1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/IndexedMap.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/SparseSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/RegAllocRegistry.h" 31 #include "llvm/CodeGen/RegisterClassInfo.h" 32 #include "llvm/CodeGen/TargetInstrInfo.h" 33 #include "llvm/CodeGen/TargetOpcodes.h" 34 #include "llvm/CodeGen/TargetRegisterInfo.h" 35 #include "llvm/CodeGen/TargetSubtargetInfo.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/MC/MCInstrDesc.h" 39 #include "llvm/MC/MCRegisterInfo.h" 40 #include "llvm/Pass.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <cassert> 47 #include <tuple> 48 #include <vector> 49 50 using namespace llvm; 51 52 #define DEBUG_TYPE "regalloc" 53 54 STATISTIC(NumStores, "Number of stores added"); 55 STATISTIC(NumLoads , "Number of loads added"); 56 STATISTIC(NumCoalesced, "Number of copies coalesced"); 57 58 static RegisterRegAlloc 59 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 60 61 namespace { 62 63 class RegAllocFast : public MachineFunctionPass { 64 public: 65 static char ID; 66 67 RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} 68 69 private: 70 MachineFrameInfo *MFI; 71 MachineRegisterInfo *MRI; 72 const TargetRegisterInfo *TRI; 73 const TargetInstrInfo *TII; 74 RegisterClassInfo RegClassInfo; 75 76 /// Basic block currently being allocated. 77 MachineBasicBlock *MBB; 78 79 /// Maps virtual regs to the frame index where these values are spilled. 80 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 81 82 /// Everything we know about a live virtual register. 83 struct LiveReg { 84 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 85 unsigned VirtReg; ///< Virtual register number. 86 MCPhysReg PhysReg = 0; ///< Currently held here. 87 unsigned short LastOpNum = 0; ///< OpNum on LastUse. 88 bool Dirty = false; ///< Register needs spill. 89 90 explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} 91 92 unsigned getSparseSetIndex() const { 93 return Register::virtReg2Index(VirtReg); 94 } 95 }; 96 97 using LiveRegMap = SparseSet<LiveReg>; 98 /// This map contains entries for each virtual register that is currently 99 /// available in a physical register. 100 LiveRegMap LiveVirtRegs; 101 102 DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; 103 104 /// Has a bit set for every virtual register for which it was determined 105 /// that it is alive across blocks. 106 BitVector MayLiveAcrossBlocks; 107 108 /// State of a physical register. 109 enum RegState { 110 /// A disabled register is not available for allocation, but an alias may 111 /// be in use. A register can only be moved out of the disabled state if 112 /// all aliases are disabled. 113 regDisabled, 114 115 /// A free register is not currently in use and can be allocated 116 /// immediately without checking aliases. 117 regFree, 118 119 /// A reserved register has been assigned explicitly (e.g., setting up a 120 /// call parameter), and it remains reserved until it is used. 121 regReserved 122 123 /// A register state may also be a virtual register number, indication 124 /// that the physical register is currently allocated to a virtual 125 /// register. In that case, LiveVirtRegs contains the inverse mapping. 126 }; 127 128 /// Maps each physical register to a RegState enum or a virtual register. 129 std::vector<unsigned> PhysRegState; 130 131 SmallVector<unsigned, 16> VirtDead; 132 SmallVector<MachineInstr *, 32> Coalesced; 133 134 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 135 /// Set of register units that are used in the current instruction, and so 136 /// cannot be allocated. 137 RegUnitSet UsedInInstr; 138 139 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 140 141 /// Mark a physreg as used in this instruction. 142 void markRegUsedInInstr(MCPhysReg PhysReg) { 143 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 144 UsedInInstr.insert(*Units); 145 } 146 147 /// Check if a physreg or any of its aliases are used in this instruction. 148 bool isRegUsedInInstr(MCPhysReg PhysReg) const { 149 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 150 if (UsedInInstr.count(*Units)) 151 return true; 152 return false; 153 } 154 155 enum : unsigned { 156 spillClean = 50, 157 spillDirty = 100, 158 spillPrefBonus = 20, 159 spillImpossible = ~0u 160 }; 161 162 public: 163 StringRef getPassName() const override { return "Fast Register Allocator"; } 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.setPreservesCFG(); 167 MachineFunctionPass::getAnalysisUsage(AU); 168 } 169 170 MachineFunctionProperties getRequiredProperties() const override { 171 return MachineFunctionProperties().set( 172 MachineFunctionProperties::Property::NoPHIs); 173 } 174 175 MachineFunctionProperties getSetProperties() const override { 176 return MachineFunctionProperties().set( 177 MachineFunctionProperties::Property::NoVRegs); 178 } 179 180 private: 181 bool runOnMachineFunction(MachineFunction &MF) override; 182 183 void allocateBasicBlock(MachineBasicBlock &MBB); 184 void allocateInstruction(MachineInstr &MI); 185 void handleDebugValue(MachineInstr &MI); 186 void handleThroughOperands(MachineInstr &MI, 187 SmallVectorImpl<unsigned> &VirtDead); 188 bool isLastUseOfLocalReg(const MachineOperand &MO) const; 189 190 void addKillFlag(const LiveReg &LRI); 191 void killVirtReg(LiveReg &LR); 192 void killVirtReg(unsigned VirtReg); 193 void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); 194 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 195 196 void usePhysReg(MachineOperand &MO); 197 void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, 198 RegState NewState); 199 unsigned calcSpillCost(MCPhysReg PhysReg) const; 200 void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); 201 202 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 203 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 204 } 205 206 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 207 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 208 } 209 210 void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); 211 void allocVirtRegUndef(MachineOperand &MO); 212 MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 213 unsigned Hint); 214 LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, 215 unsigned Hint); 216 void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); 217 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 218 219 unsigned traceCopies(unsigned VirtReg) const; 220 unsigned traceCopyChain(unsigned Reg) const; 221 222 int getStackSpaceFor(unsigned VirtReg); 223 void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 224 MCPhysReg AssignedReg, bool Kill); 225 void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 226 MCPhysReg PhysReg); 227 228 bool mayLiveOut(unsigned VirtReg); 229 bool mayLiveIn(unsigned VirtReg); 230 231 void dumpState(); 232 }; 233 234 } // end anonymous namespace 235 236 char RegAllocFast::ID = 0; 237 238 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 239 false) 240 241 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 242 PhysRegState[PhysReg] = NewState; 243 } 244 245 /// This allocates space for the specified virtual register to be held on the 246 /// stack. 247 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { 248 // Find the location Reg would belong... 249 int SS = StackSlotForVirtReg[VirtReg]; 250 // Already has space allocated? 251 if (SS != -1) 252 return SS; 253 254 // Allocate a new stack object for this spill location... 255 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 256 unsigned Size = TRI->getSpillSize(RC); 257 unsigned Align = TRI->getSpillAlignment(RC); 258 int FrameIdx = MFI->CreateSpillStackObject(Size, Align); 259 260 // Assign the slot. 261 StackSlotForVirtReg[VirtReg] = FrameIdx; 262 return FrameIdx; 263 } 264 265 /// Returns false if \p VirtReg is known to not live out of the current block. 266 bool RegAllocFast::mayLiveOut(unsigned VirtReg) { 267 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 268 // Cannot be live-out if there are no successors. 269 return !MBB->succ_empty(); 270 } 271 272 // If this block loops back to itself, it would be necessary to check whether 273 // the use comes after the def. 274 if (MBB->isSuccessor(MBB)) { 275 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 276 return true; 277 } 278 279 // See if the first \p Limit uses of the register are all in the current 280 // block. 281 static const unsigned Limit = 8; 282 unsigned C = 0; 283 for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { 284 if (UseInst.getParent() != MBB || ++C >= Limit) { 285 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 286 // Cannot be live-out if there are no successors. 287 return !MBB->succ_empty(); 288 } 289 } 290 291 return false; 292 } 293 294 /// Returns false if \p VirtReg is known to not be live into the current block. 295 bool RegAllocFast::mayLiveIn(unsigned VirtReg) { 296 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 297 return !MBB->pred_empty(); 298 299 // See if the first \p Limit def of the register are all in the current block. 300 static const unsigned Limit = 8; 301 unsigned C = 0; 302 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 303 if (DefInst.getParent() != MBB || ++C >= Limit) { 304 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 305 return !MBB->pred_empty(); 306 } 307 } 308 309 return false; 310 } 311 312 /// Insert spill instruction for \p AssignedReg before \p Before. Update 313 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 314 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, 315 MCPhysReg AssignedReg, bool Kill) { 316 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) 317 << " in " << printReg(AssignedReg, TRI)); 318 int FI = getStackSpaceFor(VirtReg); 319 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 320 321 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 322 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); 323 ++NumStores; 324 325 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 326 // identify spilled location as the place to find corresponding variable's 327 // value. 328 SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; 329 for (MachineInstr *DBG : LRIDbgValues) { 330 MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); 331 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 332 (void)NewDV; 333 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 334 } 335 // Now this register is spilled there is should not be any DBG_VALUE 336 // pointing to this register because they are all pointing to spilled value 337 // now. 338 LRIDbgValues.clear(); 339 } 340 341 /// Insert reload instruction for \p PhysReg before \p Before. 342 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, 343 MCPhysReg PhysReg) { 344 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 345 << printReg(PhysReg, TRI) << '\n'); 346 int FI = getStackSpaceFor(VirtReg); 347 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 348 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); 349 ++NumLoads; 350 } 351 352 /// Return true if MO is the only remaining reference to its virtual register, 353 /// and it is guaranteed to be a block-local register. 354 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { 355 // If the register has ever been spilled or reloaded, we conservatively assume 356 // it is a global register used in multiple blocks. 357 if (StackSlotForVirtReg[MO.getReg()] != -1) 358 return false; 359 360 // Check that the use/def chain has exactly one operand - MO. 361 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 362 if (&*I != &MO) 363 return false; 364 return ++I == MRI->reg_nodbg_end(); 365 } 366 367 /// Set kill flags on last use of a virtual register. 368 void RegAllocFast::addKillFlag(const LiveReg &LR) { 369 if (!LR.LastUse) return; 370 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 371 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 372 if (MO.getReg() == LR.PhysReg) 373 MO.setIsKill(); 374 // else, don't do anything we are problably redefining a 375 // subreg of this register and given we don't track which 376 // lanes are actually dead, we cannot insert a kill flag here. 377 // Otherwise we may end up in a situation like this: 378 // ... = (MO) physreg:sub1, implicit killed physreg 379 // ... <== Here we would allow later pass to reuse physreg:sub1 380 // which is potentially wrong. 381 // LR:sub0 = ... 382 // ... = LR.sub1 <== This is going to use physreg:sub1 383 } 384 } 385 386 /// Mark virtreg as no longer available. 387 void RegAllocFast::killVirtReg(LiveReg &LR) { 388 addKillFlag(LR); 389 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && 390 "Broken RegState mapping"); 391 setPhysRegState(LR.PhysReg, regFree); 392 LR.PhysReg = 0; 393 } 394 395 /// Mark virtreg as no longer available. 396 void RegAllocFast::killVirtReg(unsigned VirtReg) { 397 assert(Register::isVirtualRegister(VirtReg) && 398 "killVirtReg needs a virtual register"); 399 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 400 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) 401 killVirtReg(*LRI); 402 } 403 404 /// This method spills the value specified by VirtReg into the corresponding 405 /// stack slot if needed. 406 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, 407 unsigned VirtReg) { 408 assert(Register::isVirtualRegister(VirtReg) && 409 "Spilling a physical register is illegal!"); 410 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 411 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 412 "Spilling unmapped virtual register"); 413 spillVirtReg(MI, *LRI); 414 } 415 416 /// Do the actual work of spilling. 417 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { 418 assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); 419 420 if (LR.Dirty) { 421 // If this physreg is used by the instruction, we want to kill it on the 422 // instruction, not on the spill. 423 bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; 424 LR.Dirty = false; 425 426 spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); 427 428 if (SpillKill) 429 LR.LastUse = nullptr; // Don't kill register again 430 } 431 killVirtReg(LR); 432 } 433 434 /// Spill all dirty virtregs without killing them. 435 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { 436 if (LiveVirtRegs.empty()) 437 return; 438 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 439 // of spilling here is deterministic, if arbitrary. 440 for (LiveReg &LR : LiveVirtRegs) { 441 if (!LR.PhysReg) 442 continue; 443 if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) 444 continue; 445 spillVirtReg(MI, LR); 446 } 447 LiveVirtRegs.clear(); 448 } 449 450 /// Handle the direct use of a physical register. Check that the register is 451 /// not used by a virtreg. Kill the physreg, marking it free. This may add 452 /// implicit kills to MO->getParent() and invalidate MO. 453 void RegAllocFast::usePhysReg(MachineOperand &MO) { 454 // Ignore undef uses. 455 if (MO.isUndef()) 456 return; 457 458 Register PhysReg = MO.getReg(); 459 assert(Register::isPhysicalRegister(PhysReg) && "Bad usePhysReg operand"); 460 461 markRegUsedInInstr(PhysReg); 462 switch (PhysRegState[PhysReg]) { 463 case regDisabled: 464 break; 465 case regReserved: 466 PhysRegState[PhysReg] = regFree; 467 LLVM_FALLTHROUGH; 468 case regFree: 469 MO.setIsKill(); 470 return; 471 default: 472 // The physreg was allocated to a virtual register. That means the value we 473 // wanted has been clobbered. 474 llvm_unreachable("Instruction uses an allocated register"); 475 } 476 477 // Maybe a superregister is reserved? 478 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 479 MCPhysReg Alias = *AI; 480 switch (PhysRegState[Alias]) { 481 case regDisabled: 482 break; 483 case regReserved: 484 // Either PhysReg is a subregister of Alias and we mark the 485 // whole register as free, or PhysReg is the superregister of 486 // Alias and we mark all the aliases as disabled before freeing 487 // PhysReg. 488 // In the latter case, since PhysReg was disabled, this means that 489 // its value is defined only by physical sub-registers. This check 490 // is performed by the assert of the default case in this loop. 491 // Note: The value of the superregister may only be partial 492 // defined, that is why regDisabled is a valid state for aliases. 493 assert((TRI->isSuperRegister(PhysReg, Alias) || 494 TRI->isSuperRegister(Alias, PhysReg)) && 495 "Instruction is not using a subregister of a reserved register"); 496 LLVM_FALLTHROUGH; 497 case regFree: 498 if (TRI->isSuperRegister(PhysReg, Alias)) { 499 // Leave the superregister in the working set. 500 setPhysRegState(Alias, regFree); 501 MO.getParent()->addRegisterKilled(Alias, TRI, true); 502 return; 503 } 504 // Some other alias was in the working set - clear it. 505 setPhysRegState(Alias, regDisabled); 506 break; 507 default: 508 llvm_unreachable("Instruction uses an alias of an allocated register"); 509 } 510 } 511 512 // All aliases are disabled, bring register into working set. 513 setPhysRegState(PhysReg, regFree); 514 MO.setIsKill(); 515 } 516 517 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 518 /// similar to defineVirtReg except the physreg is reserved instead of 519 /// allocated. 520 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, 521 MCPhysReg PhysReg, RegState NewState) { 522 markRegUsedInInstr(PhysReg); 523 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 524 case regDisabled: 525 break; 526 default: 527 spillVirtReg(MI, VirtReg); 528 LLVM_FALLTHROUGH; 529 case regFree: 530 case regReserved: 531 setPhysRegState(PhysReg, NewState); 532 return; 533 } 534 535 // This is a disabled register, disable all aliases. 536 setPhysRegState(PhysReg, NewState); 537 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 538 MCPhysReg Alias = *AI; 539 switch (unsigned VirtReg = PhysRegState[Alias]) { 540 case regDisabled: 541 break; 542 default: 543 spillVirtReg(MI, VirtReg); 544 LLVM_FALLTHROUGH; 545 case regFree: 546 case regReserved: 547 setPhysRegState(Alias, regDisabled); 548 if (TRI->isSuperRegister(PhysReg, Alias)) 549 return; 550 break; 551 } 552 } 553 } 554 555 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 556 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 557 /// disabled - it can be allocated directly. 558 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 559 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { 560 if (isRegUsedInInstr(PhysReg)) { 561 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) 562 << " is already used in instr.\n"); 563 return spillImpossible; 564 } 565 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 566 case regDisabled: 567 break; 568 case regFree: 569 return 0; 570 case regReserved: 571 LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " 572 << printReg(PhysReg, TRI) << " is reserved already.\n"); 573 return spillImpossible; 574 default: { 575 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 576 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 577 "Missing VirtReg entry"); 578 return LRI->Dirty ? spillDirty : spillClean; 579 } 580 } 581 582 // This is a disabled register, add up cost of aliases. 583 LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); 584 unsigned Cost = 0; 585 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 586 MCPhysReg Alias = *AI; 587 switch (unsigned VirtReg = PhysRegState[Alias]) { 588 case regDisabled: 589 break; 590 case regFree: 591 ++Cost; 592 break; 593 case regReserved: 594 return spillImpossible; 595 default: { 596 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 597 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 598 "Missing VirtReg entry"); 599 Cost += LRI->Dirty ? spillDirty : spillClean; 600 break; 601 } 602 } 603 } 604 return Cost; 605 } 606 607 /// This method updates local state so that we know that PhysReg is the 608 /// proper container for VirtReg now. The physical register must not be used 609 /// for anything else when this is called. 610 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { 611 unsigned VirtReg = LR.VirtReg; 612 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 613 << printReg(PhysReg, TRI) << '\n'); 614 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 615 assert(PhysReg != 0 && "Trying to assign no register"); 616 LR.PhysReg = PhysReg; 617 setPhysRegState(PhysReg, VirtReg); 618 } 619 620 static bool isCoalescable(const MachineInstr &MI) { 621 return MI.isFullCopy(); 622 } 623 624 unsigned RegAllocFast::traceCopyChain(unsigned Reg) const { 625 static const unsigned ChainLengthLimit = 3; 626 unsigned C = 0; 627 do { 628 if (Register::isPhysicalRegister(Reg)) 629 return Reg; 630 assert(Register::isVirtualRegister(Reg)); 631 632 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 633 if (!VRegDef || !isCoalescable(*VRegDef)) 634 return 0; 635 Reg = VRegDef->getOperand(1).getReg(); 636 } while (++C <= ChainLengthLimit); 637 return 0; 638 } 639 640 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 641 /// chain of copies to check whether we reach a physical register we can 642 /// coalesce with. 643 unsigned RegAllocFast::traceCopies(unsigned VirtReg) const { 644 static const unsigned DefLimit = 3; 645 unsigned C = 0; 646 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 647 if (isCoalescable(MI)) { 648 Register Reg = MI.getOperand(1).getReg(); 649 Reg = traceCopyChain(Reg); 650 if (Reg != 0) 651 return Reg; 652 } 653 654 if (++C >= DefLimit) 655 break; 656 } 657 return 0; 658 } 659 660 /// Allocates a physical register for VirtReg. 661 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) { 662 const unsigned VirtReg = LR.VirtReg; 663 664 assert(Register::isVirtualRegister(VirtReg) && 665 "Can only allocate virtual registers"); 666 667 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 668 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 669 << " in class " << TRI->getRegClassName(&RC) 670 << " with hint " << printReg(Hint0, TRI) << '\n'); 671 672 // Take hint when possible. 673 if (Register::isPhysicalRegister(Hint0) && MRI->isAllocatable(Hint0) && 674 RC.contains(Hint0)) { 675 // Ignore the hint if we would have to spill a dirty register. 676 unsigned Cost = calcSpillCost(Hint0); 677 if (Cost < spillDirty) { 678 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 679 << '\n'); 680 if (Cost) 681 definePhysReg(MI, Hint0, regFree); 682 assignVirtToPhysReg(LR, Hint0); 683 return; 684 } else { 685 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 686 << "occupied\n"); 687 } 688 } else { 689 Hint0 = 0; 690 } 691 692 // Try other hint. 693 unsigned Hint1 = traceCopies(VirtReg); 694 if (Register::isPhysicalRegister(Hint1) && MRI->isAllocatable(Hint1) && 695 RC.contains(Hint1) && !isRegUsedInInstr(Hint1)) { 696 // Ignore the hint if we would have to spill a dirty register. 697 unsigned Cost = calcSpillCost(Hint1); 698 if (Cost < spillDirty) { 699 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 700 << '\n'); 701 if (Cost) 702 definePhysReg(MI, Hint1, regFree); 703 assignVirtToPhysReg(LR, Hint1); 704 return; 705 } else { 706 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 707 << "occupied\n"); 708 } 709 } else { 710 Hint1 = 0; 711 } 712 713 MCPhysReg BestReg = 0; 714 unsigned BestCost = spillImpossible; 715 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 716 for (MCPhysReg PhysReg : AllocationOrder) { 717 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 718 unsigned Cost = calcSpillCost(PhysReg); 719 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 720 // Immediate take a register with cost 0. 721 if (Cost == 0) { 722 assignVirtToPhysReg(LR, PhysReg); 723 return; 724 } 725 726 if (PhysReg == Hint1 || PhysReg == Hint0) 727 Cost -= spillPrefBonus; 728 729 if (Cost < BestCost) { 730 BestReg = PhysReg; 731 BestCost = Cost; 732 } 733 } 734 735 if (!BestReg) { 736 // Nothing we can do: Report an error and keep going with an invalid 737 // allocation. 738 if (MI.isInlineAsm()) 739 MI.emitError("inline assembly requires more registers than available"); 740 else 741 MI.emitError("ran out of registers during register allocation"); 742 definePhysReg(MI, *AllocationOrder.begin(), regFree); 743 assignVirtToPhysReg(LR, *AllocationOrder.begin()); 744 return; 745 } 746 747 definePhysReg(MI, BestReg, regFree); 748 assignVirtToPhysReg(LR, BestReg); 749 } 750 751 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { 752 assert(MO.isUndef() && "expected undef use"); 753 Register VirtReg = MO.getReg(); 754 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg"); 755 756 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 757 MCPhysReg PhysReg; 758 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 759 PhysReg = LRI->PhysReg; 760 } else { 761 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 762 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 763 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 764 PhysReg = AllocationOrder[0]; 765 } 766 767 unsigned SubRegIdx = MO.getSubReg(); 768 if (SubRegIdx != 0) { 769 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 770 MO.setSubReg(0); 771 } 772 MO.setReg(PhysReg); 773 MO.setIsRenamable(true); 774 } 775 776 /// Allocates a register for VirtReg and mark it as dirty. 777 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, 778 unsigned VirtReg, unsigned Hint) { 779 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 780 LiveRegMap::iterator LRI; 781 bool New; 782 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 783 if (!LRI->PhysReg) { 784 // If there is no hint, peek at the only use of this register. 785 if ((!Hint || !Register::isPhysicalRegister(Hint)) && 786 MRI->hasOneNonDBGUse(VirtReg)) { 787 const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); 788 // It's a copy, use the destination register as a hint. 789 if (UseMI.isCopyLike()) 790 Hint = UseMI.getOperand(0).getReg(); 791 } 792 allocVirtReg(MI, *LRI, Hint); 793 } else if (LRI->LastUse) { 794 // Redefining a live register - kill at the last use, unless it is this 795 // instruction defining VirtReg multiple times. 796 if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 797 addKillFlag(*LRI); 798 } 799 assert(LRI->PhysReg && "Register not assigned"); 800 LRI->LastUse = &MI; 801 LRI->LastOpNum = OpNum; 802 LRI->Dirty = true; 803 markRegUsedInInstr(LRI->PhysReg); 804 return LRI->PhysReg; 805 } 806 807 /// Make sure VirtReg is available in a physreg and return it. 808 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, 809 unsigned OpNum, 810 unsigned VirtReg, 811 unsigned Hint) { 812 assert(Register::isVirtualRegister(VirtReg) && "Not a virtual register"); 813 LiveRegMap::iterator LRI; 814 bool New; 815 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 816 MachineOperand &MO = MI.getOperand(OpNum); 817 if (!LRI->PhysReg) { 818 allocVirtReg(MI, *LRI, Hint); 819 reload(MI, VirtReg, LRI->PhysReg); 820 } else if (LRI->Dirty) { 821 if (isLastUseOfLocalReg(MO)) { 822 LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); 823 if (MO.isUse()) 824 MO.setIsKill(); 825 else 826 MO.setIsDead(); 827 } else if (MO.isKill()) { 828 LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); 829 MO.setIsKill(false); 830 } else if (MO.isDead()) { 831 LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); 832 MO.setIsDead(false); 833 } 834 } else if (MO.isKill()) { 835 // We must remove kill flags from uses of reloaded registers because the 836 // register would be killed immediately, and there might be a second use: 837 // %foo = OR killed %x, %x 838 // This would cause a second reload of %x into a different register. 839 LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); 840 MO.setIsKill(false); 841 } else if (MO.isDead()) { 842 LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); 843 MO.setIsDead(false); 844 } 845 assert(LRI->PhysReg && "Register not assigned"); 846 LRI->LastUse = &MI; 847 LRI->LastOpNum = OpNum; 848 markRegUsedInInstr(LRI->PhysReg); 849 return *LRI; 850 } 851 852 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This 853 /// may invalidate any operand pointers. Return true if the operand kills its 854 /// register. 855 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, 856 MCPhysReg PhysReg) { 857 bool Dead = MO.isDead(); 858 if (!MO.getSubReg()) { 859 MO.setReg(PhysReg); 860 MO.setIsRenamable(true); 861 return MO.isKill() || Dead; 862 } 863 864 // Handle subregister index. 865 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : Register()); 866 MO.setIsRenamable(true); 867 MO.setSubReg(0); 868 869 // A kill flag implies killing the full register. Add corresponding super 870 // register kill. 871 if (MO.isKill()) { 872 MI.addRegisterKilled(PhysReg, TRI, true); 873 return true; 874 } 875 876 // A <def,read-undef> of a sub-register requires an implicit def of the full 877 // register. 878 if (MO.isDef() && MO.isUndef()) 879 MI.addRegisterDefined(PhysReg, TRI); 880 881 return Dead; 882 } 883 884 // Handles special instruction operand like early clobbers and tied ops when 885 // there are additional physreg defines. 886 void RegAllocFast::handleThroughOperands(MachineInstr &MI, 887 SmallVectorImpl<unsigned> &VirtDead) { 888 LLVM_DEBUG(dbgs() << "Scanning for through registers:"); 889 SmallSet<unsigned, 8> ThroughRegs; 890 for (const MachineOperand &MO : MI.operands()) { 891 if (!MO.isReg()) continue; 892 Register Reg = MO.getReg(); 893 if (!Register::isVirtualRegister(Reg)) 894 continue; 895 if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || 896 (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { 897 if (ThroughRegs.insert(Reg).second) 898 LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); 899 } 900 } 901 902 // If any physreg defines collide with preallocated through registers, 903 // we must spill and reallocate. 904 LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 905 for (const MachineOperand &MO : MI.operands()) { 906 if (!MO.isReg() || !MO.isDef()) continue; 907 Register Reg = MO.getReg(); 908 if (!Reg || !Register::isPhysicalRegister(Reg)) 909 continue; 910 markRegUsedInInstr(Reg); 911 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 912 if (ThroughRegs.count(PhysRegState[*AI])) 913 definePhysReg(MI, *AI, regFree); 914 } 915 } 916 917 SmallVector<unsigned, 8> PartialDefs; 918 LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); 919 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 920 MachineOperand &MO = MI.getOperand(I); 921 if (!MO.isReg()) continue; 922 Register Reg = MO.getReg(); 923 if (!Register::isVirtualRegister(Reg)) 924 continue; 925 if (MO.isUse()) { 926 if (!MO.isTied()) continue; 927 LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO 928 << ") is tied to operand " << MI.findTiedOperandIdx(I) 929 << ".\n"); 930 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 931 MCPhysReg PhysReg = LR.PhysReg; 932 setPhysReg(MI, MO, PhysReg); 933 // Note: we don't update the def operand yet. That would cause the normal 934 // def-scan to attempt spilling. 935 } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { 936 LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); 937 // Reload the register, but don't assign to the operand just yet. 938 // That would confuse the later phys-def processing pass. 939 LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); 940 PartialDefs.push_back(LR.PhysReg); 941 } 942 } 943 944 LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); 945 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 946 const MachineOperand &MO = MI.getOperand(I); 947 if (!MO.isReg()) continue; 948 Register Reg = MO.getReg(); 949 if (!Register::isVirtualRegister(Reg)) 950 continue; 951 if (!MO.isEarlyClobber()) 952 continue; 953 // Note: defineVirtReg may invalidate MO. 954 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); 955 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) 956 VirtDead.push_back(Reg); 957 } 958 959 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 960 UsedInInstr.clear(); 961 for (const MachineOperand &MO : MI.operands()) { 962 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 963 Register Reg = MO.getReg(); 964 if (!Reg || !Register::isPhysicalRegister(Reg)) 965 continue; 966 LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) 967 << " as used in instr\n"); 968 markRegUsedInInstr(Reg); 969 } 970 971 // Also mark PartialDefs as used to avoid reallocation. 972 for (unsigned PartialDef : PartialDefs) 973 markRegUsedInInstr(PartialDef); 974 } 975 976 #ifndef NDEBUG 977 void RegAllocFast::dumpState() { 978 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 979 if (PhysRegState[Reg] == regDisabled) continue; 980 dbgs() << " " << printReg(Reg, TRI); 981 switch(PhysRegState[Reg]) { 982 case regFree: 983 break; 984 case regReserved: 985 dbgs() << "*"; 986 break; 987 default: { 988 dbgs() << '=' << printReg(PhysRegState[Reg]); 989 LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); 990 assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && 991 "Missing VirtReg entry"); 992 if (LRI->Dirty) 993 dbgs() << "*"; 994 assert(LRI->PhysReg == Reg && "Bad inverse map"); 995 break; 996 } 997 } 998 } 999 dbgs() << '\n'; 1000 // Check that LiveVirtRegs is the inverse. 1001 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 1002 e = LiveVirtRegs.end(); i != e; ++i) { 1003 if (!i->PhysReg) 1004 continue; 1005 assert(Register::isVirtualRegister(i->VirtReg) && "Bad map key"); 1006 assert(Register::isPhysicalRegister(i->PhysReg) && "Bad map value"); 1007 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 1008 } 1009 } 1010 #endif 1011 1012 void RegAllocFast::allocateInstruction(MachineInstr &MI) { 1013 const MCInstrDesc &MCID = MI.getDesc(); 1014 1015 // If this is a copy, we may be able to coalesce. 1016 unsigned CopySrcReg = 0; 1017 unsigned CopyDstReg = 0; 1018 unsigned CopySrcSub = 0; 1019 unsigned CopyDstSub = 0; 1020 if (MI.isCopy()) { 1021 CopyDstReg = MI.getOperand(0).getReg(); 1022 CopySrcReg = MI.getOperand(1).getReg(); 1023 CopyDstSub = MI.getOperand(0).getSubReg(); 1024 CopySrcSub = MI.getOperand(1).getSubReg(); 1025 } 1026 1027 // Track registers used by instruction. 1028 UsedInInstr.clear(); 1029 1030 // First scan. 1031 // Mark physreg uses and early clobbers as used. 1032 // Find the end of the virtreg operands 1033 unsigned VirtOpEnd = 0; 1034 bool hasTiedOps = false; 1035 bool hasEarlyClobbers = false; 1036 bool hasPartialRedefs = false; 1037 bool hasPhysDefs = false; 1038 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1039 MachineOperand &MO = MI.getOperand(i); 1040 // Make sure MRI knows about registers clobbered by regmasks. 1041 if (MO.isRegMask()) { 1042 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 1043 continue; 1044 } 1045 if (!MO.isReg()) continue; 1046 Register Reg = MO.getReg(); 1047 if (!Reg) continue; 1048 if (Register::isVirtualRegister(Reg)) { 1049 VirtOpEnd = i+1; 1050 if (MO.isUse()) { 1051 hasTiedOps = hasTiedOps || 1052 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 1053 } else { 1054 if (MO.isEarlyClobber()) 1055 hasEarlyClobbers = true; 1056 if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) 1057 hasPartialRedefs = true; 1058 } 1059 continue; 1060 } 1061 if (!MRI->isAllocatable(Reg)) continue; 1062 if (MO.isUse()) { 1063 usePhysReg(MO); 1064 } else if (MO.isEarlyClobber()) { 1065 definePhysReg(MI, Reg, 1066 (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); 1067 hasEarlyClobbers = true; 1068 } else 1069 hasPhysDefs = true; 1070 } 1071 1072 // The instruction may have virtual register operands that must be allocated 1073 // the same register at use-time and def-time: early clobbers and tied 1074 // operands. If there are also physical defs, these registers must avoid 1075 // both physical defs and uses, making them more constrained than normal 1076 // operands. 1077 // Similarly, if there are multiple defs and tied operands, we must make 1078 // sure the same register is allocated to uses and defs. 1079 // We didn't detect inline asm tied operands above, so just make this extra 1080 // pass for all inline asm. 1081 if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 1082 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 1083 handleThroughOperands(MI, VirtDead); 1084 // Don't attempt coalescing when we have funny stuff going on. 1085 CopyDstReg = 0; 1086 // Pretend we have early clobbers so the use operands get marked below. 1087 // This is not necessary for the common case of a single tied use. 1088 hasEarlyClobbers = true; 1089 } 1090 1091 // Second scan. 1092 // Allocate virtreg uses. 1093 bool HasUndefUse = false; 1094 for (unsigned I = 0; I != VirtOpEnd; ++I) { 1095 MachineOperand &MO = MI.getOperand(I); 1096 if (!MO.isReg()) continue; 1097 Register Reg = MO.getReg(); 1098 if (!Register::isVirtualRegister(Reg)) 1099 continue; 1100 if (MO.isUse()) { 1101 if (MO.isUndef()) { 1102 HasUndefUse = true; 1103 // There is no need to allocate a register for an undef use. 1104 continue; 1105 } 1106 1107 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1108 // the def block (removing the vreg uses). 1109 mayLiveIn(Reg); 1110 1111 LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); 1112 MCPhysReg PhysReg = LR.PhysReg; 1113 CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; 1114 if (setPhysReg(MI, MO, PhysReg)) 1115 killVirtReg(LR); 1116 } 1117 } 1118 1119 // Allocate undef operands. This is a separate step because in a situation 1120 // like ` = OP undef %X, %X` both operands need the same register assign 1121 // so we should perform the normal assignment first. 1122 if (HasUndefUse) { 1123 for (MachineOperand &MO : MI.uses()) { 1124 if (!MO.isReg() || !MO.isUse()) 1125 continue; 1126 Register Reg = MO.getReg(); 1127 if (!Register::isVirtualRegister(Reg)) 1128 continue; 1129 1130 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1131 allocVirtRegUndef(MO); 1132 } 1133 } 1134 1135 // Track registers defined by instruction - early clobbers and tied uses at 1136 // this point. 1137 UsedInInstr.clear(); 1138 if (hasEarlyClobbers) { 1139 for (const MachineOperand &MO : MI.operands()) { 1140 if (!MO.isReg()) continue; 1141 Register Reg = MO.getReg(); 1142 if (!Reg || !Register::isPhysicalRegister(Reg)) 1143 continue; 1144 // Look for physreg defs and tied uses. 1145 if (!MO.isDef() && !MO.isTied()) continue; 1146 markRegUsedInInstr(Reg); 1147 } 1148 } 1149 1150 unsigned DefOpEnd = MI.getNumOperands(); 1151 if (MI.isCall()) { 1152 // Spill all virtregs before a call. This serves one purpose: If an 1153 // exception is thrown, the landing pad is going to expect to find 1154 // registers in their spill slots. 1155 // Note: although this is appealing to just consider all definitions 1156 // as call-clobbered, this is not correct because some of those 1157 // definitions may be used later on and we do not want to reuse 1158 // those for virtual registers in between. 1159 LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1160 spillAll(MI, /*OnlyLiveOut*/ false); 1161 } 1162 1163 // Third scan. 1164 // Mark all physreg defs as used before allocating virtreg defs. 1165 for (unsigned I = 0; I != DefOpEnd; ++I) { 1166 const MachineOperand &MO = MI.getOperand(I); 1167 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1168 continue; 1169 Register Reg = MO.getReg(); 1170 1171 if (!Reg || !Register::isPhysicalRegister(Reg) || !MRI->isAllocatable(Reg)) 1172 continue; 1173 definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); 1174 } 1175 1176 // Fourth scan. 1177 // Allocate defs and collect dead defs. 1178 for (unsigned I = 0; I != DefOpEnd; ++I) { 1179 const MachineOperand &MO = MI.getOperand(I); 1180 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1181 continue; 1182 Register Reg = MO.getReg(); 1183 1184 // We have already dealt with phys regs in the previous scan. 1185 if (Register::isPhysicalRegister(Reg)) 1186 continue; 1187 MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); 1188 if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { 1189 VirtDead.push_back(Reg); 1190 CopyDstReg = 0; // cancel coalescing; 1191 } else 1192 CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; 1193 } 1194 1195 // Kill dead defs after the scan to ensure that multiple defs of the same 1196 // register are allocated identically. We didn't need to do this for uses 1197 // because we are crerating our own kill flags, and they are always at the 1198 // last use. 1199 for (unsigned VirtReg : VirtDead) 1200 killVirtReg(VirtReg); 1201 VirtDead.clear(); 1202 1203 LLVM_DEBUG(dbgs() << "<< " << MI); 1204 if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { 1205 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1206 Coalesced.push_back(&MI); 1207 } 1208 } 1209 1210 void RegAllocFast::handleDebugValue(MachineInstr &MI) { 1211 MachineOperand &MO = MI.getOperand(0); 1212 1213 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1214 // mostly constants and frame indices. 1215 if (!MO.isReg()) 1216 return; 1217 Register Reg = MO.getReg(); 1218 if (!Register::isVirtualRegister(Reg)) 1219 return; 1220 1221 // See if this virtual register has already been allocated to a physical 1222 // register or spilled to a stack slot. 1223 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1224 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1225 setPhysReg(MI, MO, LRI->PhysReg); 1226 } else { 1227 int SS = StackSlotForVirtReg[Reg]; 1228 if (SS != -1) { 1229 // Modify DBG_VALUE now that the value is in a spill slot. 1230 updateDbgValueForSpill(MI, SS); 1231 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); 1232 return; 1233 } 1234 1235 // We can't allocate a physreg for a DebugValue, sorry! 1236 LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 1237 MO.setReg(0); 1238 } 1239 1240 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1241 // that future spills of Reg will have DBG_VALUEs. 1242 LiveDbgValueMap[Reg].push_back(&MI); 1243 } 1244 1245 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { 1246 this->MBB = &MBB; 1247 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1248 1249 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 1250 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1251 1252 MachineBasicBlock::iterator MII = MBB.begin(); 1253 1254 // Add live-in registers as live. 1255 for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) 1256 if (MRI->isAllocatable(LI.PhysReg)) 1257 definePhysReg(MII, LI.PhysReg, regReserved); 1258 1259 VirtDead.clear(); 1260 Coalesced.clear(); 1261 1262 // Otherwise, sequentially allocate each instruction in the MBB. 1263 for (MachineInstr &MI : MBB) { 1264 LLVM_DEBUG( 1265 dbgs() << "\n>> " << MI << "Regs:"; 1266 dumpState() 1267 ); 1268 1269 // Special handling for debug values. Note that they are not allowed to 1270 // affect codegen of the other instructions in any way. 1271 if (MI.isDebugValue()) { 1272 handleDebugValue(MI); 1273 continue; 1274 } 1275 1276 allocateInstruction(MI); 1277 } 1278 1279 // Spill all physical registers holding virtual registers now. 1280 LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1281 spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); 1282 1283 // Erase all the coalesced copies. We are delaying it until now because 1284 // LiveVirtRegs might refer to the instrs. 1285 for (MachineInstr *MI : Coalesced) 1286 MBB.erase(MI); 1287 NumCoalesced += Coalesced.size(); 1288 1289 LLVM_DEBUG(MBB.dump()); 1290 } 1291 1292 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { 1293 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1294 << "********** Function: " << MF.getName() << '\n'); 1295 MRI = &MF.getRegInfo(); 1296 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1297 TRI = STI.getRegisterInfo(); 1298 TII = STI.getInstrInfo(); 1299 MFI = &MF.getFrameInfo(); 1300 MRI->freezeReservedRegs(MF); 1301 RegClassInfo.runOnMachineFunction(MF); 1302 UsedInInstr.clear(); 1303 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1304 1305 // initialize the virtual->physical register map to have a 'null' 1306 // mapping for all virtual registers 1307 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1308 StackSlotForVirtReg.resize(NumVirtRegs); 1309 LiveVirtRegs.setUniverse(NumVirtRegs); 1310 MayLiveAcrossBlocks.clear(); 1311 MayLiveAcrossBlocks.resize(NumVirtRegs); 1312 1313 // Loop over all of the basic blocks, eliminating virtual register references 1314 for (MachineBasicBlock &MBB : MF) 1315 allocateBasicBlock(MBB); 1316 1317 // All machine operands and other references to virtual registers have been 1318 // replaced. Remove the virtual registers. 1319 MRI->clearVirtRegs(); 1320 1321 StackSlotForVirtReg.clear(); 1322 LiveDbgValueMap.clear(); 1323 return true; 1324 } 1325 1326 FunctionPass *llvm::createFastRegisterAllocator() { 1327 return new RegAllocFast(); 1328 } 1329