1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the RAGreedy function pass for register allocation in 10 // optimized builds. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AllocationOrder.h" 15 #include "InterferenceCache.h" 16 #include "LiveDebugVariables.h" 17 #include "RegAllocBase.h" 18 #include "RegAllocEvictionAdvisor.h" 19 #include "SpillPlacement.h" 20 #include "SplitKit.h" 21 #include "llvm/ADT/ArrayRef.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IndexedMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/SetVector.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallSet.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/ADT/StringRef.h" 32 #include "llvm/Analysis/AliasAnalysis.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/CodeGen/CalcSpillWeights.h" 35 #include "llvm/CodeGen/EdgeBundles.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalUnion.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeEdit.h" 40 #include "llvm/CodeGen/LiveRegMatrix.h" 41 #include "llvm/CodeGen/LiveStacks.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineLoopInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RegAllocRegistry.h" 54 #include "llvm/CodeGen/RegisterClassInfo.h" 55 #include "llvm/CodeGen/SlotIndexes.h" 56 #include "llvm/CodeGen/Spiller.h" 57 #include "llvm/CodeGen/TargetInstrInfo.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/VirtRegMap.h" 61 #include "llvm/IR/DebugInfoMetadata.h" 62 #include "llvm/IR/Function.h" 63 #include "llvm/IR/LLVMContext.h" 64 #include "llvm/MC/MCRegisterInfo.h" 65 #include "llvm/Pass.h" 66 #include "llvm/Support/BlockFrequency.h" 67 #include "llvm/Support/BranchProbability.h" 68 #include "llvm/Support/CommandLine.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/Timer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <memory> 78 #include <queue> 79 #include <tuple> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "regalloc" 85 86 STATISTIC(NumGlobalSplits, "Number of split global live ranges"); 87 STATISTIC(NumLocalSplits, "Number of split local live ranges"); 88 STATISTIC(NumEvicted, "Number of interferences evicted"); 89 90 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode( 91 "split-spill-mode", cl::Hidden, 92 cl::desc("Spill mode for splitting live ranges"), 93 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"), 94 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"), 95 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")), 96 cl::init(SplitEditor::SM_Speed)); 97 98 static cl::opt<unsigned> 99 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden, 100 cl::desc("Last chance recoloring max depth"), 101 cl::init(5)); 102 103 static cl::opt<unsigned> LastChanceRecoloringMaxInterference( 104 "lcr-max-interf", cl::Hidden, 105 cl::desc("Last chance recoloring maximum number of considered" 106 " interference at a time"), 107 cl::init(8)); 108 109 static cl::opt<bool> ExhaustiveSearch( 110 "exhaustive-register-search", cl::NotHidden, 111 cl::desc("Exhaustive Search for registers bypassing the depth " 112 "and interference cutoffs of last chance recoloring"), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableLocalReassignment( 116 "enable-local-reassign", cl::Hidden, 117 cl::desc("Local reassignment can yield better allocation decisions, but " 118 "may be compile time intensive"), 119 cl::init(false)); 120 121 static cl::opt<bool> EnableDeferredSpilling( 122 "enable-deferred-spilling", cl::Hidden, 123 cl::desc("Instead of spilling a variable right away, defer the actual " 124 "code insertion to the end of the allocation. That way the " 125 "allocator might still find a suitable coloring for this " 126 "variable because of other evicted variables."), 127 cl::init(false)); 128 129 // FIXME: Find a good default for this flag and remove the flag. 130 static cl::opt<unsigned> 131 CSRFirstTimeCost("regalloc-csr-first-time-cost", 132 cl::desc("Cost for first time use of callee-saved register."), 133 cl::init(0), cl::Hidden); 134 135 static cl::opt<bool> ConsiderLocalIntervalCost( 136 "consider-local-interval-cost", cl::Hidden, 137 cl::desc("Consider the cost of local intervals created by a split " 138 "candidate when choosing the best split candidate."), 139 cl::init(false)); 140 141 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator", 142 createGreedyRegisterAllocator); 143 144 namespace { 145 146 class RAGreedy : public MachineFunctionPass, 147 public RegAllocBase, 148 private LiveRangeEdit::Delegate { 149 // Convenient shortcuts. 150 using PQueue = std::priority_queue<std::pair<unsigned, unsigned>>; 151 using SmallLISet = SmallPtrSet<LiveInterval *, 4>; 152 153 // context 154 MachineFunction *MF; 155 156 // Shortcuts to some useful interface. 157 const TargetInstrInfo *TII; 158 const TargetRegisterInfo *TRI; 159 RegisterClassInfo RCI; 160 161 // analyses 162 SlotIndexes *Indexes; 163 MachineBlockFrequencyInfo *MBFI; 164 MachineDominatorTree *DomTree; 165 MachineLoopInfo *Loops; 166 MachineOptimizationRemarkEmitter *ORE; 167 EdgeBundles *Bundles; 168 SpillPlacement *SpillPlacer; 169 LiveDebugVariables *DebugVars; 170 AliasAnalysis *AA; 171 172 // state 173 std::unique_ptr<Spiller> SpillerInstance; 174 PQueue Queue; 175 unsigned NextCascade; 176 std::unique_ptr<VirtRegAuxInfo> VRAI; 177 178 // Enum CutOffStage to keep a track whether the register allocation failed 179 // because of the cutoffs encountered in last chance recoloring. 180 // Note: This is used as bitmask. New value should be next power of 2. 181 enum CutOffStage { 182 // No cutoffs encountered 183 CO_None = 0, 184 185 // lcr-max-depth cutoff encountered 186 CO_Depth = 1, 187 188 // lcr-max-interf cutoff encountered 189 CO_Interf = 2 190 }; 191 192 uint8_t CutOffInfo; 193 194 #ifndef NDEBUG 195 static const char *const StageName[]; 196 #endif 197 198 // RegInfo - Keep additional information about each live range. 199 struct RegInfo { 200 LiveRangeStage Stage = RS_New; 201 202 // Cascade - Eviction loop prevention. See 203 // canEvictInterferenceBasedOnCost(). 204 unsigned Cascade = 0; 205 206 RegInfo() = default; 207 }; 208 209 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo; 210 211 LiveRangeStage getStage(Register Reg) const { 212 return ExtraRegInfo[Reg].Stage; 213 } 214 215 LiveRangeStage getStage(const LiveInterval &VirtReg) const { 216 return getStage(VirtReg.reg()); 217 } 218 219 void setStage(Register Reg, LiveRangeStage Stage) { 220 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 221 ExtraRegInfo[Reg].Stage = Stage; 222 } 223 224 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) { 225 setStage(VirtReg.reg(), Stage); 226 } 227 228 /// Return the current stage of the register, if present, otherwise initialize 229 /// it and return that. 230 LiveRangeStage getOrInitStage(Register Reg) { 231 ExtraRegInfo.grow(Reg); 232 return getStage(Reg); 233 } 234 235 unsigned getCascade(Register Reg) const { return ExtraRegInfo[Reg].Cascade; } 236 237 void setCascade(Register Reg, unsigned Cascade) { 238 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 239 ExtraRegInfo[Reg].Cascade = Cascade; 240 } 241 242 unsigned getOrAssignNewCascade(Register Reg) { 243 unsigned Cascade = getCascade(Reg); 244 if (!Cascade) { 245 Cascade = NextCascade++; 246 setCascade(Reg, Cascade); 247 } 248 return Cascade; 249 } 250 251 unsigned getCascadeOrCurrentNext(Register Reg) const { 252 unsigned Cascade = getCascade(Reg); 253 if (!Cascade) 254 Cascade = NextCascade; 255 return Cascade; 256 } 257 258 template<typename Iterator> 259 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) { 260 ExtraRegInfo.resize(MRI->getNumVirtRegs()); 261 for (;Begin != End; ++Begin) { 262 Register Reg = *Begin; 263 if (ExtraRegInfo[Reg].Stage == RS_New) 264 ExtraRegInfo[Reg].Stage = NewStage; 265 } 266 } 267 268 /// EvictionTrack - Keeps track of past evictions in order to optimize region 269 /// split decision. 270 class EvictionTrack { 271 272 public: 273 using EvictorInfo = 274 std::pair<Register /* evictor */, MCRegister /* physreg */>; 275 using EvicteeInfo = llvm::DenseMap<Register /* evictee */, EvictorInfo>; 276 277 private: 278 /// Each Vreg that has been evicted in the last stage of selectOrSplit will 279 /// be mapped to the evictor Vreg and the PhysReg it was evicted from. 280 EvicteeInfo Evictees; 281 282 public: 283 /// Clear all eviction information. 284 void clear() { Evictees.clear(); } 285 286 /// Clear eviction information for the given evictee Vreg. 287 /// E.g. when Vreg get's a new allocation, the old eviction info is no 288 /// longer relevant. 289 /// \param Evictee The evictee Vreg for whom we want to clear collected 290 /// eviction info. 291 void clearEvicteeInfo(Register Evictee) { Evictees.erase(Evictee); } 292 293 /// Track new eviction. 294 /// The Evictor vreg has evicted the Evictee vreg from Physreg. 295 /// \param PhysReg The physical register Evictee was evicted from. 296 /// \param Evictor The evictor Vreg that evicted Evictee. 297 /// \param Evictee The evictee Vreg. 298 void addEviction(MCRegister PhysReg, Register Evictor, Register Evictee) { 299 Evictees[Evictee].first = Evictor; 300 Evictees[Evictee].second = PhysReg; 301 } 302 303 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg. 304 /// \param Evictee The evictee vreg. 305 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if 306 /// nobody has evicted Evictee from PhysReg. 307 EvictorInfo getEvictor(Register Evictee) { 308 if (Evictees.count(Evictee)) { 309 return Evictees[Evictee]; 310 } 311 312 return EvictorInfo(0, 0); 313 } 314 }; 315 316 // Keeps track of past evictions in order to optimize region split decision. 317 EvictionTrack LastEvicted; 318 319 // splitting state. 320 std::unique_ptr<SplitAnalysis> SA; 321 std::unique_ptr<SplitEditor> SE; 322 323 /// Cached per-block interference maps 324 InterferenceCache IntfCache; 325 326 /// All basic blocks where the current register has uses. 327 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints; 328 329 /// Global live range splitting candidate info. 330 struct GlobalSplitCandidate { 331 // Register intended for assignment, or 0. 332 MCRegister PhysReg; 333 334 // SplitKit interval index for this candidate. 335 unsigned IntvIdx; 336 337 // Interference for PhysReg. 338 InterferenceCache::Cursor Intf; 339 340 // Bundles where this candidate should be live. 341 BitVector LiveBundles; 342 SmallVector<unsigned, 8> ActiveBlocks; 343 344 void reset(InterferenceCache &Cache, MCRegister Reg) { 345 PhysReg = Reg; 346 IntvIdx = 0; 347 Intf.setPhysReg(Cache, Reg); 348 LiveBundles.clear(); 349 ActiveBlocks.clear(); 350 } 351 352 // Set B[I] = C for every live bundle where B[I] was NoCand. 353 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) { 354 unsigned Count = 0; 355 for (unsigned I : LiveBundles.set_bits()) 356 if (B[I] == NoCand) { 357 B[I] = C; 358 Count++; 359 } 360 return Count; 361 } 362 }; 363 364 /// Candidate info for each PhysReg in AllocationOrder. 365 /// This vector never shrinks, but grows to the size of the largest register 366 /// class. 367 SmallVector<GlobalSplitCandidate, 32> GlobalCand; 368 369 enum : unsigned { NoCand = ~0u }; 370 371 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to 372 /// NoCand which indicates the stack interval. 373 SmallVector<unsigned, 32> BundleCand; 374 375 /// Callee-save register cost, calculated once per machine function. 376 BlockFrequency CSRCost; 377 378 /// Run or not the local reassignment heuristic. This information is 379 /// obtained from the TargetSubtargetInfo. 380 bool EnableLocalReassign; 381 382 /// Enable or not the consideration of the cost of local intervals created 383 /// by a split candidate when choosing the best split candidate. 384 bool EnableAdvancedRASplitCost; 385 386 /// Set of broken hints that may be reconciled later because of eviction. 387 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints; 388 389 /// The register cost values. This list will be recreated for each Machine 390 /// Function 391 ArrayRef<uint8_t> RegCosts; 392 393 public: 394 RAGreedy(const RegClassFilterFunc F = allocateAllRegClasses); 395 396 /// Return the pass name. 397 StringRef getPassName() const override { return "Greedy Register Allocator"; } 398 399 /// RAGreedy analysis usage. 400 void getAnalysisUsage(AnalysisUsage &AU) const override; 401 void releaseMemory() override; 402 Spiller &spiller() override { return *SpillerInstance; } 403 void enqueueImpl(LiveInterval *LI) override; 404 LiveInterval *dequeue() override; 405 MCRegister selectOrSplit(LiveInterval &, 406 SmallVectorImpl<Register> &) override; 407 void aboutToRemoveInterval(LiveInterval &) override; 408 409 /// Perform register allocation. 410 bool runOnMachineFunction(MachineFunction &mf) override; 411 412 MachineFunctionProperties getRequiredProperties() const override { 413 return MachineFunctionProperties().set( 414 MachineFunctionProperties::Property::NoPHIs); 415 } 416 417 MachineFunctionProperties getClearedProperties() const override { 418 return MachineFunctionProperties().set( 419 MachineFunctionProperties::Property::IsSSA); 420 } 421 422 static char ID; 423 424 private: 425 MCRegister selectOrSplitImpl(LiveInterval &, SmallVectorImpl<Register> &, 426 SmallVirtRegSet &, unsigned = 0); 427 428 bool LRE_CanEraseVirtReg(Register) override; 429 void LRE_WillShrinkVirtReg(Register) override; 430 void LRE_DidCloneVirtReg(Register, Register) override; 431 void enqueue(PQueue &CurQueue, LiveInterval *LI); 432 LiveInterval *dequeue(PQueue &CurQueue); 433 434 BlockFrequency calcSpillCost(); 435 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&); 436 bool addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>); 437 bool growRegion(GlobalSplitCandidate &Cand); 438 bool splitCanCauseEvictionChain(Register Evictee, GlobalSplitCandidate &Cand, 439 unsigned BBNumber, 440 const AllocationOrder &Order); 441 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit, 442 GlobalSplitCandidate &Cand, unsigned BBNumber, 443 const AllocationOrder &Order); 444 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate &, 445 const AllocationOrder &Order, 446 bool *CanCauseEvictionChain); 447 bool calcCompactRegion(GlobalSplitCandidate&); 448 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>); 449 void calcGapWeights(MCRegister, SmallVectorImpl<float> &); 450 Register canReassign(LiveInterval &VirtReg, Register PrevReg) const; 451 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool) const; 452 bool canEvictInterferenceBasedOnCost(LiveInterval &, MCRegister, bool, 453 EvictionCost &, 454 const SmallVirtRegSet &) const; 455 bool canEvictHintInterference(LiveInterval &, MCRegister, 456 const SmallVirtRegSet &) const; 457 bool canEvictInterferenceInRange(const LiveInterval &VirtReg, 458 MCRegister PhysReg, SlotIndex Start, 459 SlotIndex End, EvictionCost &MaxCost) const; 460 MCRegister getCheapestEvicteeWeight(const AllocationOrder &Order, 461 const LiveInterval &VirtReg, 462 SlotIndex Start, SlotIndex End, 463 float *BestEvictWeight) const; 464 void evictInterference(LiveInterval &, MCRegister, 465 SmallVectorImpl<Register> &); 466 bool mayRecolorAllInterferences(MCRegister PhysReg, LiveInterval &VirtReg, 467 SmallLISet &RecoloringCandidates, 468 const SmallVirtRegSet &FixedRegisters); 469 470 MCRegister tryAssign(LiveInterval&, AllocationOrder&, 471 SmallVectorImpl<Register>&, 472 const SmallVirtRegSet&); 473 MCRegister tryFindEvictionCandidate(LiveInterval &, const AllocationOrder &, 474 uint8_t, const SmallVirtRegSet &) const; 475 MCRegister tryEvict(LiveInterval &, AllocationOrder &, 476 SmallVectorImpl<Register> &, uint8_t, 477 const SmallVirtRegSet &); 478 MCRegister tryRegionSplit(LiveInterval &, AllocationOrder &, 479 SmallVectorImpl<Register> &); 480 /// Calculate cost of region splitting. 481 unsigned calculateRegionSplitCost(LiveInterval &VirtReg, 482 AllocationOrder &Order, 483 BlockFrequency &BestCost, 484 unsigned &NumCands, bool IgnoreCSR, 485 bool *CanCauseEvictionChain = nullptr); 486 /// Perform region splitting. 487 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 488 bool HasCompact, 489 SmallVectorImpl<Register> &NewVRegs); 490 /// Check other options before using a callee-saved register for the first 491 /// time. 492 MCRegister tryAssignCSRFirstTime(LiveInterval &VirtReg, 493 AllocationOrder &Order, MCRegister PhysReg, 494 uint8_t &CostPerUseLimit, 495 SmallVectorImpl<Register> &NewVRegs); 496 void initializeCSRCost(); 497 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&, 498 SmallVectorImpl<Register>&); 499 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&, 500 SmallVectorImpl<Register>&); 501 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&, 502 SmallVectorImpl<Register>&); 503 unsigned trySplit(LiveInterval&, AllocationOrder&, 504 SmallVectorImpl<Register>&, 505 const SmallVirtRegSet&); 506 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &, 507 SmallVectorImpl<Register> &, 508 SmallVirtRegSet &, unsigned); 509 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<Register> &, 510 SmallVirtRegSet &, unsigned); 511 void tryHintRecoloring(LiveInterval &); 512 void tryHintsRecoloring(); 513 514 /// Model the information carried by one end of a copy. 515 struct HintInfo { 516 /// The frequency of the copy. 517 BlockFrequency Freq; 518 /// The virtual register or physical register. 519 Register Reg; 520 /// Its currently assigned register. 521 /// In case of a physical register Reg == PhysReg. 522 MCRegister PhysReg; 523 524 HintInfo(BlockFrequency Freq, Register Reg, MCRegister PhysReg) 525 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {} 526 }; 527 using HintsInfo = SmallVector<HintInfo, 4>; 528 529 BlockFrequency getBrokenHintFreq(const HintsInfo &, MCRegister); 530 void collectHintInfo(Register, HintsInfo &); 531 532 bool isUnusedCalleeSavedReg(MCRegister PhysReg) const; 533 534 /// Greedy RA statistic to remark. 535 struct RAGreedyStats { 536 unsigned Reloads = 0; 537 unsigned FoldedReloads = 0; 538 unsigned ZeroCostFoldedReloads = 0; 539 unsigned Spills = 0; 540 unsigned FoldedSpills = 0; 541 unsigned Copies = 0; 542 float ReloadsCost = 0.0f; 543 float FoldedReloadsCost = 0.0f; 544 float SpillsCost = 0.0f; 545 float FoldedSpillsCost = 0.0f; 546 float CopiesCost = 0.0f; 547 548 bool isEmpty() { 549 return !(Reloads || FoldedReloads || Spills || FoldedSpills || 550 ZeroCostFoldedReloads || Copies); 551 } 552 553 void add(RAGreedyStats other) { 554 Reloads += other.Reloads; 555 FoldedReloads += other.FoldedReloads; 556 ZeroCostFoldedReloads += other.ZeroCostFoldedReloads; 557 Spills += other.Spills; 558 FoldedSpills += other.FoldedSpills; 559 Copies += other.Copies; 560 ReloadsCost += other.ReloadsCost; 561 FoldedReloadsCost += other.FoldedReloadsCost; 562 SpillsCost += other.SpillsCost; 563 FoldedSpillsCost += other.FoldedSpillsCost; 564 CopiesCost += other.CopiesCost; 565 } 566 567 void report(MachineOptimizationRemarkMissed &R); 568 }; 569 570 /// Compute statistic for a basic block. 571 RAGreedyStats computeStats(MachineBasicBlock &MBB); 572 573 /// Compute and report statistic through a remark. 574 RAGreedyStats reportStats(MachineLoop *L); 575 576 /// Report the statistic for each loop. 577 void reportStats(); 578 }; 579 580 } // end anonymous namespace 581 582 char RAGreedy::ID = 0; 583 char &llvm::RAGreedyID = RAGreedy::ID; 584 585 INITIALIZE_PASS_BEGIN(RAGreedy, "greedy", 586 "Greedy Register Allocator", false, false) 587 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables) 588 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 589 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 590 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer) 591 INITIALIZE_PASS_DEPENDENCY(MachineScheduler) 592 INITIALIZE_PASS_DEPENDENCY(LiveStacks) 593 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 594 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 595 INITIALIZE_PASS_DEPENDENCY(VirtRegMap) 596 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix) 597 INITIALIZE_PASS_DEPENDENCY(EdgeBundles) 598 INITIALIZE_PASS_DEPENDENCY(SpillPlacement) 599 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass) 600 INITIALIZE_PASS_END(RAGreedy, "greedy", 601 "Greedy Register Allocator", false, false) 602 603 #ifndef NDEBUG 604 const char *const RAGreedy::StageName[] = { 605 "RS_New", 606 "RS_Assign", 607 "RS_Split", 608 "RS_Split2", 609 "RS_Spill", 610 "RS_Memory", 611 "RS_Done" 612 }; 613 #endif 614 615 // Hysteresis to use when comparing floats. 616 // This helps stabilize decisions based on float comparisons. 617 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875 618 619 FunctionPass* llvm::createGreedyRegisterAllocator() { 620 return new RAGreedy(); 621 } 622 623 namespace llvm { 624 FunctionPass* createGreedyRegisterAllocator( 625 std::function<bool(const TargetRegisterInfo &TRI, 626 const TargetRegisterClass &RC)> Ftor); 627 628 } 629 630 FunctionPass* llvm::createGreedyRegisterAllocator( 631 std::function<bool(const TargetRegisterInfo &TRI, 632 const TargetRegisterClass &RC)> Ftor) { 633 return new RAGreedy(Ftor); 634 } 635 636 RAGreedy::RAGreedy(RegClassFilterFunc F): 637 MachineFunctionPass(ID), 638 RegAllocBase(F) { 639 } 640 641 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const { 642 AU.setPreservesCFG(); 643 AU.addRequired<MachineBlockFrequencyInfo>(); 644 AU.addPreserved<MachineBlockFrequencyInfo>(); 645 AU.addRequired<AAResultsWrapperPass>(); 646 AU.addPreserved<AAResultsWrapperPass>(); 647 AU.addRequired<LiveIntervals>(); 648 AU.addPreserved<LiveIntervals>(); 649 AU.addRequired<SlotIndexes>(); 650 AU.addPreserved<SlotIndexes>(); 651 AU.addRequired<LiveDebugVariables>(); 652 AU.addPreserved<LiveDebugVariables>(); 653 AU.addRequired<LiveStacks>(); 654 AU.addPreserved<LiveStacks>(); 655 AU.addRequired<MachineDominatorTree>(); 656 AU.addPreserved<MachineDominatorTree>(); 657 AU.addRequired<MachineLoopInfo>(); 658 AU.addPreserved<MachineLoopInfo>(); 659 AU.addRequired<VirtRegMap>(); 660 AU.addPreserved<VirtRegMap>(); 661 AU.addRequired<LiveRegMatrix>(); 662 AU.addPreserved<LiveRegMatrix>(); 663 AU.addRequired<EdgeBundles>(); 664 AU.addRequired<SpillPlacement>(); 665 AU.addRequired<MachineOptimizationRemarkEmitterPass>(); 666 MachineFunctionPass::getAnalysisUsage(AU); 667 } 668 669 //===----------------------------------------------------------------------===// 670 // LiveRangeEdit delegate methods 671 //===----------------------------------------------------------------------===// 672 673 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) { 674 LiveInterval &LI = LIS->getInterval(VirtReg); 675 if (VRM->hasPhys(VirtReg)) { 676 Matrix->unassign(LI); 677 aboutToRemoveInterval(LI); 678 return true; 679 } 680 // Unassigned virtreg is probably in the priority queue. 681 // RegAllocBase will erase it after dequeueing. 682 // Nonetheless, clear the live-range so that the debug 683 // dump will show the right state for that VirtReg. 684 LI.clear(); 685 return false; 686 } 687 688 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) { 689 if (!VRM->hasPhys(VirtReg)) 690 return; 691 692 // Register is assigned, put it back on the queue for reassignment. 693 LiveInterval &LI = LIS->getInterval(VirtReg); 694 Matrix->unassign(LI); 695 RegAllocBase::enqueue(&LI); 696 } 697 698 void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) { 699 // Cloning a register we haven't even heard about yet? Just ignore it. 700 if (!ExtraRegInfo.inBounds(Old)) 701 return; 702 703 // LRE may clone a virtual register because dead code elimination causes it to 704 // be split into connected components. The new components are much smaller 705 // than the original, so they should get a new chance at being assigned. 706 // same stage as the parent. 707 ExtraRegInfo[Old].Stage = RS_Assign; 708 ExtraRegInfo.grow(New); 709 ExtraRegInfo[New] = ExtraRegInfo[Old]; 710 } 711 712 void RAGreedy::releaseMemory() { 713 SpillerInstance.reset(); 714 ExtraRegInfo.clear(); 715 GlobalCand.clear(); 716 } 717 718 void RAGreedy::enqueueImpl(LiveInterval *LI) { enqueue(Queue, LI); } 719 720 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) { 721 // Prioritize live ranges by size, assigning larger ranges first. 722 // The queue holds (size, reg) pairs. 723 const unsigned Size = LI->getSize(); 724 const Register Reg = LI->reg(); 725 assert(Reg.isVirtual() && "Can only enqueue virtual registers"); 726 unsigned Prio; 727 728 auto Stage = getOrInitStage(Reg); 729 if (Stage == RS_New) { 730 Stage = RS_Assign; 731 setStage(Reg, Stage); 732 } 733 if (Stage == RS_Split) { 734 // Unsplit ranges that couldn't be allocated immediately are deferred until 735 // everything else has been allocated. 736 Prio = Size; 737 } else if (Stage == RS_Memory) { 738 // Memory operand should be considered last. 739 // Change the priority such that Memory operand are assigned in 740 // the reverse order that they came in. 741 // TODO: Make this a member variable and probably do something about hints. 742 static unsigned MemOp = 0; 743 Prio = MemOp++; 744 } else { 745 // Giant live ranges fall back to the global assignment heuristic, which 746 // prevents excessive spilling in pathological cases. 747 bool ReverseLocal = TRI->reverseLocalAssignment(); 748 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 749 bool ForceGlobal = !ReverseLocal && 750 (Size / SlotIndex::InstrDist) > (2 * RCI.getNumAllocatableRegs(&RC)); 751 752 if (Stage == RS_Assign && !ForceGlobal && !LI->empty() && 753 LIS->intervalIsInOneMBB(*LI)) { 754 // Allocate original local ranges in linear instruction order. Since they 755 // are singly defined, this produces optimal coloring in the absence of 756 // global interference and other constraints. 757 if (!ReverseLocal) 758 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex()); 759 else { 760 // Allocating bottom up may allow many short LRGs to be assigned first 761 // to one of the cheap registers. This could be much faster for very 762 // large blocks on targets with many physical registers. 763 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex()); 764 } 765 Prio |= RC.AllocationPriority << 24; 766 } else { 767 // Allocate global and split ranges in long->short order. Long ranges that 768 // don't fit should be spilled (or split) ASAP so they don't create 769 // interference. Mark a bit to prioritize global above local ranges. 770 Prio = (1u << 29) + Size; 771 772 Prio |= RC.AllocationPriority << 24; 773 } 774 // Mark a higher bit to prioritize global and local above RS_Split. 775 Prio |= (1u << 31); 776 777 // Boost ranges that have a physical register hint. 778 if (VRM->hasKnownPreference(Reg)) 779 Prio |= (1u << 30); 780 } 781 // The virtual register number is a tie breaker for same-sized ranges. 782 // Give lower vreg numbers higher priority to assign them first. 783 CurQueue.push(std::make_pair(Prio, ~Reg)); 784 } 785 786 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); } 787 788 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) { 789 if (CurQueue.empty()) 790 return nullptr; 791 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second); 792 CurQueue.pop(); 793 return LI; 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Direct Assignment 798 //===----------------------------------------------------------------------===// 799 800 /// tryAssign - Try to assign VirtReg to an available register. 801 MCRegister RAGreedy::tryAssign(LiveInterval &VirtReg, 802 AllocationOrder &Order, 803 SmallVectorImpl<Register> &NewVRegs, 804 const SmallVirtRegSet &FixedRegisters) { 805 MCRegister PhysReg; 806 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 807 assert(*I); 808 if (!Matrix->checkInterference(VirtReg, *I)) { 809 if (I.isHint()) 810 return *I; 811 else 812 PhysReg = *I; 813 } 814 } 815 if (!PhysReg.isValid()) 816 return PhysReg; 817 818 // PhysReg is available, but there may be a better choice. 819 820 // If we missed a simple hint, try to cheaply evict interference from the 821 // preferred register. 822 if (Register Hint = MRI->getSimpleHint(VirtReg.reg())) 823 if (Order.isHint(Hint)) { 824 MCRegister PhysHint = Hint.asMCReg(); 825 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n'); 826 827 if (canEvictHintInterference(VirtReg, PhysHint, FixedRegisters)) { 828 evictInterference(VirtReg, PhysHint, NewVRegs); 829 return PhysHint; 830 } 831 // Record the missed hint, we may be able to recover 832 // at the end if the surrounding allocation changed. 833 SetOfBrokenHints.insert(&VirtReg); 834 } 835 836 // Try to evict interference from a cheaper alternative. 837 uint8_t Cost = RegCosts[PhysReg]; 838 839 // Most registers have 0 additional cost. 840 if (!Cost) 841 return PhysReg; 842 843 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost " 844 << (unsigned)Cost << '\n'); 845 MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters); 846 return CheapReg ? CheapReg : PhysReg; 847 } 848 849 //===----------------------------------------------------------------------===// 850 // Interference eviction 851 //===----------------------------------------------------------------------===// 852 853 Register RAGreedy::canReassign(LiveInterval &VirtReg, Register PrevReg) const { 854 auto Order = 855 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 856 MCRegister PhysReg; 857 for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) { 858 if ((*I).id() == PrevReg.id()) 859 continue; 860 861 MCRegUnitIterator Units(*I, TRI); 862 for (; Units.isValid(); ++Units) { 863 // Instantiate a "subquery", not to be confused with the Queries array. 864 LiveIntervalUnion::Query subQ(VirtReg, Matrix->getLiveUnions()[*Units]); 865 if (subQ.checkInterference()) 866 break; 867 } 868 // If no units have interference, break out with the current PhysReg. 869 if (!Units.isValid()) 870 PhysReg = *I; 871 } 872 if (PhysReg) 873 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from " 874 << printReg(PrevReg, TRI) << " to " 875 << printReg(PhysReg, TRI) << '\n'); 876 return PhysReg; 877 } 878 879 /// shouldEvict - determine if A should evict the assigned live range B. The 880 /// eviction policy defined by this function together with the allocation order 881 /// defined by enqueue() decides which registers ultimately end up being split 882 /// and spilled. 883 /// 884 /// Cascade numbers are used to prevent infinite loops if this function is a 885 /// cyclic relation. 886 /// 887 /// @param A The live range to be assigned. 888 /// @param IsHint True when A is about to be assigned to its preferred 889 /// register. 890 /// @param B The live range to be evicted. 891 /// @param BreaksHint True when B is already assigned to its preferred register. 892 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint, 893 LiveInterval &B, bool BreaksHint) const { 894 bool CanSplit = getStage(B) < RS_Spill; 895 896 // Be fairly aggressive about following hints as long as the evictee can be 897 // split. 898 if (CanSplit && IsHint && !BreaksHint) 899 return true; 900 901 if (A.weight() > B.weight()) { 902 LLVM_DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight() << '\n'); 903 return true; 904 } 905 return false; 906 } 907 908 /// canEvictHintInterference - return true if the interference for VirtReg 909 /// on the PhysReg, which is VirtReg's hint, can be evicted in favor of VirtReg. 910 bool RAGreedy::canEvictHintInterference( 911 LiveInterval &VirtReg, MCRegister PhysReg, 912 const SmallVirtRegSet &FixedRegisters) const { 913 EvictionCost MaxCost; 914 MaxCost.setBrokenHints(1); 915 return canEvictInterferenceBasedOnCost(VirtReg, PhysReg, true, MaxCost, 916 FixedRegisters); 917 } 918 919 /// canEvictInterferenceBasedOnCost - Return true if all interferences between 920 /// VirtReg and PhysReg can be evicted. 921 /// 922 /// @param VirtReg Live range that is about to be assigned. 923 /// @param PhysReg Desired register for assignment. 924 /// @param IsHint True when PhysReg is VirtReg's preferred register. 925 /// @param MaxCost Only look for cheaper candidates and update with new cost 926 /// when returning true. 927 /// @returns True when interference can be evicted cheaper than MaxCost. 928 bool RAGreedy::canEvictInterferenceBasedOnCost( 929 LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, 930 EvictionCost &MaxCost, const SmallVirtRegSet &FixedRegisters) const { 931 // It is only possible to evict virtual register interference. 932 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) 933 return false; 934 935 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); 936 937 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never 938 // involved in an eviction before. If a cascade number was assigned, deny 939 // evicting anything with the same or a newer cascade number. This prevents 940 // infinite eviction loops. 941 // 942 // This works out so a register without a cascade number is allowed to evict 943 // anything, and it can be evicted by anything. 944 unsigned Cascade = ExtraRegInfo[VirtReg.reg()].Cascade; 945 if (!Cascade) 946 Cascade = NextCascade; 947 948 EvictionCost Cost; 949 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 950 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 951 // If there is 10 or more interferences, chances are one is heavier. 952 const auto &Interferences = Q.interferingVRegs(10); 953 if (Interferences.size() >= 10) 954 return false; 955 956 // Check if any interfering live range is heavier than MaxWeight. 957 for (LiveInterval *Intf : reverse(Interferences)) { 958 assert(Register::isVirtualRegister(Intf->reg()) && 959 "Only expecting virtual register interference from query"); 960 961 // Do not allow eviction of a virtual register if we are in the middle 962 // of last-chance recoloring and this virtual register is one that we 963 // have scavenged a physical register for. 964 if (FixedRegisters.count(Intf->reg())) 965 return false; 966 967 // Never evict spill products. They cannot split or spill. 968 if (getStage(*Intf) == RS_Done) 969 return false; 970 // Once a live range becomes small enough, it is urgent that we find a 971 // register for it. This is indicated by an infinite spill weight. These 972 // urgent live ranges get to evict almost anything. 973 // 974 // Also allow urgent evictions of unspillable ranges from a strictly 975 // larger allocation order. 976 bool Urgent = 977 !VirtReg.isSpillable() && 978 (Intf->isSpillable() || 979 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < 980 RegClassInfo.getNumAllocatableRegs( 981 MRI->getRegClass(Intf->reg()))); 982 // Only evict older cascades or live ranges without a cascade. 983 unsigned IntfCascade = ExtraRegInfo[Intf->reg()].Cascade; 984 if (Cascade <= IntfCascade) { 985 if (!Urgent) 986 return false; 987 // We permit breaking cascades for urgent evictions. It should be the 988 // last resort, though, so make it really expensive. 989 Cost.BrokenHints += 10; 990 } 991 // Would this break a satisfied hint? 992 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 993 // Update eviction cost. 994 Cost.BrokenHints += BreaksHint; 995 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 996 // Abort if this would be too expensive. 997 if (!(Cost < MaxCost)) 998 return false; 999 if (Urgent) 1000 continue; 1001 // Apply the eviction policy for non-urgent evictions. 1002 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint)) 1003 return false; 1004 // If !MaxCost.isMax(), then we're just looking for a cheap register. 1005 // Evicting another local live range in this case could lead to suboptimal 1006 // coloring. 1007 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) && 1008 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) { 1009 return false; 1010 } 1011 } 1012 } 1013 MaxCost = Cost; 1014 return true; 1015 } 1016 1017 /// Return true if all interferences between VirtReg and PhysReg between 1018 /// Start and End can be evicted. 1019 /// 1020 /// \param VirtReg Live range that is about to be assigned. 1021 /// \param PhysReg Desired register for assignment. 1022 /// \param Start Start of range to look for interferences. 1023 /// \param End End of range to look for interferences. 1024 /// \param MaxCost Only look for cheaper candidates and update with new cost 1025 /// when returning true. 1026 /// \return True when interference can be evicted cheaper than MaxCost. 1027 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval &VirtReg, 1028 MCRegister PhysReg, SlotIndex Start, 1029 SlotIndex End, 1030 EvictionCost &MaxCost) const { 1031 EvictionCost Cost; 1032 1033 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1034 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1035 1036 // Check if any interfering live range is heavier than MaxWeight. 1037 for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) { 1038 // Check if interference overlast the segment in interest. 1039 if (!Intf->overlaps(Start, End)) 1040 continue; 1041 1042 // Cannot evict non virtual reg interference. 1043 if (!Register::isVirtualRegister(Intf->reg())) 1044 return false; 1045 // Never evict spill products. They cannot split or spill. 1046 if (getStage(*Intf) == RS_Done) 1047 return false; 1048 1049 // Would this break a satisfied hint? 1050 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg()); 1051 // Update eviction cost. 1052 Cost.BrokenHints += BreaksHint; 1053 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight()); 1054 // Abort if this would be too expensive. 1055 if (!(Cost < MaxCost)) 1056 return false; 1057 } 1058 } 1059 1060 if (Cost.MaxWeight == 0) 1061 return false; 1062 1063 MaxCost = Cost; 1064 return true; 1065 } 1066 1067 /// Return the physical register that will be best 1068 /// candidate for eviction by a local split interval that will be created 1069 /// between Start and End. 1070 /// 1071 /// \param Order The allocation order 1072 /// \param VirtReg Live range that is about to be assigned. 1073 /// \param Start Start of range to look for interferences 1074 /// \param End End of range to look for interferences 1075 /// \param BestEvictweight The eviction cost of that eviction 1076 /// \return The PhysReg which is the best candidate for eviction and the 1077 /// eviction cost in BestEvictweight 1078 MCRegister RAGreedy::getCheapestEvicteeWeight(const AllocationOrder &Order, 1079 const LiveInterval &VirtReg, 1080 SlotIndex Start, SlotIndex End, 1081 float *BestEvictweight) const { 1082 EvictionCost BestEvictCost; 1083 BestEvictCost.setMax(); 1084 BestEvictCost.MaxWeight = VirtReg.weight(); 1085 MCRegister BestEvicteePhys; 1086 1087 // Go over all physical registers and find the best candidate for eviction 1088 for (MCRegister PhysReg : Order.getOrder()) { 1089 1090 if (!canEvictInterferenceInRange(VirtReg, PhysReg, Start, End, 1091 BestEvictCost)) 1092 continue; 1093 1094 // Best so far. 1095 BestEvicteePhys = PhysReg; 1096 } 1097 *BestEvictweight = BestEvictCost.MaxWeight; 1098 return BestEvicteePhys; 1099 } 1100 1101 /// evictInterference - Evict any interferring registers that prevent VirtReg 1102 /// from being assigned to Physreg. This assumes that canEvictInterference 1103 /// returned true. 1104 void RAGreedy::evictInterference(LiveInterval &VirtReg, MCRegister PhysReg, 1105 SmallVectorImpl<Register> &NewVRegs) { 1106 // Make sure that VirtReg has a cascade number, and assign that cascade 1107 // number to every evicted register. These live ranges than then only be 1108 // evicted by a newer cascade, preventing infinite loops. 1109 unsigned Cascade = getOrAssignNewCascade(VirtReg.reg()); 1110 1111 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI) 1112 << " interference: Cascade " << Cascade << '\n'); 1113 1114 // Collect all interfering virtregs first. 1115 SmallVector<LiveInterval*, 8> Intfs; 1116 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 1117 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 1118 // We usually have the interfering VRegs cached so collectInterferingVRegs() 1119 // should be fast, we may need to recalculate if when different physregs 1120 // overlap the same register unit so we had different SubRanges queried 1121 // against it. 1122 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs(); 1123 Intfs.append(IVR.begin(), IVR.end()); 1124 } 1125 1126 // Evict them second. This will invalidate the queries. 1127 for (LiveInterval *Intf : Intfs) { 1128 // The same VirtReg may be present in multiple RegUnits. Skip duplicates. 1129 if (!VRM->hasPhys(Intf->reg())) 1130 continue; 1131 1132 LastEvicted.addEviction(PhysReg, VirtReg.reg(), Intf->reg()); 1133 1134 Matrix->unassign(*Intf); 1135 assert((getCascade(Intf->reg()) < Cascade || 1136 VirtReg.isSpillable() < Intf->isSpillable()) && 1137 "Cannot decrease cascade number, illegal eviction"); 1138 setCascade(Intf->reg(), Cascade); 1139 ++NumEvicted; 1140 NewVRegs.push_back(Intf->reg()); 1141 } 1142 } 1143 1144 /// Returns true if the given \p PhysReg is a callee saved register and has not 1145 /// been used for allocation yet. 1146 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg) const { 1147 MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg); 1148 if (!CSR) 1149 return false; 1150 1151 return !Matrix->isPhysRegUsed(PhysReg); 1152 } 1153 1154 MCRegister RAGreedy::tryFindEvictionCandidate( 1155 LiveInterval &VirtReg, const AllocationOrder &Order, 1156 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { 1157 // Keep track of the cheapest interference seen so far. 1158 EvictionCost BestCost; 1159 BestCost.setMax(); 1160 MCRegister BestPhys; 1161 unsigned OrderLimit = Order.getOrder().size(); 1162 1163 // When we are just looking for a reduced cost per use, don't break any 1164 // hints, and only evict smaller spill weights. 1165 if (CostPerUseLimit < uint8_t(~0u)) { 1166 BestCost.BrokenHints = 0; 1167 BestCost.MaxWeight = VirtReg.weight(); 1168 1169 // Check of any registers in RC are below CostPerUseLimit. 1170 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg()); 1171 uint8_t MinCost = RegClassInfo.getMinCost(RC); 1172 if (MinCost >= CostPerUseLimit) { 1173 LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " 1174 << MinCost << ", no cheaper registers to be found.\n"); 1175 return 0; 1176 } 1177 1178 // It is normal for register classes to have a long tail of registers with 1179 // the same cost. We don't need to look at them if they're too expensive. 1180 if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) { 1181 OrderLimit = RegClassInfo.getLastCostChange(RC); 1182 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit 1183 << " regs.\n"); 1184 } 1185 } 1186 1187 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; 1188 ++I) { 1189 MCRegister PhysReg = *I; 1190 assert(PhysReg); 1191 if (RegCosts[PhysReg] >= CostPerUseLimit) 1192 continue; 1193 // The first use of a callee-saved register in a function has cost 1. 1194 // Don't start using a CSR when the CostPerUseLimit is low. 1195 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) { 1196 LLVM_DEBUG( 1197 dbgs() << printReg(PhysReg, TRI) << " would clobber CSR " 1198 << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI) 1199 << '\n'); 1200 continue; 1201 } 1202 1203 if (!canEvictInterferenceBasedOnCost(VirtReg, PhysReg, false, BestCost, 1204 FixedRegisters)) 1205 continue; 1206 1207 // Best so far. 1208 BestPhys = PhysReg; 1209 1210 // Stop if the hint can be used. 1211 if (I.isHint()) 1212 break; 1213 } 1214 return BestPhys; 1215 } 1216 1217 /// tryEvict - Try to evict all interferences for a physreg. 1218 /// @param VirtReg Currently unassigned virtual register. 1219 /// @param Order Physregs to try. 1220 /// @return Physreg to assign VirtReg, or 0. 1221 MCRegister RAGreedy::tryEvict(LiveInterval &VirtReg, AllocationOrder &Order, 1222 SmallVectorImpl<Register> &NewVRegs, 1223 uint8_t CostPerUseLimit, 1224 const SmallVirtRegSet &FixedRegisters) { 1225 NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription, 1226 TimePassesIsEnabled); 1227 1228 MCRegister BestPhys = 1229 tryFindEvictionCandidate(VirtReg, Order, CostPerUseLimit, FixedRegisters); 1230 if (BestPhys.isValid()) 1231 evictInterference(VirtReg, BestPhys, NewVRegs); 1232 return BestPhys; 1233 } 1234 1235 //===----------------------------------------------------------------------===// 1236 // Region Splitting 1237 //===----------------------------------------------------------------------===// 1238 1239 /// addSplitConstraints - Fill out the SplitConstraints vector based on the 1240 /// interference pattern in Physreg and its aliases. Add the constraints to 1241 /// SpillPlacement and return the static cost of this split in Cost, assuming 1242 /// that all preferences in SplitConstraints are met. 1243 /// Return false if there are no bundles with positive bias. 1244 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf, 1245 BlockFrequency &Cost) { 1246 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1247 1248 // Reset interference dependent info. 1249 SplitConstraints.resize(UseBlocks.size()); 1250 BlockFrequency StaticCost = 0; 1251 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1252 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1253 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1254 1255 BC.Number = BI.MBB->getNumber(); 1256 Intf.moveToBlock(BC.Number); 1257 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare; 1258 BC.Exit = (BI.LiveOut && 1259 !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef()) 1260 ? SpillPlacement::PrefReg 1261 : SpillPlacement::DontCare; 1262 BC.ChangesValue = BI.FirstDef.isValid(); 1263 1264 if (!Intf.hasInterference()) 1265 continue; 1266 1267 // Number of spill code instructions to insert. 1268 unsigned Ins = 0; 1269 1270 // Interference for the live-in value. 1271 if (BI.LiveIn) { 1272 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) { 1273 BC.Entry = SpillPlacement::MustSpill; 1274 ++Ins; 1275 } else if (Intf.first() < BI.FirstInstr) { 1276 BC.Entry = SpillPlacement::PrefSpill; 1277 ++Ins; 1278 } else if (Intf.first() < BI.LastInstr) { 1279 ++Ins; 1280 } 1281 1282 // Abort if the spill cannot be inserted at the MBB' start 1283 if (((BC.Entry == SpillPlacement::MustSpill) || 1284 (BC.Entry == SpillPlacement::PrefSpill)) && 1285 SlotIndex::isEarlierInstr(BI.FirstInstr, 1286 SA->getFirstSplitPoint(BC.Number))) 1287 return false; 1288 } 1289 1290 // Interference for the live-out value. 1291 if (BI.LiveOut) { 1292 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) { 1293 BC.Exit = SpillPlacement::MustSpill; 1294 ++Ins; 1295 } else if (Intf.last() > BI.LastInstr) { 1296 BC.Exit = SpillPlacement::PrefSpill; 1297 ++Ins; 1298 } else if (Intf.last() > BI.FirstInstr) { 1299 ++Ins; 1300 } 1301 } 1302 1303 // Accumulate the total frequency of inserted spill code. 1304 while (Ins--) 1305 StaticCost += SpillPlacer->getBlockFrequency(BC.Number); 1306 } 1307 Cost = StaticCost; 1308 1309 // Add constraints for use-blocks. Note that these are the only constraints 1310 // that may add a positive bias, it is downhill from here. 1311 SpillPlacer->addConstraints(SplitConstraints); 1312 return SpillPlacer->scanActiveBundles(); 1313 } 1314 1315 /// addThroughConstraints - Add constraints and links to SpillPlacer from the 1316 /// live-through blocks in Blocks. 1317 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf, 1318 ArrayRef<unsigned> Blocks) { 1319 const unsigned GroupSize = 8; 1320 SpillPlacement::BlockConstraint BCS[GroupSize]; 1321 unsigned TBS[GroupSize]; 1322 unsigned B = 0, T = 0; 1323 1324 for (unsigned Number : Blocks) { 1325 Intf.moveToBlock(Number); 1326 1327 if (!Intf.hasInterference()) { 1328 assert(T < GroupSize && "Array overflow"); 1329 TBS[T] = Number; 1330 if (++T == GroupSize) { 1331 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1332 T = 0; 1333 } 1334 continue; 1335 } 1336 1337 assert(B < GroupSize && "Array overflow"); 1338 BCS[B].Number = Number; 1339 1340 // Abort if the spill cannot be inserted at the MBB' start 1341 MachineBasicBlock *MBB = MF->getBlockNumbered(Number); 1342 auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr(); 1343 if (FirstNonDebugInstr != MBB->end() && 1344 SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr), 1345 SA->getFirstSplitPoint(Number))) 1346 return false; 1347 // Interference for the live-in value. 1348 if (Intf.first() <= Indexes->getMBBStartIdx(Number)) 1349 BCS[B].Entry = SpillPlacement::MustSpill; 1350 else 1351 BCS[B].Entry = SpillPlacement::PrefSpill; 1352 1353 // Interference for the live-out value. 1354 if (Intf.last() >= SA->getLastSplitPoint(Number)) 1355 BCS[B].Exit = SpillPlacement::MustSpill; 1356 else 1357 BCS[B].Exit = SpillPlacement::PrefSpill; 1358 1359 if (++B == GroupSize) { 1360 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1361 B = 0; 1362 } 1363 } 1364 1365 SpillPlacer->addConstraints(makeArrayRef(BCS, B)); 1366 SpillPlacer->addLinks(makeArrayRef(TBS, T)); 1367 return true; 1368 } 1369 1370 bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) { 1371 // Keep track of through blocks that have not been added to SpillPlacer. 1372 BitVector Todo = SA->getThroughBlocks(); 1373 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks; 1374 unsigned AddedTo = 0; 1375 #ifndef NDEBUG 1376 unsigned Visited = 0; 1377 #endif 1378 1379 while (true) { 1380 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive(); 1381 // Find new through blocks in the periphery of PrefRegBundles. 1382 for (unsigned Bundle : NewBundles) { 1383 // Look at all blocks connected to Bundle in the full graph. 1384 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle); 1385 for (unsigned Block : Blocks) { 1386 if (!Todo.test(Block)) 1387 continue; 1388 Todo.reset(Block); 1389 // This is a new through block. Add it to SpillPlacer later. 1390 ActiveBlocks.push_back(Block); 1391 #ifndef NDEBUG 1392 ++Visited; 1393 #endif 1394 } 1395 } 1396 // Any new blocks to add? 1397 if (ActiveBlocks.size() == AddedTo) 1398 break; 1399 1400 // Compute through constraints from the interference, or assume that all 1401 // through blocks prefer spilling when forming compact regions. 1402 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo); 1403 if (Cand.PhysReg) { 1404 if (!addThroughConstraints(Cand.Intf, NewBlocks)) 1405 return false; 1406 } else 1407 // Provide a strong negative bias on through blocks to prevent unwanted 1408 // liveness on loop backedges. 1409 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true); 1410 AddedTo = ActiveBlocks.size(); 1411 1412 // Perhaps iterating can enable more bundles? 1413 SpillPlacer->iterate(); 1414 } 1415 LLVM_DEBUG(dbgs() << ", v=" << Visited); 1416 return true; 1417 } 1418 1419 /// calcCompactRegion - Compute the set of edge bundles that should be live 1420 /// when splitting the current live range into compact regions. Compact 1421 /// regions can be computed without looking at interference. They are the 1422 /// regions formed by removing all the live-through blocks from the live range. 1423 /// 1424 /// Returns false if the current live range is already compact, or if the 1425 /// compact regions would form single block regions anyway. 1426 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) { 1427 // Without any through blocks, the live range is already compact. 1428 if (!SA->getNumThroughBlocks()) 1429 return false; 1430 1431 // Compact regions don't correspond to any physreg. 1432 Cand.reset(IntfCache, MCRegister::NoRegister); 1433 1434 LLVM_DEBUG(dbgs() << "Compact region bundles"); 1435 1436 // Use the spill placer to determine the live bundles. GrowRegion pretends 1437 // that all the through blocks have interference when PhysReg is unset. 1438 SpillPlacer->prepare(Cand.LiveBundles); 1439 1440 // The static split cost will be zero since Cand.Intf reports no interference. 1441 BlockFrequency Cost; 1442 if (!addSplitConstraints(Cand.Intf, Cost)) { 1443 LLVM_DEBUG(dbgs() << ", none.\n"); 1444 return false; 1445 } 1446 1447 if (!growRegion(Cand)) { 1448 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1449 return false; 1450 } 1451 1452 SpillPlacer->finish(); 1453 1454 if (!Cand.LiveBundles.any()) { 1455 LLVM_DEBUG(dbgs() << ", none.\n"); 1456 return false; 1457 } 1458 1459 LLVM_DEBUG({ 1460 for (int I : Cand.LiveBundles.set_bits()) 1461 dbgs() << " EB#" << I; 1462 dbgs() << ".\n"; 1463 }); 1464 return true; 1465 } 1466 1467 /// calcSpillCost - Compute how expensive it would be to split the live range in 1468 /// SA around all use blocks instead of forming bundle regions. 1469 BlockFrequency RAGreedy::calcSpillCost() { 1470 BlockFrequency Cost = 0; 1471 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1472 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1473 unsigned Number = BI.MBB->getNumber(); 1474 // We normally only need one spill instruction - a load or a store. 1475 Cost += SpillPlacer->getBlockFrequency(Number); 1476 1477 // Unless the value is redefined in the block. 1478 if (BI.LiveIn && BI.LiveOut && BI.FirstDef) 1479 Cost += SpillPlacer->getBlockFrequency(Number); 1480 } 1481 return Cost; 1482 } 1483 1484 /// Check if splitting Evictee will create a local split interval in 1485 /// basic block number BBNumber that may cause a bad eviction chain. This is 1486 /// intended to prevent bad eviction sequences like: 1487 /// movl %ebp, 8(%esp) # 4-byte Spill 1488 /// movl %ecx, %ebp 1489 /// movl %ebx, %ecx 1490 /// movl %edi, %ebx 1491 /// movl %edx, %edi 1492 /// cltd 1493 /// idivl %esi 1494 /// movl %edi, %edx 1495 /// movl %ebx, %edi 1496 /// movl %ecx, %ebx 1497 /// movl %ebp, %ecx 1498 /// movl 16(%esp), %ebp # 4 - byte Reload 1499 /// 1500 /// Such sequences are created in 2 scenarios: 1501 /// 1502 /// Scenario #1: 1503 /// %0 is evicted from physreg0 by %1. 1504 /// Evictee %0 is intended for region splitting with split candidate 1505 /// physreg0 (the reg %0 was evicted from). 1506 /// Region splitting creates a local interval because of interference with the 1507 /// evictor %1 (normally region splitting creates 2 interval, the "by reg" 1508 /// and "by stack" intervals and local interval created when interference 1509 /// occurs). 1510 /// One of the split intervals ends up evicting %2 from physreg1. 1511 /// Evictee %2 is intended for region splitting with split candidate 1512 /// physreg1. 1513 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1514 /// 1515 /// Scenario #2 1516 /// %0 is evicted from physreg0 by %1. 1517 /// %2 is evicted from physreg2 by %3 etc. 1518 /// Evictee %0 is intended for region splitting with split candidate 1519 /// physreg1. 1520 /// Region splitting creates a local interval because of interference with the 1521 /// evictor %1. 1522 /// One of the split intervals ends up evicting back original evictor %1 1523 /// from physreg0 (the reg %0 was evicted from). 1524 /// Another evictee %2 is intended for region splitting with split candidate 1525 /// physreg1. 1526 /// One of the split intervals ends up evicting %3 from physreg2, etc. 1527 /// 1528 /// \param Evictee The register considered to be split. 1529 /// \param Cand The split candidate that determines the physical register 1530 /// we are splitting for and the interferences. 1531 /// \param BBNumber The number of a BB for which the region split process will 1532 /// create a local split interval. 1533 /// \param Order The physical registers that may get evicted by a split 1534 /// artifact of Evictee. 1535 /// \return True if splitting Evictee may cause a bad eviction chain, false 1536 /// otherwise. 1537 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee, 1538 GlobalSplitCandidate &Cand, 1539 unsigned BBNumber, 1540 const AllocationOrder &Order) { 1541 EvictionTrack::EvictorInfo VregEvictorInfo = LastEvicted.getEvictor(Evictee); 1542 unsigned Evictor = VregEvictorInfo.first; 1543 MCRegister PhysReg = VregEvictorInfo.second; 1544 1545 // No actual evictor. 1546 if (!Evictor || !PhysReg) 1547 return false; 1548 1549 float MaxWeight = 0; 1550 MCRegister FutureEvictedPhysReg = 1551 getCheapestEvicteeWeight(Order, LIS->getInterval(Evictee), 1552 Cand.Intf.first(), Cand.Intf.last(), &MaxWeight); 1553 1554 // The bad eviction chain occurs when either the split candidate is the 1555 // evicting reg or one of the split artifact will evict the evicting reg. 1556 if ((PhysReg != Cand.PhysReg) && (PhysReg != FutureEvictedPhysReg)) 1557 return false; 1558 1559 Cand.Intf.moveToBlock(BBNumber); 1560 1561 // Check to see if the Evictor contains interference (with Evictee) in the 1562 // given BB. If so, this interference caused the eviction of Evictee from 1563 // PhysReg. This suggest that we will create a local interval during the 1564 // region split to avoid this interference This local interval may cause a bad 1565 // eviction chain. 1566 if (!LIS->hasInterval(Evictor)) 1567 return false; 1568 LiveInterval &EvictorLI = LIS->getInterval(Evictor); 1569 if (EvictorLI.FindSegmentContaining(Cand.Intf.first()) == EvictorLI.end()) 1570 return false; 1571 1572 // Now, check to see if the local interval we will create is going to be 1573 // expensive enough to evict somebody If so, this may cause a bad eviction 1574 // chain. 1575 float splitArtifactWeight = 1576 VRAI->futureWeight(LIS->getInterval(Evictee), 1577 Cand.Intf.first().getPrevIndex(), Cand.Intf.last()); 1578 if (splitArtifactWeight >= 0 && splitArtifactWeight < MaxWeight) 1579 return false; 1580 1581 return true; 1582 } 1583 1584 /// Check if splitting VirtRegToSplit will create a local split interval 1585 /// in basic block number BBNumber that may cause a spill. 1586 /// 1587 /// \param VirtRegToSplit The register considered to be split. 1588 /// \param Cand The split candidate that determines the physical 1589 /// register we are splitting for and the interferences. 1590 /// \param BBNumber The number of a BB for which the region split process 1591 /// will create a local split interval. 1592 /// \param Order The physical registers that may get evicted by a 1593 /// split artifact of VirtRegToSplit. 1594 /// \return True if splitting VirtRegToSplit may cause a spill, false 1595 /// otherwise. 1596 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit, 1597 GlobalSplitCandidate &Cand, 1598 unsigned BBNumber, 1599 const AllocationOrder &Order) { 1600 Cand.Intf.moveToBlock(BBNumber); 1601 1602 // Check if the local interval will find a non interfereing assignment. 1603 for (auto PhysReg : Order.getOrder()) { 1604 if (!Matrix->checkInterference(Cand.Intf.first().getPrevIndex(), 1605 Cand.Intf.last(), PhysReg)) 1606 return false; 1607 } 1608 1609 // The local interval is not able to find non interferencing assignment 1610 // and not able to evict a less worthy interval, therfore, it can cause a 1611 // spill. 1612 return true; 1613 } 1614 1615 /// calcGlobalSplitCost - Return the global split cost of following the split 1616 /// pattern in LiveBundles. This cost should be added to the local cost of the 1617 /// interference pattern in SplitConstraints. 1618 /// 1619 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand, 1620 const AllocationOrder &Order, 1621 bool *CanCauseEvictionChain) { 1622 BlockFrequency GlobalCost = 0; 1623 const BitVector &LiveBundles = Cand.LiveBundles; 1624 Register VirtRegToSplit = SA->getParent().reg(); 1625 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1626 for (unsigned I = 0; I != UseBlocks.size(); ++I) { 1627 const SplitAnalysis::BlockInfo &BI = UseBlocks[I]; 1628 SpillPlacement::BlockConstraint &BC = SplitConstraints[I]; 1629 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, false)]; 1630 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)]; 1631 unsigned Ins = 0; 1632 1633 Cand.Intf.moveToBlock(BC.Number); 1634 // Check wheather a local interval is going to be created during the region 1635 // split. Calculate adavanced spilt cost (cost of local intervals) if option 1636 // is enabled. 1637 if (EnableAdvancedRASplitCost && Cand.Intf.hasInterference() && BI.LiveIn && 1638 BI.LiveOut && RegIn && RegOut) { 1639 1640 if (CanCauseEvictionChain && 1641 splitCanCauseEvictionChain(VirtRegToSplit, Cand, BC.Number, Order)) { 1642 // This interference causes our eviction from this assignment, we might 1643 // evict somebody else and eventually someone will spill, add that cost. 1644 // See splitCanCauseEvictionChain for detailed description of scenarios. 1645 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1646 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1647 1648 *CanCauseEvictionChain = true; 1649 1650 } else if (splitCanCauseLocalSpill(VirtRegToSplit, Cand, BC.Number, 1651 Order)) { 1652 // This interference causes local interval to spill, add that cost. 1653 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1654 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1655 } 1656 } 1657 1658 if (BI.LiveIn) 1659 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg); 1660 if (BI.LiveOut) 1661 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg); 1662 while (Ins--) 1663 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number); 1664 } 1665 1666 for (unsigned Number : Cand.ActiveBlocks) { 1667 bool RegIn = LiveBundles[Bundles->getBundle(Number, false)]; 1668 bool RegOut = LiveBundles[Bundles->getBundle(Number, true)]; 1669 if (!RegIn && !RegOut) 1670 continue; 1671 if (RegIn && RegOut) { 1672 // We need double spill code if this block has interference. 1673 Cand.Intf.moveToBlock(Number); 1674 if (Cand.Intf.hasInterference()) { 1675 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1676 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1677 1678 // Check wheather a local interval is going to be created during the 1679 // region split. 1680 if (EnableAdvancedRASplitCost && CanCauseEvictionChain && 1681 splitCanCauseEvictionChain(VirtRegToSplit, Cand, Number, Order)) { 1682 // This interference cause our eviction from this assignment, we might 1683 // evict somebody else, add that cost. 1684 // See splitCanCauseEvictionChain for detailed description of 1685 // scenarios. 1686 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1687 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1688 1689 *CanCauseEvictionChain = true; 1690 } 1691 } 1692 continue; 1693 } 1694 // live-in / stack-out or stack-in live-out. 1695 GlobalCost += SpillPlacer->getBlockFrequency(Number); 1696 } 1697 return GlobalCost; 1698 } 1699 1700 /// splitAroundRegion - Split the current live range around the regions 1701 /// determined by BundleCand and GlobalCand. 1702 /// 1703 /// Before calling this function, GlobalCand and BundleCand must be initialized 1704 /// so each bundle is assigned to a valid candidate, or NoCand for the 1705 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor 1706 /// objects must be initialized for the current live range, and intervals 1707 /// created for the used candidates. 1708 /// 1709 /// @param LREdit The LiveRangeEdit object handling the current split. 1710 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value 1711 /// must appear in this list. 1712 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit, 1713 ArrayRef<unsigned> UsedCands) { 1714 // These are the intervals created for new global ranges. We may create more 1715 // intervals for local ranges. 1716 const unsigned NumGlobalIntvs = LREdit.size(); 1717 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs 1718 << " globals.\n"); 1719 assert(NumGlobalIntvs && "No global intervals configured"); 1720 1721 // Isolate even single instructions when dealing with a proper sub-class. 1722 // That guarantees register class inflation for the stack interval because it 1723 // is all copies. 1724 Register Reg = SA->getParent().reg(); 1725 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 1726 1727 // First handle all the blocks with uses. 1728 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 1729 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 1730 unsigned Number = BI.MBB->getNumber(); 1731 unsigned IntvIn = 0, IntvOut = 0; 1732 SlotIndex IntfIn, IntfOut; 1733 if (BI.LiveIn) { 1734 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1735 if (CandIn != NoCand) { 1736 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1737 IntvIn = Cand.IntvIdx; 1738 Cand.Intf.moveToBlock(Number); 1739 IntfIn = Cand.Intf.first(); 1740 } 1741 } 1742 if (BI.LiveOut) { 1743 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1744 if (CandOut != NoCand) { 1745 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1746 IntvOut = Cand.IntvIdx; 1747 Cand.Intf.moveToBlock(Number); 1748 IntfOut = Cand.Intf.last(); 1749 } 1750 } 1751 1752 // Create separate intervals for isolated blocks with multiple uses. 1753 if (!IntvIn && !IntvOut) { 1754 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n"); 1755 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 1756 SE->splitSingleBlock(BI); 1757 continue; 1758 } 1759 1760 if (IntvIn && IntvOut) 1761 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1762 else if (IntvIn) 1763 SE->splitRegInBlock(BI, IntvIn, IntfIn); 1764 else 1765 SE->splitRegOutBlock(BI, IntvOut, IntfOut); 1766 } 1767 1768 // Handle live-through blocks. The relevant live-through blocks are stored in 1769 // the ActiveBlocks list with each candidate. We need to filter out 1770 // duplicates. 1771 BitVector Todo = SA->getThroughBlocks(); 1772 for (unsigned c = 0; c != UsedCands.size(); ++c) { 1773 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks; 1774 for (unsigned Number : Blocks) { 1775 if (!Todo.test(Number)) 1776 continue; 1777 Todo.reset(Number); 1778 1779 unsigned IntvIn = 0, IntvOut = 0; 1780 SlotIndex IntfIn, IntfOut; 1781 1782 unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)]; 1783 if (CandIn != NoCand) { 1784 GlobalSplitCandidate &Cand = GlobalCand[CandIn]; 1785 IntvIn = Cand.IntvIdx; 1786 Cand.Intf.moveToBlock(Number); 1787 IntfIn = Cand.Intf.first(); 1788 } 1789 1790 unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)]; 1791 if (CandOut != NoCand) { 1792 GlobalSplitCandidate &Cand = GlobalCand[CandOut]; 1793 IntvOut = Cand.IntvIdx; 1794 Cand.Intf.moveToBlock(Number); 1795 IntfOut = Cand.Intf.last(); 1796 } 1797 if (!IntvIn && !IntvOut) 1798 continue; 1799 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut); 1800 } 1801 } 1802 1803 ++NumGlobalSplits; 1804 1805 SmallVector<unsigned, 8> IntvMap; 1806 SE->finish(&IntvMap); 1807 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 1808 1809 unsigned OrigBlocks = SA->getNumLiveBlocks(); 1810 1811 // Sort out the new intervals created by splitting. We get four kinds: 1812 // - Remainder intervals should not be split again. 1813 // - Candidate intervals can be assigned to Cand.PhysReg. 1814 // - Block-local splits are candidates for local splitting. 1815 // - DCE leftovers should go back on the queue. 1816 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 1817 const LiveInterval &Reg = LIS->getInterval(LREdit.get(I)); 1818 1819 // Ignore old intervals from DCE. 1820 if (getOrInitStage(Reg.reg()) != RS_New) 1821 continue; 1822 1823 // Remainder interval. Don't try splitting again, spill if it doesn't 1824 // allocate. 1825 if (IntvMap[I] == 0) { 1826 setStage(Reg, RS_Spill); 1827 continue; 1828 } 1829 1830 // Global intervals. Allow repeated splitting as long as the number of live 1831 // blocks is strictly decreasing. 1832 if (IntvMap[I] < NumGlobalIntvs) { 1833 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) { 1834 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks 1835 << " blocks as original.\n"); 1836 // Don't allow repeated splitting as a safe guard against looping. 1837 setStage(Reg, RS_Split2); 1838 } 1839 continue; 1840 } 1841 1842 // Other intervals are treated as new. This includes local intervals created 1843 // for blocks with multiple uses, and anything created by DCE. 1844 } 1845 1846 if (VerifyEnabled) 1847 MF->verify(this, "After splitting live range around region"); 1848 } 1849 1850 MCRegister RAGreedy::tryRegionSplit(LiveInterval &VirtReg, 1851 AllocationOrder &Order, 1852 SmallVectorImpl<Register> &NewVRegs) { 1853 if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg)) 1854 return MCRegister::NoRegister; 1855 unsigned NumCands = 0; 1856 BlockFrequency SpillCost = calcSpillCost(); 1857 BlockFrequency BestCost; 1858 1859 // Check if we can split this live range around a compact region. 1860 bool HasCompact = calcCompactRegion(GlobalCand.front()); 1861 if (HasCompact) { 1862 // Yes, keep GlobalCand[0] as the compact region candidate. 1863 NumCands = 1; 1864 BestCost = BlockFrequency::getMaxFrequency(); 1865 } else { 1866 // No benefit from the compact region, our fallback will be per-block 1867 // splitting. Make sure we find a solution that is cheaper than spilling. 1868 BestCost = SpillCost; 1869 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "; 1870 MBFI->printBlockFreq(dbgs(), BestCost) << '\n'); 1871 } 1872 1873 bool CanCauseEvictionChain = false; 1874 unsigned BestCand = 1875 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands, 1876 false /*IgnoreCSR*/, &CanCauseEvictionChain); 1877 1878 // Split candidates with compact regions can cause a bad eviction sequence. 1879 // See splitCanCauseEvictionChain for detailed description of scenarios. 1880 // To avoid it, we need to comapre the cost with the spill cost and not the 1881 // current max frequency. 1882 if (HasCompact && (BestCost > SpillCost) && (BestCand != NoCand) && 1883 CanCauseEvictionChain) { 1884 return MCRegister::NoRegister; 1885 } 1886 1887 // No solutions found, fall back to single block splitting. 1888 if (!HasCompact && BestCand == NoCand) 1889 return MCRegister::NoRegister; 1890 1891 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs); 1892 } 1893 1894 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg, 1895 AllocationOrder &Order, 1896 BlockFrequency &BestCost, 1897 unsigned &NumCands, bool IgnoreCSR, 1898 bool *CanCauseEvictionChain) { 1899 unsigned BestCand = NoCand; 1900 for (MCPhysReg PhysReg : Order) { 1901 assert(PhysReg); 1902 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg)) 1903 continue; 1904 1905 // Discard bad candidates before we run out of interference cache cursors. 1906 // This will only affect register classes with a lot of registers (>32). 1907 if (NumCands == IntfCache.getMaxCursors()) { 1908 unsigned WorstCount = ~0u; 1909 unsigned Worst = 0; 1910 for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) { 1911 if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg) 1912 continue; 1913 unsigned Count = GlobalCand[CandIndex].LiveBundles.count(); 1914 if (Count < WorstCount) { 1915 Worst = CandIndex; 1916 WorstCount = Count; 1917 } 1918 } 1919 --NumCands; 1920 GlobalCand[Worst] = GlobalCand[NumCands]; 1921 if (BestCand == NumCands) 1922 BestCand = Worst; 1923 } 1924 1925 if (GlobalCand.size() <= NumCands) 1926 GlobalCand.resize(NumCands+1); 1927 GlobalSplitCandidate &Cand = GlobalCand[NumCands]; 1928 Cand.reset(IntfCache, PhysReg); 1929 1930 SpillPlacer->prepare(Cand.LiveBundles); 1931 BlockFrequency Cost; 1932 if (!addSplitConstraints(Cand.Intf, Cost)) { 1933 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n"); 1934 continue; 1935 } 1936 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tstatic = "; 1937 MBFI->printBlockFreq(dbgs(), Cost)); 1938 if (Cost >= BestCost) { 1939 LLVM_DEBUG({ 1940 if (BestCand == NoCand) 1941 dbgs() << " worse than no bundles\n"; 1942 else 1943 dbgs() << " worse than " 1944 << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n'; 1945 }); 1946 continue; 1947 } 1948 if (!growRegion(Cand)) { 1949 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n"); 1950 continue; 1951 } 1952 1953 SpillPlacer->finish(); 1954 1955 // No live bundles, defer to splitSingleBlocks(). 1956 if (!Cand.LiveBundles.any()) { 1957 LLVM_DEBUG(dbgs() << " no bundles.\n"); 1958 continue; 1959 } 1960 1961 bool HasEvictionChain = false; 1962 Cost += calcGlobalSplitCost(Cand, Order, &HasEvictionChain); 1963 LLVM_DEBUG({ 1964 dbgs() << ", total = "; 1965 MBFI->printBlockFreq(dbgs(), Cost) << " with bundles"; 1966 for (int I : Cand.LiveBundles.set_bits()) 1967 dbgs() << " EB#" << I; 1968 dbgs() << ".\n"; 1969 }); 1970 if (Cost < BestCost) { 1971 BestCand = NumCands; 1972 BestCost = Cost; 1973 // See splitCanCauseEvictionChain for detailed description of bad 1974 // eviction chain scenarios. 1975 if (CanCauseEvictionChain) 1976 *CanCauseEvictionChain = HasEvictionChain; 1977 } 1978 ++NumCands; 1979 } 1980 1981 if (CanCauseEvictionChain && BestCand != NoCand) { 1982 // See splitCanCauseEvictionChain for detailed description of bad 1983 // eviction chain scenarios. 1984 LLVM_DEBUG(dbgs() << "Best split candidate of vreg " 1985 << printReg(VirtReg.reg(), TRI) << " may "); 1986 if (!(*CanCauseEvictionChain)) 1987 LLVM_DEBUG(dbgs() << "not "); 1988 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n"); 1989 } 1990 1991 return BestCand; 1992 } 1993 1994 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand, 1995 bool HasCompact, 1996 SmallVectorImpl<Register> &NewVRegs) { 1997 SmallVector<unsigned, 8> UsedCands; 1998 // Prepare split editor. 1999 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2000 SE->reset(LREdit, SplitSpillMode); 2001 2002 // Assign all edge bundles to the preferred candidate, or NoCand. 2003 BundleCand.assign(Bundles->getNumBundles(), NoCand); 2004 2005 // Assign bundles for the best candidate region. 2006 if (BestCand != NoCand) { 2007 GlobalSplitCandidate &Cand = GlobalCand[BestCand]; 2008 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) { 2009 UsedCands.push_back(BestCand); 2010 Cand.IntvIdx = SE->openIntv(); 2011 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in " 2012 << B << " bundles, intv " << Cand.IntvIdx << ".\n"); 2013 (void)B; 2014 } 2015 } 2016 2017 // Assign bundles for the compact region. 2018 if (HasCompact) { 2019 GlobalSplitCandidate &Cand = GlobalCand.front(); 2020 assert(!Cand.PhysReg && "Compact region has no physreg"); 2021 if (unsigned B = Cand.getBundles(BundleCand, 0)) { 2022 UsedCands.push_back(0); 2023 Cand.IntvIdx = SE->openIntv(); 2024 LLVM_DEBUG(dbgs() << "Split for compact region in " << B 2025 << " bundles, intv " << Cand.IntvIdx << ".\n"); 2026 (void)B; 2027 } 2028 } 2029 2030 splitAroundRegion(LREdit, UsedCands); 2031 return 0; 2032 } 2033 2034 //===----------------------------------------------------------------------===// 2035 // Per-Block Splitting 2036 //===----------------------------------------------------------------------===// 2037 2038 /// tryBlockSplit - Split a global live range around every block with uses. This 2039 /// creates a lot of local live ranges, that will be split by tryLocalSplit if 2040 /// they don't allocate. 2041 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2042 SmallVectorImpl<Register> &NewVRegs) { 2043 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed"); 2044 Register Reg = VirtReg.reg(); 2045 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg)); 2046 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2047 SE->reset(LREdit, SplitSpillMode); 2048 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks(); 2049 for (const SplitAnalysis::BlockInfo &BI : UseBlocks) { 2050 if (SA->shouldSplitSingleBlock(BI, SingleInstrs)) 2051 SE->splitSingleBlock(BI); 2052 } 2053 // No blocks were split. 2054 if (LREdit.empty()) 2055 return 0; 2056 2057 // We did split for some blocks. 2058 SmallVector<unsigned, 8> IntvMap; 2059 SE->finish(&IntvMap); 2060 2061 // Tell LiveDebugVariables about the new ranges. 2062 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS); 2063 2064 // Sort out the new intervals created by splitting. The remainder interval 2065 // goes straight to spilling, the new local ranges get to stay RS_New. 2066 for (unsigned I = 0, E = LREdit.size(); I != E; ++I) { 2067 const LiveInterval &LI = LIS->getInterval(LREdit.get(I)); 2068 if (getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0) 2069 setStage(LI, RS_Spill); 2070 } 2071 2072 if (VerifyEnabled) 2073 MF->verify(this, "After splitting live range around basic blocks"); 2074 return 0; 2075 } 2076 2077 //===----------------------------------------------------------------------===// 2078 // Per-Instruction Splitting 2079 //===----------------------------------------------------------------------===// 2080 2081 /// Get the number of allocatable registers that match the constraints of \p Reg 2082 /// on \p MI and that are also in \p SuperRC. 2083 static unsigned getNumAllocatableRegsForConstraints( 2084 const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC, 2085 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 2086 const RegisterClassInfo &RCI) { 2087 assert(SuperRC && "Invalid register class"); 2088 2089 const TargetRegisterClass *ConstrainedRC = 2090 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI, 2091 /* ExploreBundle */ true); 2092 if (!ConstrainedRC) 2093 return 0; 2094 return RCI.getNumAllocatableRegs(ConstrainedRC); 2095 } 2096 2097 /// tryInstructionSplit - Split a live range around individual instructions. 2098 /// This is normally not worthwhile since the spiller is doing essentially the 2099 /// same thing. However, when the live range is in a constrained register 2100 /// class, it may help to insert copies such that parts of the live range can 2101 /// be moved to a larger register class. 2102 /// 2103 /// This is similar to spilling to a larger register class. 2104 unsigned 2105 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2106 SmallVectorImpl<Register> &NewVRegs) { 2107 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2108 // There is no point to this if there are no larger sub-classes. 2109 if (!RegClassInfo.isProperSubClass(CurRC)) 2110 return 0; 2111 2112 // Always enable split spill mode, since we're effectively spilling to a 2113 // register. 2114 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2115 SE->reset(LREdit, SplitEditor::SM_Size); 2116 2117 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2118 if (Uses.size() <= 1) 2119 return 0; 2120 2121 LLVM_DEBUG(dbgs() << "Split around " << Uses.size() 2122 << " individual instrs.\n"); 2123 2124 const TargetRegisterClass *SuperRC = 2125 TRI->getLargestLegalSuperClass(CurRC, *MF); 2126 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC); 2127 // Split around every non-copy instruction if this split will relax 2128 // the constraints on the virtual register. 2129 // Otherwise, splitting just inserts uncoalescable copies that do not help 2130 // the allocation. 2131 for (const SlotIndex Use : Uses) { 2132 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) 2133 if (MI->isFullCopy() || 2134 SuperRCNumAllocatableRegs == 2135 getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC, 2136 TII, TRI, RCI)) { 2137 LLVM_DEBUG(dbgs() << " skip:\t" << Use << '\t' << *MI); 2138 continue; 2139 } 2140 SE->openIntv(); 2141 SlotIndex SegStart = SE->enterIntvBefore(Use); 2142 SlotIndex SegStop = SE->leaveIntvAfter(Use); 2143 SE->useIntv(SegStart, SegStop); 2144 } 2145 2146 if (LREdit.empty()) { 2147 LLVM_DEBUG(dbgs() << "All uses were copies.\n"); 2148 return 0; 2149 } 2150 2151 SmallVector<unsigned, 8> IntvMap; 2152 SE->finish(&IntvMap); 2153 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2154 // Assign all new registers to RS_Spill. This was the last chance. 2155 setStage(LREdit.begin(), LREdit.end(), RS_Spill); 2156 return 0; 2157 } 2158 2159 //===----------------------------------------------------------------------===// 2160 // Local Splitting 2161 //===----------------------------------------------------------------------===// 2162 2163 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted 2164 /// in order to use PhysReg between two entries in SA->UseSlots. 2165 /// 2166 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1]. 2167 /// 2168 void RAGreedy::calcGapWeights(MCRegister PhysReg, 2169 SmallVectorImpl<float> &GapWeight) { 2170 assert(SA->getUseBlocks().size() == 1 && "Not a local interval"); 2171 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2172 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2173 const unsigned NumGaps = Uses.size()-1; 2174 2175 // Start and end points for the interference check. 2176 SlotIndex StartIdx = 2177 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr; 2178 SlotIndex StopIdx = 2179 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr; 2180 2181 GapWeight.assign(NumGaps, 0.0f); 2182 2183 // Add interference from each overlapping register. 2184 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2185 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units) 2186 .checkInterference()) 2187 continue; 2188 2189 // We know that VirtReg is a continuous interval from FirstInstr to 2190 // LastInstr, so we don't need InterferenceQuery. 2191 // 2192 // Interference that overlaps an instruction is counted in both gaps 2193 // surrounding the instruction. The exception is interference before 2194 // StartIdx and after StopIdx. 2195 // 2196 LiveIntervalUnion::SegmentIter IntI = 2197 Matrix->getLiveUnions()[*Units] .find(StartIdx); 2198 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) { 2199 // Skip the gaps before IntI. 2200 while (Uses[Gap+1].getBoundaryIndex() < IntI.start()) 2201 if (++Gap == NumGaps) 2202 break; 2203 if (Gap == NumGaps) 2204 break; 2205 2206 // Update the gaps covered by IntI. 2207 const float weight = IntI.value()->weight(); 2208 for (; Gap != NumGaps; ++Gap) { 2209 GapWeight[Gap] = std::max(GapWeight[Gap], weight); 2210 if (Uses[Gap+1].getBaseIndex() >= IntI.stop()) 2211 break; 2212 } 2213 if (Gap == NumGaps) 2214 break; 2215 } 2216 } 2217 2218 // Add fixed interference. 2219 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2220 const LiveRange &LR = LIS->getRegUnit(*Units); 2221 LiveRange::const_iterator I = LR.find(StartIdx); 2222 LiveRange::const_iterator E = LR.end(); 2223 2224 // Same loop as above. Mark any overlapped gaps as HUGE_VALF. 2225 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) { 2226 while (Uses[Gap+1].getBoundaryIndex() < I->start) 2227 if (++Gap == NumGaps) 2228 break; 2229 if (Gap == NumGaps) 2230 break; 2231 2232 for (; Gap != NumGaps; ++Gap) { 2233 GapWeight[Gap] = huge_valf; 2234 if (Uses[Gap+1].getBaseIndex() >= I->end) 2235 break; 2236 } 2237 if (Gap == NumGaps) 2238 break; 2239 } 2240 } 2241 } 2242 2243 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only 2244 /// basic block. 2245 /// 2246 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order, 2247 SmallVectorImpl<Register> &NewVRegs) { 2248 // TODO: the function currently only handles a single UseBlock; it should be 2249 // possible to generalize. 2250 if (SA->getUseBlocks().size() != 1) 2251 return 0; 2252 2253 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front(); 2254 2255 // Note that it is possible to have an interval that is live-in or live-out 2256 // while only covering a single block - A phi-def can use undef values from 2257 // predecessors, and the block could be a single-block loop. 2258 // We don't bother doing anything clever about such a case, we simply assume 2259 // that the interval is continuous from FirstInstr to LastInstr. We should 2260 // make sure that we don't do anything illegal to such an interval, though. 2261 2262 ArrayRef<SlotIndex> Uses = SA->getUseSlots(); 2263 if (Uses.size() <= 2) 2264 return 0; 2265 const unsigned NumGaps = Uses.size()-1; 2266 2267 LLVM_DEBUG({ 2268 dbgs() << "tryLocalSplit: "; 2269 for (const auto &Use : Uses) 2270 dbgs() << ' ' << Use; 2271 dbgs() << '\n'; 2272 }); 2273 2274 // If VirtReg is live across any register mask operands, compute a list of 2275 // gaps with register masks. 2276 SmallVector<unsigned, 8> RegMaskGaps; 2277 if (Matrix->checkRegMaskInterference(VirtReg)) { 2278 // Get regmask slots for the whole block. 2279 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber()); 2280 LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:"); 2281 // Constrain to VirtReg's live range. 2282 unsigned RI = 2283 llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin(); 2284 unsigned RE = RMS.size(); 2285 for (unsigned I = 0; I != NumGaps && RI != RE; ++I) { 2286 // Look for Uses[I] <= RMS <= Uses[I + 1]. 2287 assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I])); 2288 if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI])) 2289 continue; 2290 // Skip a regmask on the same instruction as the last use. It doesn't 2291 // overlap the live range. 2292 if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps) 2293 break; 2294 LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-' 2295 << Uses[I + 1]); 2296 RegMaskGaps.push_back(I); 2297 // Advance ri to the next gap. A regmask on one of the uses counts in 2298 // both gaps. 2299 while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1])) 2300 ++RI; 2301 } 2302 LLVM_DEBUG(dbgs() << '\n'); 2303 } 2304 2305 // Since we allow local split results to be split again, there is a risk of 2306 // creating infinite loops. It is tempting to require that the new live 2307 // ranges have less instructions than the original. That would guarantee 2308 // convergence, but it is too strict. A live range with 3 instructions can be 2309 // split 2+3 (including the COPY), and we want to allow that. 2310 // 2311 // Instead we use these rules: 2312 // 2313 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the 2314 // noop split, of course). 2315 // 2. Require progress be made for ranges with getStage() == RS_Split2. All 2316 // the new ranges must have fewer instructions than before the split. 2317 // 3. New ranges with the same number of instructions are marked RS_Split2, 2318 // smaller ranges are marked RS_New. 2319 // 2320 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent 2321 // excessive splitting and infinite loops. 2322 // 2323 bool ProgressRequired = getStage(VirtReg) >= RS_Split2; 2324 2325 // Best split candidate. 2326 unsigned BestBefore = NumGaps; 2327 unsigned BestAfter = 0; 2328 float BestDiff = 0; 2329 2330 const float blockFreq = 2331 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() * 2332 (1.0f / MBFI->getEntryFreq()); 2333 SmallVector<float, 8> GapWeight; 2334 2335 for (MCPhysReg PhysReg : Order) { 2336 assert(PhysReg); 2337 // Keep track of the largest spill weight that would need to be evicted in 2338 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1]. 2339 calcGapWeights(PhysReg, GapWeight); 2340 2341 // Remove any gaps with regmask clobbers. 2342 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg)) 2343 for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I) 2344 GapWeight[RegMaskGaps[I]] = huge_valf; 2345 2346 // Try to find the best sequence of gaps to close. 2347 // The new spill weight must be larger than any gap interference. 2348 2349 // We will split before Uses[SplitBefore] and after Uses[SplitAfter]. 2350 unsigned SplitBefore = 0, SplitAfter = 1; 2351 2352 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]). 2353 // It is the spill weight that needs to be evicted. 2354 float MaxGap = GapWeight[0]; 2355 2356 while (true) { 2357 // Live before/after split? 2358 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn; 2359 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut; 2360 2361 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore] 2362 << '-' << Uses[SplitAfter] << " I=" << MaxGap); 2363 2364 // Stop before the interval gets so big we wouldn't be making progress. 2365 if (!LiveBefore && !LiveAfter) { 2366 LLVM_DEBUG(dbgs() << " all\n"); 2367 break; 2368 } 2369 // Should the interval be extended or shrunk? 2370 bool Shrink = true; 2371 2372 // How many gaps would the new range have? 2373 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter; 2374 2375 // Legally, without causing looping? 2376 bool Legal = !ProgressRequired || NewGaps < NumGaps; 2377 2378 if (Legal && MaxGap < huge_valf) { 2379 // Estimate the new spill weight. Each instruction reads or writes the 2380 // register. Conservatively assume there are no read-modify-write 2381 // instructions. 2382 // 2383 // Try to guess the size of the new interval. 2384 const float EstWeight = normalizeSpillWeight( 2385 blockFreq * (NewGaps + 1), 2386 Uses[SplitBefore].distance(Uses[SplitAfter]) + 2387 (LiveBefore + LiveAfter) * SlotIndex::InstrDist, 2388 1); 2389 // Would this split be possible to allocate? 2390 // Never allocate all gaps, we wouldn't be making progress. 2391 LLVM_DEBUG(dbgs() << " w=" << EstWeight); 2392 if (EstWeight * Hysteresis >= MaxGap) { 2393 Shrink = false; 2394 float Diff = EstWeight - MaxGap; 2395 if (Diff > BestDiff) { 2396 LLVM_DEBUG(dbgs() << " (best)"); 2397 BestDiff = Hysteresis * Diff; 2398 BestBefore = SplitBefore; 2399 BestAfter = SplitAfter; 2400 } 2401 } 2402 } 2403 2404 // Try to shrink. 2405 if (Shrink) { 2406 if (++SplitBefore < SplitAfter) { 2407 LLVM_DEBUG(dbgs() << " shrink\n"); 2408 // Recompute the max when necessary. 2409 if (GapWeight[SplitBefore - 1] >= MaxGap) { 2410 MaxGap = GapWeight[SplitBefore]; 2411 for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I) 2412 MaxGap = std::max(MaxGap, GapWeight[I]); 2413 } 2414 continue; 2415 } 2416 MaxGap = 0; 2417 } 2418 2419 // Try to extend the interval. 2420 if (SplitAfter >= NumGaps) { 2421 LLVM_DEBUG(dbgs() << " end\n"); 2422 break; 2423 } 2424 2425 LLVM_DEBUG(dbgs() << " extend\n"); 2426 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]); 2427 } 2428 } 2429 2430 // Didn't find any candidates? 2431 if (BestBefore == NumGaps) 2432 return 0; 2433 2434 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-' 2435 << Uses[BestAfter] << ", " << BestDiff << ", " 2436 << (BestAfter - BestBefore + 1) << " instrs\n"); 2437 2438 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 2439 SE->reset(LREdit); 2440 2441 SE->openIntv(); 2442 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]); 2443 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]); 2444 SE->useIntv(SegStart, SegStop); 2445 SmallVector<unsigned, 8> IntvMap; 2446 SE->finish(&IntvMap); 2447 DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS); 2448 // If the new range has the same number of instructions as before, mark it as 2449 // RS_Split2 so the next split will be forced to make progress. Otherwise, 2450 // leave the new intervals as RS_New so they can compete. 2451 bool LiveBefore = BestBefore != 0 || BI.LiveIn; 2452 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut; 2453 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter; 2454 if (NewGaps >= NumGaps) { 2455 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:"); 2456 assert(!ProgressRequired && "Didn't make progress when it was required."); 2457 for (unsigned I = 0, E = IntvMap.size(); I != E; ++I) 2458 if (IntvMap[I] == 1) { 2459 setStage(LIS->getInterval(LREdit.get(I)), RS_Split2); 2460 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I))); 2461 } 2462 LLVM_DEBUG(dbgs() << '\n'); 2463 } 2464 ++NumLocalSplits; 2465 2466 return 0; 2467 } 2468 2469 //===----------------------------------------------------------------------===// 2470 // Live Range Splitting 2471 //===----------------------------------------------------------------------===// 2472 2473 /// trySplit - Try to split VirtReg or one of its interferences, making it 2474 /// assignable. 2475 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs. 2476 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order, 2477 SmallVectorImpl<Register> &NewVRegs, 2478 const SmallVirtRegSet &FixedRegisters) { 2479 // Ranges must be Split2 or less. 2480 if (getStage(VirtReg) >= RS_Spill) 2481 return 0; 2482 2483 // Local intervals are handled separately. 2484 if (LIS->intervalIsInOneMBB(VirtReg)) { 2485 NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName, 2486 TimerGroupDescription, TimePassesIsEnabled); 2487 SA->analyze(&VirtReg); 2488 Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs); 2489 if (PhysReg || !NewVRegs.empty()) 2490 return PhysReg; 2491 return tryInstructionSplit(VirtReg, Order, NewVRegs); 2492 } 2493 2494 NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName, 2495 TimerGroupDescription, TimePassesIsEnabled); 2496 2497 SA->analyze(&VirtReg); 2498 2499 // First try to split around a region spanning multiple blocks. RS_Split2 2500 // ranges already made dubious progress with region splitting, so they go 2501 // straight to single block splitting. 2502 if (getStage(VirtReg) < RS_Split2) { 2503 MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs); 2504 if (PhysReg || !NewVRegs.empty()) 2505 return PhysReg; 2506 } 2507 2508 // Then isolate blocks. 2509 return tryBlockSplit(VirtReg, Order, NewVRegs); 2510 } 2511 2512 //===----------------------------------------------------------------------===// 2513 // Last Chance Recoloring 2514 //===----------------------------------------------------------------------===// 2515 2516 /// Return true if \p reg has any tied def operand. 2517 static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) { 2518 for (const MachineOperand &MO : MRI->def_operands(reg)) 2519 if (MO.isTied()) 2520 return true; 2521 2522 return false; 2523 } 2524 2525 /// mayRecolorAllInterferences - Check if the virtual registers that 2526 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be 2527 /// recolored to free \p PhysReg. 2528 /// When true is returned, \p RecoloringCandidates has been augmented with all 2529 /// the live intervals that need to be recolored in order to free \p PhysReg 2530 /// for \p VirtReg. 2531 /// \p FixedRegisters contains all the virtual registers that cannot be 2532 /// recolored. 2533 bool RAGreedy::mayRecolorAllInterferences( 2534 MCRegister PhysReg, LiveInterval &VirtReg, SmallLISet &RecoloringCandidates, 2535 const SmallVirtRegSet &FixedRegisters) { 2536 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg()); 2537 2538 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { 2539 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units); 2540 // If there is LastChanceRecoloringMaxInterference or more interferences, 2541 // chances are one would not be recolorable. 2542 if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >= 2543 LastChanceRecoloringMaxInterference && 2544 !ExhaustiveSearch) { 2545 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n"); 2546 CutOffInfo |= CO_Interf; 2547 return false; 2548 } 2549 for (LiveInterval *Intf : reverse(Q.interferingVRegs())) { 2550 // If Intf is done and sit on the same register class as VirtReg, 2551 // it would not be recolorable as it is in the same state as VirtReg. 2552 // However, if VirtReg has tied defs and Intf doesn't, then 2553 // there is still a point in examining if it can be recolorable. 2554 if (((getStage(*Intf) == RS_Done && 2555 MRI->getRegClass(Intf->reg()) == CurRC) && 2556 !(hasTiedDef(MRI, VirtReg.reg()) && 2557 !hasTiedDef(MRI, Intf->reg()))) || 2558 FixedRegisters.count(Intf->reg())) { 2559 LLVM_DEBUG( 2560 dbgs() << "Early abort: the interference is not recolorable.\n"); 2561 return false; 2562 } 2563 RecoloringCandidates.insert(Intf); 2564 } 2565 } 2566 return true; 2567 } 2568 2569 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring 2570 /// its interferences. 2571 /// Last chance recoloring chooses a color for \p VirtReg and recolors every 2572 /// virtual register that was using it. The recoloring process may recursively 2573 /// use the last chance recoloring. Therefore, when a virtual register has been 2574 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot 2575 /// be last-chance-recolored again during this recoloring "session". 2576 /// E.g., 2577 /// Let 2578 /// vA can use {R1, R2 } 2579 /// vB can use { R2, R3} 2580 /// vC can use {R1 } 2581 /// Where vA, vB, and vC cannot be split anymore (they are reloads for 2582 /// instance) and they all interfere. 2583 /// 2584 /// vA is assigned R1 2585 /// vB is assigned R2 2586 /// vC tries to evict vA but vA is already done. 2587 /// Regular register allocation fails. 2588 /// 2589 /// Last chance recoloring kicks in: 2590 /// vC does as if vA was evicted => vC uses R1. 2591 /// vC is marked as fixed. 2592 /// vA needs to find a color. 2593 /// None are available. 2594 /// vA cannot evict vC: vC is a fixed virtual register now. 2595 /// vA does as if vB was evicted => vA uses R2. 2596 /// vB needs to find a color. 2597 /// R3 is available. 2598 /// Recoloring => vC = R1, vA = R2, vB = R3 2599 /// 2600 /// \p Order defines the preferred allocation order for \p VirtReg. 2601 /// \p NewRegs will contain any new virtual register that have been created 2602 /// (split, spill) during the process and that must be assigned. 2603 /// \p FixedRegisters contains all the virtual registers that cannot be 2604 /// recolored. 2605 /// \p Depth gives the current depth of the last chance recoloring. 2606 /// \return a physical register that can be used for VirtReg or ~0u if none 2607 /// exists. 2608 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg, 2609 AllocationOrder &Order, 2610 SmallVectorImpl<Register> &NewVRegs, 2611 SmallVirtRegSet &FixedRegisters, 2612 unsigned Depth) { 2613 if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg)) 2614 return ~0u; 2615 2616 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n'); 2617 // Ranges must be Done. 2618 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) && 2619 "Last chance recoloring should really be last chance"); 2620 // Set the max depth to LastChanceRecoloringMaxDepth. 2621 // We may want to reconsider that if we end up with a too large search space 2622 // for target with hundreds of registers. 2623 // Indeed, in that case we may want to cut the search space earlier. 2624 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) { 2625 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n"); 2626 CutOffInfo |= CO_Depth; 2627 return ~0u; 2628 } 2629 2630 // Set of Live intervals that will need to be recolored. 2631 SmallLISet RecoloringCandidates; 2632 // Record the original mapping virtual register to physical register in case 2633 // the recoloring fails. 2634 DenseMap<Register, MCRegister> VirtRegToPhysReg; 2635 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in 2636 // this recoloring "session". 2637 assert(!FixedRegisters.count(VirtReg.reg())); 2638 FixedRegisters.insert(VirtReg.reg()); 2639 SmallVector<Register, 4> CurrentNewVRegs; 2640 2641 for (MCRegister PhysReg : Order) { 2642 assert(PhysReg.isValid()); 2643 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to " 2644 << printReg(PhysReg, TRI) << '\n'); 2645 RecoloringCandidates.clear(); 2646 VirtRegToPhysReg.clear(); 2647 CurrentNewVRegs.clear(); 2648 2649 // It is only possible to recolor virtual register interference. 2650 if (Matrix->checkInterference(VirtReg, PhysReg) > 2651 LiveRegMatrix::IK_VirtReg) { 2652 LLVM_DEBUG( 2653 dbgs() << "Some interferences are not with virtual registers.\n"); 2654 2655 continue; 2656 } 2657 2658 // Early give up on this PhysReg if it is obvious we cannot recolor all 2659 // the interferences. 2660 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates, 2661 FixedRegisters)) { 2662 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n"); 2663 continue; 2664 } 2665 2666 // RecoloringCandidates contains all the virtual registers that interfer 2667 // with VirtReg on PhysReg (or one of its aliases). 2668 // Enqueue them for recoloring and perform the actual recoloring. 2669 PQueue RecoloringQueue; 2670 for (LiveInterval *RC : RecoloringCandidates) { 2671 Register ItVirtReg = RC->reg(); 2672 enqueue(RecoloringQueue, RC); 2673 assert(VRM->hasPhys(ItVirtReg) && 2674 "Interferences are supposed to be with allocated variables"); 2675 2676 // Record the current allocation. 2677 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg); 2678 // unset the related struct. 2679 Matrix->unassign(*RC); 2680 } 2681 2682 // Do as if VirtReg was assigned to PhysReg so that the underlying 2683 // recoloring has the right information about the interferes and 2684 // available colors. 2685 Matrix->assign(VirtReg, PhysReg); 2686 2687 // Save the current recoloring state. 2688 // If we cannot recolor all the interferences, we will have to start again 2689 // at this point for the next physical register. 2690 SmallVirtRegSet SaveFixedRegisters(FixedRegisters); 2691 if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs, 2692 FixedRegisters, Depth)) { 2693 // Push the queued vregs into the main queue. 2694 for (Register NewVReg : CurrentNewVRegs) 2695 NewVRegs.push_back(NewVReg); 2696 // Do not mess up with the global assignment process. 2697 // I.e., VirtReg must be unassigned. 2698 Matrix->unassign(VirtReg); 2699 return PhysReg; 2700 } 2701 2702 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to " 2703 << printReg(PhysReg, TRI) << '\n'); 2704 2705 // The recoloring attempt failed, undo the changes. 2706 FixedRegisters = SaveFixedRegisters; 2707 Matrix->unassign(VirtReg); 2708 2709 // For a newly created vreg which is also in RecoloringCandidates, 2710 // don't add it to NewVRegs because its physical register will be restored 2711 // below. Other vregs in CurrentNewVRegs are created by calling 2712 // selectOrSplit and should be added into NewVRegs. 2713 for (Register &R : CurrentNewVRegs) { 2714 if (RecoloringCandidates.count(&LIS->getInterval(R))) 2715 continue; 2716 NewVRegs.push_back(R); 2717 } 2718 2719 for (LiveInterval *RC : RecoloringCandidates) { 2720 Register ItVirtReg = RC->reg(); 2721 if (VRM->hasPhys(ItVirtReg)) 2722 Matrix->unassign(*RC); 2723 MCRegister ItPhysReg = VirtRegToPhysReg[ItVirtReg]; 2724 Matrix->assign(*RC, ItPhysReg); 2725 } 2726 } 2727 2728 // Last chance recoloring did not worked either, give up. 2729 return ~0u; 2730 } 2731 2732 /// tryRecoloringCandidates - Try to assign a new color to every register 2733 /// in \RecoloringQueue. 2734 /// \p NewRegs will contain any new virtual register created during the 2735 /// recoloring process. 2736 /// \p FixedRegisters[in/out] contains all the registers that have been 2737 /// recolored. 2738 /// \return true if all virtual registers in RecoloringQueue were successfully 2739 /// recolored, false otherwise. 2740 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue, 2741 SmallVectorImpl<Register> &NewVRegs, 2742 SmallVirtRegSet &FixedRegisters, 2743 unsigned Depth) { 2744 while (!RecoloringQueue.empty()) { 2745 LiveInterval *LI = dequeue(RecoloringQueue); 2746 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n'); 2747 MCRegister PhysReg = 2748 selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1); 2749 // When splitting happens, the live-range may actually be empty. 2750 // In that case, this is okay to continue the recoloring even 2751 // if we did not find an alternative color for it. Indeed, 2752 // there will not be anything to color for LI in the end. 2753 if (PhysReg == ~0u || (!PhysReg && !LI->empty())) 2754 return false; 2755 2756 if (!PhysReg) { 2757 assert(LI->empty() && "Only empty live-range do not require a register"); 2758 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2759 << " succeeded. Empty LI.\n"); 2760 continue; 2761 } 2762 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI 2763 << " succeeded with: " << printReg(PhysReg, TRI) << '\n'); 2764 2765 Matrix->assign(*LI, PhysReg); 2766 FixedRegisters.insert(LI->reg()); 2767 } 2768 return true; 2769 } 2770 2771 //===----------------------------------------------------------------------===// 2772 // Main Entry Point 2773 //===----------------------------------------------------------------------===// 2774 2775 MCRegister RAGreedy::selectOrSplit(LiveInterval &VirtReg, 2776 SmallVectorImpl<Register> &NewVRegs) { 2777 CutOffInfo = CO_None; 2778 LLVMContext &Ctx = MF->getFunction().getContext(); 2779 SmallVirtRegSet FixedRegisters; 2780 MCRegister Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters); 2781 if (Reg == ~0U && (CutOffInfo != CO_None)) { 2782 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf); 2783 if (CutOffEncountered == CO_Depth) 2784 Ctx.emitError("register allocation failed: maximum depth for recoloring " 2785 "reached. Use -fexhaustive-register-search to skip " 2786 "cutoffs"); 2787 else if (CutOffEncountered == CO_Interf) 2788 Ctx.emitError("register allocation failed: maximum interference for " 2789 "recoloring reached. Use -fexhaustive-register-search " 2790 "to skip cutoffs"); 2791 else if (CutOffEncountered == (CO_Depth | CO_Interf)) 2792 Ctx.emitError("register allocation failed: maximum interference and " 2793 "depth for recoloring reached. Use " 2794 "-fexhaustive-register-search to skip cutoffs"); 2795 } 2796 return Reg; 2797 } 2798 2799 /// Using a CSR for the first time has a cost because it causes push|pop 2800 /// to be added to prologue|epilogue. Splitting a cold section of the live 2801 /// range can have lower cost than using the CSR for the first time; 2802 /// Spilling a live range in the cold path can have lower cost than using 2803 /// the CSR for the first time. Returns the physical register if we decide 2804 /// to use the CSR; otherwise return 0. 2805 MCRegister 2806 RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order, 2807 MCRegister PhysReg, uint8_t &CostPerUseLimit, 2808 SmallVectorImpl<Register> &NewVRegs) { 2809 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) { 2810 // We choose spill over using the CSR for the first time if the spill cost 2811 // is lower than CSRCost. 2812 SA->analyze(&VirtReg); 2813 if (calcSpillCost() >= CSRCost) 2814 return PhysReg; 2815 2816 // We are going to spill, set CostPerUseLimit to 1 to make sure that 2817 // we will not use a callee-saved register in tryEvict. 2818 CostPerUseLimit = 1; 2819 return 0; 2820 } 2821 if (getStage(VirtReg) < RS_Split) { 2822 // We choose pre-splitting over using the CSR for the first time if 2823 // the cost of splitting is lower than CSRCost. 2824 SA->analyze(&VirtReg); 2825 unsigned NumCands = 0; 2826 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost. 2827 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost, 2828 NumCands, true /*IgnoreCSR*/); 2829 if (BestCand == NoCand) 2830 // Use the CSR if we can't find a region split below CSRCost. 2831 return PhysReg; 2832 2833 // Perform the actual pre-splitting. 2834 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs); 2835 return 0; 2836 } 2837 return PhysReg; 2838 } 2839 2840 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) { 2841 // Do not keep invalid information around. 2842 SetOfBrokenHints.remove(&LI); 2843 } 2844 2845 void RAGreedy::initializeCSRCost() { 2846 // We use the larger one out of the command-line option and the value report 2847 // by TRI. 2848 CSRCost = BlockFrequency( 2849 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost())); 2850 if (!CSRCost.getFrequency()) 2851 return; 2852 2853 // Raw cost is relative to Entry == 2^14; scale it appropriately. 2854 uint64_t ActualEntry = MBFI->getEntryFreq(); 2855 if (!ActualEntry) { 2856 CSRCost = 0; 2857 return; 2858 } 2859 uint64_t FixedEntry = 1 << 14; 2860 if (ActualEntry < FixedEntry) 2861 CSRCost *= BranchProbability(ActualEntry, FixedEntry); 2862 else if (ActualEntry <= UINT32_MAX) 2863 // Invert the fraction and divide. 2864 CSRCost /= BranchProbability(FixedEntry, ActualEntry); 2865 else 2866 // Can't use BranchProbability in general, since it takes 32-bit numbers. 2867 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry); 2868 } 2869 2870 /// Collect the hint info for \p Reg. 2871 /// The results are stored into \p Out. 2872 /// \p Out is not cleared before being populated. 2873 void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) { 2874 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) { 2875 if (!Instr.isFullCopy()) 2876 continue; 2877 // Look for the other end of the copy. 2878 Register OtherReg = Instr.getOperand(0).getReg(); 2879 if (OtherReg == Reg) { 2880 OtherReg = Instr.getOperand(1).getReg(); 2881 if (OtherReg == Reg) 2882 continue; 2883 } 2884 // Get the current assignment. 2885 MCRegister OtherPhysReg = 2886 OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg); 2887 // Push the collected information. 2888 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg, 2889 OtherPhysReg)); 2890 } 2891 } 2892 2893 /// Using the given \p List, compute the cost of the broken hints if 2894 /// \p PhysReg was used. 2895 /// \return The cost of \p List for \p PhysReg. 2896 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List, 2897 MCRegister PhysReg) { 2898 BlockFrequency Cost = 0; 2899 for (const HintInfo &Info : List) { 2900 if (Info.PhysReg != PhysReg) 2901 Cost += Info.Freq; 2902 } 2903 return Cost; 2904 } 2905 2906 /// Using the register assigned to \p VirtReg, try to recolor 2907 /// all the live ranges that are copy-related with \p VirtReg. 2908 /// The recoloring is then propagated to all the live-ranges that have 2909 /// been recolored and so on, until no more copies can be coalesced or 2910 /// it is not profitable. 2911 /// For a given live range, profitability is determined by the sum of the 2912 /// frequencies of the non-identity copies it would introduce with the old 2913 /// and new register. 2914 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) { 2915 // We have a broken hint, check if it is possible to fix it by 2916 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted 2917 // some register and PhysReg may be available for the other live-ranges. 2918 SmallSet<Register, 4> Visited; 2919 SmallVector<unsigned, 2> RecoloringCandidates; 2920 HintsInfo Info; 2921 Register Reg = VirtReg.reg(); 2922 MCRegister PhysReg = VRM->getPhys(Reg); 2923 // Start the recoloring algorithm from the input live-interval, then 2924 // it will propagate to the ones that are copy-related with it. 2925 Visited.insert(Reg); 2926 RecoloringCandidates.push_back(Reg); 2927 2928 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI) 2929 << '(' << printReg(PhysReg, TRI) << ")\n"); 2930 2931 do { 2932 Reg = RecoloringCandidates.pop_back_val(); 2933 2934 // We cannot recolor physical register. 2935 if (Register::isPhysicalRegister(Reg)) 2936 continue; 2937 2938 // This may be a skipped class 2939 if (!VRM->hasPhys(Reg)) { 2940 assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) && 2941 "We have an unallocated variable which should have been handled"); 2942 continue; 2943 } 2944 2945 // Get the live interval mapped with this virtual register to be able 2946 // to check for the interference with the new color. 2947 LiveInterval &LI = LIS->getInterval(Reg); 2948 MCRegister CurrPhys = VRM->getPhys(Reg); 2949 // Check that the new color matches the register class constraints and 2950 // that it is free for this live range. 2951 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) || 2952 Matrix->checkInterference(LI, PhysReg))) 2953 continue; 2954 2955 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI) 2956 << ") is recolorable.\n"); 2957 2958 // Gather the hint info. 2959 Info.clear(); 2960 collectHintInfo(Reg, Info); 2961 // Check if recoloring the live-range will increase the cost of the 2962 // non-identity copies. 2963 if (CurrPhys != PhysReg) { 2964 LLVM_DEBUG(dbgs() << "Checking profitability:\n"); 2965 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys); 2966 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg); 2967 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency() 2968 << "\nNew Cost: " << NewCopiesCost.getFrequency() 2969 << '\n'); 2970 if (OldCopiesCost < NewCopiesCost) { 2971 LLVM_DEBUG(dbgs() << "=> Not profitable.\n"); 2972 continue; 2973 } 2974 // At this point, the cost is either cheaper or equal. If it is 2975 // equal, we consider this is profitable because it may expose 2976 // more recoloring opportunities. 2977 LLVM_DEBUG(dbgs() << "=> Profitable.\n"); 2978 // Recolor the live-range. 2979 Matrix->unassign(LI); 2980 Matrix->assign(LI, PhysReg); 2981 } 2982 // Push all copy-related live-ranges to keep reconciling the broken 2983 // hints. 2984 for (const HintInfo &HI : Info) { 2985 if (Visited.insert(HI.Reg).second) 2986 RecoloringCandidates.push_back(HI.Reg); 2987 } 2988 } while (!RecoloringCandidates.empty()); 2989 } 2990 2991 /// Try to recolor broken hints. 2992 /// Broken hints may be repaired by recoloring when an evicted variable 2993 /// freed up a register for a larger live-range. 2994 /// Consider the following example: 2995 /// BB1: 2996 /// a = 2997 /// b = 2998 /// BB2: 2999 /// ... 3000 /// = b 3001 /// = a 3002 /// Let us assume b gets split: 3003 /// BB1: 3004 /// a = 3005 /// b = 3006 /// BB2: 3007 /// c = b 3008 /// ... 3009 /// d = c 3010 /// = d 3011 /// = a 3012 /// Because of how the allocation work, b, c, and d may be assigned different 3013 /// colors. Now, if a gets evicted later: 3014 /// BB1: 3015 /// a = 3016 /// st a, SpillSlot 3017 /// b = 3018 /// BB2: 3019 /// c = b 3020 /// ... 3021 /// d = c 3022 /// = d 3023 /// e = ld SpillSlot 3024 /// = e 3025 /// This is likely that we can assign the same register for b, c, and d, 3026 /// getting rid of 2 copies. 3027 void RAGreedy::tryHintsRecoloring() { 3028 for (LiveInterval *LI : SetOfBrokenHints) { 3029 assert(Register::isVirtualRegister(LI->reg()) && 3030 "Recoloring is possible only for virtual registers"); 3031 // Some dead defs may be around (e.g., because of debug uses). 3032 // Ignore those. 3033 if (!VRM->hasPhys(LI->reg())) 3034 continue; 3035 tryHintRecoloring(*LI); 3036 } 3037 } 3038 3039 MCRegister RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg, 3040 SmallVectorImpl<Register> &NewVRegs, 3041 SmallVirtRegSet &FixedRegisters, 3042 unsigned Depth) { 3043 uint8_t CostPerUseLimit = uint8_t(~0u); 3044 // First try assigning a free register. 3045 auto Order = 3046 AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix); 3047 if (MCRegister PhysReg = 3048 tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) { 3049 // If VirtReg got an assignment, the eviction info is no longer relevant. 3050 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3051 // When NewVRegs is not empty, we may have made decisions such as evicting 3052 // a virtual register, go with the earlier decisions and use the physical 3053 // register. 3054 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) && 3055 NewVRegs.empty()) { 3056 MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg, 3057 CostPerUseLimit, NewVRegs); 3058 if (CSRReg || !NewVRegs.empty()) 3059 // Return now if we decide to use a CSR or create new vregs due to 3060 // pre-splitting. 3061 return CSRReg; 3062 } else 3063 return PhysReg; 3064 } 3065 3066 LiveRangeStage Stage = getStage(VirtReg); 3067 LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade " 3068 << getCascade(VirtReg.reg()) << '\n'); 3069 3070 // Try to evict a less worthy live range, but only for ranges from the primary 3071 // queue. The RS_Split ranges already failed to do this, and they should not 3072 // get a second chance until they have been split. 3073 if (Stage != RS_Split) 3074 if (Register PhysReg = 3075 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit, 3076 FixedRegisters)) { 3077 Register Hint = MRI->getSimpleHint(VirtReg.reg()); 3078 // If VirtReg has a hint and that hint is broken record this 3079 // virtual register as a recoloring candidate for broken hint. 3080 // Indeed, since we evicted a variable in its neighborhood it is 3081 // likely we can at least partially recolor some of the 3082 // copy-related live-ranges. 3083 if (Hint && Hint != PhysReg) 3084 SetOfBrokenHints.insert(&VirtReg); 3085 // If VirtReg eviction someone, the eviction info for it as an evictee is 3086 // no longer relevant. 3087 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3088 return PhysReg; 3089 } 3090 3091 assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs"); 3092 3093 // The first time we see a live range, don't try to split or spill. 3094 // Wait until the second time, when all smaller ranges have been allocated. 3095 // This gives a better picture of the interference to split around. 3096 if (Stage < RS_Split) { 3097 setStage(VirtReg, RS_Split); 3098 LLVM_DEBUG(dbgs() << "wait for second round\n"); 3099 NewVRegs.push_back(VirtReg.reg()); 3100 return 0; 3101 } 3102 3103 if (Stage < RS_Spill) { 3104 // Try splitting VirtReg or interferences. 3105 unsigned NewVRegSizeBefore = NewVRegs.size(); 3106 Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters); 3107 if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore)) { 3108 // If VirtReg got split, the eviction info is no longer relevant. 3109 LastEvicted.clearEvicteeInfo(VirtReg.reg()); 3110 return PhysReg; 3111 } 3112 } 3113 3114 // If we couldn't allocate a register from spilling, there is probably some 3115 // invalid inline assembly. The base class will report it. 3116 if (Stage >= RS_Done || !VirtReg.isSpillable()) 3117 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters, 3118 Depth); 3119 3120 // Finally spill VirtReg itself. 3121 if ((EnableDeferredSpilling || 3122 TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) && 3123 getStage(VirtReg) < RS_Memory) { 3124 // TODO: This is experimental and in particular, we do not model 3125 // the live range splitting done by spilling correctly. 3126 // We would need a deep integration with the spiller to do the 3127 // right thing here. Anyway, that is still good for early testing. 3128 setStage(VirtReg, RS_Memory); 3129 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n"); 3130 NewVRegs.push_back(VirtReg.reg()); 3131 } else { 3132 NamedRegionTimer T("spill", "Spiller", TimerGroupName, 3133 TimerGroupDescription, TimePassesIsEnabled); 3134 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats); 3135 spiller().spill(LRE); 3136 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done); 3137 3138 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by 3139 // the new regs are kept in LDV (still mapping to the old register), until 3140 // we rewrite spilled locations in LDV at a later stage. 3141 DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS); 3142 3143 if (VerifyEnabled) 3144 MF->verify(this, "After spilling"); 3145 } 3146 3147 // The live virtual register requesting allocation was spilled, so tell 3148 // the caller not to allocate anything during this round. 3149 return 0; 3150 } 3151 3152 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) { 3153 using namespace ore; 3154 if (Spills) { 3155 R << NV("NumSpills", Spills) << " spills "; 3156 R << NV("TotalSpillsCost", SpillsCost) << " total spills cost "; 3157 } 3158 if (FoldedSpills) { 3159 R << NV("NumFoldedSpills", FoldedSpills) << " folded spills "; 3160 R << NV("TotalFoldedSpillsCost", FoldedSpillsCost) 3161 << " total folded spills cost "; 3162 } 3163 if (Reloads) { 3164 R << NV("NumReloads", Reloads) << " reloads "; 3165 R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost "; 3166 } 3167 if (FoldedReloads) { 3168 R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads "; 3169 R << NV("TotalFoldedReloadsCost", FoldedReloadsCost) 3170 << " total folded reloads cost "; 3171 } 3172 if (ZeroCostFoldedReloads) 3173 R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads) 3174 << " zero cost folded reloads "; 3175 if (Copies) { 3176 R << NV("NumVRCopies", Copies) << " virtual registers copies "; 3177 R << NV("TotalCopiesCost", CopiesCost) << " total copies cost "; 3178 } 3179 } 3180 3181 RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) { 3182 RAGreedyStats Stats; 3183 const MachineFrameInfo &MFI = MF->getFrameInfo(); 3184 int FI; 3185 3186 auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) { 3187 return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>( 3188 A->getPseudoValue())->getFrameIndex()); 3189 }; 3190 auto isPatchpointInstr = [](const MachineInstr &MI) { 3191 return MI.getOpcode() == TargetOpcode::PATCHPOINT || 3192 MI.getOpcode() == TargetOpcode::STACKMAP || 3193 MI.getOpcode() == TargetOpcode::STATEPOINT; 3194 }; 3195 for (MachineInstr &MI : MBB) { 3196 if (MI.isCopy()) { 3197 MachineOperand &Dest = MI.getOperand(0); 3198 MachineOperand &Src = MI.getOperand(1); 3199 if (Dest.isReg() && Src.isReg() && Dest.getReg().isVirtual() && 3200 Src.getReg().isVirtual()) 3201 ++Stats.Copies; 3202 continue; 3203 } 3204 3205 SmallVector<const MachineMemOperand *, 2> Accesses; 3206 if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3207 ++Stats.Reloads; 3208 continue; 3209 } 3210 if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) { 3211 ++Stats.Spills; 3212 continue; 3213 } 3214 if (TII->hasLoadFromStackSlot(MI, Accesses) && 3215 llvm::any_of(Accesses, isSpillSlotAccess)) { 3216 if (!isPatchpointInstr(MI)) { 3217 Stats.FoldedReloads += Accesses.size(); 3218 continue; 3219 } 3220 // For statepoint there may be folded and zero cost folded stack reloads. 3221 std::pair<unsigned, unsigned> NonZeroCostRange = 3222 TII->getPatchpointUnfoldableRange(MI); 3223 SmallSet<unsigned, 16> FoldedReloads; 3224 SmallSet<unsigned, 16> ZeroCostFoldedReloads; 3225 for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) { 3226 MachineOperand &MO = MI.getOperand(Idx); 3227 if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex())) 3228 continue; 3229 if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second) 3230 FoldedReloads.insert(MO.getIndex()); 3231 else 3232 ZeroCostFoldedReloads.insert(MO.getIndex()); 3233 } 3234 // If stack slot is used in folded reload it is not zero cost then. 3235 for (unsigned Slot : FoldedReloads) 3236 ZeroCostFoldedReloads.erase(Slot); 3237 Stats.FoldedReloads += FoldedReloads.size(); 3238 Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size(); 3239 continue; 3240 } 3241 Accesses.clear(); 3242 if (TII->hasStoreToStackSlot(MI, Accesses) && 3243 llvm::any_of(Accesses, isSpillSlotAccess)) { 3244 Stats.FoldedSpills += Accesses.size(); 3245 } 3246 } 3247 // Set cost of collected statistic by multiplication to relative frequency of 3248 // this basic block. 3249 float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB); 3250 Stats.ReloadsCost = RelFreq * Stats.Reloads; 3251 Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads; 3252 Stats.SpillsCost = RelFreq * Stats.Spills; 3253 Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills; 3254 Stats.CopiesCost = RelFreq * Stats.Copies; 3255 return Stats; 3256 } 3257 3258 RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) { 3259 RAGreedyStats Stats; 3260 3261 // Sum up the spill and reloads in subloops. 3262 for (MachineLoop *SubLoop : *L) 3263 Stats.add(reportStats(SubLoop)); 3264 3265 for (MachineBasicBlock *MBB : L->getBlocks()) 3266 // Handle blocks that were not included in subloops. 3267 if (Loops->getLoopFor(MBB) == L) 3268 Stats.add(computeStats(*MBB)); 3269 3270 if (!Stats.isEmpty()) { 3271 using namespace ore; 3272 3273 ORE->emit([&]() { 3274 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies", 3275 L->getStartLoc(), L->getHeader()); 3276 Stats.report(R); 3277 R << "generated in loop"; 3278 return R; 3279 }); 3280 } 3281 return Stats; 3282 } 3283 3284 void RAGreedy::reportStats() { 3285 if (!ORE->allowExtraAnalysis(DEBUG_TYPE)) 3286 return; 3287 RAGreedyStats Stats; 3288 for (MachineLoop *L : *Loops) 3289 Stats.add(reportStats(L)); 3290 // Process non-loop blocks. 3291 for (MachineBasicBlock &MBB : *MF) 3292 if (!Loops->getLoopFor(&MBB)) 3293 Stats.add(computeStats(MBB)); 3294 if (!Stats.isEmpty()) { 3295 using namespace ore; 3296 3297 ORE->emit([&]() { 3298 DebugLoc Loc; 3299 if (auto *SP = MF->getFunction().getSubprogram()) 3300 Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP); 3301 MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc, 3302 &MF->front()); 3303 Stats.report(R); 3304 R << "generated in function"; 3305 return R; 3306 }); 3307 } 3308 } 3309 3310 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) { 3311 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n" 3312 << "********** Function: " << mf.getName() << '\n'); 3313 3314 MF = &mf; 3315 TRI = MF->getSubtarget().getRegisterInfo(); 3316 TII = MF->getSubtarget().getInstrInfo(); 3317 RCI.runOnMachineFunction(mf); 3318 3319 EnableLocalReassign = EnableLocalReassignment || 3320 MF->getSubtarget().enableRALocalReassignment( 3321 MF->getTarget().getOptLevel()); 3322 3323 EnableAdvancedRASplitCost = 3324 ConsiderLocalIntervalCost.getNumOccurrences() 3325 ? ConsiderLocalIntervalCost 3326 : MF->getSubtarget().enableAdvancedRASplitCost(); 3327 3328 if (VerifyEnabled) 3329 MF->verify(this, "Before greedy register allocator"); 3330 3331 RegAllocBase::init(getAnalysis<VirtRegMap>(), 3332 getAnalysis<LiveIntervals>(), 3333 getAnalysis<LiveRegMatrix>()); 3334 Indexes = &getAnalysis<SlotIndexes>(); 3335 MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); 3336 DomTree = &getAnalysis<MachineDominatorTree>(); 3337 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); 3338 Loops = &getAnalysis<MachineLoopInfo>(); 3339 Bundles = &getAnalysis<EdgeBundles>(); 3340 SpillPlacer = &getAnalysis<SpillPlacement>(); 3341 DebugVars = &getAnalysis<LiveDebugVariables>(); 3342 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 3343 3344 initializeCSRCost(); 3345 3346 RegCosts = TRI->getRegisterCosts(*MF); 3347 3348 VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI); 3349 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI)); 3350 3351 VRAI->calculateSpillWeightsAndHints(); 3352 3353 LLVM_DEBUG(LIS->dump()); 3354 3355 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops)); 3356 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI, *VRAI)); 3357 ExtraRegInfo.clear(); 3358 NextCascade = 1; 3359 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI); 3360 GlobalCand.resize(32); // This will grow as needed. 3361 SetOfBrokenHints.clear(); 3362 LastEvicted.clear(); 3363 3364 allocatePhysRegs(); 3365 tryHintsRecoloring(); 3366 3367 if (VerifyEnabled) 3368 MF->verify(this, "Before post optimization"); 3369 postOptimization(); 3370 reportStats(); 3371 3372 releaseMemory(); 3373 return true; 3374 } 3375