xref: /freebsd-src/contrib/llvm-project/llvm/lib/CodeGen/MachineInstr.cpp (revision 4824e7fd18a1223177218d4aec1b3c6c5c4a444e)
1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Methods common to all machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DebugInfoMetadata.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/DerivedTypes.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/MC/MCRegisterInfo.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/FormattedStream.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <cstring>
76 #include <iterator>
77 #include <utility>
78 
79 using namespace llvm;
80 
81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) {
82   if (const MachineBasicBlock *MBB = MI.getParent())
83     if (const MachineFunction *MF = MBB->getParent())
84       return MF;
85   return nullptr;
86 }
87 
88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
89 // it.
90 static void tryToGetTargetInfo(const MachineInstr &MI,
91                                const TargetRegisterInfo *&TRI,
92                                const MachineRegisterInfo *&MRI,
93                                const TargetIntrinsicInfo *&IntrinsicInfo,
94                                const TargetInstrInfo *&TII) {
95 
96   if (const MachineFunction *MF = getMFIfAvailable(MI)) {
97     TRI = MF->getSubtarget().getRegisterInfo();
98     MRI = &MF->getRegInfo();
99     IntrinsicInfo = MF->getTarget().getIntrinsicInfo();
100     TII = MF->getSubtarget().getInstrInfo();
101   }
102 }
103 
104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
105   if (MCID->ImplicitDefs)
106     for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs;
107            ++ImpDefs)
108       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
109   if (MCID->ImplicitUses)
110     for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses;
111            ++ImpUses)
112       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
113 }
114 
115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
116 /// implicit operands. It reserves space for the number of operands specified by
117 /// the MCInstrDesc.
118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
119                            DebugLoc dl, bool NoImp)
120     : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) {
121   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
122 
123   // Reserve space for the expected number of operands.
124   if (unsigned NumOps = MCID->getNumOperands() +
125     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
126     CapOperands = OperandCapacity::get(NumOps);
127     Operands = MF.allocateOperandArray(CapOperands);
128   }
129 
130   if (!NoImp)
131     addImplicitDefUseOperands(MF);
132 }
133 
134 /// MachineInstr ctor - Copies MachineInstr arg exactly.
135 /// Does not copy the number from debug instruction numbering, to preserve
136 /// uniqueness.
137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
138     : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()),
139       DebugInstrNum(0) {
140   assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
141 
142   CapOperands = OperandCapacity::get(MI.getNumOperands());
143   Operands = MF.allocateOperandArray(CapOperands);
144 
145   // Copy operands.
146   for (const MachineOperand &MO : MI.operands())
147     addOperand(MF, MO);
148 
149   // Copy all the sensible flags.
150   setFlags(MI.Flags);
151 }
152 
153 void MachineInstr::moveBefore(MachineInstr *MovePos) {
154   MovePos->getParent()->splice(MovePos, getParent(), getIterator());
155 }
156 
157 /// getRegInfo - If this instruction is embedded into a MachineFunction,
158 /// return the MachineRegisterInfo object for the current function, otherwise
159 /// return null.
160 MachineRegisterInfo *MachineInstr::getRegInfo() {
161   if (MachineBasicBlock *MBB = getParent())
162     return &MBB->getParent()->getRegInfo();
163   return nullptr;
164 }
165 
166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
167 /// this instruction from their respective use lists.  This requires that the
168 /// operands already be on their use lists.
169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
170   for (MachineOperand &MO : operands())
171     if (MO.isReg())
172       MRI.removeRegOperandFromUseList(&MO);
173 }
174 
175 /// AddRegOperandsToUseLists - Add all of the register operands in
176 /// this instruction from their respective use lists.  This requires that the
177 /// operands not be on their use lists yet.
178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
179   for (MachineOperand &MO : operands())
180     if (MO.isReg())
181       MRI.addRegOperandToUseList(&MO);
182 }
183 
184 void MachineInstr::addOperand(const MachineOperand &Op) {
185   MachineBasicBlock *MBB = getParent();
186   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
187   MachineFunction *MF = MBB->getParent();
188   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
189   addOperand(*MF, Op);
190 }
191 
192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
193 /// ranges. If MRI is non-null also update use-def chains.
194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
195                          unsigned NumOps, MachineRegisterInfo *MRI) {
196   if (MRI)
197     return MRI->moveOperands(Dst, Src, NumOps);
198   // MachineOperand is a trivially copyable type so we can just use memmove.
199   assert(Dst && Src && "Unknown operands");
200   std::memmove(Dst, Src, NumOps * sizeof(MachineOperand));
201 }
202 
203 /// addOperand - Add the specified operand to the instruction.  If it is an
204 /// implicit operand, it is added to the end of the operand list.  If it is
205 /// an explicit operand it is added at the end of the explicit operand list
206 /// (before the first implicit operand).
207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
208   assert(MCID && "Cannot add operands before providing an instr descriptor");
209 
210   // Check if we're adding one of our existing operands.
211   if (&Op >= Operands && &Op < Operands + NumOperands) {
212     // This is unusual: MI->addOperand(MI->getOperand(i)).
213     // If adding Op requires reallocating or moving existing operands around,
214     // the Op reference could go stale. Support it by copying Op.
215     MachineOperand CopyOp(Op);
216     return addOperand(MF, CopyOp);
217   }
218 
219   // Find the insert location for the new operand.  Implicit registers go at
220   // the end, everything else goes before the implicit regs.
221   //
222   // FIXME: Allow mixed explicit and implicit operands on inline asm.
223   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224   // implicit-defs, but they must not be moved around.  See the FIXME in
225   // InstrEmitter.cpp.
226   unsigned OpNo = getNumOperands();
227   bool isImpReg = Op.isReg() && Op.isImplicit();
228   if (!isImpReg && !isInlineAsm()) {
229     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
230       --OpNo;
231       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
232     }
233   }
234 
235 #ifndef NDEBUG
236   bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata ||
237                    Op.getType() == MachineOperand::MO_MCSymbol;
238   // OpNo now points as the desired insertion point.  Unless this is a variadic
239   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
240   // RegMask operands go between the explicit and implicit operands.
241   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
242           OpNo < MCID->getNumOperands() || isDebugOp) &&
243          "Trying to add an operand to a machine instr that is already done!");
244 #endif
245 
246   MachineRegisterInfo *MRI = getRegInfo();
247 
248   // Determine if the Operands array needs to be reallocated.
249   // Save the old capacity and operand array.
250   OperandCapacity OldCap = CapOperands;
251   MachineOperand *OldOperands = Operands;
252   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
253     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
254     Operands = MF.allocateOperandArray(CapOperands);
255     // Move the operands before the insertion point.
256     if (OpNo)
257       moveOperands(Operands, OldOperands, OpNo, MRI);
258   }
259 
260   // Move the operands following the insertion point.
261   if (OpNo != NumOperands)
262     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
263                  MRI);
264   ++NumOperands;
265 
266   // Deallocate the old operand array.
267   if (OldOperands != Operands && OldOperands)
268     MF.deallocateOperandArray(OldCap, OldOperands);
269 
270   // Copy Op into place. It still needs to be inserted into the MRI use lists.
271   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
272   NewMO->ParentMI = this;
273 
274   // When adding a register operand, tell MRI about it.
275   if (NewMO->isReg()) {
276     // Ensure isOnRegUseList() returns false, regardless of Op's status.
277     NewMO->Contents.Reg.Prev = nullptr;
278     // Ignore existing ties. This is not a property that can be copied.
279     NewMO->TiedTo = 0;
280     // Add the new operand to MRI, but only for instructions in an MBB.
281     if (MRI)
282       MRI->addRegOperandToUseList(NewMO);
283     // The MCID operand information isn't accurate until we start adding
284     // explicit operands. The implicit operands are added first, then the
285     // explicits are inserted before them.
286     if (!isImpReg) {
287       // Tie uses to defs as indicated in MCInstrDesc.
288       if (NewMO->isUse()) {
289         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
290         if (DefIdx != -1)
291           tieOperands(DefIdx, OpNo);
292       }
293       // If the register operand is flagged as early, mark the operand as such.
294       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
295         NewMO->setIsEarlyClobber(true);
296     }
297     // Ensure debug instructions set debug flag on register uses.
298     if (NewMO->isUse() && isDebugInstr())
299       NewMO->setIsDebug();
300   }
301 }
302 
303 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
304 /// fewer operand than it started with.
305 ///
306 void MachineInstr::RemoveOperand(unsigned OpNo) {
307   assert(OpNo < getNumOperands() && "Invalid operand number");
308   untieRegOperand(OpNo);
309 
310 #ifndef NDEBUG
311   // Moving tied operands would break the ties.
312   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
313     if (Operands[i].isReg())
314       assert(!Operands[i].isTied() && "Cannot move tied operands");
315 #endif
316 
317   MachineRegisterInfo *MRI = getRegInfo();
318   if (MRI && Operands[OpNo].isReg())
319     MRI->removeRegOperandFromUseList(Operands + OpNo);
320 
321   // Don't call the MachineOperand destructor. A lot of this code depends on
322   // MachineOperand having a trivial destructor anyway, and adding a call here
323   // wouldn't make it 'destructor-correct'.
324 
325   if (unsigned N = NumOperands - 1 - OpNo)
326     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
327   --NumOperands;
328 }
329 
330 void MachineInstr::setExtraInfo(MachineFunction &MF,
331                                 ArrayRef<MachineMemOperand *> MMOs,
332                                 MCSymbol *PreInstrSymbol,
333                                 MCSymbol *PostInstrSymbol,
334                                 MDNode *HeapAllocMarker) {
335   bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
336   bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
337   bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
338   int NumPointers =
339       MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker;
340 
341   // Drop all extra info if there is none.
342   if (NumPointers <= 0) {
343     Info.clear();
344     return;
345   }
346 
347   // If more than one pointer, then store out of line. Store heap alloc markers
348   // out of line because PointerSumType cannot hold more than 4 tag types with
349   // 32-bit pointers.
350   // FIXME: Maybe we should make the symbols in the extra info mutable?
351   else if (NumPointers > 1 || HasHeapAllocMarker) {
352     Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo(
353         MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker));
354     return;
355   }
356 
357   // Otherwise store the single pointer inline.
358   if (HasPreInstrSymbol)
359     Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol);
360   else if (HasPostInstrSymbol)
361     Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol);
362   else
363     Info.set<EIIK_MMO>(MMOs[0]);
364 }
365 
366 void MachineInstr::dropMemRefs(MachineFunction &MF) {
367   if (memoperands_empty())
368     return;
369 
370   setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(),
371                getHeapAllocMarker());
372 }
373 
374 void MachineInstr::setMemRefs(MachineFunction &MF,
375                               ArrayRef<MachineMemOperand *> MMOs) {
376   if (MMOs.empty()) {
377     dropMemRefs(MF);
378     return;
379   }
380 
381   setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(),
382                getHeapAllocMarker());
383 }
384 
385 void MachineInstr::addMemOperand(MachineFunction &MF,
386                                  MachineMemOperand *MO) {
387   SmallVector<MachineMemOperand *, 2> MMOs;
388   MMOs.append(memoperands_begin(), memoperands_end());
389   MMOs.push_back(MO);
390   setMemRefs(MF, MMOs);
391 }
392 
393 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) {
394   if (this == &MI)
395     // Nothing to do for a self-clone!
396     return;
397 
398   assert(&MF == MI.getMF() &&
399          "Invalid machine functions when cloning memory refrences!");
400   // See if we can just steal the extra info already allocated for the
401   // instruction. We can do this whenever the pre- and post-instruction symbols
402   // are the same (including null).
403   if (getPreInstrSymbol() == MI.getPreInstrSymbol() &&
404       getPostInstrSymbol() == MI.getPostInstrSymbol() &&
405       getHeapAllocMarker() == MI.getHeapAllocMarker()) {
406     Info = MI.Info;
407     return;
408   }
409 
410   // Otherwise, fall back on a copy-based clone.
411   setMemRefs(MF, MI.memoperands());
412 }
413 
414 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
415 /// identical.
416 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS,
417                              ArrayRef<MachineMemOperand *> RHS) {
418   if (LHS.size() != RHS.size())
419     return false;
420 
421   auto LHSPointees = make_pointee_range(LHS);
422   auto RHSPointees = make_pointee_range(RHS);
423   return std::equal(LHSPointees.begin(), LHSPointees.end(),
424                     RHSPointees.begin());
425 }
426 
427 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF,
428                                       ArrayRef<const MachineInstr *> MIs) {
429   // Try handling easy numbers of MIs with simpler mechanisms.
430   if (MIs.empty()) {
431     dropMemRefs(MF);
432     return;
433   }
434   if (MIs.size() == 1) {
435     cloneMemRefs(MF, *MIs[0]);
436     return;
437   }
438   // Because an empty memoperands list provides *no* information and must be
439   // handled conservatively (assuming the instruction can do anything), the only
440   // way to merge with it is to drop all other memoperands.
441   if (MIs[0]->memoperands_empty()) {
442     dropMemRefs(MF);
443     return;
444   }
445 
446   // Handle the general case.
447   SmallVector<MachineMemOperand *, 2> MergedMMOs;
448   // Start with the first instruction.
449   assert(&MF == MIs[0]->getMF() &&
450          "Invalid machine functions when cloning memory references!");
451   MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end());
452   // Now walk all the other instructions and accumulate any different MMOs.
453   for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) {
454     assert(&MF == MI.getMF() &&
455            "Invalid machine functions when cloning memory references!");
456 
457     // Skip MIs with identical operands to the first. This is a somewhat
458     // arbitrary hack but will catch common cases without being quadratic.
459     // TODO: We could fully implement merge semantics here if needed.
460     if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands()))
461       continue;
462 
463     // Because an empty memoperands list provides *no* information and must be
464     // handled conservatively (assuming the instruction can do anything), the
465     // only way to merge with it is to drop all other memoperands.
466     if (MI.memoperands_empty()) {
467       dropMemRefs(MF);
468       return;
469     }
470 
471     // Otherwise accumulate these into our temporary buffer of the merged state.
472     MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end());
473   }
474 
475   setMemRefs(MF, MergedMMOs);
476 }
477 
478 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
479   // Do nothing if old and new symbols are the same.
480   if (Symbol == getPreInstrSymbol())
481     return;
482 
483   // If there was only one symbol and we're removing it, just clear info.
484   if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) {
485     Info.clear();
486     return;
487   }
488 
489   setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(),
490                getHeapAllocMarker());
491 }
492 
493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) {
494   // Do nothing if old and new symbols are the same.
495   if (Symbol == getPostInstrSymbol())
496     return;
497 
498   // If there was only one symbol and we're removing it, just clear info.
499   if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) {
500     Info.clear();
501     return;
502   }
503 
504   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol,
505                getHeapAllocMarker());
506 }
507 
508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) {
509   // Do nothing if old and new symbols are the same.
510   if (Marker == getHeapAllocMarker())
511     return;
512 
513   setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
514                Marker);
515 }
516 
517 void MachineInstr::cloneInstrSymbols(MachineFunction &MF,
518                                      const MachineInstr &MI) {
519   if (this == &MI)
520     // Nothing to do for a self-clone!
521     return;
522 
523   assert(&MF == MI.getMF() &&
524          "Invalid machine functions when cloning instruction symbols!");
525 
526   setPreInstrSymbol(MF, MI.getPreInstrSymbol());
527   setPostInstrSymbol(MF, MI.getPostInstrSymbol());
528   setHeapAllocMarker(MF, MI.getHeapAllocMarker());
529 }
530 
531 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const {
532   // For now, the just return the union of the flags. If the flags get more
533   // complicated over time, we might need more logic here.
534   return getFlags() | Other.getFlags();
535 }
536 
537 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) {
538   uint16_t MIFlags = 0;
539   // Copy the wrapping flags.
540   if (const OverflowingBinaryOperator *OB =
541           dyn_cast<OverflowingBinaryOperator>(&I)) {
542     if (OB->hasNoSignedWrap())
543       MIFlags |= MachineInstr::MIFlag::NoSWrap;
544     if (OB->hasNoUnsignedWrap())
545       MIFlags |= MachineInstr::MIFlag::NoUWrap;
546   }
547 
548   // Copy the exact flag.
549   if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I))
550     if (PE->isExact())
551       MIFlags |= MachineInstr::MIFlag::IsExact;
552 
553   // Copy the fast-math flags.
554   if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) {
555     const FastMathFlags Flags = FP->getFastMathFlags();
556     if (Flags.noNaNs())
557       MIFlags |= MachineInstr::MIFlag::FmNoNans;
558     if (Flags.noInfs())
559       MIFlags |= MachineInstr::MIFlag::FmNoInfs;
560     if (Flags.noSignedZeros())
561       MIFlags |= MachineInstr::MIFlag::FmNsz;
562     if (Flags.allowReciprocal())
563       MIFlags |= MachineInstr::MIFlag::FmArcp;
564     if (Flags.allowContract())
565       MIFlags |= MachineInstr::MIFlag::FmContract;
566     if (Flags.approxFunc())
567       MIFlags |= MachineInstr::MIFlag::FmAfn;
568     if (Flags.allowReassoc())
569       MIFlags |= MachineInstr::MIFlag::FmReassoc;
570   }
571 
572   return MIFlags;
573 }
574 
575 void MachineInstr::copyIRFlags(const Instruction &I) {
576   Flags = copyFlagsFromInstruction(I);
577 }
578 
579 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const {
580   assert(!isBundledWithPred() && "Must be called on bundle header");
581   for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) {
582     if (MII->getDesc().getFlags() & Mask) {
583       if (Type == AnyInBundle)
584         return true;
585     } else {
586       if (Type == AllInBundle && !MII->isBundle())
587         return false;
588     }
589     // This was the last instruction in the bundle.
590     if (!MII->isBundledWithSucc())
591       return Type == AllInBundle;
592   }
593 }
594 
595 bool MachineInstr::isIdenticalTo(const MachineInstr &Other,
596                                  MICheckType Check) const {
597   // If opcodes or number of operands are not the same then the two
598   // instructions are obviously not identical.
599   if (Other.getOpcode() != getOpcode() ||
600       Other.getNumOperands() != getNumOperands())
601     return false;
602 
603   if (isBundle()) {
604     // We have passed the test above that both instructions have the same
605     // opcode, so we know that both instructions are bundles here. Let's compare
606     // MIs inside the bundle.
607     assert(Other.isBundle() && "Expected that both instructions are bundles.");
608     MachineBasicBlock::const_instr_iterator I1 = getIterator();
609     MachineBasicBlock::const_instr_iterator I2 = Other.getIterator();
610     // Loop until we analysed the last intruction inside at least one of the
611     // bundles.
612     while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) {
613       ++I1;
614       ++I2;
615       if (!I1->isIdenticalTo(*I2, Check))
616         return false;
617     }
618     // If we've reached the end of just one of the two bundles, but not both,
619     // the instructions are not identical.
620     if (I1->isBundledWithSucc() || I2->isBundledWithSucc())
621       return false;
622   }
623 
624   // Check operands to make sure they match.
625   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
626     const MachineOperand &MO = getOperand(i);
627     const MachineOperand &OMO = Other.getOperand(i);
628     if (!MO.isReg()) {
629       if (!MO.isIdenticalTo(OMO))
630         return false;
631       continue;
632     }
633 
634     // Clients may or may not want to ignore defs when testing for equality.
635     // For example, machine CSE pass only cares about finding common
636     // subexpressions, so it's safe to ignore virtual register defs.
637     if (MO.isDef()) {
638       if (Check == IgnoreDefs)
639         continue;
640       else if (Check == IgnoreVRegDefs) {
641         if (!Register::isVirtualRegister(MO.getReg()) ||
642             !Register::isVirtualRegister(OMO.getReg()))
643           if (!MO.isIdenticalTo(OMO))
644             return false;
645       } else {
646         if (!MO.isIdenticalTo(OMO))
647           return false;
648         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
649           return false;
650       }
651     } else {
652       if (!MO.isIdenticalTo(OMO))
653         return false;
654       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
655         return false;
656     }
657   }
658   // If DebugLoc does not match then two debug instructions are not identical.
659   if (isDebugInstr())
660     if (getDebugLoc() && Other.getDebugLoc() &&
661         getDebugLoc() != Other.getDebugLoc())
662       return false;
663   return true;
664 }
665 
666 const MachineFunction *MachineInstr::getMF() const {
667   return getParent()->getParent();
668 }
669 
670 MachineInstr *MachineInstr::removeFromParent() {
671   assert(getParent() && "Not embedded in a basic block!");
672   return getParent()->remove(this);
673 }
674 
675 MachineInstr *MachineInstr::removeFromBundle() {
676   assert(getParent() && "Not embedded in a basic block!");
677   return getParent()->remove_instr(this);
678 }
679 
680 void MachineInstr::eraseFromParent() {
681   assert(getParent() && "Not embedded in a basic block!");
682   getParent()->erase(this);
683 }
684 
685 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() {
686   assert(getParent() && "Not embedded in a basic block!");
687   MachineBasicBlock *MBB = getParent();
688   MachineFunction *MF = MBB->getParent();
689   assert(MF && "Not embedded in a function!");
690 
691   MachineInstr *MI = (MachineInstr *)this;
692   MachineRegisterInfo &MRI = MF->getRegInfo();
693 
694   for (const MachineOperand &MO : MI->operands()) {
695     if (!MO.isReg() || !MO.isDef())
696       continue;
697     Register Reg = MO.getReg();
698     if (!Reg.isVirtual())
699       continue;
700     MRI.markUsesInDebugValueAsUndef(Reg);
701   }
702   MI->eraseFromParent();
703 }
704 
705 void MachineInstr::eraseFromBundle() {
706   assert(getParent() && "Not embedded in a basic block!");
707   getParent()->erase_instr(this);
708 }
709 
710 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const {
711   if (!isCall(Type))
712     return false;
713   switch (getOpcode()) {
714   case TargetOpcode::PATCHPOINT:
715   case TargetOpcode::STACKMAP:
716   case TargetOpcode::STATEPOINT:
717   case TargetOpcode::FENTRY_CALL:
718     return false;
719   }
720   return true;
721 }
722 
723 bool MachineInstr::shouldUpdateCallSiteInfo() const {
724   if (isBundle())
725     return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle);
726   return isCandidateForCallSiteEntry();
727 }
728 
729 unsigned MachineInstr::getNumExplicitOperands() const {
730   unsigned NumOperands = MCID->getNumOperands();
731   if (!MCID->isVariadic())
732     return NumOperands;
733 
734   for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) {
735     const MachineOperand &MO = getOperand(I);
736     // The operands must always be in the following order:
737     // - explicit reg defs,
738     // - other explicit operands (reg uses, immediates, etc.),
739     // - implicit reg defs
740     // - implicit reg uses
741     if (MO.isReg() && MO.isImplicit())
742       break;
743     ++NumOperands;
744   }
745   return NumOperands;
746 }
747 
748 unsigned MachineInstr::getNumExplicitDefs() const {
749   unsigned NumDefs = MCID->getNumDefs();
750   if (!MCID->isVariadic())
751     return NumDefs;
752 
753   for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) {
754     const MachineOperand &MO = getOperand(I);
755     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
756       break;
757     ++NumDefs;
758   }
759   return NumDefs;
760 }
761 
762 void MachineInstr::bundleWithPred() {
763   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
764   setFlag(BundledPred);
765   MachineBasicBlock::instr_iterator Pred = getIterator();
766   --Pred;
767   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
768   Pred->setFlag(BundledSucc);
769 }
770 
771 void MachineInstr::bundleWithSucc() {
772   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
773   setFlag(BundledSucc);
774   MachineBasicBlock::instr_iterator Succ = getIterator();
775   ++Succ;
776   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
777   Succ->setFlag(BundledPred);
778 }
779 
780 void MachineInstr::unbundleFromPred() {
781   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
782   clearFlag(BundledPred);
783   MachineBasicBlock::instr_iterator Pred = getIterator();
784   --Pred;
785   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
786   Pred->clearFlag(BundledSucc);
787 }
788 
789 void MachineInstr::unbundleFromSucc() {
790   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
791   clearFlag(BundledSucc);
792   MachineBasicBlock::instr_iterator Succ = getIterator();
793   ++Succ;
794   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
795   Succ->clearFlag(BundledPred);
796 }
797 
798 bool MachineInstr::isStackAligningInlineAsm() const {
799   if (isInlineAsm()) {
800     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
801     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
802       return true;
803   }
804   return false;
805 }
806 
807 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
808   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
809   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
810   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
811 }
812 
813 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
814                                        unsigned *GroupNo) const {
815   assert(isInlineAsm() && "Expected an inline asm instruction");
816   assert(OpIdx < getNumOperands() && "OpIdx out of range");
817 
818   // Ignore queries about the initial operands.
819   if (OpIdx < InlineAsm::MIOp_FirstOperand)
820     return -1;
821 
822   unsigned Group = 0;
823   unsigned NumOps;
824   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
825        i += NumOps) {
826     const MachineOperand &FlagMO = getOperand(i);
827     // If we reach the implicit register operands, stop looking.
828     if (!FlagMO.isImm())
829       return -1;
830     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
831     if (i + NumOps > OpIdx) {
832       if (GroupNo)
833         *GroupNo = Group;
834       return i;
835     }
836     ++Group;
837   }
838   return -1;
839 }
840 
841 const DILabel *MachineInstr::getDebugLabel() const {
842   assert(isDebugLabel() && "not a DBG_LABEL");
843   return cast<DILabel>(getOperand(0).getMetadata());
844 }
845 
846 const MachineOperand &MachineInstr::getDebugVariableOp() const {
847   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
848   unsigned VariableOp = isDebugValueList() ? 0 : 2;
849   return getOperand(VariableOp);
850 }
851 
852 MachineOperand &MachineInstr::getDebugVariableOp() {
853   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
854   unsigned VariableOp = isDebugValueList() ? 0 : 2;
855   return getOperand(VariableOp);
856 }
857 
858 const DILocalVariable *MachineInstr::getDebugVariable() const {
859   return cast<DILocalVariable>(getDebugVariableOp().getMetadata());
860 }
861 
862 const MachineOperand &MachineInstr::getDebugExpressionOp() const {
863   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
864   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
865   return getOperand(ExpressionOp);
866 }
867 
868 MachineOperand &MachineInstr::getDebugExpressionOp() {
869   assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*");
870   unsigned ExpressionOp = isDebugValueList() ? 1 : 3;
871   return getOperand(ExpressionOp);
872 }
873 
874 const DIExpression *MachineInstr::getDebugExpression() const {
875   return cast<DIExpression>(getDebugExpressionOp().getMetadata());
876 }
877 
878 bool MachineInstr::isDebugEntryValue() const {
879   return isDebugValue() && getDebugExpression()->isEntryValue();
880 }
881 
882 const TargetRegisterClass*
883 MachineInstr::getRegClassConstraint(unsigned OpIdx,
884                                     const TargetInstrInfo *TII,
885                                     const TargetRegisterInfo *TRI) const {
886   assert(getParent() && "Can't have an MBB reference here!");
887   assert(getMF() && "Can't have an MF reference here!");
888   const MachineFunction &MF = *getMF();
889 
890   // Most opcodes have fixed constraints in their MCInstrDesc.
891   if (!isInlineAsm())
892     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
893 
894   if (!getOperand(OpIdx).isReg())
895     return nullptr;
896 
897   // For tied uses on inline asm, get the constraint from the def.
898   unsigned DefIdx;
899   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
900     OpIdx = DefIdx;
901 
902   // Inline asm stores register class constraints in the flag word.
903   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
904   if (FlagIdx < 0)
905     return nullptr;
906 
907   unsigned Flag = getOperand(FlagIdx).getImm();
908   unsigned RCID;
909   if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse ||
910        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef ||
911        InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) &&
912       InlineAsm::hasRegClassConstraint(Flag, RCID))
913     return TRI->getRegClass(RCID);
914 
915   // Assume that all registers in a memory operand are pointers.
916   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
917     return TRI->getPointerRegClass(MF);
918 
919   return nullptr;
920 }
921 
922 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg(
923     Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII,
924     const TargetRegisterInfo *TRI, bool ExploreBundle) const {
925   // Check every operands inside the bundle if we have
926   // been asked to.
927   if (ExploreBundle)
928     for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC;
929          ++OpndIt)
930       CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl(
931           OpndIt.getOperandNo(), Reg, CurRC, TII, TRI);
932   else
933     // Otherwise, just check the current operands.
934     for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i)
935       CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI);
936   return CurRC;
937 }
938 
939 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl(
940     unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
941     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
942   assert(CurRC && "Invalid initial register class");
943   // Check if Reg is constrained by some of its use/def from MI.
944   const MachineOperand &MO = getOperand(OpIdx);
945   if (!MO.isReg() || MO.getReg() != Reg)
946     return CurRC;
947   // If yes, accumulate the constraints through the operand.
948   return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI);
949 }
950 
951 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect(
952     unsigned OpIdx, const TargetRegisterClass *CurRC,
953     const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const {
954   const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI);
955   const MachineOperand &MO = getOperand(OpIdx);
956   assert(MO.isReg() &&
957          "Cannot get register constraints for non-register operand");
958   assert(CurRC && "Invalid initial register class");
959   if (unsigned SubIdx = MO.getSubReg()) {
960     if (OpRC)
961       CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx);
962     else
963       CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx);
964   } else if (OpRC)
965     CurRC = TRI->getCommonSubClass(CurRC, OpRC);
966   return CurRC;
967 }
968 
969 /// Return the number of instructions inside the MI bundle, not counting the
970 /// header instruction.
971 unsigned MachineInstr::getBundleSize() const {
972   MachineBasicBlock::const_instr_iterator I = getIterator();
973   unsigned Size = 0;
974   while (I->isBundledWithSucc()) {
975     ++Size;
976     ++I;
977   }
978   return Size;
979 }
980 
981 /// Returns true if the MachineInstr has an implicit-use operand of exactly
982 /// the given register (not considering sub/super-registers).
983 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const {
984   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
985     const MachineOperand &MO = getOperand(i);
986     if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg)
987       return true;
988   }
989   return false;
990 }
991 
992 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
993 /// the specific register or -1 if it is not found. It further tightens
994 /// the search criteria to a use that kills the register if isKill is true.
995 int MachineInstr::findRegisterUseOperandIdx(
996     Register Reg, bool isKill, const TargetRegisterInfo *TRI) const {
997   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
998     const MachineOperand &MO = getOperand(i);
999     if (!MO.isReg() || !MO.isUse())
1000       continue;
1001     Register MOReg = MO.getReg();
1002     if (!MOReg)
1003       continue;
1004     if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg)))
1005       if (!isKill || MO.isKill())
1006         return i;
1007   }
1008   return -1;
1009 }
1010 
1011 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1012 /// indicating if this instruction reads or writes Reg. This also considers
1013 /// partial defines.
1014 std::pair<bool,bool>
1015 MachineInstr::readsWritesVirtualRegister(Register Reg,
1016                                          SmallVectorImpl<unsigned> *Ops) const {
1017   bool PartDef = false; // Partial redefine.
1018   bool FullDef = false; // Full define.
1019   bool Use = false;
1020 
1021   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1022     const MachineOperand &MO = getOperand(i);
1023     if (!MO.isReg() || MO.getReg() != Reg)
1024       continue;
1025     if (Ops)
1026       Ops->push_back(i);
1027     if (MO.isUse())
1028       Use |= !MO.isUndef();
1029     else if (MO.getSubReg() && !MO.isUndef())
1030       // A partial def undef doesn't count as reading the register.
1031       PartDef = true;
1032     else
1033       FullDef = true;
1034   }
1035   // A partial redefine uses Reg unless there is also a full define.
1036   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1037 }
1038 
1039 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1040 /// the specified register or -1 if it is not found. If isDead is true, defs
1041 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1042 /// also checks if there is a def of a super-register.
1043 int
1044 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap,
1045                                         const TargetRegisterInfo *TRI) const {
1046   bool isPhys = Register::isPhysicalRegister(Reg);
1047   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1048     const MachineOperand &MO = getOperand(i);
1049     // Accept regmask operands when Overlap is set.
1050     // Ignore them when looking for a specific def operand (Overlap == false).
1051     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1052       return i;
1053     if (!MO.isReg() || !MO.isDef())
1054       continue;
1055     Register MOReg = MO.getReg();
1056     bool Found = (MOReg == Reg);
1057     if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) {
1058       if (Overlap)
1059         Found = TRI->regsOverlap(MOReg, Reg);
1060       else
1061         Found = TRI->isSubRegister(MOReg, Reg);
1062     }
1063     if (Found && (!isDead || MO.isDead()))
1064       return i;
1065   }
1066   return -1;
1067 }
1068 
1069 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1070 /// operand list that is used to represent the predicate. It returns -1 if
1071 /// none is found.
1072 int MachineInstr::findFirstPredOperandIdx() const {
1073   // Don't call MCID.findFirstPredOperandIdx() because this variant
1074   // is sometimes called on an instruction that's not yet complete, and
1075   // so the number of operands is less than the MCID indicates. In
1076   // particular, the PTX target does this.
1077   const MCInstrDesc &MCID = getDesc();
1078   if (MCID.isPredicable()) {
1079     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1080       if (MCID.OpInfo[i].isPredicate())
1081         return i;
1082   }
1083 
1084   return -1;
1085 }
1086 
1087 // MachineOperand::TiedTo is 4 bits wide.
1088 const unsigned TiedMax = 15;
1089 
1090 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1091 ///
1092 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1093 /// field. TiedTo can have these values:
1094 ///
1095 /// 0:              Operand is not tied to anything.
1096 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1097 /// TiedMax:        Tied to an operand >= TiedMax-1.
1098 ///
1099 /// The tied def must be one of the first TiedMax operands on a normal
1100 /// instruction. INLINEASM instructions allow more tied defs.
1101 ///
1102 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1103   MachineOperand &DefMO = getOperand(DefIdx);
1104   MachineOperand &UseMO = getOperand(UseIdx);
1105   assert(DefMO.isDef() && "DefIdx must be a def operand");
1106   assert(UseMO.isUse() && "UseIdx must be a use operand");
1107   assert(!DefMO.isTied() && "Def is already tied to another use");
1108   assert(!UseMO.isTied() && "Use is already tied to another def");
1109 
1110   if (DefIdx < TiedMax)
1111     UseMO.TiedTo = DefIdx + 1;
1112   else {
1113     // Inline asm can use the group descriptors to find tied operands,
1114     // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1115     // but on normal instruction, the tied def must be within the first TiedMax
1116     // operands.
1117     assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) &&
1118            "DefIdx out of range");
1119     UseMO.TiedTo = TiedMax;
1120   }
1121 
1122   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1123   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1124 }
1125 
1126 /// Given the index of a tied register operand, find the operand it is tied to.
1127 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1128 /// which must exist.
1129 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1130   const MachineOperand &MO = getOperand(OpIdx);
1131   assert(MO.isTied() && "Operand isn't tied");
1132 
1133   // Normally TiedTo is in range.
1134   if (MO.TiedTo < TiedMax)
1135     return MO.TiedTo - 1;
1136 
1137   // Uses on normal instructions can be out of range.
1138   if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) {
1139     // Normal tied defs must be in the 0..TiedMax-1 range.
1140     if (MO.isUse())
1141       return TiedMax - 1;
1142     // MO is a def. Search for the tied use.
1143     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1144       const MachineOperand &UseMO = getOperand(i);
1145       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1146         return i;
1147     }
1148     llvm_unreachable("Can't find tied use");
1149   }
1150 
1151   if (getOpcode() == TargetOpcode::STATEPOINT) {
1152     // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1153     // on registers.
1154     StatepointOpers SO(this);
1155     unsigned CurUseIdx = SO.getFirstGCPtrIdx();
1156     assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied");
1157     unsigned NumDefs = getNumDefs();
1158     for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) {
1159       while (!getOperand(CurUseIdx).isReg())
1160         CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1161       if (OpIdx == CurDefIdx)
1162         return CurUseIdx;
1163       if (OpIdx == CurUseIdx)
1164         return CurDefIdx;
1165       CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx);
1166     }
1167     llvm_unreachable("Can't find tied use");
1168   }
1169 
1170   // Now deal with inline asm by parsing the operand group descriptor flags.
1171   // Find the beginning of each operand group.
1172   SmallVector<unsigned, 8> GroupIdx;
1173   unsigned OpIdxGroup = ~0u;
1174   unsigned NumOps;
1175   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1176        i += NumOps) {
1177     const MachineOperand &FlagMO = getOperand(i);
1178     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1179     unsigned CurGroup = GroupIdx.size();
1180     GroupIdx.push_back(i);
1181     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1182     // OpIdx belongs to this operand group.
1183     if (OpIdx > i && OpIdx < i + NumOps)
1184       OpIdxGroup = CurGroup;
1185     unsigned TiedGroup;
1186     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1187       continue;
1188     // Operands in this group are tied to operands in TiedGroup which must be
1189     // earlier. Find the number of operands between the two groups.
1190     unsigned Delta = i - GroupIdx[TiedGroup];
1191 
1192     // OpIdx is a use tied to TiedGroup.
1193     if (OpIdxGroup == CurGroup)
1194       return OpIdx - Delta;
1195 
1196     // OpIdx is a def tied to this use group.
1197     if (OpIdxGroup == TiedGroup)
1198       return OpIdx + Delta;
1199   }
1200   llvm_unreachable("Invalid tied operand on inline asm");
1201 }
1202 
1203 /// clearKillInfo - Clears kill flags on all operands.
1204 ///
1205 void MachineInstr::clearKillInfo() {
1206   for (MachineOperand &MO : operands()) {
1207     if (MO.isReg() && MO.isUse())
1208       MO.setIsKill(false);
1209   }
1210 }
1211 
1212 void MachineInstr::substituteRegister(Register FromReg, Register ToReg,
1213                                       unsigned SubIdx,
1214                                       const TargetRegisterInfo &RegInfo) {
1215   if (Register::isPhysicalRegister(ToReg)) {
1216     if (SubIdx)
1217       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1218     for (MachineOperand &MO : operands()) {
1219       if (!MO.isReg() || MO.getReg() != FromReg)
1220         continue;
1221       MO.substPhysReg(ToReg, RegInfo);
1222     }
1223   } else {
1224     for (MachineOperand &MO : operands()) {
1225       if (!MO.isReg() || MO.getReg() != FromReg)
1226         continue;
1227       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1228     }
1229   }
1230 }
1231 
1232 /// isSafeToMove - Return true if it is safe to move this instruction. If
1233 /// SawStore is set to true, it means that there is a store (or call) between
1234 /// the instruction's location and its intended destination.
1235 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const {
1236   // Ignore stuff that we obviously can't move.
1237   //
1238   // Treat volatile loads as stores. This is not strictly necessary for
1239   // volatiles, but it is required for atomic loads. It is not allowed to move
1240   // a load across an atomic load with Ordering > Monotonic.
1241   if (mayStore() || isCall() || isPHI() ||
1242       (mayLoad() && hasOrderedMemoryRef())) {
1243     SawStore = true;
1244     return false;
1245   }
1246 
1247   if (isPosition() || isDebugInstr() || isTerminator() ||
1248       mayRaiseFPException() || hasUnmodeledSideEffects())
1249     return false;
1250 
1251   // See if this instruction does a load.  If so, we have to guarantee that the
1252   // loaded value doesn't change between the load and the its intended
1253   // destination. The check for isInvariantLoad gives the target the chance to
1254   // classify the load as always returning a constant, e.g. a constant pool
1255   // load.
1256   if (mayLoad() && !isDereferenceableInvariantLoad(AA))
1257     // Otherwise, this is a real load.  If there is a store between the load and
1258     // end of block, we can't move it.
1259     return !SawStore;
1260 
1261   return true;
1262 }
1263 
1264 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA,
1265                                  bool UseTBAA, const MachineMemOperand *MMOa,
1266                                  const MachineMemOperand *MMOb) {
1267   // The following interface to AA is fashioned after DAGCombiner::isAlias and
1268   // operates with MachineMemOperand offset with some important assumptions:
1269   //   - LLVM fundamentally assumes flat address spaces.
1270   //   - MachineOperand offset can *only* result from legalization and cannot
1271   //     affect queries other than the trivial case of overlap checking.
1272   //   - These offsets never wrap and never step outside of allocated objects.
1273   //   - There should never be any negative offsets here.
1274   //
1275   // FIXME: Modify API to hide this math from "user"
1276   // Even before we go to AA we can reason locally about some memory objects. It
1277   // can save compile time, and possibly catch some corner cases not currently
1278   // covered.
1279 
1280   int64_t OffsetA = MMOa->getOffset();
1281   int64_t OffsetB = MMOb->getOffset();
1282   int64_t MinOffset = std::min(OffsetA, OffsetB);
1283 
1284   uint64_t WidthA = MMOa->getSize();
1285   uint64_t WidthB = MMOb->getSize();
1286   bool KnownWidthA = WidthA != MemoryLocation::UnknownSize;
1287   bool KnownWidthB = WidthB != MemoryLocation::UnknownSize;
1288 
1289   const Value *ValA = MMOa->getValue();
1290   const Value *ValB = MMOb->getValue();
1291   bool SameVal = (ValA && ValB && (ValA == ValB));
1292   if (!SameVal) {
1293     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1294     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1295     if (PSVa && ValB && !PSVa->mayAlias(&MFI))
1296       return false;
1297     if (PSVb && ValA && !PSVb->mayAlias(&MFI))
1298       return false;
1299     if (PSVa && PSVb && (PSVa == PSVb))
1300       SameVal = true;
1301   }
1302 
1303   if (SameVal) {
1304     if (!KnownWidthA || !KnownWidthB)
1305       return true;
1306     int64_t MaxOffset = std::max(OffsetA, OffsetB);
1307     int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB;
1308     return (MinOffset + LowWidth > MaxOffset);
1309   }
1310 
1311   if (!AA)
1312     return true;
1313 
1314   if (!ValA || !ValB)
1315     return true;
1316 
1317   assert((OffsetA >= 0) && "Negative MachineMemOperand offset");
1318   assert((OffsetB >= 0) && "Negative MachineMemOperand offset");
1319 
1320   int64_t OverlapA =
1321       KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize;
1322   int64_t OverlapB =
1323       KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize;
1324 
1325   return !AA->isNoAlias(
1326       MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
1327       MemoryLocation(ValB, OverlapB,
1328                      UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));
1329 }
1330 
1331 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other,
1332                             bool UseTBAA) const {
1333   const MachineFunction *MF = getMF();
1334   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1335   const MachineFrameInfo &MFI = MF->getFrameInfo();
1336 
1337   // Exclude call instruction which may alter the memory but can not be handled
1338   // by this function.
1339   if (isCall() || Other.isCall())
1340     return true;
1341 
1342   // If neither instruction stores to memory, they can't alias in any
1343   // meaningful way, even if they read from the same address.
1344   if (!mayStore() && !Other.mayStore())
1345     return false;
1346 
1347   // Both instructions must be memory operations to be able to alias.
1348   if (!mayLoadOrStore() || !Other.mayLoadOrStore())
1349     return false;
1350 
1351   // Let the target decide if memory accesses cannot possibly overlap.
1352   if (TII->areMemAccessesTriviallyDisjoint(*this, Other))
1353     return false;
1354 
1355   // Memory operations without memory operands may access anything. Be
1356   // conservative and assume `MayAlias`.
1357   if (memoperands_empty() || Other.memoperands_empty())
1358     return true;
1359 
1360   // Skip if there are too many memory operands.
1361   auto NumChecks = getNumMemOperands() * Other.getNumMemOperands();
1362   if (NumChecks > TII->getMemOperandAACheckLimit())
1363     return true;
1364 
1365   // Check each pair of memory operands from both instructions, which can't
1366   // alias only if all pairs won't alias.
1367   for (auto *MMOa : memoperands())
1368     for (auto *MMOb : Other.memoperands())
1369       if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb))
1370         return true;
1371 
1372   return false;
1373 }
1374 
1375 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1376 /// or volatile memory reference, or if the information describing the memory
1377 /// reference is not available. Return false if it is known to have no ordered
1378 /// memory references.
1379 bool MachineInstr::hasOrderedMemoryRef() const {
1380   // An instruction known never to access memory won't have a volatile access.
1381   if (!mayStore() &&
1382       !mayLoad() &&
1383       !isCall() &&
1384       !hasUnmodeledSideEffects())
1385     return false;
1386 
1387   // Otherwise, if the instruction has no memory reference information,
1388   // conservatively assume it wasn't preserved.
1389   if (memoperands_empty())
1390     return true;
1391 
1392   // Check if any of our memory operands are ordered.
1393   return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) {
1394     return !MMO->isUnordered();
1395   });
1396 }
1397 
1398 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1399 /// trap and is loading from a location whose value is invariant across a run of
1400 /// this function.
1401 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const {
1402   // If the instruction doesn't load at all, it isn't an invariant load.
1403   if (!mayLoad())
1404     return false;
1405 
1406   // If the instruction has lost its memoperands, conservatively assume that
1407   // it may not be an invariant load.
1408   if (memoperands_empty())
1409     return false;
1410 
1411   const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo();
1412 
1413   for (MachineMemOperand *MMO : memoperands()) {
1414     if (!MMO->isUnordered())
1415       // If the memory operand has ordering side effects, we can't move the
1416       // instruction.  Such an instruction is technically an invariant load,
1417       // but the caller code would need updated to expect that.
1418       return false;
1419     if (MMO->isStore()) return false;
1420     if (MMO->isInvariant() && MMO->isDereferenceable())
1421       continue;
1422 
1423     // A load from a constant PseudoSourceValue is invariant.
1424     if (const PseudoSourceValue *PSV = MMO->getPseudoValue())
1425       if (PSV->isConstant(&MFI))
1426         continue;
1427 
1428     if (const Value *V = MMO->getValue()) {
1429       // If we have an AliasAnalysis, ask it whether the memory is constant.
1430       if (AA &&
1431           AA->pointsToConstantMemory(
1432               MemoryLocation(V, MMO->getSize(), MMO->getAAInfo())))
1433         continue;
1434     }
1435 
1436     // Otherwise assume conservatively.
1437     return false;
1438   }
1439 
1440   // Everything checks out.
1441   return true;
1442 }
1443 
1444 /// isConstantValuePHI - If the specified instruction is a PHI that always
1445 /// merges together the same virtual register, return the register, otherwise
1446 /// return 0.
1447 unsigned MachineInstr::isConstantValuePHI() const {
1448   if (!isPHI())
1449     return 0;
1450   assert(getNumOperands() >= 3 &&
1451          "It's illegal to have a PHI without source operands");
1452 
1453   Register Reg = getOperand(1).getReg();
1454   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1455     if (getOperand(i).getReg() != Reg)
1456       return 0;
1457   return Reg;
1458 }
1459 
1460 bool MachineInstr::hasUnmodeledSideEffects() const {
1461   if (hasProperty(MCID::UnmodeledSideEffects))
1462     return true;
1463   if (isInlineAsm()) {
1464     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1465     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1466       return true;
1467   }
1468 
1469   return false;
1470 }
1471 
1472 bool MachineInstr::isLoadFoldBarrier() const {
1473   return mayStore() || isCall() ||
1474          (hasUnmodeledSideEffects() && !isPseudoProbe());
1475 }
1476 
1477 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1478 ///
1479 bool MachineInstr::allDefsAreDead() const {
1480   for (const MachineOperand &MO : operands()) {
1481     if (!MO.isReg() || MO.isUse())
1482       continue;
1483     if (!MO.isDead())
1484       return false;
1485   }
1486   return true;
1487 }
1488 
1489 /// copyImplicitOps - Copy implicit register operands from specified
1490 /// instruction to this instruction.
1491 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1492                                    const MachineInstr &MI) {
1493   for (const MachineOperand &MO :
1494        llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands()))
1495     if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
1496       addOperand(MF, MO);
1497 }
1498 
1499 bool MachineInstr::hasComplexRegisterTies() const {
1500   const MCInstrDesc &MCID = getDesc();
1501   if (MCID.Opcode == TargetOpcode::STATEPOINT)
1502     return true;
1503   for (unsigned I = 0, E = getNumOperands(); I < E; ++I) {
1504     const auto &Operand = getOperand(I);
1505     if (!Operand.isReg() || Operand.isDef())
1506       // Ignore the defined registers as MCID marks only the uses as tied.
1507       continue;
1508     int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO);
1509     int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1;
1510     if (ExpectedTiedIdx != TiedIdx)
1511       return true;
1512   }
1513   return false;
1514 }
1515 
1516 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1517                                  const MachineRegisterInfo &MRI) const {
1518   const MachineOperand &Op = getOperand(OpIdx);
1519   if (!Op.isReg())
1520     return LLT{};
1521 
1522   if (isVariadic() || OpIdx >= getNumExplicitOperands())
1523     return MRI.getType(Op.getReg());
1524 
1525   auto &OpInfo = getDesc().OpInfo[OpIdx];
1526   if (!OpInfo.isGenericType())
1527     return MRI.getType(Op.getReg());
1528 
1529   if (PrintedTypes[OpInfo.getGenericTypeIndex()])
1530     return LLT{};
1531 
1532   LLT TypeToPrint = MRI.getType(Op.getReg());
1533   // Don't mark the type index printed if it wasn't actually printed: maybe
1534   // another operand with the same type index has an actual type attached:
1535   if (TypeToPrint.isValid())
1536     PrintedTypes.set(OpInfo.getGenericTypeIndex());
1537   return TypeToPrint;
1538 }
1539 
1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1541 LLVM_DUMP_METHOD void MachineInstr::dump() const {
1542   dbgs() << "  ";
1543   print(dbgs());
1544 }
1545 
1546 LLVM_DUMP_METHOD void MachineInstr::dumprImpl(
1547     const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
1548     SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const {
1549   if (Depth >= MaxDepth)
1550     return;
1551   if (!AlreadySeenInstrs.insert(this).second)
1552     return;
1553   // PadToColumn always inserts at least one space.
1554   // Don't mess up the alignment if we don't want any space.
1555   if (Depth)
1556     fdbgs().PadToColumn(Depth * 2);
1557   print(fdbgs());
1558   for (const MachineOperand &MO : operands()) {
1559     if (!MO.isReg() || MO.isDef())
1560       continue;
1561     Register Reg = MO.getReg();
1562     if (Reg.isPhysical())
1563       continue;
1564     const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg);
1565     if (NewMI == nullptr)
1566       continue;
1567     NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs);
1568   }
1569 }
1570 
1571 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI,
1572                                           unsigned MaxDepth) const {
1573   SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs;
1574   dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs);
1575 }
1576 #endif
1577 
1578 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers,
1579                          bool SkipDebugLoc, bool AddNewLine,
1580                          const TargetInstrInfo *TII) const {
1581   const Module *M = nullptr;
1582   const Function *F = nullptr;
1583   if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1584     F = &MF->getFunction();
1585     M = F->getParent();
1586     if (!TII)
1587       TII = MF->getSubtarget().getInstrInfo();
1588   }
1589 
1590   ModuleSlotTracker MST(M);
1591   if (F)
1592     MST.incorporateFunction(*F);
1593   print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII);
1594 }
1595 
1596 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST,
1597                          bool IsStandalone, bool SkipOpers, bool SkipDebugLoc,
1598                          bool AddNewLine, const TargetInstrInfo *TII) const {
1599   // We can be a bit tidier if we know the MachineFunction.
1600   const TargetRegisterInfo *TRI = nullptr;
1601   const MachineRegisterInfo *MRI = nullptr;
1602   const TargetIntrinsicInfo *IntrinsicInfo = nullptr;
1603   tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII);
1604 
1605   if (isCFIInstruction())
1606     assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1607 
1608   SmallBitVector PrintedTypes(8);
1609   bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies();
1610   auto getTiedOperandIdx = [&](unsigned OpIdx) {
1611     if (!ShouldPrintRegisterTies)
1612       return 0U;
1613     const MachineOperand &MO = getOperand(OpIdx);
1614     if (MO.isReg() && MO.isTied() && !MO.isDef())
1615       return findTiedOperandIdx(OpIdx);
1616     return 0U;
1617   };
1618   unsigned StartOp = 0;
1619   unsigned e = getNumOperands();
1620 
1621   // Print explicitly defined operands on the left of an assignment syntax.
1622   while (StartOp < e) {
1623     const MachineOperand &MO = getOperand(StartOp);
1624     if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
1625       break;
1626 
1627     if (StartOp != 0)
1628       OS << ", ";
1629 
1630     LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{};
1631     unsigned TiedOperandIdx = getTiedOperandIdx(StartOp);
1632     MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone,
1633              ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1634     ++StartOp;
1635   }
1636 
1637   if (StartOp != 0)
1638     OS << " = ";
1639 
1640   if (getFlag(MachineInstr::FrameSetup))
1641     OS << "frame-setup ";
1642   if (getFlag(MachineInstr::FrameDestroy))
1643     OS << "frame-destroy ";
1644   if (getFlag(MachineInstr::FmNoNans))
1645     OS << "nnan ";
1646   if (getFlag(MachineInstr::FmNoInfs))
1647     OS << "ninf ";
1648   if (getFlag(MachineInstr::FmNsz))
1649     OS << "nsz ";
1650   if (getFlag(MachineInstr::FmArcp))
1651     OS << "arcp ";
1652   if (getFlag(MachineInstr::FmContract))
1653     OS << "contract ";
1654   if (getFlag(MachineInstr::FmAfn))
1655     OS << "afn ";
1656   if (getFlag(MachineInstr::FmReassoc))
1657     OS << "reassoc ";
1658   if (getFlag(MachineInstr::NoUWrap))
1659     OS << "nuw ";
1660   if (getFlag(MachineInstr::NoSWrap))
1661     OS << "nsw ";
1662   if (getFlag(MachineInstr::IsExact))
1663     OS << "exact ";
1664   if (getFlag(MachineInstr::NoFPExcept))
1665     OS << "nofpexcept ";
1666   if (getFlag(MachineInstr::NoMerge))
1667     OS << "nomerge ";
1668 
1669   // Print the opcode name.
1670   if (TII)
1671     OS << TII->getName(getOpcode());
1672   else
1673     OS << "UNKNOWN";
1674 
1675   if (SkipOpers)
1676     return;
1677 
1678   // Print the rest of the operands.
1679   bool FirstOp = true;
1680   unsigned AsmDescOp = ~0u;
1681   unsigned AsmOpCount = 0;
1682 
1683   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1684     // Print asm string.
1685     OS << " ";
1686     const unsigned OpIdx = InlineAsm::MIOp_AsmString;
1687     LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{};
1688     unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx);
1689     getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone,
1690                             ShouldPrintRegisterTies, TiedOperandIdx, TRI,
1691                             IntrinsicInfo);
1692 
1693     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1694     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1695     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1696       OS << " [sideeffect]";
1697     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1698       OS << " [mayload]";
1699     if (ExtraInfo & InlineAsm::Extra_MayStore)
1700       OS << " [maystore]";
1701     if (ExtraInfo & InlineAsm::Extra_IsConvergent)
1702       OS << " [isconvergent]";
1703     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1704       OS << " [alignstack]";
1705     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1706       OS << " [attdialect]";
1707     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1708       OS << " [inteldialect]";
1709 
1710     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1711     FirstOp = false;
1712   }
1713 
1714   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1715     const MachineOperand &MO = getOperand(i);
1716 
1717     if (FirstOp) FirstOp = false; else OS << ",";
1718     OS << " ";
1719 
1720     if (isDebugValue() && MO.isMetadata()) {
1721       // Pretty print DBG_VALUE* instructions.
1722       auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata());
1723       if (DIV && !DIV->getName().empty())
1724         OS << "!\"" << DIV->getName() << '\"';
1725       else {
1726         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1727         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1728         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1729                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1730       }
1731     } else if (isDebugLabel() && MO.isMetadata()) {
1732       // Pretty print DBG_LABEL instructions.
1733       auto *DIL = dyn_cast<DILabel>(MO.getMetadata());
1734       if (DIL && !DIL->getName().empty())
1735         OS << "\"" << DIL->getName() << '\"';
1736       else {
1737         LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1738         unsigned TiedOperandIdx = getTiedOperandIdx(i);
1739         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1740                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1741       }
1742     } else if (i == AsmDescOp && MO.isImm()) {
1743       // Pretty print the inline asm operand descriptor.
1744       OS << '$' << AsmOpCount++;
1745       unsigned Flag = MO.getImm();
1746       OS << ":[";
1747       OS << InlineAsm::getKindName(InlineAsm::getKind(Flag));
1748 
1749       unsigned RCID = 0;
1750       if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) &&
1751           InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1752         if (TRI) {
1753           OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID));
1754         } else
1755           OS << ":RC" << RCID;
1756       }
1757 
1758       if (InlineAsm::isMemKind(Flag)) {
1759         unsigned MCID = InlineAsm::getMemoryConstraintID(Flag);
1760         OS << ":" << InlineAsm::getMemConstraintName(MCID);
1761       }
1762 
1763       unsigned TiedTo = 0;
1764       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1765         OS << " tiedto:$" << TiedTo;
1766 
1767       OS << ']';
1768 
1769       // Compute the index of the next operand descriptor.
1770       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1771     } else {
1772       LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{};
1773       unsigned TiedOperandIdx = getTiedOperandIdx(i);
1774       if (MO.isImm() && isOperandSubregIdx(i))
1775         MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI);
1776       else
1777         MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone,
1778                  ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo);
1779     }
1780   }
1781 
1782   // Print any optional symbols attached to this instruction as-if they were
1783   // operands.
1784   if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) {
1785     if (!FirstOp) {
1786       FirstOp = false;
1787       OS << ',';
1788     }
1789     OS << " pre-instr-symbol ";
1790     MachineOperand::printSymbol(OS, *PreInstrSymbol);
1791   }
1792   if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) {
1793     if (!FirstOp) {
1794       FirstOp = false;
1795       OS << ',';
1796     }
1797     OS << " post-instr-symbol ";
1798     MachineOperand::printSymbol(OS, *PostInstrSymbol);
1799   }
1800   if (MDNode *HeapAllocMarker = getHeapAllocMarker()) {
1801     if (!FirstOp) {
1802       FirstOp = false;
1803       OS << ',';
1804     }
1805     OS << " heap-alloc-marker ";
1806     HeapAllocMarker->printAsOperand(OS, MST);
1807   }
1808 
1809   if (DebugInstrNum) {
1810     if (!FirstOp)
1811       OS << ",";
1812     OS << " debug-instr-number " << DebugInstrNum;
1813   }
1814 
1815   if (!SkipDebugLoc) {
1816     if (const DebugLoc &DL = getDebugLoc()) {
1817       if (!FirstOp)
1818         OS << ',';
1819       OS << " debug-location ";
1820       DL->printAsOperand(OS, MST);
1821     }
1822   }
1823 
1824   if (!memoperands_empty()) {
1825     SmallVector<StringRef, 0> SSNs;
1826     const LLVMContext *Context = nullptr;
1827     std::unique_ptr<LLVMContext> CtxPtr;
1828     const MachineFrameInfo *MFI = nullptr;
1829     if (const MachineFunction *MF = getMFIfAvailable(*this)) {
1830       MFI = &MF->getFrameInfo();
1831       Context = &MF->getFunction().getContext();
1832     } else {
1833       CtxPtr = std::make_unique<LLVMContext>();
1834       Context = CtxPtr.get();
1835     }
1836 
1837     OS << " :: ";
1838     bool NeedComma = false;
1839     for (const MachineMemOperand *Op : memoperands()) {
1840       if (NeedComma)
1841         OS << ", ";
1842       Op->print(OS, MST, SSNs, *Context, MFI, TII);
1843       NeedComma = true;
1844     }
1845   }
1846 
1847   if (SkipDebugLoc)
1848     return;
1849 
1850   bool HaveSemi = false;
1851 
1852   // Print debug location information.
1853   if (const DebugLoc &DL = getDebugLoc()) {
1854     if (!HaveSemi) {
1855       OS << ';';
1856       HaveSemi = true;
1857     }
1858     OS << ' ';
1859     DL.print(OS);
1860   }
1861 
1862   // Print extra comments for DEBUG_VALUE.
1863   if (isDebugValue() && getDebugVariableOp().isMetadata()) {
1864     if (!HaveSemi) {
1865       OS << ";";
1866       HaveSemi = true;
1867     }
1868     auto *DV = getDebugVariable();
1869     OS << " line no:" <<  DV->getLine();
1870     if (isIndirectDebugValue())
1871       OS << " indirect";
1872   }
1873   // TODO: DBG_LABEL
1874 
1875   if (AddNewLine)
1876     OS << '\n';
1877 }
1878 
1879 bool MachineInstr::addRegisterKilled(Register IncomingReg,
1880                                      const TargetRegisterInfo *RegInfo,
1881                                      bool AddIfNotFound) {
1882   bool isPhysReg = Register::isPhysicalRegister(IncomingReg);
1883   bool hasAliases = isPhysReg &&
1884     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1885   bool Found = false;
1886   SmallVector<unsigned,4> DeadOps;
1887   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1888     MachineOperand &MO = getOperand(i);
1889     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1890       continue;
1891 
1892     // DEBUG_VALUE nodes do not contribute to code generation and should
1893     // always be ignored. Failure to do so may result in trying to modify
1894     // KILL flags on DEBUG_VALUE nodes.
1895     if (MO.isDebug())
1896       continue;
1897 
1898     Register Reg = MO.getReg();
1899     if (!Reg)
1900       continue;
1901 
1902     if (Reg == IncomingReg) {
1903       if (!Found) {
1904         if (MO.isKill())
1905           // The register is already marked kill.
1906           return true;
1907         if (isPhysReg && isRegTiedToDefOperand(i))
1908           // Two-address uses of physregs must not be marked kill.
1909           return true;
1910         MO.setIsKill();
1911         Found = true;
1912       }
1913     } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) {
1914       // A super-register kill already exists.
1915       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1916         return true;
1917       if (RegInfo->isSubRegister(IncomingReg, Reg))
1918         DeadOps.push_back(i);
1919     }
1920   }
1921 
1922   // Trim unneeded kill operands.
1923   while (!DeadOps.empty()) {
1924     unsigned OpIdx = DeadOps.back();
1925     if (getOperand(OpIdx).isImplicit() &&
1926         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1927       RemoveOperand(OpIdx);
1928     else
1929       getOperand(OpIdx).setIsKill(false);
1930     DeadOps.pop_back();
1931   }
1932 
1933   // If not found, this means an alias of one of the operands is killed. Add a
1934   // new implicit operand if required.
1935   if (!Found && AddIfNotFound) {
1936     addOperand(MachineOperand::CreateReg(IncomingReg,
1937                                          false /*IsDef*/,
1938                                          true  /*IsImp*/,
1939                                          true  /*IsKill*/));
1940     return true;
1941   }
1942   return Found;
1943 }
1944 
1945 void MachineInstr::clearRegisterKills(Register Reg,
1946                                       const TargetRegisterInfo *RegInfo) {
1947   if (!Register::isPhysicalRegister(Reg))
1948     RegInfo = nullptr;
1949   for (MachineOperand &MO : operands()) {
1950     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1951       continue;
1952     Register OpReg = MO.getReg();
1953     if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg)
1954       MO.setIsKill(false);
1955   }
1956 }
1957 
1958 bool MachineInstr::addRegisterDead(Register Reg,
1959                                    const TargetRegisterInfo *RegInfo,
1960                                    bool AddIfNotFound) {
1961   bool isPhysReg = Register::isPhysicalRegister(Reg);
1962   bool hasAliases = isPhysReg &&
1963     MCRegAliasIterator(Reg, RegInfo, false).isValid();
1964   bool Found = false;
1965   SmallVector<unsigned,4> DeadOps;
1966   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1967     MachineOperand &MO = getOperand(i);
1968     if (!MO.isReg() || !MO.isDef())
1969       continue;
1970     Register MOReg = MO.getReg();
1971     if (!MOReg)
1972       continue;
1973 
1974     if (MOReg == Reg) {
1975       MO.setIsDead();
1976       Found = true;
1977     } else if (hasAliases && MO.isDead() &&
1978                Register::isPhysicalRegister(MOReg)) {
1979       // There exists a super-register that's marked dead.
1980       if (RegInfo->isSuperRegister(Reg, MOReg))
1981         return true;
1982       if (RegInfo->isSubRegister(Reg, MOReg))
1983         DeadOps.push_back(i);
1984     }
1985   }
1986 
1987   // Trim unneeded dead operands.
1988   while (!DeadOps.empty()) {
1989     unsigned OpIdx = DeadOps.back();
1990     if (getOperand(OpIdx).isImplicit() &&
1991         (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0))
1992       RemoveOperand(OpIdx);
1993     else
1994       getOperand(OpIdx).setIsDead(false);
1995     DeadOps.pop_back();
1996   }
1997 
1998   // If not found, this means an alias of one of the operands is dead. Add a
1999   // new implicit operand if required.
2000   if (Found || !AddIfNotFound)
2001     return Found;
2002 
2003   addOperand(MachineOperand::CreateReg(Reg,
2004                                        true  /*IsDef*/,
2005                                        true  /*IsImp*/,
2006                                        false /*IsKill*/,
2007                                        true  /*IsDead*/));
2008   return true;
2009 }
2010 
2011 void MachineInstr::clearRegisterDeads(Register Reg) {
2012   for (MachineOperand &MO : operands()) {
2013     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg)
2014       continue;
2015     MO.setIsDead(false);
2016   }
2017 }
2018 
2019 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) {
2020   for (MachineOperand &MO : operands()) {
2021     if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0)
2022       continue;
2023     MO.setIsUndef(IsUndef);
2024   }
2025 }
2026 
2027 void MachineInstr::addRegisterDefined(Register Reg,
2028                                       const TargetRegisterInfo *RegInfo) {
2029   if (Register::isPhysicalRegister(Reg)) {
2030     MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo);
2031     if (MO)
2032       return;
2033   } else {
2034     for (const MachineOperand &MO : operands()) {
2035       if (MO.isReg() && MO.getReg() == Reg && MO.isDef() &&
2036           MO.getSubReg() == 0)
2037         return;
2038     }
2039   }
2040   addOperand(MachineOperand::CreateReg(Reg,
2041                                        true  /*IsDef*/,
2042                                        true  /*IsImp*/));
2043 }
2044 
2045 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
2046                                          const TargetRegisterInfo &TRI) {
2047   bool HasRegMask = false;
2048   for (MachineOperand &MO : operands()) {
2049     if (MO.isRegMask()) {
2050       HasRegMask = true;
2051       continue;
2052     }
2053     if (!MO.isReg() || !MO.isDef()) continue;
2054     Register Reg = MO.getReg();
2055     if (!Reg.isPhysical())
2056       continue;
2057     // If there are no uses, including partial uses, the def is dead.
2058     if (llvm::none_of(UsedRegs,
2059                       [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); }))
2060       MO.setIsDead();
2061   }
2062 
2063   // This is a call with a register mask operand.
2064   // Mask clobbers are always dead, so add defs for the non-dead defines.
2065   if (HasRegMask)
2066     for (const Register &UsedReg : UsedRegs)
2067       addRegisterDefined(UsedReg, &TRI);
2068 }
2069 
2070 unsigned
2071 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2072   // Build up a buffer of hash code components.
2073   SmallVector<size_t, 16> HashComponents;
2074   HashComponents.reserve(MI->getNumOperands() + 1);
2075   HashComponents.push_back(MI->getOpcode());
2076   for (const MachineOperand &MO : MI->operands()) {
2077     if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
2078       continue;  // Skip virtual register defs.
2079 
2080     HashComponents.push_back(hash_value(MO));
2081   }
2082   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2083 }
2084 
2085 void MachineInstr::emitError(StringRef Msg) const {
2086   // Find the source location cookie.
2087   uint64_t LocCookie = 0;
2088   const MDNode *LocMD = nullptr;
2089   for (unsigned i = getNumOperands(); i != 0; --i) {
2090     if (getOperand(i-1).isMetadata() &&
2091         (LocMD = getOperand(i-1).getMetadata()) &&
2092         LocMD->getNumOperands() != 0) {
2093       if (const ConstantInt *CI =
2094               mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) {
2095         LocCookie = CI->getZExtValue();
2096         break;
2097       }
2098     }
2099   }
2100 
2101   if (const MachineBasicBlock *MBB = getParent())
2102     if (const MachineFunction *MF = MBB->getParent())
2103       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2104   report_fatal_error(Msg);
2105 }
2106 
2107 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2108                                   const MCInstrDesc &MCID, bool IsIndirect,
2109                                   Register Reg, const MDNode *Variable,
2110                                   const MDNode *Expr) {
2111   assert(isa<DILocalVariable>(Variable) && "not a variable");
2112   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2113   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2114          "Expected inlined-at fields to agree");
2115   auto MIB = BuildMI(MF, DL, MCID).addReg(Reg);
2116   if (IsIndirect)
2117     MIB.addImm(0U);
2118   else
2119     MIB.addReg(0U);
2120   return MIB.addMetadata(Variable).addMetadata(Expr);
2121 }
2122 
2123 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2124                                   const MCInstrDesc &MCID, bool IsIndirect,
2125                                   const MachineOperand &MO,
2126                                   const MDNode *Variable, const MDNode *Expr) {
2127   assert(isa<DILocalVariable>(Variable) && "not a variable");
2128   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2129   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2130          "Expected inlined-at fields to agree");
2131   if (MO.isReg())
2132     return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr);
2133 
2134   auto MIB = BuildMI(MF, DL, MCID).add(MO);
2135   if (IsIndirect)
2136     MIB.addImm(0U);
2137   else
2138     MIB.addReg(0U);
2139   return MIB.addMetadata(Variable).addMetadata(Expr);
2140 }
2141 
2142 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL,
2143                                   const MCInstrDesc &MCID, bool IsIndirect,
2144                                   ArrayRef<MachineOperand> MOs,
2145                                   const MDNode *Variable, const MDNode *Expr) {
2146   assert(isa<DILocalVariable>(Variable) && "not a variable");
2147   assert(cast<DIExpression>(Expr)->isValid() && "not an expression");
2148   assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
2149          "Expected inlined-at fields to agree");
2150   if (MCID.Opcode == TargetOpcode::DBG_VALUE)
2151     return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr);
2152 
2153   auto MIB = BuildMI(MF, DL, MCID);
2154   MIB.addMetadata(Variable).addMetadata(Expr);
2155   for (const MachineOperand &MO : MOs)
2156     if (MO.isReg())
2157       MIB.addReg(MO.getReg());
2158     else
2159       MIB.add(MO);
2160   return MIB;
2161 }
2162 
2163 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2164                                   MachineBasicBlock::iterator I,
2165                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2166                                   bool IsIndirect, Register Reg,
2167                                   const MDNode *Variable, const MDNode *Expr) {
2168   MachineFunction &MF = *BB.getParent();
2169   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr);
2170   BB.insert(I, MI);
2171   return MachineInstrBuilder(MF, MI);
2172 }
2173 
2174 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2175                                   MachineBasicBlock::iterator I,
2176                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2177                                   bool IsIndirect, MachineOperand &MO,
2178                                   const MDNode *Variable, const MDNode *Expr) {
2179   MachineFunction &MF = *BB.getParent();
2180   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr);
2181   BB.insert(I, MI);
2182   return MachineInstrBuilder(MF, *MI);
2183 }
2184 
2185 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB,
2186                                   MachineBasicBlock::iterator I,
2187                                   const DebugLoc &DL, const MCInstrDesc &MCID,
2188                                   bool IsIndirect, ArrayRef<MachineOperand> MOs,
2189                                   const MDNode *Variable, const MDNode *Expr) {
2190   MachineFunction &MF = *BB.getParent();
2191   MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr);
2192   BB.insert(I, MI);
2193   return MachineInstrBuilder(MF, *MI);
2194 }
2195 
2196 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2197 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2198 static const DIExpression *
2199 computeExprForSpill(const MachineInstr &MI,
2200                     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2201   assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
2202          "Expected inlined-at fields to agree");
2203 
2204   const DIExpression *Expr = MI.getDebugExpression();
2205   if (MI.isIndirectDebugValue()) {
2206     assert(MI.getDebugOffset().getImm() == 0 &&
2207            "DBG_VALUE with nonzero offset");
2208     Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
2209   } else if (MI.isDebugValueList()) {
2210     // We will replace the spilled register with a frame index, so
2211     // immediately deref all references to the spilled register.
2212     std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}};
2213     for (const MachineOperand *Op : SpilledOperands) {
2214       unsigned OpIdx = MI.getDebugOperandIndex(Op);
2215       Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
2216     }
2217   }
2218   return Expr;
2219 }
2220 static const DIExpression *computeExprForSpill(const MachineInstr &MI,
2221                                                Register SpillReg) {
2222   assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI.");
2223   SmallVector<const MachineOperand *> SpillOperands;
2224   for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg))
2225     SpillOperands.push_back(&Op);
2226   return computeExprForSpill(MI, SpillOperands);
2227 }
2228 
2229 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB,
2230                                           MachineBasicBlock::iterator I,
2231                                           const MachineInstr &Orig,
2232                                           int FrameIndex, Register SpillReg) {
2233   const DIExpression *Expr = computeExprForSpill(Orig, SpillReg);
2234   MachineInstrBuilder NewMI =
2235       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2236   // Non-Variadic Operands: Location, Offset, Variable, Expression
2237   // Variadic Operands:     Variable, Expression, Locations...
2238   if (Orig.isNonListDebugValue())
2239     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2240   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2241   if (Orig.isDebugValueList()) {
2242     for (const MachineOperand &Op : Orig.debug_operands())
2243       if (Op.isReg() && Op.getReg() == SpillReg)
2244         NewMI.addFrameIndex(FrameIndex);
2245       else
2246         NewMI.add(MachineOperand(Op));
2247   }
2248   return NewMI;
2249 }
2250 MachineInstr *llvm::buildDbgValueForSpill(
2251     MachineBasicBlock &BB, MachineBasicBlock::iterator I,
2252     const MachineInstr &Orig, int FrameIndex,
2253     SmallVectorImpl<const MachineOperand *> &SpilledOperands) {
2254   const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands);
2255   MachineInstrBuilder NewMI =
2256       BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc());
2257   // Non-Variadic Operands: Location, Offset, Variable, Expression
2258   // Variadic Operands:     Variable, Expression, Locations...
2259   if (Orig.isNonListDebugValue())
2260     NewMI.addFrameIndex(FrameIndex).addImm(0U);
2261   NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr);
2262   if (Orig.isDebugValueList()) {
2263     for (const MachineOperand &Op : Orig.debug_operands())
2264       if (is_contained(SpilledOperands, &Op))
2265         NewMI.addFrameIndex(FrameIndex);
2266       else
2267         NewMI.add(MachineOperand(Op));
2268   }
2269   return NewMI;
2270 }
2271 
2272 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex,
2273                                   Register Reg) {
2274   const DIExpression *Expr = computeExprForSpill(Orig, Reg);
2275   if (Orig.isNonListDebugValue())
2276     Orig.getDebugOffset().ChangeToImmediate(0U);
2277   for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg))
2278     Op.ChangeToFrameIndex(FrameIndex);
2279   Orig.getDebugExpressionOp().setMetadata(Expr);
2280 }
2281 
2282 void MachineInstr::collectDebugValues(
2283                                 SmallVectorImpl<MachineInstr *> &DbgValues) {
2284   MachineInstr &MI = *this;
2285   if (!MI.getOperand(0).isReg())
2286     return;
2287 
2288   MachineBasicBlock::iterator DI = MI; ++DI;
2289   for (MachineBasicBlock::iterator DE = MI.getParent()->end();
2290        DI != DE; ++DI) {
2291     if (!DI->isDebugValue())
2292       return;
2293     if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg()))
2294       DbgValues.push_back(&*DI);
2295   }
2296 }
2297 
2298 void MachineInstr::changeDebugValuesDefReg(Register Reg) {
2299   // Collect matching debug values.
2300   SmallVector<MachineInstr *, 2> DbgValues;
2301 
2302   if (!getOperand(0).isReg())
2303     return;
2304 
2305   Register DefReg = getOperand(0).getReg();
2306   auto *MRI = getRegInfo();
2307   for (auto &MO : MRI->use_operands(DefReg)) {
2308     auto *DI = MO.getParent();
2309     if (!DI->isDebugValue())
2310       continue;
2311     if (DI->hasDebugOperandForReg(DefReg)) {
2312       DbgValues.push_back(DI);
2313     }
2314   }
2315 
2316   // Propagate Reg to debug value instructions.
2317   for (auto *DBI : DbgValues)
2318     for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg))
2319       Op.setReg(Reg);
2320 }
2321 
2322 using MMOList = SmallVector<const MachineMemOperand *, 2>;
2323 
2324 static unsigned getSpillSlotSize(const MMOList &Accesses,
2325                                  const MachineFrameInfo &MFI) {
2326   unsigned Size = 0;
2327   for (auto A : Accesses)
2328     if (MFI.isSpillSlotObjectIndex(
2329             cast<FixedStackPseudoSourceValue>(A->getPseudoValue())
2330                 ->getFrameIndex()))
2331       Size += A->getSize();
2332   return Size;
2333 }
2334 
2335 Optional<unsigned>
2336 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const {
2337   int FI;
2338   if (TII->isStoreToStackSlotPostFE(*this, FI)) {
2339     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2340     if (MFI.isSpillSlotObjectIndex(FI))
2341       return (*memoperands_begin())->getSize();
2342   }
2343   return None;
2344 }
2345 
2346 Optional<unsigned>
2347 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const {
2348   MMOList Accesses;
2349   if (TII->hasStoreToStackSlot(*this, Accesses))
2350     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2351   return None;
2352 }
2353 
2354 Optional<unsigned>
2355 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const {
2356   int FI;
2357   if (TII->isLoadFromStackSlotPostFE(*this, FI)) {
2358     const MachineFrameInfo &MFI = getMF()->getFrameInfo();
2359     if (MFI.isSpillSlotObjectIndex(FI))
2360       return (*memoperands_begin())->getSize();
2361   }
2362   return None;
2363 }
2364 
2365 Optional<unsigned>
2366 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const {
2367   MMOList Accesses;
2368   if (TII->hasLoadFromStackSlot(*this, Accesses))
2369     return getSpillSlotSize(Accesses, getMF()->getFrameInfo());
2370   return None;
2371 }
2372 
2373 unsigned MachineInstr::getDebugInstrNum() {
2374   if (DebugInstrNum == 0)
2375     DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum();
2376   return DebugInstrNum;
2377 }
2378 
2379 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) {
2380   if (DebugInstrNum == 0)
2381     DebugInstrNum = MF.getNewDebugInstrNum();
2382   return DebugInstrNum;
2383 }
2384