1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/ADT/BitVector.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/PostOrderIterator.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/ADT/SetOperations.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/ADT/Twine.h" 34 #include "llvm/Analysis/EHPersonalities.h" 35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 36 #include "llvm/CodeGen/LiveInterval.h" 37 #include "llvm/CodeGen/LiveIntervalCalc.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveStacks.h" 40 #include "llvm/CodeGen/LiveVariables.h" 41 #include "llvm/CodeGen/MachineBasicBlock.h" 42 #include "llvm/CodeGen/MachineFrameInfo.h" 43 #include "llvm/CodeGen/MachineFunction.h" 44 #include "llvm/CodeGen/MachineFunctionPass.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBundle.h" 47 #include "llvm/CodeGen/MachineMemOperand.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/PseudoSourceValue.h" 51 #include "llvm/CodeGen/SlotIndexes.h" 52 #include "llvm/CodeGen/StackMaps.h" 53 #include "llvm/CodeGen/TargetInstrInfo.h" 54 #include "llvm/CodeGen/TargetOpcodes.h" 55 #include "llvm/CodeGen/TargetRegisterInfo.h" 56 #include "llvm/CodeGen/TargetSubtargetInfo.h" 57 #include "llvm/IR/BasicBlock.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/InlineAsm.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(const MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<Register, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<Register>; 108 using RegMap = DenseMap<Register, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstNonPHI; 112 const MachineInstr *FirstTerminator; 113 BlockSet FunctionBlocks; 114 115 BitVector regsReserved; 116 RegSet regsLive; 117 RegVector regsDefined, regsDead, regsKilled; 118 RegMaskVector regMasks; 119 120 SlotIndex lastIndex; 121 122 // Add Reg and any sub-registers to RV 123 void addRegWithSubRegs(RegVector &RV, Register Reg) { 124 RV.push_back(Reg); 125 if (Reg.isPhysical()) 126 append_range(RV, TRI->subregs(Reg.asMCReg())); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. vregsLiveIn doesn't include regs 135 // that only are used by PHI nodes. 136 RegMap vregsLiveIn; 137 138 // Regs killed in MBB. They may be defined again, and will then be in both 139 // regsKilled and regsLiveOut. 140 RegSet regsKilled; 141 142 // Regs defined in MBB and live out. Note that vregs passing through may 143 // be live out without being mentioned here. 144 RegSet regsLiveOut; 145 146 // Vregs that pass through MBB untouched. This set is disjoint from 147 // regsKilled and regsLiveOut. 148 RegSet vregsPassed; 149 150 // Vregs that must pass through MBB because they are needed by a successor 151 // block. This set is disjoint from regsLiveOut. 152 RegSet vregsRequired; 153 154 // Set versions of block's predecessor and successor lists. 155 BlockSet Preds, Succs; 156 157 BBInfo() = default; 158 159 // Add register to vregsRequired if it belongs there. Return true if 160 // anything changed. 161 bool addRequired(Register Reg) { 162 if (!Reg.isVirtual()) 163 return false; 164 if (regsLiveOut.count(Reg)) 165 return false; 166 return vregsRequired.insert(Reg).second; 167 } 168 169 // Same for a full set. 170 bool addRequired(const RegSet &RS) { 171 bool Changed = false; 172 for (Register Reg : RS) 173 Changed |= addRequired(Reg); 174 return Changed; 175 } 176 177 // Same for a full map. 178 bool addRequired(const RegMap &RM) { 179 bool Changed = false; 180 for (const auto &I : RM) 181 Changed |= addRequired(I.first); 182 return Changed; 183 } 184 185 // Live-out registers are either in regsLiveOut or vregsPassed. 186 bool isLiveOut(Register Reg) const { 187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 188 } 189 }; 190 191 // Extra register info per MBB. 192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 193 194 bool isReserved(Register Reg) { 195 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 196 } 197 198 bool isAllocatable(Register Reg) const { 199 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 200 !regsReserved.test(Reg.id()); 201 } 202 203 // Analysis information if available 204 LiveVariables *LiveVars; 205 LiveIntervals *LiveInts; 206 LiveStacks *LiveStks; 207 SlotIndexes *Indexes; 208 209 void visitMachineFunctionBefore(); 210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 211 void visitMachineBundleBefore(const MachineInstr *MI); 212 213 /// Verify that all of \p MI's virtual register operands are scalars. 214 /// \returns True if all virtual register operands are scalar. False 215 /// otherwise. 216 bool verifyAllRegOpsScalar(const MachineInstr &MI, 217 const MachineRegisterInfo &MRI); 218 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 219 void verifyPreISelGenericInstruction(const MachineInstr *MI); 220 void visitMachineInstrBefore(const MachineInstr *MI); 221 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 222 void visitMachineBundleAfter(const MachineInstr *MI); 223 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 224 void visitMachineFunctionAfter(); 225 226 void report(const char *msg, const MachineFunction *MF); 227 void report(const char *msg, const MachineBasicBlock *MBB); 228 void report(const char *msg, const MachineInstr *MI); 229 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 230 LLT MOVRegType = LLT{}); 231 void report(const Twine &Msg, const MachineInstr *MI); 232 233 void report_context(const LiveInterval &LI) const; 234 void report_context(const LiveRange &LR, Register VRegUnit, 235 LaneBitmask LaneMask) const; 236 void report_context(const LiveRange::Segment &S) const; 237 void report_context(const VNInfo &VNI) const; 238 void report_context(SlotIndex Pos) const; 239 void report_context(MCPhysReg PhysReg) const; 240 void report_context_liverange(const LiveRange &LR) const; 241 void report_context_lanemask(LaneBitmask LaneMask) const; 242 void report_context_vreg(Register VReg) const; 243 void report_context_vreg_regunit(Register VRegOrUnit) const; 244 245 void verifyInlineAsm(const MachineInstr *MI); 246 247 void checkLiveness(const MachineOperand *MO, unsigned MONum); 248 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 249 SlotIndex UseIdx, const LiveRange &LR, 250 Register VRegOrUnit, 251 LaneBitmask LaneMask = LaneBitmask::getNone()); 252 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 253 SlotIndex DefIdx, const LiveRange &LR, 254 Register VRegOrUnit, bool SubRangeCheck = false, 255 LaneBitmask LaneMask = LaneBitmask::getNone()); 256 257 void markReachable(const MachineBasicBlock *MBB); 258 void calcRegsPassed(); 259 void checkPHIOps(const MachineBasicBlock &MBB); 260 261 void calcRegsRequired(); 262 void verifyLiveVariables(); 263 void verifyLiveIntervals(); 264 void verifyLiveInterval(const LiveInterval&); 265 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 266 LaneBitmask); 267 void verifyLiveRangeSegment(const LiveRange &, 268 const LiveRange::const_iterator I, Register, 269 LaneBitmask); 270 void verifyLiveRange(const LiveRange &, Register, 271 LaneBitmask LaneMask = LaneBitmask::getNone()); 272 273 void verifyStackFrame(); 274 275 void verifySlotIndexes() const; 276 void verifyProperties(const MachineFunction &MF); 277 }; 278 279 struct MachineVerifierPass : public MachineFunctionPass { 280 static char ID; // Pass ID, replacement for typeid 281 282 const std::string Banner; 283 284 MachineVerifierPass(std::string banner = std::string()) 285 : MachineFunctionPass(ID), Banner(std::move(banner)) { 286 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 287 } 288 289 void getAnalysisUsage(AnalysisUsage &AU) const override { 290 AU.setPreservesAll(); 291 MachineFunctionPass::getAnalysisUsage(AU); 292 } 293 294 bool runOnMachineFunction(MachineFunction &MF) override { 295 // Skip functions that have known verification problems. 296 // FIXME: Remove this mechanism when all problematic passes have been 297 // fixed. 298 if (MF.getProperties().hasProperty( 299 MachineFunctionProperties::Property::FailsVerification)) 300 return false; 301 302 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 303 if (FoundErrors) 304 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 305 return false; 306 } 307 }; 308 309 } // end anonymous namespace 310 311 char MachineVerifierPass::ID = 0; 312 313 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 314 "Verify generated machine code", false, false) 315 316 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 317 return new MachineVerifierPass(Banner); 318 } 319 320 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *, 321 const std::string &Banner, 322 const MachineFunction &MF) { 323 // TODO: Use MFAM after porting below analyses. 324 // LiveVariables *LiveVars; 325 // LiveIntervals *LiveInts; 326 // LiveStacks *LiveStks; 327 // SlotIndexes *Indexes; 328 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 329 if (FoundErrors) 330 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 331 } 332 333 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 334 const { 335 MachineFunction &MF = const_cast<MachineFunction&>(*this); 336 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 337 if (AbortOnErrors && FoundErrors) 338 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 339 return FoundErrors == 0; 340 } 341 342 void MachineVerifier::verifySlotIndexes() const { 343 if (Indexes == nullptr) 344 return; 345 346 // Ensure the IdxMBB list is sorted by slot indexes. 347 SlotIndex Last; 348 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 349 E = Indexes->MBBIndexEnd(); I != E; ++I) { 350 assert(!Last.isValid() || I->first > Last); 351 Last = I->first; 352 } 353 } 354 355 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 356 // If a pass has introduced virtual registers without clearing the 357 // NoVRegs property (or set it without allocating the vregs) 358 // then report an error. 359 if (MF.getProperties().hasProperty( 360 MachineFunctionProperties::Property::NoVRegs) && 361 MRI->getNumVirtRegs()) 362 report("Function has NoVRegs property but there are VReg operands", &MF); 363 } 364 365 unsigned MachineVerifier::verify(const MachineFunction &MF) { 366 foundErrors = 0; 367 368 this->MF = &MF; 369 TM = &MF.getTarget(); 370 TII = MF.getSubtarget().getInstrInfo(); 371 TRI = MF.getSubtarget().getRegisterInfo(); 372 MRI = &MF.getRegInfo(); 373 374 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 375 MachineFunctionProperties::Property::FailedISel); 376 377 // If we're mid-GlobalISel and we already triggered the fallback path then 378 // it's expected that the MIR is somewhat broken but that's ok since we'll 379 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 380 if (isFunctionFailedISel) 381 return foundErrors; 382 383 isFunctionRegBankSelected = MF.getProperties().hasProperty( 384 MachineFunctionProperties::Property::RegBankSelected); 385 isFunctionSelected = MF.getProperties().hasProperty( 386 MachineFunctionProperties::Property::Selected); 387 388 LiveVars = nullptr; 389 LiveInts = nullptr; 390 LiveStks = nullptr; 391 Indexes = nullptr; 392 if (PASS) { 393 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 394 // We don't want to verify LiveVariables if LiveIntervals is available. 395 if (!LiveInts) 396 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 397 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 398 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 399 } 400 401 verifySlotIndexes(); 402 403 verifyProperties(MF); 404 405 visitMachineFunctionBefore(); 406 for (const MachineBasicBlock &MBB : MF) { 407 visitMachineBasicBlockBefore(&MBB); 408 // Keep track of the current bundle header. 409 const MachineInstr *CurBundle = nullptr; 410 // Do we expect the next instruction to be part of the same bundle? 411 bool InBundle = false; 412 413 for (const MachineInstr &MI : MBB.instrs()) { 414 if (MI.getParent() != &MBB) { 415 report("Bad instruction parent pointer", &MBB); 416 errs() << "Instruction: " << MI; 417 continue; 418 } 419 420 // Check for consistent bundle flags. 421 if (InBundle && !MI.isBundledWithPred()) 422 report("Missing BundledPred flag, " 423 "BundledSucc was set on predecessor", 424 &MI); 425 if (!InBundle && MI.isBundledWithPred()) 426 report("BundledPred flag is set, " 427 "but BundledSucc not set on predecessor", 428 &MI); 429 430 // Is this a bundle header? 431 if (!MI.isInsideBundle()) { 432 if (CurBundle) 433 visitMachineBundleAfter(CurBundle); 434 CurBundle = &MI; 435 visitMachineBundleBefore(CurBundle); 436 } else if (!CurBundle) 437 report("No bundle header", &MI); 438 visitMachineInstrBefore(&MI); 439 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 440 const MachineOperand &Op = MI.getOperand(I); 441 if (Op.getParent() != &MI) { 442 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 443 // functions when replacing operands of a MachineInstr. 444 report("Instruction has operand with wrong parent set", &MI); 445 } 446 447 visitMachineOperand(&Op, I); 448 } 449 450 // Was this the last bundled instruction? 451 InBundle = MI.isBundledWithSucc(); 452 } 453 if (CurBundle) 454 visitMachineBundleAfter(CurBundle); 455 if (InBundle) 456 report("BundledSucc flag set on last instruction in block", &MBB.back()); 457 visitMachineBasicBlockAfter(&MBB); 458 } 459 visitMachineFunctionAfter(); 460 461 // Clean up. 462 regsLive.clear(); 463 regsDefined.clear(); 464 regsDead.clear(); 465 regsKilled.clear(); 466 regMasks.clear(); 467 MBBInfoMap.clear(); 468 469 return foundErrors; 470 } 471 472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 473 assert(MF); 474 errs() << '\n'; 475 if (!foundErrors++) { 476 if (Banner) 477 errs() << "# " << Banner << '\n'; 478 if (LiveInts != nullptr) 479 LiveInts->print(errs()); 480 else 481 MF->print(errs(), Indexes); 482 } 483 errs() << "*** Bad machine code: " << msg << " ***\n" 484 << "- function: " << MF->getName() << "\n"; 485 } 486 487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 488 assert(MBB); 489 report(msg, MBB->getParent()); 490 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 491 << MBB->getName() << " (" << (const void *)MBB << ')'; 492 if (Indexes) 493 errs() << " [" << Indexes->getMBBStartIdx(MBB) 494 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 495 errs() << '\n'; 496 } 497 498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 499 assert(MI); 500 report(msg, MI->getParent()); 501 errs() << "- instruction: "; 502 if (Indexes && Indexes->hasIndex(*MI)) 503 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 504 MI->print(errs(), /*IsStandalone=*/true); 505 } 506 507 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 508 unsigned MONum, LLT MOVRegType) { 509 assert(MO); 510 report(msg, MO->getParent()); 511 errs() << "- operand " << MONum << ": "; 512 MO->print(errs(), MOVRegType, TRI); 513 errs() << "\n"; 514 } 515 516 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 517 report(Msg.str().c_str(), MI); 518 } 519 520 void MachineVerifier::report_context(SlotIndex Pos) const { 521 errs() << "- at: " << Pos << '\n'; 522 } 523 524 void MachineVerifier::report_context(const LiveInterval &LI) const { 525 errs() << "- interval: " << LI << '\n'; 526 } 527 528 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 529 LaneBitmask LaneMask) const { 530 report_context_liverange(LR); 531 report_context_vreg_regunit(VRegUnit); 532 if (LaneMask.any()) 533 report_context_lanemask(LaneMask); 534 } 535 536 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 537 errs() << "- segment: " << S << '\n'; 538 } 539 540 void MachineVerifier::report_context(const VNInfo &VNI) const { 541 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 542 } 543 544 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 545 errs() << "- liverange: " << LR << '\n'; 546 } 547 548 void MachineVerifier::report_context(MCPhysReg PReg) const { 549 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 550 } 551 552 void MachineVerifier::report_context_vreg(Register VReg) const { 553 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 554 } 555 556 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 557 if (Register::isVirtualRegister(VRegOrUnit)) { 558 report_context_vreg(VRegOrUnit); 559 } else { 560 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 561 } 562 } 563 564 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 565 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 566 } 567 568 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 569 BBInfo &MInfo = MBBInfoMap[MBB]; 570 if (!MInfo.reachable) { 571 MInfo.reachable = true; 572 for (const MachineBasicBlock *Succ : MBB->successors()) 573 markReachable(Succ); 574 } 575 } 576 577 void MachineVerifier::visitMachineFunctionBefore() { 578 lastIndex = SlotIndex(); 579 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 580 : TRI->getReservedRegs(*MF); 581 582 if (!MF->empty()) 583 markReachable(&MF->front()); 584 585 // Build a set of the basic blocks in the function. 586 FunctionBlocks.clear(); 587 for (const auto &MBB : *MF) { 588 FunctionBlocks.insert(&MBB); 589 BBInfo &MInfo = MBBInfoMap[&MBB]; 590 591 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 592 if (MInfo.Preds.size() != MBB.pred_size()) 593 report("MBB has duplicate entries in its predecessor list.", &MBB); 594 595 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 596 if (MInfo.Succs.size() != MBB.succ_size()) 597 report("MBB has duplicate entries in its successor list.", &MBB); 598 } 599 600 // Check that the register use lists are sane. 601 MRI->verifyUseLists(); 602 603 if (!MF->empty()) 604 verifyStackFrame(); 605 } 606 607 void 608 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 609 FirstTerminator = nullptr; 610 FirstNonPHI = nullptr; 611 612 if (!MF->getProperties().hasProperty( 613 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 614 // If this block has allocatable physical registers live-in, check that 615 // it is an entry block or landing pad. 616 for (const auto &LI : MBB->liveins()) { 617 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 618 MBB->getIterator() != MBB->getParent()->begin()) { 619 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 620 report_context(LI.PhysReg); 621 } 622 } 623 } 624 625 // Count the number of landing pad successors. 626 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 627 for (const auto *succ : MBB->successors()) { 628 if (succ->isEHPad()) 629 LandingPadSuccs.insert(succ); 630 if (!FunctionBlocks.count(succ)) 631 report("MBB has successor that isn't part of the function.", MBB); 632 if (!MBBInfoMap[succ].Preds.count(MBB)) { 633 report("Inconsistent CFG", MBB); 634 errs() << "MBB is not in the predecessor list of the successor " 635 << printMBBReference(*succ) << ".\n"; 636 } 637 } 638 639 // Check the predecessor list. 640 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 641 if (!FunctionBlocks.count(Pred)) 642 report("MBB has predecessor that isn't part of the function.", MBB); 643 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 644 report("Inconsistent CFG", MBB); 645 errs() << "MBB is not in the successor list of the predecessor " 646 << printMBBReference(*Pred) << ".\n"; 647 } 648 } 649 650 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 651 const BasicBlock *BB = MBB->getBasicBlock(); 652 const Function &F = MF->getFunction(); 653 if (LandingPadSuccs.size() > 1 && 654 !(AsmInfo && 655 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 656 BB && isa<SwitchInst>(BB->getTerminator())) && 657 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 658 report("MBB has more than one landing pad successor", MBB); 659 660 // Call analyzeBranch. If it succeeds, there several more conditions to check. 661 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 662 SmallVector<MachineOperand, 4> Cond; 663 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 664 Cond)) { 665 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 666 // check whether its answers match up with reality. 667 if (!TBB && !FBB) { 668 // Block falls through to its successor. 669 if (!MBB->empty() && MBB->back().isBarrier() && 670 !TII->isPredicated(MBB->back())) { 671 report("MBB exits via unconditional fall-through but ends with a " 672 "barrier instruction!", MBB); 673 } 674 if (!Cond.empty()) { 675 report("MBB exits via unconditional fall-through but has a condition!", 676 MBB); 677 } 678 } else if (TBB && !FBB && Cond.empty()) { 679 // Block unconditionally branches somewhere. 680 if (MBB->empty()) { 681 report("MBB exits via unconditional branch but doesn't contain " 682 "any instructions!", MBB); 683 } else if (!MBB->back().isBarrier()) { 684 report("MBB exits via unconditional branch but doesn't end with a " 685 "barrier instruction!", MBB); 686 } else if (!MBB->back().isTerminator()) { 687 report("MBB exits via unconditional branch but the branch isn't a " 688 "terminator instruction!", MBB); 689 } 690 } else if (TBB && !FBB && !Cond.empty()) { 691 // Block conditionally branches somewhere, otherwise falls through. 692 if (MBB->empty()) { 693 report("MBB exits via conditional branch/fall-through but doesn't " 694 "contain any instructions!", MBB); 695 } else if (MBB->back().isBarrier()) { 696 report("MBB exits via conditional branch/fall-through but ends with a " 697 "barrier instruction!", MBB); 698 } else if (!MBB->back().isTerminator()) { 699 report("MBB exits via conditional branch/fall-through but the branch " 700 "isn't a terminator instruction!", MBB); 701 } 702 } else if (TBB && FBB) { 703 // Block conditionally branches somewhere, otherwise branches 704 // somewhere else. 705 if (MBB->empty()) { 706 report("MBB exits via conditional branch/branch but doesn't " 707 "contain any instructions!", MBB); 708 } else if (!MBB->back().isBarrier()) { 709 report("MBB exits via conditional branch/branch but doesn't end with a " 710 "barrier instruction!", MBB); 711 } else if (!MBB->back().isTerminator()) { 712 report("MBB exits via conditional branch/branch but the branch " 713 "isn't a terminator instruction!", MBB); 714 } 715 if (Cond.empty()) { 716 report("MBB exits via conditional branch/branch but there's no " 717 "condition!", MBB); 718 } 719 } else { 720 report("analyzeBranch returned invalid data!", MBB); 721 } 722 723 // Now check that the successors match up with the answers reported by 724 // analyzeBranch. 725 if (TBB && !MBB->isSuccessor(TBB)) 726 report("MBB exits via jump or conditional branch, but its target isn't a " 727 "CFG successor!", 728 MBB); 729 if (FBB && !MBB->isSuccessor(FBB)) 730 report("MBB exits via conditional branch, but its target isn't a CFG " 731 "successor!", 732 MBB); 733 734 // There might be a fallthrough to the next block if there's either no 735 // unconditional true branch, or if there's a condition, and one of the 736 // branches is missing. 737 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 738 739 // A conditional fallthrough must be an actual CFG successor, not 740 // unreachable. (Conversely, an unconditional fallthrough might not really 741 // be a successor, because the block might end in unreachable.) 742 if (!Cond.empty() && !FBB) { 743 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 744 if (MBBI == MF->end()) { 745 report("MBB conditionally falls through out of function!", MBB); 746 } else if (!MBB->isSuccessor(&*MBBI)) 747 report("MBB exits via conditional branch/fall-through but the CFG " 748 "successors don't match the actual successors!", 749 MBB); 750 } 751 752 // Verify that there aren't any extra un-accounted-for successors. 753 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 754 // If this successor is one of the branch targets, it's okay. 755 if (SuccMBB == TBB || SuccMBB == FBB) 756 continue; 757 // If we might have a fallthrough, and the successor is the fallthrough 758 // block, that's also ok. 759 if (Fallthrough && SuccMBB == MBB->getNextNode()) 760 continue; 761 // Also accept successors which are for exception-handling or might be 762 // inlineasm_br targets. 763 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 764 continue; 765 report("MBB has unexpected successors which are not branch targets, " 766 "fallthrough, EHPads, or inlineasm_br targets.", 767 MBB); 768 } 769 } 770 771 regsLive.clear(); 772 if (MRI->tracksLiveness()) { 773 for (const auto &LI : MBB->liveins()) { 774 if (!Register::isPhysicalRegister(LI.PhysReg)) { 775 report("MBB live-in list contains non-physical register", MBB); 776 continue; 777 } 778 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 779 regsLive.insert(SubReg); 780 } 781 } 782 783 const MachineFrameInfo &MFI = MF->getFrameInfo(); 784 BitVector PR = MFI.getPristineRegs(*MF); 785 for (unsigned I : PR.set_bits()) { 786 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 787 regsLive.insert(SubReg); 788 } 789 790 regsKilled.clear(); 791 regsDefined.clear(); 792 793 if (Indexes) 794 lastIndex = Indexes->getMBBStartIdx(MBB); 795 } 796 797 // This function gets called for all bundle headers, including normal 798 // stand-alone unbundled instructions. 799 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 800 if (Indexes && Indexes->hasIndex(*MI)) { 801 SlotIndex idx = Indexes->getInstructionIndex(*MI); 802 if (!(idx > lastIndex)) { 803 report("Instruction index out of order", MI); 804 errs() << "Last instruction was at " << lastIndex << '\n'; 805 } 806 lastIndex = idx; 807 } 808 809 // Ensure non-terminators don't follow terminators. 810 if (MI->isTerminator()) { 811 if (!FirstTerminator) 812 FirstTerminator = MI; 813 } else if (FirstTerminator) { 814 report("Non-terminator instruction after the first terminator", MI); 815 errs() << "First terminator was:\t" << *FirstTerminator; 816 } 817 } 818 819 // The operands on an INLINEASM instruction must follow a template. 820 // Verify that the flag operands make sense. 821 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 822 // The first two operands on INLINEASM are the asm string and global flags. 823 if (MI->getNumOperands() < 2) { 824 report("Too few operands on inline asm", MI); 825 return; 826 } 827 if (!MI->getOperand(0).isSymbol()) 828 report("Asm string must be an external symbol", MI); 829 if (!MI->getOperand(1).isImm()) 830 report("Asm flags must be an immediate", MI); 831 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 832 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 833 // and Extra_IsConvergent = 32. 834 if (!isUInt<6>(MI->getOperand(1).getImm())) 835 report("Unknown asm flags", &MI->getOperand(1), 1); 836 837 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 838 839 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 840 unsigned NumOps; 841 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 842 const MachineOperand &MO = MI->getOperand(OpNo); 843 // There may be implicit ops after the fixed operands. 844 if (!MO.isImm()) 845 break; 846 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 847 } 848 849 if (OpNo > MI->getNumOperands()) 850 report("Missing operands in last group", MI); 851 852 // An optional MDNode follows the groups. 853 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 854 ++OpNo; 855 856 // All trailing operands must be implicit registers. 857 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 858 const MachineOperand &MO = MI->getOperand(OpNo); 859 if (!MO.isReg() || !MO.isImplicit()) 860 report("Expected implicit register after groups", &MO, OpNo); 861 } 862 } 863 864 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 865 const MachineRegisterInfo &MRI) { 866 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 867 if (!Op.isReg()) 868 return false; 869 const auto Reg = Op.getReg(); 870 if (Reg.isPhysical()) 871 return false; 872 return !MRI.getType(Reg).isScalar(); 873 })) 874 return true; 875 report("All register operands must have scalar types", &MI); 876 return false; 877 } 878 879 /// Check that types are consistent when two operands need to have the same 880 /// number of vector elements. 881 /// \return true if the types are valid. 882 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 883 const MachineInstr *MI) { 884 if (Ty0.isVector() != Ty1.isVector()) { 885 report("operand types must be all-vector or all-scalar", MI); 886 // Generally we try to report as many issues as possible at once, but in 887 // this case it's not clear what should we be comparing the size of the 888 // scalar with: the size of the whole vector or its lane. Instead of 889 // making an arbitrary choice and emitting not so helpful message, let's 890 // avoid the extra noise and stop here. 891 return false; 892 } 893 894 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) { 895 report("operand types must preserve number of vector elements", MI); 896 return false; 897 } 898 899 return true; 900 } 901 902 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 903 if (isFunctionSelected) 904 report("Unexpected generic instruction in a Selected function", MI); 905 906 const MCInstrDesc &MCID = MI->getDesc(); 907 unsigned NumOps = MI->getNumOperands(); 908 909 // Branches must reference a basic block if they are not indirect 910 if (MI->isBranch() && !MI->isIndirectBranch()) { 911 bool HasMBB = false; 912 for (const MachineOperand &Op : MI->operands()) { 913 if (Op.isMBB()) { 914 HasMBB = true; 915 break; 916 } 917 } 918 919 if (!HasMBB) { 920 report("Branch instruction is missing a basic block operand or " 921 "isIndirectBranch property", 922 MI); 923 } 924 } 925 926 // Check types. 927 SmallVector<LLT, 4> Types; 928 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 929 I != E; ++I) { 930 if (!MCID.OpInfo[I].isGenericType()) 931 continue; 932 // Generic instructions specify type equality constraints between some of 933 // their operands. Make sure these are consistent. 934 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex(); 935 Types.resize(std::max(TypeIdx + 1, Types.size())); 936 937 const MachineOperand *MO = &MI->getOperand(I); 938 if (!MO->isReg()) { 939 report("generic instruction must use register operands", MI); 940 continue; 941 } 942 943 LLT OpTy = MRI->getType(MO->getReg()); 944 // Don't report a type mismatch if there is no actual mismatch, only a 945 // type missing, to reduce noise: 946 if (OpTy.isValid()) { 947 // Only the first valid type for a type index will be printed: don't 948 // overwrite it later so it's always clear which type was expected: 949 if (!Types[TypeIdx].isValid()) 950 Types[TypeIdx] = OpTy; 951 else if (Types[TypeIdx] != OpTy) 952 report("Type mismatch in generic instruction", MO, I, OpTy); 953 } else { 954 // Generic instructions must have types attached to their operands. 955 report("Generic instruction is missing a virtual register type", MO, I); 956 } 957 } 958 959 // Generic opcodes must not have physical register operands. 960 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 961 const MachineOperand *MO = &MI->getOperand(I); 962 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg())) 963 report("Generic instruction cannot have physical register", MO, I); 964 } 965 966 // Avoid out of bounds in checks below. This was already reported earlier. 967 if (MI->getNumOperands() < MCID.getNumOperands()) 968 return; 969 970 StringRef ErrorInfo; 971 if (!TII->verifyInstruction(*MI, ErrorInfo)) 972 report(ErrorInfo.data(), MI); 973 974 // Verify properties of various specific instruction types 975 unsigned Opc = MI->getOpcode(); 976 switch (Opc) { 977 case TargetOpcode::G_ASSERT_SEXT: 978 case TargetOpcode::G_ASSERT_ZEXT: { 979 std::string OpcName = 980 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 981 if (!MI->getOperand(2).isImm()) { 982 report(Twine(OpcName, " expects an immediate operand #2"), MI); 983 break; 984 } 985 986 Register Dst = MI->getOperand(0).getReg(); 987 Register Src = MI->getOperand(1).getReg(); 988 LLT SrcTy = MRI->getType(Src); 989 int64_t Imm = MI->getOperand(2).getImm(); 990 if (Imm <= 0) { 991 report(Twine(OpcName, " size must be >= 1"), MI); 992 break; 993 } 994 995 if (Imm >= SrcTy.getScalarSizeInBits()) { 996 report(Twine(OpcName, " size must be less than source bit width"), MI); 997 break; 998 } 999 1000 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) { 1001 report( 1002 Twine(OpcName, " source and destination register banks must match"), 1003 MI); 1004 break; 1005 } 1006 1007 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst)) 1008 report( 1009 Twine(OpcName, " source and destination register classes must match"), 1010 MI); 1011 1012 break; 1013 } 1014 1015 case TargetOpcode::G_CONSTANT: 1016 case TargetOpcode::G_FCONSTANT: { 1017 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1018 if (DstTy.isVector()) 1019 report("Instruction cannot use a vector result type", MI); 1020 1021 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1022 if (!MI->getOperand(1).isCImm()) { 1023 report("G_CONSTANT operand must be cimm", MI); 1024 break; 1025 } 1026 1027 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1028 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1029 report("inconsistent constant size", MI); 1030 } else { 1031 if (!MI->getOperand(1).isFPImm()) { 1032 report("G_FCONSTANT operand must be fpimm", MI); 1033 break; 1034 } 1035 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1036 1037 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1038 DstTy.getSizeInBits()) { 1039 report("inconsistent constant size", MI); 1040 } 1041 } 1042 1043 break; 1044 } 1045 case TargetOpcode::G_LOAD: 1046 case TargetOpcode::G_STORE: 1047 case TargetOpcode::G_ZEXTLOAD: 1048 case TargetOpcode::G_SEXTLOAD: { 1049 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1050 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1051 if (!PtrTy.isPointer()) 1052 report("Generic memory instruction must access a pointer", MI); 1053 1054 // Generic loads and stores must have a single MachineMemOperand 1055 // describing that access. 1056 if (!MI->hasOneMemOperand()) { 1057 report("Generic instruction accessing memory must have one mem operand", 1058 MI); 1059 } else { 1060 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1061 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1062 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1063 if (MMO.getSizeInBits() >= ValTy.getSizeInBits()) 1064 report("Generic extload must have a narrower memory type", MI); 1065 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1066 if (MMO.getSize() > ValTy.getSizeInBytes()) 1067 report("load memory size cannot exceed result size", MI); 1068 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1069 if (ValTy.getSizeInBytes() < MMO.getSize()) 1070 report("store memory size cannot exceed value size", MI); 1071 } 1072 } 1073 1074 break; 1075 } 1076 case TargetOpcode::G_PHI: { 1077 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1078 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1079 [this, &DstTy](const MachineOperand &MO) { 1080 if (!MO.isReg()) 1081 return true; 1082 LLT Ty = MRI->getType(MO.getReg()); 1083 if (!Ty.isValid() || (Ty != DstTy)) 1084 return false; 1085 return true; 1086 })) 1087 report("Generic Instruction G_PHI has operands with incompatible/missing " 1088 "types", 1089 MI); 1090 break; 1091 } 1092 case TargetOpcode::G_BITCAST: { 1093 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1094 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1095 if (!DstTy.isValid() || !SrcTy.isValid()) 1096 break; 1097 1098 if (SrcTy.isPointer() != DstTy.isPointer()) 1099 report("bitcast cannot convert between pointers and other types", MI); 1100 1101 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1102 report("bitcast sizes must match", MI); 1103 1104 if (SrcTy == DstTy) 1105 report("bitcast must change the type", MI); 1106 1107 break; 1108 } 1109 case TargetOpcode::G_INTTOPTR: 1110 case TargetOpcode::G_PTRTOINT: 1111 case TargetOpcode::G_ADDRSPACE_CAST: { 1112 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1113 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1114 if (!DstTy.isValid() || !SrcTy.isValid()) 1115 break; 1116 1117 verifyVectorElementMatch(DstTy, SrcTy, MI); 1118 1119 DstTy = DstTy.getScalarType(); 1120 SrcTy = SrcTy.getScalarType(); 1121 1122 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1123 if (!DstTy.isPointer()) 1124 report("inttoptr result type must be a pointer", MI); 1125 if (SrcTy.isPointer()) 1126 report("inttoptr source type must not be a pointer", MI); 1127 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1128 if (!SrcTy.isPointer()) 1129 report("ptrtoint source type must be a pointer", MI); 1130 if (DstTy.isPointer()) 1131 report("ptrtoint result type must not be a pointer", MI); 1132 } else { 1133 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1134 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1135 report("addrspacecast types must be pointers", MI); 1136 else { 1137 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1138 report("addrspacecast must convert different address spaces", MI); 1139 } 1140 } 1141 1142 break; 1143 } 1144 case TargetOpcode::G_PTR_ADD: { 1145 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1146 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1147 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1148 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1149 break; 1150 1151 if (!PtrTy.getScalarType().isPointer()) 1152 report("gep first operand must be a pointer", MI); 1153 1154 if (OffsetTy.getScalarType().isPointer()) 1155 report("gep offset operand must not be a pointer", MI); 1156 1157 // TODO: Is the offset allowed to be a scalar with a vector? 1158 break; 1159 } 1160 case TargetOpcode::G_PTRMASK: { 1161 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1162 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1163 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1164 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1165 break; 1166 1167 if (!DstTy.getScalarType().isPointer()) 1168 report("ptrmask result type must be a pointer", MI); 1169 1170 if (!MaskTy.getScalarType().isScalar()) 1171 report("ptrmask mask type must be an integer", MI); 1172 1173 verifyVectorElementMatch(DstTy, MaskTy, MI); 1174 break; 1175 } 1176 case TargetOpcode::G_SEXT: 1177 case TargetOpcode::G_ZEXT: 1178 case TargetOpcode::G_ANYEXT: 1179 case TargetOpcode::G_TRUNC: 1180 case TargetOpcode::G_FPEXT: 1181 case TargetOpcode::G_FPTRUNC: { 1182 // Number of operands and presense of types is already checked (and 1183 // reported in case of any issues), so no need to report them again. As 1184 // we're trying to report as many issues as possible at once, however, the 1185 // instructions aren't guaranteed to have the right number of operands or 1186 // types attached to them at this point 1187 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1188 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1189 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1190 if (!DstTy.isValid() || !SrcTy.isValid()) 1191 break; 1192 1193 LLT DstElTy = DstTy.getScalarType(); 1194 LLT SrcElTy = SrcTy.getScalarType(); 1195 if (DstElTy.isPointer() || SrcElTy.isPointer()) 1196 report("Generic extend/truncate can not operate on pointers", MI); 1197 1198 verifyVectorElementMatch(DstTy, SrcTy, MI); 1199 1200 unsigned DstSize = DstElTy.getSizeInBits(); 1201 unsigned SrcSize = SrcElTy.getSizeInBits(); 1202 switch (MI->getOpcode()) { 1203 default: 1204 if (DstSize <= SrcSize) 1205 report("Generic extend has destination type no larger than source", MI); 1206 break; 1207 case TargetOpcode::G_TRUNC: 1208 case TargetOpcode::G_FPTRUNC: 1209 if (DstSize >= SrcSize) 1210 report("Generic truncate has destination type no smaller than source", 1211 MI); 1212 break; 1213 } 1214 break; 1215 } 1216 case TargetOpcode::G_SELECT: { 1217 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1218 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1219 if (!SelTy.isValid() || !CondTy.isValid()) 1220 break; 1221 1222 // Scalar condition select on a vector is valid. 1223 if (CondTy.isVector()) 1224 verifyVectorElementMatch(SelTy, CondTy, MI); 1225 break; 1226 } 1227 case TargetOpcode::G_MERGE_VALUES: { 1228 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1229 // e.g. s2N = MERGE sN, sN 1230 // Merging multiple scalars into a vector is not allowed, should use 1231 // G_BUILD_VECTOR for that. 1232 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1233 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1234 if (DstTy.isVector() || SrcTy.isVector()) 1235 report("G_MERGE_VALUES cannot operate on vectors", MI); 1236 1237 const unsigned NumOps = MI->getNumOperands(); 1238 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1239 report("G_MERGE_VALUES result size is inconsistent", MI); 1240 1241 for (unsigned I = 2; I != NumOps; ++I) { 1242 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1243 report("G_MERGE_VALUES source types do not match", MI); 1244 } 1245 1246 break; 1247 } 1248 case TargetOpcode::G_UNMERGE_VALUES: { 1249 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1250 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg()); 1251 // For now G_UNMERGE can split vectors. 1252 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) { 1253 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) 1254 report("G_UNMERGE_VALUES destination types do not match", MI); 1255 } 1256 if (SrcTy.getSizeInBits() != 1257 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) { 1258 report("G_UNMERGE_VALUES source operand does not cover dest operands", 1259 MI); 1260 } 1261 break; 1262 } 1263 case TargetOpcode::G_BUILD_VECTOR: { 1264 // Source types must be scalars, dest type a vector. Total size of scalars 1265 // must match the dest vector size. 1266 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1267 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1268 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1269 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1270 break; 1271 } 1272 1273 if (DstTy.getElementType() != SrcEltTy) 1274 report("G_BUILD_VECTOR result element type must match source type", MI); 1275 1276 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1277 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1278 1279 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1280 if (MRI->getType(MI->getOperand(1).getReg()) != 1281 MRI->getType(MI->getOperand(i).getReg())) 1282 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1283 } 1284 1285 break; 1286 } 1287 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1288 // Source types must be scalars, dest type a vector. Scalar types must be 1289 // larger than the dest vector elt type, as this is a truncating operation. 1290 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1291 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1292 if (!DstTy.isVector() || SrcEltTy.isVector()) 1293 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1294 MI); 1295 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1296 if (MRI->getType(MI->getOperand(1).getReg()) != 1297 MRI->getType(MI->getOperand(i).getReg())) 1298 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1299 MI); 1300 } 1301 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1302 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1303 "dest elt type", 1304 MI); 1305 break; 1306 } 1307 case TargetOpcode::G_CONCAT_VECTORS: { 1308 // Source types should be vectors, and total size should match the dest 1309 // vector size. 1310 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1311 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1312 if (!DstTy.isVector() || !SrcTy.isVector()) 1313 report("G_CONCAT_VECTOR requires vector source and destination operands", 1314 MI); 1315 1316 if (MI->getNumOperands() < 3) 1317 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1318 1319 for (unsigned i = 2; i < MI->getNumOperands(); ++i) { 1320 if (MRI->getType(MI->getOperand(1).getReg()) != 1321 MRI->getType(MI->getOperand(i).getReg())) 1322 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1323 } 1324 if (DstTy.getNumElements() != 1325 SrcTy.getNumElements() * (MI->getNumOperands() - 1)) 1326 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1327 break; 1328 } 1329 case TargetOpcode::G_ICMP: 1330 case TargetOpcode::G_FCMP: { 1331 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1332 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1333 1334 if ((DstTy.isVector() != SrcTy.isVector()) || 1335 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())) 1336 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1337 1338 break; 1339 } 1340 case TargetOpcode::G_EXTRACT: { 1341 const MachineOperand &SrcOp = MI->getOperand(1); 1342 if (!SrcOp.isReg()) { 1343 report("extract source must be a register", MI); 1344 break; 1345 } 1346 1347 const MachineOperand &OffsetOp = MI->getOperand(2); 1348 if (!OffsetOp.isImm()) { 1349 report("extract offset must be a constant", MI); 1350 break; 1351 } 1352 1353 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1354 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1355 if (SrcSize == DstSize) 1356 report("extract source must be larger than result", MI); 1357 1358 if (DstSize + OffsetOp.getImm() > SrcSize) 1359 report("extract reads past end of register", MI); 1360 break; 1361 } 1362 case TargetOpcode::G_INSERT: { 1363 const MachineOperand &SrcOp = MI->getOperand(2); 1364 if (!SrcOp.isReg()) { 1365 report("insert source must be a register", MI); 1366 break; 1367 } 1368 1369 const MachineOperand &OffsetOp = MI->getOperand(3); 1370 if (!OffsetOp.isImm()) { 1371 report("insert offset must be a constant", MI); 1372 break; 1373 } 1374 1375 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1376 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1377 1378 if (DstSize <= SrcSize) 1379 report("inserted size must be smaller than total register", MI); 1380 1381 if (SrcSize + OffsetOp.getImm() > DstSize) 1382 report("insert writes past end of register", MI); 1383 1384 break; 1385 } 1386 case TargetOpcode::G_JUMP_TABLE: { 1387 if (!MI->getOperand(1).isJTI()) 1388 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1389 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1390 if (!DstTy.isPointer()) 1391 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1392 break; 1393 } 1394 case TargetOpcode::G_BRJT: { 1395 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1396 report("G_BRJT src operand 0 must be a pointer type", MI); 1397 1398 if (!MI->getOperand(1).isJTI()) 1399 report("G_BRJT src operand 1 must be a jump table index", MI); 1400 1401 const auto &IdxOp = MI->getOperand(2); 1402 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1403 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1404 break; 1405 } 1406 case TargetOpcode::G_INTRINSIC: 1407 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: { 1408 // TODO: Should verify number of def and use operands, but the current 1409 // interface requires passing in IR types for mangling. 1410 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1411 if (!IntrIDOp.isIntrinsicID()) { 1412 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1413 break; 1414 } 1415 1416 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC; 1417 unsigned IntrID = IntrIDOp.getIntrinsicID(); 1418 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1419 AttributeList Attrs 1420 = Intrinsic::getAttributes(MF->getFunction().getContext(), 1421 static_cast<Intrinsic::ID>(IntrID)); 1422 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone); 1423 if (NoSideEffects && DeclHasSideEffects) { 1424 report("G_INTRINSIC used with intrinsic that accesses memory", MI); 1425 break; 1426 } 1427 if (!NoSideEffects && !DeclHasSideEffects) { 1428 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI); 1429 break; 1430 } 1431 } 1432 1433 break; 1434 } 1435 case TargetOpcode::G_SEXT_INREG: { 1436 if (!MI->getOperand(2).isImm()) { 1437 report("G_SEXT_INREG expects an immediate operand #2", MI); 1438 break; 1439 } 1440 1441 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1442 int64_t Imm = MI->getOperand(2).getImm(); 1443 if (Imm <= 0) 1444 report("G_SEXT_INREG size must be >= 1", MI); 1445 if (Imm >= SrcTy.getScalarSizeInBits()) 1446 report("G_SEXT_INREG size must be less than source bit width", MI); 1447 break; 1448 } 1449 case TargetOpcode::G_SHUFFLE_VECTOR: { 1450 const MachineOperand &MaskOp = MI->getOperand(3); 1451 if (!MaskOp.isShuffleMask()) { 1452 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1453 break; 1454 } 1455 1456 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1457 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1458 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1459 1460 if (Src0Ty != Src1Ty) 1461 report("Source operands must be the same type", MI); 1462 1463 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1464 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1465 1466 // Don't check that all operands are vector because scalars are used in 1467 // place of 1 element vectors. 1468 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1469 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1470 1471 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1472 1473 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1474 report("Wrong result type for shufflemask", MI); 1475 1476 for (int Idx : MaskIdxes) { 1477 if (Idx < 0) 1478 continue; 1479 1480 if (Idx >= 2 * SrcNumElts) 1481 report("Out of bounds shuffle index", MI); 1482 } 1483 1484 break; 1485 } 1486 case TargetOpcode::G_DYN_STACKALLOC: { 1487 const MachineOperand &DstOp = MI->getOperand(0); 1488 const MachineOperand &AllocOp = MI->getOperand(1); 1489 const MachineOperand &AlignOp = MI->getOperand(2); 1490 1491 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1492 report("dst operand 0 must be a pointer type", MI); 1493 break; 1494 } 1495 1496 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1497 report("src operand 1 must be a scalar reg type", MI); 1498 break; 1499 } 1500 1501 if (!AlignOp.isImm()) { 1502 report("src operand 2 must be an immediate type", MI); 1503 break; 1504 } 1505 break; 1506 } 1507 case TargetOpcode::G_MEMCPY_INLINE: 1508 case TargetOpcode::G_MEMCPY: 1509 case TargetOpcode::G_MEMMOVE: { 1510 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1511 if (MMOs.size() != 2) { 1512 report("memcpy/memmove must have 2 memory operands", MI); 1513 break; 1514 } 1515 1516 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1517 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1518 report("wrong memory operand types", MI); 1519 break; 1520 } 1521 1522 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1523 report("inconsistent memory operand sizes", MI); 1524 1525 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1526 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1527 1528 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1529 report("memory instruction operand must be a pointer", MI); 1530 break; 1531 } 1532 1533 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1534 report("inconsistent store address space", MI); 1535 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1536 report("inconsistent load address space", MI); 1537 1538 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1539 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1540 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1541 1542 break; 1543 } 1544 case TargetOpcode::G_BZERO: 1545 case TargetOpcode::G_MEMSET: { 1546 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1547 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1548 if (MMOs.size() != 1) { 1549 report(Twine(Name, " must have 1 memory operand"), MI); 1550 break; 1551 } 1552 1553 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 1554 report(Twine(Name, " memory operand must be a store"), MI); 1555 break; 1556 } 1557 1558 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1559 if (!DstPtrTy.isPointer()) { 1560 report(Twine(Name, " operand must be a pointer"), MI); 1561 break; 1562 } 1563 1564 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1565 report("inconsistent " + Twine(Name, " address space"), MI); 1566 1567 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 1568 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 1569 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 1570 1571 break; 1572 } 1573 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 1574 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 1575 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1576 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1577 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1578 if (!DstTy.isScalar()) 1579 report("Vector reduction requires a scalar destination type", MI); 1580 if (!Src1Ty.isScalar()) 1581 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 1582 if (!Src2Ty.isVector()) 1583 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 1584 break; 1585 } 1586 case TargetOpcode::G_VECREDUCE_FADD: 1587 case TargetOpcode::G_VECREDUCE_FMUL: 1588 case TargetOpcode::G_VECREDUCE_FMAX: 1589 case TargetOpcode::G_VECREDUCE_FMIN: 1590 case TargetOpcode::G_VECREDUCE_ADD: 1591 case TargetOpcode::G_VECREDUCE_MUL: 1592 case TargetOpcode::G_VECREDUCE_AND: 1593 case TargetOpcode::G_VECREDUCE_OR: 1594 case TargetOpcode::G_VECREDUCE_XOR: 1595 case TargetOpcode::G_VECREDUCE_SMAX: 1596 case TargetOpcode::G_VECREDUCE_SMIN: 1597 case TargetOpcode::G_VECREDUCE_UMAX: 1598 case TargetOpcode::G_VECREDUCE_UMIN: { 1599 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1600 if (!DstTy.isScalar()) 1601 report("Vector reduction requires a scalar destination type", MI); 1602 break; 1603 } 1604 1605 case TargetOpcode::G_SBFX: 1606 case TargetOpcode::G_UBFX: { 1607 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1608 if (DstTy.isVector()) { 1609 report("Bitfield extraction is not supported on vectors", MI); 1610 break; 1611 } 1612 break; 1613 } 1614 case TargetOpcode::G_ROTR: 1615 case TargetOpcode::G_ROTL: { 1616 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 1617 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 1618 if (Src1Ty.isVector() != Src2Ty.isVector()) { 1619 report("Rotate requires operands to be either all scalars or all vectors", 1620 MI); 1621 break; 1622 } 1623 break; 1624 } 1625 case TargetOpcode::G_LLROUND: 1626 case TargetOpcode::G_LROUND: { 1627 verifyAllRegOpsScalar(*MI, *MRI); 1628 break; 1629 } 1630 default: 1631 break; 1632 } 1633 } 1634 1635 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 1636 const MCInstrDesc &MCID = MI->getDesc(); 1637 if (MI->getNumOperands() < MCID.getNumOperands()) { 1638 report("Too few operands", MI); 1639 errs() << MCID.getNumOperands() << " operands expected, but " 1640 << MI->getNumOperands() << " given.\n"; 1641 } 1642 1643 if (MI->isPHI()) { 1644 if (MF->getProperties().hasProperty( 1645 MachineFunctionProperties::Property::NoPHIs)) 1646 report("Found PHI instruction with NoPHIs property set", MI); 1647 1648 if (FirstNonPHI) 1649 report("Found PHI instruction after non-PHI", MI); 1650 } else if (FirstNonPHI == nullptr) 1651 FirstNonPHI = MI; 1652 1653 // Check the tied operands. 1654 if (MI->isInlineAsm()) 1655 verifyInlineAsm(MI); 1656 1657 // Check that unspillable terminators define a reg and have at most one use. 1658 if (TII->isUnspillableTerminator(MI)) { 1659 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 1660 report("Unspillable Terminator does not define a reg", MI); 1661 Register Def = MI->getOperand(0).getReg(); 1662 if (Def.isVirtual() && 1663 !MF->getProperties().hasProperty( 1664 MachineFunctionProperties::Property::NoPHIs) && 1665 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 1666 report("Unspillable Terminator expected to have at most one use!", MI); 1667 } 1668 1669 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 1670 // DBG_VALUEs: these are convenient to use in tests, but should never get 1671 // generated. 1672 if (MI->isDebugValue() && MI->getNumOperands() == 4) 1673 if (!MI->getDebugLoc()) 1674 report("Missing DebugLoc for debug instruction", MI); 1675 1676 // Meta instructions should never be the subject of debug value tracking, 1677 // they don't create a value in the output program at all. 1678 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 1679 report("Metadata instruction should not have a value tracking number", MI); 1680 1681 // Check the MachineMemOperands for basic consistency. 1682 for (MachineMemOperand *Op : MI->memoperands()) { 1683 if (Op->isLoad() && !MI->mayLoad()) 1684 report("Missing mayLoad flag", MI); 1685 if (Op->isStore() && !MI->mayStore()) 1686 report("Missing mayStore flag", MI); 1687 } 1688 1689 // Debug values must not have a slot index. 1690 // Other instructions must have one, unless they are inside a bundle. 1691 if (LiveInts) { 1692 bool mapped = !LiveInts->isNotInMIMap(*MI); 1693 if (MI->isDebugOrPseudoInstr()) { 1694 if (mapped) 1695 report("Debug instruction has a slot index", MI); 1696 } else if (MI->isInsideBundle()) { 1697 if (mapped) 1698 report("Instruction inside bundle has a slot index", MI); 1699 } else { 1700 if (!mapped) 1701 report("Missing slot index", MI); 1702 } 1703 } 1704 1705 unsigned Opc = MCID.getOpcode(); 1706 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 1707 verifyPreISelGenericInstruction(MI); 1708 return; 1709 } 1710 1711 StringRef ErrorInfo; 1712 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1713 report(ErrorInfo.data(), MI); 1714 1715 // Verify properties of various specific instruction types 1716 switch (MI->getOpcode()) { 1717 case TargetOpcode::COPY: { 1718 const MachineOperand &DstOp = MI->getOperand(0); 1719 const MachineOperand &SrcOp = MI->getOperand(1); 1720 const Register SrcReg = SrcOp.getReg(); 1721 const Register DstReg = DstOp.getReg(); 1722 1723 LLT DstTy = MRI->getType(DstReg); 1724 LLT SrcTy = MRI->getType(SrcReg); 1725 if (SrcTy.isValid() && DstTy.isValid()) { 1726 // If both types are valid, check that the types are the same. 1727 if (SrcTy != DstTy) { 1728 report("Copy Instruction is illegal with mismatching types", MI); 1729 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 1730 } 1731 1732 break; 1733 } 1734 1735 if (!SrcTy.isValid() && !DstTy.isValid()) 1736 break; 1737 1738 // If we have only one valid type, this is likely a copy between a virtual 1739 // and physical register. 1740 unsigned SrcSize = 0; 1741 unsigned DstSize = 0; 1742 if (SrcReg.isPhysical() && DstTy.isValid()) { 1743 const TargetRegisterClass *SrcRC = 1744 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 1745 if (SrcRC) 1746 SrcSize = TRI->getRegSizeInBits(*SrcRC); 1747 } 1748 1749 if (SrcSize == 0) 1750 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 1751 1752 if (DstReg.isPhysical() && SrcTy.isValid()) { 1753 const TargetRegisterClass *DstRC = 1754 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 1755 if (DstRC) 1756 DstSize = TRI->getRegSizeInBits(*DstRC); 1757 } 1758 1759 if (DstSize == 0) 1760 DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 1761 1762 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) { 1763 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 1764 report("Copy Instruction is illegal with mismatching sizes", MI); 1765 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 1766 << "\n"; 1767 } 1768 } 1769 break; 1770 } 1771 case TargetOpcode::STATEPOINT: { 1772 StatepointOpers SO(MI); 1773 if (!MI->getOperand(SO.getIDPos()).isImm() || 1774 !MI->getOperand(SO.getNBytesPos()).isImm() || 1775 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 1776 report("meta operands to STATEPOINT not constant!", MI); 1777 break; 1778 } 1779 1780 auto VerifyStackMapConstant = [&](unsigned Offset) { 1781 if (Offset >= MI->getNumOperands()) { 1782 report("stack map constant to STATEPOINT is out of range!", MI); 1783 return; 1784 } 1785 if (!MI->getOperand(Offset - 1).isImm() || 1786 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 1787 !MI->getOperand(Offset).isImm()) 1788 report("stack map constant to STATEPOINT not well formed!", MI); 1789 }; 1790 VerifyStackMapConstant(SO.getCCIdx()); 1791 VerifyStackMapConstant(SO.getFlagsIdx()); 1792 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 1793 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 1794 VerifyStackMapConstant(SO.getNumAllocaIdx()); 1795 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 1796 1797 // Verify that all explicit statepoint defs are tied to gc operands as 1798 // they are expected to be a relocation of gc operands. 1799 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 1800 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 1801 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 1802 unsigned UseOpIdx; 1803 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 1804 report("STATEPOINT defs expected to be tied", MI); 1805 break; 1806 } 1807 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 1808 report("STATEPOINT def tied to non-gc operand", MI); 1809 break; 1810 } 1811 } 1812 1813 // TODO: verify we have properly encoded deopt arguments 1814 } break; 1815 case TargetOpcode::INSERT_SUBREG: { 1816 unsigned InsertedSize; 1817 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 1818 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 1819 else 1820 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 1821 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 1822 if (SubRegSize < InsertedSize) { 1823 report("INSERT_SUBREG expected inserted value to have equal or lesser " 1824 "size than the subreg it was inserted into", MI); 1825 break; 1826 } 1827 } break; 1828 } 1829 } 1830 1831 void 1832 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 1833 const MachineInstr *MI = MO->getParent(); 1834 const MCInstrDesc &MCID = MI->getDesc(); 1835 unsigned NumDefs = MCID.getNumDefs(); 1836 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1837 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1838 1839 // The first MCID.NumDefs operands must be explicit register defines 1840 if (MONum < NumDefs) { 1841 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1842 if (!MO->isReg()) 1843 report("Explicit definition must be a register", MO, MONum); 1844 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1845 report("Explicit definition marked as use", MO, MONum); 1846 else if (MO->isImplicit()) 1847 report("Explicit definition marked as implicit", MO, MONum); 1848 } else if (MONum < MCID.getNumOperands()) { 1849 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1850 // Don't check if it's the last operand in a variadic instruction. See, 1851 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 1852 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 1853 if (!IsOptional) { 1854 if (MO->isReg()) { 1855 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 1856 report("Explicit operand marked as def", MO, MONum); 1857 if (MO->isImplicit()) 1858 report("Explicit operand marked as implicit", MO, MONum); 1859 } 1860 1861 // Check that an instruction has register operands only as expected. 1862 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 1863 !MO->isReg() && !MO->isFI()) 1864 report("Expected a register operand.", MO, MONum); 1865 if (MO->isReg()) { 1866 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 1867 (MCOI.OperandType == MCOI::OPERAND_PCREL && 1868 !TII->isPCRelRegisterOperandLegal(*MO))) 1869 report("Expected a non-register operand.", MO, MONum); 1870 } 1871 } 1872 1873 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1874 if (TiedTo != -1) { 1875 if (!MO->isReg()) 1876 report("Tied use must be a register", MO, MONum); 1877 else if (!MO->isTied()) 1878 report("Operand should be tied", MO, MONum); 1879 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1880 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1881 else if (Register::isPhysicalRegister(MO->getReg())) { 1882 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1883 if (!MOTied.isReg()) 1884 report("Tied counterpart must be a register", &MOTied, TiedTo); 1885 else if (Register::isPhysicalRegister(MOTied.getReg()) && 1886 MO->getReg() != MOTied.getReg()) 1887 report("Tied physical registers must match.", &MOTied, TiedTo); 1888 } 1889 } else if (MO->isReg() && MO->isTied()) 1890 report("Explicit operand should not be tied", MO, MONum); 1891 } else { 1892 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1893 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1894 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1895 } 1896 1897 switch (MO->getType()) { 1898 case MachineOperand::MO_Register: { 1899 // Verify debug flag on debug instructions. Check this first because reg0 1900 // indicates an undefined debug value. 1901 if (MI->isDebugInstr() && MO->isUse()) { 1902 if (!MO->isDebug()) 1903 report("Register operand must be marked debug", MO, MONum); 1904 } else if (MO->isDebug()) { 1905 report("Register operand must not be marked debug", MO, MONum); 1906 } 1907 1908 const Register Reg = MO->getReg(); 1909 if (!Reg) 1910 return; 1911 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1912 checkLiveness(MO, MONum); 1913 1914 // Verify the consistency of tied operands. 1915 if (MO->isTied()) { 1916 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1917 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1918 if (!OtherMO.isReg()) 1919 report("Must be tied to a register", MO, MONum); 1920 if (!OtherMO.isTied()) 1921 report("Missing tie flags on tied operand", MO, MONum); 1922 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1923 report("Inconsistent tie links", MO, MONum); 1924 if (MONum < MCID.getNumDefs()) { 1925 if (OtherIdx < MCID.getNumOperands()) { 1926 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1927 report("Explicit def tied to explicit use without tie constraint", 1928 MO, MONum); 1929 } else { 1930 if (!OtherMO.isImplicit()) 1931 report("Explicit def should be tied to implicit use", MO, MONum); 1932 } 1933 } 1934 } 1935 1936 // Verify two-address constraints after the twoaddressinstruction pass. 1937 // Both twoaddressinstruction pass and phi-node-elimination pass call 1938 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after 1939 // twoaddressinstruction pass not after phi-node-elimination pass. So we 1940 // shouldn't use the NoSSA as the condition, we should based on 1941 // TiedOpsRewritten property to verify two-address constraints, this 1942 // property will be set in twoaddressinstruction pass. 1943 unsigned DefIdx; 1944 if (MF->getProperties().hasProperty( 1945 MachineFunctionProperties::Property::TiedOpsRewritten) && 1946 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1947 Reg != MI->getOperand(DefIdx).getReg()) 1948 report("Two-address instruction operands must be identical", MO, MONum); 1949 1950 // Check register classes. 1951 unsigned SubIdx = MO->getSubReg(); 1952 1953 if (Register::isPhysicalRegister(Reg)) { 1954 if (SubIdx) { 1955 report("Illegal subregister index for physical register", MO, MONum); 1956 return; 1957 } 1958 if (MONum < MCID.getNumOperands()) { 1959 if (const TargetRegisterClass *DRC = 1960 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1961 if (!DRC->contains(Reg)) { 1962 report("Illegal physical register for instruction", MO, MONum); 1963 errs() << printReg(Reg, TRI) << " is not a " 1964 << TRI->getRegClassName(DRC) << " register.\n"; 1965 } 1966 } 1967 } 1968 if (MO->isRenamable()) { 1969 if (MRI->isReserved(Reg)) { 1970 report("isRenamable set on reserved register", MO, MONum); 1971 return; 1972 } 1973 } 1974 } else { 1975 // Virtual register. 1976 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1977 if (!RC) { 1978 // This is a generic virtual register. 1979 1980 // Do not allow undef uses for generic virtual registers. This ensures 1981 // getVRegDef can never fail and return null on a generic register. 1982 // 1983 // FIXME: This restriction should probably be broadened to all SSA 1984 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 1985 // run on the SSA function just before phi elimination. 1986 if (MO->isUndef()) 1987 report("Generic virtual register use cannot be undef", MO, MONum); 1988 1989 // If we're post-Select, we can't have gvregs anymore. 1990 if (isFunctionSelected) { 1991 report("Generic virtual register invalid in a Selected function", 1992 MO, MONum); 1993 return; 1994 } 1995 1996 // The gvreg must have a type and it must not have a SubIdx. 1997 LLT Ty = MRI->getType(Reg); 1998 if (!Ty.isValid()) { 1999 report("Generic virtual register must have a valid type", MO, 2000 MONum); 2001 return; 2002 } 2003 2004 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2005 2006 // If we're post-RegBankSelect, the gvreg must have a bank. 2007 if (!RegBank && isFunctionRegBankSelected) { 2008 report("Generic virtual register must have a bank in a " 2009 "RegBankSelected function", 2010 MO, MONum); 2011 return; 2012 } 2013 2014 // Make sure the register fits into its register bank if any. 2015 if (RegBank && Ty.isValid() && 2016 RegBank->getSize() < Ty.getSizeInBits()) { 2017 report("Register bank is too small for virtual register", MO, 2018 MONum); 2019 errs() << "Register bank " << RegBank->getName() << " too small(" 2020 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 2021 << "-bits\n"; 2022 return; 2023 } 2024 if (SubIdx) { 2025 report("Generic virtual register does not allow subregister index", MO, 2026 MONum); 2027 return; 2028 } 2029 2030 // If this is a target specific instruction and this operand 2031 // has register class constraint, the virtual register must 2032 // comply to it. 2033 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2034 MONum < MCID.getNumOperands() && 2035 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2036 report("Virtual register does not match instruction constraint", MO, 2037 MONum); 2038 errs() << "Expect register class " 2039 << TRI->getRegClassName( 2040 TII->getRegClass(MCID, MONum, TRI, *MF)) 2041 << " but got nothing\n"; 2042 return; 2043 } 2044 2045 break; 2046 } 2047 if (SubIdx) { 2048 const TargetRegisterClass *SRC = 2049 TRI->getSubClassWithSubReg(RC, SubIdx); 2050 if (!SRC) { 2051 report("Invalid subregister index for virtual register", MO, MONum); 2052 errs() << "Register class " << TRI->getRegClassName(RC) 2053 << " does not support subreg index " << SubIdx << "\n"; 2054 return; 2055 } 2056 if (RC != SRC) { 2057 report("Invalid register class for subregister index", MO, MONum); 2058 errs() << "Register class " << TRI->getRegClassName(RC) 2059 << " does not fully support subreg index " << SubIdx << "\n"; 2060 return; 2061 } 2062 } 2063 if (MONum < MCID.getNumOperands()) { 2064 if (const TargetRegisterClass *DRC = 2065 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2066 if (SubIdx) { 2067 const TargetRegisterClass *SuperRC = 2068 TRI->getLargestLegalSuperClass(RC, *MF); 2069 if (!SuperRC) { 2070 report("No largest legal super class exists.", MO, MONum); 2071 return; 2072 } 2073 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2074 if (!DRC) { 2075 report("No matching super-reg register class.", MO, MONum); 2076 return; 2077 } 2078 } 2079 if (!RC->hasSuperClassEq(DRC)) { 2080 report("Illegal virtual register for instruction", MO, MONum); 2081 errs() << "Expected a " << TRI->getRegClassName(DRC) 2082 << " register, but got a " << TRI->getRegClassName(RC) 2083 << " register\n"; 2084 } 2085 } 2086 } 2087 } 2088 break; 2089 } 2090 2091 case MachineOperand::MO_RegisterMask: 2092 regMasks.push_back(MO->getRegMask()); 2093 break; 2094 2095 case MachineOperand::MO_MachineBasicBlock: 2096 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2097 report("PHI operand is not in the CFG", MO, MONum); 2098 break; 2099 2100 case MachineOperand::MO_FrameIndex: 2101 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2102 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2103 int FI = MO->getIndex(); 2104 LiveInterval &LI = LiveStks->getInterval(FI); 2105 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2106 2107 bool stores = MI->mayStore(); 2108 bool loads = MI->mayLoad(); 2109 // For a memory-to-memory move, we need to check if the frame 2110 // index is used for storing or loading, by inspecting the 2111 // memory operands. 2112 if (stores && loads) { 2113 for (auto *MMO : MI->memoperands()) { 2114 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2115 if (PSV == nullptr) continue; 2116 const FixedStackPseudoSourceValue *Value = 2117 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2118 if (Value == nullptr) continue; 2119 if (Value->getFrameIndex() != FI) continue; 2120 2121 if (MMO->isStore()) 2122 loads = false; 2123 else 2124 stores = false; 2125 break; 2126 } 2127 if (loads == stores) 2128 report("Missing fixed stack memoperand.", MI); 2129 } 2130 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2131 report("Instruction loads from dead spill slot", MO, MONum); 2132 errs() << "Live stack: " << LI << '\n'; 2133 } 2134 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2135 report("Instruction stores to dead spill slot", MO, MONum); 2136 errs() << "Live stack: " << LI << '\n'; 2137 } 2138 } 2139 break; 2140 2141 default: 2142 break; 2143 } 2144 } 2145 2146 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2147 unsigned MONum, SlotIndex UseIdx, 2148 const LiveRange &LR, 2149 Register VRegOrUnit, 2150 LaneBitmask LaneMask) { 2151 LiveQueryResult LRQ = LR.Query(UseIdx); 2152 // Check if we have a segment at the use, note however that we only need one 2153 // live subregister range, the others may be dead. 2154 if (!LRQ.valueIn() && LaneMask.none()) { 2155 report("No live segment at use", MO, MONum); 2156 report_context_liverange(LR); 2157 report_context_vreg_regunit(VRegOrUnit); 2158 report_context(UseIdx); 2159 } 2160 if (MO->isKill() && !LRQ.isKill()) { 2161 report("Live range continues after kill flag", MO, MONum); 2162 report_context_liverange(LR); 2163 report_context_vreg_regunit(VRegOrUnit); 2164 if (LaneMask.any()) 2165 report_context_lanemask(LaneMask); 2166 report_context(UseIdx); 2167 } 2168 } 2169 2170 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2171 unsigned MONum, SlotIndex DefIdx, 2172 const LiveRange &LR, 2173 Register VRegOrUnit, 2174 bool SubRangeCheck, 2175 LaneBitmask LaneMask) { 2176 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2177 assert(VNI && "NULL valno is not allowed"); 2178 if (VNI->def != DefIdx) { 2179 report("Inconsistent valno->def", MO, MONum); 2180 report_context_liverange(LR); 2181 report_context_vreg_regunit(VRegOrUnit); 2182 if (LaneMask.any()) 2183 report_context_lanemask(LaneMask); 2184 report_context(*VNI); 2185 report_context(DefIdx); 2186 } 2187 } else { 2188 report("No live segment at def", MO, MONum); 2189 report_context_liverange(LR); 2190 report_context_vreg_regunit(VRegOrUnit); 2191 if (LaneMask.any()) 2192 report_context_lanemask(LaneMask); 2193 report_context(DefIdx); 2194 } 2195 // Check that, if the dead def flag is present, LiveInts agree. 2196 if (MO->isDead()) { 2197 LiveQueryResult LRQ = LR.Query(DefIdx); 2198 if (!LRQ.isDeadDef()) { 2199 assert(Register::isVirtualRegister(VRegOrUnit) && 2200 "Expecting a virtual register."); 2201 // A dead subreg def only tells us that the specific subreg is dead. There 2202 // could be other non-dead defs of other subregs, or we could have other 2203 // parts of the register being live through the instruction. So unless we 2204 // are checking liveness for a subrange it is ok for the live range to 2205 // continue, given that we have a dead def of a subregister. 2206 if (SubRangeCheck || MO->getSubReg() == 0) { 2207 report("Live range continues after dead def flag", MO, MONum); 2208 report_context_liverange(LR); 2209 report_context_vreg_regunit(VRegOrUnit); 2210 if (LaneMask.any()) 2211 report_context_lanemask(LaneMask); 2212 } 2213 } 2214 } 2215 } 2216 2217 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2218 const MachineInstr *MI = MO->getParent(); 2219 const Register Reg = MO->getReg(); 2220 const unsigned SubRegIdx = MO->getSubReg(); 2221 2222 const LiveInterval *LI = nullptr; 2223 if (LiveInts && Reg.isVirtual()) { 2224 if (LiveInts->hasInterval(Reg)) { 2225 LI = &LiveInts->getInterval(Reg); 2226 if (SubRegIdx != 0 && !LI->empty() && !LI->hasSubRanges() && 2227 MRI->shouldTrackSubRegLiveness(Reg)) 2228 report("Live interval for subreg operand has no subranges", MO, MONum); 2229 } else { 2230 report("Virtual register has no live interval", MO, MONum); 2231 } 2232 } 2233 2234 // Both use and def operands can read a register. 2235 if (MO->readsReg()) { 2236 if (MO->isKill()) 2237 addRegWithSubRegs(regsKilled, Reg); 2238 2239 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2240 // which case we have already checked that LiveVars knows any kills on the 2241 // bundle header instead). 2242 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2243 !MI->isBundledWithPred()) { 2244 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2245 if (!is_contained(VI.Kills, MI)) 2246 report("Kill missing from LiveVariables", MO, MONum); 2247 } 2248 2249 // Check LiveInts liveness and kill. 2250 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2251 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 2252 // Check the cached regunit intervals. 2253 if (Reg.isPhysical() && !isReserved(Reg)) { 2254 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); 2255 ++Units) { 2256 if (MRI->isReservedRegUnit(*Units)) 2257 continue; 2258 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 2259 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 2260 } 2261 } 2262 2263 if (Reg.isVirtual()) { 2264 // This is a virtual register interval. 2265 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2266 2267 if (LI->hasSubRanges() && !MO->isDef()) { 2268 LaneBitmask MOMask = SubRegIdx != 0 2269 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2270 : MRI->getMaxLaneMaskForVReg(Reg); 2271 LaneBitmask LiveInMask; 2272 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2273 if ((MOMask & SR.LaneMask).none()) 2274 continue; 2275 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2276 LiveQueryResult LRQ = SR.Query(UseIdx); 2277 if (LRQ.valueIn()) 2278 LiveInMask |= SR.LaneMask; 2279 } 2280 // At least parts of the register has to be live at the use. 2281 if ((LiveInMask & MOMask).none()) { 2282 report("No live subrange at use", MO, MONum); 2283 report_context(*LI); 2284 report_context(UseIdx); 2285 } 2286 } 2287 } 2288 } 2289 2290 // Use of a dead register. 2291 if (!regsLive.count(Reg)) { 2292 if (Reg.isPhysical()) { 2293 // Reserved registers may be used even when 'dead'. 2294 bool Bad = !isReserved(Reg); 2295 // We are fine if just any subregister has a defined value. 2296 if (Bad) { 2297 2298 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2299 if (regsLive.count(SubReg)) { 2300 Bad = false; 2301 break; 2302 } 2303 } 2304 } 2305 // If there is an additional implicit-use of a super register we stop 2306 // here. By definition we are fine if the super register is not 2307 // (completely) dead, if the complete super register is dead we will 2308 // get a report for its operand. 2309 if (Bad) { 2310 for (const MachineOperand &MOP : MI->uses()) { 2311 if (!MOP.isReg() || !MOP.isImplicit()) 2312 continue; 2313 2314 if (!MOP.getReg().isPhysical()) 2315 continue; 2316 2317 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2318 Bad = false; 2319 } 2320 } 2321 if (Bad) 2322 report("Using an undefined physical register", MO, MONum); 2323 } else if (MRI->def_empty(Reg)) { 2324 report("Reading virtual register without a def", MO, MONum); 2325 } else { 2326 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2327 // We don't know which virtual registers are live in, so only complain 2328 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2329 // must be live in. PHI instructions are handled separately. 2330 if (MInfo.regsKilled.count(Reg)) 2331 report("Using a killed virtual register", MO, MONum); 2332 else if (!MI->isPHI()) 2333 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2334 } 2335 } 2336 } 2337 2338 if (MO->isDef()) { 2339 // Register defined. 2340 // TODO: verify that earlyclobber ops are not used. 2341 if (MO->isDead()) 2342 addRegWithSubRegs(regsDead, Reg); 2343 else 2344 addRegWithSubRegs(regsDefined, Reg); 2345 2346 // Verify SSA form. 2347 if (MRI->isSSA() && Reg.isVirtual() && 2348 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2349 report("Multiple virtual register defs in SSA form", MO, MONum); 2350 2351 // Check LiveInts for a live segment, but only for virtual registers. 2352 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2353 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 2354 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 2355 2356 if (Reg.isVirtual()) { 2357 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 2358 2359 if (LI->hasSubRanges()) { 2360 LaneBitmask MOMask = SubRegIdx != 0 2361 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2362 : MRI->getMaxLaneMaskForVReg(Reg); 2363 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2364 if ((SR.LaneMask & MOMask).none()) 2365 continue; 2366 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 2367 } 2368 } 2369 } 2370 } 2371 } 2372 } 2373 2374 // This function gets called after visiting all instructions in a bundle. The 2375 // argument points to the bundle header. 2376 // Normal stand-alone instructions are also considered 'bundles', and this 2377 // function is called for all of them. 2378 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 2379 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2380 set_union(MInfo.regsKilled, regsKilled); 2381 set_subtract(regsLive, regsKilled); regsKilled.clear(); 2382 // Kill any masked registers. 2383 while (!regMasks.empty()) { 2384 const uint32_t *Mask = regMasks.pop_back_val(); 2385 for (Register Reg : regsLive) 2386 if (Reg.isPhysical() && 2387 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 2388 regsDead.push_back(Reg); 2389 } 2390 set_subtract(regsLive, regsDead); regsDead.clear(); 2391 set_union(regsLive, regsDefined); regsDefined.clear(); 2392 } 2393 2394 void 2395 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 2396 MBBInfoMap[MBB].regsLiveOut = regsLive; 2397 regsLive.clear(); 2398 2399 if (Indexes) { 2400 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 2401 if (!(stop > lastIndex)) { 2402 report("Block ends before last instruction index", MBB); 2403 errs() << "Block ends at " << stop 2404 << " last instruction was at " << lastIndex << '\n'; 2405 } 2406 lastIndex = stop; 2407 } 2408 } 2409 2410 namespace { 2411 // This implements a set of registers that serves as a filter: can filter other 2412 // sets by passing through elements not in the filter and blocking those that 2413 // are. Any filter implicitly includes the full set of physical registers upon 2414 // creation, thus filtering them all out. The filter itself as a set only grows, 2415 // and needs to be as efficient as possible. 2416 struct VRegFilter { 2417 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 2418 // no duplicates. Both virtual and physical registers are fine. 2419 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 2420 SmallVector<Register, 0> VRegsBuffer; 2421 filterAndAdd(FromRegSet, VRegsBuffer); 2422 } 2423 // Filter \p FromRegSet through the filter and append passed elements into \p 2424 // ToVRegs. All elements appended are then added to the filter itself. 2425 // \returns true if anything changed. 2426 template <typename RegSetT> 2427 bool filterAndAdd(const RegSetT &FromRegSet, 2428 SmallVectorImpl<Register> &ToVRegs) { 2429 unsigned SparseUniverse = Sparse.size(); 2430 unsigned NewSparseUniverse = SparseUniverse; 2431 unsigned NewDenseSize = Dense.size(); 2432 size_t Begin = ToVRegs.size(); 2433 for (Register Reg : FromRegSet) { 2434 if (!Reg.isVirtual()) 2435 continue; 2436 unsigned Index = Register::virtReg2Index(Reg); 2437 if (Index < SparseUniverseMax) { 2438 if (Index < SparseUniverse && Sparse.test(Index)) 2439 continue; 2440 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 2441 } else { 2442 if (Dense.count(Reg)) 2443 continue; 2444 ++NewDenseSize; 2445 } 2446 ToVRegs.push_back(Reg); 2447 } 2448 size_t End = ToVRegs.size(); 2449 if (Begin == End) 2450 return false; 2451 // Reserving space in sets once performs better than doing so continuously 2452 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 2453 // tuned all the way down) and double iteration (the second one is over a 2454 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 2455 Sparse.resize(NewSparseUniverse); 2456 Dense.reserve(NewDenseSize); 2457 for (unsigned I = Begin; I < End; ++I) { 2458 Register Reg = ToVRegs[I]; 2459 unsigned Index = Register::virtReg2Index(Reg); 2460 if (Index < SparseUniverseMax) 2461 Sparse.set(Index); 2462 else 2463 Dense.insert(Reg); 2464 } 2465 return true; 2466 } 2467 2468 private: 2469 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 2470 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 2471 // are tracked by Dense. The only purpose of the threashold and the Dense set 2472 // is to have a reasonably growing memory usage in pathological cases (large 2473 // number of very sparse VRegFilter instances live at the same time). In 2474 // practice even in the worst-by-execution time cases having all elements 2475 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 2476 // space efficient than if tracked by Dense. The threashold is set to keep the 2477 // worst-case memory usage within 2x of figures determined empirically for 2478 // "all Dense" scenario in such worst-by-execution-time cases. 2479 BitVector Sparse; 2480 DenseSet<unsigned> Dense; 2481 }; 2482 2483 // Implements both a transfer function and a (binary, in-place) join operator 2484 // for a dataflow over register sets with set union join and filtering transfer 2485 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 2486 // Maintains out_b as its state, allowing for O(n) iteration over it at any 2487 // time, where n is the size of the set (as opposed to O(U) where U is the 2488 // universe). filter_b implicitly contains all physical registers at all times. 2489 class FilteringVRegSet { 2490 VRegFilter Filter; 2491 SmallVector<Register, 0> VRegs; 2492 2493 public: 2494 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 2495 // Both virtual and physical registers are fine. 2496 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 2497 Filter.add(RS); 2498 } 2499 // Passes \p RS through the filter_b (transfer function) and adds what's left 2500 // to itself (out_b). 2501 template <typename RegSetT> bool add(const RegSetT &RS) { 2502 // Double-duty the Filter: to maintain VRegs a set (and the join operation 2503 // a set union) just add everything being added here to the Filter as well. 2504 return Filter.filterAndAdd(RS, VRegs); 2505 } 2506 using const_iterator = decltype(VRegs)::const_iterator; 2507 const_iterator begin() const { return VRegs.begin(); } 2508 const_iterator end() const { return VRegs.end(); } 2509 size_t size() const { return VRegs.size(); } 2510 }; 2511 } // namespace 2512 2513 // Calculate the largest possible vregsPassed sets. These are the registers that 2514 // can pass through an MBB live, but may not be live every time. It is assumed 2515 // that all vregsPassed sets are empty before the call. 2516 void MachineVerifier::calcRegsPassed() { 2517 if (MF->empty()) 2518 // ReversePostOrderTraversal doesn't handle empty functions. 2519 return; 2520 2521 for (const MachineBasicBlock *MB : 2522 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 2523 FilteringVRegSet VRegs; 2524 BBInfo &Info = MBBInfoMap[MB]; 2525 assert(Info.reachable); 2526 2527 VRegs.addToFilter(Info.regsKilled); 2528 VRegs.addToFilter(Info.regsLiveOut); 2529 for (const MachineBasicBlock *Pred : MB->predecessors()) { 2530 const BBInfo &PredInfo = MBBInfoMap[Pred]; 2531 if (!PredInfo.reachable) 2532 continue; 2533 2534 VRegs.add(PredInfo.regsLiveOut); 2535 VRegs.add(PredInfo.vregsPassed); 2536 } 2537 Info.vregsPassed.reserve(VRegs.size()); 2538 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 2539 } 2540 } 2541 2542 // Calculate the set of virtual registers that must be passed through each basic 2543 // block in order to satisfy the requirements of successor blocks. This is very 2544 // similar to calcRegsPassed, only backwards. 2545 void MachineVerifier::calcRegsRequired() { 2546 // First push live-in regs to predecessors' vregsRequired. 2547 SmallPtrSet<const MachineBasicBlock*, 8> todo; 2548 for (const auto &MBB : *MF) { 2549 BBInfo &MInfo = MBBInfoMap[&MBB]; 2550 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2551 BBInfo &PInfo = MBBInfoMap[Pred]; 2552 if (PInfo.addRequired(MInfo.vregsLiveIn)) 2553 todo.insert(Pred); 2554 } 2555 2556 // Handle the PHI node. 2557 for (const MachineInstr &MI : MBB.phis()) { 2558 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 2559 // Skip those Operands which are undef regs or not regs. 2560 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 2561 continue; 2562 2563 // Get register and predecessor for one PHI edge. 2564 Register Reg = MI.getOperand(i).getReg(); 2565 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 2566 2567 BBInfo &PInfo = MBBInfoMap[Pred]; 2568 if (PInfo.addRequired(Reg)) 2569 todo.insert(Pred); 2570 } 2571 } 2572 } 2573 2574 // Iteratively push vregsRequired to predecessors. This will converge to the 2575 // same final state regardless of DenseSet iteration order. 2576 while (!todo.empty()) { 2577 const MachineBasicBlock *MBB = *todo.begin(); 2578 todo.erase(MBB); 2579 BBInfo &MInfo = MBBInfoMap[MBB]; 2580 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 2581 if (Pred == MBB) 2582 continue; 2583 BBInfo &SInfo = MBBInfoMap[Pred]; 2584 if (SInfo.addRequired(MInfo.vregsRequired)) 2585 todo.insert(Pred); 2586 } 2587 } 2588 } 2589 2590 // Check PHI instructions at the beginning of MBB. It is assumed that 2591 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 2592 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 2593 BBInfo &MInfo = MBBInfoMap[&MBB]; 2594 2595 SmallPtrSet<const MachineBasicBlock*, 8> seen; 2596 for (const MachineInstr &Phi : MBB) { 2597 if (!Phi.isPHI()) 2598 break; 2599 seen.clear(); 2600 2601 const MachineOperand &MODef = Phi.getOperand(0); 2602 if (!MODef.isReg() || !MODef.isDef()) { 2603 report("Expected first PHI operand to be a register def", &MODef, 0); 2604 continue; 2605 } 2606 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 2607 MODef.isEarlyClobber() || MODef.isDebug()) 2608 report("Unexpected flag on PHI operand", &MODef, 0); 2609 Register DefReg = MODef.getReg(); 2610 if (!Register::isVirtualRegister(DefReg)) 2611 report("Expected first PHI operand to be a virtual register", &MODef, 0); 2612 2613 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 2614 const MachineOperand &MO0 = Phi.getOperand(I); 2615 if (!MO0.isReg()) { 2616 report("Expected PHI operand to be a register", &MO0, I); 2617 continue; 2618 } 2619 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 2620 MO0.isDebug() || MO0.isTied()) 2621 report("Unexpected flag on PHI operand", &MO0, I); 2622 2623 const MachineOperand &MO1 = Phi.getOperand(I + 1); 2624 if (!MO1.isMBB()) { 2625 report("Expected PHI operand to be a basic block", &MO1, I + 1); 2626 continue; 2627 } 2628 2629 const MachineBasicBlock &Pre = *MO1.getMBB(); 2630 if (!Pre.isSuccessor(&MBB)) { 2631 report("PHI input is not a predecessor block", &MO1, I + 1); 2632 continue; 2633 } 2634 2635 if (MInfo.reachable) { 2636 seen.insert(&Pre); 2637 BBInfo &PrInfo = MBBInfoMap[&Pre]; 2638 if (!MO0.isUndef() && PrInfo.reachable && 2639 !PrInfo.isLiveOut(MO0.getReg())) 2640 report("PHI operand is not live-out from predecessor", &MO0, I); 2641 } 2642 } 2643 2644 // Did we see all predecessors? 2645 if (MInfo.reachable) { 2646 for (MachineBasicBlock *Pred : MBB.predecessors()) { 2647 if (!seen.count(Pred)) { 2648 report("Missing PHI operand", &Phi); 2649 errs() << printMBBReference(*Pred) 2650 << " is a predecessor according to the CFG.\n"; 2651 } 2652 } 2653 } 2654 } 2655 } 2656 2657 void MachineVerifier::visitMachineFunctionAfter() { 2658 calcRegsPassed(); 2659 2660 for (const MachineBasicBlock &MBB : *MF) 2661 checkPHIOps(MBB); 2662 2663 // Now check liveness info if available 2664 calcRegsRequired(); 2665 2666 // Check for killed virtual registers that should be live out. 2667 for (const auto &MBB : *MF) { 2668 BBInfo &MInfo = MBBInfoMap[&MBB]; 2669 for (Register VReg : MInfo.vregsRequired) 2670 if (MInfo.regsKilled.count(VReg)) { 2671 report("Virtual register killed in block, but needed live out.", &MBB); 2672 errs() << "Virtual register " << printReg(VReg) 2673 << " is used after the block.\n"; 2674 } 2675 } 2676 2677 if (!MF->empty()) { 2678 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 2679 for (Register VReg : MInfo.vregsRequired) { 2680 report("Virtual register defs don't dominate all uses.", MF); 2681 report_context_vreg(VReg); 2682 } 2683 } 2684 2685 if (LiveVars) 2686 verifyLiveVariables(); 2687 if (LiveInts) 2688 verifyLiveIntervals(); 2689 2690 // Check live-in list of each MBB. If a register is live into MBB, check 2691 // that the register is in regsLiveOut of each predecessor block. Since 2692 // this must come from a definition in the predecesssor or its live-in 2693 // list, this will catch a live-through case where the predecessor does not 2694 // have the register in its live-in list. This currently only checks 2695 // registers that have no aliases, are not allocatable and are not 2696 // reserved, which could mean a condition code register for instance. 2697 if (MRI->tracksLiveness()) 2698 for (const auto &MBB : *MF) 2699 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 2700 MCPhysReg LiveInReg = P.PhysReg; 2701 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 2702 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 2703 continue; 2704 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 2705 BBInfo &PInfo = MBBInfoMap[Pred]; 2706 if (!PInfo.regsLiveOut.count(LiveInReg)) { 2707 report("Live in register not found to be live out from predecessor.", 2708 &MBB); 2709 errs() << TRI->getName(LiveInReg) 2710 << " not found to be live out from " 2711 << printMBBReference(*Pred) << "\n"; 2712 } 2713 } 2714 } 2715 2716 for (auto CSInfo : MF->getCallSitesInfo()) 2717 if (!CSInfo.first->isCall()) 2718 report("Call site info referencing instruction that is not call", MF); 2719 2720 // If there's debug-info, check that we don't have any duplicate value 2721 // tracking numbers. 2722 if (MF->getFunction().getSubprogram()) { 2723 DenseSet<unsigned> SeenNumbers; 2724 for (auto &MBB : *MF) { 2725 for (auto &MI : MBB) { 2726 if (auto Num = MI.peekDebugInstrNum()) { 2727 auto Result = SeenNumbers.insert((unsigned)Num); 2728 if (!Result.second) 2729 report("Instruction has a duplicated value tracking number", &MI); 2730 } 2731 } 2732 } 2733 } 2734 } 2735 2736 void MachineVerifier::verifyLiveVariables() { 2737 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 2738 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2739 Register Reg = Register::index2VirtReg(I); 2740 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2741 for (const auto &MBB : *MF) { 2742 BBInfo &MInfo = MBBInfoMap[&MBB]; 2743 2744 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 2745 if (MInfo.vregsRequired.count(Reg)) { 2746 if (!VI.AliveBlocks.test(MBB.getNumber())) { 2747 report("LiveVariables: Block missing from AliveBlocks", &MBB); 2748 errs() << "Virtual register " << printReg(Reg) 2749 << " must be live through the block.\n"; 2750 } 2751 } else { 2752 if (VI.AliveBlocks.test(MBB.getNumber())) { 2753 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 2754 errs() << "Virtual register " << printReg(Reg) 2755 << " is not needed live through the block.\n"; 2756 } 2757 } 2758 } 2759 } 2760 } 2761 2762 void MachineVerifier::verifyLiveIntervals() { 2763 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 2764 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 2765 Register Reg = Register::index2VirtReg(I); 2766 2767 // Spilling and splitting may leave unused registers around. Skip them. 2768 if (MRI->reg_nodbg_empty(Reg)) 2769 continue; 2770 2771 if (!LiveInts->hasInterval(Reg)) { 2772 report("Missing live interval for virtual register", MF); 2773 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 2774 continue; 2775 } 2776 2777 const LiveInterval &LI = LiveInts->getInterval(Reg); 2778 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 2779 verifyLiveInterval(LI); 2780 } 2781 2782 // Verify all the cached regunit intervals. 2783 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 2784 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 2785 verifyLiveRange(*LR, i); 2786 } 2787 2788 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 2789 const VNInfo *VNI, Register Reg, 2790 LaneBitmask LaneMask) { 2791 if (VNI->isUnused()) 2792 return; 2793 2794 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 2795 2796 if (!DefVNI) { 2797 report("Value not live at VNInfo def and not marked unused", MF); 2798 report_context(LR, Reg, LaneMask); 2799 report_context(*VNI); 2800 return; 2801 } 2802 2803 if (DefVNI != VNI) { 2804 report("Live segment at def has different VNInfo", MF); 2805 report_context(LR, Reg, LaneMask); 2806 report_context(*VNI); 2807 return; 2808 } 2809 2810 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 2811 if (!MBB) { 2812 report("Invalid VNInfo definition index", MF); 2813 report_context(LR, Reg, LaneMask); 2814 report_context(*VNI); 2815 return; 2816 } 2817 2818 if (VNI->isPHIDef()) { 2819 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 2820 report("PHIDef VNInfo is not defined at MBB start", MBB); 2821 report_context(LR, Reg, LaneMask); 2822 report_context(*VNI); 2823 } 2824 return; 2825 } 2826 2827 // Non-PHI def. 2828 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 2829 if (!MI) { 2830 report("No instruction at VNInfo def index", MBB); 2831 report_context(LR, Reg, LaneMask); 2832 report_context(*VNI); 2833 return; 2834 } 2835 2836 if (Reg != 0) { 2837 bool hasDef = false; 2838 bool isEarlyClobber = false; 2839 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2840 if (!MOI->isReg() || !MOI->isDef()) 2841 continue; 2842 if (Register::isVirtualRegister(Reg)) { 2843 if (MOI->getReg() != Reg) 2844 continue; 2845 } else { 2846 if (!Register::isPhysicalRegister(MOI->getReg()) || 2847 !TRI->hasRegUnit(MOI->getReg(), Reg)) 2848 continue; 2849 } 2850 if (LaneMask.any() && 2851 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 2852 continue; 2853 hasDef = true; 2854 if (MOI->isEarlyClobber()) 2855 isEarlyClobber = true; 2856 } 2857 2858 if (!hasDef) { 2859 report("Defining instruction does not modify register", MI); 2860 report_context(LR, Reg, LaneMask); 2861 report_context(*VNI); 2862 } 2863 2864 // Early clobber defs begin at USE slots, but other defs must begin at 2865 // DEF slots. 2866 if (isEarlyClobber) { 2867 if (!VNI->def.isEarlyClobber()) { 2868 report("Early clobber def must be at an early-clobber slot", MBB); 2869 report_context(LR, Reg, LaneMask); 2870 report_context(*VNI); 2871 } 2872 } else if (!VNI->def.isRegister()) { 2873 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 2874 report_context(LR, Reg, LaneMask); 2875 report_context(*VNI); 2876 } 2877 } 2878 } 2879 2880 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 2881 const LiveRange::const_iterator I, 2882 Register Reg, 2883 LaneBitmask LaneMask) { 2884 const LiveRange::Segment &S = *I; 2885 const VNInfo *VNI = S.valno; 2886 assert(VNI && "Live segment has no valno"); 2887 2888 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 2889 report("Foreign valno in live segment", MF); 2890 report_context(LR, Reg, LaneMask); 2891 report_context(S); 2892 report_context(*VNI); 2893 } 2894 2895 if (VNI->isUnused()) { 2896 report("Live segment valno is marked unused", MF); 2897 report_context(LR, Reg, LaneMask); 2898 report_context(S); 2899 } 2900 2901 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 2902 if (!MBB) { 2903 report("Bad start of live segment, no basic block", MF); 2904 report_context(LR, Reg, LaneMask); 2905 report_context(S); 2906 return; 2907 } 2908 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 2909 if (S.start != MBBStartIdx && S.start != VNI->def) { 2910 report("Live segment must begin at MBB entry or valno def", MBB); 2911 report_context(LR, Reg, LaneMask); 2912 report_context(S); 2913 } 2914 2915 const MachineBasicBlock *EndMBB = 2916 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 2917 if (!EndMBB) { 2918 report("Bad end of live segment, no basic block", MF); 2919 report_context(LR, Reg, LaneMask); 2920 report_context(S); 2921 return; 2922 } 2923 2924 // No more checks for live-out segments. 2925 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 2926 return; 2927 2928 // RegUnit intervals are allowed dead phis. 2929 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() && 2930 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 2931 return; 2932 2933 // The live segment is ending inside EndMBB 2934 const MachineInstr *MI = 2935 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 2936 if (!MI) { 2937 report("Live segment doesn't end at a valid instruction", EndMBB); 2938 report_context(LR, Reg, LaneMask); 2939 report_context(S); 2940 return; 2941 } 2942 2943 // The block slot must refer to a basic block boundary. 2944 if (S.end.isBlock()) { 2945 report("Live segment ends at B slot of an instruction", EndMBB); 2946 report_context(LR, Reg, LaneMask); 2947 report_context(S); 2948 } 2949 2950 if (S.end.isDead()) { 2951 // Segment ends on the dead slot. 2952 // That means there must be a dead def. 2953 if (!SlotIndex::isSameInstr(S.start, S.end)) { 2954 report("Live segment ending at dead slot spans instructions", EndMBB); 2955 report_context(LR, Reg, LaneMask); 2956 report_context(S); 2957 } 2958 } 2959 2960 // After tied operands are rewritten, a live segment can only end at an 2961 // early-clobber slot if it is being redefined by an early-clobber def. 2962 // TODO: Before tied operands are rewritten, a live segment can only end at an 2963 // early-clobber slot if the last use is tied to an early-clobber def. 2964 if (MF->getProperties().hasProperty( 2965 MachineFunctionProperties::Property::TiedOpsRewritten) && 2966 S.end.isEarlyClobber()) { 2967 if (I+1 == LR.end() || (I+1)->start != S.end) { 2968 report("Live segment ending at early clobber slot must be " 2969 "redefined by an EC def in the same instruction", EndMBB); 2970 report_context(LR, Reg, LaneMask); 2971 report_context(S); 2972 } 2973 } 2974 2975 // The following checks only apply to virtual registers. Physreg liveness 2976 // is too weird to check. 2977 if (Register::isVirtualRegister(Reg)) { 2978 // A live segment can end with either a redefinition, a kill flag on a 2979 // use, or a dead flag on a def. 2980 bool hasRead = false; 2981 bool hasSubRegDef = false; 2982 bool hasDeadDef = false; 2983 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 2984 if (!MOI->isReg() || MOI->getReg() != Reg) 2985 continue; 2986 unsigned Sub = MOI->getSubReg(); 2987 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 2988 : LaneBitmask::getAll(); 2989 if (MOI->isDef()) { 2990 if (Sub != 0) { 2991 hasSubRegDef = true; 2992 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 2993 // mask for subregister defs. Read-undef defs will be handled by 2994 // readsReg below. 2995 SLM = ~SLM; 2996 } 2997 if (MOI->isDead()) 2998 hasDeadDef = true; 2999 } 3000 if (LaneMask.any() && (LaneMask & SLM).none()) 3001 continue; 3002 if (MOI->readsReg()) 3003 hasRead = true; 3004 } 3005 if (S.end.isDead()) { 3006 // Make sure that the corresponding machine operand for a "dead" live 3007 // range has the dead flag. We cannot perform this check for subregister 3008 // liveranges as partially dead values are allowed. 3009 if (LaneMask.none() && !hasDeadDef) { 3010 report("Instruction ending live segment on dead slot has no dead flag", 3011 MI); 3012 report_context(LR, Reg, LaneMask); 3013 report_context(S); 3014 } 3015 } else { 3016 if (!hasRead) { 3017 // When tracking subregister liveness, the main range must start new 3018 // values on partial register writes, even if there is no read. 3019 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3020 !hasSubRegDef) { 3021 report("Instruction ending live segment doesn't read the register", 3022 MI); 3023 report_context(LR, Reg, LaneMask); 3024 report_context(S); 3025 } 3026 } 3027 } 3028 } 3029 3030 // Now check all the basic blocks in this live segment. 3031 MachineFunction::const_iterator MFI = MBB->getIterator(); 3032 // Is this live segment the beginning of a non-PHIDef VN? 3033 if (S.start == VNI->def && !VNI->isPHIDef()) { 3034 // Not live-in to any blocks. 3035 if (MBB == EndMBB) 3036 return; 3037 // Skip this block. 3038 ++MFI; 3039 } 3040 3041 SmallVector<SlotIndex, 4> Undefs; 3042 if (LaneMask.any()) { 3043 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3044 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3045 } 3046 3047 while (true) { 3048 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3049 // We don't know how to track physregs into a landing pad. 3050 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) { 3051 if (&*MFI == EndMBB) 3052 break; 3053 ++MFI; 3054 continue; 3055 } 3056 3057 // Is VNI a PHI-def in the current block? 3058 bool IsPHI = VNI->isPHIDef() && 3059 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3060 3061 // Check that VNI is live-out of all predecessors. 3062 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3063 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3064 // Predecessor of landing pad live-out on last call. 3065 if (MFI->isEHPad()) { 3066 for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) { 3067 if (I->isCall()) { 3068 PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex(); 3069 break; 3070 } 3071 } 3072 } 3073 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3074 3075 // All predecessors must have a live-out value. However for a phi 3076 // instruction with subregister intervals 3077 // only one of the subregisters (not necessarily the current one) needs to 3078 // be defined. 3079 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3080 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3081 continue; 3082 report("Register not marked live out of predecessor", Pred); 3083 report_context(LR, Reg, LaneMask); 3084 report_context(*VNI); 3085 errs() << " live into " << printMBBReference(*MFI) << '@' 3086 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3087 << PEnd << '\n'; 3088 continue; 3089 } 3090 3091 // Only PHI-defs can take different predecessor values. 3092 if (!IsPHI && PVNI != VNI) { 3093 report("Different value live out of predecessor", Pred); 3094 report_context(LR, Reg, LaneMask); 3095 errs() << "Valno #" << PVNI->id << " live out of " 3096 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3097 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3098 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3099 } 3100 } 3101 if (&*MFI == EndMBB) 3102 break; 3103 ++MFI; 3104 } 3105 } 3106 3107 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3108 LaneBitmask LaneMask) { 3109 for (const VNInfo *VNI : LR.valnos) 3110 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3111 3112 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3113 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3114 } 3115 3116 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3117 Register Reg = LI.reg(); 3118 assert(Register::isVirtualRegister(Reg)); 3119 verifyLiveRange(LI, Reg); 3120 3121 LaneBitmask Mask; 3122 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3123 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3124 if ((Mask & SR.LaneMask).any()) { 3125 report("Lane masks of sub ranges overlap in live interval", MF); 3126 report_context(LI); 3127 } 3128 if ((SR.LaneMask & ~MaxMask).any()) { 3129 report("Subrange lanemask is invalid", MF); 3130 report_context(LI); 3131 } 3132 if (SR.empty()) { 3133 report("Subrange must not be empty", MF); 3134 report_context(SR, LI.reg(), SR.LaneMask); 3135 } 3136 Mask |= SR.LaneMask; 3137 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3138 if (!LI.covers(SR)) { 3139 report("A Subrange is not covered by the main range", MF); 3140 report_context(LI); 3141 } 3142 } 3143 3144 // Check the LI only has one connected component. 3145 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3146 unsigned NumComp = ConEQ.Classify(LI); 3147 if (NumComp > 1) { 3148 report("Multiple connected components in live interval", MF); 3149 report_context(LI); 3150 for (unsigned comp = 0; comp != NumComp; ++comp) { 3151 errs() << comp << ": valnos"; 3152 for (const VNInfo *I : LI.valnos) 3153 if (comp == ConEQ.getEqClass(I)) 3154 errs() << ' ' << I->id; 3155 errs() << '\n'; 3156 } 3157 } 3158 } 3159 3160 namespace { 3161 3162 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3163 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3164 // value is zero. 3165 // We use a bool plus an integer to capture the stack state. 3166 struct StackStateOfBB { 3167 StackStateOfBB() = default; 3168 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3169 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3170 ExitIsSetup(ExitSetup) {} 3171 3172 // Can be negative, which means we are setting up a frame. 3173 int EntryValue = 0; 3174 int ExitValue = 0; 3175 bool EntryIsSetup = false; 3176 bool ExitIsSetup = false; 3177 }; 3178 3179 } // end anonymous namespace 3180 3181 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3182 /// by a FrameDestroy <n>, stack adjustments are identical on all 3183 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3184 void MachineVerifier::verifyStackFrame() { 3185 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3186 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3187 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3188 return; 3189 3190 SmallVector<StackStateOfBB, 8> SPState; 3191 SPState.resize(MF->getNumBlockIDs()); 3192 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3193 3194 // Visit the MBBs in DFS order. 3195 for (df_ext_iterator<const MachineFunction *, 3196 df_iterator_default_set<const MachineBasicBlock *>> 3197 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3198 DFI != DFE; ++DFI) { 3199 const MachineBasicBlock *MBB = *DFI; 3200 3201 StackStateOfBB BBState; 3202 // Check the exit state of the DFS stack predecessor. 3203 if (DFI.getPathLength() >= 2) { 3204 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3205 assert(Reachable.count(StackPred) && 3206 "DFS stack predecessor is already visited.\n"); 3207 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3208 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3209 BBState.ExitValue = BBState.EntryValue; 3210 BBState.ExitIsSetup = BBState.EntryIsSetup; 3211 } 3212 3213 // Update stack state by checking contents of MBB. 3214 for (const auto &I : *MBB) { 3215 if (I.getOpcode() == FrameSetupOpcode) { 3216 if (BBState.ExitIsSetup) 3217 report("FrameSetup is after another FrameSetup", &I); 3218 BBState.ExitValue -= TII->getFrameTotalSize(I); 3219 BBState.ExitIsSetup = true; 3220 } 3221 3222 if (I.getOpcode() == FrameDestroyOpcode) { 3223 int Size = TII->getFrameTotalSize(I); 3224 if (!BBState.ExitIsSetup) 3225 report("FrameDestroy is not after a FrameSetup", &I); 3226 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3227 BBState.ExitValue; 3228 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3229 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3230 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3231 << AbsSPAdj << ">.\n"; 3232 } 3233 BBState.ExitValue += Size; 3234 BBState.ExitIsSetup = false; 3235 } 3236 } 3237 SPState[MBB->getNumber()] = BBState; 3238 3239 // Make sure the exit state of any predecessor is consistent with the entry 3240 // state. 3241 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3242 if (Reachable.count(Pred) && 3243 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3244 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3245 report("The exit stack state of a predecessor is inconsistent.", MBB); 3246 errs() << "Predecessor " << printMBBReference(*Pred) 3247 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3248 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3249 << printMBBReference(*MBB) << " has entry state (" 3250 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3251 } 3252 } 3253 3254 // Make sure the entry state of any successor is consistent with the exit 3255 // state. 3256 for (const MachineBasicBlock *Succ : MBB->successors()) { 3257 if (Reachable.count(Succ) && 3258 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3259 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3260 report("The entry stack state of a successor is inconsistent.", MBB); 3261 errs() << "Successor " << printMBBReference(*Succ) 3262 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3263 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3264 << printMBBReference(*MBB) << " has exit state (" 3265 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3266 } 3267 } 3268 3269 // Make sure a basic block with return ends with zero stack adjustment. 3270 if (!MBB->empty() && MBB->back().isReturn()) { 3271 if (BBState.ExitIsSetup) 3272 report("A return block ends with a FrameSetup.", MBB); 3273 if (BBState.ExitValue) 3274 report("A return block ends with a nonzero stack adjustment.", MBB); 3275 } 3276 } 3277 } 3278