None) 466 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 467 else 468 AA = nullptr; 469 470 SDB->init(GFI, AA, LibInfo); 471 472 MF->setHasInlineAsm(false); 473 474 FuncInfo->SplitCSR = false; 475 476 // We split CSR if the target supports it for the given function 477 // and the function has only return exits. 478 if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) { 479 FuncInfo->SplitCSR = true; 480 481 // Collect all the return blocks. 482 for (const BasicBlock &BB : Fn) { 483 if (!succ_empty(&BB)) 484 continue; 485 486 const Instruction *Term = BB.getTerminator(); 487 if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term)) 488 continue; 489 490 // Bail out if the exit block is not Return nor Unreachable. 491 FuncInfo->SplitCSR = false; 492 break; 493 } 494 } 495 496 MachineBasicBlock *EntryMBB = &MF->front(); 497 if (FuncInfo->SplitCSR) 498 // This performs initialization so lowering for SplitCSR will be correct. 499 TLI->initializeSplitCSR(EntryMBB); 500 501 SelectAllBasicBlocks(Fn); 502 if (FastISelFailed && EnableFastISelFallbackReport) { 503 DiagnosticInfoISelFallback DiagFallback(Fn); 504 Fn.getContext().diagnose(DiagFallback); 505 } 506 507 // Replace forward-declared registers with the registers containing 508 // the desired value. 509 // Note: it is important that this happens **before** the call to 510 // EmitLiveInCopies, since implementations can skip copies of unused 511 // registers. If we don't apply the reg fixups before, some registers may 512 // appear as unused and will be skipped, resulting in bad MI. 513 MachineRegisterInfo &MRI = MF->getRegInfo(); 514 for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(), 515 E = FuncInfo->RegFixups.end(); 516 I != E; ++I) { 517 unsigned From = I->first; 518 unsigned To = I->second; 519 // If To is also scheduled to be replaced, find what its ultimate 520 // replacement is. 521 while (true) { 522 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 523 if (J == E) 524 break; 525 To = J->second; 526 } 527 // Make sure the new register has a sufficiently constrained register class. 528 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 529 MRI.constrainRegClass(To, MRI.getRegClass(From)); 530 // Replace it. 531 532 // Replacing one register with another won't touch the kill flags. 533 // We need to conservatively clear the kill flags as a kill on the old 534 // register might dominate existing uses of the new register. 535 if (!MRI.use_empty(To)) 536 MRI.clearKillFlags(From); 537 MRI.replaceRegWith(From, To); 538 } 539 540 // If the first basic block in the function has live ins that need to be 541 // copied into vregs, emit the copies into the top of the block before 542 // emitting the code for the block. 543 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 544 RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII); 545 546 // Insert copies in the entry block and the return blocks. 547 if (FuncInfo->SplitCSR) { 548 SmallVector<MachineBasicBlock*, 4> Returns; 549 // Collect all the return blocks. 550 for (MachineBasicBlock &MBB : mf) { 551 if (!MBB.succ_empty()) 552 continue; 553 554 MachineBasicBlock::iterator Term = MBB.getFirstTerminator(); 555 if (Term != MBB.end() && Term->isReturn()) { 556 Returns.push_back(&MBB); 557 continue; 558 } 559 } 560 TLI->insertCopiesSplitCSR(EntryMBB, Returns); 561 } 562 563 DenseMap<unsigned, unsigned> LiveInMap; 564 if (!FuncInfo->ArgDbgValues.empty()) 565 for (std::pair<unsigned, unsigned> LI : RegInfo->liveins()) 566 if (LI.second) 567 LiveInMap.insert(LI); 568 569 // Insert DBG_VALUE instructions for function arguments to the entry block. 570 for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) { 571 MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1]; 572 bool hasFI = MI->getOperand(0).isFI(); 573 Register Reg = 574 hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg(); 575 if (Register::isPhysicalRegister(Reg)) 576 EntryMBB->insert(EntryMBB->begin(), MI); 577 else { 578 MachineInstr *Def = RegInfo->getVRegDef(Reg); 579 if (Def) { 580 MachineBasicBlock::iterator InsertPos = Def; 581 // FIXME: VR def may not be in entry block. 582 Def->getParent()->insert(std::next(InsertPos), MI); 583 } else 584 LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg" 585 << Register::virtReg2Index(Reg) << "\n"); 586 } 587 588 // If Reg is live-in then update debug info to track its copy in a vreg. 589 DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg); 590 if (LDI != LiveInMap.end()) { 591 assert(!hasFI && "There's no handling of frame pointer updating here yet " 592 "- add if needed"); 593 MachineInstr *Def = RegInfo->getVRegDef(LDI->second); 594 MachineBasicBlock::iterator InsertPos = Def; 595 const MDNode *Variable = MI->getDebugVariable(); 596 const MDNode *Expr = MI->getDebugExpression(); 597 DebugLoc DL = MI->getDebugLoc(); 598 bool IsIndirect = MI->isIndirectDebugValue(); 599 if (IsIndirect) 600 assert(MI->getOperand(1).getImm() == 0 && 601 "DBG_VALUE with nonzero offset"); 602 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 603 "Expected inlined-at fields to agree"); 604 // Def is never a terminator here, so it is ok to increment InsertPos. 605 BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE), 606 IsIndirect, LDI->second, Variable, Expr); 607 608 // If this vreg is directly copied into an exported register then 609 // that COPY instructions also need DBG_VALUE, if it is the only 610 // user of LDI->second. 611 MachineInstr *CopyUseMI = nullptr; 612 for (MachineRegisterInfo::use_instr_iterator 613 UI = RegInfo->use_instr_begin(LDI->second), 614 E = RegInfo->use_instr_end(); UI != E; ) { 615 MachineInstr *UseMI = &*(UI++); 616 if (UseMI->isDebugValue()) continue; 617 if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) { 618 CopyUseMI = UseMI; continue; 619 } 620 // Otherwise this is another use or second copy use. 621 CopyUseMI = nullptr; break; 622 } 623 if (CopyUseMI) { 624 // Use MI's debug location, which describes where Variable was 625 // declared, rather than whatever is attached to CopyUseMI. 626 MachineInstr *NewMI = 627 BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 628 CopyUseMI->getOperand(0).getReg(), Variable, Expr); 629 MachineBasicBlock::iterator Pos = CopyUseMI; 630 EntryMBB->insertAfter(Pos, NewMI); 631 } 632 } 633 } 634 635 // Determine if there are any calls in this machine function. 636 MachineFrameInfo &MFI = MF->getFrameInfo(); 637 for (const auto &MBB : *MF) { 638 if (MFI.hasCalls() && MF->hasInlineAsm()) 639 break; 640 641 for (const auto &MI : MBB) { 642 const MCInstrDesc &MCID = TII->get(MI.getOpcode()); 643 if ((MCID.isCall() && !MCID.isReturn()) || 644 MI.isStackAligningInlineAsm()) { 645 MFI.setHasCalls(true); 646 } 647 if (MI.isInlineAsm()) { 648 MF->setHasInlineAsm(true); 649 } 650 } 651 } 652 653 // Determine if there is a call to setjmp in the machine function. 654 MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice()); 655 656 // Determine if floating point is used for msvc 657 computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI()); 658 659 // Replace forward-declared registers with the registers containing 660 // the desired value. 661 for (DenseMap<unsigned, unsigned>::iterator 662 I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end(); 663 I != E; ++I) { 664 unsigned From = I->first; 665 unsigned To = I->second; 666 // If To is also scheduled to be replaced, find what its ultimate 667 // replacement is. 668 while (true) { 669 DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To); 670 if (J == E) break; 671 To = J->second; 672 } 673 // Make sure the new register has a sufficiently constrained register class. 674 if (Register::isVirtualRegister(From) && Register::isVirtualRegister(To)) 675 MRI.constrainRegClass(To, MRI.getRegClass(From)); 676 // Replace it. 677 678 679 // Replacing one register with another won't touch the kill flags. 680 // We need to conservatively clear the kill flags as a kill on the old 681 // register might dominate existing uses of the new register. 682 if (!MRI.use_empty(To)) 683 MRI.clearKillFlags(From); 684 MRI.replaceRegWith(From, To); 685 } 686 687 TLI->finalizeLowering(*MF); 688 689 // Release function-specific state. SDB and CurDAG are already cleared 690 // at this point. 691 FuncInfo->clear(); 692 693 LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n"); 694 LLVM_DEBUG(MF->print(dbgs())); 695 696 return true; 697 } 698 699 static void reportFastISelFailure(MachineFunction &MF, 700 OptimizationRemarkEmitter &ORE, 701 OptimizationRemarkMissed &R, 702 bool ShouldAbort) { 703 // Print the function name explicitly if we don't have a debug location (which 704 // makes the diagnostic less useful) or if we're going to emit a raw error. 705 if (!R.getLocation().isValid() || ShouldAbort) 706 R << (" (in function: " + MF.getName() + ")").str(); 707 708 if (ShouldAbort) 709 report_fatal_error(R.getMsg()); 710 711 ORE.emit(R); 712 } 713 714 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin, 715 BasicBlock::const_iterator End, 716 bool &HadTailCall) { 717 // Allow creating illegal types during DAG building for the basic block. 718 CurDAG->NewNodesMustHaveLegalTypes = false; 719 720 // Lower the instructions. If a call is emitted as a tail call, cease emitting 721 // nodes for this block. 722 for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { 723 if (!ElidedArgCopyInstrs.count(&*I)) 724 SDB->visit(*I); 725 } 726 727 // Make sure the root of the DAG is up-to-date. 728 CurDAG->setRoot(SDB->getControlRoot()); 729 HadTailCall = SDB->HasTailCall; 730 SDB->resolveOrClearDbgInfo(); 731 SDB->clear(); 732 733 // Final step, emit the lowered DAG as machine code. 734 CodeGenAndEmitDAG(); 735 } 736 737 void SelectionDAGISel::ComputeLiveOutVRegInfo() { 738 SmallPtrSet<SDNode*, 16> VisitedNodes; 739 SmallVector<SDNode*, 128> Worklist; 740 741 Worklist.push_back(CurDAG->getRoot().getNode()); 742 743 KnownBits Known; 744 745 do { 746 SDNode *N = Worklist.pop_back_val(); 747 748 // If we've already seen this node, ignore it. 749 if (!VisitedNodes.insert(N).second) 750 continue; 751 752 // Otherwise, add all chain operands to the worklist. 753 for (const SDValue &Op : N->op_values()) 754 if (Op.getValueType() == MVT::Other) 755 Worklist.push_back(Op.getNode()); 756 757 // If this is a CopyToReg with a vreg dest, process it. 758 if (N->getOpcode() != ISD::CopyToReg) 759 continue; 760 761 unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); 762 if (!Register::isVirtualRegister(DestReg)) 763 continue; 764 765 // Ignore non-integer values. 766 SDValue Src = N->getOperand(2); 767 EVT SrcVT = Src.getValueType(); 768 if (!SrcVT.isInteger()) 769 continue; 770 771 unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); 772 Known = CurDAG->computeKnownBits(Src); 773 FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known); 774 } while (!Worklist.empty()); 775 } 776 777 void SelectionDAGISel::CodeGenAndEmitDAG() { 778 StringRef GroupName = "sdag"; 779 StringRef GroupDescription = "Instruction Selection and Scheduling"; 780 std::string BlockName; 781 bool MatchFilterBB = false; (void)MatchFilterBB; 782 #ifndef NDEBUG 783 TargetTransformInfo &TTI = 784 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn); 785 #endif 786 787 // Pre-type legalization allow creation of any node types. 788 CurDAG->NewNodesMustHaveLegalTypes = false; 789 790 #ifndef NDEBUG 791 MatchFilterBB = (FilterDAGBasicBlockName.empty() || 792 FilterDAGBasicBlockName == 793 FuncInfo->MBB->getBasicBlock()->getName()); 794 #endif 795 #ifdef NDEBUG 796 if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || 797 ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || 798 ViewSUnitDAGs) 799 #endif 800 { 801 BlockName = 802 (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str(); 803 } 804 LLVM_DEBUG(dbgs() << "Initial selection DAG: " 805 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 806 << "'\n"; 807 CurDAG->dump()); 808 809 if (ViewDAGCombine1 && MatchFilterBB) 810 CurDAG->viewGraph("dag-combine1 input for " + BlockName); 811 812 // Run the DAG combiner in pre-legalize mode. 813 { 814 NamedRegionTimer T("combine1", "DAG Combining 1", GroupName, 815 GroupDescription, TimePassesIsEnabled); 816 CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel); 817 } 818 819 #ifndef NDEBUG 820 if (TTI.hasBranchDivergence()) 821 CurDAG->VerifyDAGDiverence(); 822 #endif 823 824 LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: " 825 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 826 << "'\n"; 827 CurDAG->dump()); 828 829 // Second step, hack on the DAG until it only uses operations and types that 830 // the target supports. 831 if (ViewLegalizeTypesDAGs && MatchFilterBB) 832 CurDAG->viewGraph("legalize-types input for " + BlockName); 833 834 bool Changed; 835 { 836 NamedRegionTimer T("legalize_types", "Type Legalization", GroupName, 837 GroupDescription, TimePassesIsEnabled); 838 Changed = CurDAG->LegalizeTypes(); 839 } 840 841 #ifndef NDEBUG 842 if (TTI.hasBranchDivergence()) 843 CurDAG->VerifyDAGDiverence(); 844 #endif 845 846 LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: " 847 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 848 << "'\n"; 849 CurDAG->dump()); 850 851 // Only allow creation of legal node types. 852 CurDAG->NewNodesMustHaveLegalTypes = true; 853 854 if (Changed) { 855 if (ViewDAGCombineLT && MatchFilterBB) 856 CurDAG->viewGraph("dag-combine-lt input for " + BlockName); 857 858 // Run the DAG combiner in post-type-legalize mode. 859 { 860 NamedRegionTimer T("combine_lt", "DAG Combining after legalize types", 861 GroupName, GroupDescription, TimePassesIsEnabled); 862 CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel); 863 } 864 865 #ifndef NDEBUG 866 if (TTI.hasBranchDivergence()) 867 CurDAG->VerifyDAGDiverence(); 868 #endif 869 870 LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: " 871 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 872 << "'\n"; 873 CurDAG->dump()); 874 } 875 876 { 877 NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName, 878 GroupDescription, TimePassesIsEnabled); 879 Changed = CurDAG->LegalizeVectors(); 880 } 881 882 if (Changed) { 883 LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: " 884 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 885 << "'\n"; 886 CurDAG->dump()); 887 888 { 889 NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName, 890 GroupDescription, TimePassesIsEnabled); 891 CurDAG->LegalizeTypes(); 892 } 893 894 LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: " 895 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 896 << "'\n"; 897 CurDAG->dump()); 898 899 if (ViewDAGCombineLT && MatchFilterBB) 900 CurDAG->viewGraph("dag-combine-lv input for " + BlockName); 901 902 // Run the DAG combiner in post-type-legalize mode. 903 { 904 NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors", 905 GroupName, GroupDescription, TimePassesIsEnabled); 906 CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel); 907 } 908 909 LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: " 910 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 911 << "'\n"; 912 CurDAG->dump()); 913 914 #ifndef NDEBUG 915 if (TTI.hasBranchDivergence()) 916 CurDAG->VerifyDAGDiverence(); 917 #endif 918 } 919 920 if (ViewLegalizeDAGs && MatchFilterBB) 921 CurDAG->viewGraph("legalize input for " + BlockName); 922 923 { 924 NamedRegionTimer T("legalize", "DAG Legalization", GroupName, 925 GroupDescription, TimePassesIsEnabled); 926 CurDAG->Legalize(); 927 } 928 929 #ifndef NDEBUG 930 if (TTI.hasBranchDivergence()) 931 CurDAG->VerifyDAGDiverence(); 932 #endif 933 934 LLVM_DEBUG(dbgs() << "Legalized selection DAG: " 935 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 936 << "'\n"; 937 CurDAG->dump()); 938 939 if (ViewDAGCombine2 && MatchFilterBB) 940 CurDAG->viewGraph("dag-combine2 input for " + BlockName); 941 942 // Run the DAG combiner in post-legalize mode. 943 { 944 NamedRegionTimer T("combine2", "DAG Combining 2", GroupName, 945 GroupDescription, TimePassesIsEnabled); 946 CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel); 947 } 948 949 #ifndef NDEBUG 950 if (TTI.hasBranchDivergence()) 951 CurDAG->VerifyDAGDiverence(); 952 #endif 953 954 LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: " 955 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 956 << "'\n"; 957 CurDAG->dump()); 958 959 if (OptLevel != CodeGenOpt::None) 960 ComputeLiveOutVRegInfo(); 961 962 if (ViewISelDAGs && MatchFilterBB) 963 CurDAG->viewGraph("isel input for " + BlockName); 964 965 // Third, instruction select all of the operations to machine code, adding the 966 // code to the MachineBasicBlock. 967 { 968 NamedRegionTimer T("isel", "Instruction Selection", GroupName, 969 GroupDescription, TimePassesIsEnabled); 970 DoInstructionSelection(); 971 } 972 973 LLVM_DEBUG(dbgs() << "Selected selection DAG: " 974 << printMBBReference(*FuncInfo->MBB) << " '" << BlockName 975 << "'\n"; 976 CurDAG->dump()); 977 978 if (ViewSchedDAGs && MatchFilterBB) 979 CurDAG->viewGraph("scheduler input for " + BlockName); 980 981 // Schedule machine code. 982 ScheduleDAGSDNodes *Scheduler = CreateScheduler(); 983 { 984 NamedRegionTimer T("sched", "Instruction Scheduling", GroupName, 985 GroupDescription, TimePassesIsEnabled); 986 Scheduler->Run(CurDAG, FuncInfo->MBB); 987 } 988 989 if (ViewSUnitDAGs && MatchFilterBB) 990 Scheduler->viewGraph(); 991 992 // Emit machine code to BB. This can change 'BB' to the last block being 993 // inserted into. 994 MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB; 995 { 996 NamedRegionTimer T("emit", "Instruction Creation", GroupName, 997 GroupDescription, TimePassesIsEnabled); 998 999 // FuncInfo->InsertPt is passed by reference and set to the end of the 1000 // scheduled instructions. 1001 LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt); 1002 } 1003 1004 // If the block was split, make sure we update any references that are used to 1005 // update PHI nodes later on. 1006 if (FirstMBB != LastMBB) 1007 SDB->UpdateSplitBlock(FirstMBB, LastMBB); 1008 1009 // Free the scheduler state. 1010 { 1011 NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName, 1012 GroupDescription, TimePassesIsEnabled); 1013 delete Scheduler; 1014 } 1015 1016 // Free the SelectionDAG state, now that we're finished with it. 1017 CurDAG->clear(); 1018 } 1019 1020 namespace { 1021 1022 /// ISelUpdater - helper class to handle updates of the instruction selection 1023 /// graph. 1024 class ISelUpdater : public SelectionDAG::DAGUpdateListener { 1025 SelectionDAG::allnodes_iterator &ISelPosition; 1026 1027 public: 1028 ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp) 1029 : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {} 1030 1031 /// NodeDeleted - Handle nodes deleted from the graph. If the node being 1032 /// deleted is the current ISelPosition node, update ISelPosition. 1033 /// 1034 void NodeDeleted(SDNode *N, SDNode *E) override { 1035 if (ISelPosition == SelectionDAG::allnodes_iterator(N)) 1036 ++ISelPosition; 1037 } 1038 }; 1039 1040 } // end anonymous namespace 1041 1042 // This function is used to enforce the topological node id property 1043 // property leveraged during Instruction selection. Before selection all 1044 // nodes are given a non-negative id such that all nodes have a larger id than 1045 // their operands. As this holds transitively we can prune checks that a node N 1046 // is a predecessor of M another by not recursively checking through M's 1047 // operands if N's ID is larger than M's ID. This is significantly improves 1048 // performance of for various legality checks (e.g. IsLegalToFold / 1049 // UpdateChains). 1050 1051 // However, when we fuse multiple nodes into a single node 1052 // during selection we may induce a predecessor relationship between inputs and 1053 // outputs of distinct nodes being merged violating the topological property. 1054 // Should a fused node have a successor which has yet to be selected, our 1055 // legality checks would be incorrect. To avoid this we mark all unselected 1056 // sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x => 1057 // (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M. 1058 // We use bit-negation to more clearly enforce that node id -1 can only be 1059 // achieved by selected nodes). As the conversion is reversable the original Id, 1060 // topological pruning can still be leveraged when looking for unselected nodes. 1061 // This method is call internally in all ISel replacement calls. 1062 void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) { 1063 SmallVector<SDNode *, 4> Nodes; 1064 Nodes.push_back(Node); 1065 1066 while (!Nodes.empty()) { 1067 SDNode *N = Nodes.pop_back_val(); 1068 for (auto *U : N->uses()) { 1069 auto UId = U->getNodeId(); 1070 if (UId > 0) { 1071 InvalidateNodeId(U); 1072 Nodes.push_back(U); 1073 } 1074 } 1075 } 1076 } 1077 1078 // InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a 1079 // NodeId with the equivalent node id which is invalid for topological 1080 // pruning. 1081 void SelectionDAGISel::InvalidateNodeId(SDNode *N) { 1082 int InvalidId = -(N->getNodeId() + 1); 1083 N->setNodeId(InvalidId); 1084 } 1085 1086 // getUninvalidatedNodeId - get original uninvalidated node id. 1087 int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) { 1088 int Id = N->getNodeId(); 1089 if (Id < -1) 1090 return -(Id + 1); 1091 return Id; 1092 } 1093 1094 void SelectionDAGISel::DoInstructionSelection() { 1095 LLVM_DEBUG(dbgs() << "===== Instruction selection begins: " 1096 << printMBBReference(*FuncInfo->MBB) << " '" 1097 << FuncInfo->MBB->getName() << "'\n"); 1098 1099 PreprocessISelDAG(); 1100 1101 // Select target instructions for the DAG. 1102 { 1103 // Number all nodes with a topological order and set DAGSize. 1104 DAGSize = CurDAG->AssignTopologicalOrder(); 1105 1106 // Create a dummy node (which is not added to allnodes), that adds 1107 // a reference to the root node, preventing it from being deleted, 1108 // and tracking any changes of the root. 1109 HandleSDNode Dummy(CurDAG->getRoot()); 1110 SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode()); 1111 ++ISelPosition; 1112 1113 // Make sure that ISelPosition gets properly updated when nodes are deleted 1114 // in calls made from this function. 1115 ISelUpdater ISU(*CurDAG, ISelPosition); 1116 1117 // The AllNodes list is now topological-sorted. Visit the 1118 // nodes by starting at the end of the list (the root of the 1119 // graph) and preceding back toward the beginning (the entry 1120 // node). 1121 while (ISelPosition != CurDAG->allnodes_begin()) { 1122 SDNode *Node = &*--ISelPosition; 1123 // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, 1124 // but there are currently some corner cases that it misses. Also, this 1125 // makes it theoretically possible to disable the DAGCombiner. 1126 if (Node->use_empty()) 1127 continue; 1128 1129 #ifndef NDEBUG 1130 SmallVector<SDNode *, 4> Nodes; 1131 Nodes.push_back(Node); 1132 1133 while (!Nodes.empty()) { 1134 auto N = Nodes.pop_back_val(); 1135 if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0) 1136 continue; 1137 for (const SDValue &Op : N->op_values()) { 1138 if (Op->getOpcode() == ISD::TokenFactor) 1139 Nodes.push_back(Op.getNode()); 1140 else { 1141 // We rely on topological ordering of node ids for checking for 1142 // cycles when fusing nodes during selection. All unselected nodes 1143 // successors of an already selected node should have a negative id. 1144 // This assertion will catch such cases. If this assertion triggers 1145 // it is likely you using DAG-level Value/Node replacement functions 1146 // (versus equivalent ISEL replacement) in backend-specific 1147 // selections. See comment in EnforceNodeIdInvariant for more 1148 // details. 1149 assert(Op->getNodeId() != -1 && 1150 "Node has already selected predecessor node"); 1151 } 1152 } 1153 } 1154 #endif 1155 1156 // When we are using non-default rounding modes or FP exception behavior 1157 // FP operations are represented by StrictFP pseudo-operations. For 1158 // targets that do not (yet) understand strict FP operations directly, 1159 // we convert them to normal FP opcodes instead at this point. This 1160 // will allow them to be handled by existing target-specific instruction 1161 // selectors. 1162 if (Node->isStrictFPOpcode() && 1163 (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0)) 1164 != TargetLowering::Legal)) 1165 Node = CurDAG->mutateStrictFPToFP(Node); 1166 1167 LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: "; 1168 Node->dump(CurDAG)); 1169 1170 Select(Node); 1171 } 1172 1173 CurDAG->setRoot(Dummy.getValue()); 1174 } 1175 1176 LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n"); 1177 1178 PostprocessISelDAG(); 1179 } 1180 1181 static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) { 1182 for (const User *U : CPI->users()) { 1183 if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) { 1184 Intrinsic::ID IID = EHPtrCall->getIntrinsicID(); 1185 if (IID == Intrinsic::eh_exceptionpointer || 1186 IID == Intrinsic::eh_exceptioncode) 1187 return true; 1188 } 1189 } 1190 return false; 1191 } 1192 1193 // wasm.landingpad.index intrinsic is for associating a landing pad index number 1194 // with a catchpad instruction. Retrieve the landing pad index in the intrinsic 1195 // and store the mapping in the function. 1196 static void mapWasmLandingPadIndex(MachineBasicBlock *MBB, 1197 const CatchPadInst *CPI) { 1198 MachineFunction *MF = MBB->getParent(); 1199 // In case of single catch (...), we don't emit LSDA, so we don't need 1200 // this information. 1201 bool IsSingleCatchAllClause = 1202 CPI->getNumArgOperands() == 1 && 1203 cast<Constant>(CPI->getArgOperand(0))->isNullValue(); 1204 if (!IsSingleCatchAllClause) { 1205 // Create a mapping from landing pad label to landing pad index. 1206 bool IntrFound = false; 1207 for (const User *U : CPI->users()) { 1208 if (const auto *Call = dyn_cast<IntrinsicInst>(U)) { 1209 Intrinsic::ID IID = Call->getIntrinsicID(); 1210 if (IID == Intrinsic::wasm_landingpad_index) { 1211 Value *IndexArg = Call->getArgOperand(1); 1212 int Index = cast<ConstantInt>(IndexArg)->getZExtValue(); 1213 MF->setWasmLandingPadIndex(MBB, Index); 1214 IntrFound = true; 1215 break; 1216 } 1217 } 1218 } 1219 assert(IntrFound && "wasm.landingpad.index intrinsic not found!"); 1220 (void)IntrFound; 1221 } 1222 } 1223 1224 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and 1225 /// do other setup for EH landing-pad blocks. 1226 bool SelectionDAGISel::PrepareEHLandingPad() { 1227 MachineBasicBlock *MBB = FuncInfo->MBB; 1228 const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn(); 1229 const BasicBlock *LLVMBB = MBB->getBasicBlock(); 1230 const TargetRegisterClass *PtrRC = 1231 TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout())); 1232 1233 auto Pers = classifyEHPersonality(PersonalityFn); 1234 1235 // Catchpads have one live-in register, which typically holds the exception 1236 // pointer or code. 1237 if (isFuncletEHPersonality(Pers)) { 1238 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) { 1239 if (hasExceptionPointerOrCodeUser(CPI)) { 1240 // Get or create the virtual register to hold the pointer or code. Mark 1241 // the live in physreg and copy into the vreg. 1242 MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn); 1243 assert(EHPhysReg && "target lacks exception pointer register"); 1244 MBB->addLiveIn(EHPhysReg); 1245 unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC); 1246 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), 1247 TII->get(TargetOpcode::COPY), VReg) 1248 .addReg(EHPhysReg, RegState::Kill); 1249 } 1250 } 1251 return true; 1252 } 1253 1254 // Add a label to mark the beginning of the landing pad. Deletion of the 1255 // landing pad can thus be detected via the MachineModuleInfo. 1256 MCSymbol *Label = MF->addLandingPad(MBB); 1257 1258 const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL); 1259 BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II) 1260 .addSym(Label); 1261 1262 if (Pers == EHPersonality::Wasm_CXX) { 1263 if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) 1264 mapWasmLandingPadIndex(MBB, CPI); 1265 } else { 1266 // Assign the call site to the landing pad's begin label. 1267 MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]); 1268 // Mark exception register as live in. 1269 if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn)) 1270 FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC); 1271 // Mark exception selector register as live in. 1272 if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn)) 1273 FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC); 1274 } 1275 1276 return true; 1277 } 1278 1279 /// isFoldedOrDeadInstruction - Return true if the specified instruction is 1280 /// side-effect free and is either dead or folded into a generated instruction. 1281 /// Return false if it needs to be emitted. 1282 static bool isFoldedOrDeadInstruction(const Instruction *I, 1283 FunctionLoweringInfo *FuncInfo) { 1284 return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded. 1285 !I->isTerminator() && // Terminators aren't folded. 1286 !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded. 1287 !I->isEHPad() && // EH pad instructions aren't folded. 1288 !FuncInfo->isExportedInst(I); // Exported instrs must be computed. 1289 } 1290 1291 /// Collect llvm.dbg.declare information. This is done after argument lowering 1292 /// in case the declarations refer to arguments. 1293 static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) { 1294 MachineFunction *MF = FuncInfo->MF; 1295 const DataLayout &DL = MF->getDataLayout(); 1296 for (const BasicBlock &BB : *FuncInfo->Fn) { 1297 for (const Instruction &I : BB) { 1298 const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I); 1299 if (!DI) 1300 continue; 1301 1302 assert(DI->getVariable() && "Missing variable"); 1303 assert(DI->getDebugLoc() && "Missing location"); 1304 const Value *Address = DI->getAddress(); 1305 if (!Address) 1306 continue; 1307 1308 // Look through casts and constant offset GEPs. These mostly come from 1309 // inalloca. 1310 APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0); 1311 Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 1312 1313 // Check if the variable is a static alloca or a byval or inalloca 1314 // argument passed in memory. If it is not, then we will ignore this 1315 // intrinsic and handle this during isel like dbg.value. 1316 int FI = std::numeric_limits<int>::max(); 1317 if (const auto *AI = dyn_cast<AllocaInst>(Address)) { 1318 auto SI = FuncInfo->StaticAllocaMap.find(AI); 1319 if (SI != FuncInfo->StaticAllocaMap.end()) 1320 FI = SI->second; 1321 } else if (const auto *Arg = dyn_cast<Argument>(Address)) 1322 FI = FuncInfo->getArgumentFrameIndex(Arg); 1323 1324 if (FI == std::numeric_limits<int>::max()) 1325 continue; 1326 1327 DIExpression *Expr = DI->getExpression(); 1328 if (Offset.getBoolValue()) 1329 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, 1330 Offset.getZExtValue()); 1331 MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc()); 1332 } 1333 } 1334 } 1335 1336 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) { 1337 FastISelFailed = false; 1338 // Initialize the Fast-ISel state, if needed. 1339 FastISel *FastIS = nullptr; 1340 if (TM.Options.EnableFastISel) { 1341 LLVM_DEBUG(dbgs() << "Enabling fast-isel\n"); 1342 FastIS = TLI->createFastISel(*FuncInfo, LibInfo); 1343 } 1344 1345 ReversePostOrderTraversal<const Function*> RPOT(&Fn); 1346 1347 // Lower arguments up front. An RPO iteration always visits the entry block 1348 // first. 1349 assert(*RPOT.begin() == &Fn.getEntryBlock()); 1350 ++NumEntryBlocks; 1351 1352 // Set up FuncInfo for ISel. Entry blocks never have PHIs. 1353 FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()]; 1354 FuncInfo->InsertPt = FuncInfo->MBB->begin(); 1355 1356 CurDAG->setFunctionLoweringInfo(FuncInfo); 1357 1358 if (!FastIS) { 1359 LowerArguments(Fn); 1360 } else { 1361 // See if fast isel can lower the arguments. 1362 FastIS->startNewBlock(); 1363 if (!FastIS->lowerArguments()) { 1364 FastISelFailed = true; 1365 // Fast isel failed to lower these arguments 1366 ++NumFastIselFailLowerArguments; 1367 1368 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1369 Fn.getSubprogram(), 1370 &Fn.getEntryBlock()); 1371 R << "FastISel didn't lower all arguments: " 1372 << ore::NV("Prototype", Fn.getType()); 1373 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1); 1374 1375 // Use SelectionDAG argument lowering 1376 LowerArguments(Fn); 1377 CurDAG->setRoot(SDB->getControlRoot()); 1378 SDB->clear(); 1379 CodeGenAndEmitDAG(); 1380 } 1381 1382 // If we inserted any instructions at the beginning, make a note of 1383 // where they are, so we can be sure to emit subsequent instructions 1384 // after them. 1385 if (FuncInfo->InsertPt != FuncInfo->MBB->begin()) 1386 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1387 else 1388 FastIS->setLastLocalValue(nullptr); 1389 } 1390 1391 bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc()); 1392 1393 if (FastIS && Inserted) 1394 FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt)); 1395 1396 processDbgDeclares(FuncInfo); 1397 1398 // Iterate over all basic blocks in the function. 1399 StackProtector &SP = getAnalysis<StackProtector>(); 1400 for (const BasicBlock *LLVMBB : RPOT) { 1401 if (OptLevel != CodeGenOpt::None) { 1402 bool AllPredsVisited = true; 1403 for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB); 1404 PI != PE; ++PI) { 1405 if (!FuncInfo->VisitedBBs.count(*PI)) { 1406 AllPredsVisited = false; 1407 break; 1408 } 1409 } 1410 1411 if (AllPredsVisited) { 1412 for (const PHINode &PN : LLVMBB->phis()) 1413 FuncInfo->ComputePHILiveOutRegInfo(&PN); 1414 } else { 1415 for (const PHINode &PN : LLVMBB->phis()) 1416 FuncInfo->InvalidatePHILiveOutRegInfo(&PN); 1417 } 1418 1419 FuncInfo->VisitedBBs.insert(LLVMBB); 1420 } 1421 1422 BasicBlock::const_iterator const Begin = 1423 LLVMBB->getFirstNonPHI()->getIterator(); 1424 BasicBlock::const_iterator const End = LLVMBB->end(); 1425 BasicBlock::const_iterator BI = End; 1426 1427 FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB]; 1428 if (!FuncInfo->MBB) 1429 continue; // Some blocks like catchpads have no code or MBB. 1430 1431 // Insert new instructions after any phi or argument setup code. 1432 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1433 1434 // Setup an EH landing-pad block. 1435 FuncInfo->ExceptionPointerVirtReg = 0; 1436 FuncInfo->ExceptionSelectorVirtReg = 0; 1437 if (LLVMBB->isEHPad()) 1438 if (!PrepareEHLandingPad()) 1439 continue; 1440 1441 // Before doing SelectionDAG ISel, see if FastISel has been requested. 1442 if (FastIS) { 1443 if (LLVMBB != &Fn.getEntryBlock()) 1444 FastIS->startNewBlock(); 1445 1446 unsigned NumFastIselRemaining = std::distance(Begin, End); 1447 1448 // Pre-assign swifterror vregs. 1449 SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End); 1450 1451 // Do FastISel on as many instructions as possible. 1452 for (; BI != Begin; --BI) { 1453 const Instruction *Inst = &*std::prev(BI); 1454 1455 // If we no longer require this instruction, skip it. 1456 if (isFoldedOrDeadInstruction(Inst, FuncInfo) || 1457 ElidedArgCopyInstrs.count(Inst)) { 1458 --NumFastIselRemaining; 1459 continue; 1460 } 1461 1462 // Bottom-up: reset the insert pos at the top, after any local-value 1463 // instructions. 1464 FastIS->recomputeInsertPt(); 1465 1466 // Try to select the instruction with FastISel. 1467 if (FastIS->selectInstruction(Inst)) { 1468 --NumFastIselRemaining; 1469 ++NumFastIselSuccess; 1470 // If fast isel succeeded, skip over all the folded instructions, and 1471 // then see if there is a load right before the selected instructions. 1472 // Try to fold the load if so. 1473 const Instruction *BeforeInst = Inst; 1474 while (BeforeInst != &*Begin) { 1475 BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst)); 1476 if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo)) 1477 break; 1478 } 1479 if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) && 1480 BeforeInst->hasOneUse() && 1481 FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) { 1482 // If we succeeded, don't re-select the load. 1483 BI = std::next(BasicBlock::const_iterator(BeforeInst)); 1484 --NumFastIselRemaining; 1485 ++NumFastIselSuccess; 1486 } 1487 continue; 1488 } 1489 1490 FastISelFailed = true; 1491 1492 // Then handle certain instructions as single-LLVM-Instruction blocks. 1493 // We cannot separate out GCrelocates to their own blocks since we need 1494 // to keep track of gc-relocates for a particular gc-statepoint. This is 1495 // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before 1496 // visitGCRelocate. 1497 if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) && 1498 !isGCResult(Inst)) { 1499 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1500 Inst->getDebugLoc(), LLVMBB); 1501 1502 R << "FastISel missed call"; 1503 1504 if (R.isEnabled() || EnableFastISelAbort) { 1505 std::string InstStrStorage; 1506 raw_string_ostream InstStr(InstStrStorage); 1507 InstStr << *Inst; 1508 1509 R << ": " << InstStr.str(); 1510 } 1511 1512 reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2); 1513 1514 if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() && 1515 !Inst->use_empty()) { 1516 unsigned &R = FuncInfo->ValueMap[Inst]; 1517 if (!R) 1518 R = FuncInfo->CreateRegs(Inst); 1519 } 1520 1521 bool HadTailCall = false; 1522 MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt; 1523 SelectBasicBlock(Inst->getIterator(), BI, HadTailCall); 1524 1525 // If the call was emitted as a tail call, we're done with the block. 1526 // We also need to delete any previously emitted instructions. 1527 if (HadTailCall) { 1528 FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end()); 1529 --BI; 1530 break; 1531 } 1532 1533 // Recompute NumFastIselRemaining as Selection DAG instruction 1534 // selection may have handled the call, input args, etc. 1535 unsigned RemainingNow = std::distance(Begin, BI); 1536 NumFastIselFailures += NumFastIselRemaining - RemainingNow; 1537 NumFastIselRemaining = RemainingNow; 1538 continue; 1539 } 1540 1541 OptimizationRemarkMissed R("sdagisel", "FastISelFailure", 1542 Inst->getDebugLoc(), LLVMBB); 1543 1544 bool ShouldAbort = EnableFastISelAbort; 1545 if (Inst->isTerminator()) { 1546 // Use a different message for terminator misses. 1547 R << "FastISel missed terminator"; 1548 // Don't abort for terminator unless the level is really high 1549 ShouldAbort = (EnableFastISelAbort > 2); 1550 } else { 1551 R << "FastISel missed"; 1552 } 1553 1554 if (R.isEnabled() || EnableFastISelAbort) { 1555 std::string InstStrStorage; 1556 raw_string_ostream InstStr(InstStrStorage); 1557 InstStr << *Inst; 1558 R << ": " << InstStr.str(); 1559 } 1560 1561 reportFastISelFailure(*MF, *ORE, R, ShouldAbort); 1562 1563 NumFastIselFailures += NumFastIselRemaining; 1564 break; 1565 } 1566 1567 FastIS->recomputeInsertPt(); 1568 } 1569 1570 if (SP.shouldEmitSDCheck(*LLVMBB)) { 1571 bool FunctionBasedInstrumentation = 1572 TLI->getSSPStackGuardCheck(*Fn.getParent()); 1573 SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB], 1574 FunctionBasedInstrumentation); 1575 } 1576 1577 if (Begin != BI) 1578 ++NumDAGBlocks; 1579 else 1580 ++NumFastIselBlocks; 1581 1582 if (Begin != BI) { 1583 // Run SelectionDAG instruction selection on the remainder of the block 1584 // not handled by FastISel. If FastISel is not run, this is the entire 1585 // block. 1586 bool HadTailCall; 1587 SelectBasicBlock(Begin, BI, HadTailCall); 1588 1589 // But if FastISel was run, we already selected some of the block. 1590 // If we emitted a tail-call, we need to delete any previously emitted 1591 // instruction that follows it. 1592 if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end()) 1593 FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end()); 1594 } 1595 1596 if (FastIS) 1597 FastIS->finishBasicBlock(); 1598 FinishBasicBlock(); 1599 FuncInfo->PHINodesToUpdate.clear(); 1600 ElidedArgCopyInstrs.clear(); 1601 } 1602 1603 SP.copyToMachineFrameInfo(MF->getFrameInfo()); 1604 1605 SwiftError->propagateVRegs(); 1606 1607 delete FastIS; 1608 SDB->clearDanglingDebugInfo(); 1609 SDB->SPDescriptor.resetPerFunctionState(); 1610 } 1611 1612 /// Given that the input MI is before a partial terminator sequence TSeq, return 1613 /// true if M + TSeq also a partial terminator sequence. 1614 /// 1615 /// A Terminator sequence is a sequence of MachineInstrs which at this point in 1616 /// lowering copy vregs into physical registers, which are then passed into 1617 /// terminator instructors so we can satisfy ABI constraints. A partial 1618 /// terminator sequence is an improper subset of a terminator sequence (i.e. it 1619 /// may be the whole terminator sequence). 1620 static bool MIIsInTerminatorSequence(const MachineInstr &MI) { 1621 // If we do not have a copy or an implicit def, we return true if and only if 1622 // MI is a debug value. 1623 if (!MI.isCopy() && !MI.isImplicitDef()) 1624 // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the 1625 // physical registers if there is debug info associated with the terminator 1626 // of our mbb. We want to include said debug info in our terminator 1627 // sequence, so we return true in that case. 1628 return MI.isDebugValue(); 1629 1630 // We have left the terminator sequence if we are not doing one of the 1631 // following: 1632 // 1633 // 1. Copying a vreg into a physical register. 1634 // 2. Copying a vreg into a vreg. 1635 // 3. Defining a register via an implicit def. 1636 1637 // OPI should always be a register definition... 1638 MachineInstr::const_mop_iterator OPI = MI.operands_begin(); 1639 if (!OPI->isReg() || !OPI->isDef()) 1640 return false; 1641 1642 // Defining any register via an implicit def is always ok. 1643 if (MI.isImplicitDef()) 1644 return true; 1645 1646 // Grab the copy source... 1647 MachineInstr::const_mop_iterator OPI2 = OPI; 1648 ++OPI2; 1649 assert(OPI2 != MI.operands_end() 1650 && "Should have a copy implying we should have 2 arguments."); 1651 1652 // Make sure that the copy dest is not a vreg when the copy source is a 1653 // physical register. 1654 if (!OPI2->isReg() || (!Register::isPhysicalRegister(OPI->getReg()) && 1655 Register::isPhysicalRegister(OPI2->getReg()))) 1656 return false; 1657 1658 return true; 1659 } 1660 1661 /// Find the split point at which to splice the end of BB into its success stack 1662 /// protector check machine basic block. 1663 /// 1664 /// On many platforms, due to ABI constraints, terminators, even before register 1665 /// allocation, use physical registers. This creates an issue for us since 1666 /// physical registers at this point can not travel across basic 1667 /// blocks. Luckily, selectiondag always moves physical registers into vregs 1668 /// when they enter functions and moves them through a sequence of copies back 1669 /// into the physical registers right before the terminator creating a 1670 /// ``Terminator Sequence''. This function is searching for the beginning of the 1671 /// terminator sequence so that we can ensure that we splice off not just the 1672 /// terminator, but additionally the copies that move the vregs into the 1673 /// physical registers. 1674 static MachineBasicBlock::iterator 1675 FindSplitPointForStackProtector(MachineBasicBlock *BB) { 1676 MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator(); 1677 // 1678 if (SplitPoint == BB->begin()) 1679 return SplitPoint; 1680 1681 MachineBasicBlock::iterator Start = BB->begin(); 1682 MachineBasicBlock::iterator Previous = SplitPoint; 1683 --Previous; 1684 1685 while (MIIsInTerminatorSequence(*Previous)) { 1686 SplitPoint = Previous; 1687 if (Previous == Start) 1688 break; 1689 --Previous; 1690 } 1691 1692 return SplitPoint; 1693 } 1694 1695 void 1696 SelectionDAGISel::FinishBasicBlock() { 1697 LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: " 1698 << FuncInfo->PHINodesToUpdate.size() << "\n"; 1699 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; 1700 ++i) dbgs() 1701 << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first 1702 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n"); 1703 1704 // Next, now that we know what the last MBB the LLVM BB expanded is, update 1705 // PHI nodes in successors. 1706 for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) { 1707 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first); 1708 assert(PHI->isPHI() && 1709 "This is not a machine PHI node that we are updating!"); 1710 if (!FuncInfo->MBB->isSuccessor(PHI->getParent())) 1711 continue; 1712 PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB); 1713 } 1714 1715 // Handle stack protector. 1716 if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) { 1717 // The target provides a guard check function. There is no need to 1718 // generate error handling code or to split current basic block. 1719 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1720 1721 // Add load and check to the basicblock. 1722 FuncInfo->MBB = ParentMBB; 1723 FuncInfo->InsertPt = 1724 FindSplitPointForStackProtector(ParentMBB); 1725 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1726 CurDAG->setRoot(SDB->getRoot()); 1727 SDB->clear(); 1728 CodeGenAndEmitDAG(); 1729 1730 // Clear the Per-BB State. 1731 SDB->SPDescriptor.resetPerBBState(); 1732 } else if (SDB->SPDescriptor.shouldEmitStackProtector()) { 1733 MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB(); 1734 MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB(); 1735 1736 // Find the split point to split the parent mbb. At the same time copy all 1737 // physical registers used in the tail of parent mbb into virtual registers 1738 // before the split point and back into physical registers after the split 1739 // point. This prevents us needing to deal with Live-ins and many other 1740 // register allocation issues caused by us splitting the parent mbb. The 1741 // register allocator will clean up said virtual copies later on. 1742 MachineBasicBlock::iterator SplitPoint = 1743 FindSplitPointForStackProtector(ParentMBB); 1744 1745 // Splice the terminator of ParentMBB into SuccessMBB. 1746 SuccessMBB->splice(SuccessMBB->end(), ParentMBB, 1747 SplitPoint, 1748 ParentMBB->end()); 1749 1750 // Add compare/jump on neq/jump to the parent BB. 1751 FuncInfo->MBB = ParentMBB; 1752 FuncInfo->InsertPt = ParentMBB->end(); 1753 SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB); 1754 CurDAG->setRoot(SDB->getRoot()); 1755 SDB->clear(); 1756 CodeGenAndEmitDAG(); 1757 1758 // CodeGen Failure MBB if we have not codegened it yet. 1759 MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB(); 1760 if (FailureMBB->empty()) { 1761 FuncInfo->MBB = FailureMBB; 1762 FuncInfo->InsertPt = FailureMBB->end(); 1763 SDB->visitSPDescriptorFailure(SDB->SPDescriptor); 1764 CurDAG->setRoot(SDB->getRoot()); 1765 SDB->clear(); 1766 CodeGenAndEmitDAG(); 1767 } 1768 1769 // Clear the Per-BB State. 1770 SDB->SPDescriptor.resetPerBBState(); 1771 } 1772 1773 // Lower each BitTestBlock. 1774 for (auto &BTB : SDB->SL->BitTestCases) { 1775 // Lower header first, if it wasn't already lowered 1776 if (!BTB.Emitted) { 1777 // Set the current basic block to the mbb we wish to insert the code into 1778 FuncInfo->MBB = BTB.Parent; 1779 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1780 // Emit the code 1781 SDB->visitBitTestHeader(BTB, FuncInfo->MBB); 1782 CurDAG->setRoot(SDB->getRoot()); 1783 SDB->clear(); 1784 CodeGenAndEmitDAG(); 1785 } 1786 1787 BranchProbability UnhandledProb = BTB.Prob; 1788 for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) { 1789 UnhandledProb -= BTB.Cases[j].ExtraProb; 1790 // Set the current basic block to the mbb we wish to insert the code into 1791 FuncInfo->MBB = BTB.Cases[j].ThisBB; 1792 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1793 // Emit the code 1794 1795 // If all cases cover a contiguous range, it is not necessary to jump to 1796 // the default block after the last bit test fails. This is because the 1797 // range check during bit test header creation has guaranteed that every 1798 // case here doesn't go outside the range. In this case, there is no need 1799 // to perform the last bit test, as it will always be true. Instead, make 1800 // the second-to-last bit-test fall through to the target of the last bit 1801 // test, and delete the last bit test. 1802 1803 MachineBasicBlock *NextMBB; 1804 if (BTB.ContiguousRange && j + 2 == ej) { 1805 // Second-to-last bit-test with contiguous range: fall through to the 1806 // target of the final bit test. 1807 NextMBB = BTB.Cases[j + 1].TargetBB; 1808 } else if (j + 1 == ej) { 1809 // For the last bit test, fall through to Default. 1810 NextMBB = BTB.Default; 1811 } else { 1812 // Otherwise, fall through to the next bit test. 1813 NextMBB = BTB.Cases[j + 1].ThisBB; 1814 } 1815 1816 SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], 1817 FuncInfo->MBB); 1818 1819 CurDAG->setRoot(SDB->getRoot()); 1820 SDB->clear(); 1821 CodeGenAndEmitDAG(); 1822 1823 if (BTB.ContiguousRange && j + 2 == ej) { 1824 // Since we're not going to use the final bit test, remove it. 1825 BTB.Cases.pop_back(); 1826 break; 1827 } 1828 } 1829 1830 // Update PHI Nodes 1831 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1832 pi != pe; ++pi) { 1833 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1834 MachineBasicBlock *PHIBB = PHI->getParent(); 1835 assert(PHI->isPHI() && 1836 "This is not a machine PHI node that we are updating!"); 1837 // This is "default" BB. We have two jumps to it. From "header" BB and 1838 // from last "case" BB, unless the latter was skipped. 1839 if (PHIBB == BTB.Default) { 1840 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent); 1841 if (!BTB.ContiguousRange) { 1842 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1843 .addMBB(BTB.Cases.back().ThisBB); 1844 } 1845 } 1846 // One of "cases" BB. 1847 for (unsigned j = 0, ej = BTB.Cases.size(); 1848 j != ej; ++j) { 1849 MachineBasicBlock* cBB = BTB.Cases[j].ThisBB; 1850 if (cBB->isSuccessor(PHIBB)) 1851 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB); 1852 } 1853 } 1854 } 1855 SDB->SL->BitTestCases.clear(); 1856 1857 // If the JumpTable record is filled in, then we need to emit a jump table. 1858 // Updating the PHI nodes is tricky in this case, since we need to determine 1859 // whether the PHI is a successor of the range check MBB or the jump table MBB 1860 for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) { 1861 // Lower header first, if it wasn't already lowered 1862 if (!SDB->SL->JTCases[i].first.Emitted) { 1863 // Set the current basic block to the mbb we wish to insert the code into 1864 FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB; 1865 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1866 // Emit the code 1867 SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second, 1868 SDB->SL->JTCases[i].first, FuncInfo->MBB); 1869 CurDAG->setRoot(SDB->getRoot()); 1870 SDB->clear(); 1871 CodeGenAndEmitDAG(); 1872 } 1873 1874 // Set the current basic block to the mbb we wish to insert the code into 1875 FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB; 1876 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1877 // Emit the code 1878 SDB->visitJumpTable(SDB->SL->JTCases[i].second); 1879 CurDAG->setRoot(SDB->getRoot()); 1880 SDB->clear(); 1881 CodeGenAndEmitDAG(); 1882 1883 // Update PHI Nodes 1884 for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size(); 1885 pi != pe; ++pi) { 1886 MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first); 1887 MachineBasicBlock *PHIBB = PHI->getParent(); 1888 assert(PHI->isPHI() && 1889 "This is not a machine PHI node that we are updating!"); 1890 // "default" BB. We can go there only from header BB. 1891 if (PHIBB == SDB->SL->JTCases[i].second.Default) 1892 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second) 1893 .addMBB(SDB->SL->JTCases[i].first.HeaderBB); 1894 // JT BB. Just iterate over successors here 1895 if (FuncInfo->MBB->isSuccessor(PHIBB)) 1896 PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB); 1897 } 1898 } 1899 SDB->SL->JTCases.clear(); 1900 1901 // If we generated any switch lowering information, build and codegen any 1902 // additional DAGs necessary. 1903 for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) { 1904 // Set the current basic block to the mbb we wish to insert the code into 1905 FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB; 1906 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1907 1908 // Determine the unique successors. 1909 SmallVector<MachineBasicBlock *, 2> Succs; 1910 Succs.push_back(SDB->SL->SwitchCases[i].TrueBB); 1911 if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB) 1912 Succs.push_back(SDB->SL->SwitchCases[i].FalseBB); 1913 1914 // Emit the code. Note that this could result in FuncInfo->MBB being split. 1915 SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB); 1916 CurDAG->setRoot(SDB->getRoot()); 1917 SDB->clear(); 1918 CodeGenAndEmitDAG(); 1919 1920 // Remember the last block, now that any splitting is done, for use in 1921 // populating PHI nodes in successors. 1922 MachineBasicBlock *ThisBB = FuncInfo->MBB; 1923 1924 // Handle any PHI nodes in successors of this chunk, as if we were coming 1925 // from the original BB before switch expansion. Note that PHI nodes can 1926 // occur multiple times in PHINodesToUpdate. We have to be very careful to 1927 // handle them the right number of times. 1928 for (unsigned i = 0, e = Succs.size(); i != e; ++i) { 1929 FuncInfo->MBB = Succs[i]; 1930 FuncInfo->InsertPt = FuncInfo->MBB->end(); 1931 // FuncInfo->MBB may have been removed from the CFG if a branch was 1932 // constant folded. 1933 if (ThisBB->isSuccessor(FuncInfo->MBB)) { 1934 for (MachineBasicBlock::iterator 1935 MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end(); 1936 MBBI != MBBE && MBBI->isPHI(); ++MBBI) { 1937 MachineInstrBuilder PHI(*MF, MBBI); 1938 // This value for this PHI node is recorded in PHINodesToUpdate. 1939 for (unsigned pn = 0; ; ++pn) { 1940 assert(pn != FuncInfo->PHINodesToUpdate.size() && 1941 "Didn't find PHI entry!"); 1942 if (FuncInfo->PHINodesToUpdate[pn].first == PHI) { 1943 PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB); 1944 break; 1945 } 1946 } 1947 } 1948 } 1949 } 1950 } 1951 SDB->SL->SwitchCases.clear(); 1952 } 1953 1954 /// Create the scheduler. If a specific scheduler was specified 1955 /// via the SchedulerRegistry, use it, otherwise select the 1956 /// one preferred by the target. 1957 /// 1958 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { 1959 return ISHeuristic(this, OptLevel); 1960 } 1961 1962 //===----------------------------------------------------------------------===// 1963 // Helper functions used by the generated instruction selector. 1964 //===----------------------------------------------------------------------===// 1965 // Calls to these methods are generated by tblgen. 1966 1967 /// CheckAndMask - The isel is trying to match something like (and X, 255). If 1968 /// the dag combiner simplified the 255, we still want to match. RHS is the 1969 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value 1970 /// specified in the .td file (e.g. 255). 1971 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, 1972 int64_t DesiredMaskS) const { 1973 const APInt &ActualMask = RHS->getAPIntValue(); 1974 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 1975 1976 // If the actual mask exactly matches, success! 1977 if (ActualMask == DesiredMask) 1978 return true; 1979 1980 // If the actual AND mask is allowing unallowed bits, this doesn't match. 1981 if (!ActualMask.isSubsetOf(DesiredMask)) 1982 return false; 1983 1984 // Otherwise, the DAG Combiner may have proven that the value coming in is 1985 // either already zero or is not demanded. Check for known zero input bits. 1986 APInt NeededMask = DesiredMask & ~ActualMask; 1987 if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) 1988 return true; 1989 1990 // TODO: check to see if missing bits are just not demanded. 1991 1992 // Otherwise, this pattern doesn't match. 1993 return false; 1994 } 1995 1996 /// CheckOrMask - The isel is trying to match something like (or X, 255). If 1997 /// the dag combiner simplified the 255, we still want to match. RHS is the 1998 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value 1999 /// specified in the .td file (e.g. 255). 2000 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, 2001 int64_t DesiredMaskS) const { 2002 const APInt &ActualMask = RHS->getAPIntValue(); 2003 const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); 2004 2005 // If the actual mask exactly matches, success! 2006 if (ActualMask == DesiredMask) 2007 return true; 2008 2009 // If the actual AND mask is allowing unallowed bits, this doesn't match. 2010 if (!ActualMask.isSubsetOf(DesiredMask)) 2011 return false; 2012 2013 // Otherwise, the DAG Combiner may have proven that the value coming in is 2014 // either already zero or is not demanded. Check for known zero input bits. 2015 APInt NeededMask = DesiredMask & ~ActualMask; 2016 KnownBits Known = CurDAG->computeKnownBits(LHS); 2017 2018 // If all the missing bits in the or are already known to be set, match! 2019 if (NeededMask.isSubsetOf(Known.One)) 2020 return true; 2021 2022 // TODO: check to see if missing bits are just not demanded. 2023 2024 // Otherwise, this pattern doesn't match. 2025 return false; 2026 } 2027 2028 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated 2029 /// by tblgen. Others should not call it. 2030 void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops, 2031 const SDLoc &DL) { 2032 std::vector<SDValue> InOps; 2033 std::swap(InOps, Ops); 2034 2035 Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0 2036 Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1 2037 Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc 2038 Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack) 2039 2040 unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size(); 2041 if (InOps[e-1].getValueType() == MVT::Glue) 2042 --e; // Don't process a glue operand if it is here. 2043 2044 while (i != e) { 2045 unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); 2046 if (!InlineAsm::isMemKind(Flags)) { 2047 // Just skip over this operand, copying the operands verbatim. 2048 Ops.insert(Ops.end(), InOps.begin()+i, 2049 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); 2050 i += InlineAsm::getNumOperandRegisters(Flags) + 1; 2051 } else { 2052 assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && 2053 "Memory operand with multiple values?"); 2054 2055 unsigned TiedToOperand; 2056 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) { 2057 // We need the constraint ID from the operand this is tied to. 2058 unsigned CurOp = InlineAsm::Op_FirstOperand; 2059 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2060 for (; TiedToOperand; --TiedToOperand) { 2061 CurOp += InlineAsm::getNumOperandRegisters(Flags)+1; 2062 Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue(); 2063 } 2064 } 2065 2066 // Otherwise, this is a memory operand. Ask the target to select it. 2067 std::vector<SDValue> SelOps; 2068 unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags); 2069 if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps)) 2070 report_fatal_error("Could not match memory address. Inline asm" 2071 " failure!"); 2072 2073 // Add this to the output node. 2074 unsigned NewFlags = 2075 InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size()); 2076 NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID); 2077 Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32)); 2078 Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); 2079 i += 2; 2080 } 2081 } 2082 2083 // Add the glue input back if present. 2084 if (e != InOps.size()) 2085 Ops.push_back(InOps.back()); 2086 } 2087 2088 /// findGlueUse - Return use of MVT::Glue value produced by the specified 2089 /// SDNode. 2090 /// 2091 static SDNode *findGlueUse(SDNode *N) { 2092 unsigned FlagResNo = N->getNumValues()-1; 2093 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { 2094 SDUse &Use = I.getUse(); 2095 if (Use.getResNo() == FlagResNo) 2096 return Use.getUser(); 2097 } 2098 return nullptr; 2099 } 2100 2101 /// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path 2102 /// beyond "ImmedUse". We may ignore chains as they are checked separately. 2103 static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse, 2104 bool IgnoreChains) { 2105 SmallPtrSet<const SDNode *, 16> Visited; 2106 SmallVector<const SDNode *, 16> WorkList; 2107 // Only check if we have non-immediate uses of Def. 2108 if (ImmedUse->isOnlyUserOf(Def)) 2109 return false; 2110 2111 // We don't care about paths to Def that go through ImmedUse so mark it 2112 // visited and mark non-def operands as used. 2113 Visited.insert(ImmedUse); 2114 for (const SDValue &Op : ImmedUse->op_values()) { 2115 SDNode *N = Op.getNode(); 2116 // Ignore chain deps (they are validated by 2117 // HandleMergeInputChains) and immediate uses 2118 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2119 continue; 2120 if (!Visited.insert(N).second) 2121 continue; 2122 WorkList.push_back(N); 2123 } 2124 2125 // Initialize worklist to operands of Root. 2126 if (Root != ImmedUse) { 2127 for (const SDValue &Op : Root->op_values()) { 2128 SDNode *N = Op.getNode(); 2129 // Ignore chains (they are validated by HandleMergeInputChains) 2130 if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def) 2131 continue; 2132 if (!Visited.insert(N).second) 2133 continue; 2134 WorkList.push_back(N); 2135 } 2136 } 2137 2138 return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true); 2139 } 2140 2141 /// IsProfitableToFold - Returns true if it's profitable to fold the specific 2142 /// operand node N of U during instruction selection that starts at Root. 2143 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, 2144 SDNode *Root) const { 2145 if (OptLevel == CodeGenOpt::None) return false; 2146 return N.hasOneUse(); 2147 } 2148 2149 /// IsLegalToFold - Returns true if the specific operand node N of 2150 /// U can be folded during instruction selection that starts at Root. 2151 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, 2152 CodeGenOpt::Level OptLevel, 2153 bool IgnoreChains) { 2154 if (OptLevel == CodeGenOpt::None) return false; 2155 2156 // If Root use can somehow reach N through a path that that doesn't contain 2157 // U then folding N would create a cycle. e.g. In the following 2158 // diagram, Root can reach N through X. If N is folded into Root, then 2159 // X is both a predecessor and a successor of U. 2160 // 2161 // [N*] // 2162 // ^ ^ // 2163 // / \ // 2164 // [U*] [X]? // 2165 // ^ ^ // 2166 // \ / // 2167 // \ / // 2168 // [Root*] // 2169 // 2170 // * indicates nodes to be folded together. 2171 // 2172 // If Root produces glue, then it gets (even more) interesting. Since it 2173 // will be "glued" together with its glue use in the scheduler, we need to 2174 // check if it might reach N. 2175 // 2176 // [N*] // 2177 // ^ ^ // 2178 // / \ // 2179 // [U*] [X]? // 2180 // ^ ^ // 2181 // \ \ // 2182 // \ | // 2183 // [Root*] | // 2184 // ^ | // 2185 // f | // 2186 // | / // 2187 // [Y] / // 2188 // ^ / // 2189 // f / // 2190 // | / // 2191 // [GU] // 2192 // 2193 // If GU (glue use) indirectly reaches N (the load), and Root folds N 2194 // (call it Fold), then X is a predecessor of GU and a successor of 2195 // Fold. But since Fold and GU are glued together, this will create 2196 // a cycle in the scheduling graph. 2197 2198 // If the node has glue, walk down the graph to the "lowest" node in the 2199 // glueged set. 2200 EVT VT = Root->getValueType(Root->getNumValues()-1); 2201 while (VT == MVT::Glue) { 2202 SDNode *GU = findGlueUse(Root); 2203 if (!GU) 2204 break; 2205 Root = GU; 2206 VT = Root->getValueType(Root->getNumValues()-1); 2207 2208 // If our query node has a glue result with a use, we've walked up it. If 2209 // the user (which has already been selected) has a chain or indirectly uses 2210 // the chain, HandleMergeInputChains will not consider it. Because of 2211 // this, we cannot ignore chains in this predicate. 2212 IgnoreChains = false; 2213 } 2214 2215 return !findNonImmUse(Root, N.getNode(), U, IgnoreChains); 2216 } 2217 2218 void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) { 2219 SDLoc DL(N); 2220 2221 std::vector<SDValue> Ops(N->op_begin(), N->op_end()); 2222 SelectInlineAsmMemoryOperands(Ops, DL); 2223 2224 const EVT VTs[] = {MVT::Other, MVT::Glue}; 2225 SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops); 2226 New->setNodeId(-1); 2227 ReplaceUses(N, New.getNode()); 2228 CurDAG->RemoveDeadNode(N); 2229 } 2230 2231 void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) { 2232 SDLoc dl(Op); 2233 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2234 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2235 Register Reg = 2236 TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0), 2237 CurDAG->getMachineFunction()); 2238 SDValue New = CurDAG->getCopyFromReg( 2239 Op->getOperand(0), dl, Reg, Op->getValueType(0)); 2240 New->setNodeId(-1); 2241 ReplaceUses(Op, New.getNode()); 2242 CurDAG->RemoveDeadNode(Op); 2243 } 2244 2245 void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) { 2246 SDLoc dl(Op); 2247 MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1)); 2248 const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0)); 2249 Register Reg = TLI->getRegisterByName(RegStr->getString().data(), 2250 Op->getOperand(2).getValueType(), 2251 CurDAG->getMachineFunction()); 2252 SDValue New = CurDAG->getCopyToReg( 2253 Op->getOperand(0), dl, Reg, Op->getOperand(2)); 2254 New->setNodeId(-1); 2255 ReplaceUses(Op, New.getNode()); 2256 CurDAG->RemoveDeadNode(Op); 2257 } 2258 2259 void SelectionDAGISel::Select_UNDEF(SDNode *N) { 2260 CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0)); 2261 } 2262 2263 /// GetVBR - decode a vbr encoding whose top bit is set. 2264 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t 2265 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { 2266 assert(Val >= 128 && "Not a VBR"); 2267 Val &= 127; // Remove first vbr bit. 2268 2269 unsigned Shift = 7; 2270 uint64_t NextBits; 2271 do { 2272 NextBits = MatcherTable[Idx++]; 2273 Val |= (NextBits&127) << Shift; 2274 Shift += 7; 2275 } while (NextBits & 128); 2276 2277 return Val; 2278 } 2279 2280 /// When a match is complete, this method updates uses of interior chain results 2281 /// to use the new results. 2282 void SelectionDAGISel::UpdateChains( 2283 SDNode *NodeToMatch, SDValue InputChain, 2284 SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) { 2285 SmallVector<SDNode*, 4> NowDeadNodes; 2286 2287 // Now that all the normal results are replaced, we replace the chain and 2288 // glue results if present. 2289 if (!ChainNodesMatched.empty()) { 2290 assert(InputChain.getNode() && 2291 "Matched input chains but didn't produce a chain"); 2292 // Loop over all of the nodes we matched that produced a chain result. 2293 // Replace all the chain results with the final chain we ended up with. 2294 for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { 2295 SDNode *ChainNode = ChainNodesMatched[i]; 2296 // If ChainNode is null, it's because we replaced it on a previous 2297 // iteration and we cleared it out of the map. Just skip it. 2298 if (!ChainNode) 2299 continue; 2300 2301 assert(ChainNode->getOpcode() != ISD::DELETED_NODE && 2302 "Deleted node left in chain"); 2303 2304 // Don't replace the results of the root node if we're doing a 2305 // MorphNodeTo. 2306 if (ChainNode == NodeToMatch && isMorphNodeTo) 2307 continue; 2308 2309 SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); 2310 if (ChainVal.getValueType() == MVT::Glue) 2311 ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); 2312 assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); 2313 SelectionDAG::DAGNodeDeletedListener NDL( 2314 *CurDAG, [&](SDNode *N, SDNode *E) { 2315 std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N, 2316 static_cast<SDNode *>(nullptr)); 2317 }); 2318 if (ChainNode->getOpcode() != ISD::TokenFactor) 2319 ReplaceUses(ChainVal, InputChain); 2320 2321 // If the node became dead and we haven't already seen it, delete it. 2322 if (ChainNode != NodeToMatch && ChainNode->use_empty() && 2323 !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode)) 2324 NowDeadNodes.push_back(ChainNode); 2325 } 2326 } 2327 2328 if (!NowDeadNodes.empty()) 2329 CurDAG->RemoveDeadNodes(NowDeadNodes); 2330 2331 LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n"); 2332 } 2333 2334 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains 2335 /// operation for when the pattern matched at least one node with a chains. The 2336 /// input vector contains a list of all of the chained nodes that we match. We 2337 /// must determine if this is a valid thing to cover (i.e. matching it won't 2338 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will 2339 /// be used as the input node chain for the generated nodes. 2340 static SDValue 2341 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, 2342 SelectionDAG *CurDAG) { 2343 2344 SmallPtrSet<const SDNode *, 16> Visited; 2345 SmallVector<const SDNode *, 8> Worklist; 2346 SmallVector<SDValue, 3> InputChains; 2347 unsigned int Max = 8192; 2348 2349 // Quick exit on trivial merge. 2350 if (ChainNodesMatched.size() == 1) 2351 return ChainNodesMatched[0]->getOperand(0); 2352 2353 // Add chains that aren't already added (internal). Peek through 2354 // token factors. 2355 std::function<void(const SDValue)> AddChains = [&](const SDValue V) { 2356 if (V.getValueType() != MVT::Other) 2357 return; 2358 if (V->getOpcode() == ISD::EntryToken) 2359 return; 2360 if (!Visited.insert(V.getNode()).second) 2361 return; 2362 if (V->getOpcode() == ISD::TokenFactor) { 2363 for (const SDValue &Op : V->op_values()) 2364 AddChains(Op); 2365 } else 2366 InputChains.push_back(V); 2367 }; 2368 2369 for (auto *N : ChainNodesMatched) { 2370 Worklist.push_back(N); 2371 Visited.insert(N); 2372 } 2373 2374 while (!Worklist.empty()) 2375 AddChains(Worklist.pop_back_val()->getOperand(0)); 2376 2377 // Skip the search if there are no chain dependencies. 2378 if (InputChains.size() == 0) 2379 return CurDAG->getEntryNode(); 2380 2381 // If one of these chains is a successor of input, we must have a 2382 // node that is both the predecessor and successor of the 2383 // to-be-merged nodes. Fail. 2384 Visited.clear(); 2385 for (SDValue V : InputChains) 2386 Worklist.push_back(V.getNode()); 2387 2388 for (auto *N : ChainNodesMatched) 2389 if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true)) 2390 return SDValue(); 2391 2392 // Return merged chain. 2393 if (InputChains.size() == 1) 2394 return InputChains[0]; 2395 return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]), 2396 MVT::Other, InputChains); 2397 } 2398 2399 /// MorphNode - Handle morphing a node in place for the selector. 2400 SDNode *SelectionDAGISel:: 2401 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, 2402 ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) { 2403 // It is possible we're using MorphNodeTo to replace a node with no 2404 // normal results with one that has a normal result (or we could be 2405 // adding a chain) and the input could have glue and chains as well. 2406 // In this case we need to shift the operands down. 2407 // FIXME: This is a horrible hack and broken in obscure cases, no worse 2408 // than the old isel though. 2409 int OldGlueResultNo = -1, OldChainResultNo = -1; 2410 2411 unsigned NTMNumResults = Node->getNumValues(); 2412 if (Node->getValueType(NTMNumResults-1) == MVT::Glue) { 2413 OldGlueResultNo = NTMNumResults-1; 2414 if (NTMNumResults != 1 && 2415 Node->getValueType(NTMNumResults-2) == MVT::Other) 2416 OldChainResultNo = NTMNumResults-2; 2417 } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) 2418 OldChainResultNo = NTMNumResults-1; 2419 2420 // Call the underlying SelectionDAG routine to do the transmogrification. Note 2421 // that this deletes operands of the old node that become dead. 2422 SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops); 2423 2424 // MorphNodeTo can operate in two ways: if an existing node with the 2425 // specified operands exists, it can just return it. Otherwise, it 2426 // updates the node in place to have the requested operands. 2427 if (Res == Node) { 2428 // If we updated the node in place, reset the node ID. To the isel, 2429 // this should be just like a newly allocated machine node. 2430 Res->setNodeId(-1); 2431 } 2432 2433 unsigned ResNumResults = Res->getNumValues(); 2434 // Move the glue if needed. 2435 if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 && 2436 (unsigned)OldGlueResultNo != ResNumResults-1) 2437 ReplaceUses(SDValue(Node, OldGlueResultNo), 2438 SDValue(Res, ResNumResults - 1)); 2439 2440 if ((EmitNodeInfo & OPFL_GlueOutput) != 0) 2441 --ResNumResults; 2442 2443 // Move the chain reference if needed. 2444 if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && 2445 (unsigned)OldChainResultNo != ResNumResults-1) 2446 ReplaceUses(SDValue(Node, OldChainResultNo), 2447 SDValue(Res, ResNumResults - 1)); 2448 2449 // Otherwise, no replacement happened because the node already exists. Replace 2450 // Uses of the old node with the new one. 2451 if (Res != Node) { 2452 ReplaceNode(Node, Res); 2453 } else { 2454 EnforceNodeIdInvariant(Res); 2455 } 2456 2457 return Res; 2458 } 2459 2460 /// CheckSame - Implements OP_CheckSame. 2461 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2462 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2463 SDValue N, 2464 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2465 // Accept if it is exactly the same as a previously recorded node. 2466 unsigned RecNo = MatcherTable[MatcherIndex++]; 2467 assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); 2468 return N == RecordedNodes[RecNo].first; 2469 } 2470 2471 /// CheckChildSame - Implements OP_CheckChildXSame. 2472 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2473 CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2474 SDValue N, 2475 const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes, 2476 unsigned ChildNo) { 2477 if (ChildNo >= N.getNumOperands()) 2478 return false; // Match fails if out of range child #. 2479 return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo), 2480 RecordedNodes); 2481 } 2482 2483 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. 2484 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2485 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2486 const SelectionDAGISel &SDISel) { 2487 return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); 2488 } 2489 2490 /// CheckNodePredicate - Implements OP_CheckNodePredicate. 2491 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2492 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2493 const SelectionDAGISel &SDISel, SDNode *N) { 2494 return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); 2495 } 2496 2497 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2498 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2499 SDNode *N) { 2500 uint16_t Opc = MatcherTable[MatcherIndex++]; 2501 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 2502 return N->getOpcode() == Opc; 2503 } 2504 2505 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2506 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N, 2507 const TargetLowering *TLI, const DataLayout &DL) { 2508 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2509 if (N.getValueType() == VT) return true; 2510 2511 // Handle the case when VT is iPTR. 2512 return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL); 2513 } 2514 2515 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2516 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2517 SDValue N, const TargetLowering *TLI, const DataLayout &DL, 2518 unsigned ChildNo) { 2519 if (ChildNo >= N.getNumOperands()) 2520 return false; // Match fails if out of range child #. 2521 return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI, 2522 DL); 2523 } 2524 2525 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2526 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2527 SDValue N) { 2528 return cast<CondCodeSDNode>(N)->get() == 2529 (ISD::CondCode)MatcherTable[MatcherIndex++]; 2530 } 2531 2532 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2533 CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2534 SDValue N) { 2535 if (2 >= N.getNumOperands()) 2536 return false; 2537 return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2)); 2538 } 2539 2540 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2541 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2542 SDValue N, const TargetLowering *TLI, const DataLayout &DL) { 2543 MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 2544 if (cast<VTSDNode>(N)->getVT() == VT) 2545 return true; 2546 2547 // Handle the case when VT is iPTR. 2548 return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL); 2549 } 2550 2551 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2552 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2553 SDValue N) { 2554 int64_t Val = MatcherTable[MatcherIndex++]; 2555 if (Val & 128) 2556 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2557 2558 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); 2559 return C && C->getSExtValue() == Val; 2560 } 2561 2562 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2563 CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2564 SDValue N, unsigned ChildNo) { 2565 if (ChildNo >= N.getNumOperands()) 2566 return false; // Match fails if out of range child #. 2567 return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo)); 2568 } 2569 2570 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2571 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2572 SDValue N, const SelectionDAGISel &SDISel) { 2573 int64_t Val = MatcherTable[MatcherIndex++]; 2574 if (Val & 128) 2575 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2576 2577 if (N->getOpcode() != ISD::AND) return false; 2578 2579 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2580 return C && SDISel.CheckAndMask(N.getOperand(0), C, Val); 2581 } 2582 2583 LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool 2584 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, 2585 SDValue N, const SelectionDAGISel &SDISel) { 2586 int64_t Val = MatcherTable[MatcherIndex++]; 2587 if (Val & 128) 2588 Val = GetVBR(Val, MatcherTable, MatcherIndex); 2589 2590 if (N->getOpcode() != ISD::OR) return false; 2591 2592 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2593 return C && SDISel.CheckOrMask(N.getOperand(0), C, Val); 2594 } 2595 2596 /// IsPredicateKnownToFail - If we know how and can do so without pushing a 2597 /// scope, evaluate the current node. If the current predicate is known to 2598 /// fail, set Result=true and return anything. If the current predicate is 2599 /// known to pass, set Result=false and return the MatcherIndex to continue 2600 /// with. If the current predicate is unknown, set Result=false and return the 2601 /// MatcherIndex to continue with. 2602 static unsigned IsPredicateKnownToFail(const unsigned char *Table, 2603 unsigned Index, SDValue N, 2604 bool &Result, 2605 const SelectionDAGISel &SDISel, 2606 SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) { 2607 switch (Table[Index++]) { 2608 default: 2609 Result = false; 2610 return Index-1; // Could not evaluate this predicate. 2611 case SelectionDAGISel::OPC_CheckSame: 2612 Result = !::CheckSame(Table, Index, N, RecordedNodes); 2613 return Index; 2614 case SelectionDAGISel::OPC_CheckChild0Same: 2615 case SelectionDAGISel::OPC_CheckChild1Same: 2616 case SelectionDAGISel::OPC_CheckChild2Same: 2617 case SelectionDAGISel::OPC_CheckChild3Same: 2618 Result = !::CheckChildSame(Table, Index, N, RecordedNodes, 2619 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same); 2620 return Index; 2621 case SelectionDAGISel::OPC_CheckPatternPredicate: 2622 Result = !::CheckPatternPredicate(Table, Index, SDISel); 2623 return Index; 2624 case SelectionDAGISel::OPC_CheckPredicate: 2625 Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); 2626 return Index; 2627 case SelectionDAGISel::OPC_CheckOpcode: 2628 Result = !::CheckOpcode(Table, Index, N.getNode()); 2629 return Index; 2630 case SelectionDAGISel::OPC_CheckType: 2631 Result = !::CheckType(Table, Index, N, SDISel.TLI, 2632 SDISel.CurDAG->getDataLayout()); 2633 return Index; 2634 case SelectionDAGISel::OPC_CheckTypeRes: { 2635 unsigned Res = Table[Index++]; 2636 Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI, 2637 SDISel.CurDAG->getDataLayout()); 2638 return Index; 2639 } 2640 case SelectionDAGISel::OPC_CheckChild0Type: 2641 case SelectionDAGISel::OPC_CheckChild1Type: 2642 case SelectionDAGISel::OPC_CheckChild2Type: 2643 case SelectionDAGISel::OPC_CheckChild3Type: 2644 case SelectionDAGISel::OPC_CheckChild4Type: 2645 case SelectionDAGISel::OPC_CheckChild5Type: 2646 case SelectionDAGISel::OPC_CheckChild6Type: 2647 case SelectionDAGISel::OPC_CheckChild7Type: 2648 Result = !::CheckChildType( 2649 Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(), 2650 Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type); 2651 return Index; 2652 case SelectionDAGISel::OPC_CheckCondCode: 2653 Result = !::CheckCondCode(Table, Index, N); 2654 return Index; 2655 case SelectionDAGISel::OPC_CheckChild2CondCode: 2656 Result = !::CheckChild2CondCode(Table, Index, N); 2657 return Index; 2658 case SelectionDAGISel::OPC_CheckValueType: 2659 Result = !::CheckValueType(Table, Index, N, SDISel.TLI, 2660 SDISel.CurDAG->getDataLayout()); 2661 return Index; 2662 case SelectionDAGISel::OPC_CheckInteger: 2663 Result = !::CheckInteger(Table, Index, N); 2664 return Index; 2665 case SelectionDAGISel::OPC_CheckChild0Integer: 2666 case SelectionDAGISel::OPC_CheckChild1Integer: 2667 case SelectionDAGISel::OPC_CheckChild2Integer: 2668 case SelectionDAGISel::OPC_CheckChild3Integer: 2669 case SelectionDAGISel::OPC_CheckChild4Integer: 2670 Result = !::CheckChildInteger(Table, Index, N, 2671 Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer); 2672 return Index; 2673 case SelectionDAGISel::OPC_CheckAndImm: 2674 Result = !::CheckAndImm(Table, Index, N, SDISel); 2675 return Index; 2676 case SelectionDAGISel::OPC_CheckOrImm: 2677 Result = !::CheckOrImm(Table, Index, N, SDISel); 2678 return Index; 2679 } 2680 } 2681 2682 namespace { 2683 2684 struct MatchScope { 2685 /// FailIndex - If this match fails, this is the index to continue with. 2686 unsigned FailIndex; 2687 2688 /// NodeStack - The node stack when the scope was formed. 2689 SmallVector<SDValue, 4> NodeStack; 2690 2691 /// NumRecordedNodes - The number of recorded nodes when the scope was formed. 2692 unsigned NumRecordedNodes; 2693 2694 /// NumMatchedMemRefs - The number of matched memref entries. 2695 unsigned NumMatchedMemRefs; 2696 2697 /// InputChain/InputGlue - The current chain/glue 2698 SDValue InputChain, InputGlue; 2699 2700 /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. 2701 bool HasChainNodesMatched; 2702 }; 2703 2704 /// \A DAG update listener to keep the matching state 2705 /// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to 2706 /// change the DAG while matching. X86 addressing mode matcher is an example 2707 /// for this. 2708 class MatchStateUpdater : public SelectionDAG::DAGUpdateListener 2709 { 2710 SDNode **NodeToMatch; 2711 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes; 2712 SmallVectorImpl<MatchScope> &MatchScopes; 2713 2714 public: 2715 MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch, 2716 SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN, 2717 SmallVectorImpl<MatchScope> &MS) 2718 : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch), 2719 RecordedNodes(RN), MatchScopes(MS) {} 2720 2721 void NodeDeleted(SDNode *N, SDNode *E) override { 2722 // Some early-returns here to avoid the search if we deleted the node or 2723 // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we 2724 // do, so it's unnecessary to update matching state at that point). 2725 // Neither of these can occur currently because we only install this 2726 // update listener during matching a complex patterns. 2727 if (!E || E->isMachineOpcode()) 2728 return; 2729 // Check if NodeToMatch was updated. 2730 if (N == *NodeToMatch) 2731 *NodeToMatch = E; 2732 // Performing linear search here does not matter because we almost never 2733 // run this code. You'd have to have a CSE during complex pattern 2734 // matching. 2735 for (auto &I : RecordedNodes) 2736 if (I.first.getNode() == N) 2737 I.first.setNode(E); 2738 2739 for (auto &I : MatchScopes) 2740 for (auto &J : I.NodeStack) 2741 if (J.getNode() == N) 2742 J.setNode(E); 2743 } 2744 }; 2745 2746 } // end anonymous namespace 2747 2748 void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch, 2749 const unsigned char *MatcherTable, 2750 unsigned TableSize) { 2751 // FIXME: Should these even be selected? Handle these cases in the caller? 2752 switch (NodeToMatch->getOpcode()) { 2753 default: 2754 break; 2755 case ISD::EntryToken: // These nodes remain the same. 2756 case ISD::BasicBlock: 2757 case ISD::Register: 2758 case ISD::RegisterMask: 2759 case ISD::HANDLENODE: 2760 case ISD::MDNODE_SDNODE: 2761 case ISD::TargetConstant: 2762 case ISD::TargetConstantFP: 2763 case ISD::TargetConstantPool: 2764 case ISD::TargetFrameIndex: 2765 case ISD::TargetExternalSymbol: 2766 case ISD::MCSymbol: 2767 case ISD::TargetBlockAddress: 2768 case ISD::TargetJumpTable: 2769 case ISD::TargetGlobalTLSAddress: 2770 case ISD::TargetGlobalAddress: 2771 case ISD::TokenFactor: 2772 case ISD::CopyFromReg: 2773 case ISD::CopyToReg: 2774 case ISD::EH_LABEL: 2775 case ISD::ANNOTATION_LABEL: 2776 case ISD::LIFETIME_START: 2777 case ISD::LIFETIME_END: 2778 NodeToMatch->setNodeId(-1); // Mark selected. 2779 return; 2780 case ISD::AssertSext: 2781 case ISD::AssertZext: 2782 ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0)); 2783 CurDAG->RemoveDeadNode(NodeToMatch); 2784 return; 2785 case ISD::INLINEASM: 2786 case ISD::INLINEASM_BR: 2787 Select_INLINEASM(NodeToMatch, 2788 NodeToMatch->getOpcode() == ISD::INLINEASM_BR); 2789 return; 2790 case ISD::READ_REGISTER: 2791 Select_READ_REGISTER(NodeToMatch); 2792 return; 2793 case ISD::WRITE_REGISTER: 2794 Select_WRITE_REGISTER(NodeToMatch); 2795 return; 2796 case ISD::UNDEF: 2797 Select_UNDEF(NodeToMatch); 2798 return; 2799 } 2800 2801 assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); 2802 2803 // Set up the node stack with NodeToMatch as the only node on the stack. 2804 SmallVector<SDValue, 8> NodeStack; 2805 SDValue N = SDValue(NodeToMatch, 0); 2806 NodeStack.push_back(N); 2807 2808 // MatchScopes - Scopes used when matching, if a match failure happens, this 2809 // indicates where to continue checking. 2810 SmallVector<MatchScope, 8> MatchScopes; 2811 2812 // RecordedNodes - This is the set of nodes that have been recorded by the 2813 // state machine. The second value is the parent of the node, or null if the 2814 // root is recorded. 2815 SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes; 2816 2817 // MatchedMemRefs - This is the set of MemRef's we've seen in the input 2818 // pattern. 2819 SmallVector<MachineMemOperand*, 2> MatchedMemRefs; 2820 2821 // These are the current input chain and glue for use when generating nodes. 2822 // Various Emit operations change these. For example, emitting a copytoreg 2823 // uses and updates these. 2824 SDValue InputChain, InputGlue; 2825 2826 // ChainNodesMatched - If a pattern matches nodes that have input/output 2827 // chains, the OPC_EmitMergeInputChains operation is emitted which indicates 2828 // which ones they are. The result is captured into this list so that we can 2829 // update the chain results when the pattern is complete. 2830 SmallVector<SDNode*, 3> ChainNodesMatched; 2831 2832 LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n"); 2833 2834 // Determine where to start the interpreter. Normally we start at opcode #0, 2835 // but if the state machine starts with an OPC_SwitchOpcode, then we 2836 // accelerate the first lookup (which is guaranteed to be hot) with the 2837 // OpcodeOffset table. 2838 unsigned MatcherIndex = 0; 2839 2840 if (!OpcodeOffset.empty()) { 2841 // Already computed the OpcodeOffset table, just index into it. 2842 if (N.getOpcode() < OpcodeOffset.size()) 2843 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2844 LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n"); 2845 2846 } else if (MatcherTable[0] == OPC_SwitchOpcode) { 2847 // Otherwise, the table isn't computed, but the state machine does start 2848 // with an OPC_SwitchOpcode instruction. Populate the table now, since this 2849 // is the first time we're selecting an instruction. 2850 unsigned Idx = 1; 2851 while (true) { 2852 // Get the size of this case. 2853 unsigned CaseSize = MatcherTable[Idx++]; 2854 if (CaseSize & 128) 2855 CaseSize = GetVBR(CaseSize, MatcherTable, Idx); 2856 if (CaseSize == 0) break; 2857 2858 // Get the opcode, add the index to the table. 2859 uint16_t Opc = MatcherTable[Idx++]; 2860 Opc |= (unsigned short)MatcherTable[Idx++] << 8; 2861 if (Opc >= OpcodeOffset.size()) 2862 OpcodeOffset.resize((Opc+1)*2); 2863 OpcodeOffset[Opc] = Idx; 2864 Idx += CaseSize; 2865 } 2866 2867 // Okay, do the lookup for the first opcode. 2868 if (N.getOpcode() < OpcodeOffset.size()) 2869 MatcherIndex = OpcodeOffset[N.getOpcode()]; 2870 } 2871 2872 while (true) { 2873 assert(MatcherIndex < TableSize && "Invalid index"); 2874 #ifndef NDEBUG 2875 unsigned CurrentOpcodeIndex = MatcherIndex; 2876 #endif 2877 BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; 2878 switch (Opcode) { 2879 case OPC_Scope: { 2880 // Okay, the semantics of this operation are that we should push a scope 2881 // then evaluate the first child. However, pushing a scope only to have 2882 // the first check fail (which then pops it) is inefficient. If we can 2883 // determine immediately that the first check (or first several) will 2884 // immediately fail, don't even bother pushing a scope for them. 2885 unsigned FailIndex; 2886 2887 while (true) { 2888 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 2889 if (NumToSkip & 128) 2890 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 2891 // Found the end of the scope with no match. 2892 if (NumToSkip == 0) { 2893 FailIndex = 0; 2894 break; 2895 } 2896 2897 FailIndex = MatcherIndex+NumToSkip; 2898 2899 unsigned MatcherIndexOfPredicate = MatcherIndex; 2900 (void)MatcherIndexOfPredicate; // silence warning. 2901 2902 // If we can't evaluate this predicate without pushing a scope (e.g. if 2903 // it is a 'MoveParent') or if the predicate succeeds on this node, we 2904 // push the scope and evaluate the full predicate chain. 2905 bool Result; 2906 MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, 2907 Result, *this, RecordedNodes); 2908 if (!Result) 2909 break; 2910 2911 LLVM_DEBUG( 2912 dbgs() << " Skipped scope entry (due to false predicate) at " 2913 << "index " << MatcherIndexOfPredicate << ", continuing at " 2914 << FailIndex << "\n"); 2915 ++NumDAGIselRetries; 2916 2917 // Otherwise, we know that this case of the Scope is guaranteed to fail, 2918 // move to the next case. 2919 MatcherIndex = FailIndex; 2920 } 2921 2922 // If the whole scope failed to match, bail. 2923 if (FailIndex == 0) break; 2924 2925 // Push a MatchScope which indicates where to go if the first child fails 2926 // to match. 2927 MatchScope NewEntry; 2928 NewEntry.FailIndex = FailIndex; 2929 NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); 2930 NewEntry.NumRecordedNodes = RecordedNodes.size(); 2931 NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); 2932 NewEntry.InputChain = InputChain; 2933 NewEntry.InputGlue = InputGlue; 2934 NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); 2935 MatchScopes.push_back(NewEntry); 2936 continue; 2937 } 2938 case OPC_RecordNode: { 2939 // Remember this node, it may end up being an operand in the pattern. 2940 SDNode *Parent = nullptr; 2941 if (NodeStack.size() > 1) 2942 Parent = NodeStack[NodeStack.size()-2].getNode(); 2943 RecordedNodes.push_back(std::make_pair(N, Parent)); 2944 continue; 2945 } 2946 2947 case OPC_RecordChild0: case OPC_RecordChild1: 2948 case OPC_RecordChild2: case OPC_RecordChild3: 2949 case OPC_RecordChild4: case OPC_RecordChild5: 2950 case OPC_RecordChild6: case OPC_RecordChild7: { 2951 unsigned ChildNo = Opcode-OPC_RecordChild0; 2952 if (ChildNo >= N.getNumOperands()) 2953 break; // Match fails if out of range child #. 2954 2955 RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo), 2956 N.getNode())); 2957 continue; 2958 } 2959 case OPC_RecordMemRef: 2960 if (auto *MN = dyn_cast<MemSDNode>(N)) 2961 MatchedMemRefs.push_back(MN->getMemOperand()); 2962 else { 2963 LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG); 2964 dbgs() << '\n'); 2965 } 2966 2967 continue; 2968 2969 case OPC_CaptureGlueInput: 2970 // If the current node has an input glue, capture it in InputGlue. 2971 if (N->getNumOperands() != 0 && 2972 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) 2973 InputGlue = N->getOperand(N->getNumOperands()-1); 2974 continue; 2975 2976 case OPC_MoveChild: { 2977 unsigned ChildNo = MatcherTable[MatcherIndex++]; 2978 if (ChildNo >= N.getNumOperands()) 2979 break; // Match fails if out of range child #. 2980 N = N.getOperand(ChildNo); 2981 NodeStack.push_back(N); 2982 continue; 2983 } 2984 2985 case OPC_MoveChild0: case OPC_MoveChild1: 2986 case OPC_MoveChild2: case OPC_MoveChild3: 2987 case OPC_MoveChild4: case OPC_MoveChild5: 2988 case OPC_MoveChild6: case OPC_MoveChild7: { 2989 unsigned ChildNo = Opcode-OPC_MoveChild0; 2990 if (ChildNo >= N.getNumOperands()) 2991 break; // Match fails if out of range child #. 2992 N = N.getOperand(ChildNo); 2993 NodeStack.push_back(N); 2994 continue; 2995 } 2996 2997 case OPC_MoveParent: 2998 // Pop the current node off the NodeStack. 2999 NodeStack.pop_back(); 3000 assert(!NodeStack.empty() && "Node stack imbalance!"); 3001 N = NodeStack.back(); 3002 continue; 3003 3004 case OPC_CheckSame: 3005 if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; 3006 continue; 3007 3008 case OPC_CheckChild0Same: case OPC_CheckChild1Same: 3009 case OPC_CheckChild2Same: case OPC_CheckChild3Same: 3010 if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes, 3011 Opcode-OPC_CheckChild0Same)) 3012 break; 3013 continue; 3014 3015 case OPC_CheckPatternPredicate: 3016 if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; 3017 continue; 3018 case OPC_CheckPredicate: 3019 if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, 3020 N.getNode())) 3021 break; 3022 continue; 3023 case OPC_CheckPredicateWithOperands: { 3024 unsigned OpNum = MatcherTable[MatcherIndex++]; 3025 SmallVector<SDValue, 8> Operands; 3026 3027 for (unsigned i = 0; i < OpNum; ++i) 3028 Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first); 3029 3030 unsigned PredNo = MatcherTable[MatcherIndex++]; 3031 if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands)) 3032 break; 3033 continue; 3034 } 3035 case OPC_CheckComplexPat: { 3036 unsigned CPNum = MatcherTable[MatcherIndex++]; 3037 unsigned RecNo = MatcherTable[MatcherIndex++]; 3038 assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); 3039 3040 // If target can modify DAG during matching, keep the matching state 3041 // consistent. 3042 std::unique_ptr<MatchStateUpdater> MSU; 3043 if (ComplexPatternFuncMutatesDAG()) 3044 MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes, 3045 MatchScopes)); 3046 3047 if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second, 3048 RecordedNodes[RecNo].first, CPNum, 3049 RecordedNodes)) 3050 break; 3051 continue; 3052 } 3053 case OPC_CheckOpcode: 3054 if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; 3055 continue; 3056 3057 case OPC_CheckType: 3058 if (!::CheckType(MatcherTable, MatcherIndex, N, TLI, 3059 CurDAG->getDataLayout())) 3060 break; 3061 continue; 3062 3063 case OPC_CheckTypeRes: { 3064 unsigned Res = MatcherTable[MatcherIndex++]; 3065 if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI, 3066 CurDAG->getDataLayout())) 3067 break; 3068 continue; 3069 } 3070 3071 case OPC_SwitchOpcode: { 3072 unsigned CurNodeOpcode = N.getOpcode(); 3073 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3074 unsigned CaseSize; 3075 while (true) { 3076 // Get the size of this case. 3077 CaseSize = MatcherTable[MatcherIndex++]; 3078 if (CaseSize & 128) 3079 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3080 if (CaseSize == 0) break; 3081 3082 uint16_t Opc = MatcherTable[MatcherIndex++]; 3083 Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3084 3085 // If the opcode matches, then we will execute this case. 3086 if (CurNodeOpcode == Opc) 3087 break; 3088 3089 // Otherwise, skip over this case. 3090 MatcherIndex += CaseSize; 3091 } 3092 3093 // If no cases matched, bail out. 3094 if (CaseSize == 0) break; 3095 3096 // Otherwise, execute the case we found. 3097 LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to " 3098 << MatcherIndex << "\n"); 3099 continue; 3100 } 3101 3102 case OPC_SwitchType: { 3103 MVT CurNodeVT = N.getSimpleValueType(); 3104 unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; 3105 unsigned CaseSize; 3106 while (true) { 3107 // Get the size of this case. 3108 CaseSize = MatcherTable[MatcherIndex++]; 3109 if (CaseSize & 128) 3110 CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); 3111 if (CaseSize == 0) break; 3112 3113 MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3114 if (CaseVT == MVT::iPTR) 3115 CaseVT = TLI->getPointerTy(CurDAG->getDataLayout()); 3116 3117 // If the VT matches, then we will execute this case. 3118 if (CurNodeVT == CaseVT) 3119 break; 3120 3121 // Otherwise, skip over this case. 3122 MatcherIndex += CaseSize; 3123 } 3124 3125 // If no cases matched, bail out. 3126 if (CaseSize == 0) break; 3127 3128 // Otherwise, execute the case we found. 3129 LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString() 3130 << "] from " << SwitchStart << " to " << MatcherIndex 3131 << '\n'); 3132 continue; 3133 } 3134 case OPC_CheckChild0Type: case OPC_CheckChild1Type: 3135 case OPC_CheckChild2Type: case OPC_CheckChild3Type: 3136 case OPC_CheckChild4Type: case OPC_CheckChild5Type: 3137 case OPC_CheckChild6Type: case OPC_CheckChild7Type: 3138 if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, 3139 CurDAG->getDataLayout(), 3140 Opcode - OPC_CheckChild0Type)) 3141 break; 3142 continue; 3143 case OPC_CheckCondCode: 3144 if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; 3145 continue; 3146 case OPC_CheckChild2CondCode: 3147 if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break; 3148 continue; 3149 case OPC_CheckValueType: 3150 if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI, 3151 CurDAG->getDataLayout())) 3152 break; 3153 continue; 3154 case OPC_CheckInteger: 3155 if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; 3156 continue; 3157 case OPC_CheckChild0Integer: case OPC_CheckChild1Integer: 3158 case OPC_CheckChild2Integer: case OPC_CheckChild3Integer: 3159 case OPC_CheckChild4Integer: 3160 if (!::CheckChildInteger(MatcherTable, MatcherIndex, N, 3161 Opcode-OPC_CheckChild0Integer)) break; 3162 continue; 3163 case OPC_CheckAndImm: 3164 if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; 3165 continue; 3166 case OPC_CheckOrImm: 3167 if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; 3168 continue; 3169 case OPC_CheckImmAllOnesV: 3170 if (!ISD::isBuildVectorAllOnes(N.getNode())) break; 3171 continue; 3172 case OPC_CheckImmAllZerosV: 3173 if (!ISD::isBuildVectorAllZeros(N.getNode())) break; 3174 continue; 3175 3176 case OPC_CheckFoldableChainNode: { 3177 assert(NodeStack.size() != 1 && "No parent node"); 3178 // Verify that all intermediate nodes between the root and this one have 3179 // a single use. 3180 bool HasMultipleUses = false; 3181 for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) 3182 if (!NodeStack[i].getNode()->hasOneUse()) { 3183 HasMultipleUses = true; 3184 break; 3185 } 3186 if (HasMultipleUses) break; 3187 3188 // Check to see that the target thinks this is profitable to fold and that 3189 // we can fold it without inducing cycles in the graph. 3190 if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3191 NodeToMatch) || 3192 !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), 3193 NodeToMatch, OptLevel, 3194 true/*We validate our own chains*/)) 3195 break; 3196 3197 continue; 3198 } 3199 case OPC_EmitInteger: { 3200 MVT::SimpleValueType VT = 3201 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3202 int64_t Val = MatcherTable[MatcherIndex++]; 3203 if (Val & 128) 3204 Val = GetVBR(Val, MatcherTable, MatcherIndex); 3205 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3206 CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch), 3207 VT), nullptr)); 3208 continue; 3209 } 3210 case OPC_EmitRegister: { 3211 MVT::SimpleValueType VT = 3212 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3213 unsigned RegNo = MatcherTable[MatcherIndex++]; 3214 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3215 CurDAG->getRegister(RegNo, VT), nullptr)); 3216 continue; 3217 } 3218 case OPC_EmitRegister2: { 3219 // For targets w/ more than 256 register names, the register enum 3220 // values are stored in two bytes in the matcher table (just like 3221 // opcodes). 3222 MVT::SimpleValueType VT = 3223 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3224 unsigned RegNo = MatcherTable[MatcherIndex++]; 3225 RegNo |= MatcherTable[MatcherIndex++] << 8; 3226 RecordedNodes.push_back(std::pair<SDValue, SDNode*>( 3227 CurDAG->getRegister(RegNo, VT), nullptr)); 3228 continue; 3229 } 3230 3231 case OPC_EmitConvertToTarget: { 3232 // Convert from IMM/FPIMM to target version. 3233 unsigned RecNo = MatcherTable[MatcherIndex++]; 3234 assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget"); 3235 SDValue Imm = RecordedNodes[RecNo].first; 3236 3237 if (Imm->getOpcode() == ISD::Constant) { 3238 const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue(); 3239 Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch), 3240 Imm.getValueType()); 3241 } else if (Imm->getOpcode() == ISD::ConstantFP) { 3242 const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); 3243 Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch), 3244 Imm.getValueType()); 3245 } 3246 3247 RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second)); 3248 continue; 3249 } 3250 3251 case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0 3252 case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1 3253 case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2 3254 // These are space-optimized forms of OPC_EmitMergeInputChains. 3255 assert(!InputChain.getNode() && 3256 "EmitMergeInputChains should be the first chain producing node"); 3257 assert(ChainNodesMatched.empty() && 3258 "Should only have one EmitMergeInputChains per match"); 3259 3260 // Read all of the chained nodes. 3261 unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0; 3262 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3263 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3264 3265 // FIXME: What if other value results of the node have uses not matched 3266 // by this pattern? 3267 if (ChainNodesMatched.back() != NodeToMatch && 3268 !RecordedNodes[RecNo].first.hasOneUse()) { 3269 ChainNodesMatched.clear(); 3270 break; 3271 } 3272 3273 // Merge the input chains if they are not intra-pattern references. 3274 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3275 3276 if (!InputChain.getNode()) 3277 break; // Failed to merge. 3278 continue; 3279 } 3280 3281 case OPC_EmitMergeInputChains: { 3282 assert(!InputChain.getNode() && 3283 "EmitMergeInputChains should be the first chain producing node"); 3284 // This node gets a list of nodes we matched in the input that have 3285 // chains. We want to token factor all of the input chains to these nodes 3286 // together. However, if any of the input chains is actually one of the 3287 // nodes matched in this pattern, then we have an intra-match reference. 3288 // Ignore these because the newly token factored chain should not refer to 3289 // the old nodes. 3290 unsigned NumChains = MatcherTable[MatcherIndex++]; 3291 assert(NumChains != 0 && "Can't TF zero chains"); 3292 3293 assert(ChainNodesMatched.empty() && 3294 "Should only have one EmitMergeInputChains per match"); 3295 3296 // Read all of the chained nodes. 3297 for (unsigned i = 0; i != NumChains; ++i) { 3298 unsigned RecNo = MatcherTable[MatcherIndex++]; 3299 assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains"); 3300 ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode()); 3301 3302 // FIXME: What if other value results of the node have uses not matched 3303 // by this pattern? 3304 if (ChainNodesMatched.back() != NodeToMatch && 3305 !RecordedNodes[RecNo].first.hasOneUse()) { 3306 ChainNodesMatched.clear(); 3307 break; 3308 } 3309 } 3310 3311 // If the inner loop broke out, the match fails. 3312 if (ChainNodesMatched.empty()) 3313 break; 3314 3315 // Merge the input chains if they are not intra-pattern references. 3316 InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); 3317 3318 if (!InputChain.getNode()) 3319 break; // Failed to merge. 3320 3321 continue; 3322 } 3323 3324 case OPC_EmitCopyToReg: 3325 case OPC_EmitCopyToReg2: { 3326 unsigned RecNo = MatcherTable[MatcherIndex++]; 3327 assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg"); 3328 unsigned DestPhysReg = MatcherTable[MatcherIndex++]; 3329 if (Opcode == OPC_EmitCopyToReg2) 3330 DestPhysReg |= MatcherTable[MatcherIndex++] << 8; 3331 3332 if (!InputChain.getNode()) 3333 InputChain = CurDAG->getEntryNode(); 3334 3335 InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch), 3336 DestPhysReg, RecordedNodes[RecNo].first, 3337 InputGlue); 3338 3339 InputGlue = InputChain.getValue(1); 3340 continue; 3341 } 3342 3343 case OPC_EmitNodeXForm: { 3344 unsigned XFormNo = MatcherTable[MatcherIndex++]; 3345 unsigned RecNo = MatcherTable[MatcherIndex++]; 3346 assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm"); 3347 SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo); 3348 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr)); 3349 continue; 3350 } 3351 case OPC_Coverage: { 3352 // This is emitted right before MorphNode/EmitNode. 3353 // So it should be safe to assume that this node has been selected 3354 unsigned index = MatcherTable[MatcherIndex++]; 3355 index |= (MatcherTable[MatcherIndex++] << 8); 3356 dbgs() << "COVERED: " << getPatternForIndex(index) << "\n"; 3357 dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n"; 3358 continue; 3359 } 3360 3361 case OPC_EmitNode: case OPC_MorphNodeTo: 3362 case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2: 3363 case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: { 3364 uint16_t TargetOpc = MatcherTable[MatcherIndex++]; 3365 TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; 3366 unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; 3367 // Get the result VT list. 3368 unsigned NumVTs; 3369 // If this is one of the compressed forms, get the number of VTs based 3370 // on the Opcode. Otherwise read the next byte from the table. 3371 if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2) 3372 NumVTs = Opcode - OPC_MorphNodeTo0; 3373 else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2) 3374 NumVTs = Opcode - OPC_EmitNode0; 3375 else 3376 NumVTs = MatcherTable[MatcherIndex++]; 3377 SmallVector<EVT, 4> VTs; 3378 for (unsigned i = 0; i != NumVTs; ++i) { 3379 MVT::SimpleValueType VT = 3380 (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; 3381 if (VT == MVT::iPTR) 3382 VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy; 3383 VTs.push_back(VT); 3384 } 3385 3386 if (EmitNodeInfo & OPFL_Chain) 3387 VTs.push_back(MVT::Other); 3388 if (EmitNodeInfo & OPFL_GlueOutput) 3389 VTs.push_back(MVT::Glue); 3390 3391 // This is hot code, so optimize the two most common cases of 1 and 2 3392 // results. 3393 SDVTList VTList; 3394 if (VTs.size() == 1) 3395 VTList = CurDAG->getVTList(VTs[0]); 3396 else if (VTs.size() == 2) 3397 VTList = CurDAG->getVTList(VTs[0], VTs[1]); 3398 else 3399 VTList = CurDAG->getVTList(VTs); 3400 3401 // Get the operand list. 3402 unsigned NumOps = MatcherTable[MatcherIndex++]; 3403 SmallVector<SDValue, 8> Ops; 3404 for (unsigned i = 0; i != NumOps; ++i) { 3405 unsigned RecNo = MatcherTable[MatcherIndex++]; 3406 if (RecNo & 128) 3407 RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); 3408 3409 assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); 3410 Ops.push_back(RecordedNodes[RecNo].first); 3411 } 3412 3413 // If there are variadic operands to add, handle them now. 3414 if (EmitNodeInfo & OPFL_VariadicInfo) { 3415 // Determine the start index to copy from. 3416 unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); 3417 FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; 3418 assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && 3419 "Invalid variadic node"); 3420 // Copy all of the variadic operands, not including a potential glue 3421 // input. 3422 for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); 3423 i != e; ++i) { 3424 SDValue V = NodeToMatch->getOperand(i); 3425 if (V.getValueType() == MVT::Glue) break; 3426 Ops.push_back(V); 3427 } 3428 } 3429 3430 // If this has chain/glue inputs, add them. 3431 if (EmitNodeInfo & OPFL_Chain) 3432 Ops.push_back(InputChain); 3433 if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr) 3434 Ops.push_back(InputGlue); 3435 3436 // Create the node. 3437 MachineSDNode *Res = nullptr; 3438 bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo || 3439 (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2); 3440 if (!IsMorphNodeTo) { 3441 // If this is a normal EmitNode command, just create the new node and 3442 // add the results to the RecordedNodes list. 3443 Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch), 3444 VTList, Ops); 3445 3446 // Add all the non-glue/non-chain results to the RecordedNodes list. 3447 for (unsigned i = 0, e = VTs.size(); i != e; ++i) { 3448 if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break; 3449 RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i), 3450 nullptr)); 3451 } 3452 } else { 3453 assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE && 3454 "NodeToMatch was removed partway through selection"); 3455 SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N, 3456 SDNode *E) { 3457 CurDAG->salvageDebugInfo(*N); 3458 auto &Chain = ChainNodesMatched; 3459 assert((!E || !is_contained(Chain, N)) && 3460 "Chain node replaced during MorphNode"); 3461 Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end()); 3462 }); 3463 Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList, 3464 Ops, EmitNodeInfo)); 3465 } 3466 3467 // If the node had chain/glue results, update our notion of the current 3468 // chain and glue. 3469 if (EmitNodeInfo & OPFL_GlueOutput) { 3470 InputGlue = SDValue(Res, VTs.size()-1); 3471 if (EmitNodeInfo & OPFL_Chain) 3472 InputChain = SDValue(Res, VTs.size()-2); 3473 } else if (EmitNodeInfo & OPFL_Chain) 3474 InputChain = SDValue(Res, VTs.size()-1); 3475 3476 // If the OPFL_MemRefs glue is set on this node, slap all of the 3477 // accumulated memrefs onto it. 3478 // 3479 // FIXME: This is vastly incorrect for patterns with multiple outputs 3480 // instructions that access memory and for ComplexPatterns that match 3481 // loads. 3482 if (EmitNodeInfo & OPFL_MemRefs) { 3483 // Only attach load or store memory operands if the generated 3484 // instruction may load or store. 3485 const MCInstrDesc &MCID = TII->get(TargetOpc); 3486 bool mayLoad = MCID.mayLoad(); 3487 bool mayStore = MCID.mayStore(); 3488 3489 // We expect to have relatively few of these so just filter them into a 3490 // temporary buffer so that we can easily add them to the instruction. 3491 SmallVector<MachineMemOperand *, 4> FilteredMemRefs; 3492 for (MachineMemOperand *MMO : MatchedMemRefs) { 3493 if (MMO->isLoad()) { 3494 if (mayLoad) 3495 FilteredMemRefs.push_back(MMO); 3496 } else if (MMO->isStore()) { 3497 if (mayStore) 3498 FilteredMemRefs.push_back(MMO); 3499 } else { 3500 FilteredMemRefs.push_back(MMO); 3501 } 3502 } 3503 3504 CurDAG->setNodeMemRefs(Res, FilteredMemRefs); 3505 } 3506 3507 LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs() 3508 << " Dropping mem operands\n"; 3509 dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created") 3510 << " node: "; 3511 Res->dump(CurDAG);); 3512 3513 // If this was a MorphNodeTo then we're completely done! 3514 if (IsMorphNodeTo) { 3515 // Update chain uses. 3516 UpdateChains(Res, InputChain, ChainNodesMatched, true); 3517 return; 3518 } 3519 continue; 3520 } 3521 3522 case OPC_CompleteMatch: { 3523 // The match has been completed, and any new nodes (if any) have been 3524 // created. Patch up references to the matched dag to use the newly 3525 // created nodes. 3526 unsigned NumResults = MatcherTable[MatcherIndex++]; 3527 3528 for (unsigned i = 0; i != NumResults; ++i) { 3529 unsigned ResSlot = MatcherTable[MatcherIndex++]; 3530 if (ResSlot & 128) 3531 ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); 3532 3533 assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch"); 3534 SDValue Res = RecordedNodes[ResSlot].first; 3535 3536 assert(i < NodeToMatch->getNumValues() && 3537 NodeToMatch->getValueType(i) != MVT::Other && 3538 NodeToMatch->getValueType(i) != MVT::Glue && 3539 "Invalid number of results to complete!"); 3540 assert((NodeToMatch->getValueType(i) == Res.getValueType() || 3541 NodeToMatch->getValueType(i) == MVT::iPTR || 3542 Res.getValueType() == MVT::iPTR || 3543 NodeToMatch->getValueType(i).getSizeInBits() == 3544 Res.getValueSizeInBits()) && 3545 "invalid replacement"); 3546 ReplaceUses(SDValue(NodeToMatch, i), Res); 3547 } 3548 3549 // Update chain uses. 3550 UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false); 3551 3552 // If the root node defines glue, we need to update it to the glue result. 3553 // TODO: This never happens in our tests and I think it can be removed / 3554 // replaced with an assert, but if we do it this the way the change is 3555 // NFC. 3556 if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) == 3557 MVT::Glue && 3558 InputGlue.getNode()) 3559 ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1), 3560 InputGlue); 3561 3562 assert(NodeToMatch->use_empty() && 3563 "Didn't replace all uses of the node?"); 3564 CurDAG->RemoveDeadNode(NodeToMatch); 3565 3566 return; 3567 } 3568 } 3569 3570 // If the code reached this point, then the match failed. See if there is 3571 // another child to try in the current 'Scope', otherwise pop it until we 3572 // find a case to check. 3573 LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex 3574 << "\n"); 3575 ++NumDAGIselRetries; 3576 while (true) { 3577 if (MatchScopes.empty()) { 3578 CannotYetSelect(NodeToMatch); 3579 return; 3580 } 3581 3582 // Restore the interpreter state back to the point where the scope was 3583 // formed. 3584 MatchScope &LastScope = MatchScopes.back(); 3585 RecordedNodes.resize(LastScope.NumRecordedNodes); 3586 NodeStack.clear(); 3587 NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); 3588 N = NodeStack.back(); 3589 3590 if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) 3591 MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); 3592 MatcherIndex = LastScope.FailIndex; 3593 3594 LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n"); 3595 3596 InputChain = LastScope.InputChain; 3597 InputGlue = LastScope.InputGlue; 3598 if (!LastScope.HasChainNodesMatched) 3599 ChainNodesMatched.clear(); 3600 3601 // Check to see what the offset is at the new MatcherIndex. If it is zero 3602 // we have reached the end of this scope, otherwise we have another child 3603 // in the current scope to try. 3604 unsigned NumToSkip = MatcherTable[MatcherIndex++]; 3605 if (NumToSkip & 128) 3606 NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); 3607 3608 // If we have another child in this scope to match, update FailIndex and 3609 // try it. 3610 if (NumToSkip != 0) { 3611 LastScope.FailIndex = MatcherIndex+NumToSkip; 3612 break; 3613 } 3614 3615 // End of this scope, pop it and try the next child in the containing 3616 // scope. 3617 MatchScopes.pop_back(); 3618 } 3619 } 3620 } 3621 3622 bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const { 3623 assert(N->getOpcode() == ISD::OR && "Unexpected opcode"); 3624 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 3625 if (!C) 3626 return false; 3627 3628 // Detect when "or" is used to add an offset to a stack object. 3629 if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) { 3630 MachineFrameInfo &MFI = MF->getFrameInfo(); 3631 unsigned A = MFI.getObjectAlignment(FN->getIndex()); 3632 assert(isPowerOf2_32(A) && "Unexpected alignment"); 3633 int32_t Off = C->getSExtValue(); 3634 // If the alleged offset fits in the zero bits guaranteed by 3635 // the alignment, then this or is really an add. 3636 return (Off >= 0) && (((A - 1) & Off) == unsigned(Off)); 3637 } 3638 return false; 3639 } 3640 3641 void SelectionDAGISel::CannotYetSelect(SDNode *N) { 3642 std::string msg; 3643 raw_string_ostream Msg(msg); 3644 Msg << "Cannot select: "; 3645 3646 if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && 3647 N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && 3648 N->getOpcode() != ISD::INTRINSIC_VOID) { 3649 N->printrFull(Msg, CurDAG); 3650 Msg << "\nIn function: " << MF->getName(); 3651 } else { 3652 bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; 3653 unsigned iid = 3654 cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); 3655 if (iid < Intrinsic::num_intrinsics) 3656 Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None); 3657 else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) 3658 Msg << "target intrinsic %" << TII->getName(iid); 3659 else 3660 Msg << "unknown intrinsic #" << iid; 3661 } 3662 report_fatal_error(Msg.str()); 3663 } 3664 3665 char SelectionDAGISel::ID = 0; 3666