18bcb0991SDimitry Andric //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// 28bcb0991SDimitry Andric // 38bcb0991SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 48bcb0991SDimitry Andric // See https://llvm.org/LICENSE.txt for license information. 58bcb0991SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 68bcb0991SDimitry Andric // 78bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 88bcb0991SDimitry Andric 98bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h" 108bcb0991SDimitry Andric #include "llvm/ADT/StringExtras.h" 115ffd83dbSDimitry Andric #include "llvm/Analysis/MemoryLocation.h" 128bcb0991SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h" 138bcb0991SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h" 1481ad6265SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h" 158bcb0991SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h" 16480093f4SDimitry Andric #include "llvm/InitializePasses.h" 178bcb0991SDimitry Andric #include "llvm/MC/MCContext.h" 188bcb0991SDimitry Andric #include "llvm/Support/Debug.h" 198bcb0991SDimitry Andric #include "llvm/Support/ErrorHandling.h" 208bcb0991SDimitry Andric #include "llvm/Support/raw_ostream.h" 218bcb0991SDimitry Andric 228bcb0991SDimitry Andric #define DEBUG_TYPE "pipeliner" 238bcb0991SDimitry Andric using namespace llvm; 248bcb0991SDimitry Andric 250fca6ea1SDimitry Andric static cl::opt<bool> SwapBranchTargetsMVE( 260fca6ea1SDimitry Andric "pipeliner-swap-branch-targets-mve", cl::Hidden, cl::init(false), 270fca6ea1SDimitry Andric cl::desc("Swap target blocks of a conditional branch for MVE expander")); 280fca6ea1SDimitry Andric 298bcb0991SDimitry Andric void ModuloSchedule::print(raw_ostream &OS) { 308bcb0991SDimitry Andric for (MachineInstr *MI : ScheduledInstrs) 318bcb0991SDimitry Andric OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; 328bcb0991SDimitry Andric } 338bcb0991SDimitry Andric 348bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 358bcb0991SDimitry Andric // ModuloScheduleExpander implementation 368bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 378bcb0991SDimitry Andric 388bcb0991SDimitry Andric /// Return the register values for the operands of a Phi instruction. 398bcb0991SDimitry Andric /// This function assume the instruction is a Phi. 408bcb0991SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 418bcb0991SDimitry Andric unsigned &InitVal, unsigned &LoopVal) { 428bcb0991SDimitry Andric assert(Phi.isPHI() && "Expecting a Phi."); 438bcb0991SDimitry Andric 448bcb0991SDimitry Andric InitVal = 0; 458bcb0991SDimitry Andric LoopVal = 0; 468bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 478bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != Loop) 488bcb0991SDimitry Andric InitVal = Phi.getOperand(i).getReg(); 498bcb0991SDimitry Andric else 508bcb0991SDimitry Andric LoopVal = Phi.getOperand(i).getReg(); 518bcb0991SDimitry Andric 528bcb0991SDimitry Andric assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 538bcb0991SDimitry Andric } 548bcb0991SDimitry Andric 558bcb0991SDimitry Andric /// Return the Phi register value that comes from the incoming block. 568bcb0991SDimitry Andric static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 578bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 588bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() != LoopBB) 598bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 608bcb0991SDimitry Andric return 0; 618bcb0991SDimitry Andric } 628bcb0991SDimitry Andric 638bcb0991SDimitry Andric /// Return the Phi register value that comes the loop block. 648bcb0991SDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 658bcb0991SDimitry Andric for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 668bcb0991SDimitry Andric if (Phi.getOperand(i + 1).getMBB() == LoopBB) 678bcb0991SDimitry Andric return Phi.getOperand(i).getReg(); 688bcb0991SDimitry Andric return 0; 698bcb0991SDimitry Andric } 708bcb0991SDimitry Andric 718bcb0991SDimitry Andric void ModuloScheduleExpander::expand() { 728bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 738bcb0991SDimitry Andric Preheader = *BB->pred_begin(); 748bcb0991SDimitry Andric if (Preheader == BB) 758bcb0991SDimitry Andric Preheader = *std::next(BB->pred_begin()); 768bcb0991SDimitry Andric 778bcb0991SDimitry Andric // Iterate over the definitions in each instruction, and compute the 788bcb0991SDimitry Andric // stage difference for each use. Keep the maximum value. 798bcb0991SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 808bcb0991SDimitry Andric int DefStage = Schedule.getStage(MI); 8106c3fb27SDimitry Andric for (const MachineOperand &Op : MI->all_defs()) { 828bcb0991SDimitry Andric Register Reg = Op.getReg(); 838bcb0991SDimitry Andric unsigned MaxDiff = 0; 848bcb0991SDimitry Andric bool PhiIsSwapped = false; 85349cc55cSDimitry Andric for (MachineOperand &UseOp : MRI.use_operands(Reg)) { 868bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 878bcb0991SDimitry Andric int UseStage = Schedule.getStage(UseMI); 888bcb0991SDimitry Andric unsigned Diff = 0; 898bcb0991SDimitry Andric if (UseStage != -1 && UseStage >= DefStage) 908bcb0991SDimitry Andric Diff = UseStage - DefStage; 918bcb0991SDimitry Andric if (MI->isPHI()) { 928bcb0991SDimitry Andric if (isLoopCarried(*MI)) 938bcb0991SDimitry Andric ++Diff; 948bcb0991SDimitry Andric else 958bcb0991SDimitry Andric PhiIsSwapped = true; 968bcb0991SDimitry Andric } 978bcb0991SDimitry Andric MaxDiff = std::max(Diff, MaxDiff); 988bcb0991SDimitry Andric } 998bcb0991SDimitry Andric RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 1008bcb0991SDimitry Andric } 1018bcb0991SDimitry Andric } 1028bcb0991SDimitry Andric 1038bcb0991SDimitry Andric generatePipelinedLoop(); 1048bcb0991SDimitry Andric } 1058bcb0991SDimitry Andric 1068bcb0991SDimitry Andric void ModuloScheduleExpander::generatePipelinedLoop() { 1078bcb0991SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 1088bcb0991SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!"); 1098bcb0991SDimitry Andric 1108bcb0991SDimitry Andric // Create a new basic block for the kernel and add it to the CFG. 1118bcb0991SDimitry Andric MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 1128bcb0991SDimitry Andric 1138bcb0991SDimitry Andric unsigned MaxStageCount = Schedule.getNumStages() - 1; 1148bcb0991SDimitry Andric 1158bcb0991SDimitry Andric // Remember the registers that are used in different stages. The index is 1168bcb0991SDimitry Andric // the iteration, or stage, that the instruction is scheduled in. This is 1178bcb0991SDimitry Andric // a map between register names in the original block and the names created 1188bcb0991SDimitry Andric // in each stage of the pipelined loop. 1198bcb0991SDimitry Andric ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 120bdd1243dSDimitry Andric 121bdd1243dSDimitry Andric // The renaming destination by Phis for the registers across stages. 122bdd1243dSDimitry Andric // This map is updated during Phis generation to point to the most recent 123bdd1243dSDimitry Andric // renaming destination. 124bdd1243dSDimitry Andric ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; 125bdd1243dSDimitry Andric 1268bcb0991SDimitry Andric InstrMapTy InstrMap; 1278bcb0991SDimitry Andric 1288bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> PrologBBs; 1298bcb0991SDimitry Andric 1308bcb0991SDimitry Andric // Generate the prolog instructions that set up the pipeline. 1318bcb0991SDimitry Andric generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs); 1328bcb0991SDimitry Andric MF.insert(BB->getIterator(), KernelBB); 133*c80e69b0SDimitry Andric LIS.insertMBBInMaps(KernelBB); 1348bcb0991SDimitry Andric 1358bcb0991SDimitry Andric // Rearrange the instructions to generate the new, pipelined loop, 1368bcb0991SDimitry Andric // and update register names as needed. 1378bcb0991SDimitry Andric for (MachineInstr *CI : Schedule.getInstructions()) { 1388bcb0991SDimitry Andric if (CI->isPHI()) 1398bcb0991SDimitry Andric continue; 1408bcb0991SDimitry Andric unsigned StageNum = Schedule.getStage(CI); 1418bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum); 1428bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap); 1438bcb0991SDimitry Andric KernelBB->push_back(NewMI); 1448bcb0991SDimitry Andric InstrMap[NewMI] = CI; 1458bcb0991SDimitry Andric } 1468bcb0991SDimitry Andric 1478bcb0991SDimitry Andric // Copy any terminator instructions to the new kernel, and update 1488bcb0991SDimitry Andric // names as needed. 149349cc55cSDimitry Andric for (MachineInstr &MI : BB->terminators()) { 150349cc55cSDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(&MI); 1518bcb0991SDimitry Andric updateInstruction(NewMI, false, MaxStageCount, 0, VRMap); 1528bcb0991SDimitry Andric KernelBB->push_back(NewMI); 153349cc55cSDimitry Andric InstrMap[NewMI] = &MI; 1548bcb0991SDimitry Andric } 1558bcb0991SDimitry Andric 1568bcb0991SDimitry Andric NewKernel = KernelBB; 1578bcb0991SDimitry Andric KernelBB->transferSuccessors(BB); 1588bcb0991SDimitry Andric KernelBB->replaceSuccessor(BB, KernelBB); 1598bcb0991SDimitry Andric 1608bcb0991SDimitry Andric generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, 1618bcb0991SDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false); 162bdd1243dSDimitry Andric generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi, 163bdd1243dSDimitry Andric InstrMap, MaxStageCount, MaxStageCount, false); 1648bcb0991SDimitry Andric 1658bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 1668bcb0991SDimitry Andric 1678bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 4> EpilogBBs; 1688bcb0991SDimitry Andric // Generate the epilog instructions to complete the pipeline. 169bdd1243dSDimitry Andric generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs, 170bdd1243dSDimitry Andric PrologBBs); 1718bcb0991SDimitry Andric 1728bcb0991SDimitry Andric // We need this step because the register allocation doesn't handle some 1738bcb0991SDimitry Andric // situations well, so we insert copies to help out. 1748bcb0991SDimitry Andric splitLifetimes(KernelBB, EpilogBBs); 1758bcb0991SDimitry Andric 1768bcb0991SDimitry Andric // Remove dead instructions due to loop induction variables. 1778bcb0991SDimitry Andric removeDeadInstructions(KernelBB, EpilogBBs); 1788bcb0991SDimitry Andric 1798bcb0991SDimitry Andric // Add branches between prolog and epilog blocks. 1808bcb0991SDimitry Andric addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); 1818bcb0991SDimitry Andric 1828bcb0991SDimitry Andric delete[] VRMap; 183bdd1243dSDimitry Andric delete[] VRMapPhi; 1848bcb0991SDimitry Andric } 1858bcb0991SDimitry Andric 1868bcb0991SDimitry Andric void ModuloScheduleExpander::cleanup() { 1878bcb0991SDimitry Andric // Remove the original loop since it's no longer referenced. 1888bcb0991SDimitry Andric for (auto &I : *BB) 1898bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(I); 1908bcb0991SDimitry Andric BB->clear(); 1918bcb0991SDimitry Andric BB->eraseFromParent(); 1928bcb0991SDimitry Andric } 1938bcb0991SDimitry Andric 1948bcb0991SDimitry Andric /// Generate the pipeline prolog code. 1958bcb0991SDimitry Andric void ModuloScheduleExpander::generateProlog(unsigned LastStage, 1968bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 1978bcb0991SDimitry Andric ValueMapTy *VRMap, 1988bcb0991SDimitry Andric MBBVectorTy &PrologBBs) { 1998bcb0991SDimitry Andric MachineBasicBlock *PredBB = Preheader; 2008bcb0991SDimitry Andric InstrMapTy InstrMap; 2018bcb0991SDimitry Andric 2028bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 2038bcb0991SDimitry Andric // which will be generated in the kernel. Each basic block may contain 2048bcb0991SDimitry Andric // instructions from multiple stages/iterations. 2058bcb0991SDimitry Andric for (unsigned i = 0; i < LastStage; ++i) { 2068bcb0991SDimitry Andric // Create and insert the prolog basic block prior to the original loop 2078bcb0991SDimitry Andric // basic block. The original loop is removed later. 2088bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2098bcb0991SDimitry Andric PrologBBs.push_back(NewBB); 2108bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2118bcb0991SDimitry Andric NewBB->transferSuccessors(PredBB); 2128bcb0991SDimitry Andric PredBB->addSuccessor(NewBB); 2138bcb0991SDimitry Andric PredBB = NewBB; 214*c80e69b0SDimitry Andric LIS.insertMBBInMaps(NewBB); 2158bcb0991SDimitry Andric 2168bcb0991SDimitry Andric // Generate instructions for each appropriate stage. Process instructions 2178bcb0991SDimitry Andric // in original program order. 2188bcb0991SDimitry Andric for (int StageNum = i; StageNum >= 0; --StageNum) { 2198bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2208bcb0991SDimitry Andric BBE = BB->getFirstTerminator(); 2218bcb0991SDimitry Andric BBI != BBE; ++BBI) { 2228bcb0991SDimitry Andric if (Schedule.getStage(&*BBI) == StageNum) { 2238bcb0991SDimitry Andric if (BBI->isPHI()) 2248bcb0991SDimitry Andric continue; 2258bcb0991SDimitry Andric MachineInstr *NewMI = 2268bcb0991SDimitry Andric cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum); 2278bcb0991SDimitry Andric updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap); 2288bcb0991SDimitry Andric NewBB->push_back(NewMI); 2298bcb0991SDimitry Andric InstrMap[NewMI] = &*BBI; 2308bcb0991SDimitry Andric } 2318bcb0991SDimitry Andric } 2328bcb0991SDimitry Andric } 2338bcb0991SDimitry Andric rewritePhiValues(NewBB, i, VRMap, InstrMap); 2348bcb0991SDimitry Andric LLVM_DEBUG({ 2358bcb0991SDimitry Andric dbgs() << "prolog:\n"; 2368bcb0991SDimitry Andric NewBB->dump(); 2378bcb0991SDimitry Andric }); 2388bcb0991SDimitry Andric } 2398bcb0991SDimitry Andric 2408bcb0991SDimitry Andric PredBB->replaceSuccessor(BB, KernelBB); 2418bcb0991SDimitry Andric 2428bcb0991SDimitry Andric // Check if we need to remove the branch from the preheader to the original 2438bcb0991SDimitry Andric // loop, and replace it with a branch to the new loop. 2448bcb0991SDimitry Andric unsigned numBranches = TII->removeBranch(*Preheader); 2458bcb0991SDimitry Andric if (numBranches) { 2468bcb0991SDimitry Andric SmallVector<MachineOperand, 0> Cond; 2478bcb0991SDimitry Andric TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc()); 2488bcb0991SDimitry Andric } 2498bcb0991SDimitry Andric } 2508bcb0991SDimitry Andric 2518bcb0991SDimitry Andric /// Generate the pipeline epilog code. The epilog code finishes the iterations 2528bcb0991SDimitry Andric /// that were started in either the prolog or the kernel. We create a basic 2538bcb0991SDimitry Andric /// block for each stage that needs to complete. 25481ad6265SDimitry Andric void ModuloScheduleExpander::generateEpilog( 25581ad6265SDimitry Andric unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, 256bdd1243dSDimitry Andric ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, 257bdd1243dSDimitry Andric MBBVectorTy &PrologBBs) { 2588bcb0991SDimitry Andric // We need to change the branch from the kernel to the first epilog block, so 2598bcb0991SDimitry Andric // this call to analyze branch uses the kernel rather than the original BB. 2608bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2618bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 2628bcb0991SDimitry Andric bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2638bcb0991SDimitry Andric assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2648bcb0991SDimitry Andric if (checkBranch) 2658bcb0991SDimitry Andric return; 2668bcb0991SDimitry Andric 2678bcb0991SDimitry Andric MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2688bcb0991SDimitry Andric if (*LoopExitI == KernelBB) 2698bcb0991SDimitry Andric ++LoopExitI; 2708bcb0991SDimitry Andric assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2718bcb0991SDimitry Andric MachineBasicBlock *LoopExitBB = *LoopExitI; 2728bcb0991SDimitry Andric 2738bcb0991SDimitry Andric MachineBasicBlock *PredBB = KernelBB; 2748bcb0991SDimitry Andric MachineBasicBlock *EpilogStart = LoopExitBB; 2758bcb0991SDimitry Andric InstrMapTy InstrMap; 2768bcb0991SDimitry Andric 2778bcb0991SDimitry Andric // Generate a basic block for each stage, not including the last stage, 2788bcb0991SDimitry Andric // which was generated for the kernel. Each basic block may contain 2798bcb0991SDimitry Andric // instructions from multiple stages/iterations. 2808bcb0991SDimitry Andric int EpilogStage = LastStage + 1; 2818bcb0991SDimitry Andric for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2828bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2838bcb0991SDimitry Andric EpilogBBs.push_back(NewBB); 2848bcb0991SDimitry Andric MF.insert(BB->getIterator(), NewBB); 2858bcb0991SDimitry Andric 2868bcb0991SDimitry Andric PredBB->replaceSuccessor(LoopExitBB, NewBB); 2878bcb0991SDimitry Andric NewBB->addSuccessor(LoopExitBB); 288*c80e69b0SDimitry Andric LIS.insertMBBInMaps(NewBB); 2898bcb0991SDimitry Andric 2908bcb0991SDimitry Andric if (EpilogStart == LoopExitBB) 2918bcb0991SDimitry Andric EpilogStart = NewBB; 2928bcb0991SDimitry Andric 2938bcb0991SDimitry Andric // Add instructions to the epilog depending on the current block. 2948bcb0991SDimitry Andric // Process instructions in original program order. 2958bcb0991SDimitry Andric for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2968bcb0991SDimitry Andric for (auto &BBI : *BB) { 2978bcb0991SDimitry Andric if (BBI.isPHI()) 2988bcb0991SDimitry Andric continue; 2998bcb0991SDimitry Andric MachineInstr *In = &BBI; 3008bcb0991SDimitry Andric if ((unsigned)Schedule.getStage(In) == StageNum) { 3018bcb0991SDimitry Andric // Instructions with memoperands in the epilog are updated with 3028bcb0991SDimitry Andric // conservative values. 3038bcb0991SDimitry Andric MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); 3048bcb0991SDimitry Andric updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap); 3058bcb0991SDimitry Andric NewBB->push_back(NewMI); 3068bcb0991SDimitry Andric InstrMap[NewMI] = In; 3078bcb0991SDimitry Andric } 3088bcb0991SDimitry Andric } 3098bcb0991SDimitry Andric } 3108bcb0991SDimitry Andric generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, 3118bcb0991SDimitry Andric InstrMap, LastStage, EpilogStage, i == 1); 312bdd1243dSDimitry Andric generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi, 313bdd1243dSDimitry Andric InstrMap, LastStage, EpilogStage, i == 1); 3148bcb0991SDimitry Andric PredBB = NewBB; 3158bcb0991SDimitry Andric 3168bcb0991SDimitry Andric LLVM_DEBUG({ 3178bcb0991SDimitry Andric dbgs() << "epilog:\n"; 3188bcb0991SDimitry Andric NewBB->dump(); 3198bcb0991SDimitry Andric }); 3208bcb0991SDimitry Andric } 3218bcb0991SDimitry Andric 3228bcb0991SDimitry Andric // Fix any Phi nodes in the loop exit block. 3238bcb0991SDimitry Andric LoopExitBB->replacePhiUsesWith(BB, PredBB); 3248bcb0991SDimitry Andric 3258bcb0991SDimitry Andric // Create a branch to the new epilog from the kernel. 3268bcb0991SDimitry Andric // Remove the original branch and add a new branch to the epilog. 3278bcb0991SDimitry Andric TII->removeBranch(*KernelBB); 32881ad6265SDimitry Andric assert((OrigBB == TBB || OrigBB == FBB) && 32981ad6265SDimitry Andric "Unable to determine looping branch direction"); 33081ad6265SDimitry Andric if (OrigBB != TBB) 33181ad6265SDimitry Andric TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc()); 33281ad6265SDimitry Andric else 3338bcb0991SDimitry Andric TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 3348bcb0991SDimitry Andric // Add a branch to the loop exit. 3358bcb0991SDimitry Andric if (EpilogBBs.size() > 0) { 3368bcb0991SDimitry Andric MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 3378bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond1; 3388bcb0991SDimitry Andric TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); 3398bcb0991SDimitry Andric } 3408bcb0991SDimitry Andric } 3418bcb0991SDimitry Andric 3428bcb0991SDimitry Andric /// Replace all uses of FromReg that appear outside the specified 3438bcb0991SDimitry Andric /// basic block with ToReg. 3448bcb0991SDimitry Andric static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 3458bcb0991SDimitry Andric MachineBasicBlock *MBB, 3468bcb0991SDimitry Andric MachineRegisterInfo &MRI, 3478bcb0991SDimitry Andric LiveIntervals &LIS) { 348349cc55cSDimitry Andric for (MachineOperand &O : 349349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(FromReg))) 3508bcb0991SDimitry Andric if (O.getParent()->getParent() != MBB) 3518bcb0991SDimitry Andric O.setReg(ToReg); 3528bcb0991SDimitry Andric if (!LIS.hasInterval(ToReg)) 3538bcb0991SDimitry Andric LIS.createEmptyInterval(ToReg); 3548bcb0991SDimitry Andric } 3558bcb0991SDimitry Andric 3568bcb0991SDimitry Andric /// Return true if the register has a use that occurs outside the 3578bcb0991SDimitry Andric /// specified loop. 3588bcb0991SDimitry Andric static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 3598bcb0991SDimitry Andric MachineRegisterInfo &MRI) { 360349cc55cSDimitry Andric for (const MachineOperand &MO : MRI.use_operands(Reg)) 361349cc55cSDimitry Andric if (MO.getParent()->getParent() != BB) 3628bcb0991SDimitry Andric return true; 3638bcb0991SDimitry Andric return false; 3648bcb0991SDimitry Andric } 3658bcb0991SDimitry Andric 3668bcb0991SDimitry Andric /// Generate Phis for the specific block in the generated pipelined code. 3678bcb0991SDimitry Andric /// This function looks at the Phis from the original code to guide the 3688bcb0991SDimitry Andric /// creation of new Phis. 3698bcb0991SDimitry Andric void ModuloScheduleExpander::generateExistingPhis( 3708bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 3718bcb0991SDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, 3728bcb0991SDimitry Andric unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { 3738bcb0991SDimitry Andric // Compute the stage number for the initial value of the Phi, which 3748bcb0991SDimitry Andric // comes from the prolog. The prolog to use depends on to which kernel/ 3758bcb0991SDimitry Andric // epilog that we're adding the Phi. 3768bcb0991SDimitry Andric unsigned PrologStage = 0; 3778bcb0991SDimitry Andric unsigned PrevStage = 0; 3788bcb0991SDimitry Andric bool InKernel = (LastStageNum == CurStageNum); 3798bcb0991SDimitry Andric if (InKernel) { 3808bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 3818bcb0991SDimitry Andric PrevStage = CurStageNum; 3828bcb0991SDimitry Andric } else { 3838bcb0991SDimitry Andric PrologStage = LastStageNum - (CurStageNum - LastStageNum); 3848bcb0991SDimitry Andric PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 3858bcb0991SDimitry Andric } 3868bcb0991SDimitry Andric 3878bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3888bcb0991SDimitry Andric BBE = BB->getFirstNonPHI(); 3898bcb0991SDimitry Andric BBI != BBE; ++BBI) { 3908bcb0991SDimitry Andric Register Def = BBI->getOperand(0).getReg(); 3918bcb0991SDimitry Andric 3928bcb0991SDimitry Andric unsigned InitVal = 0; 3938bcb0991SDimitry Andric unsigned LoopVal = 0; 3948bcb0991SDimitry Andric getPhiRegs(*BBI, BB, InitVal, LoopVal); 3958bcb0991SDimitry Andric 3968bcb0991SDimitry Andric unsigned PhiOp1 = 0; 3978bcb0991SDimitry Andric // The Phi value from the loop body typically is defined in the loop, but 3988bcb0991SDimitry Andric // not always. So, we need to check if the value is defined in the loop. 3998bcb0991SDimitry Andric unsigned PhiOp2 = LoopVal; 4008bcb0991SDimitry Andric if (VRMap[LastStageNum].count(LoopVal)) 4018bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum][LoopVal]; 4028bcb0991SDimitry Andric 4038bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 4048bcb0991SDimitry Andric int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal)); 4058bcb0991SDimitry Andric unsigned NumStages = getStagesForReg(Def, CurStageNum); 4068bcb0991SDimitry Andric if (NumStages == 0) { 4078bcb0991SDimitry Andric // We don't need to generate a Phi anymore, but we need to rename any uses 4088bcb0991SDimitry Andric // of the Phi value. 4098bcb0991SDimitry Andric unsigned NewReg = VRMap[PrevStage][LoopVal]; 4108bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def, 4118bcb0991SDimitry Andric InitVal, NewReg); 4128bcb0991SDimitry Andric if (VRMap[CurStageNum].count(LoopVal)) 4138bcb0991SDimitry Andric VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 4148bcb0991SDimitry Andric } 4158bcb0991SDimitry Andric // Adjust the number of Phis needed depending on the number of prologs left, 4168bcb0991SDimitry Andric // and the distance from where the Phi is first scheduled. The number of 4178bcb0991SDimitry Andric // Phis cannot exceed the number of prolog stages. Each stage can 4188bcb0991SDimitry Andric // potentially define two values. 4198bcb0991SDimitry Andric unsigned MaxPhis = PrologStage + 2; 4208bcb0991SDimitry Andric if (!InKernel && (int)PrologStage <= LoopValStage) 4218bcb0991SDimitry Andric MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); 4228bcb0991SDimitry Andric unsigned NumPhis = std::min(NumStages, MaxPhis); 4238bcb0991SDimitry Andric 4248bcb0991SDimitry Andric unsigned NewReg = 0; 4258bcb0991SDimitry Andric unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 4268bcb0991SDimitry Andric // In the epilog, we may need to look back one stage to get the correct 4275ffd83dbSDimitry Andric // Phi name, because the epilog and prolog blocks execute the same stage. 4288bcb0991SDimitry Andric // The correct name is from the previous block only when the Phi has 4298bcb0991SDimitry Andric // been completely scheduled prior to the epilog, and Phi value is not 4308bcb0991SDimitry Andric // needed in multiple stages. 4318bcb0991SDimitry Andric int StageDiff = 0; 4328bcb0991SDimitry Andric if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 4338bcb0991SDimitry Andric NumPhis == 1) 4348bcb0991SDimitry Andric StageDiff = 1; 4358bcb0991SDimitry Andric // Adjust the computations below when the phi and the loop definition 4368bcb0991SDimitry Andric // are scheduled in different stages. 4378bcb0991SDimitry Andric if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 4388bcb0991SDimitry Andric StageDiff = StageScheduled - LoopValStage; 4398bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 4408bcb0991SDimitry Andric // If the Phi hasn't been scheduled, then use the initial Phi operand 4418bcb0991SDimitry Andric // value. Otherwise, use the scheduled version of the instruction. This 4428bcb0991SDimitry Andric // is a little complicated when a Phi references another Phi. 4438bcb0991SDimitry Andric if (np > PrologStage || StageScheduled >= (int)LastStageNum) 4448bcb0991SDimitry Andric PhiOp1 = InitVal; 4458bcb0991SDimitry Andric // Check if the Phi has already been scheduled in a prolog stage. 4468bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np && 4478bcb0991SDimitry Andric VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 4488bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 4498bcb0991SDimitry Andric // Check if the Phi has already been scheduled, but the loop instruction 4508bcb0991SDimitry Andric // is either another Phi, or doesn't occur in the loop. 4518bcb0991SDimitry Andric else if (PrologStage >= AccessStage + StageDiff + np) { 4528bcb0991SDimitry Andric // If the Phi references another Phi, we need to examine the other 4538bcb0991SDimitry Andric // Phi to get the correct value. 4548bcb0991SDimitry Andric PhiOp1 = LoopVal; 4558bcb0991SDimitry Andric MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 4568bcb0991SDimitry Andric int Indirects = 1; 4578bcb0991SDimitry Andric while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 4588bcb0991SDimitry Andric int PhiStage = Schedule.getStage(InstOp1); 4598bcb0991SDimitry Andric if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 4608bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, BB); 4618bcb0991SDimitry Andric else 4628bcb0991SDimitry Andric PhiOp1 = getLoopPhiReg(*InstOp1, BB); 4638bcb0991SDimitry Andric InstOp1 = MRI.getVRegDef(PhiOp1); 4648bcb0991SDimitry Andric int PhiOpStage = Schedule.getStage(InstOp1); 4658bcb0991SDimitry Andric int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 4668bcb0991SDimitry Andric if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 4678bcb0991SDimitry Andric VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 4688bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 4698bcb0991SDimitry Andric break; 4708bcb0991SDimitry Andric } 4718bcb0991SDimitry Andric ++Indirects; 4728bcb0991SDimitry Andric } 4738bcb0991SDimitry Andric } else 4748bcb0991SDimitry Andric PhiOp1 = InitVal; 4758bcb0991SDimitry Andric // If this references a generated Phi in the kernel, get the Phi operand 4768bcb0991SDimitry Andric // from the incoming block. 4778bcb0991SDimitry Andric if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 4788bcb0991SDimitry Andric if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 4798bcb0991SDimitry Andric PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 4808bcb0991SDimitry Andric 4818bcb0991SDimitry Andric MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 4828bcb0991SDimitry Andric bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 4838bcb0991SDimitry Andric // In the epilog, a map lookup is needed to get the value from the kernel, 4848bcb0991SDimitry Andric // or previous epilog block. How is does this depends on if the 4858bcb0991SDimitry Andric // instruction is scheduled in the previous block. 4868bcb0991SDimitry Andric if (!InKernel) { 4878bcb0991SDimitry Andric int StageDiffAdj = 0; 4888bcb0991SDimitry Andric if (LoopValStage != -1 && StageScheduled > LoopValStage) 4898bcb0991SDimitry Andric StageDiffAdj = StageScheduled - LoopValStage; 4908bcb0991SDimitry Andric // Use the loop value defined in the kernel, unless the kernel 4918bcb0991SDimitry Andric // contains the last definition of the Phi. 4928bcb0991SDimitry Andric if (np == 0 && PrevStage == LastStageNum && 4938bcb0991SDimitry Andric (StageScheduled != 0 || LoopValStage != 0) && 4948bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 4958bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 4968bcb0991SDimitry Andric // Use the value defined by the Phi. We add one because we switch 4978bcb0991SDimitry Andric // from looking at the loop value to the Phi definition. 4988bcb0991SDimitry Andric else if (np > 0 && PrevStage == LastStageNum && 4998bcb0991SDimitry Andric VRMap[PrevStage - np + 1].count(Def)) 5008bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np + 1][Def]; 5018bcb0991SDimitry Andric // Use the loop value defined in the kernel. 5028bcb0991SDimitry Andric else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && 5038bcb0991SDimitry Andric VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 5048bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 5058bcb0991SDimitry Andric // Use the value defined by the Phi, unless we're generating the first 5068bcb0991SDimitry Andric // epilog and the Phi refers to a Phi in a different stage. 5078bcb0991SDimitry Andric else if (VRMap[PrevStage - np].count(Def) && 5088bcb0991SDimitry Andric (!LoopDefIsPhi || (PrevStage != LastStageNum) || 5098bcb0991SDimitry Andric (LoopValStage == StageScheduled))) 5108bcb0991SDimitry Andric PhiOp2 = VRMap[PrevStage - np][Def]; 5118bcb0991SDimitry Andric } 5128bcb0991SDimitry Andric 5138bcb0991SDimitry Andric // Check if we can reuse an existing Phi. This occurs when a Phi 5148bcb0991SDimitry Andric // references another Phi, and the other Phi is scheduled in an 5158bcb0991SDimitry Andric // earlier stage. We can try to reuse an existing Phi up until the last 5168bcb0991SDimitry Andric // stage of the current Phi. 5178bcb0991SDimitry Andric if (LoopDefIsPhi) { 5188bcb0991SDimitry Andric if (static_cast<int>(PrologStage - np) >= StageScheduled) { 5198bcb0991SDimitry Andric int LVNumStages = getStagesForPhi(LoopVal); 5208bcb0991SDimitry Andric int StageDiff = (StageScheduled - LoopValStage); 5218bcb0991SDimitry Andric LVNumStages -= StageDiff; 5228bcb0991SDimitry Andric // Make sure the loop value Phi has been processed already. 5238bcb0991SDimitry Andric if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { 5248bcb0991SDimitry Andric NewReg = PhiOp2; 5258bcb0991SDimitry Andric unsigned ReuseStage = CurStageNum; 5268bcb0991SDimitry Andric if (isLoopCarried(*PhiInst)) 5278bcb0991SDimitry Andric ReuseStage -= LVNumStages; 5288bcb0991SDimitry Andric // Check if the Phi to reuse has been generated yet. If not, then 5298bcb0991SDimitry Andric // there is nothing to reuse. 5308bcb0991SDimitry Andric if (VRMap[ReuseStage - np].count(LoopVal)) { 5318bcb0991SDimitry Andric NewReg = VRMap[ReuseStage - np][LoopVal]; 5328bcb0991SDimitry Andric 5338bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, 5348bcb0991SDimitry Andric Def, NewReg); 5358bcb0991SDimitry Andric // Update the map with the new Phi name. 5368bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5378bcb0991SDimitry Andric PhiOp2 = NewReg; 5388bcb0991SDimitry Andric if (VRMap[LastStageNum - np - 1].count(LoopVal)) 5398bcb0991SDimitry Andric PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 5408bcb0991SDimitry Andric 5418bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5428bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5438bcb0991SDimitry Andric continue; 5448bcb0991SDimitry Andric } 5458bcb0991SDimitry Andric } 5468bcb0991SDimitry Andric } 5478bcb0991SDimitry Andric if (InKernel && StageDiff > 0 && 5488bcb0991SDimitry Andric VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 5498bcb0991SDimitry Andric PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 5508bcb0991SDimitry Andric } 5518bcb0991SDimitry Andric 5528bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 5538bcb0991SDimitry Andric NewReg = MRI.createVirtualRegister(RC); 5548bcb0991SDimitry Andric 5558bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 5568bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 5578bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 5588bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 5598bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 5608bcb0991SDimitry Andric if (np == 0) 5618bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 5628bcb0991SDimitry Andric 5638bcb0991SDimitry Andric // We define the Phis after creating the new pipelined code, so 5648bcb0991SDimitry Andric // we need to rename the Phi values in scheduled instructions. 5658bcb0991SDimitry Andric 5668bcb0991SDimitry Andric unsigned PrevReg = 0; 5678bcb0991SDimitry Andric if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 5688bcb0991SDimitry Andric PrevReg = VRMap[PrevStage - np][LoopVal]; 5698bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 5708bcb0991SDimitry Andric NewReg, PrevReg); 5718bcb0991SDimitry Andric // If the Phi has been scheduled, use the new name for rewriting. 5728bcb0991SDimitry Andric if (VRMap[CurStageNum - np].count(Def)) { 5738bcb0991SDimitry Andric unsigned R = VRMap[CurStageNum - np][Def]; 5748bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R, 5758bcb0991SDimitry Andric NewReg); 5768bcb0991SDimitry Andric } 5778bcb0991SDimitry Andric 5788bcb0991SDimitry Andric // Check if we need to rename any uses that occurs after the loop. The 5798bcb0991SDimitry Andric // register to replace depends on whether the Phi is scheduled in the 5808bcb0991SDimitry Andric // epilog. 5818bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 5828bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 5838bcb0991SDimitry Andric 5848bcb0991SDimitry Andric // In the kernel, a dependent Phi uses the value from this Phi. 5858bcb0991SDimitry Andric if (InKernel) 5868bcb0991SDimitry Andric PhiOp2 = NewReg; 5878bcb0991SDimitry Andric 5888bcb0991SDimitry Andric // Update the map with the new Phi name. 5898bcb0991SDimitry Andric VRMap[CurStageNum - np][Def] = NewReg; 5908bcb0991SDimitry Andric } 5918bcb0991SDimitry Andric 5928bcb0991SDimitry Andric while (NumPhis++ < NumStages) { 5938bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def, 5948bcb0991SDimitry Andric NewReg, 0); 5958bcb0991SDimitry Andric } 5968bcb0991SDimitry Andric 5978bcb0991SDimitry Andric // Check if we need to rename a Phi that has been eliminated due to 5988bcb0991SDimitry Andric // scheduling. 5998bcb0991SDimitry Andric if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 6008bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 6018bcb0991SDimitry Andric } 6028bcb0991SDimitry Andric } 6038bcb0991SDimitry Andric 6048bcb0991SDimitry Andric /// Generate Phis for the specified block in the generated pipelined code. 6058bcb0991SDimitry Andric /// These are new Phis needed because the definition is scheduled after the 6068bcb0991SDimitry Andric /// use in the pipelined sequence. 6078bcb0991SDimitry Andric void ModuloScheduleExpander::generatePhis( 6088bcb0991SDimitry Andric MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 609bdd1243dSDimitry Andric MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, 610bdd1243dSDimitry Andric InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 611bdd1243dSDimitry Andric bool IsLast) { 6128bcb0991SDimitry Andric // Compute the stage number that contains the initial Phi value, and 6138bcb0991SDimitry Andric // the Phi from the previous stage. 6148bcb0991SDimitry Andric unsigned PrologStage = 0; 6158bcb0991SDimitry Andric unsigned PrevStage = 0; 6168bcb0991SDimitry Andric unsigned StageDiff = CurStageNum - LastStageNum; 6178bcb0991SDimitry Andric bool InKernel = (StageDiff == 0); 6188bcb0991SDimitry Andric if (InKernel) { 6198bcb0991SDimitry Andric PrologStage = LastStageNum - 1; 6208bcb0991SDimitry Andric PrevStage = CurStageNum; 6218bcb0991SDimitry Andric } else { 6228bcb0991SDimitry Andric PrologStage = LastStageNum - StageDiff; 6238bcb0991SDimitry Andric PrevStage = LastStageNum + StageDiff - 1; 6248bcb0991SDimitry Andric } 6258bcb0991SDimitry Andric 6268bcb0991SDimitry Andric for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 6278bcb0991SDimitry Andric BBE = BB->instr_end(); 6288bcb0991SDimitry Andric BBI != BBE; ++BBI) { 6298bcb0991SDimitry Andric for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 6308bcb0991SDimitry Andric MachineOperand &MO = BBI->getOperand(i); 631bdd1243dSDimitry Andric if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 6328bcb0991SDimitry Andric continue; 6338bcb0991SDimitry Andric 6348bcb0991SDimitry Andric int StageScheduled = Schedule.getStage(&*BBI); 6358bcb0991SDimitry Andric assert(StageScheduled != -1 && "Expecting scheduled instruction."); 6368bcb0991SDimitry Andric Register Def = MO.getReg(); 6378bcb0991SDimitry Andric unsigned NumPhis = getStagesForReg(Def, CurStageNum); 6388bcb0991SDimitry Andric // An instruction scheduled in stage 0 and is used after the loop 6398bcb0991SDimitry Andric // requires a phi in the epilog for the last definition from either 6408bcb0991SDimitry Andric // the kernel or prolog. 6418bcb0991SDimitry Andric if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 6428bcb0991SDimitry Andric hasUseAfterLoop(Def, BB, MRI)) 6438bcb0991SDimitry Andric NumPhis = 1; 6448bcb0991SDimitry Andric if (!InKernel && (unsigned)StageScheduled > PrologStage) 6458bcb0991SDimitry Andric continue; 6468bcb0991SDimitry Andric 647bdd1243dSDimitry Andric unsigned PhiOp2; 648bdd1243dSDimitry Andric if (InKernel) { 649bdd1243dSDimitry Andric PhiOp2 = VRMap[PrevStage][Def]; 6508bcb0991SDimitry Andric if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 6518bcb0991SDimitry Andric if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 6528bcb0991SDimitry Andric PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 653bdd1243dSDimitry Andric } 6548bcb0991SDimitry Andric // The number of Phis can't exceed the number of prolog stages. The 6558bcb0991SDimitry Andric // prolog stage number is zero based. 6568bcb0991SDimitry Andric if (NumPhis > PrologStage + 1 - StageScheduled) 6578bcb0991SDimitry Andric NumPhis = PrologStage + 1 - StageScheduled; 6588bcb0991SDimitry Andric for (unsigned np = 0; np < NumPhis; ++np) { 659bdd1243dSDimitry Andric // Example for 660bdd1243dSDimitry Andric // Org: 661bdd1243dSDimitry Andric // %Org = ... (Scheduled at Stage#0, NumPhi = 2) 662bdd1243dSDimitry Andric // 663bdd1243dSDimitry Andric // Prolog0 (Stage0): 664bdd1243dSDimitry Andric // %Clone0 = ... 665bdd1243dSDimitry Andric // Prolog1 (Stage1): 666bdd1243dSDimitry Andric // %Clone1 = ... 667bdd1243dSDimitry Andric // Kernel (Stage2): 668bdd1243dSDimitry Andric // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel 669bdd1243dSDimitry Andric // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel 670bdd1243dSDimitry Andric // %Clone2 = ... 671bdd1243dSDimitry Andric // Epilog0 (Stage3): 672bdd1243dSDimitry Andric // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel 673bdd1243dSDimitry Andric // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel 674bdd1243dSDimitry Andric // Epilog1 (Stage4): 675bdd1243dSDimitry Andric // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 676bdd1243dSDimitry Andric // 677bdd1243dSDimitry Andric // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} 678bdd1243dSDimitry Andric // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} 679bdd1243dSDimitry Andric // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} 680bdd1243dSDimitry Andric 6818bcb0991SDimitry Andric unsigned PhiOp1 = VRMap[PrologStage][Def]; 6828bcb0991SDimitry Andric if (np <= PrologStage) 6838bcb0991SDimitry Andric PhiOp1 = VRMap[PrologStage - np][Def]; 684bdd1243dSDimitry Andric if (!InKernel) { 685bdd1243dSDimitry Andric if (PrevStage == LastStageNum && np == 0) 686bdd1243dSDimitry Andric PhiOp2 = VRMap[LastStageNum][Def]; 687bdd1243dSDimitry Andric else 688bdd1243dSDimitry Andric PhiOp2 = VRMapPhi[PrevStage - np][Def]; 6898bcb0991SDimitry Andric } 6908bcb0991SDimitry Andric 6918bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Def); 6928bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 6938bcb0991SDimitry Andric 6948bcb0991SDimitry Andric MachineInstrBuilder NewPhi = 6958bcb0991SDimitry Andric BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 6968bcb0991SDimitry Andric TII->get(TargetOpcode::PHI), NewReg); 6978bcb0991SDimitry Andric NewPhi.addReg(PhiOp1).addMBB(BB1); 6988bcb0991SDimitry Andric NewPhi.addReg(PhiOp2).addMBB(BB2); 6998bcb0991SDimitry Andric if (np == 0) 7008bcb0991SDimitry Andric InstrMap[NewPhi] = &*BBI; 7018bcb0991SDimitry Andric 7028bcb0991SDimitry Andric // Rewrite uses and update the map. The actions depend upon whether 7038bcb0991SDimitry Andric // we generating code for the kernel or epilog blocks. 7048bcb0991SDimitry Andric if (InKernel) { 7058bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1, 7068bcb0991SDimitry Andric NewReg); 7078bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2, 7088bcb0991SDimitry Andric NewReg); 7098bcb0991SDimitry Andric 7108bcb0991SDimitry Andric PhiOp2 = NewReg; 711bdd1243dSDimitry Andric VRMapPhi[PrevStage - np - 1][Def] = NewReg; 7128bcb0991SDimitry Andric } else { 713bdd1243dSDimitry Andric VRMapPhi[CurStageNum - np][Def] = NewReg; 7148bcb0991SDimitry Andric if (np == NumPhis - 1) 7158bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def, 7168bcb0991SDimitry Andric NewReg); 7178bcb0991SDimitry Andric } 7188bcb0991SDimitry Andric if (IsLast && np == NumPhis - 1) 7198bcb0991SDimitry Andric replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 7208bcb0991SDimitry Andric } 7218bcb0991SDimitry Andric } 7228bcb0991SDimitry Andric } 7238bcb0991SDimitry Andric } 7248bcb0991SDimitry Andric 7258bcb0991SDimitry Andric /// Remove instructions that generate values with no uses. 7268bcb0991SDimitry Andric /// Typically, these are induction variable operations that generate values 7278bcb0991SDimitry Andric /// used in the loop itself. A dead instruction has a definition with 7288bcb0991SDimitry Andric /// no uses, or uses that occur in the original loop only. 7298bcb0991SDimitry Andric void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, 7308bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 7318bcb0991SDimitry Andric // For each epilog block, check that the value defined by each instruction 7328bcb0991SDimitry Andric // is used. If not, delete it. 733349cc55cSDimitry Andric for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs)) 734349cc55cSDimitry Andric for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), 735349cc55cSDimitry Andric ME = MBB->instr_rend(); 7368bcb0991SDimitry Andric MI != ME;) { 7378bcb0991SDimitry Andric // From DeadMachineInstructionElem. Don't delete inline assembly. 7388bcb0991SDimitry Andric if (MI->isInlineAsm()) { 7398bcb0991SDimitry Andric ++MI; 7408bcb0991SDimitry Andric continue; 7418bcb0991SDimitry Andric } 7428bcb0991SDimitry Andric bool SawStore = false; 7438bcb0991SDimitry Andric // Check if it's safe to remove the instruction due to side effects. 7448bcb0991SDimitry Andric // We can, and want to, remove Phis here. 7458bcb0991SDimitry Andric if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 7468bcb0991SDimitry Andric ++MI; 7478bcb0991SDimitry Andric continue; 7488bcb0991SDimitry Andric } 7498bcb0991SDimitry Andric bool used = true; 75006c3fb27SDimitry Andric for (const MachineOperand &MO : MI->all_defs()) { 751349cc55cSDimitry Andric Register reg = MO.getReg(); 7528bcb0991SDimitry Andric // Assume physical registers are used, unless they are marked dead. 753bdd1243dSDimitry Andric if (reg.isPhysical()) { 754349cc55cSDimitry Andric used = !MO.isDead(); 7558bcb0991SDimitry Andric if (used) 7568bcb0991SDimitry Andric break; 7578bcb0991SDimitry Andric continue; 7588bcb0991SDimitry Andric } 7598bcb0991SDimitry Andric unsigned realUses = 0; 760349cc55cSDimitry Andric for (const MachineOperand &U : MRI.use_operands(reg)) { 7618bcb0991SDimitry Andric // Check if there are any uses that occur only in the original 7628bcb0991SDimitry Andric // loop. If so, that's not a real use. 763349cc55cSDimitry Andric if (U.getParent()->getParent() != BB) { 7648bcb0991SDimitry Andric realUses++; 7658bcb0991SDimitry Andric used = true; 7668bcb0991SDimitry Andric break; 7678bcb0991SDimitry Andric } 7688bcb0991SDimitry Andric } 7698bcb0991SDimitry Andric if (realUses > 0) 7708bcb0991SDimitry Andric break; 7718bcb0991SDimitry Andric used = false; 7728bcb0991SDimitry Andric } 7738bcb0991SDimitry Andric if (!used) { 7748bcb0991SDimitry Andric LIS.RemoveMachineInstrFromMaps(*MI); 7758bcb0991SDimitry Andric MI++->eraseFromParent(); 7768bcb0991SDimitry Andric continue; 7778bcb0991SDimitry Andric } 7788bcb0991SDimitry Andric ++MI; 7798bcb0991SDimitry Andric } 7808bcb0991SDimitry Andric // In the kernel block, check if we can remove a Phi that generates a value 7818bcb0991SDimitry Andric // used in an instruction removed in the epilog block. 782349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) { 783349cc55cSDimitry Andric Register reg = MI.getOperand(0).getReg(); 7848bcb0991SDimitry Andric if (MRI.use_begin(reg) == MRI.use_end()) { 785349cc55cSDimitry Andric LIS.RemoveMachineInstrFromMaps(MI); 786349cc55cSDimitry Andric MI.eraseFromParent(); 7878bcb0991SDimitry Andric } 7888bcb0991SDimitry Andric } 7898bcb0991SDimitry Andric } 7908bcb0991SDimitry Andric 7918bcb0991SDimitry Andric /// For loop carried definitions, we split the lifetime of a virtual register 7928bcb0991SDimitry Andric /// that has uses past the definition in the next iteration. A copy with a new 7938bcb0991SDimitry Andric /// virtual register is inserted before the definition, which helps with 7948bcb0991SDimitry Andric /// generating a better register assignment. 7958bcb0991SDimitry Andric /// 7968bcb0991SDimitry Andric /// v1 = phi(a, v2) v1 = phi(a, v2) 7978bcb0991SDimitry Andric /// v2 = phi(b, v3) v2 = phi(b, v3) 7988bcb0991SDimitry Andric /// v3 = .. v4 = copy v1 7998bcb0991SDimitry Andric /// .. = V1 v3 = .. 8008bcb0991SDimitry Andric /// .. = v4 8018bcb0991SDimitry Andric void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, 8028bcb0991SDimitry Andric MBBVectorTy &EpilogBBs) { 8038bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 8048bcb0991SDimitry Andric for (auto &PHI : KernelBB->phis()) { 8058bcb0991SDimitry Andric Register Def = PHI.getOperand(0).getReg(); 8068bcb0991SDimitry Andric // Check for any Phi definition that used as an operand of another Phi 8078bcb0991SDimitry Andric // in the same block. 8088bcb0991SDimitry Andric for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 8098bcb0991SDimitry Andric E = MRI.use_instr_end(); 8108bcb0991SDimitry Andric I != E; ++I) { 8118bcb0991SDimitry Andric if (I->isPHI() && I->getParent() == KernelBB) { 8128bcb0991SDimitry Andric // Get the loop carried definition. 8138bcb0991SDimitry Andric unsigned LCDef = getLoopPhiReg(PHI, KernelBB); 8148bcb0991SDimitry Andric if (!LCDef) 8158bcb0991SDimitry Andric continue; 8168bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(LCDef); 8178bcb0991SDimitry Andric if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 8188bcb0991SDimitry Andric continue; 8198bcb0991SDimitry Andric // Search through the rest of the block looking for uses of the Phi 8208bcb0991SDimitry Andric // definition. If one occurs, then split the lifetime. 8218bcb0991SDimitry Andric unsigned SplitReg = 0; 8228bcb0991SDimitry Andric for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 8238bcb0991SDimitry Andric KernelBB->instr_end())) 8240fca6ea1SDimitry Andric if (BBJ.readsRegister(Def, /*TRI=*/nullptr)) { 8258bcb0991SDimitry Andric // We split the lifetime when we find the first use. 8268bcb0991SDimitry Andric if (SplitReg == 0) { 8278bcb0991SDimitry Andric SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 8288bcb0991SDimitry Andric BuildMI(*KernelBB, MI, MI->getDebugLoc(), 8298bcb0991SDimitry Andric TII->get(TargetOpcode::COPY), SplitReg) 8308bcb0991SDimitry Andric .addReg(Def); 8318bcb0991SDimitry Andric } 8328bcb0991SDimitry Andric BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 8338bcb0991SDimitry Andric } 8348bcb0991SDimitry Andric if (!SplitReg) 8358bcb0991SDimitry Andric continue; 8368bcb0991SDimitry Andric // Search through each of the epilog blocks for any uses to be renamed. 8378bcb0991SDimitry Andric for (auto &Epilog : EpilogBBs) 8388bcb0991SDimitry Andric for (auto &I : *Epilog) 8390fca6ea1SDimitry Andric if (I.readsRegister(Def, /*TRI=*/nullptr)) 8408bcb0991SDimitry Andric I.substituteRegister(Def, SplitReg, 0, *TRI); 8418bcb0991SDimitry Andric break; 8428bcb0991SDimitry Andric } 8438bcb0991SDimitry Andric } 8448bcb0991SDimitry Andric } 8458bcb0991SDimitry Andric } 8468bcb0991SDimitry Andric 8478bcb0991SDimitry Andric /// Remove the incoming block from the Phis in a basic block. 8488bcb0991SDimitry Andric static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 8498bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 8508bcb0991SDimitry Andric if (!MI.isPHI()) 8518bcb0991SDimitry Andric break; 8528bcb0991SDimitry Andric for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 8538bcb0991SDimitry Andric if (MI.getOperand(i + 1).getMBB() == Incoming) { 85481ad6265SDimitry Andric MI.removeOperand(i + 1); 85581ad6265SDimitry Andric MI.removeOperand(i); 8568bcb0991SDimitry Andric break; 8578bcb0991SDimitry Andric } 8588bcb0991SDimitry Andric } 8598bcb0991SDimitry Andric } 8608bcb0991SDimitry Andric 8618bcb0991SDimitry Andric /// Create branches from each prolog basic block to the appropriate epilog 8628bcb0991SDimitry Andric /// block. These edges are needed if the loop ends before reaching the 8638bcb0991SDimitry Andric /// kernel. 8648bcb0991SDimitry Andric void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB, 8658bcb0991SDimitry Andric MBBVectorTy &PrologBBs, 8668bcb0991SDimitry Andric MachineBasicBlock *KernelBB, 8678bcb0991SDimitry Andric MBBVectorTy &EpilogBBs, 8688bcb0991SDimitry Andric ValueMapTy *VRMap) { 8698bcb0991SDimitry Andric assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 8708bcb0991SDimitry Andric MachineBasicBlock *LastPro = KernelBB; 8718bcb0991SDimitry Andric MachineBasicBlock *LastEpi = KernelBB; 8728bcb0991SDimitry Andric 8738bcb0991SDimitry Andric // Start from the blocks connected to the kernel and work "out" 8748bcb0991SDimitry Andric // to the first prolog and the last epilog blocks. 8758bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> PrevInsts; 8768bcb0991SDimitry Andric unsigned MaxIter = PrologBBs.size() - 1; 8778bcb0991SDimitry Andric for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 8788bcb0991SDimitry Andric // Add branches to the prolog that go to the corresponding 8798bcb0991SDimitry Andric // epilog, and the fall-thru prolog/kernel block. 8808bcb0991SDimitry Andric MachineBasicBlock *Prolog = PrologBBs[j]; 8818bcb0991SDimitry Andric MachineBasicBlock *Epilog = EpilogBBs[i]; 8828bcb0991SDimitry Andric 8838bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 884bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater = 8858bcb0991SDimitry Andric LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond); 8868bcb0991SDimitry Andric unsigned numAdded = 0; 88781ad6265SDimitry Andric if (!StaticallyGreater) { 8888bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8898bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 8908bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 8918bcb0991SDimitry Andric Prolog->addSuccessor(Epilog); 8928bcb0991SDimitry Andric Prolog->removeSuccessor(LastPro); 8938bcb0991SDimitry Andric LastEpi->removeSuccessor(Epilog); 8948bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); 8958bcb0991SDimitry Andric removePhis(Epilog, LastEpi); 8968bcb0991SDimitry Andric // Remove the blocks that are no longer referenced. 8978bcb0991SDimitry Andric if (LastPro != LastEpi) { 8988bcb0991SDimitry Andric LastEpi->clear(); 8998bcb0991SDimitry Andric LastEpi->eraseFromParent(); 9008bcb0991SDimitry Andric } 9018bcb0991SDimitry Andric if (LastPro == KernelBB) { 9028bcb0991SDimitry Andric LoopInfo->disposed(); 9038bcb0991SDimitry Andric NewKernel = nullptr; 9048bcb0991SDimitry Andric } 9058bcb0991SDimitry Andric LastPro->clear(); 9068bcb0991SDimitry Andric LastPro->eraseFromParent(); 9078bcb0991SDimitry Andric } else { 9088bcb0991SDimitry Andric numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); 9098bcb0991SDimitry Andric removePhis(Epilog, Prolog); 9108bcb0991SDimitry Andric } 9118bcb0991SDimitry Andric LastPro = Prolog; 9128bcb0991SDimitry Andric LastEpi = Epilog; 9138bcb0991SDimitry Andric for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 9148bcb0991SDimitry Andric E = Prolog->instr_rend(); 9158bcb0991SDimitry Andric I != E && numAdded > 0; ++I, --numAdded) 9168bcb0991SDimitry Andric updateInstruction(&*I, false, j, 0, VRMap); 9178bcb0991SDimitry Andric } 9188bcb0991SDimitry Andric 9198bcb0991SDimitry Andric if (NewKernel) { 9208bcb0991SDimitry Andric LoopInfo->setPreheader(PrologBBs[MaxIter]); 9218bcb0991SDimitry Andric LoopInfo->adjustTripCount(-(MaxIter + 1)); 9228bcb0991SDimitry Andric } 9238bcb0991SDimitry Andric } 9248bcb0991SDimitry Andric 9258bcb0991SDimitry Andric /// Return true if we can compute the amount the instruction changes 9268bcb0991SDimitry Andric /// during each iteration. Set Delta to the amount of the change. 9278bcb0991SDimitry Andric bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { 9288bcb0991SDimitry Andric const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 9298bcb0991SDimitry Andric const MachineOperand *BaseOp; 9308bcb0991SDimitry Andric int64_t Offset; 9315ffd83dbSDimitry Andric bool OffsetIsScalable; 9325ffd83dbSDimitry Andric if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 9335ffd83dbSDimitry Andric return false; 9345ffd83dbSDimitry Andric 9355ffd83dbSDimitry Andric // FIXME: This algorithm assumes instructions have fixed-size offsets. 9365ffd83dbSDimitry Andric if (OffsetIsScalable) 9378bcb0991SDimitry Andric return false; 9388bcb0991SDimitry Andric 9398bcb0991SDimitry Andric if (!BaseOp->isReg()) 9408bcb0991SDimitry Andric return false; 9418bcb0991SDimitry Andric 9428bcb0991SDimitry Andric Register BaseReg = BaseOp->getReg(); 9438bcb0991SDimitry Andric 9448bcb0991SDimitry Andric MachineRegisterInfo &MRI = MF.getRegInfo(); 9458bcb0991SDimitry Andric // Check if there is a Phi. If so, get the definition in the loop. 9468bcb0991SDimitry Andric MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 9478bcb0991SDimitry Andric if (BaseDef && BaseDef->isPHI()) { 9488bcb0991SDimitry Andric BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 9498bcb0991SDimitry Andric BaseDef = MRI.getVRegDef(BaseReg); 9508bcb0991SDimitry Andric } 9518bcb0991SDimitry Andric if (!BaseDef) 9528bcb0991SDimitry Andric return false; 9538bcb0991SDimitry Andric 9548bcb0991SDimitry Andric int D = 0; 9558bcb0991SDimitry Andric if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) 9568bcb0991SDimitry Andric return false; 9578bcb0991SDimitry Andric 9588bcb0991SDimitry Andric Delta = D; 9598bcb0991SDimitry Andric return true; 9608bcb0991SDimitry Andric } 9618bcb0991SDimitry Andric 9628bcb0991SDimitry Andric /// Update the memory operand with a new offset when the pipeliner 9638bcb0991SDimitry Andric /// generates a new copy of the instruction that refers to a 9648bcb0991SDimitry Andric /// different memory location. 9658bcb0991SDimitry Andric void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, 9668bcb0991SDimitry Andric MachineInstr &OldMI, 9678bcb0991SDimitry Andric unsigned Num) { 9688bcb0991SDimitry Andric if (Num == 0) 9698bcb0991SDimitry Andric return; 9708bcb0991SDimitry Andric // If the instruction has memory operands, then adjust the offset 9718bcb0991SDimitry Andric // when the instruction appears in different stages. 9728bcb0991SDimitry Andric if (NewMI.memoperands_empty()) 9738bcb0991SDimitry Andric return; 9748bcb0991SDimitry Andric SmallVector<MachineMemOperand *, 2> NewMMOs; 9758bcb0991SDimitry Andric for (MachineMemOperand *MMO : NewMI.memoperands()) { 9768bcb0991SDimitry Andric // TODO: Figure out whether isAtomic is really necessary (see D57601). 9778bcb0991SDimitry Andric if (MMO->isVolatile() || MMO->isAtomic() || 9788bcb0991SDimitry Andric (MMO->isInvariant() && MMO->isDereferenceable()) || 9798bcb0991SDimitry Andric (!MMO->getValue())) { 9808bcb0991SDimitry Andric NewMMOs.push_back(MMO); 9818bcb0991SDimitry Andric continue; 9828bcb0991SDimitry Andric } 9838bcb0991SDimitry Andric unsigned Delta; 9848bcb0991SDimitry Andric if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { 9858bcb0991SDimitry Andric int64_t AdjOffset = Delta * Num; 9868bcb0991SDimitry Andric NewMMOs.push_back( 9878bcb0991SDimitry Andric MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); 9888bcb0991SDimitry Andric } else { 9890fca6ea1SDimitry Andric NewMMOs.push_back(MF.getMachineMemOperand( 9900fca6ea1SDimitry Andric MMO, 0, LocationSize::beforeOrAfterPointer())); 9918bcb0991SDimitry Andric } 9928bcb0991SDimitry Andric } 9938bcb0991SDimitry Andric NewMI.setMemRefs(MF, NewMMOs); 9948bcb0991SDimitry Andric } 9958bcb0991SDimitry Andric 9968bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop and update the 9978bcb0991SDimitry Andric /// memory operands, if needed. 9988bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, 9998bcb0991SDimitry Andric unsigned CurStageNum, 10008bcb0991SDimitry Andric unsigned InstStageNum) { 10018bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 10028bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 10038bcb0991SDimitry Andric return NewMI; 10048bcb0991SDimitry Andric } 10058bcb0991SDimitry Andric 10068bcb0991SDimitry Andric /// Clone the instruction for the new pipelined loop. If needed, this 10078bcb0991SDimitry Andric /// function updates the instruction using the values saved in the 10088bcb0991SDimitry Andric /// InstrChanges structure. 10098bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( 10108bcb0991SDimitry Andric MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { 10118bcb0991SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 10128bcb0991SDimitry Andric auto It = InstrChanges.find(OldMI); 10138bcb0991SDimitry Andric if (It != InstrChanges.end()) { 10148bcb0991SDimitry Andric std::pair<unsigned, int64_t> RegAndOffset = It->second; 10158bcb0991SDimitry Andric unsigned BasePos, OffsetPos; 10168bcb0991SDimitry Andric if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) 10178bcb0991SDimitry Andric return nullptr; 10188bcb0991SDimitry Andric int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 10198bcb0991SDimitry Andric MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 10208bcb0991SDimitry Andric if (Schedule.getStage(LoopDef) > (signed)InstStageNum) 10218bcb0991SDimitry Andric NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 10228bcb0991SDimitry Andric NewMI->getOperand(OffsetPos).setImm(NewOffset); 10238bcb0991SDimitry Andric } 10248bcb0991SDimitry Andric updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 10258bcb0991SDimitry Andric return NewMI; 10268bcb0991SDimitry Andric } 10278bcb0991SDimitry Andric 10288bcb0991SDimitry Andric /// Update the machine instruction with new virtual registers. This 102981ad6265SDimitry Andric /// function may change the definitions and/or uses. 10308bcb0991SDimitry Andric void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, 10318bcb0991SDimitry Andric bool LastDef, 10328bcb0991SDimitry Andric unsigned CurStageNum, 10338bcb0991SDimitry Andric unsigned InstrStageNum, 10348bcb0991SDimitry Andric ValueMapTy *VRMap) { 10354824e7fdSDimitry Andric for (MachineOperand &MO : NewMI->operands()) { 1036bdd1243dSDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual()) 10378bcb0991SDimitry Andric continue; 10388bcb0991SDimitry Andric Register reg = MO.getReg(); 10398bcb0991SDimitry Andric if (MO.isDef()) { 10408bcb0991SDimitry Andric // Create a new virtual register for the definition. 10418bcb0991SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(reg); 10428bcb0991SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 10438bcb0991SDimitry Andric MO.setReg(NewReg); 10448bcb0991SDimitry Andric VRMap[CurStageNum][reg] = NewReg; 10458bcb0991SDimitry Andric if (LastDef) 10468bcb0991SDimitry Andric replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 10478bcb0991SDimitry Andric } else if (MO.isUse()) { 10488bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(reg); 10498bcb0991SDimitry Andric // Compute the stage that contains the last definition for instruction. 10508bcb0991SDimitry Andric int DefStageNum = Schedule.getStage(Def); 10518bcb0991SDimitry Andric unsigned StageNum = CurStageNum; 10528bcb0991SDimitry Andric if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 10538bcb0991SDimitry Andric // Compute the difference in stages between the defintion and the use. 10548bcb0991SDimitry Andric unsigned StageDiff = (InstrStageNum - DefStageNum); 10558bcb0991SDimitry Andric // Make an adjustment to get the last definition. 10568bcb0991SDimitry Andric StageNum -= StageDiff; 10578bcb0991SDimitry Andric } 10588bcb0991SDimitry Andric if (VRMap[StageNum].count(reg)) 10598bcb0991SDimitry Andric MO.setReg(VRMap[StageNum][reg]); 10608bcb0991SDimitry Andric } 10618bcb0991SDimitry Andric } 10628bcb0991SDimitry Andric } 10638bcb0991SDimitry Andric 10648bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register. 10658bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to 10668bcb0991SDimitry Andric /// the instruction in the loop. 10678bcb0991SDimitry Andric MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) { 10688bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 8> Visited; 10698bcb0991SDimitry Andric MachineInstr *Def = MRI.getVRegDef(Reg); 10708bcb0991SDimitry Andric while (Def->isPHI()) { 10718bcb0991SDimitry Andric if (!Visited.insert(Def).second) 10728bcb0991SDimitry Andric break; 10738bcb0991SDimitry Andric for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 10748bcb0991SDimitry Andric if (Def->getOperand(i + 1).getMBB() == BB) { 10758bcb0991SDimitry Andric Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 10768bcb0991SDimitry Andric break; 10778bcb0991SDimitry Andric } 10788bcb0991SDimitry Andric } 10798bcb0991SDimitry Andric return Def; 10808bcb0991SDimitry Andric } 10818bcb0991SDimitry Andric 10828bcb0991SDimitry Andric /// Return the new name for the value from the previous stage. 10838bcb0991SDimitry Andric unsigned ModuloScheduleExpander::getPrevMapVal( 10848bcb0991SDimitry Andric unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage, 10858bcb0991SDimitry Andric ValueMapTy *VRMap, MachineBasicBlock *BB) { 10868bcb0991SDimitry Andric unsigned PrevVal = 0; 10878bcb0991SDimitry Andric if (StageNum > PhiStage) { 10888bcb0991SDimitry Andric MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 10898bcb0991SDimitry Andric if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 10908bcb0991SDimitry Andric // The name is defined in the previous stage. 10918bcb0991SDimitry Andric PrevVal = VRMap[StageNum - 1][LoopVal]; 10928bcb0991SDimitry Andric else if (VRMap[StageNum].count(LoopVal)) 10938bcb0991SDimitry Andric // The previous name is defined in the current stage when the instruction 10948bcb0991SDimitry Andric // order is swapped. 10958bcb0991SDimitry Andric PrevVal = VRMap[StageNum][LoopVal]; 10968bcb0991SDimitry Andric else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) 10978bcb0991SDimitry Andric // The loop value hasn't yet been scheduled. 10988bcb0991SDimitry Andric PrevVal = LoopVal; 10998bcb0991SDimitry Andric else if (StageNum == PhiStage + 1) 11008bcb0991SDimitry Andric // The loop value is another phi, which has not been scheduled. 11018bcb0991SDimitry Andric PrevVal = getInitPhiReg(*LoopInst, BB); 11028bcb0991SDimitry Andric else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 11038bcb0991SDimitry Andric // The loop value is another phi, which has been scheduled. 11048bcb0991SDimitry Andric PrevVal = 11058bcb0991SDimitry Andric getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 11068bcb0991SDimitry Andric LoopStage, VRMap, BB); 11078bcb0991SDimitry Andric } 11088bcb0991SDimitry Andric return PrevVal; 11098bcb0991SDimitry Andric } 11108bcb0991SDimitry Andric 11118bcb0991SDimitry Andric /// Rewrite the Phi values in the specified block to use the mappings 11128bcb0991SDimitry Andric /// from the initial operand. Once the Phi is scheduled, we switch 11138bcb0991SDimitry Andric /// to using the loop value instead of the Phi value, so those names 11148bcb0991SDimitry Andric /// do not need to be rewritten. 11158bcb0991SDimitry Andric void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, 11168bcb0991SDimitry Andric unsigned StageNum, 11178bcb0991SDimitry Andric ValueMapTy *VRMap, 11188bcb0991SDimitry Andric InstrMapTy &InstrMap) { 11198bcb0991SDimitry Andric for (auto &PHI : BB->phis()) { 11208bcb0991SDimitry Andric unsigned InitVal = 0; 11218bcb0991SDimitry Andric unsigned LoopVal = 0; 11228bcb0991SDimitry Andric getPhiRegs(PHI, BB, InitVal, LoopVal); 11238bcb0991SDimitry Andric Register PhiDef = PHI.getOperand(0).getReg(); 11248bcb0991SDimitry Andric 11258bcb0991SDimitry Andric unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef)); 11268bcb0991SDimitry Andric unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal)); 11278bcb0991SDimitry Andric unsigned NumPhis = getStagesForPhi(PhiDef); 11288bcb0991SDimitry Andric if (NumPhis > StageNum) 11298bcb0991SDimitry Andric NumPhis = StageNum; 11308bcb0991SDimitry Andric for (unsigned np = 0; np <= NumPhis; ++np) { 11318bcb0991SDimitry Andric unsigned NewVal = 11328bcb0991SDimitry Andric getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 11338bcb0991SDimitry Andric if (!NewVal) 11348bcb0991SDimitry Andric NewVal = InitVal; 11358bcb0991SDimitry Andric rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef, 11368bcb0991SDimitry Andric NewVal); 11378bcb0991SDimitry Andric } 11388bcb0991SDimitry Andric } 11398bcb0991SDimitry Andric } 11408bcb0991SDimitry Andric 11418bcb0991SDimitry Andric /// Rewrite a previously scheduled instruction to use the register value 11428bcb0991SDimitry Andric /// from the new instruction. Make sure the instruction occurs in the 11438bcb0991SDimitry Andric /// basic block, and we don't change the uses in the new instruction. 11448bcb0991SDimitry Andric void ModuloScheduleExpander::rewriteScheduledInstr( 11458bcb0991SDimitry Andric MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, 11468bcb0991SDimitry Andric unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg, 11478bcb0991SDimitry Andric unsigned PrevReg) { 11488bcb0991SDimitry Andric bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); 11498bcb0991SDimitry Andric int StagePhi = Schedule.getStage(Phi) + PhiNum; 11508bcb0991SDimitry Andric // Rewrite uses that have been scheduled already to use the new 11518bcb0991SDimitry Andric // Phi register. 1152349cc55cSDimitry Andric for (MachineOperand &UseOp : 1153349cc55cSDimitry Andric llvm::make_early_inc_range(MRI.use_operands(OldReg))) { 11548bcb0991SDimitry Andric MachineInstr *UseMI = UseOp.getParent(); 11558bcb0991SDimitry Andric if (UseMI->getParent() != BB) 11568bcb0991SDimitry Andric continue; 11578bcb0991SDimitry Andric if (UseMI->isPHI()) { 11588bcb0991SDimitry Andric if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 11598bcb0991SDimitry Andric continue; 11608bcb0991SDimitry Andric if (getLoopPhiReg(*UseMI, BB) != OldReg) 11618bcb0991SDimitry Andric continue; 11628bcb0991SDimitry Andric } 11638bcb0991SDimitry Andric InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 11648bcb0991SDimitry Andric assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 11658bcb0991SDimitry Andric MachineInstr *OrigMI = OrigInstr->second; 11668bcb0991SDimitry Andric int StageSched = Schedule.getStage(OrigMI); 11678bcb0991SDimitry Andric int CycleSched = Schedule.getCycle(OrigMI); 11688bcb0991SDimitry Andric unsigned ReplaceReg = 0; 11698bcb0991SDimitry Andric // This is the stage for the scheduled instruction. 11708bcb0991SDimitry Andric if (StagePhi == StageSched && Phi->isPHI()) { 11718bcb0991SDimitry Andric int CyclePhi = Schedule.getCycle(Phi); 11728bcb0991SDimitry Andric if (PrevReg && InProlog) 11738bcb0991SDimitry Andric ReplaceReg = PrevReg; 11748bcb0991SDimitry Andric else if (PrevReg && !isLoopCarried(*Phi) && 11758bcb0991SDimitry Andric (CyclePhi <= CycleSched || OrigMI->isPHI())) 11768bcb0991SDimitry Andric ReplaceReg = PrevReg; 11778bcb0991SDimitry Andric else 11788bcb0991SDimitry Andric ReplaceReg = NewReg; 11798bcb0991SDimitry Andric } 11808bcb0991SDimitry Andric // The scheduled instruction occurs before the scheduled Phi, and the 11818bcb0991SDimitry Andric // Phi is not loop carried. 11828bcb0991SDimitry Andric if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi)) 11838bcb0991SDimitry Andric ReplaceReg = NewReg; 11848bcb0991SDimitry Andric if (StagePhi > StageSched && Phi->isPHI()) 11858bcb0991SDimitry Andric ReplaceReg = NewReg; 11868bcb0991SDimitry Andric if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 11878bcb0991SDimitry Andric ReplaceReg = NewReg; 11888bcb0991SDimitry Andric if (ReplaceReg) { 118981ad6265SDimitry Andric const TargetRegisterClass *NRC = 11908bcb0991SDimitry Andric MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 119181ad6265SDimitry Andric if (NRC) 11928bcb0991SDimitry Andric UseOp.setReg(ReplaceReg); 119381ad6265SDimitry Andric else { 119481ad6265SDimitry Andric Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 119581ad6265SDimitry Andric BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY), 119681ad6265SDimitry Andric SplitReg) 119781ad6265SDimitry Andric .addReg(ReplaceReg); 119881ad6265SDimitry Andric UseOp.setReg(SplitReg); 119981ad6265SDimitry Andric } 12008bcb0991SDimitry Andric } 12018bcb0991SDimitry Andric } 12028bcb0991SDimitry Andric } 12038bcb0991SDimitry Andric 12048bcb0991SDimitry Andric bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { 12058bcb0991SDimitry Andric if (!Phi.isPHI()) 12068bcb0991SDimitry Andric return false; 1207480093f4SDimitry Andric int DefCycle = Schedule.getCycle(&Phi); 12088bcb0991SDimitry Andric int DefStage = Schedule.getStage(&Phi); 12098bcb0991SDimitry Andric 12108bcb0991SDimitry Andric unsigned InitVal = 0; 12118bcb0991SDimitry Andric unsigned LoopVal = 0; 12128bcb0991SDimitry Andric getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 12138bcb0991SDimitry Andric MachineInstr *Use = MRI.getVRegDef(LoopVal); 12148bcb0991SDimitry Andric if (!Use || Use->isPHI()) 12158bcb0991SDimitry Andric return true; 1216480093f4SDimitry Andric int LoopCycle = Schedule.getCycle(Use); 12178bcb0991SDimitry Andric int LoopStage = Schedule.getStage(Use); 12188bcb0991SDimitry Andric return (LoopCycle > DefCycle) || (LoopStage <= DefStage); 12198bcb0991SDimitry Andric } 12208bcb0991SDimitry Andric 12218bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12228bcb0991SDimitry Andric // PeelingModuloScheduleExpander implementation 12238bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12248bcb0991SDimitry Andric // This is a reimplementation of ModuloScheduleExpander that works by creating 12258bcb0991SDimitry Andric // a fully correct steady-state kernel and peeling off the prolog and epilogs. 12268bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 12278bcb0991SDimitry Andric 12288bcb0991SDimitry Andric namespace { 12298bcb0991SDimitry Andric // Remove any dead phis in MBB. Dead phis either have only one block as input 12308bcb0991SDimitry Andric // (in which case they are the identity) or have no uses. 12318bcb0991SDimitry Andric void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, 1232480093f4SDimitry Andric LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { 12338bcb0991SDimitry Andric bool Changed = true; 12348bcb0991SDimitry Andric while (Changed) { 12358bcb0991SDimitry Andric Changed = false; 1236349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) { 12378bcb0991SDimitry Andric assert(MI.isPHI()); 12388bcb0991SDimitry Andric if (MRI.use_empty(MI.getOperand(0).getReg())) { 12398bcb0991SDimitry Andric if (LIS) 12408bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12418bcb0991SDimitry Andric MI.eraseFromParent(); 12428bcb0991SDimitry Andric Changed = true; 1243480093f4SDimitry Andric } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { 124481ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 12458bcb0991SDimitry Andric MRI.constrainRegClass(MI.getOperand(1).getReg(), 12468bcb0991SDimitry Andric MRI.getRegClass(MI.getOperand(0).getReg())); 124781ad6265SDimitry Andric assert(ConstrainRegClass && 124881ad6265SDimitry Andric "Expected a valid constrained register class!"); 124981ad6265SDimitry Andric (void)ConstrainRegClass; 12508bcb0991SDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), 12518bcb0991SDimitry Andric MI.getOperand(1).getReg()); 12528bcb0991SDimitry Andric if (LIS) 12538bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(MI); 12548bcb0991SDimitry Andric MI.eraseFromParent(); 12558bcb0991SDimitry Andric Changed = true; 12568bcb0991SDimitry Andric } 12578bcb0991SDimitry Andric } 12588bcb0991SDimitry Andric } 12598bcb0991SDimitry Andric } 12608bcb0991SDimitry Andric 12618bcb0991SDimitry Andric /// Rewrites the kernel block in-place to adhere to the given schedule. 12628bcb0991SDimitry Andric /// KernelRewriter holds all of the state required to perform the rewriting. 12638bcb0991SDimitry Andric class KernelRewriter { 12648bcb0991SDimitry Andric ModuloSchedule &S; 12658bcb0991SDimitry Andric MachineBasicBlock *BB; 12668bcb0991SDimitry Andric MachineBasicBlock *PreheaderBB, *ExitBB; 12678bcb0991SDimitry Andric MachineRegisterInfo &MRI; 12688bcb0991SDimitry Andric const TargetInstrInfo *TII; 12698bcb0991SDimitry Andric LiveIntervals *LIS; 12708bcb0991SDimitry Andric 12718bcb0991SDimitry Andric // Map from register class to canonical undef register for that class. 12728bcb0991SDimitry Andric DenseMap<const TargetRegisterClass *, Register> Undefs; 12738bcb0991SDimitry Andric // Map from <LoopReg, InitReg> to phi register for all created phis. Note that 12748bcb0991SDimitry Andric // this map is only used when InitReg is non-undef. 12758bcb0991SDimitry Andric DenseMap<std::pair<unsigned, unsigned>, Register> Phis; 12768bcb0991SDimitry Andric // Map from LoopReg to phi register where the InitReg is undef. 12778bcb0991SDimitry Andric DenseMap<Register, Register> UndefPhis; 12788bcb0991SDimitry Andric 12798bcb0991SDimitry Andric // Reg is used by MI. Return the new register MI should use to adhere to the 12808bcb0991SDimitry Andric // schedule. Insert phis as necessary. 12818bcb0991SDimitry Andric Register remapUse(Register Reg, MachineInstr &MI); 12828bcb0991SDimitry Andric // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. 12838bcb0991SDimitry Andric // If InitReg is not given it is chosen arbitrarily. It will either be undef 12848bcb0991SDimitry Andric // or will be chosen so as to share another phi. 1285bdd1243dSDimitry Andric Register phi(Register LoopReg, std::optional<Register> InitReg = {}, 12868bcb0991SDimitry Andric const TargetRegisterClass *RC = nullptr); 12878bcb0991SDimitry Andric // Create an undef register of the given register class. 12888bcb0991SDimitry Andric Register undef(const TargetRegisterClass *RC); 12898bcb0991SDimitry Andric 12908bcb0991SDimitry Andric public: 1291fe6060f1SDimitry Andric KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, 12928bcb0991SDimitry Andric LiveIntervals *LIS = nullptr); 12938bcb0991SDimitry Andric void rewrite(); 12948bcb0991SDimitry Andric }; 12958bcb0991SDimitry Andric } // namespace 12968bcb0991SDimitry Andric 12978bcb0991SDimitry Andric KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, 1298fe6060f1SDimitry Andric MachineBasicBlock *LoopBB, LiveIntervals *LIS) 1299fe6060f1SDimitry Andric : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), 13008bcb0991SDimitry Andric ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), 13018bcb0991SDimitry Andric TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { 13028bcb0991SDimitry Andric PreheaderBB = *BB->pred_begin(); 13038bcb0991SDimitry Andric if (PreheaderBB == BB) 13048bcb0991SDimitry Andric PreheaderBB = *std::next(BB->pred_begin()); 13058bcb0991SDimitry Andric } 13068bcb0991SDimitry Andric 13078bcb0991SDimitry Andric void KernelRewriter::rewrite() { 13088bcb0991SDimitry Andric // Rearrange the loop to be in schedule order. Note that the schedule may 13098bcb0991SDimitry Andric // contain instructions that are not owned by the loop block (InstrChanges and 13108bcb0991SDimitry Andric // friends), so we gracefully handle unowned instructions and delete any 13118bcb0991SDimitry Andric // instructions that weren't in the schedule. 13128bcb0991SDimitry Andric auto InsertPt = BB->getFirstTerminator(); 13138bcb0991SDimitry Andric MachineInstr *FirstMI = nullptr; 13148bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 13158bcb0991SDimitry Andric if (MI->isPHI()) 13168bcb0991SDimitry Andric continue; 13178bcb0991SDimitry Andric if (MI->getParent()) 13188bcb0991SDimitry Andric MI->removeFromParent(); 13198bcb0991SDimitry Andric BB->insert(InsertPt, MI); 13208bcb0991SDimitry Andric if (!FirstMI) 13218bcb0991SDimitry Andric FirstMI = MI; 13228bcb0991SDimitry Andric } 13238bcb0991SDimitry Andric assert(FirstMI && "Failed to find first MI in schedule"); 13248bcb0991SDimitry Andric 13258bcb0991SDimitry Andric // At this point all of the scheduled instructions are between FirstMI 13268bcb0991SDimitry Andric // and the end of the block. Kill from the first non-phi to FirstMI. 13278bcb0991SDimitry Andric for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { 13288bcb0991SDimitry Andric if (LIS) 13298bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*I); 13308bcb0991SDimitry Andric (I++)->eraseFromParent(); 13318bcb0991SDimitry Andric } 13328bcb0991SDimitry Andric 13338bcb0991SDimitry Andric // Now remap every instruction in the loop. 13348bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 13358bcb0991SDimitry Andric if (MI.isPHI() || MI.isTerminator()) 13368bcb0991SDimitry Andric continue; 13378bcb0991SDimitry Andric for (MachineOperand &MO : MI.uses()) { 13388bcb0991SDimitry Andric if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) 13398bcb0991SDimitry Andric continue; 13408bcb0991SDimitry Andric Register Reg = remapUse(MO.getReg(), MI); 13418bcb0991SDimitry Andric MO.setReg(Reg); 13428bcb0991SDimitry Andric } 13438bcb0991SDimitry Andric } 13448bcb0991SDimitry Andric EliminateDeadPhis(BB, MRI, LIS); 13458bcb0991SDimitry Andric 13468bcb0991SDimitry Andric // Ensure a phi exists for all instructions that are either referenced by 13478bcb0991SDimitry Andric // an illegal phi or by an instruction outside the loop. This allows us to 13488bcb0991SDimitry Andric // treat remaps of these values the same as "normal" values that come from 13498bcb0991SDimitry Andric // loop-carried phis. 13508bcb0991SDimitry Andric for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { 13518bcb0991SDimitry Andric if (MI->isPHI()) { 13528bcb0991SDimitry Andric Register R = MI->getOperand(0).getReg(); 13538bcb0991SDimitry Andric phi(R); 13548bcb0991SDimitry Andric continue; 13558bcb0991SDimitry Andric } 13568bcb0991SDimitry Andric 13578bcb0991SDimitry Andric for (MachineOperand &Def : MI->defs()) { 13588bcb0991SDimitry Andric for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) { 13598bcb0991SDimitry Andric if (MI.getParent() != BB) { 13608bcb0991SDimitry Andric phi(Def.getReg()); 13618bcb0991SDimitry Andric break; 13628bcb0991SDimitry Andric } 13638bcb0991SDimitry Andric } 13648bcb0991SDimitry Andric } 13658bcb0991SDimitry Andric } 13668bcb0991SDimitry Andric } 13678bcb0991SDimitry Andric 13688bcb0991SDimitry Andric Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { 13698bcb0991SDimitry Andric MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); 13708bcb0991SDimitry Andric if (!Producer) 13718bcb0991SDimitry Andric return Reg; 13728bcb0991SDimitry Andric 13738bcb0991SDimitry Andric int ConsumerStage = S.getStage(&MI); 13748bcb0991SDimitry Andric if (!Producer->isPHI()) { 13758bcb0991SDimitry Andric // Non-phi producers are simple to remap. Insert as many phis as the 13768bcb0991SDimitry Andric // difference between the consumer and producer stages. 13778bcb0991SDimitry Andric if (Producer->getParent() != BB) 13788bcb0991SDimitry Andric // Producer was not inside the loop. Use the register as-is. 13798bcb0991SDimitry Andric return Reg; 13808bcb0991SDimitry Andric int ProducerStage = S.getStage(Producer); 13818bcb0991SDimitry Andric assert(ConsumerStage != -1 && 13828bcb0991SDimitry Andric "In-loop consumer should always be scheduled!"); 13838bcb0991SDimitry Andric assert(ConsumerStage >= ProducerStage); 13848bcb0991SDimitry Andric unsigned StageDiff = ConsumerStage - ProducerStage; 13858bcb0991SDimitry Andric 13868bcb0991SDimitry Andric for (unsigned I = 0; I < StageDiff; ++I) 13878bcb0991SDimitry Andric Reg = phi(Reg); 13888bcb0991SDimitry Andric return Reg; 13898bcb0991SDimitry Andric } 13908bcb0991SDimitry Andric 13918bcb0991SDimitry Andric // First, dive through the phi chain to find the defaults for the generated 13928bcb0991SDimitry Andric // phis. 1393bdd1243dSDimitry Andric SmallVector<std::optional<Register>, 4> Defaults; 13948bcb0991SDimitry Andric Register LoopReg = Reg; 13958bcb0991SDimitry Andric auto LoopProducer = Producer; 13968bcb0991SDimitry Andric while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { 13978bcb0991SDimitry Andric LoopReg = getLoopPhiReg(*LoopProducer, BB); 13988bcb0991SDimitry Andric Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB)); 13998bcb0991SDimitry Andric LoopProducer = MRI.getUniqueVRegDef(LoopReg); 14008bcb0991SDimitry Andric assert(LoopProducer); 14018bcb0991SDimitry Andric } 14028bcb0991SDimitry Andric int LoopProducerStage = S.getStage(LoopProducer); 14038bcb0991SDimitry Andric 1404bdd1243dSDimitry Andric std::optional<Register> IllegalPhiDefault; 14058bcb0991SDimitry Andric 14068bcb0991SDimitry Andric if (LoopProducerStage == -1) { 14078bcb0991SDimitry Andric // Do nothing. 14088bcb0991SDimitry Andric } else if (LoopProducerStage > ConsumerStage) { 14098bcb0991SDimitry Andric // This schedule is only representable if ProducerStage == ConsumerStage+1. 14108bcb0991SDimitry Andric // In addition, Consumer's cycle must be scheduled after Producer in the 14118bcb0991SDimitry Andric // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP 14128bcb0991SDimitry Andric // functions. 14138bcb0991SDimitry Andric #ifndef NDEBUG // Silence unused variables in non-asserts mode. 14148bcb0991SDimitry Andric int LoopProducerCycle = S.getCycle(LoopProducer); 14158bcb0991SDimitry Andric int ConsumerCycle = S.getCycle(&MI); 14168bcb0991SDimitry Andric #endif 14178bcb0991SDimitry Andric assert(LoopProducerCycle <= ConsumerCycle); 14188bcb0991SDimitry Andric assert(LoopProducerStage == ConsumerStage + 1); 14198bcb0991SDimitry Andric // Peel off the first phi from Defaults and insert a phi between producer 14208bcb0991SDimitry Andric // and consumer. This phi will not be at the front of the block so we 14218bcb0991SDimitry Andric // consider it illegal. It will only exist during the rewrite process; it 14228bcb0991SDimitry Andric // needs to exist while we peel off prologs because these could take the 14238bcb0991SDimitry Andric // default value. After that we can replace all uses with the loop producer 14248bcb0991SDimitry Andric // value. 14258bcb0991SDimitry Andric IllegalPhiDefault = Defaults.front(); 14268bcb0991SDimitry Andric Defaults.erase(Defaults.begin()); 14278bcb0991SDimitry Andric } else { 14288bcb0991SDimitry Andric assert(ConsumerStage >= LoopProducerStage); 14298bcb0991SDimitry Andric int StageDiff = ConsumerStage - LoopProducerStage; 14308bcb0991SDimitry Andric if (StageDiff > 0) { 14318bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() 14328bcb0991SDimitry Andric << " to " << (Defaults.size() + StageDiff) << "\n"); 14338bcb0991SDimitry Andric // If we need more phis than we have defaults for, pad out with undefs for 14348bcb0991SDimitry Andric // the earliest phis, which are at the end of the defaults chain (the 14358bcb0991SDimitry Andric // chain is in reverse order). 1436bdd1243dSDimitry Andric Defaults.resize(Defaults.size() + StageDiff, 1437bdd1243dSDimitry Andric Defaults.empty() ? std::optional<Register>() 14388bcb0991SDimitry Andric : Defaults.back()); 14398bcb0991SDimitry Andric } 14408bcb0991SDimitry Andric } 14418bcb0991SDimitry Andric 14428bcb0991SDimitry Andric // Now we know the number of stages to jump back, insert the phi chain. 14438bcb0991SDimitry Andric auto DefaultI = Defaults.rbegin(); 14448bcb0991SDimitry Andric while (DefaultI != Defaults.rend()) 14458bcb0991SDimitry Andric LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg)); 14468bcb0991SDimitry Andric 144781ad6265SDimitry Andric if (IllegalPhiDefault) { 14488bcb0991SDimitry Andric // The consumer optionally consumes LoopProducer in the same iteration 14498bcb0991SDimitry Andric // (because the producer is scheduled at an earlier cycle than the consumer) 14508bcb0991SDimitry Andric // or the initial value. To facilitate this we create an illegal block here 14518bcb0991SDimitry Andric // by embedding a phi in the middle of the block. We will fix this up 14528bcb0991SDimitry Andric // immediately prior to pruning. 14538bcb0991SDimitry Andric auto RC = MRI.getRegClass(Reg); 14548bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 14555ffd83dbSDimitry Andric MachineInstr *IllegalPhi = 14568bcb0991SDimitry Andric BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R) 145781ad6265SDimitry Andric .addReg(*IllegalPhiDefault) 14588bcb0991SDimitry Andric .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect. 14598bcb0991SDimitry Andric .addReg(LoopReg) 14608bcb0991SDimitry Andric .addMBB(BB); // Block choice is arbitrary and has no effect. 14615ffd83dbSDimitry Andric // Illegal phi should belong to the producer stage so that it can be 14625ffd83dbSDimitry Andric // filtered correctly during peeling. 14635ffd83dbSDimitry Andric S.setStage(IllegalPhi, LoopProducerStage); 14648bcb0991SDimitry Andric return R; 14658bcb0991SDimitry Andric } 14668bcb0991SDimitry Andric 14678bcb0991SDimitry Andric return LoopReg; 14688bcb0991SDimitry Andric } 14698bcb0991SDimitry Andric 1470bdd1243dSDimitry Andric Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg, 14718bcb0991SDimitry Andric const TargetRegisterClass *RC) { 14728bcb0991SDimitry Andric // If the init register is not undef, try and find an existing phi. 147381ad6265SDimitry Andric if (InitReg) { 1474bdd1243dSDimitry Andric auto I = Phis.find({LoopReg, *InitReg}); 14758bcb0991SDimitry Andric if (I != Phis.end()) 14768bcb0991SDimitry Andric return I->second; 14778bcb0991SDimitry Andric } else { 14788bcb0991SDimitry Andric for (auto &KV : Phis) { 14798bcb0991SDimitry Andric if (KV.first.first == LoopReg) 14808bcb0991SDimitry Andric return KV.second; 14818bcb0991SDimitry Andric } 14828bcb0991SDimitry Andric } 14838bcb0991SDimitry Andric 14848bcb0991SDimitry Andric // InitReg is either undef or no existing phi takes InitReg as input. Try and 14858bcb0991SDimitry Andric // find a phi that takes undef as input. 14868bcb0991SDimitry Andric auto I = UndefPhis.find(LoopReg); 14878bcb0991SDimitry Andric if (I != UndefPhis.end()) { 14888bcb0991SDimitry Andric Register R = I->second; 148981ad6265SDimitry Andric if (!InitReg) 14908bcb0991SDimitry Andric // Found a phi taking undef as input, and this input is undef so return 14918bcb0991SDimitry Andric // without any more changes. 14928bcb0991SDimitry Andric return R; 14938bcb0991SDimitry Andric // Found a phi taking undef as input, so rewrite it to take InitReg. 14948bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(R); 1495bdd1243dSDimitry Andric MI->getOperand(1).setReg(*InitReg); 1496bdd1243dSDimitry Andric Phis.insert({{LoopReg, *InitReg}, R}); 149781ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 1498bdd1243dSDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 149981ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!"); 150081ad6265SDimitry Andric (void)ConstrainRegClass; 15018bcb0991SDimitry Andric UndefPhis.erase(I); 15028bcb0991SDimitry Andric return R; 15038bcb0991SDimitry Andric } 15048bcb0991SDimitry Andric 15058bcb0991SDimitry Andric // Failed to find any existing phi to reuse, so create a new one. 15068bcb0991SDimitry Andric if (!RC) 15078bcb0991SDimitry Andric RC = MRI.getRegClass(LoopReg); 15088bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 150981ad6265SDimitry Andric if (InitReg) { 151081ad6265SDimitry Andric const TargetRegisterClass *ConstrainRegClass = 15118bcb0991SDimitry Andric MRI.constrainRegClass(R, MRI.getRegClass(*InitReg)); 151281ad6265SDimitry Andric assert(ConstrainRegClass && "Expected a valid constrained register class!"); 151381ad6265SDimitry Andric (void)ConstrainRegClass; 151481ad6265SDimitry Andric } 15158bcb0991SDimitry Andric BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R) 151681ad6265SDimitry Andric .addReg(InitReg ? *InitReg : undef(RC)) 15178bcb0991SDimitry Andric .addMBB(PreheaderBB) 15188bcb0991SDimitry Andric .addReg(LoopReg) 15198bcb0991SDimitry Andric .addMBB(BB); 152081ad6265SDimitry Andric if (!InitReg) 15218bcb0991SDimitry Andric UndefPhis[LoopReg] = R; 15228bcb0991SDimitry Andric else 15238bcb0991SDimitry Andric Phis[{LoopReg, *InitReg}] = R; 15248bcb0991SDimitry Andric return R; 15258bcb0991SDimitry Andric } 15268bcb0991SDimitry Andric 15278bcb0991SDimitry Andric Register KernelRewriter::undef(const TargetRegisterClass *RC) { 15288bcb0991SDimitry Andric Register &R = Undefs[RC]; 15298bcb0991SDimitry Andric if (R == 0) { 15308bcb0991SDimitry Andric // Create an IMPLICIT_DEF that defines this register if we need it. 15318bcb0991SDimitry Andric // All uses of this should be removed by the time we have finished unrolling 15328bcb0991SDimitry Andric // prologs and epilogs. 15338bcb0991SDimitry Andric R = MRI.createVirtualRegister(RC); 15348bcb0991SDimitry Andric auto *InsertBB = &PreheaderBB->getParent()->front(); 15358bcb0991SDimitry Andric BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(), 15368bcb0991SDimitry Andric TII->get(TargetOpcode::IMPLICIT_DEF), R); 15378bcb0991SDimitry Andric } 15388bcb0991SDimitry Andric return R; 15398bcb0991SDimitry Andric } 15408bcb0991SDimitry Andric 15418bcb0991SDimitry Andric namespace { 15428bcb0991SDimitry Andric /// Describes an operand in the kernel of a pipelined loop. Characteristics of 15438bcb0991SDimitry Andric /// the operand are discovered, such as how many in-loop PHIs it has to jump 15448bcb0991SDimitry Andric /// through and defaults for these phis. 15458bcb0991SDimitry Andric class KernelOperandInfo { 15468bcb0991SDimitry Andric MachineBasicBlock *BB; 15478bcb0991SDimitry Andric MachineRegisterInfo &MRI; 15488bcb0991SDimitry Andric SmallVector<Register, 4> PhiDefaults; 15498bcb0991SDimitry Andric MachineOperand *Source; 15508bcb0991SDimitry Andric MachineOperand *Target; 15518bcb0991SDimitry Andric 15528bcb0991SDimitry Andric public: 15538bcb0991SDimitry Andric KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, 15548bcb0991SDimitry Andric const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) 15558bcb0991SDimitry Andric : MRI(MRI) { 15568bcb0991SDimitry Andric Source = MO; 15578bcb0991SDimitry Andric BB = MO->getParent()->getParent(); 15588bcb0991SDimitry Andric while (isRegInLoop(MO)) { 15598bcb0991SDimitry Andric MachineInstr *MI = MRI.getVRegDef(MO->getReg()); 15608bcb0991SDimitry Andric if (MI->isFullCopy()) { 15618bcb0991SDimitry Andric MO = &MI->getOperand(1); 15628bcb0991SDimitry Andric continue; 15638bcb0991SDimitry Andric } 15648bcb0991SDimitry Andric if (!MI->isPHI()) 15658bcb0991SDimitry Andric break; 15668bcb0991SDimitry Andric // If this is an illegal phi, don't count it in distance. 15678bcb0991SDimitry Andric if (IllegalPhis.count(MI)) { 15688bcb0991SDimitry Andric MO = &MI->getOperand(3); 15698bcb0991SDimitry Andric continue; 15708bcb0991SDimitry Andric } 15718bcb0991SDimitry Andric 15728bcb0991SDimitry Andric Register Default = getInitPhiReg(*MI, BB); 15738bcb0991SDimitry Andric MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1) 15748bcb0991SDimitry Andric : &MI->getOperand(3); 15758bcb0991SDimitry Andric PhiDefaults.push_back(Default); 15768bcb0991SDimitry Andric } 15778bcb0991SDimitry Andric Target = MO; 15788bcb0991SDimitry Andric } 15798bcb0991SDimitry Andric 15808bcb0991SDimitry Andric bool operator==(const KernelOperandInfo &Other) const { 15818bcb0991SDimitry Andric return PhiDefaults.size() == Other.PhiDefaults.size(); 15828bcb0991SDimitry Andric } 15838bcb0991SDimitry Andric 15848bcb0991SDimitry Andric void print(raw_ostream &OS) const { 15858bcb0991SDimitry Andric OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " 15868bcb0991SDimitry Andric << *Source->getParent(); 15878bcb0991SDimitry Andric } 15888bcb0991SDimitry Andric 15898bcb0991SDimitry Andric private: 15908bcb0991SDimitry Andric bool isRegInLoop(MachineOperand *MO) { 15918bcb0991SDimitry Andric return MO->isReg() && MO->getReg().isVirtual() && 15928bcb0991SDimitry Andric MRI.getVRegDef(MO->getReg())->getParent() == BB; 15938bcb0991SDimitry Andric } 15948bcb0991SDimitry Andric }; 15958bcb0991SDimitry Andric } // namespace 15968bcb0991SDimitry Andric 15978bcb0991SDimitry Andric MachineBasicBlock * 15988bcb0991SDimitry Andric PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { 15998bcb0991SDimitry Andric MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII); 16008bcb0991SDimitry Andric if (LPD == LPD_Front) 16018bcb0991SDimitry Andric PeeledFront.push_back(NewBB); 16028bcb0991SDimitry Andric else 16038bcb0991SDimitry Andric PeeledBack.push_front(NewBB); 16048bcb0991SDimitry Andric for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); 16058bcb0991SDimitry Andric ++I, ++NI) { 16068bcb0991SDimitry Andric CanonicalMIs[&*I] = &*I; 16078bcb0991SDimitry Andric CanonicalMIs[&*NI] = &*I; 16088bcb0991SDimitry Andric BlockMIs[{NewBB, &*I}] = &*NI; 16098bcb0991SDimitry Andric BlockMIs[{BB, &*I}] = &*I; 16108bcb0991SDimitry Andric } 16118bcb0991SDimitry Andric return NewBB; 16128bcb0991SDimitry Andric } 16138bcb0991SDimitry Andric 1614480093f4SDimitry Andric void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, 1615480093f4SDimitry Andric int MinStage) { 1616480093f4SDimitry Andric for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); 1617480093f4SDimitry Andric I != std::next(MB->getFirstNonPHI()->getReverseIterator());) { 1618480093f4SDimitry Andric MachineInstr *MI = &*I++; 1619480093f4SDimitry Andric int Stage = getStage(MI); 1620480093f4SDimitry Andric if (Stage == -1 || Stage >= MinStage) 1621480093f4SDimitry Andric continue; 1622480093f4SDimitry Andric 1623480093f4SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 1624480093f4SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 1625480093f4SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 1626480093f4SDimitry Andric // Only PHIs can use values from this block by construction. 1627480093f4SDimitry Andric // Match with the equivalent PHI in B. 1628480093f4SDimitry Andric assert(UseMI.isPHI()); 1629480093f4SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 1630480093f4SDimitry Andric MI->getParent()); 1631480093f4SDimitry Andric Subs.emplace_back(&UseMI, Reg); 1632480093f4SDimitry Andric } 1633480093f4SDimitry Andric for (auto &Sub : Subs) 1634480093f4SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 1635480093f4SDimitry Andric *MRI.getTargetRegisterInfo()); 1636480093f4SDimitry Andric } 1637480093f4SDimitry Andric if (LIS) 1638480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1639480093f4SDimitry Andric MI->eraseFromParent(); 1640480093f4SDimitry Andric } 1641480093f4SDimitry Andric } 1642480093f4SDimitry Andric 1643480093f4SDimitry Andric void PeelingModuloScheduleExpander::moveStageBetweenBlocks( 1644480093f4SDimitry Andric MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { 1645480093f4SDimitry Andric auto InsertPt = DestBB->getFirstNonPHI(); 1646480093f4SDimitry Andric DenseMap<Register, Register> Remaps; 1647349cc55cSDimitry Andric for (MachineInstr &MI : llvm::make_early_inc_range( 1648349cc55cSDimitry Andric llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) { 1649349cc55cSDimitry Andric if (MI.isPHI()) { 1650480093f4SDimitry Andric // This is an illegal PHI. If we move any instructions using an illegal 16515ffd83dbSDimitry Andric // PHI, we need to create a legal Phi. 1652349cc55cSDimitry Andric if (getStage(&MI) != Stage) { 16535ffd83dbSDimitry Andric // The legal Phi is not necessary if the illegal phi's stage 16545ffd83dbSDimitry Andric // is being moved. 1655349cc55cSDimitry Andric Register PhiR = MI.getOperand(0).getReg(); 1656480093f4SDimitry Andric auto RC = MRI.getRegClass(PhiR); 1657480093f4SDimitry Andric Register NR = MRI.createVirtualRegister(RC); 16585ffd83dbSDimitry Andric MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(), 16595ffd83dbSDimitry Andric DebugLoc(), TII->get(TargetOpcode::PHI), NR) 1660480093f4SDimitry Andric .addReg(PhiR) 1661480093f4SDimitry Andric .addMBB(SourceBB); 1662349cc55cSDimitry Andric BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; 1663349cc55cSDimitry Andric CanonicalMIs[NI] = CanonicalMIs[&MI]; 1664480093f4SDimitry Andric Remaps[PhiR] = NR; 16655ffd83dbSDimitry Andric } 1666480093f4SDimitry Andric } 1667349cc55cSDimitry Andric if (getStage(&MI) != Stage) 1668480093f4SDimitry Andric continue; 1669349cc55cSDimitry Andric MI.removeFromParent(); 1670349cc55cSDimitry Andric DestBB->insert(InsertPt, &MI); 1671349cc55cSDimitry Andric auto *KernelMI = CanonicalMIs[&MI]; 1672349cc55cSDimitry Andric BlockMIs[{DestBB, KernelMI}] = &MI; 1673480093f4SDimitry Andric BlockMIs.erase({SourceBB, KernelMI}); 1674480093f4SDimitry Andric } 1675480093f4SDimitry Andric SmallVector<MachineInstr *, 4> PhiToDelete; 1676480093f4SDimitry Andric for (MachineInstr &MI : DestBB->phis()) { 1677480093f4SDimitry Andric assert(MI.getNumOperands() == 3); 1678480093f4SDimitry Andric MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg()); 1679480093f4SDimitry Andric // If the instruction referenced by the phi is moved inside the block 1680480093f4SDimitry Andric // we don't need the phi anymore. 1681480093f4SDimitry Andric if (getStage(Def) == Stage) { 1682480093f4SDimitry Andric Register PhiReg = MI.getOperand(0).getReg(); 16830fca6ea1SDimitry Andric assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(), 16840fca6ea1SDimitry Andric /*TRI=*/nullptr) != -1); 16855ffd83dbSDimitry Andric MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); 1686480093f4SDimitry Andric MI.getOperand(0).setReg(PhiReg); 1687480093f4SDimitry Andric PhiToDelete.push_back(&MI); 1688480093f4SDimitry Andric } 1689480093f4SDimitry Andric } 1690480093f4SDimitry Andric for (auto *P : PhiToDelete) 1691480093f4SDimitry Andric P->eraseFromParent(); 1692480093f4SDimitry Andric InsertPt = DestBB->getFirstNonPHI(); 1693480093f4SDimitry Andric // Helper to clone Phi instructions into the destination block. We clone Phi 1694480093f4SDimitry Andric // greedily to avoid combinatorial explosion of Phi instructions. 1695480093f4SDimitry Andric auto clonePhi = [&](MachineInstr *Phi) { 1696480093f4SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(Phi); 1697480093f4SDimitry Andric DestBB->insert(InsertPt, NewMI); 1698480093f4SDimitry Andric Register OrigR = Phi->getOperand(0).getReg(); 1699480093f4SDimitry Andric Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR)); 1700480093f4SDimitry Andric NewMI->getOperand(0).setReg(R); 1701480093f4SDimitry Andric NewMI->getOperand(1).setReg(OrigR); 1702480093f4SDimitry Andric NewMI->getOperand(2).setMBB(*DestBB->pred_begin()); 1703480093f4SDimitry Andric Remaps[OrigR] = R; 1704480093f4SDimitry Andric CanonicalMIs[NewMI] = CanonicalMIs[Phi]; 1705480093f4SDimitry Andric BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; 1706480093f4SDimitry Andric PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; 1707480093f4SDimitry Andric return R; 1708480093f4SDimitry Andric }; 1709480093f4SDimitry Andric for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { 1710480093f4SDimitry Andric for (MachineOperand &MO : I->uses()) { 1711480093f4SDimitry Andric if (!MO.isReg()) 1712480093f4SDimitry Andric continue; 1713480093f4SDimitry Andric if (Remaps.count(MO.getReg())) 1714480093f4SDimitry Andric MO.setReg(Remaps[MO.getReg()]); 1715480093f4SDimitry Andric else { 1716480093f4SDimitry Andric // If we are using a phi from the source block we need to add a new phi 1717480093f4SDimitry Andric // pointing to the old one. 1718480093f4SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg()); 1719480093f4SDimitry Andric if (Use && Use->isPHI() && Use->getParent() == SourceBB) { 1720480093f4SDimitry Andric Register R = clonePhi(Use); 1721480093f4SDimitry Andric MO.setReg(R); 1722480093f4SDimitry Andric } 1723480093f4SDimitry Andric } 1724480093f4SDimitry Andric } 1725480093f4SDimitry Andric } 1726480093f4SDimitry Andric } 1727480093f4SDimitry Andric 1728480093f4SDimitry Andric Register 1729480093f4SDimitry Andric PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, 1730480093f4SDimitry Andric MachineInstr *Phi) { 1731480093f4SDimitry Andric unsigned distance = PhiNodeLoopIteration[Phi]; 1732480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalPhi; 17335ffd83dbSDimitry Andric Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg(); 1734480093f4SDimitry Andric for (unsigned I = 0; I < distance; ++I) { 1735480093f4SDimitry Andric assert(CanonicalUse->isPHI()); 1736480093f4SDimitry Andric assert(CanonicalUse->getNumOperands() == 5); 1737480093f4SDimitry Andric unsigned LoopRegIdx = 3, InitRegIdx = 1; 1738480093f4SDimitry Andric if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent()) 1739480093f4SDimitry Andric std::swap(LoopRegIdx, InitRegIdx); 17405ffd83dbSDimitry Andric CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg(); 17415ffd83dbSDimitry Andric CanonicalUse = MRI.getVRegDef(CanonicalUseReg); 1742480093f4SDimitry Andric } 17435ffd83dbSDimitry Andric return CanonicalUseReg; 1744480093f4SDimitry Andric } 1745480093f4SDimitry Andric 17468bcb0991SDimitry Andric void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { 17478bcb0991SDimitry Andric BitVector LS(Schedule.getNumStages(), true); 17488bcb0991SDimitry Andric BitVector AS(Schedule.getNumStages(), true); 17498bcb0991SDimitry Andric LiveStages[BB] = LS; 17508bcb0991SDimitry Andric AvailableStages[BB] = AS; 17518bcb0991SDimitry Andric 17528bcb0991SDimitry Andric // Peel out the prologs. 17538bcb0991SDimitry Andric LS.reset(); 17548bcb0991SDimitry Andric for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { 175504eeddc0SDimitry Andric LS[I] = true; 17568bcb0991SDimitry Andric Prologs.push_back(peelKernel(LPD_Front)); 17578bcb0991SDimitry Andric LiveStages[Prologs.back()] = LS; 17588bcb0991SDimitry Andric AvailableStages[Prologs.back()] = LS; 17598bcb0991SDimitry Andric } 17608bcb0991SDimitry Andric 17618bcb0991SDimitry Andric // Create a block that will end up as the new loop exiting block (dominated by 17628bcb0991SDimitry Andric // all prologs and epilogs). It will only contain PHIs, in the same order as 17638bcb0991SDimitry Andric // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property 17648bcb0991SDimitry Andric // that the exiting block is a (sub) clone of BB. This in turn gives us the 17658bcb0991SDimitry Andric // property that any value deffed in BB but used outside of BB is used by a 17668bcb0991SDimitry Andric // PHI in the exiting block. 17678bcb0991SDimitry Andric MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); 1768480093f4SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); 17698bcb0991SDimitry Andric // Push out the epilogs, again in reverse order. 17708bcb0991SDimitry Andric // We can't assume anything about the minumum loop trip count at this point, 1771480093f4SDimitry Andric // so emit a fairly complex epilog. 1772480093f4SDimitry Andric 1773480093f4SDimitry Andric // We first peel number of stages minus one epilogue. Then we remove dead 1774480093f4SDimitry Andric // stages and reorder instructions based on their stage. If we have 3 stages 1775480093f4SDimitry Andric // we generate first: 1776480093f4SDimitry Andric // E0[3, 2, 1] 1777480093f4SDimitry Andric // E1[3', 2'] 1778480093f4SDimitry Andric // E2[3''] 1779480093f4SDimitry Andric // And then we move instructions based on their stages to have: 1780480093f4SDimitry Andric // E0[3] 1781480093f4SDimitry Andric // E1[2, 3'] 1782480093f4SDimitry Andric // E2[1, 2', 3''] 1783480093f4SDimitry Andric // The transformation is legal because we only move instructions past 1784480093f4SDimitry Andric // instructions of a previous loop iteration. 17858bcb0991SDimitry Andric for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { 1786480093f4SDimitry Andric Epilogs.push_back(peelKernel(LPD_Back)); 1787480093f4SDimitry Andric MachineBasicBlock *B = Epilogs.back(); 1788480093f4SDimitry Andric filterInstructions(B, Schedule.getNumStages() - I); 1789480093f4SDimitry Andric // Keep track at which iteration each phi belongs to. We need it to know 1790480093f4SDimitry Andric // what version of the variable to use during prologue/epilogue stitching. 1791480093f4SDimitry Andric EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true); 1792349cc55cSDimitry Andric for (MachineInstr &Phi : B->phis()) 1793349cc55cSDimitry Andric PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; 17948bcb0991SDimitry Andric } 1795480093f4SDimitry Andric for (size_t I = 0; I < Epilogs.size(); I++) { 1796480093f4SDimitry Andric LS.reset(); 1797480093f4SDimitry Andric for (size_t J = I; J < Epilogs.size(); J++) { 1798480093f4SDimitry Andric int Iteration = J; 1799480093f4SDimitry Andric unsigned Stage = Schedule.getNumStages() - 1 + I - J; 1800480093f4SDimitry Andric // Move stage one block at a time so that Phi nodes are updated correctly. 1801480093f4SDimitry Andric for (size_t K = Iteration; K > I; K--) 1802480093f4SDimitry Andric moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage); 180304eeddc0SDimitry Andric LS[Stage] = true; 1804480093f4SDimitry Andric } 1805480093f4SDimitry Andric LiveStages[Epilogs[I]] = LS; 1806480093f4SDimitry Andric AvailableStages[Epilogs[I]] = AS; 18078bcb0991SDimitry Andric } 18088bcb0991SDimitry Andric 18098bcb0991SDimitry Andric // Now we've defined all the prolog and epilog blocks as a fallthrough 18108bcb0991SDimitry Andric // sequence, add the edges that will be followed if the loop trip count is 18118bcb0991SDimitry Andric // lower than the number of stages (connecting prologs directly with epilogs). 18128bcb0991SDimitry Andric auto PI = Prologs.begin(); 18138bcb0991SDimitry Andric auto EI = Epilogs.begin(); 18148bcb0991SDimitry Andric assert(Prologs.size() == Epilogs.size()); 18158bcb0991SDimitry Andric for (; PI != Prologs.end(); ++PI, ++EI) { 18168bcb0991SDimitry Andric MachineBasicBlock *Pred = *(*EI)->pred_begin(); 18178bcb0991SDimitry Andric (*PI)->addSuccessor(*EI); 18188bcb0991SDimitry Andric for (MachineInstr &MI : (*EI)->phis()) { 18198bcb0991SDimitry Andric Register Reg = MI.getOperand(1).getReg(); 18208bcb0991SDimitry Andric MachineInstr *Use = MRI.getUniqueVRegDef(Reg); 1821480093f4SDimitry Andric if (Use && Use->getParent() == Pred) { 1822480093f4SDimitry Andric MachineInstr *CanonicalUse = CanonicalMIs[Use]; 1823480093f4SDimitry Andric if (CanonicalUse->isPHI()) { 1824480093f4SDimitry Andric // If the use comes from a phi we need to skip as many phi as the 1825480093f4SDimitry Andric // distance between the epilogue and the kernel. Trace through the phi 1826480093f4SDimitry Andric // chain to find the right value. 1827480093f4SDimitry Andric Reg = getPhiCanonicalReg(CanonicalUse, Use); 1828480093f4SDimitry Andric } 18298bcb0991SDimitry Andric Reg = getEquivalentRegisterIn(Reg, *PI); 1830480093f4SDimitry Andric } 18318bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false)); 18328bcb0991SDimitry Andric MI.addOperand(MachineOperand::CreateMBB(*PI)); 18338bcb0991SDimitry Andric } 18348bcb0991SDimitry Andric } 18358bcb0991SDimitry Andric 18368bcb0991SDimitry Andric // Create a list of all blocks in order. 18378bcb0991SDimitry Andric SmallVector<MachineBasicBlock *, 8> Blocks; 18388bcb0991SDimitry Andric llvm::copy(PeeledFront, std::back_inserter(Blocks)); 18398bcb0991SDimitry Andric Blocks.push_back(BB); 18408bcb0991SDimitry Andric llvm::copy(PeeledBack, std::back_inserter(Blocks)); 18418bcb0991SDimitry Andric 18428bcb0991SDimitry Andric // Iterate in reverse order over all instructions, remapping as we go. 18438bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) { 184481ad6265SDimitry Andric for (auto I = B->instr_rbegin(); 18458bcb0991SDimitry Andric I != std::next(B->getFirstNonPHI()->getReverseIterator());) { 184681ad6265SDimitry Andric MachineBasicBlock::reverse_instr_iterator MI = I++; 184781ad6265SDimitry Andric rewriteUsesOf(&*MI); 18488bcb0991SDimitry Andric } 18498bcb0991SDimitry Andric } 1850480093f4SDimitry Andric for (auto *MI : IllegalPhisToDelete) { 1851480093f4SDimitry Andric if (LIS) 1852480093f4SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 1853480093f4SDimitry Andric MI->eraseFromParent(); 1854480093f4SDimitry Andric } 1855480093f4SDimitry Andric IllegalPhisToDelete.clear(); 1856480093f4SDimitry Andric 18578bcb0991SDimitry Andric // Now all remapping has been done, we're free to optimize the generated code. 18588bcb0991SDimitry Andric for (MachineBasicBlock *B : reverse(Blocks)) 18598bcb0991SDimitry Andric EliminateDeadPhis(B, MRI, LIS); 18608bcb0991SDimitry Andric EliminateDeadPhis(ExitingBB, MRI, LIS); 18618bcb0991SDimitry Andric } 18628bcb0991SDimitry Andric 18638bcb0991SDimitry Andric MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { 18648bcb0991SDimitry Andric MachineFunction &MF = *BB->getParent(); 18658bcb0991SDimitry Andric MachineBasicBlock *Exit = *BB->succ_begin(); 18668bcb0991SDimitry Andric if (Exit == BB) 18678bcb0991SDimitry Andric Exit = *std::next(BB->succ_begin()); 18688bcb0991SDimitry Andric 18698bcb0991SDimitry Andric MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 18708bcb0991SDimitry Andric MF.insert(std::next(BB->getIterator()), NewBB); 18718bcb0991SDimitry Andric 18728bcb0991SDimitry Andric // Clone all phis in BB into NewBB and rewrite. 18738bcb0991SDimitry Andric for (MachineInstr &MI : BB->phis()) { 18748bcb0991SDimitry Andric auto RC = MRI.getRegClass(MI.getOperand(0).getReg()); 18758bcb0991SDimitry Andric Register OldR = MI.getOperand(3).getReg(); 18768bcb0991SDimitry Andric Register R = MRI.createVirtualRegister(RC); 18778bcb0991SDimitry Andric SmallVector<MachineInstr *, 4> Uses; 18788bcb0991SDimitry Andric for (MachineInstr &Use : MRI.use_instructions(OldR)) 18798bcb0991SDimitry Andric if (Use.getParent() != BB) 18808bcb0991SDimitry Andric Uses.push_back(&Use); 18818bcb0991SDimitry Andric for (MachineInstr *Use : Uses) 18828bcb0991SDimitry Andric Use->substituteRegister(OldR, R, /*SubIdx=*/0, 18838bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 18848bcb0991SDimitry Andric MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R) 18858bcb0991SDimitry Andric .addReg(OldR) 18868bcb0991SDimitry Andric .addMBB(BB); 18878bcb0991SDimitry Andric BlockMIs[{NewBB, &MI}] = NI; 18888bcb0991SDimitry Andric CanonicalMIs[NI] = &MI; 18898bcb0991SDimitry Andric } 18908bcb0991SDimitry Andric BB->replaceSuccessor(Exit, NewBB); 18918bcb0991SDimitry Andric Exit->replacePhiUsesWith(BB, NewBB); 18928bcb0991SDimitry Andric NewBB->addSuccessor(Exit); 18938bcb0991SDimitry Andric 18948bcb0991SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 18958bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 18968bcb0991SDimitry Andric bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond); 18978bcb0991SDimitry Andric (void)CanAnalyzeBr; 18988bcb0991SDimitry Andric assert(CanAnalyzeBr && "Must be able to analyze the loop branch!"); 18998bcb0991SDimitry Andric TII->removeBranch(*BB); 19008bcb0991SDimitry Andric TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB, 19018bcb0991SDimitry Andric Cond, DebugLoc()); 19028bcb0991SDimitry Andric TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc()); 19038bcb0991SDimitry Andric return NewBB; 19048bcb0991SDimitry Andric } 19058bcb0991SDimitry Andric 19068bcb0991SDimitry Andric Register 19078bcb0991SDimitry Andric PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, 19088bcb0991SDimitry Andric MachineBasicBlock *BB) { 19098bcb0991SDimitry Andric MachineInstr *MI = MRI.getUniqueVRegDef(Reg); 19100fca6ea1SDimitry Andric unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr); 19118bcb0991SDimitry Andric return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg(); 19128bcb0991SDimitry Andric } 19138bcb0991SDimitry Andric 19148bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { 19158bcb0991SDimitry Andric if (MI->isPHI()) { 19168bcb0991SDimitry Andric // This is an illegal PHI. The loop-carried (desired) value is operand 3, 19178bcb0991SDimitry Andric // and it is produced by this block. 19188bcb0991SDimitry Andric Register PhiR = MI->getOperand(0).getReg(); 19198bcb0991SDimitry Andric Register R = MI->getOperand(3).getReg(); 19208bcb0991SDimitry Andric int RMIStage = getStage(MRI.getUniqueVRegDef(R)); 19218bcb0991SDimitry Andric if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage)) 19228bcb0991SDimitry Andric R = MI->getOperand(1).getReg(); 19238bcb0991SDimitry Andric MRI.setRegClass(R, MRI.getRegClass(PhiR)); 19248bcb0991SDimitry Andric MRI.replaceRegWith(PhiR, R); 1925480093f4SDimitry Andric // Postpone deleting the Phi as it may be referenced by BlockMIs and used 1926480093f4SDimitry Andric // later to figure out how to remap registers. 1927480093f4SDimitry Andric MI->getOperand(0).setReg(PhiR); 1928480093f4SDimitry Andric IllegalPhisToDelete.push_back(MI); 19298bcb0991SDimitry Andric return; 19308bcb0991SDimitry Andric } 19318bcb0991SDimitry Andric 19328bcb0991SDimitry Andric int Stage = getStage(MI); 19338bcb0991SDimitry Andric if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 || 19348bcb0991SDimitry Andric LiveStages[MI->getParent()].test(Stage)) 19358bcb0991SDimitry Andric // Instruction is live, no rewriting to do. 19368bcb0991SDimitry Andric return; 19378bcb0991SDimitry Andric 19388bcb0991SDimitry Andric for (MachineOperand &DefMO : MI->defs()) { 19398bcb0991SDimitry Andric SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; 19408bcb0991SDimitry Andric for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) { 19418bcb0991SDimitry Andric // Only PHIs can use values from this block by construction. 19428bcb0991SDimitry Andric // Match with the equivalent PHI in B. 19438bcb0991SDimitry Andric assert(UseMI.isPHI()); 19448bcb0991SDimitry Andric Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(), 19458bcb0991SDimitry Andric MI->getParent()); 19468bcb0991SDimitry Andric Subs.emplace_back(&UseMI, Reg); 19478bcb0991SDimitry Andric } 19488bcb0991SDimitry Andric for (auto &Sub : Subs) 19498bcb0991SDimitry Andric Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0, 19508bcb0991SDimitry Andric *MRI.getTargetRegisterInfo()); 19518bcb0991SDimitry Andric } 19528bcb0991SDimitry Andric if (LIS) 19538bcb0991SDimitry Andric LIS->RemoveMachineInstrFromMaps(*MI); 19548bcb0991SDimitry Andric MI->eraseFromParent(); 19558bcb0991SDimitry Andric } 19568bcb0991SDimitry Andric 19578bcb0991SDimitry Andric void PeelingModuloScheduleExpander::fixupBranches() { 19588bcb0991SDimitry Andric // Work outwards from the kernel. 19598bcb0991SDimitry Andric bool KernelDisposed = false; 19608bcb0991SDimitry Andric int TC = Schedule.getNumStages() - 1; 19618bcb0991SDimitry Andric for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); 19628bcb0991SDimitry Andric ++PI, ++EI, --TC) { 19638bcb0991SDimitry Andric MachineBasicBlock *Prolog = *PI; 19648bcb0991SDimitry Andric MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); 19658bcb0991SDimitry Andric MachineBasicBlock *Epilog = *EI; 19668bcb0991SDimitry Andric SmallVector<MachineOperand, 4> Cond; 19678bcb0991SDimitry Andric TII->removeBranch(*Prolog); 1968bdd1243dSDimitry Andric std::optional<bool> StaticallyGreater = 19695ffd83dbSDimitry Andric LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond); 197081ad6265SDimitry Andric if (!StaticallyGreater) { 19718bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n"); 19728bcb0991SDimitry Andric // Dynamically branch based on Cond. 19738bcb0991SDimitry Andric TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc()); 19748bcb0991SDimitry Andric } else if (*StaticallyGreater == false) { 19758bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n"); 19768bcb0991SDimitry Andric // Prolog never falls through; branch to epilog and orphan interior 19778bcb0991SDimitry Andric // blocks. Leave it to unreachable-block-elim to clean up. 19788bcb0991SDimitry Andric Prolog->removeSuccessor(Fallthrough); 19798bcb0991SDimitry Andric for (MachineInstr &P : Fallthrough->phis()) { 198081ad6265SDimitry Andric P.removeOperand(2); 198181ad6265SDimitry Andric P.removeOperand(1); 19828bcb0991SDimitry Andric } 19838bcb0991SDimitry Andric TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc()); 19848bcb0991SDimitry Andric KernelDisposed = true; 19858bcb0991SDimitry Andric } else { 19868bcb0991SDimitry Andric LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n"); 19878bcb0991SDimitry Andric // Prolog always falls through; remove incoming values in epilog. 19888bcb0991SDimitry Andric Prolog->removeSuccessor(Epilog); 19898bcb0991SDimitry Andric for (MachineInstr &P : Epilog->phis()) { 199081ad6265SDimitry Andric P.removeOperand(4); 199181ad6265SDimitry Andric P.removeOperand(3); 19928bcb0991SDimitry Andric } 19938bcb0991SDimitry Andric } 19948bcb0991SDimitry Andric } 19958bcb0991SDimitry Andric 19968bcb0991SDimitry Andric if (!KernelDisposed) { 19975ffd83dbSDimitry Andric LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1)); 19985ffd83dbSDimitry Andric LoopInfo->setPreheader(Prologs.back()); 19998bcb0991SDimitry Andric } else { 20005ffd83dbSDimitry Andric LoopInfo->disposed(); 20018bcb0991SDimitry Andric } 20028bcb0991SDimitry Andric } 20038bcb0991SDimitry Andric 20048bcb0991SDimitry Andric void PeelingModuloScheduleExpander::rewriteKernel() { 2005fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 20068bcb0991SDimitry Andric KR.rewrite(); 20078bcb0991SDimitry Andric } 20088bcb0991SDimitry Andric 20098bcb0991SDimitry Andric void PeelingModuloScheduleExpander::expand() { 20108bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 20118bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 20128bcb0991SDimitry Andric LLVM_DEBUG(Schedule.dump()); 20135ffd83dbSDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(BB); 20145ffd83dbSDimitry Andric assert(LoopInfo); 20158bcb0991SDimitry Andric 20168bcb0991SDimitry Andric rewriteKernel(); 20178bcb0991SDimitry Andric peelPrologAndEpilogs(); 20188bcb0991SDimitry Andric fixupBranches(); 20198bcb0991SDimitry Andric } 20208bcb0991SDimitry Andric 20218bcb0991SDimitry Andric void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { 20228bcb0991SDimitry Andric BB = Schedule.getLoop()->getTopBlock(); 20238bcb0991SDimitry Andric Preheader = Schedule.getLoop()->getLoopPreheader(); 20248bcb0991SDimitry Andric 20258bcb0991SDimitry Andric // Dump the schedule before we invalidate and remap all its instructions. 20268bcb0991SDimitry Andric // Stash it in a string so we can print it if we found an error. 20278bcb0991SDimitry Andric std::string ScheduleDump; 20288bcb0991SDimitry Andric raw_string_ostream OS(ScheduleDump); 20298bcb0991SDimitry Andric Schedule.print(OS); 20308bcb0991SDimitry Andric OS.flush(); 20318bcb0991SDimitry Andric 20328bcb0991SDimitry Andric // First, run the normal ModuleScheduleExpander. We don't support any 20338bcb0991SDimitry Andric // InstrChanges. 20348bcb0991SDimitry Andric assert(LIS && "Requires LiveIntervals!"); 20358bcb0991SDimitry Andric ModuloScheduleExpander MSE(MF, Schedule, *LIS, 20368bcb0991SDimitry Andric ModuloScheduleExpander::InstrChangesTy()); 20378bcb0991SDimitry Andric MSE.expand(); 20388bcb0991SDimitry Andric MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); 20398bcb0991SDimitry Andric if (!ExpandedKernel) { 20408bcb0991SDimitry Andric // The expander optimized away the kernel. We can't do any useful checking. 20418bcb0991SDimitry Andric MSE.cleanup(); 20428bcb0991SDimitry Andric return; 20438bcb0991SDimitry Andric } 20448bcb0991SDimitry Andric // Before running the KernelRewriter, re-add BB into the CFG. 20458bcb0991SDimitry Andric Preheader->addSuccessor(BB); 20468bcb0991SDimitry Andric 20478bcb0991SDimitry Andric // Now run the new expansion algorithm. 2048fe6060f1SDimitry Andric KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); 20498bcb0991SDimitry Andric KR.rewrite(); 20508bcb0991SDimitry Andric peelPrologAndEpilogs(); 20518bcb0991SDimitry Andric 20528bcb0991SDimitry Andric // Collect all illegal phis that the new algorithm created. We'll give these 20538bcb0991SDimitry Andric // to KernelOperandInfo. 20548bcb0991SDimitry Andric SmallPtrSet<MachineInstr *, 4> IllegalPhis; 20558bcb0991SDimitry Andric for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { 20568bcb0991SDimitry Andric if (NI->isPHI()) 20578bcb0991SDimitry Andric IllegalPhis.insert(&*NI); 20588bcb0991SDimitry Andric } 20598bcb0991SDimitry Andric 20608bcb0991SDimitry Andric // Co-iterate across both kernels. We expect them to be identical apart from 20618bcb0991SDimitry Andric // phis and full COPYs (we look through both). 20628bcb0991SDimitry Andric SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; 20638bcb0991SDimitry Andric auto OI = ExpandedKernel->begin(); 20648bcb0991SDimitry Andric auto NI = BB->begin(); 20658bcb0991SDimitry Andric for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { 20668bcb0991SDimitry Andric while (OI->isPHI() || OI->isFullCopy()) 20678bcb0991SDimitry Andric ++OI; 20688bcb0991SDimitry Andric while (NI->isPHI() || NI->isFullCopy()) 20698bcb0991SDimitry Andric ++NI; 20708bcb0991SDimitry Andric assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!"); 20718bcb0991SDimitry Andric // Analyze every operand separately. 20728bcb0991SDimitry Andric for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); 20738bcb0991SDimitry Andric OOpI != OI->operands_end(); ++OOpI, ++NOpI) 20748bcb0991SDimitry Andric KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis), 20758bcb0991SDimitry Andric KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); 20768bcb0991SDimitry Andric } 20778bcb0991SDimitry Andric 20788bcb0991SDimitry Andric bool Failed = false; 20798bcb0991SDimitry Andric for (auto &OldAndNew : KOIs) { 20808bcb0991SDimitry Andric if (OldAndNew.first == OldAndNew.second) 20818bcb0991SDimitry Andric continue; 20828bcb0991SDimitry Andric Failed = true; 20838bcb0991SDimitry Andric errs() << "Modulo kernel validation error: [\n"; 20848bcb0991SDimitry Andric errs() << " [golden] "; 20858bcb0991SDimitry Andric OldAndNew.first.print(errs()); 20868bcb0991SDimitry Andric errs() << " "; 20878bcb0991SDimitry Andric OldAndNew.second.print(errs()); 20888bcb0991SDimitry Andric errs() << "]\n"; 20898bcb0991SDimitry Andric } 20908bcb0991SDimitry Andric 20918bcb0991SDimitry Andric if (Failed) { 20928bcb0991SDimitry Andric errs() << "Golden reference kernel:\n"; 20938bcb0991SDimitry Andric ExpandedKernel->print(errs()); 20948bcb0991SDimitry Andric errs() << "New kernel:\n"; 20958bcb0991SDimitry Andric BB->print(errs()); 20968bcb0991SDimitry Andric errs() << ScheduleDump; 20978bcb0991SDimitry Andric report_fatal_error( 20988bcb0991SDimitry Andric "Modulo kernel validation (-pipeliner-experimental-cg) failed"); 20998bcb0991SDimitry Andric } 21008bcb0991SDimitry Andric 21018bcb0991SDimitry Andric // Cleanup by removing BB from the CFG again as the original 21028bcb0991SDimitry Andric // ModuloScheduleExpander intended. 21038bcb0991SDimitry Andric Preheader->removeSuccessor(BB); 21048bcb0991SDimitry Andric MSE.cleanup(); 21058bcb0991SDimitry Andric } 21068bcb0991SDimitry Andric 21070fca6ea1SDimitry Andric MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) { 21080fca6ea1SDimitry Andric MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 21090fca6ea1SDimitry Andric 21100fca6ea1SDimitry Andric // TODO: Offset information needs to be corrected. 21110fca6ea1SDimitry Andric NewMI->dropMemRefs(MF); 21120fca6ea1SDimitry Andric 21130fca6ea1SDimitry Andric return NewMI; 21140fca6ea1SDimitry Andric } 21150fca6ea1SDimitry Andric 21160fca6ea1SDimitry Andric /// Create a dedicated exit for Loop. Exit is the original exit for Loop. 21170fca6ea1SDimitry Andric /// If it is already dedicated exit, return it. Otherwise, insert a new 21180fca6ea1SDimitry Andric /// block between them and return the new block. 21190fca6ea1SDimitry Andric static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop, 21200fca6ea1SDimitry Andric MachineBasicBlock *Exit) { 21210fca6ea1SDimitry Andric if (Exit->pred_size() == 1) 21220fca6ea1SDimitry Andric return Exit; 21230fca6ea1SDimitry Andric 21240fca6ea1SDimitry Andric MachineFunction *MF = Loop->getParent(); 21250fca6ea1SDimitry Andric const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 21260fca6ea1SDimitry Andric 21270fca6ea1SDimitry Andric MachineBasicBlock *NewExit = 21280fca6ea1SDimitry Andric MF->CreateMachineBasicBlock(Loop->getBasicBlock()); 21290fca6ea1SDimitry Andric MF->insert(Loop->getIterator(), NewExit); 21300fca6ea1SDimitry Andric 21310fca6ea1SDimitry Andric MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 21320fca6ea1SDimitry Andric SmallVector<MachineOperand, 4> Cond; 21330fca6ea1SDimitry Andric TII->analyzeBranch(*Loop, TBB, FBB, Cond); 21340fca6ea1SDimitry Andric if (TBB == Loop) 21350fca6ea1SDimitry Andric FBB = NewExit; 21360fca6ea1SDimitry Andric else if (FBB == Loop) 21370fca6ea1SDimitry Andric TBB = NewExit; 21380fca6ea1SDimitry Andric else 21390fca6ea1SDimitry Andric llvm_unreachable("unexpected loop structure"); 21400fca6ea1SDimitry Andric TII->removeBranch(*Loop); 21410fca6ea1SDimitry Andric TII->insertBranch(*Loop, TBB, FBB, Cond, DebugLoc()); 21420fca6ea1SDimitry Andric Loop->replaceSuccessor(Exit, NewExit); 21430fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*NewExit, Exit, DebugLoc()); 21440fca6ea1SDimitry Andric NewExit->addSuccessor(Exit); 21450fca6ea1SDimitry Andric 21460fca6ea1SDimitry Andric Exit->replacePhiUsesWith(Loop, NewExit); 21470fca6ea1SDimitry Andric 21480fca6ea1SDimitry Andric return NewExit; 21490fca6ea1SDimitry Andric } 21500fca6ea1SDimitry Andric 21510fca6ea1SDimitry Andric /// Insert branch code into the end of MBB. It branches to GreaterThan if the 21520fca6ea1SDimitry Andric /// remaining trip count for instructions in LastStage0Insts is greater than 21530fca6ea1SDimitry Andric /// RequiredTC, and to Otherwise otherwise. 21540fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB, 21550fca6ea1SDimitry Andric int RequiredTC, 21560fca6ea1SDimitry Andric InstrMapTy &LastStage0Insts, 21570fca6ea1SDimitry Andric MachineBasicBlock &GreaterThan, 21580fca6ea1SDimitry Andric MachineBasicBlock &Otherwise) { 21590fca6ea1SDimitry Andric SmallVector<MachineOperand, 4> Cond; 21600fca6ea1SDimitry Andric LoopInfo->createRemainingIterationsGreaterCondition(RequiredTC, MBB, Cond, 21610fca6ea1SDimitry Andric LastStage0Insts); 21620fca6ea1SDimitry Andric 21630fca6ea1SDimitry Andric if (SwapBranchTargetsMVE) { 21640fca6ea1SDimitry Andric // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and 21650fca6ea1SDimitry Andric // FBB for optimal performance. 21660fca6ea1SDimitry Andric if (TII->reverseBranchCondition(Cond)) 21670fca6ea1SDimitry Andric llvm_unreachable("can not reverse branch condition"); 21680fca6ea1SDimitry Andric TII->insertBranch(MBB, &Otherwise, &GreaterThan, Cond, DebugLoc()); 21690fca6ea1SDimitry Andric } else { 21700fca6ea1SDimitry Andric TII->insertBranch(MBB, &GreaterThan, &Otherwise, Cond, DebugLoc()); 21710fca6ea1SDimitry Andric } 21720fca6ea1SDimitry Andric } 21730fca6ea1SDimitry Andric 21740fca6ea1SDimitry Andric /// Generate a pipelined loop that is unrolled by using MVE algorithm and any 21750fca6ea1SDimitry Andric /// other necessary blocks. The control flow is modified to execute the 21760fca6ea1SDimitry Andric /// pipelined loop if the trip count satisfies the condition, otherwise the 21770fca6ea1SDimitry Andric /// original loop. The original loop is also used to execute the remainder 21780fca6ea1SDimitry Andric /// iterations which occur due to unrolling. 21790fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generatePipelinedLoop() { 21800fca6ea1SDimitry Andric // The control flow for pipelining with MVE: 21810fca6ea1SDimitry Andric // 21820fca6ea1SDimitry Andric // OrigPreheader: 21830fca6ea1SDimitry Andric // // The block that is originally the loop preheader 21840fca6ea1SDimitry Andric // goto Check 21850fca6ea1SDimitry Andric // 21860fca6ea1SDimitry Andric // Check: 21870fca6ea1SDimitry Andric // // Check whether the trip count satisfies the requirements to pipeline. 21880fca6ea1SDimitry Andric // if (LoopCounter > NumStages + NumUnroll - 2) 21890fca6ea1SDimitry Andric // // The minimum number of iterations to pipeline = 21900fca6ea1SDimitry Andric // // iterations executed in prolog/epilog (NumStages-1) + 21910fca6ea1SDimitry Andric // // iterations executed in one kernel run (NumUnroll) 21920fca6ea1SDimitry Andric // goto Prolog 21930fca6ea1SDimitry Andric // // fallback to the original loop 21940fca6ea1SDimitry Andric // goto NewPreheader 21950fca6ea1SDimitry Andric // 21960fca6ea1SDimitry Andric // Prolog: 21970fca6ea1SDimitry Andric // // All prolog stages. There are no direct branches to the epilogue. 21980fca6ea1SDimitry Andric // goto NewKernel 21990fca6ea1SDimitry Andric // 22000fca6ea1SDimitry Andric // NewKernel: 22010fca6ea1SDimitry Andric // // NumUnroll copies of the kernel 22020fca6ea1SDimitry Andric // if (LoopCounter > MVE-1) 22030fca6ea1SDimitry Andric // goto NewKernel 22040fca6ea1SDimitry Andric // goto Epilog 22050fca6ea1SDimitry Andric // 22060fca6ea1SDimitry Andric // Epilog: 22070fca6ea1SDimitry Andric // // All epilog stages. 22080fca6ea1SDimitry Andric // if (LoopCounter > 0) 22090fca6ea1SDimitry Andric // // The remainder is executed in the original loop 22100fca6ea1SDimitry Andric // goto NewPreheader 22110fca6ea1SDimitry Andric // goto NewExit 22120fca6ea1SDimitry Andric // 22130fca6ea1SDimitry Andric // NewPreheader: 22140fca6ea1SDimitry Andric // // Newly created preheader for the original loop. 22150fca6ea1SDimitry Andric // // The initial values of the phis in the loop are merged from two paths. 22160fca6ea1SDimitry Andric // NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog 22170fca6ea1SDimitry Andric // goto OrigKernel 22180fca6ea1SDimitry Andric // 22190fca6ea1SDimitry Andric // OrigKernel: 22200fca6ea1SDimitry Andric // // The original loop block. 22210fca6ea1SDimitry Andric // if (LoopCounter != 0) 22220fca6ea1SDimitry Andric // goto OrigKernel 22230fca6ea1SDimitry Andric // goto NewExit 22240fca6ea1SDimitry Andric // 22250fca6ea1SDimitry Andric // NewExit: 22260fca6ea1SDimitry Andric // // Newly created dedicated exit for the original loop. 22270fca6ea1SDimitry Andric // // Merge values which are referenced after the loop 22280fca6ea1SDimitry Andric // Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog 22290fca6ea1SDimitry Andric // goto OrigExit 22300fca6ea1SDimitry Andric // 22310fca6ea1SDimitry Andric // OrigExit: 22320fca6ea1SDimitry Andric // // The block that is originally the loop exit. 22330fca6ea1SDimitry Andric // // If it is already deicated exit, NewExit is not created. 22340fca6ea1SDimitry Andric 22350fca6ea1SDimitry Andric // An example of where each stage is executed: 22360fca6ea1SDimitry Andric // Assume #Stages 3, #MVE 4, #Iterations 12 22370fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8 9 10-11 22380fca6ea1SDimitry Andric // ------------------------------------------------- 22390fca6ea1SDimitry Andric // Stage 0 Prolog#0 22400fca6ea1SDimitry Andric // Stage 1 0 Prolog#1 22410fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#0 Iter#0 22420fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#1 Iter#0 22430fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#2 Iter#0 22440fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#3 Iter#0 22450fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#0 Iter#1 22460fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#1 Iter#1 22470fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#2 Iter#1 22480fca6ea1SDimitry Andric // Stage 2 1 0 Kernel Unroll#3 Iter#1 22490fca6ea1SDimitry Andric // Stage 2 1 Epilog#0 22500fca6ea1SDimitry Andric // Stage 2 Epilog#1 22510fca6ea1SDimitry Andric // Stage 0-2 OrigKernel 22520fca6ea1SDimitry Andric 22530fca6ea1SDimitry Andric LoopInfo = TII->analyzeLoopForPipelining(OrigKernel); 22540fca6ea1SDimitry Andric assert(LoopInfo && "Must be able to analyze loop!"); 22550fca6ea1SDimitry Andric 22560fca6ea1SDimitry Andric calcNumUnroll(); 22570fca6ea1SDimitry Andric 22580fca6ea1SDimitry Andric Check = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 22590fca6ea1SDimitry Andric Prolog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 22600fca6ea1SDimitry Andric NewKernel = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 22610fca6ea1SDimitry Andric Epilog = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 22620fca6ea1SDimitry Andric NewPreheader = MF.CreateMachineBasicBlock(OrigKernel->getBasicBlock()); 22630fca6ea1SDimitry Andric 22640fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Check); 22650fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Prolog); 22660fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), NewKernel); 22670fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), Epilog); 22680fca6ea1SDimitry Andric MF.insert(OrigKernel->getIterator(), NewPreheader); 22690fca6ea1SDimitry Andric 22700fca6ea1SDimitry Andric NewExit = createDedicatedExit(OrigKernel, OrigExit); 22710fca6ea1SDimitry Andric 22720fca6ea1SDimitry Andric NewPreheader->transferSuccessorsAndUpdatePHIs(OrigPreheader); 22730fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*NewPreheader, OrigKernel, DebugLoc()); 22740fca6ea1SDimitry Andric 22750fca6ea1SDimitry Andric OrigPreheader->addSuccessor(Check); 22760fca6ea1SDimitry Andric TII->removeBranch(*OrigPreheader); 22770fca6ea1SDimitry Andric TII->insertUnconditionalBranch(*OrigPreheader, Check, DebugLoc()); 22780fca6ea1SDimitry Andric 22790fca6ea1SDimitry Andric Check->addSuccessor(Prolog); 22800fca6ea1SDimitry Andric Check->addSuccessor(NewPreheader); 22810fca6ea1SDimitry Andric 22820fca6ea1SDimitry Andric Prolog->addSuccessor(NewKernel); 22830fca6ea1SDimitry Andric 22840fca6ea1SDimitry Andric NewKernel->addSuccessor(NewKernel); 22850fca6ea1SDimitry Andric NewKernel->addSuccessor(Epilog); 22860fca6ea1SDimitry Andric 22870fca6ea1SDimitry Andric Epilog->addSuccessor(NewPreheader); 22880fca6ea1SDimitry Andric Epilog->addSuccessor(NewExit); 22890fca6ea1SDimitry Andric 22900fca6ea1SDimitry Andric InstrMapTy LastStage0Insts; 22910fca6ea1SDimitry Andric insertCondBranch(*Check, Schedule.getNumStages() + NumUnroll - 2, 22920fca6ea1SDimitry Andric LastStage0Insts, *Prolog, *NewPreheader); 22930fca6ea1SDimitry Andric 22940fca6ea1SDimitry Andric // VRMaps map (prolog/kernel/epilog phase#, original register#) to new 22950fca6ea1SDimitry Andric // register# 22960fca6ea1SDimitry Andric SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap; 22970fca6ea1SDimitry Andric generateProlog(PrologVRMap); 22980fca6ea1SDimitry Andric generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts); 22990fca6ea1SDimitry Andric generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts); 23000fca6ea1SDimitry Andric } 23010fca6ea1SDimitry Andric 23020fca6ea1SDimitry Andric /// Replace MI's use operands according to the maps. 23030fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::updateInstrUse( 23040fca6ea1SDimitry Andric MachineInstr *MI, int StageNum, int PhaseNum, 23050fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &CurVRMap, 23060fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> *PrevVRMap) { 23070fca6ea1SDimitry Andric // If MI is in the prolog/kernel/epilog block, CurVRMap is 23080fca6ea1SDimitry Andric // PrologVRMap/KernelVRMap/EpilogVRMap respectively. 23090fca6ea1SDimitry Andric // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively. 23100fca6ea1SDimitry Andric // Refer to the appropriate map according to the stage difference between 23110fca6ea1SDimitry Andric // MI and the definition of an operand. 23120fca6ea1SDimitry Andric 23130fca6ea1SDimitry Andric for (MachineOperand &UseMO : MI->uses()) { 23140fca6ea1SDimitry Andric if (!UseMO.isReg() || !UseMO.getReg().isVirtual()) 23150fca6ea1SDimitry Andric continue; 23160fca6ea1SDimitry Andric int DiffStage = 0; 23170fca6ea1SDimitry Andric Register OrigReg = UseMO.getReg(); 23180fca6ea1SDimitry Andric MachineInstr *DefInst = MRI.getVRegDef(OrigReg); 23190fca6ea1SDimitry Andric if (!DefInst || DefInst->getParent() != OrigKernel) 23200fca6ea1SDimitry Andric continue; 23210fca6ea1SDimitry Andric unsigned InitReg = 0; 23220fca6ea1SDimitry Andric unsigned DefReg = OrigReg; 23230fca6ea1SDimitry Andric if (DefInst->isPHI()) { 23240fca6ea1SDimitry Andric ++DiffStage; 23250fca6ea1SDimitry Andric unsigned LoopReg; 23260fca6ea1SDimitry Andric getPhiRegs(*DefInst, OrigKernel, InitReg, LoopReg); 23270fca6ea1SDimitry Andric // LoopReg is guaranteed to be defined within the loop by canApply() 23280fca6ea1SDimitry Andric DefReg = LoopReg; 23290fca6ea1SDimitry Andric DefInst = MRI.getVRegDef(LoopReg); 23300fca6ea1SDimitry Andric } 23310fca6ea1SDimitry Andric unsigned DefStageNum = Schedule.getStage(DefInst); 23320fca6ea1SDimitry Andric DiffStage += StageNum - DefStageNum; 23330fca6ea1SDimitry Andric Register NewReg; 23340fca6ea1SDimitry Andric if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(DefReg)) 23350fca6ea1SDimitry Andric // NewReg is defined in a previous phase of the same block 23360fca6ea1SDimitry Andric NewReg = CurVRMap[PhaseNum - DiffStage][DefReg]; 23370fca6ea1SDimitry Andric else if (!PrevVRMap) 23380fca6ea1SDimitry Andric // Since this is the first iteration, refer the initial register of the 23390fca6ea1SDimitry Andric // loop 23400fca6ea1SDimitry Andric NewReg = InitReg; 23410fca6ea1SDimitry Andric else 23420fca6ea1SDimitry Andric // Cases where DiffStage is larger than PhaseNum. 23430fca6ea1SDimitry Andric // If MI is in the kernel block, the value is defined by the previous 23440fca6ea1SDimitry Andric // iteration and PhiVRMap is referenced. If MI is in the epilog block, the 23450fca6ea1SDimitry Andric // value is defined in the kernel block and KernelVRMap is referenced. 23460fca6ea1SDimitry Andric NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg]; 23470fca6ea1SDimitry Andric 23480fca6ea1SDimitry Andric const TargetRegisterClass *NRC = 23490fca6ea1SDimitry Andric MRI.constrainRegClass(NewReg, MRI.getRegClass(OrigReg)); 23500fca6ea1SDimitry Andric if (NRC) 23510fca6ea1SDimitry Andric UseMO.setReg(NewReg); 23520fca6ea1SDimitry Andric else { 23530fca6ea1SDimitry Andric Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 23540fca6ea1SDimitry Andric BuildMI(*OrigKernel, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY), 23550fca6ea1SDimitry Andric SplitReg) 23560fca6ea1SDimitry Andric .addReg(NewReg); 23570fca6ea1SDimitry Andric UseMO.setReg(SplitReg); 23580fca6ea1SDimitry Andric } 23590fca6ea1SDimitry Andric } 23600fca6ea1SDimitry Andric } 23610fca6ea1SDimitry Andric 23620fca6ea1SDimitry Andric /// Return a phi if Reg is referenced by the phi. 23630fca6ea1SDimitry Andric /// canApply() guarantees that at most only one such phi exists. 23640fca6ea1SDimitry Andric static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) { 23650fca6ea1SDimitry Andric for (MachineInstr &Phi : Loop->phis()) { 23660fca6ea1SDimitry Andric unsigned InitVal, LoopVal; 23670fca6ea1SDimitry Andric getPhiRegs(Phi, Loop, InitVal, LoopVal); 23680fca6ea1SDimitry Andric if (LoopVal == Reg) 23690fca6ea1SDimitry Andric return Φ 23700fca6ea1SDimitry Andric } 23710fca6ea1SDimitry Andric return nullptr; 23720fca6ea1SDimitry Andric } 23730fca6ea1SDimitry Andric 23740fca6ea1SDimitry Andric /// Generate phis for registers defined by OrigMI. 23750fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generatePhi( 23760fca6ea1SDimitry Andric MachineInstr *OrigMI, int UnrollNum, 23770fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap, 23780fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap, 23790fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PhiVRMap) { 23800fca6ea1SDimitry Andric int StageNum = Schedule.getStage(OrigMI); 23810fca6ea1SDimitry Andric bool UsePrologReg; 23820fca6ea1SDimitry Andric if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum) 23830fca6ea1SDimitry Andric UsePrologReg = true; 23840fca6ea1SDimitry Andric else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum) 23850fca6ea1SDimitry Andric UsePrologReg = false; 23860fca6ea1SDimitry Andric else 23870fca6ea1SDimitry Andric return; 23880fca6ea1SDimitry Andric 23890fca6ea1SDimitry Andric // Examples that show which stages are merged by phi. 23900fca6ea1SDimitry Andric // Meaning of the symbol following the stage number: 23910fca6ea1SDimitry Andric // a/b: Stages with the same letter are merged (UsePrologReg == true) 23920fca6ea1SDimitry Andric // +: Merged with the initial value (UsePrologReg == false) 23930fca6ea1SDimitry Andric // *: No phis required 23940fca6ea1SDimitry Andric // 23950fca6ea1SDimitry Andric // #Stages 3, #MVE 4 23960fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8 23970fca6ea1SDimitry Andric // ----------------------------------------- 23980fca6ea1SDimitry Andric // Stage 0a Prolog#0 23990fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1 24000fca6ea1SDimitry Andric // Stage 2* 1* 0* Kernel Unroll#0 24010fca6ea1SDimitry Andric // Stage 2* 1* 0+ Kernel Unroll#1 24020fca6ea1SDimitry Andric // Stage 2* 1+ 0a Kernel Unroll#2 24030fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#3 24040fca6ea1SDimitry Andric // 24050fca6ea1SDimitry Andric // #Stages 3, #MVE 2 24060fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8 24070fca6ea1SDimitry Andric // ----------------------------------------- 24080fca6ea1SDimitry Andric // Stage 0a Prolog#0 24090fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1 24100fca6ea1SDimitry Andric // Stage 2* 1+ 0a Kernel Unroll#0 24110fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#1 24120fca6ea1SDimitry Andric // 24130fca6ea1SDimitry Andric // #Stages 3, #MVE 1 24140fca6ea1SDimitry Andric // Iter 0 1 2 3 4 5 6 7 8 24150fca6ea1SDimitry Andric // ----------------------------------------- 24160fca6ea1SDimitry Andric // Stage 0* Prolog#0 24170fca6ea1SDimitry Andric // Stage 1a 0b Prolog#1 24180fca6ea1SDimitry Andric // Stage 2+ 1a 0b Kernel Unroll#0 24190fca6ea1SDimitry Andric 24200fca6ea1SDimitry Andric for (MachineOperand &DefMO : OrigMI->defs()) { 24210fca6ea1SDimitry Andric if (!DefMO.isReg() || DefMO.isDead()) 24220fca6ea1SDimitry Andric continue; 24230fca6ea1SDimitry Andric Register OrigReg = DefMO.getReg(); 24240fca6ea1SDimitry Andric auto NewReg = KernelVRMap[UnrollNum].find(OrigReg); 24250fca6ea1SDimitry Andric if (NewReg == KernelVRMap[UnrollNum].end()) 24260fca6ea1SDimitry Andric continue; 24270fca6ea1SDimitry Andric Register CorrespondReg; 24280fca6ea1SDimitry Andric if (UsePrologReg) { 24290fca6ea1SDimitry Andric int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1; 24300fca6ea1SDimitry Andric CorrespondReg = PrologVRMap[PrologNum][OrigReg]; 24310fca6ea1SDimitry Andric } else { 24320fca6ea1SDimitry Andric MachineInstr *Phi = getLoopPhiUser(OrigReg, OrigKernel); 24330fca6ea1SDimitry Andric if (!Phi) 24340fca6ea1SDimitry Andric continue; 24350fca6ea1SDimitry Andric CorrespondReg = getInitPhiReg(*Phi, OrigKernel); 24360fca6ea1SDimitry Andric } 24370fca6ea1SDimitry Andric 24380fca6ea1SDimitry Andric assert(CorrespondReg.isValid()); 24390fca6ea1SDimitry Andric Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 24400fca6ea1SDimitry Andric BuildMI(*NewKernel, NewKernel->getFirstNonPHI(), DebugLoc(), 24410fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), PhiReg) 24420fca6ea1SDimitry Andric .addReg(NewReg->second) 24430fca6ea1SDimitry Andric .addMBB(NewKernel) 24440fca6ea1SDimitry Andric .addReg(CorrespondReg) 24450fca6ea1SDimitry Andric .addMBB(Prolog); 24460fca6ea1SDimitry Andric PhiVRMap[UnrollNum][OrigReg] = PhiReg; 24470fca6ea1SDimitry Andric } 24480fca6ea1SDimitry Andric } 24490fca6ea1SDimitry Andric 24500fca6ea1SDimitry Andric static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg, 24510fca6ea1SDimitry Andric MachineBasicBlock *NewMBB) { 24520fca6ea1SDimitry Andric for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) { 24530fca6ea1SDimitry Andric if (Phi.getOperand(Idx).getReg() == OrigReg) { 24540fca6ea1SDimitry Andric Phi.getOperand(Idx).setReg(NewReg); 24550fca6ea1SDimitry Andric Phi.getOperand(Idx + 1).setMBB(NewMBB); 24560fca6ea1SDimitry Andric return; 24570fca6ea1SDimitry Andric } 24580fca6ea1SDimitry Andric } 24590fca6ea1SDimitry Andric } 24600fca6ea1SDimitry Andric 24610fca6ea1SDimitry Andric /// Generate phis that merge values from multiple routes 24620fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg, 24630fca6ea1SDimitry Andric Register NewReg) { 24640fca6ea1SDimitry Andric SmallVector<MachineOperand *> UsesAfterLoop; 24650fca6ea1SDimitry Andric SmallVector<MachineInstr *> LoopPhis; 24660fca6ea1SDimitry Andric for (MachineRegisterInfo::use_iterator I = MRI.use_begin(OrigReg), 24670fca6ea1SDimitry Andric E = MRI.use_end(); 24680fca6ea1SDimitry Andric I != E; ++I) { 24690fca6ea1SDimitry Andric MachineOperand &O = *I; 24700fca6ea1SDimitry Andric if (O.getParent()->getParent() != OrigKernel && 24710fca6ea1SDimitry Andric O.getParent()->getParent() != Prolog && 24720fca6ea1SDimitry Andric O.getParent()->getParent() != NewKernel && 24730fca6ea1SDimitry Andric O.getParent()->getParent() != Epilog) 24740fca6ea1SDimitry Andric UsesAfterLoop.push_back(&O); 24750fca6ea1SDimitry Andric if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI()) 24760fca6ea1SDimitry Andric LoopPhis.push_back(O.getParent()); 24770fca6ea1SDimitry Andric } 24780fca6ea1SDimitry Andric 24790fca6ea1SDimitry Andric // Merge the route that only execute the pipelined loop (when there are no 24800fca6ea1SDimitry Andric // remaining iterations) with the route that execute the original loop. 24810fca6ea1SDimitry Andric if (!UsesAfterLoop.empty()) { 24820fca6ea1SDimitry Andric Register PhiReg = MRI.createVirtualRegister(MRI.getRegClass(OrigReg)); 24830fca6ea1SDimitry Andric BuildMI(*NewExit, NewExit->getFirstNonPHI(), DebugLoc(), 24840fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), PhiReg) 24850fca6ea1SDimitry Andric .addReg(OrigReg) 24860fca6ea1SDimitry Andric .addMBB(OrigKernel) 24870fca6ea1SDimitry Andric .addReg(NewReg) 24880fca6ea1SDimitry Andric .addMBB(Epilog); 24890fca6ea1SDimitry Andric 24900fca6ea1SDimitry Andric for (MachineOperand *MO : UsesAfterLoop) 24910fca6ea1SDimitry Andric MO->setReg(PhiReg); 24920fca6ea1SDimitry Andric 24930fca6ea1SDimitry Andric if (!LIS.hasInterval(PhiReg)) 24940fca6ea1SDimitry Andric LIS.createEmptyInterval(PhiReg); 24950fca6ea1SDimitry Andric } 24960fca6ea1SDimitry Andric 24970fca6ea1SDimitry Andric // Merge routes from the pipelined loop and the bypassed route before the 24980fca6ea1SDimitry Andric // original loop 24990fca6ea1SDimitry Andric if (!LoopPhis.empty()) { 25000fca6ea1SDimitry Andric for (MachineInstr *Phi : LoopPhis) { 25010fca6ea1SDimitry Andric unsigned InitReg, LoopReg; 25020fca6ea1SDimitry Andric getPhiRegs(*Phi, OrigKernel, InitReg, LoopReg); 25030fca6ea1SDimitry Andric Register NewInit = MRI.createVirtualRegister(MRI.getRegClass(InitReg)); 25040fca6ea1SDimitry Andric BuildMI(*NewPreheader, NewPreheader->getFirstNonPHI(), Phi->getDebugLoc(), 25050fca6ea1SDimitry Andric TII->get(TargetOpcode::PHI), NewInit) 25060fca6ea1SDimitry Andric .addReg(InitReg) 25070fca6ea1SDimitry Andric .addMBB(Check) 25080fca6ea1SDimitry Andric .addReg(NewReg) 25090fca6ea1SDimitry Andric .addMBB(Epilog); 25100fca6ea1SDimitry Andric replacePhiSrc(*Phi, InitReg, NewInit, NewPreheader); 25110fca6ea1SDimitry Andric } 25120fca6ea1SDimitry Andric } 25130fca6ea1SDimitry Andric } 25140fca6ea1SDimitry Andric 25150fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateProlog( 25160fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap) { 25170fca6ea1SDimitry Andric PrologVRMap.clear(); 25180fca6ea1SDimitry Andric PrologVRMap.resize(Schedule.getNumStages() - 1); 25190fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 25200fca6ea1SDimitry Andric for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1; 25210fca6ea1SDimitry Andric ++PrologNum) { 25220fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 25230fca6ea1SDimitry Andric if (MI->isPHI()) 25240fca6ea1SDimitry Andric continue; 25250fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI); 25260fca6ea1SDimitry Andric if (StageNum > PrologNum) 25270fca6ea1SDimitry Andric continue; 25280fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI); 25290fca6ea1SDimitry Andric updateInstrDef(NewMI, PrologVRMap[PrologNum], false); 25300fca6ea1SDimitry Andric NewMIMap[NewMI] = {PrologNum, StageNum}; 25310fca6ea1SDimitry Andric Prolog->push_back(NewMI); 25320fca6ea1SDimitry Andric } 25330fca6ea1SDimitry Andric } 25340fca6ea1SDimitry Andric 25350fca6ea1SDimitry Andric for (auto I : NewMIMap) { 25360fca6ea1SDimitry Andric MachineInstr *MI = I.first; 25370fca6ea1SDimitry Andric int PrologNum = I.second.first; 25380fca6ea1SDimitry Andric int StageNum = I.second.second; 25390fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, PrologNum, PrologVRMap, nullptr); 25400fca6ea1SDimitry Andric } 25410fca6ea1SDimitry Andric 25420fca6ea1SDimitry Andric LLVM_DEBUG({ 25430fca6ea1SDimitry Andric dbgs() << "prolog:\n"; 25440fca6ea1SDimitry Andric Prolog->dump(); 25450fca6ea1SDimitry Andric }); 25460fca6ea1SDimitry Andric } 25470fca6ea1SDimitry Andric 25480fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateKernel( 25490fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &PrologVRMap, 25500fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) { 25510fca6ea1SDimitry Andric KernelVRMap.clear(); 25520fca6ea1SDimitry Andric KernelVRMap.resize(NumUnroll); 25530fca6ea1SDimitry Andric SmallVector<ValueMapTy> PhiVRMap; 25540fca6ea1SDimitry Andric PhiVRMap.resize(NumUnroll); 25550fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 25560fca6ea1SDimitry Andric DenseMap<MachineInstr *, MachineInstr *> MIMapLastStage0; 25570fca6ea1SDimitry Andric for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) { 25580fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 25590fca6ea1SDimitry Andric if (MI->isPHI()) 25600fca6ea1SDimitry Andric continue; 25610fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI); 25620fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI); 25630fca6ea1SDimitry Andric if (UnrollNum == NumUnroll - 1) 25640fca6ea1SDimitry Andric LastStage0Insts[MI] = NewMI; 25650fca6ea1SDimitry Andric updateInstrDef(NewMI, KernelVRMap[UnrollNum], 25660fca6ea1SDimitry Andric (UnrollNum == NumUnroll - 1 && StageNum == 0)); 25670fca6ea1SDimitry Andric generatePhi(MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap); 25680fca6ea1SDimitry Andric NewMIMap[NewMI] = {UnrollNum, StageNum}; 25690fca6ea1SDimitry Andric NewKernel->push_back(NewMI); 25700fca6ea1SDimitry Andric } 25710fca6ea1SDimitry Andric } 25720fca6ea1SDimitry Andric 25730fca6ea1SDimitry Andric for (auto I : NewMIMap) { 25740fca6ea1SDimitry Andric MachineInstr *MI = I.first; 25750fca6ea1SDimitry Andric int UnrollNum = I.second.first; 25760fca6ea1SDimitry Andric int StageNum = I.second.second; 25770fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, UnrollNum, KernelVRMap, &PhiVRMap); 25780fca6ea1SDimitry Andric } 25790fca6ea1SDimitry Andric 25800fca6ea1SDimitry Andric // If remaining trip count is greater than NumUnroll-1, loop continues 25810fca6ea1SDimitry Andric insertCondBranch(*NewKernel, NumUnroll - 1, LastStage0Insts, *NewKernel, 25820fca6ea1SDimitry Andric *Epilog); 25830fca6ea1SDimitry Andric 25840fca6ea1SDimitry Andric LLVM_DEBUG({ 25850fca6ea1SDimitry Andric dbgs() << "kernel:\n"; 25860fca6ea1SDimitry Andric NewKernel->dump(); 25870fca6ea1SDimitry Andric }); 25880fca6ea1SDimitry Andric } 25890fca6ea1SDimitry Andric 25900fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::generateEpilog( 25910fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &KernelVRMap, 25920fca6ea1SDimitry Andric SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) { 25930fca6ea1SDimitry Andric EpilogVRMap.clear(); 25940fca6ea1SDimitry Andric EpilogVRMap.resize(Schedule.getNumStages() - 1); 25950fca6ea1SDimitry Andric DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; 25960fca6ea1SDimitry Andric for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1; 25970fca6ea1SDimitry Andric ++EpilogNum) { 25980fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 25990fca6ea1SDimitry Andric if (MI->isPHI()) 26000fca6ea1SDimitry Andric continue; 26010fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI); 26020fca6ea1SDimitry Andric if (StageNum <= EpilogNum) 26030fca6ea1SDimitry Andric continue; 26040fca6ea1SDimitry Andric MachineInstr *NewMI = cloneInstr(MI); 26050fca6ea1SDimitry Andric updateInstrDef(NewMI, EpilogVRMap[EpilogNum], StageNum - 1 == EpilogNum); 26060fca6ea1SDimitry Andric NewMIMap[NewMI] = {EpilogNum, StageNum}; 26070fca6ea1SDimitry Andric Epilog->push_back(NewMI); 26080fca6ea1SDimitry Andric } 26090fca6ea1SDimitry Andric } 26100fca6ea1SDimitry Andric 26110fca6ea1SDimitry Andric for (auto I : NewMIMap) { 26120fca6ea1SDimitry Andric MachineInstr *MI = I.first; 26130fca6ea1SDimitry Andric int EpilogNum = I.second.first; 26140fca6ea1SDimitry Andric int StageNum = I.second.second; 26150fca6ea1SDimitry Andric updateInstrUse(MI, StageNum, EpilogNum, EpilogVRMap, &KernelVRMap); 26160fca6ea1SDimitry Andric } 26170fca6ea1SDimitry Andric 26180fca6ea1SDimitry Andric // If there are remaining iterations, they are executed in the original loop. 26190fca6ea1SDimitry Andric // Instructions related to loop control, such as loop counter comparison, 26200fca6ea1SDimitry Andric // are indicated by shouldIgnoreForPipelining() and are assumed to be placed 26210fca6ea1SDimitry Andric // in stage 0. Thus, the map is for the last one in the kernel. 26220fca6ea1SDimitry Andric insertCondBranch(*Epilog, 0, LastStage0Insts, *NewPreheader, *NewExit); 26230fca6ea1SDimitry Andric 26240fca6ea1SDimitry Andric LLVM_DEBUG({ 26250fca6ea1SDimitry Andric dbgs() << "epilog:\n"; 26260fca6ea1SDimitry Andric Epilog->dump(); 26270fca6ea1SDimitry Andric }); 26280fca6ea1SDimitry Andric } 26290fca6ea1SDimitry Andric 26300fca6ea1SDimitry Andric /// Calculate the number of unroll required and set it to NumUnroll 26310fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::calcNumUnroll() { 26320fca6ea1SDimitry Andric DenseMap<MachineInstr *, unsigned> Inst2Idx; 26330fca6ea1SDimitry Andric NumUnroll = 1; 26340fca6ea1SDimitry Andric for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I) 26350fca6ea1SDimitry Andric Inst2Idx[Schedule.getInstructions()[I]] = I; 26360fca6ea1SDimitry Andric 26370fca6ea1SDimitry Andric for (MachineInstr *MI : Schedule.getInstructions()) { 26380fca6ea1SDimitry Andric if (MI->isPHI()) 26390fca6ea1SDimitry Andric continue; 26400fca6ea1SDimitry Andric int StageNum = Schedule.getStage(MI); 26410fca6ea1SDimitry Andric for (const MachineOperand &MO : MI->uses()) { 26420fca6ea1SDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual()) 26430fca6ea1SDimitry Andric continue; 26440fca6ea1SDimitry Andric MachineInstr *DefMI = MRI.getVRegDef(MO.getReg()); 26450fca6ea1SDimitry Andric if (DefMI->getParent() != OrigKernel) 26460fca6ea1SDimitry Andric continue; 26470fca6ea1SDimitry Andric 26480fca6ea1SDimitry Andric int NumUnrollLocal = 1; 26490fca6ea1SDimitry Andric if (DefMI->isPHI()) { 26500fca6ea1SDimitry Andric ++NumUnrollLocal; 26510fca6ea1SDimitry Andric // canApply() guarantees that DefMI is not phi and is an instruction in 26520fca6ea1SDimitry Andric // the loop 26530fca6ea1SDimitry Andric DefMI = MRI.getVRegDef(getLoopPhiReg(*DefMI, OrigKernel)); 26540fca6ea1SDimitry Andric } 26550fca6ea1SDimitry Andric NumUnrollLocal += StageNum - Schedule.getStage(DefMI); 26560fca6ea1SDimitry Andric if (Inst2Idx[MI] <= Inst2Idx[DefMI]) 26570fca6ea1SDimitry Andric --NumUnrollLocal; 26580fca6ea1SDimitry Andric NumUnroll = std::max(NumUnroll, NumUnrollLocal); 26590fca6ea1SDimitry Andric } 26600fca6ea1SDimitry Andric } 26610fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n"); 26620fca6ea1SDimitry Andric } 26630fca6ea1SDimitry Andric 26640fca6ea1SDimitry Andric /// Create new virtual registers for definitions of NewMI and update NewMI. 26650fca6ea1SDimitry Andric /// If the definitions are referenced after the pipelined loop, phis are 26660fca6ea1SDimitry Andric /// created to merge with other routes. 26670fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI, 26680fca6ea1SDimitry Andric ValueMapTy &VRMap, 26690fca6ea1SDimitry Andric bool LastDef) { 26700fca6ea1SDimitry Andric for (MachineOperand &MO : NewMI->operands()) { 26710fca6ea1SDimitry Andric if (!MO.isReg() || !MO.getReg().isVirtual() || !MO.isDef()) 26720fca6ea1SDimitry Andric continue; 26730fca6ea1SDimitry Andric Register Reg = MO.getReg(); 26740fca6ea1SDimitry Andric const TargetRegisterClass *RC = MRI.getRegClass(Reg); 26750fca6ea1SDimitry Andric Register NewReg = MRI.createVirtualRegister(RC); 26760fca6ea1SDimitry Andric MO.setReg(NewReg); 26770fca6ea1SDimitry Andric VRMap[Reg] = NewReg; 26780fca6ea1SDimitry Andric if (LastDef) 26790fca6ea1SDimitry Andric mergeRegUsesAfterPipeline(Reg, NewReg); 26800fca6ea1SDimitry Andric } 26810fca6ea1SDimitry Andric } 26820fca6ea1SDimitry Andric 26830fca6ea1SDimitry Andric void ModuloScheduleExpanderMVE::expand() { 26840fca6ea1SDimitry Andric OrigKernel = Schedule.getLoop()->getTopBlock(); 26850fca6ea1SDimitry Andric OrigPreheader = Schedule.getLoop()->getLoopPreheader(); 26860fca6ea1SDimitry Andric OrigExit = Schedule.getLoop()->getExitBlock(); 26870fca6ea1SDimitry Andric 26880fca6ea1SDimitry Andric LLVM_DEBUG(Schedule.dump()); 26890fca6ea1SDimitry Andric 26900fca6ea1SDimitry Andric generatePipelinedLoop(); 26910fca6ea1SDimitry Andric } 26920fca6ea1SDimitry Andric 26930fca6ea1SDimitry Andric /// Check if ModuloScheduleExpanderMVE can be applied to L 26940fca6ea1SDimitry Andric bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) { 26950fca6ea1SDimitry Andric if (!L.getExitBlock()) { 26960fca6ea1SDimitry Andric LLVM_DEBUG( 26970fca6ea1SDimitry Andric dbgs() << "Can not apply MVE expander: No single exit block.\n";); 26980fca6ea1SDimitry Andric return false; 26990fca6ea1SDimitry Andric } 27000fca6ea1SDimitry Andric 27010fca6ea1SDimitry Andric MachineBasicBlock *BB = L.getTopBlock(); 27020fca6ea1SDimitry Andric MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); 27030fca6ea1SDimitry Andric 27040fca6ea1SDimitry Andric // Put some constraints on the operands of the phis to simplify the 27050fca6ea1SDimitry Andric // transformation 27060fca6ea1SDimitry Andric DenseSet<unsigned> UsedByPhi; 27070fca6ea1SDimitry Andric for (MachineInstr &MI : BB->phis()) { 27080fca6ea1SDimitry Andric // Registers defined by phis must be used only inside the loop and be never 27090fca6ea1SDimitry Andric // used by phis. 27100fca6ea1SDimitry Andric for (MachineOperand &MO : MI.defs()) 27110fca6ea1SDimitry Andric if (MO.isReg()) 27120fca6ea1SDimitry Andric for (MachineInstr &Ref : MRI.use_instructions(MO.getReg())) 27130fca6ea1SDimitry Andric if (Ref.getParent() != BB || Ref.isPHI()) { 27140fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() 27150fca6ea1SDimitry Andric << "Can not apply MVE expander: A phi result is " 27160fca6ea1SDimitry Andric "referenced outside of the loop or by phi.\n";); 27170fca6ea1SDimitry Andric return false; 27180fca6ea1SDimitry Andric } 27190fca6ea1SDimitry Andric 27200fca6ea1SDimitry Andric // A source register from the loop block must be defined inside the loop. 27210fca6ea1SDimitry Andric // A register defined inside the loop must be referenced by only one phi at 27220fca6ea1SDimitry Andric // most. 27230fca6ea1SDimitry Andric unsigned InitVal, LoopVal; 27240fca6ea1SDimitry Andric getPhiRegs(MI, MI.getParent(), InitVal, LoopVal); 27250fca6ea1SDimitry Andric if (!Register(LoopVal).isVirtual() || 27260fca6ea1SDimitry Andric MRI.getVRegDef(LoopVal)->getParent() != BB) { 27270fca6ea1SDimitry Andric LLVM_DEBUG( 27280fca6ea1SDimitry Andric dbgs() << "Can not apply MVE expander: A phi source value coming " 27290fca6ea1SDimitry Andric "from the loop is not defined in the loop.\n";); 27300fca6ea1SDimitry Andric return false; 27310fca6ea1SDimitry Andric } 27320fca6ea1SDimitry Andric if (UsedByPhi.count(LoopVal)) { 27330fca6ea1SDimitry Andric LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the " 27340fca6ea1SDimitry Andric "loop is referenced by two or more phis.\n";); 27350fca6ea1SDimitry Andric return false; 27360fca6ea1SDimitry Andric } 27370fca6ea1SDimitry Andric UsedByPhi.insert(LoopVal); 27380fca6ea1SDimitry Andric } 27390fca6ea1SDimitry Andric 27400fca6ea1SDimitry Andric return true; 27410fca6ea1SDimitry Andric } 27420fca6ea1SDimitry Andric 27438bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 27448bcb0991SDimitry Andric // ModuloScheduleTestPass implementation 27458bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 27468bcb0991SDimitry Andric // This pass constructs a ModuloSchedule from its module and runs 27478bcb0991SDimitry Andric // ModuloScheduleExpander. 27488bcb0991SDimitry Andric // 27498bcb0991SDimitry Andric // The module is expected to contain a single-block analyzable loop. 27508bcb0991SDimitry Andric // The total order of instructions is taken from the loop as-is. 27518bcb0991SDimitry Andric // Instructions are expected to be annotated with a PostInstrSymbol. 27528bcb0991SDimitry Andric // This PostInstrSymbol must have the following format: 27538bcb0991SDimitry Andric // "Stage=%d Cycle=%d". 27548bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 27558bcb0991SDimitry Andric 27568bcb0991SDimitry Andric namespace { 27578bcb0991SDimitry Andric class ModuloScheduleTest : public MachineFunctionPass { 27588bcb0991SDimitry Andric public: 27598bcb0991SDimitry Andric static char ID; 27608bcb0991SDimitry Andric 27618bcb0991SDimitry Andric ModuloScheduleTest() : MachineFunctionPass(ID) { 27628bcb0991SDimitry Andric initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); 27638bcb0991SDimitry Andric } 27648bcb0991SDimitry Andric 27658bcb0991SDimitry Andric bool runOnMachineFunction(MachineFunction &MF) override; 27668bcb0991SDimitry Andric void runOnLoop(MachineFunction &MF, MachineLoop &L); 27678bcb0991SDimitry Andric 27688bcb0991SDimitry Andric void getAnalysisUsage(AnalysisUsage &AU) const override { 27690fca6ea1SDimitry Andric AU.addRequired<MachineLoopInfoWrapperPass>(); 27700fca6ea1SDimitry Andric AU.addRequired<LiveIntervalsWrapperPass>(); 27718bcb0991SDimitry Andric MachineFunctionPass::getAnalysisUsage(AU); 27728bcb0991SDimitry Andric } 27738bcb0991SDimitry Andric }; 27748bcb0991SDimitry Andric } // namespace 27758bcb0991SDimitry Andric 27768bcb0991SDimitry Andric char ModuloScheduleTest::ID = 0; 27778bcb0991SDimitry Andric 27788bcb0991SDimitry Andric INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test", 27798bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 27800fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) 27810fca6ea1SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 27828bcb0991SDimitry Andric INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test", 27838bcb0991SDimitry Andric "Modulo Schedule test pass", false, false) 27848bcb0991SDimitry Andric 27858bcb0991SDimitry Andric bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { 27860fca6ea1SDimitry Andric MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 27878bcb0991SDimitry Andric for (auto *L : MLI) { 27888bcb0991SDimitry Andric if (L->getTopBlock() != L->getBottomBlock()) 27898bcb0991SDimitry Andric continue; 27908bcb0991SDimitry Andric runOnLoop(MF, *L); 27918bcb0991SDimitry Andric return false; 27928bcb0991SDimitry Andric } 27938bcb0991SDimitry Andric return false; 27948bcb0991SDimitry Andric } 27958bcb0991SDimitry Andric 27968bcb0991SDimitry Andric static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { 27978bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_"); 27988bcb0991SDimitry Andric std::pair<StringRef, StringRef> StageTokenAndValue = 27998bcb0991SDimitry Andric getToken(StageAndCycle.first, "-"); 28008bcb0991SDimitry Andric std::pair<StringRef, StringRef> CycleTokenAndValue = 28018bcb0991SDimitry Andric getToken(StageAndCycle.second, "-"); 28028bcb0991SDimitry Andric if (StageTokenAndValue.first != "Stage" || 28038bcb0991SDimitry Andric CycleTokenAndValue.first != "_Cycle") { 28048bcb0991SDimitry Andric llvm_unreachable( 28058bcb0991SDimitry Andric "Bad post-instr symbol syntax: see comment in ModuloScheduleTest"); 28068bcb0991SDimitry Andric return; 28078bcb0991SDimitry Andric } 28088bcb0991SDimitry Andric 28098bcb0991SDimitry Andric StageTokenAndValue.second.drop_front().getAsInteger(10, Stage); 28108bcb0991SDimitry Andric CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle); 28118bcb0991SDimitry Andric 28128bcb0991SDimitry Andric dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n"; 28138bcb0991SDimitry Andric } 28148bcb0991SDimitry Andric 28158bcb0991SDimitry Andric void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { 28160fca6ea1SDimitry Andric LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 28178bcb0991SDimitry Andric MachineBasicBlock *BB = L.getTopBlock(); 28188bcb0991SDimitry Andric dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n"; 28198bcb0991SDimitry Andric 28208bcb0991SDimitry Andric DenseMap<MachineInstr *, int> Cycle, Stage; 28218bcb0991SDimitry Andric std::vector<MachineInstr *> Instrs; 28228bcb0991SDimitry Andric for (MachineInstr &MI : *BB) { 28238bcb0991SDimitry Andric if (MI.isTerminator()) 28248bcb0991SDimitry Andric continue; 28258bcb0991SDimitry Andric Instrs.push_back(&MI); 28268bcb0991SDimitry Andric if (MCSymbol *Sym = MI.getPostInstrSymbol()) { 28278bcb0991SDimitry Andric dbgs() << "Parsing post-instr symbol for " << MI; 28288bcb0991SDimitry Andric parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]); 28298bcb0991SDimitry Andric } 28308bcb0991SDimitry Andric } 28318bcb0991SDimitry Andric 28328bcb0991SDimitry Andric ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), 28338bcb0991SDimitry Andric std::move(Stage)); 28348bcb0991SDimitry Andric ModuloScheduleExpander MSE( 28358bcb0991SDimitry Andric MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); 28368bcb0991SDimitry Andric MSE.expand(); 28378bcb0991SDimitry Andric MSE.cleanup(); 28388bcb0991SDimitry Andric } 28398bcb0991SDimitry Andric 28408bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 28418bcb0991SDimitry Andric // ModuloScheduleTestAnnotater implementation 28428bcb0991SDimitry Andric //===----------------------------------------------------------------------===// 28438bcb0991SDimitry Andric 28448bcb0991SDimitry Andric void ModuloScheduleTestAnnotater::annotate() { 28458bcb0991SDimitry Andric for (MachineInstr *MI : S.getInstructions()) { 28468bcb0991SDimitry Andric SmallVector<char, 16> SV; 28478bcb0991SDimitry Andric raw_svector_ostream OS(SV); 28488bcb0991SDimitry Andric OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); 28498bcb0991SDimitry Andric MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str()); 28508bcb0991SDimitry Andric MI->setPostInstrSymbol(MF, Sym); 28518bcb0991SDimitry Andric } 28528bcb0991SDimitry Andric } 2853