1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Methods common to all machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MachineInstr.h" 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/FoldingSet.h" 17 #include "llvm/ADT/Hashing.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallBitVector.h" 21 #include "llvm/ADT/SmallString.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineMemOperand.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/Config/llvm-config.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/DerivedTypes.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/MC/MCRegisterInfo.h" 59 #include "llvm/MC/MCSymbol.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Compiler.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/FormattedStream.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MathExtras.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <cstring> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 81 static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { 82 if (const MachineBasicBlock *MBB = MI.getParent()) 83 if (const MachineFunction *MF = MBB->getParent()) 84 return MF; 85 return nullptr; 86 } 87 88 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from 89 // it. 90 static void tryToGetTargetInfo(const MachineInstr &MI, 91 const TargetRegisterInfo *&TRI, 92 const MachineRegisterInfo *&MRI, 93 const TargetIntrinsicInfo *&IntrinsicInfo, 94 const TargetInstrInfo *&TII) { 95 96 if (const MachineFunction *MF = getMFIfAvailable(MI)) { 97 TRI = MF->getSubtarget().getRegisterInfo(); 98 MRI = &MF->getRegInfo(); 99 IntrinsicInfo = MF->getTarget().getIntrinsicInfo(); 100 TII = MF->getSubtarget().getInstrInfo(); 101 } 102 } 103 104 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { 105 if (MCID->ImplicitDefs) 106 for (const MCPhysReg *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; 107 ++ImpDefs) 108 addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true)); 109 if (MCID->ImplicitUses) 110 for (const MCPhysReg *ImpUses = MCID->getImplicitUses(); *ImpUses; 111 ++ImpUses) 112 addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true)); 113 } 114 115 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the 116 /// implicit operands. It reserves space for the number of operands specified by 117 /// the MCInstrDesc. 118 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid, 119 DebugLoc dl, bool NoImp) 120 : MCID(&tid), debugLoc(std::move(dl)), DebugInstrNum(0) { 121 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 122 123 // Reserve space for the expected number of operands. 124 if (unsigned NumOps = MCID->getNumOperands() + 125 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) { 126 CapOperands = OperandCapacity::get(NumOps); 127 Operands = MF.allocateOperandArray(CapOperands); 128 } 129 130 if (!NoImp) 131 addImplicitDefUseOperands(MF); 132 } 133 134 /// MachineInstr ctor - Copies MachineInstr arg exactly. 135 /// Does not copy the number from debug instruction numbering, to preserve 136 /// uniqueness. 137 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) 138 : MCID(&MI.getDesc()), Info(MI.Info), debugLoc(MI.getDebugLoc()), 139 DebugInstrNum(0) { 140 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 141 142 CapOperands = OperandCapacity::get(MI.getNumOperands()); 143 Operands = MF.allocateOperandArray(CapOperands); 144 145 // Copy operands. 146 for (const MachineOperand &MO : MI.operands()) 147 addOperand(MF, MO); 148 149 // Copy all the sensible flags. 150 setFlags(MI.Flags); 151 } 152 153 void MachineInstr::moveBefore(MachineInstr *MovePos) { 154 MovePos->getParent()->splice(MovePos, getParent(), getIterator()); 155 } 156 157 /// getRegInfo - If this instruction is embedded into a MachineFunction, 158 /// return the MachineRegisterInfo object for the current function, otherwise 159 /// return null. 160 MachineRegisterInfo *MachineInstr::getRegInfo() { 161 if (MachineBasicBlock *MBB = getParent()) 162 return &MBB->getParent()->getRegInfo(); 163 return nullptr; 164 } 165 166 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in 167 /// this instruction from their respective use lists. This requires that the 168 /// operands already be on their use lists. 169 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) { 170 for (MachineOperand &MO : operands()) 171 if (MO.isReg()) 172 MRI.removeRegOperandFromUseList(&MO); 173 } 174 175 /// AddRegOperandsToUseLists - Add all of the register operands in 176 /// this instruction from their respective use lists. This requires that the 177 /// operands not be on their use lists yet. 178 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) { 179 for (MachineOperand &MO : operands()) 180 if (MO.isReg()) 181 MRI.addRegOperandToUseList(&MO); 182 } 183 184 void MachineInstr::addOperand(const MachineOperand &Op) { 185 MachineBasicBlock *MBB = getParent(); 186 assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs"); 187 MachineFunction *MF = MBB->getParent(); 188 assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs"); 189 addOperand(*MF, Op); 190 } 191 192 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping 193 /// ranges. If MRI is non-null also update use-def chains. 194 static void moveOperands(MachineOperand *Dst, MachineOperand *Src, 195 unsigned NumOps, MachineRegisterInfo *MRI) { 196 if (MRI) 197 return MRI->moveOperands(Dst, Src, NumOps); 198 // MachineOperand is a trivially copyable type so we can just use memmove. 199 assert(Dst && Src && "Unknown operands"); 200 std::memmove(Dst, Src, NumOps * sizeof(MachineOperand)); 201 } 202 203 /// addOperand - Add the specified operand to the instruction. If it is an 204 /// implicit operand, it is added to the end of the operand list. If it is 205 /// an explicit operand it is added at the end of the explicit operand list 206 /// (before the first implicit operand). 207 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { 208 assert(MCID && "Cannot add operands before providing an instr descriptor"); 209 210 // Check if we're adding one of our existing operands. 211 if (&Op >= Operands && &Op < Operands + NumOperands) { 212 // This is unusual: MI->addOperand(MI->getOperand(i)). 213 // If adding Op requires reallocating or moving existing operands around, 214 // the Op reference could go stale. Support it by copying Op. 215 MachineOperand CopyOp(Op); 216 return addOperand(MF, CopyOp); 217 } 218 219 // Find the insert location for the new operand. Implicit registers go at 220 // the end, everything else goes before the implicit regs. 221 // 222 // FIXME: Allow mixed explicit and implicit operands on inline asm. 223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as 224 // implicit-defs, but they must not be moved around. See the FIXME in 225 // InstrEmitter.cpp. 226 unsigned OpNo = getNumOperands(); 227 bool isImpReg = Op.isReg() && Op.isImplicit(); 228 if (!isImpReg && !isInlineAsm()) { 229 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { 230 --OpNo; 231 assert(!Operands[OpNo].isTied() && "Cannot move tied operands"); 232 } 233 } 234 235 #ifndef NDEBUG 236 bool isDebugOp = Op.getType() == MachineOperand::MO_Metadata || 237 Op.getType() == MachineOperand::MO_MCSymbol; 238 // OpNo now points as the desired insertion point. Unless this is a variadic 239 // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). 240 // RegMask operands go between the explicit and implicit operands. 241 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() || 242 OpNo < MCID->getNumOperands() || isDebugOp) && 243 "Trying to add an operand to a machine instr that is already done!"); 244 #endif 245 246 MachineRegisterInfo *MRI = getRegInfo(); 247 248 // Determine if the Operands array needs to be reallocated. 249 // Save the old capacity and operand array. 250 OperandCapacity OldCap = CapOperands; 251 MachineOperand *OldOperands = Operands; 252 if (!OldOperands || OldCap.getSize() == getNumOperands()) { 253 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1); 254 Operands = MF.allocateOperandArray(CapOperands); 255 // Move the operands before the insertion point. 256 if (OpNo) 257 moveOperands(Operands, OldOperands, OpNo, MRI); 258 } 259 260 // Move the operands following the insertion point. 261 if (OpNo != NumOperands) 262 moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo, 263 MRI); 264 ++NumOperands; 265 266 // Deallocate the old operand array. 267 if (OldOperands != Operands && OldOperands) 268 MF.deallocateOperandArray(OldCap, OldOperands); 269 270 // Copy Op into place. It still needs to be inserted into the MRI use lists. 271 MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); 272 NewMO->ParentMI = this; 273 274 // When adding a register operand, tell MRI about it. 275 if (NewMO->isReg()) { 276 // Ensure isOnRegUseList() returns false, regardless of Op's status. 277 NewMO->Contents.Reg.Prev = nullptr; 278 // Ignore existing ties. This is not a property that can be copied. 279 NewMO->TiedTo = 0; 280 // Add the new operand to MRI, but only for instructions in an MBB. 281 if (MRI) 282 MRI->addRegOperandToUseList(NewMO); 283 // The MCID operand information isn't accurate until we start adding 284 // explicit operands. The implicit operands are added first, then the 285 // explicits are inserted before them. 286 if (!isImpReg) { 287 // Tie uses to defs as indicated in MCInstrDesc. 288 if (NewMO->isUse()) { 289 int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO); 290 if (DefIdx != -1) 291 tieOperands(DefIdx, OpNo); 292 } 293 // If the register operand is flagged as early, mark the operand as such. 294 if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1) 295 NewMO->setIsEarlyClobber(true); 296 } 297 // Ensure debug instructions set debug flag on register uses. 298 if (NewMO->isUse() && isDebugInstr()) 299 NewMO->setIsDebug(); 300 } 301 } 302 303 /// RemoveOperand - Erase an operand from an instruction, leaving it with one 304 /// fewer operand than it started with. 305 /// 306 void MachineInstr::RemoveOperand(unsigned OpNo) { 307 assert(OpNo < getNumOperands() && "Invalid operand number"); 308 untieRegOperand(OpNo); 309 310 #ifndef NDEBUG 311 // Moving tied operands would break the ties. 312 for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) 313 if (Operands[i].isReg()) 314 assert(!Operands[i].isTied() && "Cannot move tied operands"); 315 #endif 316 317 MachineRegisterInfo *MRI = getRegInfo(); 318 if (MRI && Operands[OpNo].isReg()) 319 MRI->removeRegOperandFromUseList(Operands + OpNo); 320 321 // Don't call the MachineOperand destructor. A lot of this code depends on 322 // MachineOperand having a trivial destructor anyway, and adding a call here 323 // wouldn't make it 'destructor-correct'. 324 325 if (unsigned N = NumOperands - 1 - OpNo) 326 moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI); 327 --NumOperands; 328 } 329 330 void MachineInstr::setExtraInfo(MachineFunction &MF, 331 ArrayRef<MachineMemOperand *> MMOs, 332 MCSymbol *PreInstrSymbol, 333 MCSymbol *PostInstrSymbol, 334 MDNode *HeapAllocMarker) { 335 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 336 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 337 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 338 int NumPointers = 339 MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + HasHeapAllocMarker; 340 341 // Drop all extra info if there is none. 342 if (NumPointers <= 0) { 343 Info.clear(); 344 return; 345 } 346 347 // If more than one pointer, then store out of line. Store heap alloc markers 348 // out of line because PointerSumType cannot hold more than 4 tag types with 349 // 32-bit pointers. 350 // FIXME: Maybe we should make the symbols in the extra info mutable? 351 else if (NumPointers > 1 || HasHeapAllocMarker) { 352 Info.set<EIIK_OutOfLine>(MF.createMIExtraInfo( 353 MMOs, PreInstrSymbol, PostInstrSymbol, HeapAllocMarker)); 354 return; 355 } 356 357 // Otherwise store the single pointer inline. 358 if (HasPreInstrSymbol) 359 Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); 360 else if (HasPostInstrSymbol) 361 Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); 362 else 363 Info.set<EIIK_MMO>(MMOs[0]); 364 } 365 366 void MachineInstr::dropMemRefs(MachineFunction &MF) { 367 if (memoperands_empty()) 368 return; 369 370 setExtraInfo(MF, {}, getPreInstrSymbol(), getPostInstrSymbol(), 371 getHeapAllocMarker()); 372 } 373 374 void MachineInstr::setMemRefs(MachineFunction &MF, 375 ArrayRef<MachineMemOperand *> MMOs) { 376 if (MMOs.empty()) { 377 dropMemRefs(MF); 378 return; 379 } 380 381 setExtraInfo(MF, MMOs, getPreInstrSymbol(), getPostInstrSymbol(), 382 getHeapAllocMarker()); 383 } 384 385 void MachineInstr::addMemOperand(MachineFunction &MF, 386 MachineMemOperand *MO) { 387 SmallVector<MachineMemOperand *, 2> MMOs; 388 MMOs.append(memoperands_begin(), memoperands_end()); 389 MMOs.push_back(MO); 390 setMemRefs(MF, MMOs); 391 } 392 393 void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { 394 if (this == &MI) 395 // Nothing to do for a self-clone! 396 return; 397 398 assert(&MF == MI.getMF() && 399 "Invalid machine functions when cloning memory refrences!"); 400 // See if we can just steal the extra info already allocated for the 401 // instruction. We can do this whenever the pre- and post-instruction symbols 402 // are the same (including null). 403 if (getPreInstrSymbol() == MI.getPreInstrSymbol() && 404 getPostInstrSymbol() == MI.getPostInstrSymbol() && 405 getHeapAllocMarker() == MI.getHeapAllocMarker()) { 406 Info = MI.Info; 407 return; 408 } 409 410 // Otherwise, fall back on a copy-based clone. 411 setMemRefs(MF, MI.memoperands()); 412 } 413 414 /// Check to see if the MMOs pointed to by the two MemRefs arrays are 415 /// identical. 416 static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, 417 ArrayRef<MachineMemOperand *> RHS) { 418 if (LHS.size() != RHS.size()) 419 return false; 420 421 auto LHSPointees = make_pointee_range(LHS); 422 auto RHSPointees = make_pointee_range(RHS); 423 return std::equal(LHSPointees.begin(), LHSPointees.end(), 424 RHSPointees.begin()); 425 } 426 427 void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, 428 ArrayRef<const MachineInstr *> MIs) { 429 // Try handling easy numbers of MIs with simpler mechanisms. 430 if (MIs.empty()) { 431 dropMemRefs(MF); 432 return; 433 } 434 if (MIs.size() == 1) { 435 cloneMemRefs(MF, *MIs[0]); 436 return; 437 } 438 // Because an empty memoperands list provides *no* information and must be 439 // handled conservatively (assuming the instruction can do anything), the only 440 // way to merge with it is to drop all other memoperands. 441 if (MIs[0]->memoperands_empty()) { 442 dropMemRefs(MF); 443 return; 444 } 445 446 // Handle the general case. 447 SmallVector<MachineMemOperand *, 2> MergedMMOs; 448 // Start with the first instruction. 449 assert(&MF == MIs[0]->getMF() && 450 "Invalid machine functions when cloning memory references!"); 451 MergedMMOs.append(MIs[0]->memoperands_begin(), MIs[0]->memoperands_end()); 452 // Now walk all the other instructions and accumulate any different MMOs. 453 for (const MachineInstr &MI : make_pointee_range(MIs.slice(1))) { 454 assert(&MF == MI.getMF() && 455 "Invalid machine functions when cloning memory references!"); 456 457 // Skip MIs with identical operands to the first. This is a somewhat 458 // arbitrary hack but will catch common cases without being quadratic. 459 // TODO: We could fully implement merge semantics here if needed. 460 if (hasIdenticalMMOs(MIs[0]->memoperands(), MI.memoperands())) 461 continue; 462 463 // Because an empty memoperands list provides *no* information and must be 464 // handled conservatively (assuming the instruction can do anything), the 465 // only way to merge with it is to drop all other memoperands. 466 if (MI.memoperands_empty()) { 467 dropMemRefs(MF); 468 return; 469 } 470 471 // Otherwise accumulate these into our temporary buffer of the merged state. 472 MergedMMOs.append(MI.memoperands_begin(), MI.memoperands_end()); 473 } 474 475 setMemRefs(MF, MergedMMOs); 476 } 477 478 void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 479 // Do nothing if old and new symbols are the same. 480 if (Symbol == getPreInstrSymbol()) 481 return; 482 483 // If there was only one symbol and we're removing it, just clear info. 484 if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { 485 Info.clear(); 486 return; 487 } 488 489 setExtraInfo(MF, memoperands(), Symbol, getPostInstrSymbol(), 490 getHeapAllocMarker()); 491 } 492 493 void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { 494 // Do nothing if old and new symbols are the same. 495 if (Symbol == getPostInstrSymbol()) 496 return; 497 498 // If there was only one symbol and we're removing it, just clear info. 499 if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { 500 Info.clear(); 501 return; 502 } 503 504 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), Symbol, 505 getHeapAllocMarker()); 506 } 507 508 void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { 509 // Do nothing if old and new symbols are the same. 510 if (Marker == getHeapAllocMarker()) 511 return; 512 513 setExtraInfo(MF, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(), 514 Marker); 515 } 516 517 void MachineInstr::cloneInstrSymbols(MachineFunction &MF, 518 const MachineInstr &MI) { 519 if (this == &MI) 520 // Nothing to do for a self-clone! 521 return; 522 523 assert(&MF == MI.getMF() && 524 "Invalid machine functions when cloning instruction symbols!"); 525 526 setPreInstrSymbol(MF, MI.getPreInstrSymbol()); 527 setPostInstrSymbol(MF, MI.getPostInstrSymbol()); 528 setHeapAllocMarker(MF, MI.getHeapAllocMarker()); 529 } 530 531 uint16_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { 532 // For now, the just return the union of the flags. If the flags get more 533 // complicated over time, we might need more logic here. 534 return getFlags() | Other.getFlags(); 535 } 536 537 uint16_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { 538 uint16_t MIFlags = 0; 539 // Copy the wrapping flags. 540 if (const OverflowingBinaryOperator *OB = 541 dyn_cast<OverflowingBinaryOperator>(&I)) { 542 if (OB->hasNoSignedWrap()) 543 MIFlags |= MachineInstr::MIFlag::NoSWrap; 544 if (OB->hasNoUnsignedWrap()) 545 MIFlags |= MachineInstr::MIFlag::NoUWrap; 546 } 547 548 // Copy the exact flag. 549 if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(&I)) 550 if (PE->isExact()) 551 MIFlags |= MachineInstr::MIFlag::IsExact; 552 553 // Copy the fast-math flags. 554 if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(&I)) { 555 const FastMathFlags Flags = FP->getFastMathFlags(); 556 if (Flags.noNaNs()) 557 MIFlags |= MachineInstr::MIFlag::FmNoNans; 558 if (Flags.noInfs()) 559 MIFlags |= MachineInstr::MIFlag::FmNoInfs; 560 if (Flags.noSignedZeros()) 561 MIFlags |= MachineInstr::MIFlag::FmNsz; 562 if (Flags.allowReciprocal()) 563 MIFlags |= MachineInstr::MIFlag::FmArcp; 564 if (Flags.allowContract()) 565 MIFlags |= MachineInstr::MIFlag::FmContract; 566 if (Flags.approxFunc()) 567 MIFlags |= MachineInstr::MIFlag::FmAfn; 568 if (Flags.allowReassoc()) 569 MIFlags |= MachineInstr::MIFlag::FmReassoc; 570 } 571 572 return MIFlags; 573 } 574 575 void MachineInstr::copyIRFlags(const Instruction &I) { 576 Flags = copyFlagsFromInstruction(I); 577 } 578 579 bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { 580 assert(!isBundledWithPred() && "Must be called on bundle header"); 581 for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { 582 if (MII->getDesc().getFlags() & Mask) { 583 if (Type == AnyInBundle) 584 return true; 585 } else { 586 if (Type == AllInBundle && !MII->isBundle()) 587 return false; 588 } 589 // This was the last instruction in the bundle. 590 if (!MII->isBundledWithSucc()) 591 return Type == AllInBundle; 592 } 593 } 594 595 bool MachineInstr::isIdenticalTo(const MachineInstr &Other, 596 MICheckType Check) const { 597 // If opcodes or number of operands are not the same then the two 598 // instructions are obviously not identical. 599 if (Other.getOpcode() != getOpcode() || 600 Other.getNumOperands() != getNumOperands()) 601 return false; 602 603 if (isBundle()) { 604 // We have passed the test above that both instructions have the same 605 // opcode, so we know that both instructions are bundles here. Let's compare 606 // MIs inside the bundle. 607 assert(Other.isBundle() && "Expected that both instructions are bundles."); 608 MachineBasicBlock::const_instr_iterator I1 = getIterator(); 609 MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); 610 // Loop until we analysed the last intruction inside at least one of the 611 // bundles. 612 while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { 613 ++I1; 614 ++I2; 615 if (!I1->isIdenticalTo(*I2, Check)) 616 return false; 617 } 618 // If we've reached the end of just one of the two bundles, but not both, 619 // the instructions are not identical. 620 if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) 621 return false; 622 } 623 624 // Check operands to make sure they match. 625 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 626 const MachineOperand &MO = getOperand(i); 627 const MachineOperand &OMO = Other.getOperand(i); 628 if (!MO.isReg()) { 629 if (!MO.isIdenticalTo(OMO)) 630 return false; 631 continue; 632 } 633 634 // Clients may or may not want to ignore defs when testing for equality. 635 // For example, machine CSE pass only cares about finding common 636 // subexpressions, so it's safe to ignore virtual register defs. 637 if (MO.isDef()) { 638 if (Check == IgnoreDefs) 639 continue; 640 else if (Check == IgnoreVRegDefs) { 641 if (!Register::isVirtualRegister(MO.getReg()) || 642 !Register::isVirtualRegister(OMO.getReg())) 643 if (!MO.isIdenticalTo(OMO)) 644 return false; 645 } else { 646 if (!MO.isIdenticalTo(OMO)) 647 return false; 648 if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) 649 return false; 650 } 651 } else { 652 if (!MO.isIdenticalTo(OMO)) 653 return false; 654 if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) 655 return false; 656 } 657 } 658 // If DebugLoc does not match then two debug instructions are not identical. 659 if (isDebugInstr()) 660 if (getDebugLoc() && Other.getDebugLoc() && 661 getDebugLoc() != Other.getDebugLoc()) 662 return false; 663 return true; 664 } 665 666 const MachineFunction *MachineInstr::getMF() const { 667 return getParent()->getParent(); 668 } 669 670 MachineInstr *MachineInstr::removeFromParent() { 671 assert(getParent() && "Not embedded in a basic block!"); 672 return getParent()->remove(this); 673 } 674 675 MachineInstr *MachineInstr::removeFromBundle() { 676 assert(getParent() && "Not embedded in a basic block!"); 677 return getParent()->remove_instr(this); 678 } 679 680 void MachineInstr::eraseFromParent() { 681 assert(getParent() && "Not embedded in a basic block!"); 682 getParent()->erase(this); 683 } 684 685 void MachineInstr::eraseFromParentAndMarkDBGValuesForRemoval() { 686 assert(getParent() && "Not embedded in a basic block!"); 687 MachineBasicBlock *MBB = getParent(); 688 MachineFunction *MF = MBB->getParent(); 689 assert(MF && "Not embedded in a function!"); 690 691 MachineInstr *MI = (MachineInstr *)this; 692 MachineRegisterInfo &MRI = MF->getRegInfo(); 693 694 for (const MachineOperand &MO : MI->operands()) { 695 if (!MO.isReg() || !MO.isDef()) 696 continue; 697 Register Reg = MO.getReg(); 698 if (!Reg.isVirtual()) 699 continue; 700 MRI.markUsesInDebugValueAsUndef(Reg); 701 } 702 MI->eraseFromParent(); 703 } 704 705 void MachineInstr::eraseFromBundle() { 706 assert(getParent() && "Not embedded in a basic block!"); 707 getParent()->erase_instr(this); 708 } 709 710 bool MachineInstr::isCandidateForCallSiteEntry(QueryType Type) const { 711 if (!isCall(Type)) 712 return false; 713 switch (getOpcode()) { 714 case TargetOpcode::PATCHPOINT: 715 case TargetOpcode::STACKMAP: 716 case TargetOpcode::STATEPOINT: 717 case TargetOpcode::FENTRY_CALL: 718 return false; 719 } 720 return true; 721 } 722 723 bool MachineInstr::shouldUpdateCallSiteInfo() const { 724 if (isBundle()) 725 return isCandidateForCallSiteEntry(MachineInstr::AnyInBundle); 726 return isCandidateForCallSiteEntry(); 727 } 728 729 unsigned MachineInstr::getNumExplicitOperands() const { 730 unsigned NumOperands = MCID->getNumOperands(); 731 if (!MCID->isVariadic()) 732 return NumOperands; 733 734 for (unsigned I = NumOperands, E = getNumOperands(); I != E; ++I) { 735 const MachineOperand &MO = getOperand(I); 736 // The operands must always be in the following order: 737 // - explicit reg defs, 738 // - other explicit operands (reg uses, immediates, etc.), 739 // - implicit reg defs 740 // - implicit reg uses 741 if (MO.isReg() && MO.isImplicit()) 742 break; 743 ++NumOperands; 744 } 745 return NumOperands; 746 } 747 748 unsigned MachineInstr::getNumExplicitDefs() const { 749 unsigned NumDefs = MCID->getNumDefs(); 750 if (!MCID->isVariadic()) 751 return NumDefs; 752 753 for (unsigned I = NumDefs, E = getNumOperands(); I != E; ++I) { 754 const MachineOperand &MO = getOperand(I); 755 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 756 break; 757 ++NumDefs; 758 } 759 return NumDefs; 760 } 761 762 void MachineInstr::bundleWithPred() { 763 assert(!isBundledWithPred() && "MI is already bundled with its predecessor"); 764 setFlag(BundledPred); 765 MachineBasicBlock::instr_iterator Pred = getIterator(); 766 --Pred; 767 assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 768 Pred->setFlag(BundledSucc); 769 } 770 771 void MachineInstr::bundleWithSucc() { 772 assert(!isBundledWithSucc() && "MI is already bundled with its successor"); 773 setFlag(BundledSucc); 774 MachineBasicBlock::instr_iterator Succ = getIterator(); 775 ++Succ; 776 assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags"); 777 Succ->setFlag(BundledPred); 778 } 779 780 void MachineInstr::unbundleFromPred() { 781 assert(isBundledWithPred() && "MI isn't bundled with its predecessor"); 782 clearFlag(BundledPred); 783 MachineBasicBlock::instr_iterator Pred = getIterator(); 784 --Pred; 785 assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags"); 786 Pred->clearFlag(BundledSucc); 787 } 788 789 void MachineInstr::unbundleFromSucc() { 790 assert(isBundledWithSucc() && "MI isn't bundled with its successor"); 791 clearFlag(BundledSucc); 792 MachineBasicBlock::instr_iterator Succ = getIterator(); 793 ++Succ; 794 assert(Succ->isBundledWithPred() && "Inconsistent bundle flags"); 795 Succ->clearFlag(BundledPred); 796 } 797 798 bool MachineInstr::isStackAligningInlineAsm() const { 799 if (isInlineAsm()) { 800 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 801 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 802 return true; 803 } 804 return false; 805 } 806 807 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { 808 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!"); 809 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 810 return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); 811 } 812 813 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, 814 unsigned *GroupNo) const { 815 assert(isInlineAsm() && "Expected an inline asm instruction"); 816 assert(OpIdx < getNumOperands() && "OpIdx out of range"); 817 818 // Ignore queries about the initial operands. 819 if (OpIdx < InlineAsm::MIOp_FirstOperand) 820 return -1; 821 822 unsigned Group = 0; 823 unsigned NumOps; 824 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 825 i += NumOps) { 826 const MachineOperand &FlagMO = getOperand(i); 827 // If we reach the implicit register operands, stop looking. 828 if (!FlagMO.isImm()) 829 return -1; 830 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 831 if (i + NumOps > OpIdx) { 832 if (GroupNo) 833 *GroupNo = Group; 834 return i; 835 } 836 ++Group; 837 } 838 return -1; 839 } 840 841 const DILabel *MachineInstr::getDebugLabel() const { 842 assert(isDebugLabel() && "not a DBG_LABEL"); 843 return cast<DILabel>(getOperand(0).getMetadata()); 844 } 845 846 const MachineOperand &MachineInstr::getDebugVariableOp() const { 847 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 848 unsigned VariableOp = isDebugValueList() ? 0 : 2; 849 return getOperand(VariableOp); 850 } 851 852 MachineOperand &MachineInstr::getDebugVariableOp() { 853 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 854 unsigned VariableOp = isDebugValueList() ? 0 : 2; 855 return getOperand(VariableOp); 856 } 857 858 const DILocalVariable *MachineInstr::getDebugVariable() const { 859 return cast<DILocalVariable>(getDebugVariableOp().getMetadata()); 860 } 861 862 const MachineOperand &MachineInstr::getDebugExpressionOp() const { 863 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 864 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 865 return getOperand(ExpressionOp); 866 } 867 868 MachineOperand &MachineInstr::getDebugExpressionOp() { 869 assert((isDebugValue() || isDebugRef()) && "not a DBG_VALUE*"); 870 unsigned ExpressionOp = isDebugValueList() ? 1 : 3; 871 return getOperand(ExpressionOp); 872 } 873 874 const DIExpression *MachineInstr::getDebugExpression() const { 875 return cast<DIExpression>(getDebugExpressionOp().getMetadata()); 876 } 877 878 bool MachineInstr::isDebugEntryValue() const { 879 return isDebugValue() && getDebugExpression()->isEntryValue(); 880 } 881 882 const TargetRegisterClass* 883 MachineInstr::getRegClassConstraint(unsigned OpIdx, 884 const TargetInstrInfo *TII, 885 const TargetRegisterInfo *TRI) const { 886 assert(getParent() && "Can't have an MBB reference here!"); 887 assert(getMF() && "Can't have an MF reference here!"); 888 const MachineFunction &MF = *getMF(); 889 890 // Most opcodes have fixed constraints in their MCInstrDesc. 891 if (!isInlineAsm()) 892 return TII->getRegClass(getDesc(), OpIdx, TRI, MF); 893 894 if (!getOperand(OpIdx).isReg()) 895 return nullptr; 896 897 // For tied uses on inline asm, get the constraint from the def. 898 unsigned DefIdx; 899 if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx)) 900 OpIdx = DefIdx; 901 902 // Inline asm stores register class constraints in the flag word. 903 int FlagIdx = findInlineAsmFlagIdx(OpIdx); 904 if (FlagIdx < 0) 905 return nullptr; 906 907 unsigned Flag = getOperand(FlagIdx).getImm(); 908 unsigned RCID; 909 if ((InlineAsm::getKind(Flag) == InlineAsm::Kind_RegUse || 910 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDef || 911 InlineAsm::getKind(Flag) == InlineAsm::Kind_RegDefEarlyClobber) && 912 InlineAsm::hasRegClassConstraint(Flag, RCID)) 913 return TRI->getRegClass(RCID); 914 915 // Assume that all registers in a memory operand are pointers. 916 if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem) 917 return TRI->getPointerRegClass(MF); 918 919 return nullptr; 920 } 921 922 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( 923 Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, 924 const TargetRegisterInfo *TRI, bool ExploreBundle) const { 925 // Check every operands inside the bundle if we have 926 // been asked to. 927 if (ExploreBundle) 928 for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; 929 ++OpndIt) 930 CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( 931 OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); 932 else 933 // Otherwise, just check the current operands. 934 for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) 935 CurRC = getRegClassConstraintEffectForVRegImpl(i, Reg, CurRC, TII, TRI); 936 return CurRC; 937 } 938 939 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( 940 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 941 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 942 assert(CurRC && "Invalid initial register class"); 943 // Check if Reg is constrained by some of its use/def from MI. 944 const MachineOperand &MO = getOperand(OpIdx); 945 if (!MO.isReg() || MO.getReg() != Reg) 946 return CurRC; 947 // If yes, accumulate the constraints through the operand. 948 return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); 949 } 950 951 const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( 952 unsigned OpIdx, const TargetRegisterClass *CurRC, 953 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { 954 const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); 955 const MachineOperand &MO = getOperand(OpIdx); 956 assert(MO.isReg() && 957 "Cannot get register constraints for non-register operand"); 958 assert(CurRC && "Invalid initial register class"); 959 if (unsigned SubIdx = MO.getSubReg()) { 960 if (OpRC) 961 CurRC = TRI->getMatchingSuperRegClass(CurRC, OpRC, SubIdx); 962 else 963 CurRC = TRI->getSubClassWithSubReg(CurRC, SubIdx); 964 } else if (OpRC) 965 CurRC = TRI->getCommonSubClass(CurRC, OpRC); 966 return CurRC; 967 } 968 969 /// Return the number of instructions inside the MI bundle, not counting the 970 /// header instruction. 971 unsigned MachineInstr::getBundleSize() const { 972 MachineBasicBlock::const_instr_iterator I = getIterator(); 973 unsigned Size = 0; 974 while (I->isBundledWithSucc()) { 975 ++Size; 976 ++I; 977 } 978 return Size; 979 } 980 981 /// Returns true if the MachineInstr has an implicit-use operand of exactly 982 /// the given register (not considering sub/super-registers). 983 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { 984 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 985 const MachineOperand &MO = getOperand(i); 986 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == Reg) 987 return true; 988 } 989 return false; 990 } 991 992 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of 993 /// the specific register or -1 if it is not found. It further tightens 994 /// the search criteria to a use that kills the register if isKill is true. 995 int MachineInstr::findRegisterUseOperandIdx( 996 Register Reg, bool isKill, const TargetRegisterInfo *TRI) const { 997 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 998 const MachineOperand &MO = getOperand(i); 999 if (!MO.isReg() || !MO.isUse()) 1000 continue; 1001 Register MOReg = MO.getReg(); 1002 if (!MOReg) 1003 continue; 1004 if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(MOReg, Reg))) 1005 if (!isKill || MO.isKill()) 1006 return i; 1007 } 1008 return -1; 1009 } 1010 1011 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) 1012 /// indicating if this instruction reads or writes Reg. This also considers 1013 /// partial defines. 1014 std::pair<bool,bool> 1015 MachineInstr::readsWritesVirtualRegister(Register Reg, 1016 SmallVectorImpl<unsigned> *Ops) const { 1017 bool PartDef = false; // Partial redefine. 1018 bool FullDef = false; // Full define. 1019 bool Use = false; 1020 1021 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1022 const MachineOperand &MO = getOperand(i); 1023 if (!MO.isReg() || MO.getReg() != Reg) 1024 continue; 1025 if (Ops) 1026 Ops->push_back(i); 1027 if (MO.isUse()) 1028 Use |= !MO.isUndef(); 1029 else if (MO.getSubReg() && !MO.isUndef()) 1030 // A partial def undef doesn't count as reading the register. 1031 PartDef = true; 1032 else 1033 FullDef = true; 1034 } 1035 // A partial redefine uses Reg unless there is also a full define. 1036 return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef); 1037 } 1038 1039 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of 1040 /// the specified register or -1 if it is not found. If isDead is true, defs 1041 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it 1042 /// also checks if there is a def of a super-register. 1043 int 1044 MachineInstr::findRegisterDefOperandIdx(Register Reg, bool isDead, bool Overlap, 1045 const TargetRegisterInfo *TRI) const { 1046 bool isPhys = Register::isPhysicalRegister(Reg); 1047 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1048 const MachineOperand &MO = getOperand(i); 1049 // Accept regmask operands when Overlap is set. 1050 // Ignore them when looking for a specific def operand (Overlap == false). 1051 if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg)) 1052 return i; 1053 if (!MO.isReg() || !MO.isDef()) 1054 continue; 1055 Register MOReg = MO.getReg(); 1056 bool Found = (MOReg == Reg); 1057 if (!Found && TRI && isPhys && Register::isPhysicalRegister(MOReg)) { 1058 if (Overlap) 1059 Found = TRI->regsOverlap(MOReg, Reg); 1060 else 1061 Found = TRI->isSubRegister(MOReg, Reg); 1062 } 1063 if (Found && (!isDead || MO.isDead())) 1064 return i; 1065 } 1066 return -1; 1067 } 1068 1069 /// findFirstPredOperandIdx() - Find the index of the first operand in the 1070 /// operand list that is used to represent the predicate. It returns -1 if 1071 /// none is found. 1072 int MachineInstr::findFirstPredOperandIdx() const { 1073 // Don't call MCID.findFirstPredOperandIdx() because this variant 1074 // is sometimes called on an instruction that's not yet complete, and 1075 // so the number of operands is less than the MCID indicates. In 1076 // particular, the PTX target does this. 1077 const MCInstrDesc &MCID = getDesc(); 1078 if (MCID.isPredicable()) { 1079 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 1080 if (MCID.OpInfo[i].isPredicate()) 1081 return i; 1082 } 1083 1084 return -1; 1085 } 1086 1087 // MachineOperand::TiedTo is 4 bits wide. 1088 const unsigned TiedMax = 15; 1089 1090 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. 1091 /// 1092 /// Use and def operands can be tied together, indicated by a non-zero TiedTo 1093 /// field. TiedTo can have these values: 1094 /// 1095 /// 0: Operand is not tied to anything. 1096 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). 1097 /// TiedMax: Tied to an operand >= TiedMax-1. 1098 /// 1099 /// The tied def must be one of the first TiedMax operands on a normal 1100 /// instruction. INLINEASM instructions allow more tied defs. 1101 /// 1102 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { 1103 MachineOperand &DefMO = getOperand(DefIdx); 1104 MachineOperand &UseMO = getOperand(UseIdx); 1105 assert(DefMO.isDef() && "DefIdx must be a def operand"); 1106 assert(UseMO.isUse() && "UseIdx must be a use operand"); 1107 assert(!DefMO.isTied() && "Def is already tied to another use"); 1108 assert(!UseMO.isTied() && "Use is already tied to another def"); 1109 1110 if (DefIdx < TiedMax) 1111 UseMO.TiedTo = DefIdx + 1; 1112 else { 1113 // Inline asm can use the group descriptors to find tied operands, 1114 // statepoint tied operands are trivial to match (1-1 reg def with reg use), 1115 // but on normal instruction, the tied def must be within the first TiedMax 1116 // operands. 1117 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && 1118 "DefIdx out of range"); 1119 UseMO.TiedTo = TiedMax; 1120 } 1121 1122 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). 1123 DefMO.TiedTo = std::min(UseIdx + 1, TiedMax); 1124 } 1125 1126 /// Given the index of a tied register operand, find the operand it is tied to. 1127 /// Defs are tied to uses and vice versa. Returns the index of the tied operand 1128 /// which must exist. 1129 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { 1130 const MachineOperand &MO = getOperand(OpIdx); 1131 assert(MO.isTied() && "Operand isn't tied"); 1132 1133 // Normally TiedTo is in range. 1134 if (MO.TiedTo < TiedMax) 1135 return MO.TiedTo - 1; 1136 1137 // Uses on normal instructions can be out of range. 1138 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { 1139 // Normal tied defs must be in the 0..TiedMax-1 range. 1140 if (MO.isUse()) 1141 return TiedMax - 1; 1142 // MO is a def. Search for the tied use. 1143 for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { 1144 const MachineOperand &UseMO = getOperand(i); 1145 if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) 1146 return i; 1147 } 1148 llvm_unreachable("Can't find tied use"); 1149 } 1150 1151 if (getOpcode() == TargetOpcode::STATEPOINT) { 1152 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed 1153 // on registers. 1154 StatepointOpers SO(this); 1155 unsigned CurUseIdx = SO.getFirstGCPtrIdx(); 1156 assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied"); 1157 unsigned NumDefs = getNumDefs(); 1158 for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { 1159 while (!getOperand(CurUseIdx).isReg()) 1160 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1161 if (OpIdx == CurDefIdx) 1162 return CurUseIdx; 1163 if (OpIdx == CurUseIdx) 1164 return CurDefIdx; 1165 CurUseIdx = StackMaps::getNextMetaArgIdx(this, CurUseIdx); 1166 } 1167 llvm_unreachable("Can't find tied use"); 1168 } 1169 1170 // Now deal with inline asm by parsing the operand group descriptor flags. 1171 // Find the beginning of each operand group. 1172 SmallVector<unsigned, 8> GroupIdx; 1173 unsigned OpIdxGroup = ~0u; 1174 unsigned NumOps; 1175 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; 1176 i += NumOps) { 1177 const MachineOperand &FlagMO = getOperand(i); 1178 assert(FlagMO.isImm() && "Invalid tied operand on inline asm"); 1179 unsigned CurGroup = GroupIdx.size(); 1180 GroupIdx.push_back(i); 1181 NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm()); 1182 // OpIdx belongs to this operand group. 1183 if (OpIdx > i && OpIdx < i + NumOps) 1184 OpIdxGroup = CurGroup; 1185 unsigned TiedGroup; 1186 if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup)) 1187 continue; 1188 // Operands in this group are tied to operands in TiedGroup which must be 1189 // earlier. Find the number of operands between the two groups. 1190 unsigned Delta = i - GroupIdx[TiedGroup]; 1191 1192 // OpIdx is a use tied to TiedGroup. 1193 if (OpIdxGroup == CurGroup) 1194 return OpIdx - Delta; 1195 1196 // OpIdx is a def tied to this use group. 1197 if (OpIdxGroup == TiedGroup) 1198 return OpIdx + Delta; 1199 } 1200 llvm_unreachable("Invalid tied operand on inline asm"); 1201 } 1202 1203 /// clearKillInfo - Clears kill flags on all operands. 1204 /// 1205 void MachineInstr::clearKillInfo() { 1206 for (MachineOperand &MO : operands()) { 1207 if (MO.isReg() && MO.isUse()) 1208 MO.setIsKill(false); 1209 } 1210 } 1211 1212 void MachineInstr::substituteRegister(Register FromReg, Register ToReg, 1213 unsigned SubIdx, 1214 const TargetRegisterInfo &RegInfo) { 1215 if (Register::isPhysicalRegister(ToReg)) { 1216 if (SubIdx) 1217 ToReg = RegInfo.getSubReg(ToReg, SubIdx); 1218 for (MachineOperand &MO : operands()) { 1219 if (!MO.isReg() || MO.getReg() != FromReg) 1220 continue; 1221 MO.substPhysReg(ToReg, RegInfo); 1222 } 1223 } else { 1224 for (MachineOperand &MO : operands()) { 1225 if (!MO.isReg() || MO.getReg() != FromReg) 1226 continue; 1227 MO.substVirtReg(ToReg, SubIdx, RegInfo); 1228 } 1229 } 1230 } 1231 1232 /// isSafeToMove - Return true if it is safe to move this instruction. If 1233 /// SawStore is set to true, it means that there is a store (or call) between 1234 /// the instruction's location and its intended destination. 1235 bool MachineInstr::isSafeToMove(AAResults *AA, bool &SawStore) const { 1236 // Ignore stuff that we obviously can't move. 1237 // 1238 // Treat volatile loads as stores. This is not strictly necessary for 1239 // volatiles, but it is required for atomic loads. It is not allowed to move 1240 // a load across an atomic load with Ordering > Monotonic. 1241 if (mayStore() || isCall() || isPHI() || 1242 (mayLoad() && hasOrderedMemoryRef())) { 1243 SawStore = true; 1244 return false; 1245 } 1246 1247 if (isPosition() || isDebugInstr() || isTerminator() || 1248 mayRaiseFPException() || hasUnmodeledSideEffects()) 1249 return false; 1250 1251 // See if this instruction does a load. If so, we have to guarantee that the 1252 // loaded value doesn't change between the load and the its intended 1253 // destination. The check for isInvariantLoad gives the target the chance to 1254 // classify the load as always returning a constant, e.g. a constant pool 1255 // load. 1256 if (mayLoad() && !isDereferenceableInvariantLoad(AA)) 1257 // Otherwise, this is a real load. If there is a store between the load and 1258 // end of block, we can't move it. 1259 return !SawStore; 1260 1261 return true; 1262 } 1263 1264 static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, AAResults *AA, 1265 bool UseTBAA, const MachineMemOperand *MMOa, 1266 const MachineMemOperand *MMOb) { 1267 // The following interface to AA is fashioned after DAGCombiner::isAlias and 1268 // operates with MachineMemOperand offset with some important assumptions: 1269 // - LLVM fundamentally assumes flat address spaces. 1270 // - MachineOperand offset can *only* result from legalization and cannot 1271 // affect queries other than the trivial case of overlap checking. 1272 // - These offsets never wrap and never step outside of allocated objects. 1273 // - There should never be any negative offsets here. 1274 // 1275 // FIXME: Modify API to hide this math from "user" 1276 // Even before we go to AA we can reason locally about some memory objects. It 1277 // can save compile time, and possibly catch some corner cases not currently 1278 // covered. 1279 1280 int64_t OffsetA = MMOa->getOffset(); 1281 int64_t OffsetB = MMOb->getOffset(); 1282 int64_t MinOffset = std::min(OffsetA, OffsetB); 1283 1284 uint64_t WidthA = MMOa->getSize(); 1285 uint64_t WidthB = MMOb->getSize(); 1286 bool KnownWidthA = WidthA != MemoryLocation::UnknownSize; 1287 bool KnownWidthB = WidthB != MemoryLocation::UnknownSize; 1288 1289 const Value *ValA = MMOa->getValue(); 1290 const Value *ValB = MMOb->getValue(); 1291 bool SameVal = (ValA && ValB && (ValA == ValB)); 1292 if (!SameVal) { 1293 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1294 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1295 if (PSVa && ValB && !PSVa->mayAlias(&MFI)) 1296 return false; 1297 if (PSVb && ValA && !PSVb->mayAlias(&MFI)) 1298 return false; 1299 if (PSVa && PSVb && (PSVa == PSVb)) 1300 SameVal = true; 1301 } 1302 1303 if (SameVal) { 1304 if (!KnownWidthA || !KnownWidthB) 1305 return true; 1306 int64_t MaxOffset = std::max(OffsetA, OffsetB); 1307 int64_t LowWidth = (MinOffset == OffsetA) ? WidthA : WidthB; 1308 return (MinOffset + LowWidth > MaxOffset); 1309 } 1310 1311 if (!AA) 1312 return true; 1313 1314 if (!ValA || !ValB) 1315 return true; 1316 1317 assert((OffsetA >= 0) && "Negative MachineMemOperand offset"); 1318 assert((OffsetB >= 0) && "Negative MachineMemOperand offset"); 1319 1320 int64_t OverlapA = 1321 KnownWidthA ? WidthA + OffsetA - MinOffset : MemoryLocation::UnknownSize; 1322 int64_t OverlapB = 1323 KnownWidthB ? WidthB + OffsetB - MinOffset : MemoryLocation::UnknownSize; 1324 1325 return !AA->isNoAlias( 1326 MemoryLocation(ValA, OverlapA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), 1327 MemoryLocation(ValB, OverlapB, 1328 UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); 1329 } 1330 1331 bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, 1332 bool UseTBAA) const { 1333 const MachineFunction *MF = getMF(); 1334 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1335 const MachineFrameInfo &MFI = MF->getFrameInfo(); 1336 1337 // Exclude call instruction which may alter the memory but can not be handled 1338 // by this function. 1339 if (isCall() || Other.isCall()) 1340 return true; 1341 1342 // If neither instruction stores to memory, they can't alias in any 1343 // meaningful way, even if they read from the same address. 1344 if (!mayStore() && !Other.mayStore()) 1345 return false; 1346 1347 // Both instructions must be memory operations to be able to alias. 1348 if (!mayLoadOrStore() || !Other.mayLoadOrStore()) 1349 return false; 1350 1351 // Let the target decide if memory accesses cannot possibly overlap. 1352 if (TII->areMemAccessesTriviallyDisjoint(*this, Other)) 1353 return false; 1354 1355 // Memory operations without memory operands may access anything. Be 1356 // conservative and assume `MayAlias`. 1357 if (memoperands_empty() || Other.memoperands_empty()) 1358 return true; 1359 1360 // Skip if there are too many memory operands. 1361 auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); 1362 if (NumChecks > TII->getMemOperandAACheckLimit()) 1363 return true; 1364 1365 // Check each pair of memory operands from both instructions, which can't 1366 // alias only if all pairs won't alias. 1367 for (auto *MMOa : memoperands()) 1368 for (auto *MMOb : Other.memoperands()) 1369 if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) 1370 return true; 1371 1372 return false; 1373 } 1374 1375 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered 1376 /// or volatile memory reference, or if the information describing the memory 1377 /// reference is not available. Return false if it is known to have no ordered 1378 /// memory references. 1379 bool MachineInstr::hasOrderedMemoryRef() const { 1380 // An instruction known never to access memory won't have a volatile access. 1381 if (!mayStore() && 1382 !mayLoad() && 1383 !isCall() && 1384 !hasUnmodeledSideEffects()) 1385 return false; 1386 1387 // Otherwise, if the instruction has no memory reference information, 1388 // conservatively assume it wasn't preserved. 1389 if (memoperands_empty()) 1390 return true; 1391 1392 // Check if any of our memory operands are ordered. 1393 return llvm::any_of(memoperands(), [](const MachineMemOperand *MMO) { 1394 return !MMO->isUnordered(); 1395 }); 1396 } 1397 1398 /// isDereferenceableInvariantLoad - Return true if this instruction will never 1399 /// trap and is loading from a location whose value is invariant across a run of 1400 /// this function. 1401 bool MachineInstr::isDereferenceableInvariantLoad(AAResults *AA) const { 1402 // If the instruction doesn't load at all, it isn't an invariant load. 1403 if (!mayLoad()) 1404 return false; 1405 1406 // If the instruction has lost its memoperands, conservatively assume that 1407 // it may not be an invariant load. 1408 if (memoperands_empty()) 1409 return false; 1410 1411 const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); 1412 1413 for (MachineMemOperand *MMO : memoperands()) { 1414 if (!MMO->isUnordered()) 1415 // If the memory operand has ordering side effects, we can't move the 1416 // instruction. Such an instruction is technically an invariant load, 1417 // but the caller code would need updated to expect that. 1418 return false; 1419 if (MMO->isStore()) return false; 1420 if (MMO->isInvariant() && MMO->isDereferenceable()) 1421 continue; 1422 1423 // A load from a constant PseudoSourceValue is invariant. 1424 if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) 1425 if (PSV->isConstant(&MFI)) 1426 continue; 1427 1428 if (const Value *V = MMO->getValue()) { 1429 // If we have an AliasAnalysis, ask it whether the memory is constant. 1430 if (AA && 1431 AA->pointsToConstantMemory( 1432 MemoryLocation(V, MMO->getSize(), MMO->getAAInfo()))) 1433 continue; 1434 } 1435 1436 // Otherwise assume conservatively. 1437 return false; 1438 } 1439 1440 // Everything checks out. 1441 return true; 1442 } 1443 1444 /// isConstantValuePHI - If the specified instruction is a PHI that always 1445 /// merges together the same virtual register, return the register, otherwise 1446 /// return 0. 1447 unsigned MachineInstr::isConstantValuePHI() const { 1448 if (!isPHI()) 1449 return 0; 1450 assert(getNumOperands() >= 3 && 1451 "It's illegal to have a PHI without source operands"); 1452 1453 Register Reg = getOperand(1).getReg(); 1454 for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) 1455 if (getOperand(i).getReg() != Reg) 1456 return 0; 1457 return Reg; 1458 } 1459 1460 bool MachineInstr::hasUnmodeledSideEffects() const { 1461 if (hasProperty(MCID::UnmodeledSideEffects)) 1462 return true; 1463 if (isInlineAsm()) { 1464 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1465 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1466 return true; 1467 } 1468 1469 return false; 1470 } 1471 1472 bool MachineInstr::isLoadFoldBarrier() const { 1473 return mayStore() || isCall() || 1474 (hasUnmodeledSideEffects() && !isPseudoProbe()); 1475 } 1476 1477 /// allDefsAreDead - Return true if all the defs of this instruction are dead. 1478 /// 1479 bool MachineInstr::allDefsAreDead() const { 1480 for (const MachineOperand &MO : operands()) { 1481 if (!MO.isReg() || MO.isUse()) 1482 continue; 1483 if (!MO.isDead()) 1484 return false; 1485 } 1486 return true; 1487 } 1488 1489 /// copyImplicitOps - Copy implicit register operands from specified 1490 /// instruction to this instruction. 1491 void MachineInstr::copyImplicitOps(MachineFunction &MF, 1492 const MachineInstr &MI) { 1493 for (const MachineOperand &MO : 1494 llvm::drop_begin(MI.operands(), MI.getDesc().getNumOperands())) 1495 if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) 1496 addOperand(MF, MO); 1497 } 1498 1499 bool MachineInstr::hasComplexRegisterTies() const { 1500 const MCInstrDesc &MCID = getDesc(); 1501 if (MCID.Opcode == TargetOpcode::STATEPOINT) 1502 return true; 1503 for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { 1504 const auto &Operand = getOperand(I); 1505 if (!Operand.isReg() || Operand.isDef()) 1506 // Ignore the defined registers as MCID marks only the uses as tied. 1507 continue; 1508 int ExpectedTiedIdx = MCID.getOperandConstraint(I, MCOI::TIED_TO); 1509 int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(I)) : -1; 1510 if (ExpectedTiedIdx != TiedIdx) 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1517 const MachineRegisterInfo &MRI) const { 1518 const MachineOperand &Op = getOperand(OpIdx); 1519 if (!Op.isReg()) 1520 return LLT{}; 1521 1522 if (isVariadic() || OpIdx >= getNumExplicitOperands()) 1523 return MRI.getType(Op.getReg()); 1524 1525 auto &OpInfo = getDesc().OpInfo[OpIdx]; 1526 if (!OpInfo.isGenericType()) 1527 return MRI.getType(Op.getReg()); 1528 1529 if (PrintedTypes[OpInfo.getGenericTypeIndex()]) 1530 return LLT{}; 1531 1532 LLT TypeToPrint = MRI.getType(Op.getReg()); 1533 // Don't mark the type index printed if it wasn't actually printed: maybe 1534 // another operand with the same type index has an actual type attached: 1535 if (TypeToPrint.isValid()) 1536 PrintedTypes.set(OpInfo.getGenericTypeIndex()); 1537 return TypeToPrint; 1538 } 1539 1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1541 LLVM_DUMP_METHOD void MachineInstr::dump() const { 1542 dbgs() << " "; 1543 print(dbgs()); 1544 } 1545 1546 LLVM_DUMP_METHOD void MachineInstr::dumprImpl( 1547 const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, 1548 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { 1549 if (Depth >= MaxDepth) 1550 return; 1551 if (!AlreadySeenInstrs.insert(this).second) 1552 return; 1553 // PadToColumn always inserts at least one space. 1554 // Don't mess up the alignment if we don't want any space. 1555 if (Depth) 1556 fdbgs().PadToColumn(Depth * 2); 1557 print(fdbgs()); 1558 for (const MachineOperand &MO : operands()) { 1559 if (!MO.isReg() || MO.isDef()) 1560 continue; 1561 Register Reg = MO.getReg(); 1562 if (Reg.isPhysical()) 1563 continue; 1564 const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); 1565 if (NewMI == nullptr) 1566 continue; 1567 NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); 1568 } 1569 } 1570 1571 LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, 1572 unsigned MaxDepth) const { 1573 SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; 1574 dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); 1575 } 1576 #endif 1577 1578 void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, 1579 bool SkipDebugLoc, bool AddNewLine, 1580 const TargetInstrInfo *TII) const { 1581 const Module *M = nullptr; 1582 const Function *F = nullptr; 1583 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1584 F = &MF->getFunction(); 1585 M = F->getParent(); 1586 if (!TII) 1587 TII = MF->getSubtarget().getInstrInfo(); 1588 } 1589 1590 ModuleSlotTracker MST(M); 1591 if (F) 1592 MST.incorporateFunction(*F); 1593 print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); 1594 } 1595 1596 void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, 1597 bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, 1598 bool AddNewLine, const TargetInstrInfo *TII) const { 1599 // We can be a bit tidier if we know the MachineFunction. 1600 const TargetRegisterInfo *TRI = nullptr; 1601 const MachineRegisterInfo *MRI = nullptr; 1602 const TargetIntrinsicInfo *IntrinsicInfo = nullptr; 1603 tryToGetTargetInfo(*this, TRI, MRI, IntrinsicInfo, TII); 1604 1605 if (isCFIInstruction()) 1606 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction"); 1607 1608 SmallBitVector PrintedTypes(8); 1609 bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); 1610 auto getTiedOperandIdx = [&](unsigned OpIdx) { 1611 if (!ShouldPrintRegisterTies) 1612 return 0U; 1613 const MachineOperand &MO = getOperand(OpIdx); 1614 if (MO.isReg() && MO.isTied() && !MO.isDef()) 1615 return findTiedOperandIdx(OpIdx); 1616 return 0U; 1617 }; 1618 unsigned StartOp = 0; 1619 unsigned e = getNumOperands(); 1620 1621 // Print explicitly defined operands on the left of an assignment syntax. 1622 while (StartOp < e) { 1623 const MachineOperand &MO = getOperand(StartOp); 1624 if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) 1625 break; 1626 1627 if (StartOp != 0) 1628 OS << ", "; 1629 1630 LLT TypeToPrint = MRI ? getTypeToPrint(StartOp, PrintedTypes, *MRI) : LLT{}; 1631 unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); 1632 MO.print(OS, MST, TypeToPrint, StartOp, /*PrintDef=*/false, IsStandalone, 1633 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1634 ++StartOp; 1635 } 1636 1637 if (StartOp != 0) 1638 OS << " = "; 1639 1640 if (getFlag(MachineInstr::FrameSetup)) 1641 OS << "frame-setup "; 1642 if (getFlag(MachineInstr::FrameDestroy)) 1643 OS << "frame-destroy "; 1644 if (getFlag(MachineInstr::FmNoNans)) 1645 OS << "nnan "; 1646 if (getFlag(MachineInstr::FmNoInfs)) 1647 OS << "ninf "; 1648 if (getFlag(MachineInstr::FmNsz)) 1649 OS << "nsz "; 1650 if (getFlag(MachineInstr::FmArcp)) 1651 OS << "arcp "; 1652 if (getFlag(MachineInstr::FmContract)) 1653 OS << "contract "; 1654 if (getFlag(MachineInstr::FmAfn)) 1655 OS << "afn "; 1656 if (getFlag(MachineInstr::FmReassoc)) 1657 OS << "reassoc "; 1658 if (getFlag(MachineInstr::NoUWrap)) 1659 OS << "nuw "; 1660 if (getFlag(MachineInstr::NoSWrap)) 1661 OS << "nsw "; 1662 if (getFlag(MachineInstr::IsExact)) 1663 OS << "exact "; 1664 if (getFlag(MachineInstr::NoFPExcept)) 1665 OS << "nofpexcept "; 1666 if (getFlag(MachineInstr::NoMerge)) 1667 OS << "nomerge "; 1668 1669 // Print the opcode name. 1670 if (TII) 1671 OS << TII->getName(getOpcode()); 1672 else 1673 OS << "UNKNOWN"; 1674 1675 if (SkipOpers) 1676 return; 1677 1678 // Print the rest of the operands. 1679 bool FirstOp = true; 1680 unsigned AsmDescOp = ~0u; 1681 unsigned AsmOpCount = 0; 1682 1683 if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { 1684 // Print asm string. 1685 OS << " "; 1686 const unsigned OpIdx = InlineAsm::MIOp_AsmString; 1687 LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, *MRI) : LLT{}; 1688 unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); 1689 getOperand(OpIdx).print(OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, IsStandalone, 1690 ShouldPrintRegisterTies, TiedOperandIdx, TRI, 1691 IntrinsicInfo); 1692 1693 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack 1694 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 1695 if (ExtraInfo & InlineAsm::Extra_HasSideEffects) 1696 OS << " [sideeffect]"; 1697 if (ExtraInfo & InlineAsm::Extra_MayLoad) 1698 OS << " [mayload]"; 1699 if (ExtraInfo & InlineAsm::Extra_MayStore) 1700 OS << " [maystore]"; 1701 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 1702 OS << " [isconvergent]"; 1703 if (ExtraInfo & InlineAsm::Extra_IsAlignStack) 1704 OS << " [alignstack]"; 1705 if (getInlineAsmDialect() == InlineAsm::AD_ATT) 1706 OS << " [attdialect]"; 1707 if (getInlineAsmDialect() == InlineAsm::AD_Intel) 1708 OS << " [inteldialect]"; 1709 1710 StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; 1711 FirstOp = false; 1712 } 1713 1714 for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { 1715 const MachineOperand &MO = getOperand(i); 1716 1717 if (FirstOp) FirstOp = false; else OS << ","; 1718 OS << " "; 1719 1720 if (isDebugValue() && MO.isMetadata()) { 1721 // Pretty print DBG_VALUE* instructions. 1722 auto *DIV = dyn_cast<DILocalVariable>(MO.getMetadata()); 1723 if (DIV && !DIV->getName().empty()) 1724 OS << "!\"" << DIV->getName() << '\"'; 1725 else { 1726 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1727 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1728 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1729 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1730 } 1731 } else if (isDebugLabel() && MO.isMetadata()) { 1732 // Pretty print DBG_LABEL instructions. 1733 auto *DIL = dyn_cast<DILabel>(MO.getMetadata()); 1734 if (DIL && !DIL->getName().empty()) 1735 OS << "\"" << DIL->getName() << '\"'; 1736 else { 1737 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1738 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1739 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1740 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1741 } 1742 } else if (i == AsmDescOp && MO.isImm()) { 1743 // Pretty print the inline asm operand descriptor. 1744 OS << '$' << AsmOpCount++; 1745 unsigned Flag = MO.getImm(); 1746 OS << ":["; 1747 OS << InlineAsm::getKindName(InlineAsm::getKind(Flag)); 1748 1749 unsigned RCID = 0; 1750 if (!InlineAsm::isImmKind(Flag) && !InlineAsm::isMemKind(Flag) && 1751 InlineAsm::hasRegClassConstraint(Flag, RCID)) { 1752 if (TRI) { 1753 OS << ':' << TRI->getRegClassName(TRI->getRegClass(RCID)); 1754 } else 1755 OS << ":RC" << RCID; 1756 } 1757 1758 if (InlineAsm::isMemKind(Flag)) { 1759 unsigned MCID = InlineAsm::getMemoryConstraintID(Flag); 1760 OS << ":" << InlineAsm::getMemConstraintName(MCID); 1761 } 1762 1763 unsigned TiedTo = 0; 1764 if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo)) 1765 OS << " tiedto:$" << TiedTo; 1766 1767 OS << ']'; 1768 1769 // Compute the index of the next operand descriptor. 1770 AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag); 1771 } else { 1772 LLT TypeToPrint = MRI ? getTypeToPrint(i, PrintedTypes, *MRI) : LLT{}; 1773 unsigned TiedOperandIdx = getTiedOperandIdx(i); 1774 if (MO.isImm() && isOperandSubregIdx(i)) 1775 MachineOperand::printSubRegIdx(OS, MO.getImm(), TRI); 1776 else 1777 MO.print(OS, MST, TypeToPrint, i, /*PrintDef=*/true, IsStandalone, 1778 ShouldPrintRegisterTies, TiedOperandIdx, TRI, IntrinsicInfo); 1779 } 1780 } 1781 1782 // Print any optional symbols attached to this instruction as-if they were 1783 // operands. 1784 if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { 1785 if (!FirstOp) { 1786 FirstOp = false; 1787 OS << ','; 1788 } 1789 OS << " pre-instr-symbol "; 1790 MachineOperand::printSymbol(OS, *PreInstrSymbol); 1791 } 1792 if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { 1793 if (!FirstOp) { 1794 FirstOp = false; 1795 OS << ','; 1796 } 1797 OS << " post-instr-symbol "; 1798 MachineOperand::printSymbol(OS, *PostInstrSymbol); 1799 } 1800 if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { 1801 if (!FirstOp) { 1802 FirstOp = false; 1803 OS << ','; 1804 } 1805 OS << " heap-alloc-marker "; 1806 HeapAllocMarker->printAsOperand(OS, MST); 1807 } 1808 1809 if (DebugInstrNum) { 1810 if (!FirstOp) 1811 OS << ","; 1812 OS << " debug-instr-number " << DebugInstrNum; 1813 } 1814 1815 if (!SkipDebugLoc) { 1816 if (const DebugLoc &DL = getDebugLoc()) { 1817 if (!FirstOp) 1818 OS << ','; 1819 OS << " debug-location "; 1820 DL->printAsOperand(OS, MST); 1821 } 1822 } 1823 1824 if (!memoperands_empty()) { 1825 SmallVector<StringRef, 0> SSNs; 1826 const LLVMContext *Context = nullptr; 1827 std::unique_ptr<LLVMContext> CtxPtr; 1828 const MachineFrameInfo *MFI = nullptr; 1829 if (const MachineFunction *MF = getMFIfAvailable(*this)) { 1830 MFI = &MF->getFrameInfo(); 1831 Context = &MF->getFunction().getContext(); 1832 } else { 1833 CtxPtr = std::make_unique<LLVMContext>(); 1834 Context = CtxPtr.get(); 1835 } 1836 1837 OS << " :: "; 1838 bool NeedComma = false; 1839 for (const MachineMemOperand *Op : memoperands()) { 1840 if (NeedComma) 1841 OS << ", "; 1842 Op->print(OS, MST, SSNs, *Context, MFI, TII); 1843 NeedComma = true; 1844 } 1845 } 1846 1847 if (SkipDebugLoc) 1848 return; 1849 1850 bool HaveSemi = false; 1851 1852 // Print debug location information. 1853 if (const DebugLoc &DL = getDebugLoc()) { 1854 if (!HaveSemi) { 1855 OS << ';'; 1856 HaveSemi = true; 1857 } 1858 OS << ' '; 1859 DL.print(OS); 1860 } 1861 1862 // Print extra comments for DEBUG_VALUE. 1863 if (isDebugValue() && getDebugVariableOp().isMetadata()) { 1864 if (!HaveSemi) { 1865 OS << ";"; 1866 HaveSemi = true; 1867 } 1868 auto *DV = getDebugVariable(); 1869 OS << " line no:" << DV->getLine(); 1870 if (isIndirectDebugValue()) 1871 OS << " indirect"; 1872 } 1873 // TODO: DBG_LABEL 1874 1875 if (AddNewLine) 1876 OS << '\n'; 1877 } 1878 1879 bool MachineInstr::addRegisterKilled(Register IncomingReg, 1880 const TargetRegisterInfo *RegInfo, 1881 bool AddIfNotFound) { 1882 bool isPhysReg = Register::isPhysicalRegister(IncomingReg); 1883 bool hasAliases = isPhysReg && 1884 MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); 1885 bool Found = false; 1886 SmallVector<unsigned,4> DeadOps; 1887 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1888 MachineOperand &MO = getOperand(i); 1889 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) 1890 continue; 1891 1892 // DEBUG_VALUE nodes do not contribute to code generation and should 1893 // always be ignored. Failure to do so may result in trying to modify 1894 // KILL flags on DEBUG_VALUE nodes. 1895 if (MO.isDebug()) 1896 continue; 1897 1898 Register Reg = MO.getReg(); 1899 if (!Reg) 1900 continue; 1901 1902 if (Reg == IncomingReg) { 1903 if (!Found) { 1904 if (MO.isKill()) 1905 // The register is already marked kill. 1906 return true; 1907 if (isPhysReg && isRegTiedToDefOperand(i)) 1908 // Two-address uses of physregs must not be marked kill. 1909 return true; 1910 MO.setIsKill(); 1911 Found = true; 1912 } 1913 } else if (hasAliases && MO.isKill() && Register::isPhysicalRegister(Reg)) { 1914 // A super-register kill already exists. 1915 if (RegInfo->isSuperRegister(IncomingReg, Reg)) 1916 return true; 1917 if (RegInfo->isSubRegister(IncomingReg, Reg)) 1918 DeadOps.push_back(i); 1919 } 1920 } 1921 1922 // Trim unneeded kill operands. 1923 while (!DeadOps.empty()) { 1924 unsigned OpIdx = DeadOps.back(); 1925 if (getOperand(OpIdx).isImplicit() && 1926 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1927 RemoveOperand(OpIdx); 1928 else 1929 getOperand(OpIdx).setIsKill(false); 1930 DeadOps.pop_back(); 1931 } 1932 1933 // If not found, this means an alias of one of the operands is killed. Add a 1934 // new implicit operand if required. 1935 if (!Found && AddIfNotFound) { 1936 addOperand(MachineOperand::CreateReg(IncomingReg, 1937 false /*IsDef*/, 1938 true /*IsImp*/, 1939 true /*IsKill*/)); 1940 return true; 1941 } 1942 return Found; 1943 } 1944 1945 void MachineInstr::clearRegisterKills(Register Reg, 1946 const TargetRegisterInfo *RegInfo) { 1947 if (!Register::isPhysicalRegister(Reg)) 1948 RegInfo = nullptr; 1949 for (MachineOperand &MO : operands()) { 1950 if (!MO.isReg() || !MO.isUse() || !MO.isKill()) 1951 continue; 1952 Register OpReg = MO.getReg(); 1953 if ((RegInfo && RegInfo->regsOverlap(Reg, OpReg)) || Reg == OpReg) 1954 MO.setIsKill(false); 1955 } 1956 } 1957 1958 bool MachineInstr::addRegisterDead(Register Reg, 1959 const TargetRegisterInfo *RegInfo, 1960 bool AddIfNotFound) { 1961 bool isPhysReg = Register::isPhysicalRegister(Reg); 1962 bool hasAliases = isPhysReg && 1963 MCRegAliasIterator(Reg, RegInfo, false).isValid(); 1964 bool Found = false; 1965 SmallVector<unsigned,4> DeadOps; 1966 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { 1967 MachineOperand &MO = getOperand(i); 1968 if (!MO.isReg() || !MO.isDef()) 1969 continue; 1970 Register MOReg = MO.getReg(); 1971 if (!MOReg) 1972 continue; 1973 1974 if (MOReg == Reg) { 1975 MO.setIsDead(); 1976 Found = true; 1977 } else if (hasAliases && MO.isDead() && 1978 Register::isPhysicalRegister(MOReg)) { 1979 // There exists a super-register that's marked dead. 1980 if (RegInfo->isSuperRegister(Reg, MOReg)) 1981 return true; 1982 if (RegInfo->isSubRegister(Reg, MOReg)) 1983 DeadOps.push_back(i); 1984 } 1985 } 1986 1987 // Trim unneeded dead operands. 1988 while (!DeadOps.empty()) { 1989 unsigned OpIdx = DeadOps.back(); 1990 if (getOperand(OpIdx).isImplicit() && 1991 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) 1992 RemoveOperand(OpIdx); 1993 else 1994 getOperand(OpIdx).setIsDead(false); 1995 DeadOps.pop_back(); 1996 } 1997 1998 // If not found, this means an alias of one of the operands is dead. Add a 1999 // new implicit operand if required. 2000 if (Found || !AddIfNotFound) 2001 return Found; 2002 2003 addOperand(MachineOperand::CreateReg(Reg, 2004 true /*IsDef*/, 2005 true /*IsImp*/, 2006 false /*IsKill*/, 2007 true /*IsDead*/)); 2008 return true; 2009 } 2010 2011 void MachineInstr::clearRegisterDeads(Register Reg) { 2012 for (MachineOperand &MO : operands()) { 2013 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg) 2014 continue; 2015 MO.setIsDead(false); 2016 } 2017 } 2018 2019 void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { 2020 for (MachineOperand &MO : operands()) { 2021 if (!MO.isReg() || !MO.isDef() || MO.getReg() != Reg || MO.getSubReg() == 0) 2022 continue; 2023 MO.setIsUndef(IsUndef); 2024 } 2025 } 2026 2027 void MachineInstr::addRegisterDefined(Register Reg, 2028 const TargetRegisterInfo *RegInfo) { 2029 if (Register::isPhysicalRegister(Reg)) { 2030 MachineOperand *MO = findRegisterDefOperand(Reg, false, false, RegInfo); 2031 if (MO) 2032 return; 2033 } else { 2034 for (const MachineOperand &MO : operands()) { 2035 if (MO.isReg() && MO.getReg() == Reg && MO.isDef() && 2036 MO.getSubReg() == 0) 2037 return; 2038 } 2039 } 2040 addOperand(MachineOperand::CreateReg(Reg, 2041 true /*IsDef*/, 2042 true /*IsImp*/)); 2043 } 2044 2045 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 2046 const TargetRegisterInfo &TRI) { 2047 bool HasRegMask = false; 2048 for (MachineOperand &MO : operands()) { 2049 if (MO.isRegMask()) { 2050 HasRegMask = true; 2051 continue; 2052 } 2053 if (!MO.isReg() || !MO.isDef()) continue; 2054 Register Reg = MO.getReg(); 2055 if (!Reg.isPhysical()) 2056 continue; 2057 // If there are no uses, including partial uses, the def is dead. 2058 if (llvm::none_of(UsedRegs, 2059 [&](MCRegister Use) { return TRI.regsOverlap(Use, Reg); })) 2060 MO.setIsDead(); 2061 } 2062 2063 // This is a call with a register mask operand. 2064 // Mask clobbers are always dead, so add defs for the non-dead defines. 2065 if (HasRegMask) 2066 for (const Register &UsedReg : UsedRegs) 2067 addRegisterDefined(UsedReg, &TRI); 2068 } 2069 2070 unsigned 2071 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { 2072 // Build up a buffer of hash code components. 2073 SmallVector<size_t, 16> HashComponents; 2074 HashComponents.reserve(MI->getNumOperands() + 1); 2075 HashComponents.push_back(MI->getOpcode()); 2076 for (const MachineOperand &MO : MI->operands()) { 2077 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg())) 2078 continue; // Skip virtual register defs. 2079 2080 HashComponents.push_back(hash_value(MO)); 2081 } 2082 return hash_combine_range(HashComponents.begin(), HashComponents.end()); 2083 } 2084 2085 void MachineInstr::emitError(StringRef Msg) const { 2086 // Find the source location cookie. 2087 uint64_t LocCookie = 0; 2088 const MDNode *LocMD = nullptr; 2089 for (unsigned i = getNumOperands(); i != 0; --i) { 2090 if (getOperand(i-1).isMetadata() && 2091 (LocMD = getOperand(i-1).getMetadata()) && 2092 LocMD->getNumOperands() != 0) { 2093 if (const ConstantInt *CI = 2094 mdconst::dyn_extract<ConstantInt>(LocMD->getOperand(0))) { 2095 LocCookie = CI->getZExtValue(); 2096 break; 2097 } 2098 } 2099 } 2100 2101 if (const MachineBasicBlock *MBB = getParent()) 2102 if (const MachineFunction *MF = MBB->getParent()) 2103 return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg); 2104 report_fatal_error(Msg); 2105 } 2106 2107 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2108 const MCInstrDesc &MCID, bool IsIndirect, 2109 Register Reg, const MDNode *Variable, 2110 const MDNode *Expr) { 2111 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2112 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2113 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2114 "Expected inlined-at fields to agree"); 2115 auto MIB = BuildMI(MF, DL, MCID).addReg(Reg); 2116 if (IsIndirect) 2117 MIB.addImm(0U); 2118 else 2119 MIB.addReg(0U); 2120 return MIB.addMetadata(Variable).addMetadata(Expr); 2121 } 2122 2123 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2124 const MCInstrDesc &MCID, bool IsIndirect, 2125 const MachineOperand &MO, 2126 const MDNode *Variable, const MDNode *Expr) { 2127 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2128 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2129 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2130 "Expected inlined-at fields to agree"); 2131 if (MO.isReg()) 2132 return BuildMI(MF, DL, MCID, IsIndirect, MO.getReg(), Variable, Expr); 2133 2134 auto MIB = BuildMI(MF, DL, MCID).add(MO); 2135 if (IsIndirect) 2136 MIB.addImm(0U); 2137 else 2138 MIB.addReg(0U); 2139 return MIB.addMetadata(Variable).addMetadata(Expr); 2140 } 2141 2142 MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, 2143 const MCInstrDesc &MCID, bool IsIndirect, 2144 ArrayRef<MachineOperand> MOs, 2145 const MDNode *Variable, const MDNode *Expr) { 2146 assert(isa<DILocalVariable>(Variable) && "not a variable"); 2147 assert(cast<DIExpression>(Expr)->isValid() && "not an expression"); 2148 assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && 2149 "Expected inlined-at fields to agree"); 2150 if (MCID.Opcode == TargetOpcode::DBG_VALUE) 2151 return BuildMI(MF, DL, MCID, IsIndirect, MOs[0], Variable, Expr); 2152 2153 auto MIB = BuildMI(MF, DL, MCID); 2154 MIB.addMetadata(Variable).addMetadata(Expr); 2155 for (const MachineOperand &MO : MOs) 2156 if (MO.isReg()) 2157 MIB.addReg(MO.getReg()); 2158 else 2159 MIB.add(MO); 2160 return MIB; 2161 } 2162 2163 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2164 MachineBasicBlock::iterator I, 2165 const DebugLoc &DL, const MCInstrDesc &MCID, 2166 bool IsIndirect, Register Reg, 2167 const MDNode *Variable, const MDNode *Expr) { 2168 MachineFunction &MF = *BB.getParent(); 2169 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); 2170 BB.insert(I, MI); 2171 return MachineInstrBuilder(MF, MI); 2172 } 2173 2174 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2175 MachineBasicBlock::iterator I, 2176 const DebugLoc &DL, const MCInstrDesc &MCID, 2177 bool IsIndirect, MachineOperand &MO, 2178 const MDNode *Variable, const MDNode *Expr) { 2179 MachineFunction &MF = *BB.getParent(); 2180 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MO, Variable, Expr); 2181 BB.insert(I, MI); 2182 return MachineInstrBuilder(MF, *MI); 2183 } 2184 2185 MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, 2186 MachineBasicBlock::iterator I, 2187 const DebugLoc &DL, const MCInstrDesc &MCID, 2188 bool IsIndirect, ArrayRef<MachineOperand> MOs, 2189 const MDNode *Variable, const MDNode *Expr) { 2190 MachineFunction &MF = *BB.getParent(); 2191 MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, MOs, Variable, Expr); 2192 BB.insert(I, MI); 2193 return MachineInstrBuilder(MF, *MI); 2194 } 2195 2196 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. 2197 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. 2198 static const DIExpression * 2199 computeExprForSpill(const MachineInstr &MI, 2200 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2201 assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && 2202 "Expected inlined-at fields to agree"); 2203 2204 const DIExpression *Expr = MI.getDebugExpression(); 2205 if (MI.isIndirectDebugValue()) { 2206 assert(MI.getDebugOffset().getImm() == 0 && 2207 "DBG_VALUE with nonzero offset"); 2208 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 2209 } else if (MI.isDebugValueList()) { 2210 // We will replace the spilled register with a frame index, so 2211 // immediately deref all references to the spilled register. 2212 std::array<uint64_t, 1> Ops{{dwarf::DW_OP_deref}}; 2213 for (const MachineOperand *Op : SpilledOperands) { 2214 unsigned OpIdx = MI.getDebugOperandIndex(Op); 2215 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx); 2216 } 2217 } 2218 return Expr; 2219 } 2220 static const DIExpression *computeExprForSpill(const MachineInstr &MI, 2221 Register SpillReg) { 2222 assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI."); 2223 SmallVector<const MachineOperand *> SpillOperands; 2224 for (const MachineOperand &Op : MI.getDebugOperandsForReg(SpillReg)) 2225 SpillOperands.push_back(&Op); 2226 return computeExprForSpill(MI, SpillOperands); 2227 } 2228 2229 MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, 2230 MachineBasicBlock::iterator I, 2231 const MachineInstr &Orig, 2232 int FrameIndex, Register SpillReg) { 2233 const DIExpression *Expr = computeExprForSpill(Orig, SpillReg); 2234 MachineInstrBuilder NewMI = 2235 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2236 // Non-Variadic Operands: Location, Offset, Variable, Expression 2237 // Variadic Operands: Variable, Expression, Locations... 2238 if (Orig.isNonListDebugValue()) 2239 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2240 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2241 if (Orig.isDebugValueList()) { 2242 for (const MachineOperand &Op : Orig.debug_operands()) 2243 if (Op.isReg() && Op.getReg() == SpillReg) 2244 NewMI.addFrameIndex(FrameIndex); 2245 else 2246 NewMI.add(MachineOperand(Op)); 2247 } 2248 return NewMI; 2249 } 2250 MachineInstr *llvm::buildDbgValueForSpill( 2251 MachineBasicBlock &BB, MachineBasicBlock::iterator I, 2252 const MachineInstr &Orig, int FrameIndex, 2253 SmallVectorImpl<const MachineOperand *> &SpilledOperands) { 2254 const DIExpression *Expr = computeExprForSpill(Orig, SpilledOperands); 2255 MachineInstrBuilder NewMI = 2256 BuildMI(BB, I, Orig.getDebugLoc(), Orig.getDesc()); 2257 // Non-Variadic Operands: Location, Offset, Variable, Expression 2258 // Variadic Operands: Variable, Expression, Locations... 2259 if (Orig.isNonListDebugValue()) 2260 NewMI.addFrameIndex(FrameIndex).addImm(0U); 2261 NewMI.addMetadata(Orig.getDebugVariable()).addMetadata(Expr); 2262 if (Orig.isDebugValueList()) { 2263 for (const MachineOperand &Op : Orig.debug_operands()) 2264 if (is_contained(SpilledOperands, &Op)) 2265 NewMI.addFrameIndex(FrameIndex); 2266 else 2267 NewMI.add(MachineOperand(Op)); 2268 } 2269 return NewMI; 2270 } 2271 2272 void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, 2273 Register Reg) { 2274 const DIExpression *Expr = computeExprForSpill(Orig, Reg); 2275 if (Orig.isNonListDebugValue()) 2276 Orig.getDebugOffset().ChangeToImmediate(0U); 2277 for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) 2278 Op.ChangeToFrameIndex(FrameIndex); 2279 Orig.getDebugExpressionOp().setMetadata(Expr); 2280 } 2281 2282 void MachineInstr::collectDebugValues( 2283 SmallVectorImpl<MachineInstr *> &DbgValues) { 2284 MachineInstr &MI = *this; 2285 if (!MI.getOperand(0).isReg()) 2286 return; 2287 2288 MachineBasicBlock::iterator DI = MI; ++DI; 2289 for (MachineBasicBlock::iterator DE = MI.getParent()->end(); 2290 DI != DE; ++DI) { 2291 if (!DI->isDebugValue()) 2292 return; 2293 if (DI->hasDebugOperandForReg(MI.getOperand(0).getReg())) 2294 DbgValues.push_back(&*DI); 2295 } 2296 } 2297 2298 void MachineInstr::changeDebugValuesDefReg(Register Reg) { 2299 // Collect matching debug values. 2300 SmallVector<MachineInstr *, 2> DbgValues; 2301 2302 if (!getOperand(0).isReg()) 2303 return; 2304 2305 Register DefReg = getOperand(0).getReg(); 2306 auto *MRI = getRegInfo(); 2307 for (auto &MO : MRI->use_operands(DefReg)) { 2308 auto *DI = MO.getParent(); 2309 if (!DI->isDebugValue()) 2310 continue; 2311 if (DI->hasDebugOperandForReg(DefReg)) { 2312 DbgValues.push_back(DI); 2313 } 2314 } 2315 2316 // Propagate Reg to debug value instructions. 2317 for (auto *DBI : DbgValues) 2318 for (MachineOperand &Op : DBI->getDebugOperandsForReg(DefReg)) 2319 Op.setReg(Reg); 2320 } 2321 2322 using MMOList = SmallVector<const MachineMemOperand *, 2>; 2323 2324 static unsigned getSpillSlotSize(const MMOList &Accesses, 2325 const MachineFrameInfo &MFI) { 2326 unsigned Size = 0; 2327 for (auto A : Accesses) 2328 if (MFI.isSpillSlotObjectIndex( 2329 cast<FixedStackPseudoSourceValue>(A->getPseudoValue()) 2330 ->getFrameIndex())) 2331 Size += A->getSize(); 2332 return Size; 2333 } 2334 2335 Optional<unsigned> 2336 MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { 2337 int FI; 2338 if (TII->isStoreToStackSlotPostFE(*this, FI)) { 2339 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2340 if (MFI.isSpillSlotObjectIndex(FI)) 2341 return (*memoperands_begin())->getSize(); 2342 } 2343 return None; 2344 } 2345 2346 Optional<unsigned> 2347 MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { 2348 MMOList Accesses; 2349 if (TII->hasStoreToStackSlot(*this, Accesses)) 2350 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2351 return None; 2352 } 2353 2354 Optional<unsigned> 2355 MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { 2356 int FI; 2357 if (TII->isLoadFromStackSlotPostFE(*this, FI)) { 2358 const MachineFrameInfo &MFI = getMF()->getFrameInfo(); 2359 if (MFI.isSpillSlotObjectIndex(FI)) 2360 return (*memoperands_begin())->getSize(); 2361 } 2362 return None; 2363 } 2364 2365 Optional<unsigned> 2366 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { 2367 MMOList Accesses; 2368 if (TII->hasLoadFromStackSlot(*this, Accesses)) 2369 return getSpillSlotSize(Accesses, getMF()->getFrameInfo()); 2370 return None; 2371 } 2372 2373 unsigned MachineInstr::getDebugInstrNum() { 2374 if (DebugInstrNum == 0) 2375 DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); 2376 return DebugInstrNum; 2377 } 2378 2379 unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { 2380 if (DebugInstrNum == 0) 2381 DebugInstrNum = MF.getNewDebugInstrNum(); 2382 return DebugInstrNum; 2383 } 2384