1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/MC/MCRegisterInfo.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Compiler.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 /// Describes a location by number along with some flags about the original 99 /// usage of the location. 100 class DbgValueLocation { 101 public: 102 DbgValueLocation(unsigned LocNo) 103 : LocNo(LocNo) { 104 static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing"); 105 assert(locNo() == LocNo && "location truncation"); 106 } 107 108 DbgValueLocation() : LocNo(0) {} 109 110 unsigned locNo() const { 111 // Fix up the undef location number, which gets truncated. 112 return LocNo == INT_MAX ? UndefLocNo : LocNo; 113 } 114 bool isUndef() const { return locNo() == UndefLocNo; } 115 116 DbgValueLocation changeLocNo(unsigned NewLocNo) const { 117 return DbgValueLocation(NewLocNo); 118 } 119 120 friend inline bool operator==(const DbgValueLocation &LHS, 121 const DbgValueLocation &RHS) { 122 return LHS.LocNo == RHS.LocNo; 123 } 124 125 friend inline bool operator!=(const DbgValueLocation &LHS, 126 const DbgValueLocation &RHS) { 127 return !(LHS == RHS); 128 } 129 130 private: 131 unsigned LocNo; 132 }; 133 134 /// Map of where a user value is live, and its location. 135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>; 136 137 /// Map of stack slot offsets for spilled locations. 138 /// Non-spilled locations are not added to the map. 139 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 140 141 namespace { 142 143 class LDVImpl; 144 145 /// A UserValue is uniquely identified by the source variable it refers to 146 /// (Variable), the expression describing how to get the value (Expression) and 147 /// the specific usage (InlinedAt). InlinedAt differentiates both between 148 /// inline and non-inline functions, and multiple inlined instances in the same 149 /// scope. FIXME: The only part of the Expression which matters for UserValue 150 /// identification is the fragment part. 151 class UserValueIdentity { 152 private: 153 /// The debug info variable we are part of. 154 const DILocalVariable *Variable; 155 /// Any complex address expression. 156 const DIExpression *Expression; 157 /// Function usage identification. 158 const DILocation *InlinedAt; 159 160 public: 161 UserValueIdentity(const DILocalVariable *Var, const DIExpression *Expr, 162 const DILocation *IA) 163 : Variable(Var), Expression(Expr), InlinedAt(IA) {} 164 165 bool match(const DILocalVariable *Var, const DIExpression *Expr, 166 const DILocation *IA) const { 167 // FIXME: The fragment should be part of the identity, but not 168 // other things in the expression like stack values. 169 return Var == Variable && Expr == Expression && IA == InlinedAt; 170 } 171 172 bool match(const UserValueIdentity &Other) const { 173 return match(Other.Variable, Other.Expression, Other.InlinedAt); 174 } 175 176 unsigned hash_value() const { 177 return hash_combine(Variable, Expression, InlinedAt); 178 } 179 }; 180 181 /// A user value is a part of a debug info user variable. 182 /// 183 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 184 /// holds part of a user variable. The part is identified by a byte offset. 185 class UserValue { 186 const DILocalVariable *Variable; ///< The debug info variable we are part of. 187 const DIExpression *Expression; ///< Any complex address expression. 188 DebugLoc dl; ///< The debug location for the variable. This is 189 ///< used by dwarf writer to find lexical scope. 190 191 /// Numbered locations referenced by locmap. 192 SmallVector<MachineOperand, 4> locations; 193 194 /// Map of slot indices where this value is live. 195 LocMap locInts; 196 197 /// Insert a DBG_VALUE into MBB at Idx for LocNo. 198 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 199 SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled, 200 unsigned SpillOffset, LiveIntervals &LIS, 201 const TargetInstrInfo &TII, 202 const TargetRegisterInfo &TRI); 203 204 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 205 /// is live. Returns true if any changes were made. 206 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 207 LiveIntervals &LIS); 208 209 public: 210 UserValue(const UserValue &) = delete; 211 212 /// Create a new UserValue. 213 UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L, 214 LocMap::Allocator &alloc) 215 : Variable(var), Expression(expr), dl(std::move(L)), locInts(alloc) {} 216 217 UserValueIdentity getId() { 218 return UserValueIdentity(Variable, Expression, dl->getInlinedAt()); 219 } 220 221 /// Return the location number that matches Loc. 222 /// 223 /// For undef values we always return location number UndefLocNo without 224 /// inserting anything in locations. Since locations is a vector and the 225 /// location number is the position in the vector and UndefLocNo is ~0, 226 /// we would need a very big vector to put the value at the right position. 227 unsigned getLocationNo(const MachineOperand &LocMO) { 228 if (LocMO.isReg()) { 229 if (LocMO.getReg() == 0) 230 return UndefLocNo; 231 // For register locations we dont care about use/def and other flags. 232 for (unsigned i = 0, e = locations.size(); i != e; ++i) 233 if (locations[i].isReg() && 234 locations[i].getReg() == LocMO.getReg() && 235 locations[i].getSubReg() == LocMO.getSubReg()) 236 return i; 237 } else 238 for (unsigned i = 0, e = locations.size(); i != e; ++i) 239 if (LocMO.isIdenticalTo(locations[i])) 240 return i; 241 locations.push_back(LocMO); 242 // We are storing a MachineOperand outside a MachineInstr. 243 locations.back().clearParent(); 244 // Don't store def operands. 245 if (locations.back().isReg()) { 246 if (locations.back().isDef()) 247 locations.back().setIsDead(false); 248 locations.back().setIsUse(); 249 } 250 return locations.size() - 1; 251 } 252 253 /// Ensure that all virtual register locations are mapped. 254 void mapVirtRegs(LDVImpl *LDV); 255 256 /// Add a definition point to this value. 257 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 258 DbgValueLocation Loc(getLocationNo(LocMO)); 259 // Add a singular (Idx,Idx) -> Loc mapping. 260 LocMap::iterator I = locInts.find(Idx); 261 if (!I.valid() || I.start() != Idx) 262 I.insert(Idx, Idx.getNextSlot(), Loc); 263 else 264 // A later DBG_VALUE at the same SlotIndex overrides the old location. 265 I.setValue(Loc); 266 } 267 268 /// Extend the current definition as far as possible down. 269 /// 270 /// Stop when meeting an existing def or when leaving the live 271 /// range of VNI. End points where VNI is no longer live are added to Kills. 272 /// 273 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 274 /// data-flow analysis to propagate them beyond basic block boundaries. 275 /// 276 /// \param Idx Starting point for the definition. 277 /// \param Loc Location number to propagate. 278 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 279 /// \param VNI When LR is not null, this is the value to restrict to. 280 /// \param [out] Kills Append end points of VNI's live range to Kills. 281 /// \param LIS Live intervals analysis. 282 void extendDef(SlotIndex Idx, DbgValueLocation Loc, 283 LiveRange *LR, const VNInfo *VNI, 284 SmallVectorImpl<SlotIndex> *Kills, 285 LiveIntervals &LIS); 286 287 /// The value in LI/LocNo may be copies to other registers. Determine if 288 /// any of the copies are available at the kill points, and add defs if 289 /// possible. 290 /// 291 /// \param LI Scan for copies of the value in LI->reg. 292 /// \param LocNo Location number of LI->reg. 293 /// \param Kills Points where the range of LocNo could be extended. 294 /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here. 295 void addDefsFromCopies( 296 LiveInterval *LI, unsigned LocNo, 297 const SmallVectorImpl<SlotIndex> &Kills, 298 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 299 MachineRegisterInfo &MRI, LiveIntervals &LIS); 300 301 /// Compute the live intervals of all locations after collecting all their 302 /// def points. 303 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 304 LiveIntervals &LIS, LexicalScopes &LS); 305 306 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 307 /// live. Returns true if any changes were made. 308 bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 309 LiveIntervals &LIS); 310 311 /// Rewrite virtual register locations according to the provided virtual 312 /// register map. Record the stack slot offsets for the locations that 313 /// were spilled. 314 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 315 const TargetInstrInfo &TII, 316 const TargetRegisterInfo &TRI, 317 SpillOffsetMap &SpillOffsets); 318 319 /// Recreate DBG_VALUE instruction from data structures. 320 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 321 const TargetInstrInfo &TII, 322 const TargetRegisterInfo &TRI, 323 const SpillOffsetMap &SpillOffsets); 324 325 /// Return DebugLoc of this UserValue. 326 DebugLoc getDebugLoc() { return dl;} 327 328 void print(raw_ostream &, const TargetRegisterInfo *); 329 }; 330 } // namespace 331 332 namespace llvm { 333 template <> struct DenseMapInfo<UserValueIdentity> { 334 static UserValueIdentity getEmptyKey() { 335 auto Key = DenseMapInfo<DILocalVariable *>::getEmptyKey(); 336 return UserValueIdentity(Key, nullptr, nullptr); 337 } 338 static UserValueIdentity getTombstoneKey() { 339 auto Key = DenseMapInfo<DILocalVariable *>::getTombstoneKey(); 340 return UserValueIdentity(Key, nullptr, nullptr); 341 } 342 static unsigned getHashValue(const UserValueIdentity &Val) { 343 return Val.hash_value(); 344 } 345 static bool isEqual(const UserValueIdentity &LHS, 346 const UserValueIdentity &RHS) { 347 return LHS.match(RHS); 348 } 349 }; 350 } // namespace llvm 351 352 namespace { 353 /// A user label is a part of a debug info user label. 354 class UserLabel { 355 const DILabel *Label; ///< The debug info label we are part of. 356 DebugLoc dl; ///< The debug location for the label. This is 357 ///< used by dwarf writer to find lexical scope. 358 SlotIndex loc; ///< Slot used by the debug label. 359 360 /// Insert a DBG_LABEL into MBB at Idx. 361 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 362 LiveIntervals &LIS, const TargetInstrInfo &TII); 363 364 public: 365 /// Create a new UserLabel. 366 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 367 : Label(label), dl(std::move(L)), loc(Idx) {} 368 369 /// Does this UserLabel match the parameters? 370 bool match(const DILabel *L, const DILocation *IA, 371 const SlotIndex Index) const { 372 return Label == L && dl->getInlinedAt() == IA && loc == Index; 373 } 374 375 /// Recreate DBG_LABEL instruction from data structures. 376 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 377 378 /// Return DebugLoc of this UserLabel. 379 DebugLoc getDebugLoc() { return dl; } 380 381 void print(raw_ostream &, const TargetRegisterInfo *); 382 }; 383 384 /// Implementation of the LiveDebugVariables pass. 385 class LDVImpl { 386 LiveDebugVariables &pass; 387 LocMap::Allocator allocator; 388 MachineFunction *MF = nullptr; 389 LiveIntervals *LIS; 390 const TargetRegisterInfo *TRI; 391 392 /// Whether emitDebugValues is called. 393 bool EmitDone = false; 394 395 /// Whether the machine function is modified during the pass. 396 bool ModifiedMF = false; 397 398 /// All allocated UserValue instances. 399 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 400 401 /// All allocated UserLabel instances. 402 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 403 404 /// Map virtual register to UserValues which use it. 405 using VRMap = DenseMap<unsigned, SmallVector<UserValue *, 4>>; 406 VRMap VirtRegToUserVals; 407 408 /// Map unique UserValue identity to UserValue. 409 using UVMap = DenseMap<UserValueIdentity, UserValue *>; 410 UVMap UserVarMap; 411 412 /// Find or create a UserValue. 413 UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr, 414 const DebugLoc &DL); 415 416 /// Find the UserValues for VirtReg or null. 417 SmallVectorImpl<UserValue *> *lookupVirtReg(unsigned VirtReg); 418 419 /// Add DBG_VALUE instruction to our maps. 420 /// 421 /// \param MI DBG_VALUE instruction 422 /// \param Idx Last valid SLotIndex before instruction. 423 /// 424 /// \returns True if the DBG_VALUE instruction should be deleted. 425 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 426 427 /// Add DBG_LABEL instruction to UserLabel. 428 /// 429 /// \param MI DBG_LABEL instruction 430 /// \param Idx Last valid SlotIndex before instruction. 431 /// 432 /// \returns True if the DBG_LABEL instruction should be deleted. 433 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 434 435 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 436 /// for each instruction. 437 /// 438 /// \param mf MachineFunction to be scanned. 439 /// 440 /// \returns True if any debug values were found. 441 bool collectDebugValues(MachineFunction &mf); 442 443 /// Compute the live intervals of all user values after collecting all 444 /// their def points. 445 void computeIntervals(); 446 447 public: 448 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 449 450 bool runOnMachineFunction(MachineFunction &mf); 451 452 /// Release all memory. 453 void clear() { 454 MF = nullptr; 455 userValues.clear(); 456 userLabels.clear(); 457 VirtRegToUserVals.clear(); 458 UserVarMap.clear(); 459 // Make sure we call emitDebugValues if the machine function was modified. 460 assert((!ModifiedMF || EmitDone) && 461 "Dbg values are not emitted in LDV"); 462 EmitDone = false; 463 ModifiedMF = false; 464 } 465 466 /// Map virtual register to a UserValue. 467 void mapVirtReg(unsigned VirtReg, UserValue *UV); 468 469 /// Replace all references to OldReg with NewRegs. 470 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 471 472 /// Recreate DBG_VALUE instruction from data structures. 473 void emitDebugValues(VirtRegMap *VRM); 474 475 void print(raw_ostream&); 476 }; 477 478 } // end anonymous namespace 479 480 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 481 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 482 const LLVMContext &Ctx) { 483 if (!DL) 484 return; 485 486 auto *Scope = cast<DIScope>(DL.getScope()); 487 // Omit the directory, because it's likely to be long and uninteresting. 488 CommentOS << Scope->getFilename(); 489 CommentOS << ':' << DL.getLine(); 490 if (DL.getCol() != 0) 491 CommentOS << ':' << DL.getCol(); 492 493 DebugLoc InlinedAtDL = DL.getInlinedAt(); 494 if (!InlinedAtDL) 495 return; 496 497 CommentOS << " @[ "; 498 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 499 CommentOS << " ]"; 500 } 501 502 static void printExtendedName(raw_ostream &OS, const DINode *Node, 503 const DILocation *DL) { 504 const LLVMContext &Ctx = Node->getContext(); 505 StringRef Res; 506 unsigned Line; 507 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 508 Res = V->getName(); 509 Line = V->getLine(); 510 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 511 Res = L->getName(); 512 Line = L->getLine(); 513 } 514 515 if (!Res.empty()) 516 OS << Res << "," << Line; 517 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 518 if (InlinedAt) { 519 if (DebugLoc InlinedAtDL = InlinedAt) { 520 OS << " @["; 521 printDebugLoc(InlinedAtDL, OS, Ctx); 522 OS << "]"; 523 } 524 } 525 } 526 527 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 528 OS << "!\""; 529 printExtendedName(OS, Variable, dl); 530 531 OS << "\"\t"; 532 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 533 OS << " [" << I.start() << ';' << I.stop() << "):"; 534 if (I.value().isUndef()) 535 OS << "undef"; 536 else { 537 OS << I.value().locNo(); 538 } 539 } 540 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 541 OS << " Loc" << i << '='; 542 locations[i].print(OS, TRI); 543 } 544 OS << '\n'; 545 } 546 547 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 548 OS << "!\""; 549 printExtendedName(OS, Label, dl); 550 551 OS << "\"\t"; 552 OS << loc; 553 OS << '\n'; 554 } 555 556 void LDVImpl::print(raw_ostream &OS) { 557 OS << "********** DEBUG VARIABLES **********\n"; 558 for (auto &userValue : userValues) 559 userValue->print(OS, TRI); 560 OS << "********** DEBUG LABELS **********\n"; 561 for (auto &userLabel : userLabels) 562 userLabel->print(OS, TRI); 563 } 564 #endif 565 566 void UserValue::mapVirtRegs(LDVImpl *LDV) { 567 for (unsigned i = 0, e = locations.size(); i != e; ++i) 568 if (locations[i].isReg() && 569 Register::isVirtualRegister(locations[i].getReg())) 570 LDV->mapVirtReg(locations[i].getReg(), this); 571 } 572 573 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 574 const DIExpression *Expr, const DebugLoc &DL) { 575 auto Ident = UserValueIdentity(Var, Expr, DL->getInlinedAt()); 576 UserValue *&UVEntry = UserVarMap[Ident]; 577 578 if (UVEntry) 579 return UVEntry; 580 581 userValues.push_back(std::make_unique<UserValue>(Var, Expr, DL, allocator)); 582 return UVEntry = userValues.back().get(); 583 } 584 585 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *UV) { 586 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 587 assert(UserVarMap.find(UV->getId()) != UserVarMap.end() && 588 "UserValue should exist in UserVarMap"); 589 VirtRegToUserVals[VirtReg].push_back(UV); 590 } 591 592 SmallVectorImpl<UserValue *> *LDVImpl::lookupVirtReg(unsigned VirtReg) { 593 VRMap::iterator Itr = VirtRegToUserVals.find(VirtReg); 594 if (Itr != VirtRegToUserVals.end()) 595 return &Itr->getSecond(); 596 return nullptr; 597 } 598 599 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 600 // DBG_VALUE loc, offset, variable 601 if (MI.getNumOperands() != 4 || 602 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 603 !MI.getOperand(2).isMetadata()) { 604 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 605 return false; 606 } 607 608 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 609 // register that hasn't been defined yet. If we do not remove those here, then 610 // the re-insertion of the DBG_VALUE instruction after register allocation 611 // will be incorrect. 612 // TODO: If earlier passes are corrected to generate sane debug information 613 // (and if the machine verifier is improved to catch this), then these checks 614 // could be removed or replaced by asserts. 615 bool Discard = false; 616 if (MI.getOperand(0).isReg() && 617 Register::isVirtualRegister(MI.getOperand(0).getReg())) { 618 const Register Reg = MI.getOperand(0).getReg(); 619 if (!LIS->hasInterval(Reg)) { 620 // The DBG_VALUE is described by a virtual register that does not have a 621 // live interval. Discard the DBG_VALUE. 622 Discard = true; 623 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 624 << " " << MI); 625 } else { 626 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 627 // is defined dead at Idx (where Idx is the slot index for the instruction 628 // preceding the DBG_VALUE). 629 const LiveInterval &LI = LIS->getInterval(Reg); 630 LiveQueryResult LRQ = LI.Query(Idx); 631 if (!LRQ.valueOutOrDead()) { 632 // We have found a DBG_VALUE with the value in a virtual register that 633 // is not live. Discard the DBG_VALUE. 634 Discard = true; 635 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 636 << " " << MI); 637 } 638 } 639 } 640 641 // Get or create the UserValue for (variable,offset) here. 642 assert(!MI.getOperand(1).isImm() && "DBG_VALUE with indirect flag before " 643 "LiveDebugVariables"); 644 const DILocalVariable *Var = MI.getDebugVariable(); 645 const DIExpression *Expr = MI.getDebugExpression(); 646 UserValue *UV = 647 getUserValue(Var, Expr, MI.getDebugLoc()); 648 if (!Discard) 649 UV->addDef(Idx, MI.getOperand(0)); 650 else { 651 MachineOperand MO = MachineOperand::CreateReg(0U, false); 652 MO.setIsDebug(); 653 UV->addDef(Idx, MO); 654 } 655 return true; 656 } 657 658 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 659 // DBG_LABEL label 660 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 661 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 662 return false; 663 } 664 665 // Get or create the UserLabel for label here. 666 const DILabel *Label = MI.getDebugLabel(); 667 const DebugLoc &DL = MI.getDebugLoc(); 668 bool Found = false; 669 for (auto const &L : userLabels) { 670 if (L->match(Label, DL->getInlinedAt(), Idx)) { 671 Found = true; 672 break; 673 } 674 } 675 if (!Found) 676 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 677 678 return true; 679 } 680 681 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 682 bool Changed = false; 683 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 684 ++MFI) { 685 MachineBasicBlock *MBB = &*MFI; 686 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 687 MBBI != MBBE;) { 688 // Use the first debug instruction in the sequence to get a SlotIndex 689 // for following consecutive debug instructions. 690 if (!MBBI->isDebugInstr()) { 691 ++MBBI; 692 continue; 693 } 694 // Debug instructions has no slot index. Use the previous 695 // non-debug instruction's SlotIndex as its SlotIndex. 696 SlotIndex Idx = 697 MBBI == MBB->begin() 698 ? LIS->getMBBStartIdx(MBB) 699 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 700 // Handle consecutive debug instructions with the same slot index. 701 do { 702 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 703 // kinds of debug instructions. 704 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 705 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 706 MBBI = MBB->erase(MBBI); 707 Changed = true; 708 } else 709 ++MBBI; 710 } while (MBBI != MBBE && MBBI->isDebugInstr()); 711 } 712 } 713 return Changed; 714 } 715 716 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR, 717 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 718 LiveIntervals &LIS) { 719 SlotIndex Start = Idx; 720 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 721 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 722 LocMap::iterator I = locInts.find(Start); 723 724 // Limit to VNI's live range. 725 bool ToEnd = true; 726 if (LR && VNI) { 727 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 728 if (!Segment || Segment->valno != VNI) { 729 if (Kills) 730 Kills->push_back(Start); 731 return; 732 } 733 if (Segment->end < Stop) { 734 Stop = Segment->end; 735 ToEnd = false; 736 } 737 } 738 739 // There could already be a short def at Start. 740 if (I.valid() && I.start() <= Start) { 741 // Stop when meeting a different location or an already extended interval. 742 Start = Start.getNextSlot(); 743 if (I.value() != Loc || I.stop() != Start) 744 return; 745 // This is a one-slot placeholder. Just skip it. 746 ++I; 747 } 748 749 // Limited by the next def. 750 if (I.valid() && I.start() < Stop) 751 Stop = I.start(); 752 // Limited by VNI's live range. 753 else if (!ToEnd && Kills) 754 Kills->push_back(Stop); 755 756 if (Start < Stop) 757 I.insert(Start, Stop, Loc); 758 } 759 760 void UserValue::addDefsFromCopies( 761 LiveInterval *LI, unsigned LocNo, 762 const SmallVectorImpl<SlotIndex> &Kills, 763 SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs, 764 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 765 if (Kills.empty()) 766 return; 767 // Don't track copies from physregs, there are too many uses. 768 if (!Register::isVirtualRegister(LI->reg)) 769 return; 770 771 // Collect all the (vreg, valno) pairs that are copies of LI. 772 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 773 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 774 MachineInstr *MI = MO.getParent(); 775 // Copies of the full value. 776 if (MO.getSubReg() || !MI->isCopy()) 777 continue; 778 Register DstReg = MI->getOperand(0).getReg(); 779 780 // Don't follow copies to physregs. These are usually setting up call 781 // arguments, and the argument registers are always call clobbered. We are 782 // better off in the source register which could be a callee-saved register, 783 // or it could be spilled. 784 if (!Register::isVirtualRegister(DstReg)) 785 continue; 786 787 // Is LocNo extended to reach this copy? If not, another def may be blocking 788 // it, or we are looking at a wrong value of LI. 789 SlotIndex Idx = LIS.getInstructionIndex(*MI); 790 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 791 if (!I.valid() || I.value().locNo() != LocNo) 792 continue; 793 794 if (!LIS.hasInterval(DstReg)) 795 continue; 796 LiveInterval *DstLI = &LIS.getInterval(DstReg); 797 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 798 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 799 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 800 } 801 802 if (CopyValues.empty()) 803 return; 804 805 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 806 << '\n'); 807 808 // Try to add defs of the copied values for each kill point. 809 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 810 SlotIndex Idx = Kills[i]; 811 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 812 LiveInterval *DstLI = CopyValues[j].first; 813 const VNInfo *DstVNI = CopyValues[j].second; 814 if (DstLI->getVNInfoAt(Idx) != DstVNI) 815 continue; 816 // Check that there isn't already a def at Idx 817 LocMap::iterator I = locInts.find(Idx); 818 if (I.valid() && I.start() <= Idx) 819 continue; 820 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 821 << DstVNI->id << " in " << *DstLI << '\n'); 822 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 823 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 824 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 825 DbgValueLocation NewLoc(LocNo); 826 I.insert(Idx, Idx.getNextSlot(), NewLoc); 827 NewDefs.push_back(std::make_pair(Idx, NewLoc)); 828 break; 829 } 830 } 831 } 832 833 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 834 const TargetRegisterInfo &TRI, 835 LiveIntervals &LIS, LexicalScopes &LS) { 836 SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs; 837 838 // Collect all defs to be extended (Skipping undefs). 839 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 840 if (!I.value().isUndef()) 841 Defs.push_back(std::make_pair(I.start(), I.value())); 842 843 // Extend all defs, and possibly add new ones along the way. 844 for (unsigned i = 0; i != Defs.size(); ++i) { 845 SlotIndex Idx = Defs[i].first; 846 DbgValueLocation Loc = Defs[i].second; 847 const MachineOperand &LocMO = locations[Loc.locNo()]; 848 849 if (!LocMO.isReg()) { 850 extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS); 851 continue; 852 } 853 854 // Register locations are constrained to where the register value is live. 855 if (Register::isVirtualRegister(LocMO.getReg())) { 856 LiveInterval *LI = nullptr; 857 const VNInfo *VNI = nullptr; 858 if (LIS.hasInterval(LocMO.getReg())) { 859 LI = &LIS.getInterval(LocMO.getReg()); 860 VNI = LI->getVNInfoAt(Idx); 861 } 862 SmallVector<SlotIndex, 16> Kills; 863 extendDef(Idx, Loc, LI, VNI, &Kills, LIS); 864 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 865 // if the original location for example is %vreg0:sub_hi, and we find a 866 // full register copy in addDefsFromCopies (at the moment it only handles 867 // full register copies), then we must add the sub1 sub-register index to 868 // the new location. However, that is only possible if the new virtual 869 // register is of the same regclass (or if there is an equivalent 870 // sub-register in that regclass). For now, simply skip handling copies if 871 // a sub-register is involved. 872 if (LI && !LocMO.getSubReg()) 873 addDefsFromCopies(LI, Loc.locNo(), Kills, Defs, MRI, LIS); 874 continue; 875 } 876 877 // For physregs, we only mark the start slot idx. DwarfDebug will see it 878 // as if the DBG_VALUE is valid up until the end of the basic block, or 879 // the next def of the physical register. So we do not need to extend the 880 // range. It might actually happen that the DBG_VALUE is the last use of 881 // the physical register (e.g. if this is an unused input argument to a 882 // function). 883 } 884 885 // The computed intervals may extend beyond the range of the debug 886 // location's lexical scope. In this case, splitting of an interval 887 // can result in an interval outside of the scope being created, 888 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 889 // this, trim the intervals to the lexical scope. 890 891 LexicalScope *Scope = LS.findLexicalScope(dl); 892 if (!Scope) 893 return; 894 895 SlotIndex PrevEnd; 896 LocMap::iterator I = locInts.begin(); 897 898 // Iterate over the lexical scope ranges. Each time round the loop 899 // we check the intervals for overlap with the end of the previous 900 // range and the start of the next. The first range is handled as 901 // a special case where there is no PrevEnd. 902 for (const InsnRange &Range : Scope->getRanges()) { 903 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 904 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 905 906 // At the start of each iteration I has been advanced so that 907 // I.stop() >= PrevEnd. Check for overlap. 908 if (PrevEnd && I.start() < PrevEnd) { 909 SlotIndex IStop = I.stop(); 910 DbgValueLocation Loc = I.value(); 911 912 // Stop overlaps previous end - trim the end of the interval to 913 // the scope range. 914 I.setStopUnchecked(PrevEnd); 915 ++I; 916 917 // If the interval also overlaps the start of the "next" (i.e. 918 // current) range create a new interval for the remainder 919 if (RStart < IStop) 920 I.insert(RStart, IStop, Loc); 921 } 922 923 // Advance I so that I.stop() >= RStart, and check for overlap. 924 I.advanceTo(RStart); 925 if (!I.valid()) 926 return; 927 928 // The end of a lexical scope range is the last instruction in the 929 // range. To convert to an interval we need the index of the 930 // instruction after it. 931 REnd = REnd.getNextIndex(); 932 933 // Advance I to first interval outside current range. 934 I.advanceTo(REnd); 935 if (!I.valid()) 936 return; 937 938 PrevEnd = REnd; 939 } 940 941 // Check for overlap with end of final range. 942 if (PrevEnd && I.start() < PrevEnd) 943 I.setStopUnchecked(PrevEnd); 944 } 945 946 void LDVImpl::computeIntervals() { 947 LexicalScopes LS; 948 LS.initialize(*MF); 949 950 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 951 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 952 userValues[i]->mapVirtRegs(this); 953 } 954 } 955 956 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 957 clear(); 958 MF = &mf; 959 LIS = &pass.getAnalysis<LiveIntervals>(); 960 TRI = mf.getSubtarget().getRegisterInfo(); 961 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 962 << mf.getName() << " **********\n"); 963 964 bool Changed = collectDebugValues(mf); 965 computeIntervals(); 966 LLVM_DEBUG(print(dbgs())); 967 ModifiedMF = Changed; 968 return Changed; 969 } 970 971 static void removeDebugValues(MachineFunction &mf) { 972 for (MachineBasicBlock &MBB : mf) { 973 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 974 if (!MBBI->isDebugValue()) { 975 ++MBBI; 976 continue; 977 } 978 MBBI = MBB.erase(MBBI); 979 } 980 } 981 } 982 983 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 984 if (!EnableLDV) 985 return false; 986 if (!mf.getFunction().getSubprogram()) { 987 removeDebugValues(mf); 988 return false; 989 } 990 if (!pImpl) 991 pImpl = new LDVImpl(this); 992 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 993 } 994 995 void LiveDebugVariables::releaseMemory() { 996 if (pImpl) 997 static_cast<LDVImpl*>(pImpl)->clear(); 998 } 999 1000 LiveDebugVariables::~LiveDebugVariables() { 1001 if (pImpl) 1002 delete static_cast<LDVImpl*>(pImpl); 1003 } 1004 1005 //===----------------------------------------------------------------------===// 1006 // Live Range Splitting 1007 //===----------------------------------------------------------------------===// 1008 1009 bool 1010 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 1011 LiveIntervals& LIS) { 1012 LLVM_DEBUG({ 1013 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1014 print(dbgs(), nullptr); 1015 }); 1016 bool DidChange = false; 1017 LocMap::iterator LocMapI; 1018 LocMapI.setMap(locInts); 1019 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1020 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1021 if (LI->empty()) 1022 continue; 1023 1024 // Don't allocate the new LocNo until it is needed. 1025 unsigned NewLocNo = UndefLocNo; 1026 1027 // Iterate over the overlaps between locInts and LI. 1028 LocMapI.find(LI->beginIndex()); 1029 if (!LocMapI.valid()) 1030 continue; 1031 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1032 LiveInterval::iterator LIE = LI->end(); 1033 while (LocMapI.valid() && LII != LIE) { 1034 // At this point, we know that LocMapI.stop() > LII->start. 1035 LII = LI->advanceTo(LII, LocMapI.start()); 1036 if (LII == LIE) 1037 break; 1038 1039 // Now LII->end > LocMapI.start(). Do we have an overlap? 1040 if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) { 1041 // Overlapping correct location. Allocate NewLocNo now. 1042 if (NewLocNo == UndefLocNo) { 1043 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 1044 MO.setSubReg(locations[OldLocNo].getSubReg()); 1045 NewLocNo = getLocationNo(MO); 1046 DidChange = true; 1047 } 1048 1049 SlotIndex LStart = LocMapI.start(); 1050 SlotIndex LStop = LocMapI.stop(); 1051 DbgValueLocation OldLoc = LocMapI.value(); 1052 1053 // Trim LocMapI down to the LII overlap. 1054 if (LStart < LII->start) 1055 LocMapI.setStartUnchecked(LII->start); 1056 if (LStop > LII->end) 1057 LocMapI.setStopUnchecked(LII->end); 1058 1059 // Change the value in the overlap. This may trigger coalescing. 1060 LocMapI.setValue(OldLoc.changeLocNo(NewLocNo)); 1061 1062 // Re-insert any removed OldLocNo ranges. 1063 if (LStart < LocMapI.start()) { 1064 LocMapI.insert(LStart, LocMapI.start(), OldLoc); 1065 ++LocMapI; 1066 assert(LocMapI.valid() && "Unexpected coalescing"); 1067 } 1068 if (LStop > LocMapI.stop()) { 1069 ++LocMapI; 1070 LocMapI.insert(LII->end, LStop, OldLoc); 1071 --LocMapI; 1072 } 1073 } 1074 1075 // Advance to the next overlap. 1076 if (LII->end < LocMapI.stop()) { 1077 if (++LII == LIE) 1078 break; 1079 LocMapI.advanceTo(LII->start); 1080 } else { 1081 ++LocMapI; 1082 if (!LocMapI.valid()) 1083 break; 1084 LII = LI->advanceTo(LII, LocMapI.start()); 1085 } 1086 } 1087 } 1088 1089 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 1090 locations.erase(locations.begin() + OldLocNo); 1091 LocMapI.goToBegin(); 1092 while (LocMapI.valid()) { 1093 DbgValueLocation v = LocMapI.value(); 1094 if (v.locNo() == OldLocNo) { 1095 LLVM_DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 1096 << LocMapI.stop() << ")\n"); 1097 LocMapI.erase(); 1098 } else { 1099 // Undef values always have location number UndefLocNo, so don't change 1100 // locNo in that case. See getLocationNo(). 1101 if (!v.isUndef() && v.locNo() > OldLocNo) 1102 LocMapI.setValueUnchecked(v.changeLocNo(v.locNo() - 1)); 1103 ++LocMapI; 1104 } 1105 } 1106 1107 LLVM_DEBUG({ 1108 dbgs() << "Split result: \t"; 1109 print(dbgs(), nullptr); 1110 }); 1111 return DidChange; 1112 } 1113 1114 bool 1115 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 1116 LiveIntervals &LIS) { 1117 bool DidChange = false; 1118 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1119 // safely erase unused locations. 1120 for (unsigned i = locations.size(); i ; --i) { 1121 unsigned LocNo = i-1; 1122 const MachineOperand *Loc = &locations[LocNo]; 1123 if (!Loc->isReg() || Loc->getReg() != OldReg) 1124 continue; 1125 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1126 } 1127 return DidChange; 1128 } 1129 1130 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 1131 bool DidChange = false; 1132 if (auto *UserVals = lookupVirtReg(OldReg)) 1133 for (auto *UV : *UserVals) 1134 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1135 1136 if (!DidChange) 1137 return; 1138 1139 // Map all of the new virtual registers. 1140 if (auto *UserVals = lookupVirtReg(OldReg)) 1141 for (auto *UV : *UserVals) 1142 for (unsigned i = 0; i != NewRegs.size(); ++i) 1143 mapVirtReg(NewRegs[i], UV); 1144 } 1145 1146 void LiveDebugVariables:: 1147 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 1148 if (pImpl) 1149 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1150 } 1151 1152 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1153 const TargetInstrInfo &TII, 1154 const TargetRegisterInfo &TRI, 1155 SpillOffsetMap &SpillOffsets) { 1156 // Build a set of new locations with new numbers so we can coalesce our 1157 // IntervalMap if two vreg intervals collapse to the same physical location. 1158 // Use MapVector instead of SetVector because MapVector::insert returns the 1159 // position of the previously or newly inserted element. The boolean value 1160 // tracks if the location was produced by a spill. 1161 // FIXME: This will be problematic if we ever support direct and indirect 1162 // frame index locations, i.e. expressing both variables in memory and 1163 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1164 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1165 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1166 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1167 bool Spilled = false; 1168 unsigned SpillOffset = 0; 1169 MachineOperand Loc = locations[I]; 1170 // Only virtual registers are rewritten. 1171 if (Loc.isReg() && Loc.getReg() && 1172 Register::isVirtualRegister(Loc.getReg())) { 1173 Register VirtReg = Loc.getReg(); 1174 if (VRM.isAssignedReg(VirtReg) && 1175 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1176 // This can create a %noreg operand in rare cases when the sub-register 1177 // index is no longer available. That means the user value is in a 1178 // non-existent sub-register, and %noreg is exactly what we want. 1179 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1180 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1181 // Retrieve the stack slot offset. 1182 unsigned SpillSize; 1183 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1184 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1185 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1186 SpillOffset, MF); 1187 1188 // FIXME: Invalidate the location if the offset couldn't be calculated. 1189 (void)Success; 1190 1191 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1192 Spilled = true; 1193 } else { 1194 Loc.setReg(0); 1195 Loc.setSubReg(0); 1196 } 1197 } 1198 1199 // Insert this location if it doesn't already exist and record a mapping 1200 // from the old number to the new number. 1201 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1202 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1203 LocNoMap[I] = NewLocNo; 1204 } 1205 1206 // Rewrite the locations and record the stack slot offsets for spills. 1207 locations.clear(); 1208 SpillOffsets.clear(); 1209 for (auto &Pair : NewLocations) { 1210 bool Spilled; 1211 unsigned SpillOffset; 1212 std::tie(Spilled, SpillOffset) = Pair.second; 1213 locations.push_back(Pair.first); 1214 if (Spilled) { 1215 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1216 SpillOffsets[NewLocNo] = SpillOffset; 1217 } 1218 } 1219 1220 // Update the interval map, but only coalesce left, since intervals to the 1221 // right use the old location numbers. This should merge two contiguous 1222 // DBG_VALUE intervals with different vregs that were allocated to the same 1223 // physical register. 1224 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1225 DbgValueLocation Loc = I.value(); 1226 // Undef values don't exist in locations (and thus not in LocNoMap either) 1227 // so skip over them. See getLocationNo(). 1228 if (Loc.isUndef()) 1229 continue; 1230 unsigned NewLocNo = LocNoMap[Loc.locNo()]; 1231 I.setValueUnchecked(Loc.changeLocNo(NewLocNo)); 1232 I.setStart(I.start()); 1233 } 1234 } 1235 1236 /// Find an iterator for inserting a DBG_VALUE instruction. 1237 static MachineBasicBlock::iterator 1238 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1239 LiveIntervals &LIS) { 1240 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1241 Idx = Idx.getBaseIndex(); 1242 1243 // Try to find an insert location by going backwards from Idx. 1244 MachineInstr *MI; 1245 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1246 // We've reached the beginning of MBB. 1247 if (Idx == Start) { 1248 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1249 return I; 1250 } 1251 Idx = Idx.getPrevIndex(); 1252 } 1253 1254 // Don't insert anything after the first terminator, though. 1255 return MI->isTerminator() ? MBB->getFirstTerminator() : 1256 std::next(MachineBasicBlock::iterator(MI)); 1257 } 1258 1259 /// Find an iterator for inserting the next DBG_VALUE instruction 1260 /// (or end if no more insert locations found). 1261 static MachineBasicBlock::iterator 1262 findNextInsertLocation(MachineBasicBlock *MBB, 1263 MachineBasicBlock::iterator I, 1264 SlotIndex StopIdx, MachineOperand &LocMO, 1265 LiveIntervals &LIS, 1266 const TargetRegisterInfo &TRI) { 1267 if (!LocMO.isReg()) 1268 return MBB->instr_end(); 1269 Register Reg = LocMO.getReg(); 1270 1271 // Find the next instruction in the MBB that define the register Reg. 1272 while (I != MBB->end() && !I->isTerminator()) { 1273 if (!LIS.isNotInMIMap(*I) && 1274 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1275 break; 1276 if (I->definesRegister(Reg, &TRI)) 1277 // The insert location is directly after the instruction/bundle. 1278 return std::next(I); 1279 ++I; 1280 } 1281 return MBB->end(); 1282 } 1283 1284 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1285 SlotIndex StopIdx, DbgValueLocation Loc, 1286 bool Spilled, unsigned SpillOffset, 1287 LiveIntervals &LIS, const TargetInstrInfo &TII, 1288 const TargetRegisterInfo &TRI) { 1289 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1290 // Only search within the current MBB. 1291 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1292 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1293 // Undef values don't exist in locations so create new "noreg" register MOs 1294 // for them. See getLocationNo(). 1295 MachineOperand MO = !Loc.isUndef() ? 1296 locations[Loc.locNo()] : 1297 MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false, 1298 /* isKill */ false, /* isDead */ false, 1299 /* isUndef */ false, /* isEarlyClobber */ false, 1300 /* SubReg */ 0, /* isDebug */ true); 1301 1302 ++NumInsertedDebugValues; 1303 1304 assert(cast<DILocalVariable>(Variable) 1305 ->isValidLocationForIntrinsic(getDebugLoc()) && 1306 "Expected inlined-at fields to agree"); 1307 1308 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1309 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1310 // that the original virtual register was a pointer. Also, add the stack slot 1311 // offset for the spilled register to the expression. 1312 const DIExpression *Expr = Expression; 1313 if (Spilled) 1314 Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, SpillOffset); 1315 1316 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1317 1318 do { 1319 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1320 Spilled, MO, Variable, Expr); 1321 1322 // Continue and insert DBG_VALUES after every redefinition of register 1323 // associated with the debug value within the range 1324 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1325 } while (I != MBB->end()); 1326 } 1327 1328 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1329 LiveIntervals &LIS, 1330 const TargetInstrInfo &TII) { 1331 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1332 ++NumInsertedDebugLabels; 1333 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1334 .addMetadata(Label); 1335 } 1336 1337 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1338 const TargetInstrInfo &TII, 1339 const TargetRegisterInfo &TRI, 1340 const SpillOffsetMap &SpillOffsets) { 1341 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1342 1343 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1344 SlotIndex Start = I.start(); 1345 SlotIndex Stop = I.stop(); 1346 DbgValueLocation Loc = I.value(); 1347 auto SpillIt = 1348 !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end(); 1349 bool Spilled = SpillIt != SpillOffsets.end(); 1350 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1351 1352 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo()); 1353 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1354 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1355 1356 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1357 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1358 TRI); 1359 // This interval may span multiple basic blocks. 1360 // Insert a DBG_VALUE into each one. 1361 while (Stop > MBBEnd) { 1362 // Move to the next block. 1363 Start = MBBEnd; 1364 if (++MBB == MFEnd) 1365 break; 1366 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1367 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1368 insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII, 1369 TRI); 1370 } 1371 LLVM_DEBUG(dbgs() << '\n'); 1372 if (MBB == MFEnd) 1373 break; 1374 1375 ++I; 1376 } 1377 } 1378 1379 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1380 LLVM_DEBUG(dbgs() << "\t" << loc); 1381 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1382 1383 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1384 insertDebugLabel(&*MBB, loc, LIS, TII); 1385 1386 LLVM_DEBUG(dbgs() << '\n'); 1387 } 1388 1389 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1390 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1391 if (!MF) 1392 return; 1393 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1394 SpillOffsetMap SpillOffsets; 1395 for (auto &userValue : userValues) { 1396 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1397 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1398 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1399 } 1400 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1401 for (auto &userLabel : userLabels) { 1402 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1403 userLabel->emitDebugLabel(*LIS, *TII); 1404 } 1405 EmitDone = true; 1406 } 1407 1408 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1409 if (pImpl) 1410 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1411 } 1412 1413 bool LiveDebugVariables::doInitialization(Module &M) { 1414 return Pass::doInitialization(M); 1415 } 1416 1417 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1418 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1419 if (pImpl) 1420 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1421 } 1422 #endif 1423