xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/MachineLICM.cpp (revision a7dea1671b87c07d2d266f836bfa8b58efc7c134)
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/PseudoSourceValue.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSchedule.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/MC/MCRegisterInfo.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <limits>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "machinelicm"
57 
58 static cl::opt<bool>
59 AvoidSpeculation("avoid-speculation",
60                  cl::desc("MachineLICM should avoid speculation"),
61                  cl::init(true), cl::Hidden);
62 
63 static cl::opt<bool>
64 HoistCheapInsts("hoist-cheap-insts",
65                 cl::desc("MachineLICM should hoist even cheap instructions"),
66                 cl::init(false), cl::Hidden);
67 
68 static cl::opt<bool>
69 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
70                        cl::desc("MachineLICM should sink instructions into "
71                                 "loops to avoid register spills"),
72                        cl::init(false), cl::Hidden);
73 static cl::opt<bool>
74 HoistConstStores("hoist-const-stores",
75                  cl::desc("Hoist invariant stores"),
76                  cl::init(true), cl::Hidden);
77 
78 STATISTIC(NumHoisted,
79           "Number of machine instructions hoisted out of loops");
80 STATISTIC(NumLowRP,
81           "Number of instructions hoisted in low reg pressure situation");
82 STATISTIC(NumHighLatency,
83           "Number of high latency instructions hoisted");
84 STATISTIC(NumCSEed,
85           "Number of hoisted machine instructions CSEed");
86 STATISTIC(NumPostRAHoisted,
87           "Number of machine instructions hoisted out of loops post regalloc");
88 STATISTIC(NumStoreConst,
89           "Number of stores of const phys reg hoisted out of loops");
90 
91 namespace {
92 
93   class MachineLICMBase : public MachineFunctionPass {
94     const TargetInstrInfo *TII;
95     const TargetLoweringBase *TLI;
96     const TargetRegisterInfo *TRI;
97     const MachineFrameInfo *MFI;
98     MachineRegisterInfo *MRI;
99     TargetSchedModel SchedModel;
100     bool PreRegAlloc;
101 
102     // Various analyses that we use...
103     AliasAnalysis        *AA;      // Alias analysis info.
104     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
105     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
106 
107     // State that is updated as we process loops
108     bool         Changed;          // True if a loop is changed.
109     bool         FirstInLoop;      // True if it's the first LICM in the loop.
110     MachineLoop *CurLoop;          // The current loop we are working on.
111     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
112 
113     // Exit blocks for CurLoop.
114     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
115 
116     bool isExitBlock(const MachineBasicBlock *MBB) const {
117       return is_contained(ExitBlocks, MBB);
118     }
119 
120     // Track 'estimated' register pressure.
121     SmallSet<unsigned, 32> RegSeen;
122     SmallVector<unsigned, 8> RegPressure;
123 
124     // Register pressure "limit" per register pressure set. If the pressure
125     // is higher than the limit, then it's considered high.
126     SmallVector<unsigned, 8> RegLimit;
127 
128     // Register pressure on path leading from loop preheader to current BB.
129     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
130 
131     // For each opcode, keep a list of potential CSE instructions.
132     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
133 
134     enum {
135       SpeculateFalse   = 0,
136       SpeculateTrue    = 1,
137       SpeculateUnknown = 2
138     };
139 
140     // If a MBB does not dominate loop exiting blocks then it may not safe
141     // to hoist loads from this block.
142     // Tri-state: 0 - false, 1 - true, 2 - unknown
143     unsigned SpeculationState;
144 
145   public:
146     MachineLICMBase(char &PassID, bool PreRegAlloc)
147         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
148 
149     bool runOnMachineFunction(MachineFunction &MF) override;
150 
151     void getAnalysisUsage(AnalysisUsage &AU) const override {
152       AU.addRequired<MachineLoopInfo>();
153       AU.addRequired<MachineDominatorTree>();
154       AU.addRequired<AAResultsWrapperPass>();
155       AU.addPreserved<MachineLoopInfo>();
156       MachineFunctionPass::getAnalysisUsage(AU);
157     }
158 
159     void releaseMemory() override {
160       RegSeen.clear();
161       RegPressure.clear();
162       RegLimit.clear();
163       BackTrace.clear();
164       CSEMap.clear();
165     }
166 
167   private:
168     /// Keep track of information about hoisting candidates.
169     struct CandidateInfo {
170       MachineInstr *MI;
171       unsigned      Def;
172       int           FI;
173 
174       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
175         : MI(mi), Def(def), FI(fi) {}
176     };
177 
178     void HoistRegionPostRA();
179 
180     void HoistPostRA(MachineInstr *MI, unsigned Def);
181 
182     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
183                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
184                    SmallVectorImpl<CandidateInfo> &Candidates);
185 
186     void AddToLiveIns(unsigned Reg);
187 
188     bool IsLICMCandidate(MachineInstr &I);
189 
190     bool IsLoopInvariantInst(MachineInstr &I);
191 
192     bool HasLoopPHIUse(const MachineInstr *MI) const;
193 
194     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
195                                unsigned Reg) const;
196 
197     bool IsCheapInstruction(MachineInstr &MI) const;
198 
199     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
200                                  bool Cheap);
201 
202     void UpdateBackTraceRegPressure(const MachineInstr *MI);
203 
204     bool IsProfitableToHoist(MachineInstr &MI);
205 
206     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
207 
208     void EnterScope(MachineBasicBlock *MBB);
209 
210     void ExitScope(MachineBasicBlock *MBB);
211 
212     void ExitScopeIfDone(
213         MachineDomTreeNode *Node,
214         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
215         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
216 
217     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
218 
219     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
220 
221     void SinkIntoLoop();
222 
223     void InitRegPressure(MachineBasicBlock *BB);
224 
225     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
226                                              bool ConsiderSeen,
227                                              bool ConsiderUnseenAsDef);
228 
229     void UpdateRegPressure(const MachineInstr *MI,
230                            bool ConsiderUnseenAsDef = false);
231 
232     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
233 
234     const MachineInstr *
235     LookForDuplicate(const MachineInstr *MI,
236                      std::vector<const MachineInstr *> &PrevMIs);
237 
238     bool EliminateCSE(
239         MachineInstr *MI,
240         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
241 
242     bool MayCSE(MachineInstr *MI);
243 
244     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
245 
246     void InitCSEMap(MachineBasicBlock *BB);
247 
248     MachineBasicBlock *getCurPreheader();
249   };
250 
251   class MachineLICM : public MachineLICMBase {
252   public:
253     static char ID;
254     MachineLICM() : MachineLICMBase(ID, false) {
255       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
256     }
257   };
258 
259   class EarlyMachineLICM : public MachineLICMBase {
260   public:
261     static char ID;
262     EarlyMachineLICM() : MachineLICMBase(ID, true) {
263       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
264     }
265   };
266 
267 } // end anonymous namespace
268 
269 char MachineLICM::ID;
270 char EarlyMachineLICM::ID;
271 
272 char &llvm::MachineLICMID = MachineLICM::ID;
273 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
274 
275 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
276                       "Machine Loop Invariant Code Motion", false, false)
277 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
278 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
280 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
281                     "Machine Loop Invariant Code Motion", false, false)
282 
283 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
284                       "Early Machine Loop Invariant Code Motion", false, false)
285 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
286 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
287 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
288 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
289                     "Early Machine Loop Invariant Code Motion", false, false)
290 
291 /// Test if the given loop is the outer-most loop that has a unique predecessor.
292 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
293   // Check whether this loop even has a unique predecessor.
294   if (!CurLoop->getLoopPredecessor())
295     return false;
296   // Ok, now check to see if any of its outer loops do.
297   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
298     if (L->getLoopPredecessor())
299       return false;
300   // None of them did, so this is the outermost with a unique predecessor.
301   return true;
302 }
303 
304 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
305   if (skipFunction(MF.getFunction()))
306     return false;
307 
308   Changed = FirstInLoop = false;
309   const TargetSubtargetInfo &ST = MF.getSubtarget();
310   TII = ST.getInstrInfo();
311   TLI = ST.getTargetLowering();
312   TRI = ST.getRegisterInfo();
313   MFI = &MF.getFrameInfo();
314   MRI = &MF.getRegInfo();
315   SchedModel.init(&ST);
316 
317   PreRegAlloc = MRI->isSSA();
318 
319   if (PreRegAlloc)
320     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
321   else
322     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
323   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
324 
325   if (PreRegAlloc) {
326     // Estimate register pressure during pre-regalloc pass.
327     unsigned NumRPS = TRI->getNumRegPressureSets();
328     RegPressure.resize(NumRPS);
329     std::fill(RegPressure.begin(), RegPressure.end(), 0);
330     RegLimit.resize(NumRPS);
331     for (unsigned i = 0, e = NumRPS; i != e; ++i)
332       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
333   }
334 
335   // Get our Loop information...
336   MLI = &getAnalysis<MachineLoopInfo>();
337   DT  = &getAnalysis<MachineDominatorTree>();
338   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
339 
340   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
341   while (!Worklist.empty()) {
342     CurLoop = Worklist.pop_back_val();
343     CurPreheader = nullptr;
344     ExitBlocks.clear();
345 
346     // If this is done before regalloc, only visit outer-most preheader-sporting
347     // loops.
348     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
349       Worklist.append(CurLoop->begin(), CurLoop->end());
350       continue;
351     }
352 
353     CurLoop->getExitBlocks(ExitBlocks);
354 
355     if (!PreRegAlloc)
356       HoistRegionPostRA();
357     else {
358       // CSEMap is initialized for loop header when the first instruction is
359       // being hoisted.
360       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
361       FirstInLoop = true;
362       HoistOutOfLoop(N);
363       CSEMap.clear();
364 
365       if (SinkInstsToAvoidSpills)
366         SinkIntoLoop();
367     }
368   }
369 
370   return Changed;
371 }
372 
373 /// Return true if instruction stores to the specified frame.
374 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
375   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
376   // true since they have no memory operands.
377   if (!MI->mayStore())
378      return false;
379   // If we lost memory operands, conservatively assume that the instruction
380   // writes to all slots.
381   if (MI->memoperands_empty())
382     return true;
383   for (const MachineMemOperand *MemOp : MI->memoperands()) {
384     if (!MemOp->isStore() || !MemOp->getPseudoValue())
385       continue;
386     if (const FixedStackPseudoSourceValue *Value =
387         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
388       if (Value->getFrameIndex() == FI)
389         return true;
390     }
391   }
392   return false;
393 }
394 
395 /// Examine the instruction for potentai LICM candidate. Also
396 /// gather register def and frame object update information.
397 void MachineLICMBase::ProcessMI(MachineInstr *MI,
398                                 BitVector &PhysRegDefs,
399                                 BitVector &PhysRegClobbers,
400                                 SmallSet<int, 32> &StoredFIs,
401                                 SmallVectorImpl<CandidateInfo> &Candidates) {
402   bool RuledOut = false;
403   bool HasNonInvariantUse = false;
404   unsigned Def = 0;
405   for (const MachineOperand &MO : MI->operands()) {
406     if (MO.isFI()) {
407       // Remember if the instruction stores to the frame index.
408       int FI = MO.getIndex();
409       if (!StoredFIs.count(FI) &&
410           MFI->isSpillSlotObjectIndex(FI) &&
411           InstructionStoresToFI(MI, FI))
412         StoredFIs.insert(FI);
413       HasNonInvariantUse = true;
414       continue;
415     }
416 
417     // We can't hoist an instruction defining a physreg that is clobbered in
418     // the loop.
419     if (MO.isRegMask()) {
420       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
421       continue;
422     }
423 
424     if (!MO.isReg())
425       continue;
426     Register Reg = MO.getReg();
427     if (!Reg)
428       continue;
429     assert(Register::isPhysicalRegister(Reg) &&
430            "Not expecting virtual register!");
431 
432     if (!MO.isDef()) {
433       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
434         // If it's using a non-loop-invariant register, then it's obviously not
435         // safe to hoist.
436         HasNonInvariantUse = true;
437       continue;
438     }
439 
440     if (MO.isImplicit()) {
441       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
442         PhysRegClobbers.set(*AI);
443       if (!MO.isDead())
444         // Non-dead implicit def? This cannot be hoisted.
445         RuledOut = true;
446       // No need to check if a dead implicit def is also defined by
447       // another instruction.
448       continue;
449     }
450 
451     // FIXME: For now, avoid instructions with multiple defs, unless
452     // it's a dead implicit def.
453     if (Def)
454       RuledOut = true;
455     else
456       Def = Reg;
457 
458     // If we have already seen another instruction that defines the same
459     // register, then this is not safe.  Two defs is indicated by setting a
460     // PhysRegClobbers bit.
461     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
462       if (PhysRegDefs.test(*AS))
463         PhysRegClobbers.set(*AS);
464     }
465     // Need a second loop because MCRegAliasIterator can visit the same
466     // register twice.
467     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
468       PhysRegDefs.set(*AS);
469 
470     if (PhysRegClobbers.test(Reg))
471       // MI defined register is seen defined by another instruction in
472       // the loop, it cannot be a LICM candidate.
473       RuledOut = true;
474   }
475 
476   // Only consider reloads for now and remats which do not have register
477   // operands. FIXME: Consider unfold load folding instructions.
478   if (Def && !RuledOut) {
479     int FI = std::numeric_limits<int>::min();
480     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
481         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
482       Candidates.push_back(CandidateInfo(MI, Def, FI));
483   }
484 }
485 
486 /// Walk the specified region of the CFG and hoist loop invariants out to the
487 /// preheader.
488 void MachineLICMBase::HoistRegionPostRA() {
489   MachineBasicBlock *Preheader = getCurPreheader();
490   if (!Preheader)
491     return;
492 
493   unsigned NumRegs = TRI->getNumRegs();
494   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
495   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
496 
497   SmallVector<CandidateInfo, 32> Candidates;
498   SmallSet<int, 32> StoredFIs;
499 
500   // Walk the entire region, count number of defs for each register, and
501   // collect potential LICM candidates.
502   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
503     // If the header of the loop containing this basic block is a landing pad,
504     // then don't try to hoist instructions out of this loop.
505     const MachineLoop *ML = MLI->getLoopFor(BB);
506     if (ML && ML->getHeader()->isEHPad()) continue;
507 
508     // Conservatively treat live-in's as an external def.
509     // FIXME: That means a reload that're reused in successor block(s) will not
510     // be LICM'ed.
511     for (const auto &LI : BB->liveins()) {
512       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
513         PhysRegDefs.set(*AI);
514     }
515 
516     SpeculationState = SpeculateUnknown;
517     for (MachineInstr &MI : *BB)
518       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
519   }
520 
521   // Gather the registers read / clobbered by the terminator.
522   BitVector TermRegs(NumRegs);
523   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
524   if (TI != Preheader->end()) {
525     for (const MachineOperand &MO : TI->operands()) {
526       if (!MO.isReg())
527         continue;
528       Register Reg = MO.getReg();
529       if (!Reg)
530         continue;
531       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
532         TermRegs.set(*AI);
533     }
534   }
535 
536   // Now evaluate whether the potential candidates qualify.
537   // 1. Check if the candidate defined register is defined by another
538   //    instruction in the loop.
539   // 2. If the candidate is a load from stack slot (always true for now),
540   //    check if the slot is stored anywhere in the loop.
541   // 3. Make sure candidate def should not clobber
542   //    registers read by the terminator. Similarly its def should not be
543   //    clobbered by the terminator.
544   for (CandidateInfo &Candidate : Candidates) {
545     if (Candidate.FI != std::numeric_limits<int>::min() &&
546         StoredFIs.count(Candidate.FI))
547       continue;
548 
549     unsigned Def = Candidate.Def;
550     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
551       bool Safe = true;
552       MachineInstr *MI = Candidate.MI;
553       for (const MachineOperand &MO : MI->operands()) {
554         if (!MO.isReg() || MO.isDef() || !MO.getReg())
555           continue;
556         Register Reg = MO.getReg();
557         if (PhysRegDefs.test(Reg) ||
558             PhysRegClobbers.test(Reg)) {
559           // If it's using a non-loop-invariant register, then it's obviously
560           // not safe to hoist.
561           Safe = false;
562           break;
563         }
564       }
565       if (Safe)
566         HoistPostRA(MI, Candidate.Def);
567     }
568   }
569 }
570 
571 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
572 /// sure it is not killed by any instructions in the loop.
573 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
574   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
575     if (!BB->isLiveIn(Reg))
576       BB->addLiveIn(Reg);
577     for (MachineInstr &MI : *BB) {
578       for (MachineOperand &MO : MI.operands()) {
579         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
580         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
581           MO.setIsKill(false);
582       }
583     }
584   }
585 }
586 
587 /// When an instruction is found to only use loop invariant operands that is
588 /// safe to hoist, this instruction is called to do the dirty work.
589 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
590   MachineBasicBlock *Preheader = getCurPreheader();
591 
592   // Now move the instructions to the predecessor, inserting it before any
593   // terminator instructions.
594   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
595                     << " from " << printMBBReference(*MI->getParent()) << ": "
596                     << *MI);
597 
598   // Splice the instruction to the preheader.
599   MachineBasicBlock *MBB = MI->getParent();
600   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
601 
602   // Add register to livein list to all the BBs in the current loop since a
603   // loop invariant must be kept live throughout the whole loop. This is
604   // important to ensure later passes do not scavenge the def register.
605   AddToLiveIns(Def);
606 
607   ++NumPostRAHoisted;
608   Changed = true;
609 }
610 
611 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
612 /// may not be safe to hoist.
613 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
614   if (SpeculationState != SpeculateUnknown)
615     return SpeculationState == SpeculateFalse;
616 
617   if (BB != CurLoop->getHeader()) {
618     // Check loop exiting blocks.
619     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
620     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
621     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
622       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
623         SpeculationState = SpeculateTrue;
624         return false;
625       }
626   }
627 
628   SpeculationState = SpeculateFalse;
629   return true;
630 }
631 
632 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
633   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
634 
635   // Remember livein register pressure.
636   BackTrace.push_back(RegPressure);
637 }
638 
639 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
640   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
641   BackTrace.pop_back();
642 }
643 
644 /// Destroy scope for the MBB that corresponds to the given dominator tree node
645 /// if its a leaf or all of its children are done. Walk up the dominator tree to
646 /// destroy ancestors which are now done.
647 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
648     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
649     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
650   if (OpenChildren[Node])
651     return;
652 
653   // Pop scope.
654   ExitScope(Node->getBlock());
655 
656   // Now traverse upwards to pop ancestors whose offsprings are all done.
657   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
658     unsigned Left = --OpenChildren[Parent];
659     if (Left != 0)
660       break;
661     ExitScope(Parent->getBlock());
662     Node = Parent;
663   }
664 }
665 
666 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
667 /// specified header block, and that are in the current loop) in depth first
668 /// order w.r.t the DominatorTree. This allows us to visit definitions before
669 /// uses, allowing us to hoist a loop body in one pass without iteration.
670 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
671   MachineBasicBlock *Preheader = getCurPreheader();
672   if (!Preheader)
673     return;
674 
675   SmallVector<MachineDomTreeNode*, 32> Scopes;
676   SmallVector<MachineDomTreeNode*, 8> WorkList;
677   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
678   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
679 
680   // Perform a DFS walk to determine the order of visit.
681   WorkList.push_back(HeaderN);
682   while (!WorkList.empty()) {
683     MachineDomTreeNode *Node = WorkList.pop_back_val();
684     assert(Node && "Null dominator tree node?");
685     MachineBasicBlock *BB = Node->getBlock();
686 
687     // If the header of the loop containing this basic block is a landing pad,
688     // then don't try to hoist instructions out of this loop.
689     const MachineLoop *ML = MLI->getLoopFor(BB);
690     if (ML && ML->getHeader()->isEHPad())
691       continue;
692 
693     // If this subregion is not in the top level loop at all, exit.
694     if (!CurLoop->contains(BB))
695       continue;
696 
697     Scopes.push_back(Node);
698     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
699     unsigned NumChildren = Children.size();
700 
701     // Don't hoist things out of a large switch statement.  This often causes
702     // code to be hoisted that wasn't going to be executed, and increases
703     // register pressure in a situation where it's likely to matter.
704     if (BB->succ_size() >= 25)
705       NumChildren = 0;
706 
707     OpenChildren[Node] = NumChildren;
708     // Add children in reverse order as then the next popped worklist node is
709     // the first child of this node.  This means we ultimately traverse the
710     // DOM tree in exactly the same order as if we'd recursed.
711     for (int i = (int)NumChildren-1; i >= 0; --i) {
712       MachineDomTreeNode *Child = Children[i];
713       ParentMap[Child] = Node;
714       WorkList.push_back(Child);
715     }
716   }
717 
718   if (Scopes.size() == 0)
719     return;
720 
721   // Compute registers which are livein into the loop headers.
722   RegSeen.clear();
723   BackTrace.clear();
724   InitRegPressure(Preheader);
725 
726   // Now perform LICM.
727   for (MachineDomTreeNode *Node : Scopes) {
728     MachineBasicBlock *MBB = Node->getBlock();
729 
730     EnterScope(MBB);
731 
732     // Process the block
733     SpeculationState = SpeculateUnknown;
734     for (MachineBasicBlock::iterator
735          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
736       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
737       MachineInstr *MI = &*MII;
738       if (!Hoist(MI, Preheader))
739         UpdateRegPressure(MI);
740       // If we have hoisted an instruction that may store, it can only be a
741       // constant store.
742       MII = NextMII;
743     }
744 
745     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
746     ExitScopeIfDone(Node, OpenChildren, ParentMap);
747   }
748 }
749 
750 /// Sink instructions into loops if profitable. This especially tries to prevent
751 /// register spills caused by register pressure if there is little to no
752 /// overhead moving instructions into loops.
753 void MachineLICMBase::SinkIntoLoop() {
754   MachineBasicBlock *Preheader = getCurPreheader();
755   if (!Preheader)
756     return;
757 
758   SmallVector<MachineInstr *, 8> Candidates;
759   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
760        I != Preheader->instr_end(); ++I) {
761     // We need to ensure that we can safely move this instruction into the loop.
762     // As such, it must not have side-effects, e.g. such as a call has.
763     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
764       Candidates.push_back(&*I);
765   }
766 
767   for (MachineInstr *I : Candidates) {
768     const MachineOperand &MO = I->getOperand(0);
769     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
770       continue;
771     if (!MRI->hasOneDef(MO.getReg()))
772       continue;
773     bool CanSink = true;
774     MachineBasicBlock *B = nullptr;
775     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
776       // FIXME: Come up with a proper cost model that estimates whether sinking
777       // the instruction (and thus possibly executing it on every loop
778       // iteration) is more expensive than a register.
779       // For now assumes that copies are cheap and thus almost always worth it.
780       if (!MI.isCopy()) {
781         CanSink = false;
782         break;
783       }
784       if (!B) {
785         B = MI.getParent();
786         continue;
787       }
788       B = DT->findNearestCommonDominator(B, MI.getParent());
789       if (!B) {
790         CanSink = false;
791         break;
792       }
793     }
794     if (!CanSink || !B || B == Preheader)
795       continue;
796     B->splice(B->getFirstNonPHI(), Preheader, I);
797   }
798 }
799 
800 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
801   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
802 }
803 
804 /// Find all virtual register references that are liveout of the preheader to
805 /// initialize the starting "register pressure". Note this does not count live
806 /// through (livein but not used) registers.
807 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
808   std::fill(RegPressure.begin(), RegPressure.end(), 0);
809 
810   // If the preheader has only a single predecessor and it ends with a
811   // fallthrough or an unconditional branch, then scan its predecessor for live
812   // defs as well. This happens whenever the preheader is created by splitting
813   // the critical edge from the loop predecessor to the loop header.
814   if (BB->pred_size() == 1) {
815     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
816     SmallVector<MachineOperand, 4> Cond;
817     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
818       InitRegPressure(*BB->pred_begin());
819   }
820 
821   for (const MachineInstr &MI : *BB)
822     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
823 }
824 
825 /// Update estimate of register pressure after the specified instruction.
826 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
827                                         bool ConsiderUnseenAsDef) {
828   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
829   for (const auto &RPIdAndCost : Cost) {
830     unsigned Class = RPIdAndCost.first;
831     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
832       RegPressure[Class] = 0;
833     else
834       RegPressure[Class] += RPIdAndCost.second;
835   }
836 }
837 
838 /// Calculate the additional register pressure that the registers used in MI
839 /// cause.
840 ///
841 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
842 /// figure out which usages are live-ins.
843 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
844 DenseMap<unsigned, int>
845 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
846                                   bool ConsiderUnseenAsDef) {
847   DenseMap<unsigned, int> Cost;
848   if (MI->isImplicitDef())
849     return Cost;
850   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
851     const MachineOperand &MO = MI->getOperand(i);
852     if (!MO.isReg() || MO.isImplicit())
853       continue;
854     Register Reg = MO.getReg();
855     if (!Register::isVirtualRegister(Reg))
856       continue;
857 
858     // FIXME: It seems bad to use RegSeen only for some of these calculations.
859     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
860     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
861 
862     RegClassWeight W = TRI->getRegClassWeight(RC);
863     int RCCost = 0;
864     if (MO.isDef())
865       RCCost = W.RegWeight;
866     else {
867       bool isKill = isOperandKill(MO, MRI);
868       if (isNew && !isKill && ConsiderUnseenAsDef)
869         // Haven't seen this, it must be a livein.
870         RCCost = W.RegWeight;
871       else if (!isNew && isKill)
872         RCCost = -W.RegWeight;
873     }
874     if (RCCost == 0)
875       continue;
876     const int *PS = TRI->getRegClassPressureSets(RC);
877     for (; *PS != -1; ++PS) {
878       if (Cost.find(*PS) == Cost.end())
879         Cost[*PS] = RCCost;
880       else
881         Cost[*PS] += RCCost;
882     }
883   }
884   return Cost;
885 }
886 
887 /// Return true if this machine instruction loads from global offset table or
888 /// constant pool.
889 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
890   assert(MI.mayLoad() && "Expected MI that loads!");
891 
892   // If we lost memory operands, conservatively assume that the instruction
893   // reads from everything..
894   if (MI.memoperands_empty())
895     return true;
896 
897   for (MachineMemOperand *MemOp : MI.memoperands())
898     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
899       if (PSV->isGOT() || PSV->isConstantPool())
900         return true;
901 
902   return false;
903 }
904 
905 // This function iterates through all the operands of the input store MI and
906 // checks that each register operand statisfies isCallerPreservedPhysReg.
907 // This means, the value being stored and the address where it is being stored
908 // is constant throughout the body of the function (not including prologue and
909 // epilogue). When called with an MI that isn't a store, it returns false.
910 // A future improvement can be to check if the store registers are constant
911 // throughout the loop rather than throughout the funtion.
912 static bool isInvariantStore(const MachineInstr &MI,
913                              const TargetRegisterInfo *TRI,
914                              const MachineRegisterInfo *MRI) {
915 
916   bool FoundCallerPresReg = false;
917   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
918       (MI.getNumOperands() == 0))
919     return false;
920 
921   // Check that all register operands are caller-preserved physical registers.
922   for (const MachineOperand &MO : MI.operands()) {
923     if (MO.isReg()) {
924       Register Reg = MO.getReg();
925       // If operand is a virtual register, check if it comes from a copy of a
926       // physical register.
927       if (Register::isVirtualRegister(Reg))
928         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
929       if (Register::isVirtualRegister(Reg))
930         return false;
931       if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
932         return false;
933       else
934         FoundCallerPresReg = true;
935     } else if (!MO.isImm()) {
936         return false;
937     }
938   }
939   return FoundCallerPresReg;
940 }
941 
942 // Return true if the input MI is a copy instruction that feeds an invariant
943 // store instruction. This means that the src of the copy has to satisfy
944 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
945 // isInvariantStore.
946 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
947                                         const MachineRegisterInfo *MRI,
948                                         const TargetRegisterInfo *TRI) {
949 
950   // FIXME: If targets would like to look through instructions that aren't
951   // pure copies, this can be updated to a query.
952   if (!MI.isCopy())
953     return false;
954 
955   const MachineFunction *MF = MI.getMF();
956   // Check that we are copying a constant physical register.
957   Register CopySrcReg = MI.getOperand(1).getReg();
958   if (Register::isVirtualRegister(CopySrcReg))
959     return false;
960 
961   if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
962     return false;
963 
964   Register CopyDstReg = MI.getOperand(0).getReg();
965   // Check if any of the uses of the copy are invariant stores.
966   assert(Register::isVirtualRegister(CopyDstReg) &&
967          "copy dst is not a virtual reg");
968 
969   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
970     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
971       return true;
972   }
973   return false;
974 }
975 
976 /// Returns true if the instruction may be a suitable candidate for LICM.
977 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
978 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
979   // Check if it's safe to move the instruction.
980   bool DontMoveAcrossStore = true;
981   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
982       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
983     return false;
984   }
985 
986   // If it is load then check if it is guaranteed to execute by making sure that
987   // it dominates all exiting blocks. If it doesn't, then there is a path out of
988   // the loop which does not execute this load, so we can't hoist it. Loads
989   // from constant memory are not safe to speculate all the time, for example
990   // indexed load from a jump table.
991   // Stores and side effects are already checked by isSafeToMove.
992   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
993       !IsGuaranteedToExecute(I.getParent()))
994     return false;
995 
996   return true;
997 }
998 
999 /// Returns true if the instruction is loop invariant.
1000 /// I.e., all virtual register operands are defined outside of the loop,
1001 /// physical registers aren't accessed explicitly, and there are no side
1002 /// effects that aren't captured by the operands or other flags.
1003 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1004   if (!IsLICMCandidate(I))
1005     return false;
1006 
1007   // The instruction is loop invariant if all of its operands are.
1008   for (const MachineOperand &MO : I.operands()) {
1009     if (!MO.isReg())
1010       continue;
1011 
1012     Register Reg = MO.getReg();
1013     if (Reg == 0) continue;
1014 
1015     // Don't hoist an instruction that uses or defines a physical register.
1016     if (Register::isPhysicalRegister(Reg)) {
1017       if (MO.isUse()) {
1018         // If the physreg has no defs anywhere, it's just an ambient register
1019         // and we can freely move its uses. Alternatively, if it's allocatable,
1020         // it could get allocated to something with a def during allocation.
1021         // However, if the physreg is known to always be caller saved/restored
1022         // then this use is safe to hoist.
1023         if (!MRI->isConstantPhysReg(Reg) &&
1024             !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1025           return false;
1026         // Otherwise it's safe to move.
1027         continue;
1028       } else if (!MO.isDead()) {
1029         // A def that isn't dead. We can't move it.
1030         return false;
1031       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1032         // If the reg is live into the loop, we can't hoist an instruction
1033         // which would clobber it.
1034         return false;
1035       }
1036     }
1037 
1038     if (!MO.isUse())
1039       continue;
1040 
1041     assert(MRI->getVRegDef(Reg) &&
1042            "Machine instr not mapped for this vreg?!");
1043 
1044     // If the loop contains the definition of an operand, then the instruction
1045     // isn't loop invariant.
1046     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1047       return false;
1048   }
1049 
1050   // If we got this far, the instruction is loop invariant!
1051   return true;
1052 }
1053 
1054 /// Return true if the specified instruction is used by a phi node and hoisting
1055 /// it could cause a copy to be inserted.
1056 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1057   SmallVector<const MachineInstr*, 8> Work(1, MI);
1058   do {
1059     MI = Work.pop_back_val();
1060     for (const MachineOperand &MO : MI->operands()) {
1061       if (!MO.isReg() || !MO.isDef())
1062         continue;
1063       Register Reg = MO.getReg();
1064       if (!Register::isVirtualRegister(Reg))
1065         continue;
1066       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1067         // A PHI may cause a copy to be inserted.
1068         if (UseMI.isPHI()) {
1069           // A PHI inside the loop causes a copy because the live range of Reg is
1070           // extended across the PHI.
1071           if (CurLoop->contains(&UseMI))
1072             return true;
1073           // A PHI in an exit block can cause a copy to be inserted if the PHI
1074           // has multiple predecessors in the loop with different values.
1075           // For now, approximate by rejecting all exit blocks.
1076           if (isExitBlock(UseMI.getParent()))
1077             return true;
1078           continue;
1079         }
1080         // Look past copies as well.
1081         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1082           Work.push_back(&UseMI);
1083       }
1084     }
1085   } while (!Work.empty());
1086   return false;
1087 }
1088 
1089 /// Compute operand latency between a def of 'Reg' and an use in the current
1090 /// loop, return true if the target considered it high.
1091 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1092                                             unsigned DefIdx,
1093                                             unsigned Reg) const {
1094   if (MRI->use_nodbg_empty(Reg))
1095     return false;
1096 
1097   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1098     if (UseMI.isCopyLike())
1099       continue;
1100     if (!CurLoop->contains(UseMI.getParent()))
1101       continue;
1102     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1103       const MachineOperand &MO = UseMI.getOperand(i);
1104       if (!MO.isReg() || !MO.isUse())
1105         continue;
1106       Register MOReg = MO.getReg();
1107       if (MOReg != Reg)
1108         continue;
1109 
1110       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1111         return true;
1112     }
1113 
1114     // Only look at the first in loop use.
1115     break;
1116   }
1117 
1118   return false;
1119 }
1120 
1121 /// Return true if the instruction is marked "cheap" or the operand latency
1122 /// between its def and a use is one or less.
1123 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1124   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1125     return true;
1126 
1127   bool isCheap = false;
1128   unsigned NumDefs = MI.getDesc().getNumDefs();
1129   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1130     MachineOperand &DefMO = MI.getOperand(i);
1131     if (!DefMO.isReg() || !DefMO.isDef())
1132       continue;
1133     --NumDefs;
1134     Register Reg = DefMO.getReg();
1135     if (Register::isPhysicalRegister(Reg))
1136       continue;
1137 
1138     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1139       return false;
1140     isCheap = true;
1141   }
1142 
1143   return isCheap;
1144 }
1145 
1146 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1147 /// given cost matrix can cause high register pressure.
1148 bool
1149 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1150                                          bool CheapInstr) {
1151   for (const auto &RPIdAndCost : Cost) {
1152     if (RPIdAndCost.second <= 0)
1153       continue;
1154 
1155     unsigned Class = RPIdAndCost.first;
1156     int Limit = RegLimit[Class];
1157 
1158     // Don't hoist cheap instructions if they would increase register pressure,
1159     // even if we're under the limit.
1160     if (CheapInstr && !HoistCheapInsts)
1161       return true;
1162 
1163     for (const auto &RP : BackTrace)
1164       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1165         return true;
1166   }
1167 
1168   return false;
1169 }
1170 
1171 /// Traverse the back trace from header to the current block and update their
1172 /// register pressures to reflect the effect of hoisting MI from the current
1173 /// block to the preheader.
1174 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1175   // First compute the 'cost' of the instruction, i.e. its contribution
1176   // to register pressure.
1177   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1178                                /*ConsiderUnseenAsDef=*/false);
1179 
1180   // Update register pressure of blocks from loop header to current block.
1181   for (auto &RP : BackTrace)
1182     for (const auto &RPIdAndCost : Cost)
1183       RP[RPIdAndCost.first] += RPIdAndCost.second;
1184 }
1185 
1186 /// Return true if it is potentially profitable to hoist the given loop
1187 /// invariant.
1188 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1189   if (MI.isImplicitDef())
1190     return true;
1191 
1192   // Besides removing computation from the loop, hoisting an instruction has
1193   // these effects:
1194   //
1195   // - The value defined by the instruction becomes live across the entire
1196   //   loop. This increases register pressure in the loop.
1197   //
1198   // - If the value is used by a PHI in the loop, a copy will be required for
1199   //   lowering the PHI after extending the live range.
1200   //
1201   // - When hoisting the last use of a value in the loop, that value no longer
1202   //   needs to be live in the loop. This lowers register pressure in the loop.
1203 
1204   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1205     return true;
1206 
1207   bool CheapInstr = IsCheapInstruction(MI);
1208   bool CreatesCopy = HasLoopPHIUse(&MI);
1209 
1210   // Don't hoist a cheap instruction if it would create a copy in the loop.
1211   if (CheapInstr && CreatesCopy) {
1212     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1213     return false;
1214   }
1215 
1216   // Rematerializable instructions should always be hoisted since the register
1217   // allocator can just pull them down again when needed.
1218   if (TII->isTriviallyReMaterializable(MI, AA))
1219     return true;
1220 
1221   // FIXME: If there are long latency loop-invariant instructions inside the
1222   // loop at this point, why didn't the optimizer's LICM hoist them?
1223   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1224     const MachineOperand &MO = MI.getOperand(i);
1225     if (!MO.isReg() || MO.isImplicit())
1226       continue;
1227     Register Reg = MO.getReg();
1228     if (!Register::isVirtualRegister(Reg))
1229       continue;
1230     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1231       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1232       ++NumHighLatency;
1233       return true;
1234     }
1235   }
1236 
1237   // Estimate register pressure to determine whether to LICM the instruction.
1238   // In low register pressure situation, we can be more aggressive about
1239   // hoisting. Also, favors hoisting long latency instructions even in
1240   // moderately high pressure situation.
1241   // Cheap instructions will only be hoisted if they don't increase register
1242   // pressure at all.
1243   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1244                                /*ConsiderUnseenAsDef=*/false);
1245 
1246   // Visit BBs from header to current BB, if hoisting this doesn't cause
1247   // high register pressure, then it's safe to proceed.
1248   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1249     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1250     ++NumLowRP;
1251     return true;
1252   }
1253 
1254   // Don't risk increasing register pressure if it would create copies.
1255   if (CreatesCopy) {
1256     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1257     return false;
1258   }
1259 
1260   // Do not "speculate" in high register pressure situation. If an
1261   // instruction is not guaranteed to be executed in the loop, it's best to be
1262   // conservative.
1263   if (AvoidSpeculation &&
1264       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1265     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1266     return false;
1267   }
1268 
1269   // High register pressure situation, only hoist if the instruction is going
1270   // to be remat'ed.
1271   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1272       !MI.isDereferenceableInvariantLoad(AA)) {
1273     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1274     return false;
1275   }
1276 
1277   return true;
1278 }
1279 
1280 /// Unfold a load from the given machineinstr if the load itself could be
1281 /// hoisted. Return the unfolded and hoistable load, or null if the load
1282 /// couldn't be unfolded or if it wouldn't be hoistable.
1283 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1284   // Don't unfold simple loads.
1285   if (MI->canFoldAsLoad())
1286     return nullptr;
1287 
1288   // If not, we may be able to unfold a load and hoist that.
1289   // First test whether the instruction is loading from an amenable
1290   // memory location.
1291   if (!MI->isDereferenceableInvariantLoad(AA))
1292     return nullptr;
1293 
1294   // Next determine the register class for a temporary register.
1295   unsigned LoadRegIndex;
1296   unsigned NewOpc =
1297     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1298                                     /*UnfoldLoad=*/true,
1299                                     /*UnfoldStore=*/false,
1300                                     &LoadRegIndex);
1301   if (NewOpc == 0) return nullptr;
1302   const MCInstrDesc &MID = TII->get(NewOpc);
1303   MachineFunction &MF = *MI->getMF();
1304   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1305   // Ok, we're unfolding. Create a temporary register and do the unfold.
1306   Register Reg = MRI->createVirtualRegister(RC);
1307 
1308   SmallVector<MachineInstr *, 2> NewMIs;
1309   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1310                                           /*UnfoldLoad=*/true,
1311                                           /*UnfoldStore=*/false, NewMIs);
1312   (void)Success;
1313   assert(Success &&
1314          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1315          "succeeded!");
1316   assert(NewMIs.size() == 2 &&
1317          "Unfolded a load into multiple instructions!");
1318   MachineBasicBlock *MBB = MI->getParent();
1319   MachineBasicBlock::iterator Pos = MI;
1320   MBB->insert(Pos, NewMIs[0]);
1321   MBB->insert(Pos, NewMIs[1]);
1322   // If unfolding produced a load that wasn't loop-invariant or profitable to
1323   // hoist, discard the new instructions and bail.
1324   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1325     NewMIs[0]->eraseFromParent();
1326     NewMIs[1]->eraseFromParent();
1327     return nullptr;
1328   }
1329 
1330   // Update register pressure for the unfolded instruction.
1331   UpdateRegPressure(NewMIs[1]);
1332 
1333   // Otherwise we successfully unfolded a load that we can hoist.
1334   MI->eraseFromParent();
1335   return NewMIs[0];
1336 }
1337 
1338 /// Initialize the CSE map with instructions that are in the current loop
1339 /// preheader that may become duplicates of instructions that are hoisted
1340 /// out of the loop.
1341 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1342   for (MachineInstr &MI : *BB)
1343     CSEMap[MI.getOpcode()].push_back(&MI);
1344 }
1345 
1346 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1347 /// Return this instruction if it's found.
1348 const MachineInstr*
1349 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1350                                   std::vector<const MachineInstr*> &PrevMIs) {
1351   for (const MachineInstr *PrevMI : PrevMIs)
1352     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1353       return PrevMI;
1354 
1355   return nullptr;
1356 }
1357 
1358 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1359 /// computes the same value. If it's found, do a RAU on with the definition of
1360 /// the existing instruction rather than hoisting the instruction to the
1361 /// preheader.
1362 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1363     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1364   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1365   // the undef property onto uses.
1366   if (CI == CSEMap.end() || MI->isImplicitDef())
1367     return false;
1368 
1369   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1370     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1371 
1372     // Replace virtual registers defined by MI by their counterparts defined
1373     // by Dup.
1374     SmallVector<unsigned, 2> Defs;
1375     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1376       const MachineOperand &MO = MI->getOperand(i);
1377 
1378       // Physical registers may not differ here.
1379       assert((!MO.isReg() || MO.getReg() == 0 ||
1380               !Register::isPhysicalRegister(MO.getReg()) ||
1381               MO.getReg() == Dup->getOperand(i).getReg()) &&
1382              "Instructions with different phys regs are not identical!");
1383 
1384       if (MO.isReg() && MO.isDef() &&
1385           !Register::isPhysicalRegister(MO.getReg()))
1386         Defs.push_back(i);
1387     }
1388 
1389     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1390     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1391       unsigned Idx = Defs[i];
1392       Register Reg = MI->getOperand(Idx).getReg();
1393       Register DupReg = Dup->getOperand(Idx).getReg();
1394       OrigRCs.push_back(MRI->getRegClass(DupReg));
1395 
1396       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1397         // Restore old RCs if more than one defs.
1398         for (unsigned j = 0; j != i; ++j)
1399           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1400         return false;
1401       }
1402     }
1403 
1404     for (unsigned Idx : Defs) {
1405       Register Reg = MI->getOperand(Idx).getReg();
1406       Register DupReg = Dup->getOperand(Idx).getReg();
1407       MRI->replaceRegWith(Reg, DupReg);
1408       MRI->clearKillFlags(DupReg);
1409     }
1410 
1411     MI->eraseFromParent();
1412     ++NumCSEed;
1413     return true;
1414   }
1415   return false;
1416 }
1417 
1418 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1419 /// the loop.
1420 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1421   unsigned Opcode = MI->getOpcode();
1422   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1423     CI = CSEMap.find(Opcode);
1424   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1425   // the undef property onto uses.
1426   if (CI == CSEMap.end() || MI->isImplicitDef())
1427     return false;
1428 
1429   return LookForDuplicate(MI, CI->second) != nullptr;
1430 }
1431 
1432 /// When an instruction is found to use only loop invariant operands
1433 /// that are safe to hoist, this instruction is called to do the dirty work.
1434 /// It returns true if the instruction is hoisted.
1435 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1436   // First check whether we should hoist this instruction.
1437   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1438     // If not, try unfolding a hoistable load.
1439     MI = ExtractHoistableLoad(MI);
1440     if (!MI) return false;
1441   }
1442 
1443   // If we have hoisted an instruction that may store, it can only be a constant
1444   // store.
1445   if (MI->mayStore())
1446     NumStoreConst++;
1447 
1448   // Now move the instructions to the predecessor, inserting it before any
1449   // terminator instructions.
1450   LLVM_DEBUG({
1451     dbgs() << "Hoisting " << *MI;
1452     if (MI->getParent()->getBasicBlock())
1453       dbgs() << " from " << printMBBReference(*MI->getParent());
1454     if (Preheader->getBasicBlock())
1455       dbgs() << " to " << printMBBReference(*Preheader);
1456     dbgs() << "\n";
1457   });
1458 
1459   // If this is the first instruction being hoisted to the preheader,
1460   // initialize the CSE map with potential common expressions.
1461   if (FirstInLoop) {
1462     InitCSEMap(Preheader);
1463     FirstInLoop = false;
1464   }
1465 
1466   // Look for opportunity to CSE the hoisted instruction.
1467   unsigned Opcode = MI->getOpcode();
1468   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1469     CI = CSEMap.find(Opcode);
1470   if (!EliminateCSE(MI, CI)) {
1471     // Otherwise, splice the instruction to the preheader.
1472     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1473 
1474     // Since we are moving the instruction out of its basic block, we do not
1475     // retain its debug location. Doing so would degrade the debugging
1476     // experience and adversely affect the accuracy of profiling information.
1477     MI->setDebugLoc(DebugLoc());
1478 
1479     // Update register pressure for BBs from header to this block.
1480     UpdateBackTraceRegPressure(MI);
1481 
1482     // Clear the kill flags of any register this instruction defines,
1483     // since they may need to be live throughout the entire loop
1484     // rather than just live for part of it.
1485     for (MachineOperand &MO : MI->operands())
1486       if (MO.isReg() && MO.isDef() && !MO.isDead())
1487         MRI->clearKillFlags(MO.getReg());
1488 
1489     // Add to the CSE map.
1490     if (CI != CSEMap.end())
1491       CI->second.push_back(MI);
1492     else
1493       CSEMap[Opcode].push_back(MI);
1494   }
1495 
1496   ++NumHoisted;
1497   Changed = true;
1498 
1499   return true;
1500 }
1501 
1502 /// Get the preheader for the current loop, splitting a critical edge if needed.
1503 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1504   // Determine the block to which to hoist instructions. If we can't find a
1505   // suitable loop predecessor, we can't do any hoisting.
1506 
1507   // If we've tried to get a preheader and failed, don't try again.
1508   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1509     return nullptr;
1510 
1511   if (!CurPreheader) {
1512     CurPreheader = CurLoop->getLoopPreheader();
1513     if (!CurPreheader) {
1514       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1515       if (!Pred) {
1516         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1517         return nullptr;
1518       }
1519 
1520       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1521       if (!CurPreheader) {
1522         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1523         return nullptr;
1524       }
1525     }
1526   }
1527   return CurPreheader;
1528 }
1529